

> The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

TWELFTH CENSUS OF THE UNITED STATES

 WILLIAM R. MERRIAM, DIRECTOR
B
 U L L

 S

PUBLISHED BETWEEN JUNE 25 AND JULY 8, 1902 NUMBERS 209 TO 232

WASHINGTON

1902
T

CONTENTS.

Bulletin No.
Manufactures: Fruits and Vegetables, Fish, and Oysters, Canning and Preserving 209
Manufactures: Chemicals and Allied Products 210
Agriculture: West Virginia 211
Manufactures: Pens and Pencils 212
Agriculture: Illinois 213
Manufactures: Cars, Steam Railroad 214
Manufactures: Cotton Manufactures 215
Manufactures: Printing and Publishing 216
Manufactures: Slaughtering and Meat Packing 217
Agriculture: Wisconsin 218
Agriculture: Ohio 219
Agriculture: Kentucky 220
Manufactures: Boots and Shoes 221
Agriculture: Utah 222
Agriculture: Virginia 223
Agriculture: Missouri 224
Agriculture: Mississippi 225
Agriculture: Tennessee 226
Agriculture: Louisiana 227
Manufactures: Gilass Manufacture 228
Agriculture: Texas 229
Agriculture: Oklahoma 230
Agriculture: Washington 231
Agriculture: South Carolina 232

CENSUS BULLETINS, ARRANGED UNDER DIVISIONS PREPARING THEM.

Agricultare, Division of - Bulletin No.
Illinois 213
Kentucky 220
Louisiana 227
Mississippi 225
Missouri. 224
Ohio 219
Oklahoma 230
South Carolina 232
Tennessee 226
Texas 229
Utah. 222
Virginia. 223
Washington 231
West Virginia 211
Wisconsin. 218
Manufactures, Division of-
Boots and Shoes 221
Cars, Steam Railroad 214
Chemicals and Allied Products 210
Cotton Manufactures 215
Fruits and Vegetables, Fish, and Oysters, Canning and Preserving 209
Glass Manufacture 228
Pens and Pencils 212
Printing and Publishing 216
Slaughtering and Meat Packing 217

Twelfth Census of the United States.

Census Bulletin.

MANUFACTURES.

Fruits and vegetables, Fish, and 0ysters, Canning and PRESERVING.

Hon. William R. Merriam, Director of the Census.

SIR: I transmit herewith, for publication in bulletin form, a report on the canning and preserving of fruits and vegetables, fish, and oysters during the census year, prepared under my direction by Mr. Arthur L. Hunt, of the Census Office.

The canning and preserving of fruits and vegetables, fish, and oysters are now for the first time made the subject of a special report by the Census Office, although these industries have been of commercial importance in the United States for nearly half a century. The statistics included in the report were collected, as in previous censuses, upon the schedule for the general statistics of manufactures; but in view of the notable growth of these industries it was decided to supplement the canvass made by the enumerators and local special agents, and to give them more detailed treatment than is given to manufacturing industries in general, or than they have received heretofore.

The report is presented in three parts, pertaining respectively to the canning and preserving of fruits and vegetables, fish, and oysters, the totals being combined in the first table, which is a summary for the three branches of the industry. These industries are closely allied with "food preparations," and with "pickles,
preserves, and sauces," and considerable quantities of fruits and vegetables, and fish were canned and preserved by establishments engaged in these latter industries. It was attempted to segregate these quantities of fruits and vegetables and fish so included, but in many cases it was found impossible to do so. Therefore the totals given in this report do not represent the entire quantity of the different varieties canned and preserved during the census year, but they may be fairly inferred from the figures given.
Acknowledgment is due Mr. E. S. Judge, of the "Baltimore Trade;" Mr. F. N. Barrett, of the "American Grocer;" Mr. B. N. Rowley, of the "California Fruit Grower," and Mr. William Fait, president of the William Fait Company, of Baltimore, for valuable assistance and suggestions in the preparation of this report.
The statistics are presented in 34 tables. Tables 1 to 4 , inclusive, relate to the combined industries, as follows: Table 1 is a summary of the three industries for 1900; Table 2 shows the value of imports for each year, 1891 to 1900 , inclusive; Table 3 shows the value of exports for each year, 1891 to 1900 , inclusive; Table 4 shows the per cent of the value of imports and exports to the value of products for 1900 .
Tables 5 to 14 , inclusive, relate to the canning and
preserving of fruits and vegetables, as follows: Table 5 is a comparative summary for the several censuses; Table 6 shows, by states and territories, the number of establishments, 1890 and 1900, and the increase during the decade; Table 7 is a comparative summary of the statistics for the industry by states and territories, 1890 and 1900; Table 8 shows, by states and territories, the establishments classified by the number of wage-earners employed, 1900; Table 9 is a comparative summary of the statistics of capital, 1890 and 1900; Table 10 shows the cost of materials used, 1900; Table 11 shows, by states and territories, the value of products for 1900; Table 12 shows, by states and territories, the quantity and value of fruits and vegetables, canued and preserved, for 1900; Table 13 shows the statistics of cities of over 20,000 population for 1900; Table 14 shows the detailed statistics for the industries for 1900.

Tables 15 to 24 , inclusive, relate to the canning and preserving of fish, as follows: Table 15 shows comparative figures for the industry for 1890 and 1900 ; Table 16 shows, by states and territories, the number of establishments, 1890 and 1900, and the increase during the decade; Table 17 is a comparative sumnary of the statistics for the industry, by states and territories, 1890 and 1900; Table 18 shows, by states and territories, the number of establishments classified by the number of wage-earners employed, 1900; Table 19 is a comparative summary of the statistics of capital, 1890 and 1900; Table 20 shows the cost of materials used, 1900; Table 21 shows, by states and territories, the value of products for 1900; Table 22 shows, by states and territories, the quantity and value of fish, canned and preserved, for 1900: Table 23 shows the statistics of cities of over 20,100 population for 1900; Table 24 shows the detailed statistics for the industry for 1900.

Tables 25 to 34, inclusive, relate to the canning and preserving of oysters, as follows: Table 25 shows conlparative figures for the industry for 1890 and 1900; Table 26 shows, by states and territories, the number of establishments, 1890 and 1900, and the increase during the decade; Table 27 is a comparative summary of the statistics for the industry by states and territories, 1890 and 1900; Table 28 shows, by states and territories, the establishments classified by the number of wageearners employed, 1900; Table 29 is a comparative sunnmary of the statistics of capital, 1890 and 1900; Table 30 shows the cost of materials used, 1900; Table 31 shows, by states and territories, the value of products for 1900; Table 32 shows, by states and territories, the quantity and value of oysters, canned and preserved, for 1900; Table 33 shows the statistics of cities of over 20,000 population for 1900 ; Table 34 shows the detailed statistics for the industry for 1900 .

In drafting the schedules of inquiry for the census of 1900 care was taken to preserve the basis of comparison with prior censuses. Comparison may be made
safely with respect to all the items of inquiry except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital, that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, was first called for at the census of 1890 . No definite attempt was made, prior to the census of 1890 , to secure a return of live capital invested.

Cbanges were made in the inquiries relating to employees and wages in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1900 the greatest and least numbers of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12 , the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wageearners during the entire year may have resulted in a variation in the number, and should be considered in making comparisons.

At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was ascertained, and no salaries were reported for this class. It is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.

Furthermore, the schedules for 1890 included in the wage-earning class, overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wage-earning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890 .

In some instances, the number of proprietors and firm members, shown in the accompanying tables, falls short of the number of establishments reported. This is
accounted for by the fact that no proprietors or firm members are reported for corporations or cooperative establishments.

The reports show a capital of $\$ 48,497,978$ invested in the canning and preserving of fruits and vegetables, fish, and oysters in the 2,195 establishments reporting for the United States. This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, but does not include the capital stock of any of the manufacturing corporations engaged in this industry. The value of the products is returned as $\$ 82,592,196$, to produce which involved an outlay of $\$ 1,975,067$ for salaries of officials, clerks, etc.; $\$ 12,910,-$ 399 for wages; $\$ 3,400,743$ for miscellaneous expenses, including rent, taxes, etc.; and $\$ 53,365,055$ for materials used, mill supplies, freight, and fuel. It is not to be assumed, however, that the difference between the
aggregate of these sums and the value of the product is in any sense indicative of the profits in these industries during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. The value of the product given is the value as obtained or fixed at the factory. This statement is necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Ciief Statistician for Manufactures.

FRUITS AND VEGETABLES, FISH, AND 0YSTERS, CANNING AND PRESERVING.

By Arthur L. Hun'r.

The hermetic sealing of food, usually referred to under the generic title of "canning," is an industry which has grown to be an important factor in the commercial and industrial development of the United States. It has long since passed the experimental stage and has taken its place among the leading industries of the country.

From earliest times man's thoughts have been occupied in devising ways and means to prevent articles of food from deterioration or putrefaction. In their natural state most foods are seasonable only during limited periods of the year, and their consumption is restricted to certain localities. Their preservation in such a manner as to make them palatable during the entire year, in all localities, has been the subject of much research.

Independent experiments by such well-known scientists as Cagnaird de la Tour, Schwann, Helmholtz, Pasteur, Schultz, and others established beyond a doubt that the decomposition of food is due to the presence of a living organism known as "ferment." It was reasoned that anything that would kill this organism or preclude its presence would preserve the article treated. The known processes that will accomplish this result, and at the same time preserve the food, are desiccation, use of antiseptics, refrigeration, and canning. Desiccation, or drying, was undoubtedly the first method used, but food preserved by this means loses much of its natural flavor and becomes tough in texture. The same objections arise in the use of antiseptics. Refrigerated foods, unless great care is exercised in the thawing, are not palatable.
Prior to 1795, drying and the use of salt and sugar were the only methods used to any extent in the preservation of foods. At this time Nicholas Appert, a Frenchman, who had spent most of his life in the preparation and preservation of articles of food, being stimulated in his work by the offer of a reward by the French navy department for a method of preservation of foods for sea service, submitted to his Govern-
ment an exhaustive treatise bearing upon the hermetic sealing of all kinds of food. His method was to inclose fruit in a glass jar, which was then corked, and subjected to the action of boiling water for a time, varying according to the nature of the article treated. A description of his process can be best summed up in his own words, as follows: "It is obvious that this new method of preserving animal and vegetable substances proceeds from the simple principle of applying heat in a due degree to the several substances after having deprived them as much as possible of all contact with the external air. It might, on the first view of the subject, be thought that a substance, either raw or previously acted upon by fire, and afterwards put into hot bottles, might, if a vacuum were made in those bottles and they were completely corked, be preserved equally well with the application of heat in the water bath. This would be an error, for all trials I bave made convince me that the absolute privation of the contact of external air (the internal air being rendered of no effect by the action of heat) and the application of heat by means of the water bath, are both indispensable to the complete preservation of alimentary substances." Time has proved his method to be the most satisfactory for preserving food in its natural state. France purchased his process and gave it to manufacturing firms in France and England for the production of the goods. By this means the industry gradually spread over England, Ireland, and France.

In the year 1810 Peter Durant secured a patent from the English Government for the preservation of fruits, vegetables, and fish in hermetically sealed tin and glass cans. He did not claim to be the discoverer of the process, but said that it had been communicated to him by a "foreigner residing abroad." The secret of the process was jealously guarded, but the employees of the different establishments became more or less familiar with its essentials, and in this manner the industry found its way to America.

One of the first men to come to America with a knowl-
edge of the process gained in its actual use was Ezra Daggett, who arrived in New York some time between the years 1815 and 1818. In the year 1819 he and his son-in-law, Thomas Kensett, were engaged in the manufacture of hermetically sealed goods, the principal foods packed being salmon, lobsters, and oysters. In the following year the industry was launched in Boston by William Underwood and Charles Mitchell, emigrants from England, where they had been employed in canning establishments. Their principal business, however, during the early days of their establishment, was the preparation of pickles, sauces, jellies, jams, and mustard; but they also canned damsons, quinces, cranberries, and currants. The industry also owes much to Allen Taylor, an Englishman, and M. Gallagher, an Irishman, both of whom learned their trade at Sligo, Ireland, the latter having in his possession a copy of Appert's treatise on the subject of canning. These men came to America at about the same time as those mentioned above, and were for a time employed in New York. Prior to 1840 the industry was established in Baltimore, and Kensett, Taylor, and Gallagher did much to place it upon a permanent basis.

Glass jars were gradually abandoned, as it was found that they could not withstand the extremes of temperature and were expensive, bulky, and costly in transportation. In 1825, Thomas Kensett secured a patent on the use of tin cans in preserving food, and in the same year began using the patented process in his factory. Tin has been the favorite material for the construction of cans. Their early manufacture was by hand and very crude, the bodies being cut with shears and the side seam made with a plumb joint (that is, meeting, but not overlapping) and then soldered together. Heads were made to set into the body, and were soldered in place in a very crude manner. The construction of the cans was slow and costly, the making of 100 being considered a good day's work. In 1847 Allen Taylor invented the stamp can, which proved a decided improvement over the plamb-joint can just described, and about two years later Henry Evans, jr., of New Jersey, invented the "pendulum" press for making can tops. The latest important improvement in can manufacture was the invention of the key-opening can, which by the genius of a Mr. Zimmerman has been so reduced in cost that it has come into general use.

Can making is now a distinct industry, and not usually carried on, as formerly, in connection with the actual canning of the foods. It is estimated, however, that about 10 per cent of the cans are still made by the canning establishments. For the past fifteen years labor-saving machines have been introduced in can manufacture until now all the parts are made and put together by mechanical devices. The tin cans are made from Bessemer steel plates cut into sheets 14 by 20 inches and weighing about one pound. They are then subjected to an acid to remove all dirt, grease, scaler, ete., and coated
with pure tin by the acid process or the palm-oil process, the latter being the safer and better of the two methods. The objection having been urged against the use of tin cans that the natural acids of fruits, vegetables, meats, and fish act upon the tin and solder in such a way as to form metallic salts or metallic compounds that are injurious to the health; the matter was carefully investigated by expert chemists, who reported that the objection is groundless if good tin is used. In the poorer grades of tin injurions substances were found, but in such small quantities that they were of no consequence.
By the Appert process the goods were cooked in open kettles, the highest temperature obtainable by this method being $212^{\circ} \mathrm{F}$., or the temperature of boiling water. The process was necessarily slow, but gradually improvements were made in the methods and a higher degree of temperature was obtained by the addition of common salt to the water. This innovation was followed by the use of chloride of calcium, which made possible a temperature of $240^{\circ} \mathrm{F}$. The cans, however, under this process become discolored, involving considerable expense in cleaning them to make the goods merchantable. In 1874 Mr . A. K. Shriver, of Baltimore, invented a closed-process kettle to cook the goods by superheating water with steam. About the same time Mr. John Fisher, of the same city, invented a patentprocess kettle which secured the same results by the use of dry steam. By these methods, which are used at the present time, any desired temperature can be obtained and the heat regulated to meet requirements.
The canning and preserving of food products is an industry which lies on the border line both between manufacture and agriculture and between manufacture and fishing, and for this reason the several branches of the industry have not always been regarded in census reports as manufacturing. In theory, all industries which expend manufacturing forces upon raw materials, came under the scope of manufacturing. They are distinguished from mining, fishing, and agriculture in that the latter either withdraw raw materials from nature or aid her in their production, butto not themselves make use of raw materials. Therefore, although the preparation of food products from fruits and vegetables and fish was an established industry prior to 1850 , no reliable statistics are available previous to 1870 . For instance, in the census of 1850 , the fishing industry was classed with manufactures and reports were received from 1,407 establishments with products valued at $\$ 10,056,163$. Fisheries were again reported in 1860, and returns were received from 1,970 establishments, with a product of $\$ 14,284,405$. Presumably the reports from establishments engaged in fish canning for the two periods were included in these statistics, as there was no separate classification for fish canning and preserving. In the census reports of 1850 and 1860 no mention is made of fruit and vegetable canning, but in the latter year the classi-
fication "provisions" appears and returns were secured from 352 establishments reporting the value of products as $\$ 31,986,433$. It is not known just what was included under this caption, but in all probability it contained the statistics for fruit and vegetable canning, if at that time the industry was considered manufacturing. From 1870 the several branches of the food products were differentiated and separate classifications appear for each branch with the exception of oyster canning and preserving. The statistics for the latter in 1870 were probably included under the head of "fish, cured and packed".

In the earlier stages of the industry the canning of fruits and vegetables, fish, and oysters was not only frequently but generally carried on by the same individual, firm, or corporation, and it was impossible to ascertain the amount of capital invested in each branch or to segregate the labor employed and the cost of materials according to the several classifications. The various branches of the indinstry are still closely correlated and overlap to a certain extent, many establishments being engaged in the canning of fruits and vegetables during the summer months, and in the canning of fish and oysters during the winter months. For this reason the three branches of the industry have been grouped togetner and the statistics included in this report are presented under the following heads: Fruits and vegetables, fish, and oysters, canning and preserving, as returned by the establishments engaged in these several industries during the census year ending May 31, 1900.

In the tabulation of the reports the office adopted the rule of classifying establishments as engaged in the canning of fruits and vegetables, of fish, or of oysters in accordance with the predominating product. Thus fruits and vegetables may appear under the products of establishments engaged in the canning and preserv-
ing of fish and oysters, or visa versa. Furthermore, some establishments classified under the heads of "food preparations" and "pickles, preserves, and sauces," the statistics for which are not included herein, reported the canning of fruits and vegetables. It has therefore been attempted in subsequent tables to present the total quantities and values of fruits and vegetables, fish, and oysters irrespective of the general classification under which they were reported.

Although the canning industry was established in three great commercial centers in the United States as early as 1825 , it did not become of much importance until within the past quarter of a century. The tardy introduction of machinery, the secrecy observed in the method of canning, the skepticism of the public regarding the healthfulness of the articles canned, the general prejudice against canned foods, the cost of production, and the high price of the goods may be given as reasons for the slow growth of this industry. Gradually these obstacles in its progress were overcome, and by 1883 machines were used for practically all operations in canned goods' manufacture, and to-day even the labeling, trimming of labels, and the boxing of goods are done by mechanical devices run by steam or electric power. After the invention of the patentprocess kettles, the secret of the process was no longer guarded, and the industry spread over the country with remarkable rapidity, so that at the present time there are canneries in most every fruit and vegetable raising locality in the United States and in states in close proximity to the fish and oyster supply. The several branches of the industry have collectively assumed large proportions.
Table 1 shows the statistics for each of the industries according to the several subdivisions, with the percentages of each to the total.

Table 1.-FRUITS and VEGETABLES, FISH AND OYsters, CANNING AND PRESERVING: SUMMARY FOR THE UNITED STATES, 1900.

	Total.	Fruits and vegetsbles.	Per cent of total.	Fish.	Per cent of total.	Oysters.	Per cent of total.
Number of establishments.	2,195	1,808	'82.4	348	15.8	39	
Capital.......................	\$48, 497,978	\$27, 743,067	57.2	\$19,514,215	40.2	\$1,240,696	1.8 2.6
Land.	\$83,554,980	\$2,702, 470	76.0	-8757,510	21.3	\$1, $\$ 95,000$	2.7
Buildings	\$8, 670,574	\$4, 517,008	52.1	\$8, 914,853	45.1	\$238, 713	2.8
Machinery, tools, and implements	\$10, 113, 482	\$4, 797, 719	47.4	\$5, 164,046	51.1	\$151,717	1.5
Cash and sundries .-...............	\$26,158,942	\$15, 725, 870	60.1	39, 677, 806	37.0	\$755, 266	2.9
Salaried officials, clerks, etc., number	2, 2,478	1, 1,741	70.3	¢505 618	24.9	-112 119	4.8
Salaries	\$1, 975, 067	\$1, 277, 028	64.7	\$585, 160	29.6	\$112,879	5.7
Wage-earners, average number	52,590	36,401	69.2	13,410	25.5	2,779	5.3
Total wages.	\$12, 910, 447	\$8, 050,793	62.3	\$4, 229, 638	32.8	\$630,016	4.9
Miscellaneous expenses	\$83, 400, 743	\$2,423, 673	71.3	\% 8883,363	26.0	¢. \$93,707	2.7
Cost of materials used.	\$53, 365, 055	\$37, 524, 297	70.3	\$13, 232,001	24.8	\$2,608,757	4.9
Value of products..	\$82, 592,196	\$56, 668, 313	68.6	\$22, 253, 749	26.9	\$3,670,134	4.5

The totals for the three industries show 2,195 establishments with a capital of $\$ 48,497,978$; 52,581 wageearners; $\$ 12,910,399$ paid for wages; $\$ 53,365,055$ for materials; and products valued at $\$ 82,592,196$.
As indicated by Table 1, the canning and preserving of fruits and vegetables is by far the largest of the
three branches of the industry. There were 1,808 establishments, or 82.4 per cent of the total number, reporting nearly 60 per cent of the total capital, nearly 70 per cent of the total wage-earners, over 60 per cent of the total wages, and nearly 70 per cent of the total value of the products. The canning and preserving of
fish ranked second and reported over 15 per cent of the total number of establishments, 40.2 per cent of the total capital, 25.5 per cent of the total wage-earners, nearly 33 per cent of the total wages, and over 25 per cent of the value of products. The canning and preserving of oysters is a small industry in comparison with the other two branches of the industry. Most of the items enumerated for this branch in Table 1 formed less than 5 per cent of the total for the conibined industry.
In this connection it is interesting to note the imports
and exports of fruits and vegetables and fish during the past decade. Table 2 shows the imports of fish and fruits and vegetables, canned or preserved, for each year from 1891 to 1900 , inclusive, and Table 3 shows the exports for the same period as reported by the Bureau of Statistics, Treasury Department. Although their classifications are not strictly comparable with those adopted by the Census Office, the figures may nevertheless be studied to advantage in their relation to the statistics given in the other tables of this report.

Table 2.-IMPORTS OF FISH, FRUITS, AND VEGETABLES, CANNED OR PRESERVED, FOR EACH YEAR, 1891 TO 1900, INCLUSIVE.

articles.	1900	1899	1898	1897	1896	1896	1894	1893	1892	1891
Total.	48,023, 763	\$6,546,682	\$6,121, 294	\$6,010,447	\$6, 217,626	\$5, 348,145	\$5,666, 216	\$6, 719, 269	\$6, 854, 557	\$7,570,468
Fish, total	5,771,863	4, 619,714	4,455, 624	4,352,329	4, 566, 524	3,638,256	4, 293,010	4,761,189	4,443,629	5,101, 549
Lobsters, canned or uncanned ${ }^{1}$.	931, 219	730,460	699,577	791,602	788,638	241,778	549, 049	589, 109	604, 052	966, 782
Cured or preserved: Anchovies and sardines packed in oil or otherwise	1,483,768	1,152, 981	1,110,674	902, 742	970,347	767, 857	976, 952	1,366,966	1,201,149	1,089,975
cod, haddock, hake, and pollock, smoked, salted, or pickled.	543,172	425, 414	525,968	451,654	467,059	499,245	509,395	553, 113	449,567	527,113
HerringDried or smoked.	127,555	87, 279	107, 840	88, 085	74,460	58,597	77,079	66, 485	66,456	101,493
Pickled or salted.	1,355,013	1, 677, 138	1,053, 050	886, 647	1, 138,693	1, 030, 669	-962,311	1,164,942	1, 178,514	922,099 $1,413,875$
Mackerel, pickled or salted	$1,276,900$	$\begin{array}{r} 1,105,027 \\ 11.415 \end{array}$	$\begin{array}{r} 992,822 \\ 65,693 \end{array}$	$\begin{gathered} 1,164,424 \\ 67,175 \end{gathered}$	$1,063,476$	$\begin{array}{r} 995,231 \\ 944 \end{array}$	$\begin{array}{r} 1,133,509 \\ 84,715 \end{array}$	$\begin{array}{r} 967,352 \\ 63,222 \end{array}$	$\begin{array}{r} 888,473 \\ 60,418 \end{array}$	$\begin{array}{r} 1,413,875 \\ 80,312 \end{array}$
Fruits, total	11,243,479	1,020,644	922,367	605, 053	598, 928	570,568	526,561	864, 166	1,234,828	1,289,137
Prepared or preserved.	1,243,479	1,020,644	922,357	605,053	598,928	570,568	526, 561	864, 166	1,234,828	1,289, 137
Vegetables, total.	1,008,421	906, 324	743,313	1,053,065	1,052,174	1,139,321	846,645	1,093,904	1,176,100	1,179,682
Pickles and sauces.	306, 223	352, 022	243, 354	332, 243	324,377	321,632	341, 135	454,099	421, 292	511, 163
Prepared or preserved	702, 198	554, 302	499,969	720, 822	727,797	817,689	506,510	639,805	754,808	668, 619

${ }^{1}$ Includes values of uncanned lobster. Impossible to separate.
Table 3.-EXPORTS OF FISH, FRUITS, AND VEGETABLES, CANNED OR PRESERVED, FOR EACH YEAR, 1891 TO 1900, INCLUSIVE.

ARTICLES.	1900	1899	1898	1897	1896	1895	1894	1898	1892	1891
Total.	810, 557, 857	\$8, 501,453	\$7,898,188	\$8,091, 629	\$7,530,999	\$5, 343, 532	83,786, 271	\$5, 822, 891	\$6,707,826	\$5, 267,497
Fish, total	4,019,460	3,913,507	3,557,022	4,369,089	4,153,547	3,313,901	2,300,174	3,587,314	3,113,287	3,593,522
Dried, smoked, or cured: Cod, haddock hake, and pollock	404,212	370,150	300, 953	396, 422	448,236	514, 370	704,652	728,475		
Herring	82, 407	66, 032	74, 844	105, 770	96,462	97,719	123, 882	93, 412	82,772	105,260
All other...................................	56,684	40,308	48,442	38,571	37,654	61, 082	50, 966	88, 258	85,353	80,844
Mackerel	14, 352	12,771	14,830	28,990	16,692	35,725	43, 082	33,480	47,108	37,128
All other	99,627	61,650	76,403	84,978	104, 374	108, 178	149,316	147, 932	169,643	159,671
Canned	2,693,648	2,906,475	2,564,017	3,215,798	3,084,889	2,266,727	1,026,215	2, 279,625	1,738,465	
All other, fresh or cured ${ }^{1}$	535,276	331,601	-332, 023	-284,891	167,991	88, 789	1, 588,659	2, 49, 230	$1,78,465$ 78,680	$\begin{array}{r} 2,096,957 \\ 83,993 \end{array}$
Canned fish, other than salmon or shellfish.	133,244	124,520	146,510	213,669	198,199	141, 311	143,402	166,902	146, 067	139,392
Fruits, total.	5,438,577	3,643,347	3,604,970	3,070,158	2, 787,141	1, 380,099	1,039,992	1,844,126	3,061,660	1,207,481
Apples, dried	2, 247, 851	1,245,733	1,897,725	1,340, 159	1,340,507	461,214	168, 054	482,085	1,288, 102	409, 605
Canned	3,127, 278	2,330,715	1,624,741	1,686,723	1,376,281	871,465	660,723	1,137,660	1,558,820	
All 0	63,448	66,899	82,504	43,276	70,353	47,420	211,215	224,381	214, 738	$93,996$
Vegetables, total	1,099,830	944,599	736,196	652, 382	590,311	649, 532	446, 106	391,451	532,879	466, 494
Canned	603,288	655,691	386, 039	408, 840	407,506	441, 388	255,857	242, 284		
All other, including pickles and sauces ${ }^{2}$.-.	496,542	388,908	350, 157	243,542	182, 805	208, 144	190, 248	149,167	159, 811	$\begin{aligned} & 286,321 \\ & 180,173 \end{aligned}$

${ }_{2}$ Includes small amounts of fresh fish.
${ }_{2}$ Includes fresh vegetables other than heaus, pease, onions, and potatoes. Impossible to separate values of pickles, etc., from other vegetahles.

Table 2 indicates that the imports of fish and fruits and vegetables have slightly increased during the decade. From 1891 to 1895 , inclusive, there was a steady decrease each year, but from 1895 to 1900 , inclusive,
with the exception of 1896 and 1897, there has been a substantial increase. This is evidently due to the increase in the imports of fish, especially sardines and pickled or salted herring, as there has been a
decrease in the total imports of both fruits and vegetables. It appears that the exports have fluctuated considerably during the decade, but on the whole there has been an increase of over 100 per cent since 1890. The total exports of fish show a gain for the decade of 11.9 per cent, but the gain is solely due to the marked increase in the exports of salmon, whereas the exports in all other fish have decreased. The greatest growth and development in exports has been in the direction of fruits and vegetables, the exports in the former having increased from $\$ 1,207,481$ to $\$ 5,438,577$, an absolute increase of $\$ 4,231,096$, or 350.4 per cent. There has been a most marked increase in the exports of dried apples, and also of canned fruits. The exports of vegetables increased from $\$ 466,494$ to $\$ 1,099,830$, an increase of $\$ 633,336$, or 135.8 per cent. Thus the principal
points brought out by Tables 2 and 3 are the following: The total exports for 1900 were $\$ 10,557,857$, or 31.6 per cent larger than the imports; the imports of fish bave increased faster than the exports; the imports of fruits and vegetables since 1891 have decreased 3.5 and 14.5 per cent, respectively, while the exports of fruits and vegetables have shown most marked increases.

As stated above, the difference between the classifications used by the Treasury Department and those adopted by the Census Office precludes accurate comparisons, but in a general way the figures are comparable. The value of products, the exports and imports of fruits and vegetables and fish, with the per cent of exports and imports to the value of the domestic product of each, are shown in Table 4.

Table 4.-FRUITS and VEGETABLES AND FISH, CANNiNG AND PRESERVING: VALUE of PRODUCTS IMPORTS AND EXPORTS, AND PER CENT OF IMPORTS AND EXPORTS TO PRODUCTS, 1900.

fritit and vegetables.					FISH.				
Value of products.	Value of imports.	Per cent of imports to products.	Value of exports.	Per cent of exports to products.	Value of prodnets.	Value of imports.	Per cent of imports to products.	Value of exports.	Per cent of exports to products.
\$56, 668, 313	\$2,251,900	4.0		11.5	\$22, 253, 749	\$5,771, 863	26.9	\$4, 019,450	18.0

Table 4 indicates that the value of imports of fruits and vegetables was but 4 per cent of the value of those canned and preserved in the country, while the value of exports was 11.5 per cent of the total value of the domestic product. The value of imports of fish formed
25.9 per cent of the total value of domestic fish products, and the value of exports formed 18 per cent. The comparatively insignificant percentage of exports of each shows the extent of the home consumption of these varieties of canned goods.

FRUITS AND VEGETABLES, CANNING AND PRESERVING.

Table 5 is a comparative summary of the statistics for the establishments engaged in the canning and preserving of fruits and vegetables as returned at the cen-
suses of 1870 to 1900 , inclusive, with the percentages of increase for each decade.

Table 5.-FRUITS AND VEGETABLES, CANNING AND PRESERVLNG: COMPARATIVE SUMMARY, 1870 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	date of census.				per cent of increase.		
	1900	1890	1880	1870	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$	$\begin{gathered} 1870 \\ \text { to } \\ 1880 \end{gathered}$
Number of establishments.	1,808 $\$ 27,743,067$	886 $\$ 15,315,185$	888, 247,488	97 $\$ 2,335,925$	104.1 81.1	115.6 85.7	323.7 263.1
Capital......................	\$27, 1,741	-11,119	(2)	(2)	55.6		
Salaried oficials, clers, etc.,	\$1, 277, 028	${ }^{1} 9592,390$	(2)	(2)	115.6		
Wage-earners, average numbe	36, 401	49, 762	31, 905	5,869	${ }^{3} 26.8$	56.0	${ }^{443.6}$
Wages	\$8,050,793	\$4, 651,317	$\$ 2,679,960$ 10,638	\$771,643 1,668	$\begin{array}{r}73.1 \\ 827.4 \\ \hline\end{array}$	73.6 75.3	247.3 541.6
Men, 16 years and over	\$4, 122, 104	\$2, 488, 328	${ }^{2}{ }^{2}$		65.7		
Woman, 16 years and over	19,699	- 25,714	(2) 15,463	(2) 3,434	${ }^{8} 23.4$	66.3	350.3
Wages. Children, under 16 years	-6,160	5,579	5,804	(2) 777	79.9 343.4	${ }^{3} 3.9$	647
Children, under 16 y ears Wages \qquad	\$328,446	\$162,141	$\left(\begin{array}{l}2 \\ 4\end{array}\right.$	${ }^{2}$)	102.6		
Miscellaneous expenses	$\begin{array}{r}\text { \$2, 423, } \\ \mathbf{8} 775 \\ \hline 827 \\ \hline\end{array}$	$\$ 1,289,681$ $\$ 18,665,163$	\$12,051,293	$0^{(4)}$	87.9		
Cost of materials used	\$56, 668,313	\$ $\$ 29,862,416$	\$17,599,576	\$5, 425, 677	101.1	64.9	289.4
Value of products...	\$06,668, 31.	\$29, 862, 410	\$17,59,56				224.4

[^0]The canning and preserving of fruits and vegetables had its inception in this country prior to 1850, but the census of 1870 was the first which contained the statistics of the industry. At that time the number of establishments engaged primarily in this industry was 97 , and the capital $\$ 2,335,925$. They reported 5,869 wage-earners, $\$ 771,643$ for wages, $\$ 3,094,846$ for materials, and $\$ 5,425,677$ as the value of products. The development in this industry during the past thirty years has been most marked, especially during the past decade. The number of establishments from 1890 to 1900 increased 922 ; the capital, $\$ 12,427,882$; and the value of products, $\$ 26,805,897$. Notwithstanding these increases, the average capital per establishment has decreased from $\$ 24,082$ to $\$ 15,345$, a decrease of $\$ 8,737$, or 36.3 per cent. This is presumably accounted for by the great number of establishments employing small capital which have become engaged in the industry since 1870. Nevertheless there were in 1900 several establishments employing more capital than the combined capital of the 97 establishments reporting for 1870. The average value of product per establishment has also shown a decrease from $\$ 55,935$ to $\$ 31,343$; that is, the average value of product in 1900 was only slightly over one-half that reported for 1870. This decrease is primarily due to the great decrease in the cost of production brought about by the introduction of machinery in every detail of the business, both in the making of cans and in the preparation of the product. From 1890 to 1900 every item, with the exception of wage-earners, has shown a substantial increase. The decrease in the average number of wage-earners was 26.8 per cent. This is only apparent, however, the decrease being due to the difference in the methods employed at the two censuses. The method adopted in the present census gives the average number for the entire year, 12 (the number of calendar months) being used as a divisor to obtain the sum of the average numbers reported for each month. In 1890 the average number was computed for the actual time that the establishments were reported as being in operation. The greatest number employed at any one time during the last census year was 133,106 . This number was undoubtedly much larger than at any one time in 1890.
A careful investigation of the schedules for various states discloses the facı that establishments engaged in the canning and preserving of fruits and vegetables employ a large number of wage-earners during four months of the year, and that during the remaining months they employ a relatively small number of operatives, usually before the opening of the canning season, in making cans, and later, after the season, in labeling, packing, and preparing the product for market.
The length of the "canning season" varies considerably in the several states, owing to climatic influences and the character of the goods canned. In the Northern states, for instance, the season is much shorter than
in states with a milder climate, where a greater variety of fruits and vegetables are grown for the market.

In the United States as a whole, the four months which constituted the "busy season" were July, August, September, and October. If this be regarded as the industrial year and if the computation be made according to the method used in 1890, the total average number of wage-earners in 1900 was 81,659 . The total average number of wage-earners (men, women, and children) for each month during 1900 is given in the following statement:

AVERAGE NUMBER OF WAGE-EARNERS FOR EACH MONTH: 1900.

July 45,577	November.	27, 718	March	7,321
August 97, 372	December	11,039	April	8,620
September .-. - - 116,550	January	6,205	May	13,246
October 67, 143	February	5,643	June	30, 430

Thus it will be seen that the number of wage-earners has in reality shown an increase commensurate with the increase in the other items, and the apparent decrease is due solely to the difference in the methods of computation employed at the two censuses.
From 1890 to 1900 the wages increased from $\$ 4,651$,317 to $\$ 8,050,793$, an increase of $\$ 3,399,476$, or 73.1 per cent. This is in accord with the gradual increase in the rate of wages paid employees in this industry. Increased competition has compelled the various factories to adopt modern machinery, necessitating the employment of a higher class of labor. In the infancy of the industry all work was done by hand, and the female labor employed was of the cheapest possible character. The introduction of machinery, however, has resulted in an increase in the number of men employed and a corresponding decrease in the number of women. This has inured to the benefit of the wageearner by making employment for men at an increased rate of wages, and the females employed are not obliged to do the burdensome work formerly required of them. During the past decade the wages paid children increased from $\$ 162,141$ to $\$ 328,446$, an increase of $\$ 166,305$, or 102.6 per cent. This striking increase is primarily due to the fact that children under 12 years of age are no longer employed, and accordingly the children over this age are able to command higher wages than the younger children formerly employed. Further, the wage rate per day has also materially increased owing to competition for labor of this character.

From $1890 w 1900$ the cost of materials increased from $\$ 18,665,163$ to $\$ 37,524,297$, an increase of $\$ 18,859,134$, or 101.1 per cent. As fully 65 per cent of the cost of materials used is for farm products, it demonstrates what a vast advantage this industry is to the farming interests of this country, in that it stimulates the culture of every variety of fruits and vegetables.

The individual form of organization predominates in this industry. Of the total number of establishments, 919 ; or 50.8 per cent, were conducted by individuals. Of the remaining number, 505 , or 27.9 per cent, were operated by firms or limited partnerships; 365, or 20.2 per 'cent, by incorporated companies; and the remaining 19 , or 1.1 per cent, were cooperative or miscellaneous in character.

Table 6 shows, by states and territories arranged geographically, the number of establishments from which returns were received in 1900, with the increase during the decade.

Table 6.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: COMPARATIVE SUMMARY, NUMBER OF ACTIVE ESTABLISHMENTS, 1890 AND 1900, AND THE INCREASE DURING THE DECADE, BY STATES AND TERRITORIES ARRANGED GEOGRAPHICALLY.

	1900	1890	Increase.
United Sta	1,808	886	922
New England states	80	62	18
Maine.....i	59	44	
Vermont.......			${ }^{13}$
Massachusetts .:	1	1	${ }^{11}$
Connecticut.	$\frac{1}{6}$	1	4
Middle states	945	445	500
New York...			
${ }_{\text {New }}^{\text {New Jersey }}$ Pennylvaia.	$\left.\begin{gathered} 71 \\ 39 \\ 39 \end{gathered} \right\rvert\,$		3923
Delaware Maryland	$\begin{gathered} 39 \\ 291 \\ 271 \end{gathered}$	28 28 198	$\xrightarrow{23}$
Southern states	204	95	109
West Virginia.			
North Caroina	${ }_{19}^{88}$		${ }_{14}^{34}$
South Carolina	12	${ }_{4}^{2}$	${ }_{4}^{10}$
Florida	${ }_{8}^{2}$		
	11	4	
Alabisa ${ }_{\text {M }}$,
Arkanaa.:	34	8	
Texas...	10	10	11
Central states.	380	196	184
Mrichigan.	${ }_{60}^{98}$	${ }^{90}$	${ }_{49}^{8}$
Whinconsin.:	${ }_{16}^{61}$	${ }^{23}$	38 15 15
Minenesota...	16	${ }^{3}$	1
Misouri	${ }_{45}^{26}$	${ }_{13}^{17}$	${ }_{32}{ }^{2}$

Table 6.-FRUITS and VEGETABLES, Canning and PRESERVING, COMPARATIVE SUMMARY: NUMBER OF ACTIVE ESTABLISHMENTS, 1890 AND 1900, ETC.-Cont'd.

	1900	1890	Increase.
Western states.	- 28	25	3
Idabo....	2		2
South Dakota	5	1	11
Utah.-..	8	7 2	12
Colorado.	7	3	4
Kansas......	5	12	17
New Mexico.	1		1
Pacific states.	171	63	108
Washington	18		18
	17	2	15
California.........	136	61	75

The remarkable increase in the number of establishments from 1890 to 1900 in nearly every state, with the exceptions hereafter noted, shows that the industry is not localized and controlled by a few large establishments, but is well distributed throughout the country.
Table 6 shows that, in general, the states showing the large increases in the number of establishments were those which produce the different varieties of fruits and vegetables in large quantities. It appears that the greatest increase occurred in the Middle states, which group reported 445 establishments in 1890 and 945 in 1900, an increase of 500 , or 112.4 per cent. The Central states followed, with an increase of 184 , or 93.9 per cent; the Southern states reported an increase of 109 , or 114.7 per cent; and the Pacific states followed, with an increase of 108 , or 171.4 per cent. There was an increase of but 3 establishments in the Western states.
The greatest absolute increase was shown in New York, which reported an increase of 352. California followed with an increase of 75 and Maryland came third with an increase of 74 . The leading 10 states, with the number of establishments reported for 1900 , were as follows: New York, 511; Maryland, 271; California, 136; Michigan, 98; Virginia, 88; New Jersey, 73; Ohio, 70; Illinois, 61; Indiana, 60; Maine, 59.
The above table should be considered in connection with Table 7, which is a summary of the totals for the canning and preserving of fruits and vegetables as returned at the censuses of 1890 and 1900.

Table 7.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: COMPARATIVE SUMMARY, BY STATES AND TERRITORIES, 1890 AND 1900.

	Year.	United States.	$\begin{aligned} & \text { Ala- } \\ & \text { bama. } \end{aligned}$	Arkansas.	California.	Colorado.	Connec ticut.	Delswarc.	Georgia.	11linois.	Indiana.	Iowa.	Kansas.	$\begin{aligned} & \text { Ken- } \\ & \text { tucky. } \end{aligned}$
Numberof establishments	$\begin{array}{l\|l} 1900 \\ 1890 \end{array}$	1,808 886	$(1){ }^{3}$	34 8	136 61	7	(2) 5	51 28	8 4	61 23	60 11	26 17	12	${ }^{(2)}$
Capital: Total	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\left\lvert\, \begin{aligned} & \$ 27,743,067 \\ & \$ 15,315,185 \end{aligned}\right.$	$\underset{(1)}{\$ 7,585}$	$\begin{aligned} & \$ 33,038 \\ & 863,530 \end{aligned}$	$\begin{aligned} & \$ 4,397,935 \\ & \$ 2,622,890 \end{aligned}$	$\begin{aligned} & \$ 277,325 \\ & \$ 158,000 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 91,463}$	$\begin{aligned} & \$ 966,660 \\ & \$ 391,038 \end{aligned}$	$\begin{aligned} & \$ 24,801 \\ & \$ 29,217 \end{aligned}$	$\begin{array}{r} \$ 1,551,977 \\ \$ 838,871 \end{array}$	$\begin{array}{r} \$ 1,205,494 \\ \$ 419,253 \end{array}$	$\begin{array}{r} \$ 1,027,321 \\ \$ 445,258 \end{array}$	$\begin{aligned} & \$ 30,300 \\ & \$ 261,433 \end{aligned}$	$\begin{gathered} \$ 95,600 \\ \left.{ }^{(}\right) \end{gathered}$
Land	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 2,702,470 \\ & \$ 1,338,584 \end{aligned}$	$\begin{gathered} \$ 4,110 \\ (1) \end{gathered}$	$\begin{aligned} & \$ 2,580 \\ & \$ 5,345 \end{aligned}$	$\begin{array}{r} \$ 1,132,110 \\ \$ 255,285 \end{array}$	$\begin{aligned} & \$ 28,500 \\ & \$ 55,000 \end{aligned}$	\$2,450 ${ }_{(2)}$	$\begin{aligned} & \$ 31,080 \\ & \$ 16,400 \end{aligned}$	$\begin{aligned} & \$ 1,851 \\ & \$ 1,750 \end{aligned}$	$\begin{aligned} & \$ 72,077 \\ & \$ 20,075 \end{aligned}$	$\begin{array}{r} \$ 104,151 \\ \$ 22,066 \end{array}$	$\begin{aligned} & \begin{array}{l} \$ 37,900 \\ \$ 24,975 \end{array} \end{aligned}$	$\begin{array}{r} \$ 4,200 \\ \$ 13,140 \end{array}$	$\underset{(2)}{\$ 6,000}$
Buildings.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 4,517,008 \\ & \$ 2,387,232 \end{aligned}$	$\underset{(1)}{\$ 1,125}$	$\begin{aligned} & \$ 13,123 \\ & \$ 16,110 \end{aligned}$	$\begin{aligned} & 8728,891 \\ & \$ 278,768 \end{aligned}$	$\begin{aligned} & \$ 79,500 \\ & \$ 16,500 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 21,232}$	$\begin{array}{r} \$ 148,338 \\ \$ 51,650 \end{array}$	$\begin{aligned} & \$ 5,700 \\ & \$ 1,200 \end{aligned}$	$\begin{array}{r} \$ 221,647 \\ \$ 80,931 \end{array}$	$\begin{array}{r} \$ 284,009 \\ \$ 80,600 \end{array}$	$\begin{aligned} & \$ 190,900 \\ & \$ 129,230 \end{aligned}$	$\begin{aligned} & \$ 10,702 \\ & \$ 44,117 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 18,150}$
Machinery, tools, and implements.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 4,797,719 \\ & \$ 2,480,027 \end{aligned}$	$\underset{(1)}{\$ 850}$	$\begin{array}{r} \$ 7,835 \\ \$ 23,400 \end{array}$	$\begin{aligned} & \$ 554,086 \\ & \$ 292,556 \end{aligned}$	$\begin{aligned} & \$ 62,700 \\ & \$ 17,500 \end{aligned}$	$\underset{(2)}{\$ 29,496}$	$\begin{array}{r} \$ 141,164 \\ \$ 73,466 \end{array}$	$\begin{aligned} & \$ 5,500 \\ & \$ 8,250 \end{aligned}$	$\begin{aligned} & \$ 369,810 \\ & \$ 110,870 \end{aligned}$	$\begin{array}{r} \$ 225,005 \\ \$ 65,700 \end{array}$	$\begin{aligned} & \$ 311,869 \\ & \$ 133,409 \end{aligned}$	$\begin{array}{r} \$ 8,766 \\ \$ 39,667 \end{array}$	$\begin{gathered} \$ 34,400 \\ \left({ }^{2}\right) \end{gathered}$
Cash and aundries..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} \$ 15,725,870 \\ \$ 9,109,342 \end{array}$	$\begin{gathered} \$ 1,500 \\ (1) \end{gathered}$	$\begin{array}{r} \$ 9,500 \\ \$ 18,675 \end{array}$	$\begin{aligned} & \$ 1,982,848 \\ & \$ 1,796,281 \end{aligned}$	$\begin{array}{\|} \$ 106,625 \\ \$ 69,000 \end{array}$	$\underset{\left({ }^{2}\right)}{\$ 38}$	$\begin{aligned} & \$ 646,078 \\ & \$ 249,522 \end{aligned}$	$\begin{aligned} & \$ 11,750 \\ & \$ 18,017 \end{aligned}$	$\begin{aligned} & \$ 888,443 \\ & 8426,995 \end{aligned}$	$\begin{aligned} & \$ 592,329 \\ & \$ 250,887 \end{aligned}$	$\begin{aligned} & \$ 486,652 \\ & \$ 157,644 \end{aligned}$	$\begin{array}{r} \$ 6,632 \\ \$ 164,509 \end{array}$	$\underset{\left({ }^{2}\right)}{\$ 37,050}$

Table 7.-FRUITS and vegetables, canning and preserving: Comparative summary by states and TERRITORIES, 1890 AND 1900-Continued.

Table 7.-FRUITS AND VEGETABLES. CANNING AND PRESERVING: COMPARATIVE SUMMARY BY STATES AND TERRITORIES, 1890 AND 1900-Continued.

	Year.	Oregon.	Pennsylvania.	South Carolina.	Tennessee.	Texas.	Utah.	Vermont.	Virginia.	Washington.	West Virginia.	Wisconsin	All other states.
Number of establishments ..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\left({ }^{2}\right){ }^{17}$	39 27	(2) ${ }^{12}$	11	10 10	$\left({ }^{(2)}{ }^{8}\right.$	(3) ${ }^{3}$	88 54	$\left({ }^{8}\right){ }^{18}$	9 3	${ }^{(2)} 16$	16 415
Capital: Total	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 121,855}$	$\begin{aligned} & \$ 520,206 \\ & \$ 736,604 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 23,862}$	$\begin{aligned} & \$ 35,824 \\ & \$ 16,910 \end{aligned}$	$\begin{aligned} & \$ 53,852 \\ & \$ 85,347 \end{aligned}$	$\underset{\left({ }^{2}\right)}{8304,258}$	$\underset{\left({ }^{3}\right)}{\$ 68,528}$	$\begin{aligned} & \$ 218,533 \\ & \$ 416,476 \end{aligned}$	$\underset{(8)}{\$ 78,627}$	$\begin{aligned} & \$ 95,260 \\ & \$ 16,511 \end{aligned}$	$\underset{(2)}{\$ 50,115}$	$\begin{array}{r} \$ 37,055 \\ \$ 298,361 \end{array}$
Land	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{(2)}{\$ 16,030}$	$\begin{aligned} & \$ 38,216 \\ & \$ 35,465 \end{aligned}$	$\frac{\$ 1,525}{\left({ }^{2}\right)}$	$\begin{aligned} & \$ 880 \\ & \$ 200 \end{aligned}$	$\begin{aligned} & 91,575 \\ & \$ 9,890 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 33,645}$	${ }^{(8)}$	$\begin{aligned} & \$ 22,500 \\ & \$ 26,785 \end{aligned}$	$\underset{(8)}{\$ 1,394}$	811,670 $\$ 250$	$\underset{\substack{(2) \\(\$ 8,103}}{\$ 5}$	$\begin{array}{r} 89,600 \\ \$ 31,700 \end{array}$
Buildings	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{\left(\mathbf{}^{2}\right)}{\$ 29,945}$	$\begin{aligned} & \$ 77,355 \\ & \$ 30,676 \end{aligned}$	${ }_{(2)}^{\$ 2,075}$	$\begin{array}{r} \$ 5,880 \\ \$ 600 \end{array}$	$\begin{aligned} & \$ 14,310 \\ & \$ 19,880 \end{aligned}$	$\underset{(\underline{2})}{\$ 66,173}$	$\underset{(3)}{\$ 13,500}$	$\begin{aligned} & \$ 32,260 \\ & \$ 47,150 \end{aligned}$	$\underset{\left({ }^{3}\right)}{\$ 11,000}$	$\begin{array}{r} \$ 22,390 \\ \$ 2,000 \end{array}$	$\underset{\left({ }^{2}\right)}{\$ 112,453}$	$\begin{array}{r} \$ 4,760 \\ \$ 42,500 \end{array}$
Macbinery, tools, and implements.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 26,650}$	$\begin{array}{r} \$ 101,658 \\ \$ 83,670 \end{array}$	${\left({ }^{2}\right)}_{\$ 6,718}^{9}$	$\begin{aligned} & \$ 9,825 \\ & \$ 7,100 \end{aligned}$	$\begin{aligned} & \$ 23,100 \\ & \$ 30,100 \end{aligned}$	$\$ 57,707$ (2)	$\underset{(8)}{\$ 20,316}$	$\begin{aligned} & \$ 47,790 \\ & \$ 80,550 \end{aligned}$	$\underset{(3)}{\$ 10,177}$	$\begin{gathered} \$ 28,230 \\ \$ 2,961 \end{gathered}$	$\underset{\left({ }^{2}\right)}{\$ 120,634}$	$\begin{array}{r} \mathbf{8 6}, 855 \\ \$ 62,062 \end{array}$
Cash and sundries	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{(2)}{848,730}$	$\begin{aligned} & \begin{array}{l} 8302,977 \\ \$ 586,793 \end{array} \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 13,544}$	$\begin{array}{r} \$ 19,239 \\ \$ 9,010 \end{array}$	$\begin{aligned} & \$ 14,867 \\ & \$ 25,477 \end{aligned}$	$\begin{gathered} \text { \$146, } 733 \\ \left.{ }^{2}\right) \end{gathered}$	$\underset{(3)}{\$ 34,712}$	$\begin{aligned} & \$ 115,983 \\ & \$ 281,991 \end{aligned}$	$\$ 56,056$ (${ }^{3}$)	$\begin{aligned} & \$ 32,970 \\ & \$ 11,300 \end{aligned}$	$\begin{gathered} (2) \\ \$ 868,925 \end{gathered}$	$\begin{array}{r} \$ 15,850 \\ \$ 162,099 \end{array}$
Salaried officials, clerks, etc.: Number.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\text { (2) }^{9}$	35 88	${ }^{(2)} \quad 6$	16 4	5 12	$\text { (} \left.^{2}\right)^{20}$	$\left(^{3}\right)^{4}$	$\begin{aligned} & 25 \\ & 59 \end{aligned}$	${ }_{(8)}{ }^{4}$	4 1 1	$\left(^{2}\right)^{42}$	16
Salaries.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{(2)}{\$ 10,350}$	$\begin{aligned} & \$ 25,309 \\ & \$ 56,453 \end{aligned}$	$\underset{(2)}{\$ 1,030}$	$\begin{aligned} & \$ 2,043 \\ & \$ 1,257 \end{aligned}$	$\begin{aligned} & \$, 430 \\ & \$ 2,215 \end{aligned}$	$\begin{gathered} \$ 8,068 \\ \left({ }^{2}\right) \end{gathered}$	$\begin{gathered} 84,100 \\ \left({ }^{3}\right) \end{gathered}$	$\begin{array}{r} \$ 3,477 \\ \mathbf{\$ 1 7 , 5 6 1} \end{array}$	$\begin{gathered} \$ 4,260 \\ \left(s^{\prime}\right) \end{gathered}$	$\begin{array}{r} \$ 1,475 \\ \$ 500 \end{array}$	$\underset{(2)}{\$ 32,732}$	$\begin{array}{r} \$ 200 \\ \$ 6,267 \end{array}$
Wage-earners, average number.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	${\left({ }^{2}\right)}_{129}^{129}$	468 830	$\left({ }^{2}\right) 64$	1111	111	${\left({ }^{2}\right)}^{141}$	${ }^{(8)} 111$	637 1,470	(8) ${ }^{44}$	128 57	$\left(^{2}\right){ }^{676}$	38 636
Total wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{(\Omega)}{\$ 18,070}$	$\$ 123,179$ $\$ 88,446$	$\begin{aligned} & \text { (2) } \\ & (27,410 \end{aligned}$	$\$ 15,216$ $\$ 3,283$	$\begin{aligned} & \$ 26,828 \\ & \$ 32,660 \end{aligned}$	$\underset{(2)}{\$ 37,565}$	$\underset{(3)}{\$ 21,762}$	$\$ 77,576$ $\$ 89,516$	$\underset{(3)}{\$ 12,484}$	$\begin{aligned} & \$ 13,108 \\ & \$ 4,621 \end{aligned}$	$\underset{\left({ }^{2}\right)}{811,090}$	$\begin{aligned} & \$ 10,097 \\ & \$ 76,583 \end{aligned}$
Men, 16 years and over..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$(2)^{32}$	${ }_{326}^{211}$	${ }_{(2)}{ }^{15}$	$\begin{aligned} & 24 \\ & 26 \end{aligned}$	$\begin{array}{r} 22 \\ 248 \end{array}$	$\text { (2) }^{62}$	$\left(^{(8)}{ }^{64}\right.$	196 512	(3) 15	$\begin{aligned} & 55 \\ & 18 \end{aligned}$	$\left(^{2}\right)^{303}$	10 239
Wages....................	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{(2)}{\$ 8,995}$	$\begin{aligned} & \begin{array}{l} 881,346 \\ \$ 69,275 \end{array} \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 2,625}$	$\begin{aligned} & \$ 4,992 \\ & \$ 11,892 \end{aligned}$	$\begin{array}{r} \$ 9,157 \\ \$ 16,324 \end{array}$	$\underset{(2)}{\$ 26,037}$	$\underset{\substack{3 \\ \hline}}{\$ 15,140}$	$\begin{aligned} & \$ 33,915 \\ & \$ 42,488 \end{aligned}$	$\underset{\substack{8 \\(3)}}{859}$	$\begin{aligned} & \begin{array}{l} \$ 7,858 \\ \$ 3,145 \end{array} \end{aligned}$	$\underset{(2)}{\$ 80,160}$	$\begin{array}{r} \$ 5,064 \\ \$ 42,049 \end{array}$
Women,16 years and over	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	${ }_{\left({ }^{2}\right)} 60$	206	$\text { (2) }^{27}$	56 55	63 249	(2) 73	(3) ${ }^{45}$	312 640	$(3)^{24}$	59 22	$\left({ }^{2}\right){ }^{271}$	$\begin{array}{r}25 \\ 348 \\ \hline\end{array}$
Wages.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 6,075}$	$\begin{aligned} & \$ 35,833 \\ & \$ 15,813 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 2,835}$	$\begin{aligned} & \$ 6,59 \\ & \$ 1,159 \\ & \$ 1,19 \end{aligned}$	$\begin{aligned} & \$ 14,832 \\ & \$ 10,714 \end{aligned}$	$\underset{(2)}{\$ 10,172}$	$\underset{\left.{ }^{3}\right)}{\$ 6,362}$	$\begin{aligned} & \$ 33,577 \\ & \$ 41,342 \end{aligned}$	${ }_{\left({ }^{8}\right)}^{\$ 5,675}$	$\begin{aligned} & \$ 4,220 \\ & \$ 1,109 \end{aligned}$	$\underset{(2)}{\$ 30,235}$	$\begin{array}{r} \$ 4,655 \\ \$ 31,909 \end{array}$
Children, under 16 years.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$(2)^{37}$	51 261	$\text { (2) }^{22}$	36 30	$\begin{array}{r} 26 \\ 206 \end{array}$	$\text { (} \left.^{2}\right)^{6}$	$\left({ }^{(3)} 2\right.$	129 318	$\left({ }^{3}{ }^{5}\right.$	14 17	${ }_{\left({ }^{2}\right)} 102$	3 49
Wages....................	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{gathered} \$ 8,000 \\ \left({ }^{2}\right) \end{gathered}$	$\begin{aligned} & \$ 6,001 \\ & \$ 3,358 \end{aligned}$	$\underset{(2)}{\$ 1,950}$	$\begin{array}{r} \$ 3,685 \\ \$ 278 \end{array}$	$\begin{aligned} & \$ 2,839 \\ & \$ 5,622 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 1,356}$	$\begin{gathered} \$ 260 \\ { }^{(3)} \end{gathered}$	$\begin{aligned} & \$ 10,084 \\ & \$ 5,686 \end{aligned}$	${ }_{\left({ }^{3}\right)}^{\$ 970}$	$\begin{array}{r} \$ 1,030 \\ \$ 367 \end{array}$	${ }_{(2)}^{\$ 6,695}$	$\begin{array}{r} \$ 378 \\ \$ 1,625 \end{array}$
Miscellaneous expenses.....	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{\substack{2 \\(2)}}{\$ 43}$	$\begin{aligned} & \$ 58,788 \\ & \$ 46,264 \end{aligned}$	${ }_{(2)}^{\$ 503}$	$\begin{array}{r} \$ 207 \\ \$ 1,332 \end{array}$	$\begin{aligned} & \$ 1,245 \\ & \$ 6,559 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 6,024}$	$\begin{gathered} \$ 3,390 \\ (8) \end{gathered}$	$\begin{array}{r} \$ 7,289 \\ \$ 45,482 \end{array}$	$\underset{(3)}{\$ 2,677}$	$\begin{aligned} & \$ 2,983 \\ & \$ 3,098 \end{aligned}$	${ }_{\left({ }^{2}\right)}^{\$ 91,887}$	$\begin{array}{r} \$ 2,309 \\ \$ 11,537 \end{array}$
Cost of materials	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 79,290}$	$\begin{aligned} & \$ 499,353, \\ & \$ 615,294 \\ & \hline \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 15,169}$	$\begin{aligned} & \$ 37,598 \\ & \$ 19,307 \end{aligned}$	$\begin{aligned} & \$ 85,275 \\ & \$ 59,650 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 211,279}$	$\underset{(8)}{883,361}$	$\begin{array}{r} \$ 342,689 \\ \$ 1,131,868 \end{array}$	$\underset{\left({ }^{3}\right)}{\$ 24,781}$	$\begin{aligned} & \$ 39,328 \\ & \$ 20,862 \end{aligned}$	$\$ 543,496$ (2)	$\begin{array}{r} \$ 13,399 \\ \$ 204,639 \end{array}$
Value of products...........	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\left.\begin{array}{\|c} \$ 141,498 \\ (2) \end{array}\right)$	$\begin{aligned} & \$ 801,250 \\ & \$ 931,008 \end{aligned}$	$\underset{\left({ }^{2}\right)}{\$ 28,565}$	$\begin{aligned} & \$ 72,007 \\ & \$ 29,030 \end{aligned}$	$\begin{aligned} & \$ 151,104 \\ & \$ 141,787 \end{aligned}$	$\begin{gathered} 830,349 \\ \left({ }^{2}\right) \end{gathered}$	$\underset{(3)}{\$ 166,184}$	$\begin{array}{r} \$ 535,900 \\ \$ 1,403,216 \end{array}$	$\begin{gathered} \$ 63,141 \\ (3) \end{gathered}$	$\begin{aligned} & \$ 86,886 \\ & \$ 36,750 \end{aligned}$	$\underset{(2)}{81,007,765}$	$\begin{array}{r} 894,041 \\ \$ 408,293 \end{array}$

${ }^{1}$ Includes establishments distributed as follows: Florida, 2; Idaho, 2; New Mexico, 1; Rhode 1sland, 1.
9 Reported under head of other states in 1890.
3 None reported in 1890 .
${ }^{3}$ None reported in 1890 . South Dakota, 1; Utah, 2; Wisconsin, 1.

Table 7 gives the totals for the principal items of the industry for the two periods and indicates the marked growth and expansion which has occurred during the decade in each state. In 1890 the canning and preserving of fruits and vegetables was reported by 886 establishments located in 36 states and territories, and in 1900 the number had increased to 1,808 , distributed among 39 states and territories. In order to avoid disclosing the operations of individual establishments, states having less than 3 establishments were grouped under " all other states." Nearly every state and territory has shown a most gratifying increase in the number of establishments, capital, and value of products. The exceptions are as follows: Kansas reported a decrease in all three items; Massachusetts, a decrease of 1 establishment, but a notable increase in capital and value of products; Maine, Missouri, Pennsylvania, and Virginia, a decrease in capital, but an increase in the other two items; Nebraska, a decrease in establishments and in
capital, but an increase in value of products; Texas, the same number of establishments, but an increase in the other two items.
Climatic conditions largely regulate the locality where each particular fruit or vegetable is canned. In general each state puts up the varieties of fruits and vegetables which are grown extensively therein. The leading 10 states, ranked according to the value of products for the census year, were as follows: California, $\$ 13,081,829$; Maryland, $\$ 11,996,245$; New York, $\$ 8,975,321$; Illinois, $\$ 3,730,030$; Indiana, $\$ 2,589,908$; New Jersey, $\$ 2,199,176$; Ohio, $\$ 1,941,398$; Delaware, $\$ 1,570,790$; Iowa, $\$ 1,359,958$, and Maine, $\$ 1,335,671$. The total value of products of these 10 states was $\$ 48,780,326$, or 86.1 per cent of the total value of products for the industry. The number of establishments reported by these 10 states was 1,318 , or 72.9 per cent of the total number, and the capital was $\$ 23,463,822$, as compared with $\$ 27,743,067$ for the entire country, or
84.6 per cent of the total capital reported. Alabama, Vermont, and Washington have become engaged in the industry during the decade.

The summary of establishments engaged in the canning and preserving of fruits and vegetables, classified according to the number of wage-earners employed,
is shown in Table 8. In this connection, attention is here directed to the fact that the data contained in this table were computed from the greatest number of wage-earners employed at any time during the year. This should be taken into consideration in making deductions.

Table 8.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: Establishments CLASSIFIED BY NUMBER OF WAGE-EARNERS EMPLOYED, BY STATES AND TERRITORIES ARRANGED GEOGRAPHICALLY, 1900.

Table 8 indicates that the largest number of establishments employed from 5 to 20 wage-earners. Four establishments, 2 in Indiana and 1 each in Maryland and New York, employed over 1,000 wage-earners, and 31 establishments, 18 of which were located in California, gave employment to from 501 to 1,000 wage-earners. Maryland, New York and California, in the order named, reported the largest number of establishments employing more than 50 wage-earners. The largest
number of establishments in Maryland were reported for the class " 21 to 50 ," and the largest number in New York and California from " 5 to 20 ."

According to Table 8 it appears that the Middle states employed the greatest number of wage-earners, while the Central states ranked second, and the Pacific states third. There were 8 small establishments employing no wage-earners, presumably all the work being done by the owner.

Table 9 presents a comparative summary of the statistics of capital for 1890 and 1900 , with the percentages of the total and the increase for the several items.

Table 9.-FRUITS AND VEgetables, CanNing and PRESERVING: STATISTICS OF CAPITAL, 1890 AND 1900.

	1900		1890		Per cent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total..	\$27, 743,067	100.0	\$15, 315, 185	100.0	81.15
Land.....	2,702,470	9.7	1, 338,584	8.7	101.9
Machinery, tools, and	4,517,008	16.3	2,387,232	15.6	89.2
Cash and sundries	$4,797,719$ $15,725,870$	17.3	2, 480, 027	16.2	93.5
		66.7	9, 109,342	59.5	72.6

Every item of capital showed a decided increase and relatively constituted nearly the same percentage of the total for both years. The item cash and sundries, including cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, formed the principal item of capital in both years. This is accounted for by the fact that the industry has a tendency to be suburban, as is indicated by the small per cent of the value of land to the total value. In consequence of this expensive buildings are unnecessary. Further, intricate machinery and mechanical appliances are not required in the preparation of the product. For these reasons comment upon the remaining items of capital is not called for.

As the several items of miscellaneous expenses for 1890 can not be shown separately, the usual detailed comparison with the figures reported for 1900 is impossible. The expenses of this nature in this industry do not call for special comment, but the several subdivisions for 1900 are shown in Table 14.

The cost of materials used, with the proportion each formed of the total for 1900 , is given in Table 10.

Table 10.-.FRUITS AND VEGETABLES, CANNING AND PRESERVING: COST OF MATERIALS USED, 1900.

	Amount.	Per cent of total.
Total	\$37, 524, 297	100.0
Principal materials.	${ }^{136}, 428,791$	97.1
Rent of power and	480,858 10,388	(2) 1.3
Freight...............	604, 260	1.6

[^1]Of the total cost the amount reported for principal materials formed 97.1 per cent. The principal materials are made up of those purchased in the raw state and those purchased in partially manufactured form, the latter comprising those materials upon which some manufacturing force has been expended. Included in
this item are mill supplies and all other materials, such as cans, solder, etc., which were required in the preparation of the product for the market. That the cost of fuel formed only 1.3 per cent of the total cost of materials is but natural in this industry.

Table 11 shows the value of products, by states, for 1900.

Table 11.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: VALUE OF PRODUCTS, BY STATES AND TERRITORIES, ARRANGED GEOGRAPHICALLY, 1900.

	value.		
	Total product.	Fruits and vegetables.	All other products.
United States..New England states.	\$56, 668, 313	\$44, 460,665	\$12, 207,648
	2,194, 644	1,611,416	683, 228
New England states.MaineNew Hampshire.VermontMassachusetts...Other states ${ }^{1} . .$.	1,335, 671	1,129, 415	206,256
	$\begin{array}{r}199,964 \\ 166,184 \\ \hline\end{array}$	$1,128,988$ 166,184	20, 976
	531, 546	58,259	473,286
	131,280	128, 570	2,710
Middle states.	25, 542, 782	18,808,605	6,734,177
New York	8, 975, 321	7,032,750	1,942,571
New Jersey	2, 199, 176	1,965, 502	233, 674
Delaware..	1,570,790	1,542, 401	216,957 28,389
Maryland	11,996, 245	7,683,659	4,312,586
Southern states.	1,344,342	1,280,784	63, 658
West Virginia	66,886	54,694	12,192
Virginia.	635, 900	533, 642	2,358
North Carolina	64, 440	60,590	3,850
South Carolina	28,665	11,715	16,850
Georgia...	120, 022	119, 397	625
Kentucky	192,787	192,787	
Tennessee	72, 007	71,116	891
Texas	100, 503	95, 861	4,642
Other states ${ }^{2}$	12,128	131,964 9,128	19,150 3,000
Central states	13, 309, 111	9,638, 385	3,670,726
Ohio.	1,941,398	1,856,900	84, 498
Michigan	1,760,875	720,672	1,040, 303
Indiana	2,689, 908	2,196,080	398,828
Wisconsin	3,730,030	1, 942,938	1, 787,092
Misconsin	1,007,765	973, 954	33,811
Iowa.	1,359,958	1,330,807	
Missouri	1,869,977	1,567,934	$\begin{array}{r} 29,161 \\ 302,043 \end{array}$
Western states.	990,966	882, 903	108,063
Nebraska.	210,688	207, 286	
Utah.	300, 349	294, 769	5,680
Colorado	343,394	250, 833	92,661
Kansas	113,675		
Other states ${ }^{3}$	22,860	16,340	6, 520
Pacific states	13,286, 468	12,338, 572	547, 896
Washington	63,141	14,645	48,496
Oregon --.	141,498	140,311	1,187
Caliiornia	13,081, 829	12, 183,616	898,212

${ }^{1}{ }^{1}$ Includes establishments distributed as follows: Rhode Island, 1; Connecticut, 5 .

2 Inciudes establishments distributed as follows: Florida, 2; Alabama, 3.
${ }_{3}$ 1ncludes establishments distributed as
${ }^{3}$ Includes establishments distributed as follows: Idaho, 2; New Mexico, 1.
Table 11 shows that of the total value of products, $\$ 44,460,665$, or 78.5 per cent, was reported as the value of canned and preserved fruits and vegetables, and $\$ 12,207,648$, or 21.5 per cent, was returned as the value of "all other products." This latter item includes such articles as pineapples, figs, jams, jellies, condiments, catsup, apple butter, soups, and numerous other varieties of canned or preserved food not included in the above, the quantities and values of which it was impossible to show
separately. It will be noticed that in Massachusetts, Michigan, South Carolina, and Washington the value of other products exceeded the value of fruits and vegetables, and in Maryland and Illinois the value of other products formed a goodly proportion of the value of the total product-nearly equal to that of the fruits and vegetables.
The tables which have thus far been shown give an incomplete statistical photograph of the fruit and vegetable canning and preserving industry for the reason
given above, thatestablishments were classified according to the predominating product, and in many instanres the canning and preserving of fruits and vegetables is carried on in connection with some other branch of the canning industry, and the totals have not been included in the above tables. It is possible, however, to show the quantity and value of the principal varieties of fruits and vegetables canned and preserved during the census year as reported by establishments of any character. This is done in Table 12.

Table 12.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: BY STATES AND TERRITORIES, 1900.

Table 12.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: BY STATES AND TERRITORIES, 1900-Continued.

	middle states.										
	Total.	New York.	New Jersey.	Pennsylvania.	Delaware.	Maryland.					
Aggregate value	\$19,550, 313	\$7,032,750	\$1, 965,502	\$584,293	\$1,542, 401	\$8,425, 367					
Canned vegetablesTotal pounds....	611, 802,706	35, 432,524	84, 423, 137	20, 390, 240	64, 309,512	307, 247, 293					
	\$15,019,673	\$4, 410, 251	\$1, 858, 489	\$516, 468	\$' 14, 308	\$6, 820, 157					
	361,776, 261	18,332, 340	77,764,232	9,549,896	54,996,168	201, 133,625					
		8483,112	\$1,668,855	\$201, 304	\$1,121, 646	\$3, 899, 317					
Corn-	114,940,656	64,384, 896		7,063,008	2, 556,520	40,937, 232					
	\$38, 631	\$27,506				\$11,025					
Canned fruits-											
Pears-											
PeachesPounds	32, 558,770	2,096, 112	62,400		1,791,240	28,609,018					
Apricots-											
		$\begin{aligned} & 21,542,897 \\ & \$ 1,275,109 \end{aligned}$	$570,490$								
Apples- $22,113,387$ $21,542,897$ $\ldots \ldots \ldots \ldots \ldots$ 570,490											
$\underset{\text { Value }}{\text { Vears- }}$											
	Pounds.										
Value.. Peaches- Pound											
$\xrightarrow{\text { Value }}$											
Vaisins-											
Prounds Value $^{\text {P }}$.											

Table 12.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: BY STATES AND TERRITORIES, 1900-Continued.

Includes establishments distributed as follows: Florida, 2: Louisiana, 1: Mississippi, 1.

Table 12.-FRUITS and VEGETABLES, CANNING AND PRESERVING: BY STATES AND TERRITORIES, 1900-Continued.

Table 12.-FRUITS and VEGETABLES, CANNING AND PRESERVING: BY sTATES AND TERRITORIES, 1900-Continued.

${ }^{1}$ Ineludes establishments distributed as follows: Idaho, 2: New Mexico, 1,

Table 12 shows the quantity and value of fruits and vegetables prepared by fruit and vegetable canning factories as such, and also the quantity and value reported as a subsidiary product in establishments engaged primarily in the canning and preserving of fish and oysters. The values reported do not include the amounts returned for all other products, and therefore,
the totals given in Table 12 do not agree with the total products elsewhere given in this report, or with those of the general report, on this industry as presented in Manufactures, Parts I and II. Further, many establishments classified under "food preparations" and "pickles, preserves, and sauces" are engaged in the canning and preserving of fruits and vegetables, and it
was impossible to ascertain the total quantity and value of fruits and vegetables canned by such establishments. It will be observed that the quantity and value of some varities of fruits and vegetables do not appear in Table 12. This is due to the fact that it was impossible to secure the quantity and value of each, as they were not separately reported. They are therefore, as heretofore explained, included under "all other products" in Table 11. Nevertheless, the totals given in Table 12 may be taken as fairly representing the quantities and value of fruits and vegetables canned during the census year.

Table 12 shows that the value of canned and preserved fruits and vegetables was $\$ 45,379,548$. The total number of pounds of canned vegetables was $1,172,467,073$, valued at $\$ 29,368,158$; canned fruit, $302,127,819$ pounds, valued at $\$ 11,589,885$; and dried fruit, $81,314,406$ pounds, valued at $\$ 4,421,505$. It appears that the Middle states led in this industry and reported $\$ 19,550,313$ as the value of canned and preserved fruits and vegetables, or 43.1 per cent of the total value. The Pacific states ranked second, with $\$ 12,408,385$ as the value of products, or 27.3 per cent of the total value. The Central states ranked third, with a product of $\$ 9,715,994$, or 21.4 per cent of the total value. The New England, Southern, and Western states followed in the order named.

In the total number of pounds of canned vegetables Maryland easily led, reporting $307,247,293$ pounds, or 26.2 per cent of the total number. The other 4 leading states in the order named, with the number of pounds reported by each, were: New York, $135,432,524$; Indiana, $91,566,684$; Illinois, $80,214,384$; and California, $62,553,760$. The total number of pounds of canned and preserved vegetables reported by these 5 states
was $677,014,645$, or over 50 per cent of the total number of pounds reported for the entire country.

In the canning of the different varieties of fruits California ranked first with $162,190,382$ pounds, or 53.7 per cent of the total. The other 5 leading states, ranked according to the number of pounds, were: Maryland, 56,432,556; New York, 41,241,240; Michigan, 9,603.980; Delaware, 5,486,704, and New Jersey, $3,224,512$. The total number of pounds of canned fruits returned by these 6 states was $278,179,375$, or 92.1 per cent of the entire number of pounds reported for the country.

Naturally climatic and other physiographic conditions cause a tendency to sectionalism in this industry. The states which stood preeminent in the several varieties of canned and preserved foods as shown by Table 12, in the order of their importance, were as follows: tomatoes, Maryland, New Jersey, Indiana, California, Delaware, and Ohio; corn, New York, Illinois, Iowa, Maryland, and Maine; pease, New York, Maryland, Wisconsin, Indiana, and Delaware; beans, Maryland, New York, Illinois, Ohio, and Indiana; pumpkins, New York, Indiana, and Illinois; pears, California, New York, and Delaware; peaches, California, Maryland, Michigan, and Delaware; apples, New York, Maryland, Michigan, California, Maine, and Ohio; small fruits, as blackberries, strawberries, and raspberries, California, Maryland, and New York.

The drying of fruit seems to be confined principally to California and New York; those 2 states reporting $70,880,780$ pounds, or 87.2 per cent of the total number reported.

The principal details of the statistics for the canning and preserving of fruits and vegetables as carried on in cities of over 20,000 population are shown in Table 13.

Table 13.-FRUITS AND VEGETABLES, CANNING AND PRESERVING: STATISTICS OF CITIES OF 20,000 POPULATION OR OVER, 1900.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Cities.} \& \multirow{2}{*}{Rank by value of products.} \& \multirow[t]{2}{*}{Number of es-tablishments.} \& \multirow{2}{*}{Capital.} \& \multicolumn{2}{|l|}{salaried officials, Clerks, etc.} \& \multicolumn{2}{|l|}{vage-earners.} \& \multirow{2}{*}{Miscellaneous expenses.} \& \multirow{2}{*}{Cost of materials used.} \& \multirow{2}{*}{Value of products.}

\hline \& \& \& \& Number. \& Salaries. \& Average number. \& Wages. \& \& \&

\hline Total \& \& 107 \& \$9, 529, 513 \& \$508 \& \$611, 554 \& 10,189 \& \$2, 569, 859 \& \$1,170,459 \& \$15, 422, 289 \& \$21,788, 123

\hline Baltimore, Md.. \& 2 \& 23 \& 2, 862, 467 \& 148 \& 172, 326 \& 4,360 \& 905, 397 \& 309, 985 \& 6, 432, 415 \& 8, 477, 178

\hline San Francisco, Cal \& 3 \& 10 \& 806, 100 \& 36 \& 56,661 \& 1,311

1 \& 105, 972 \& 181, 907 \& 1, 236,'981 \& 2,992, 1,702

\hline Chicago, 11. \& 4. \& 6 \& 1,732, 932 \& 27 \& 46,880 \& 379 \& 118,693 \& 31,448 \& 545, 957 \& -880, 865

\hline Indianapolis, Ind. \& 5 \& 3 \& 241, 260 \& 70 \& 69,520 \& 300 \& -65, 331 \& 56, 360 \& 435, 556 \& 724,968

\hline Boston, Mass.... \& 6 \& 4 \& 32, 700 \& 8 \& 7,100 \& 110 \& 31, 796 \& 6,925 \& 350,329 \& 466, 110

\hline Los Angeles, Cal. \& 7 \& 3 \& 148, 000 \& , \& 6,600 \& 322 \& 76, 500 \& 14, 706 \& 297,623 \& 423, 000

\hline Portland, Me... \& 8 \& 3 \& 122,935 \& 3
160 \& 3,681 \& - 55 \& 20,544 \& 6,850 \& 72,996 \& 128, 219

\hline All other cities ${ }^{1}$ \& \& 49 \& 3,166,219 \& 160 \& 178, 130 \& 2,814 \& 812, 519 \& 460,141 \& 3,919,257 \& 5,928,852

\hline
\end{tabular}

1 Includes establishments distributed as follows: Atlanta, Ga., 1; Auburn, N. Y., 1; Austin, Tex., 1: Birmingham, Ala., 1; Buffalo, N. Y., 1: Bur'ington, Iowa, I; Canton, Ohio, 2; Cedar Rapids, Iowa, I; Cincinnati, Ohio, $1 ;$ Columbus, Ohio, $1 ;$ Davenport, Iowa, 1 ; Dayton, Ohio, 1 ; Denver, Colo., 1; Detroit, Mich., $1 ;$ Elgin, , Ill., 1 ;
 Evansvi, Wis., I; Peoria, Ill., 1; Philadelphia, Pa., 1; Pittsburg, Pa., 1; Portland, Oreg., 2; Providence, R. 1., 1; Pueblo, Colo. 1; Quiney, M1., 1; Rochester, N. Y., 1;
Oshkosh,
Rockford, Ill., 1; Sacramento, Cal., 1; St. Joseph, Mo., 2; St. Louis, Mo., 1; St. Paul, Minn., 1; San Jose, Cal., 2; Seattle, Wash., 2; Syracuse, N. Y., 1; Topeka, Kans., 1; West Hoboken, N. J., I; Zanesville, Ohio, 1 .

Table 13 indicates that of the total value of products, $\$ 21,788,123$, or 38.4 per cent, was reported for the cities named, and of this amount, $\$ 8,477,178$, or 15 per cent of the total for the United States, was returned for Baltimore, which, since the inception of the industry, has always been the principal city in the
fruit and vegetable canning and preserving industry. On the whole, the industry can hardly be said to be carried on chiefly in cities, as there seems to be a natural inclination toward the rural districts nearest the source of supply of the different varieties of fruits and vegetables.

Fruits and vegetables were the first goods canned successfully, the early processes being especially applicable to this class of goods, as they require a less degree of heat to preserve them than do fish and oysters. The method first used was to fill glass bottles to the necks with fruits, which in some cases were partly worked, and then loosely cork the bottle and place in tepid water. The temperature was then gradually increased to from 170° to $190^{\circ} \mathrm{F}$. and maintained at that point for a period of from thirty to sixty minutes, when the bottles were sealed and cooled in a bath. This method was improved upon by Pierre Atoine Angilbert in the year 1823 in the following manner: The fruit having been placed in a tin can containing water, a lid with an aperture was fastened on and heat was applied. After the liquid had boiled a while the aperture was closed with a drop of solder. This method does not differ materially from that in use in American canneries at the present time.

Although fruits and vegetables were among the first articles canned in the United States, the industry was largely confined, during the period between 1820 and 1845, to the cities where fish and oyster canning was carried on. Little information is available regarding the canning of fruits and vegetables during this time, and it is to be presumed that it was not very extensive. Tomatoes and corn, the two vegetables which are most extensively canned to-day, were not put up during the period mentioned.
The art of hermetically sealing tomatoes in tin cans was first used by Harrison W. Crosby when he was acting as steward of Lafayette College, Eaton, Pa., in 1847. The first methods used in putting up this article were crude and imperfect, but labor-saving machinery and economical methods have wrought great changes from time to time in this branch of the industry.
The canning of corn was begun simultaneously in 1839 by two canneries in Baltimore, Md., and Portland, Me., the latter being under the management of Mr. Isaac Winslow. Little information is available concerning the progress of the canning of this article in Baltimore, but the history of its progress in Maine appears to be more complete. Mr. Winslow met with little success until 1852, in which year he applied for a patent, which,' however, was not granted until 1862. His method was substantially as follows: ${ }^{1}$ The kernels of a superior quality of fresh green corn were removed from the cob by a knife and placed in hermetically sealed tin cans, which were then subjected to steam or boiling heat for about one and one-balf hours, wheu the cans

[^2]were punctured and again sealed and boiled for two and one-half hours longer. A much greater degree of success followed the invention of steam retorts in 1874, by which a higher degree of temperature could be secured. The first cooking under the old system was done away with by the introduction of "cookers," which are steam retorts used to cook the corn before placing it in the cans. This method is in use at the present time.

Prior to 1846, canneries were in operation in New York, Boston, and Baltimore, and in Portland and Eastport, Me., and in Newark, N. J., the canneries in the latter place having prepared the fruits and vegetables for Dr. Kane's Arctic Expedition. After 1850 canneries began to develop rapidly under the stimulus of an increasing demand for the goods. By 1866 factories were in operation in most fruit and vegetable raising sections of the country. Canneries were established in the Middle West at Circleville, Ohio, in 1873, and at Indianapolis, Ind., a few years previously. The rapid development of fruit and vegetable culture in California and elsewhere on the Pacific coast led to the introduction of canning establishments as early as $1856 .{ }^{2}$ At present this section takes the lead in the canning and preserving of small fruits. The fruits most extensively canned on the Pacific coast are plums, apricots, pears, peaches, and cherries, and the leading vegetables are tomatoes, asparagus, and pease.

Baltimore has been aptly called the "cradle of the canning industry." The state of Maryland not only leads in oyster canning, but is also among the first in the canning of tomatoes, coln, peaches, peas, lima beans, apples, pears, and pineapples.

Maine, in addition to being the leading state in sardine canning, is one of the leading corn-canning states, while New York leads in canning corn, apples, and pear's, and also puts up peas and beans in large quantities. As stated elsewhere, climatic conditions largely determine the locality in which each variety of fruits or vegetables is canned.

The canning of fruits and vegetables has increased with greater rapidity during the past thirty years than have the other branches of the canning industry included in this report. This is in a measure due to the fact that it differs from oyster and fish canning in that it is not confined to as narrow limits as these latter, but may be carried on in the numerous fruit and vegetable raising sections of the country.

Table 14 shows the detailed statistics for the industry by states and territories as returned for 1900 .

[^3]Table 14.-FRUITS and VEgETABLES, CANNING AND

PRESERVING: BY STATES AND TERRITORIES, 1900.

Delaware.	Georgia.	Illinois.	Indiana.	Iowa.	Kansas.	Kentucky.	Maine.	Maryland.	Massachusetts.	Michigau.	Minnesota.	
51	8	61	60	26	5	8	59	271	9	98	4	1
27 18 6	2 2 4 4	$\begin{aligned} & 20 \\ & 16 \\ & 25 \end{aligned}$	15 15 15 30	${ }_{18}^{6}$	${ }_{2}^{2}$	4 1 3	16 20 22 19	$\begin{gathered} 175 \\ 78 \\ 18 \end{gathered}$	${ }_{3}^{6}$	62 34 12	1	${ }_{3}^{2}$
\$966,660	\$24,801	81,551,977	\$1, 205, 994	\$1,027, 321	\$30,300	\$95,600	\$865, 825	\$4, 459,660	848,375	8898,668	843, 650	
	81,850	\$72, 077	\$10¢, 151	* $\$ 377$, 900	\$4, 200	\$6, 000	\$12,846	\$ 3778 , 143	${ }^{8} 625$	\$911,603	81,800	${ }_{7}^{6}$
¢ 8141 , 164	S\%, 8500 8500	\$ $\$ 8221,647$	$\$ 284,009$ $\$ 225,005$	$\$ 1900,900$ 8311 89	\$10,70\%	\$19,150	\% $\begin{gathered}8132,493 \\ \$ 230\end{gathered}$	\$430, 586	$\$ 900$ $\$ 19900$	${ }_{8}^{8204,315}$	\$10, 000	8
8646,078	\$11, 750	\$888, 443	\$592, 329	\$486,652	\$6,632	834,400 837,50	\$459,559			\$456, 101	\$20, 550	109
[$\begin{array}{r}14,298\end{array}$	83,650 ${ }^{\text {4 }}$	$\$ 101,515$	$\begin{aligned} & 155 \\ & \$ 112,174 \end{aligned}$	$\begin{array}{r} 46 \\ \$ 27,305 \end{array}$	$\begin{aligned} & 11 \\ & \$ 3,264 \end{aligned}$	$\begin{array}{r} 12 \\ \$ 5,842 \end{array}$	$\begin{array}{r} 102 \\ 850,850 \end{array}$	$\begin{array}{r} 231 \\ \$ 213,080 \end{array}$	$87,600$	$845,279$	\$ ${ }_{\text {1, } 600}$	${ }_{13}^{12}$
\$150	83,000 ${ }^{\frac{2}{3}}$	$\$ 23,120$	$\begin{aligned} & 37 \\ & \$ 20,930 \end{aligned}$	\% $\begin{array}{r}14 \\ \$ 12,000\end{array}$	\$100 ${ }^{1}$	83,750 ${ }^{7}$	14 $\$ 11,500$	23 $\$ 52,850$		16 87,685		14 15
$\underset{\$ 14,128}{28}$	\$650 ${ }^{2}$	$\begin{array}{r} 79 \\ 978,395 \end{array}$	$\begin{array}{r} 118 \\ \$ 91,244 \end{array}$	$\begin{array}{r} 32 \\ \$ 15,305 \end{array}$	\$8,154	82,090	$\begin{array}{r} 88 \\ 839,35 \end{array}$	$\begin{aligned} & 208 \\ & \$ 160,230 \end{aligned}$	\$7,600 ${ }^{9}$	$\begin{array}{r} 65 \\ \$ 37,594 \end{array}$	\$1,600	${ }_{17}^{16}$
\#14, 128	8650	$\$ 77,845$	$\begin{array}{r} 86 \\ 881,906 \end{array}$	$\begin{aligned} & \$ 14,690 \end{aligned}$	$\begin{aligned} & 10 \\ & 83,154 \end{aligned}$	\$2,010 ${ }^{4}$	$\begin{array}{r} 83 \\ 837,493 \end{array}$	$\begin{array}{r} 198 \\ 8166,274 \end{array}$	$\$ 7,600$	$\$ 34,475$	81,600	18
		\$550 ${ }^{2}$	$\begin{array}{r} 86,338 \\ 82 \end{array}$	3 $\$ 695$		\$80 ${ }^{1}$	$\$ 1,861$	$\begin{array}{r} 10 \\ \$ 3,956 \end{array}$		$\begin{array}{r} 8 \\ \$ 3,149 \end{array}$		${ }_{21}^{20}$
5,909 2,257	468 187	5,573 1,986 1,58	8,718 2,187	3,867	512	874	5,050	22, 907	261	4,014	285	22
2,257 1,437	${ }_{81}^{187}$	$\xrightarrow{1,986}$	$\xrightarrow{2,187} 2$	$\begin{array}{r}1,609 \\ \hline 999\end{array}$	${ }_{116}^{131}$			$\begin{array}{r}12,341 \\ 7 \\ \hline 505\end{array}$		1,908 1,165		${ }_{24}^{23}$
\$226, 149	\$10, 545	\$392, 636	8386, 457	\$184,710	\$17,148	\$36,903	\$203, 509	\$1,379, 131	\$39,945	\$240,102	\$8,523	25
$\begin{array}{r}\text { \% } \\ \text { 8113,751 } \\ \hline 85\end{array}$	85, ${ }^{260}$	815 $\$ 278,626$	824 8219,239	8114, 321	\% $\begin{array}{r}\text { 51 } \\ \$ 10,124\end{array}$	89 819,48	$\begin{array}{r}\text { 487 } \\ \mathbf{8 1 4 4 , 5 0 8} \\ \hline\end{array}$	2,980 8744,516	\% $\begin{array}{r}57 \\ \$ 21,60\end{array}$	- $\begin{array}{r}378 \\ 8121,412\end{array}$	\$6, ${ }^{17} 7$	${ }_{27}^{26}$
a $\$ 850$ $\$ 100$ 119	$\begin{array}{r}\text { 48 } \\ \hline 4.410\end{array}$	$\begin{array}{r}\text { 582 } \\ \$ 108,182 \\ \hline 182\end{array}$	1,068 8156,473	\$ ${ }^{264,575}$	\$5,564 ${ }^{51}$	105 $\$ 14,094$	$\begin{array}{r}\text { 316 } \\ \hline 849,385\end{array}$	3,712 $\$ 559,310$	79 817,760	\% \$95, 665	26 81,590	${ }_{29}^{28}$
($\begin{array}{r}12,279\end{array}$	17 8875	$\begin{gathered} 47 \\ \$ 5,828 \end{gathered}$	$\begin{array}{r} 110 \\ 810,745 \end{array}$	$\$ 15,605$	$\begin{array}{r} 14 \\ \$ 1,460 \end{array}$	$83,561$	$\begin{gathered} 101 \\ 89,616 \end{gathered}$	$\begin{array}{r} 813 \\ \$ 75,305 \end{array}$	\$ ${ }^{3} 25$	$\{23,636$	\$263 ${ }^{2}$	30 31
${ }^{50}$	14	248	109	${ }^{43}$	1	15	137	1,310				32
$\cdot{ }_{122}$	14	279 273	116 197	129		10	180	1,201	47 51	${ }_{95}^{93}$		${ }_{34}^{33}$
137	14	363	287	77	11	15	226	1,731	${ }_{58}^{58}$	94	4	${ }^{35}$
246 494	$\stackrel{2}{19}$	$\stackrel{416}{407}$	384 916	$\begin{array}{r}99 \\ 164 \\ \hline 1\end{array}$	${ }_{42}^{20}$	${ }_{90}^{20}$	$\begin{array}{r}217 \\ 138 \\ \hline\end{array}$	2,020 2,586	57 52	$\begin{array}{r}97 \\ 316 \\ \hline\end{array}$	4	${ }_{37}^{36}$
${ }^{394}$	70	${ }^{502}$	${ }_{915}^{915}$	$\begin{array}{r}215 \\ \hline 104 \\ \hline\end{array}$	$\begin{array}{r}42 \\ 35 \\ \hline 18\end{array}$	${ }^{138}$	192	2, 278	${ }_{62} 6$	273 273	10	${ }_{38}$
1,667	80	2,691	${ }^{2,313}$	${ }^{606}$	183	${ }_{2} 274$	${ }^{934}$	7,121	${ }_{50}^{60}$	447	${ }^{63}$	
1,774	45 14	2,8597	2,810 1,347	1,722	${ }_{126}^{170}$	280 189	2,739	7,678 4,459	${ }_{63}^{59}$	1,000 1,075	100	${ }_{41}^{40}$
${ }^{1} 219$	12	${ }_{433}$	${ }^{1} 342$	${ }_{259}$	27	${ }_{23}$	${ }_{273}$	$\stackrel{2}{2,236}$	64	1,693	6	${ }_{42}$
62	12	331	156	103	,	10	89	1,343	69	257	2	43
17		199	87				91	962		112		
17	3	194	84 88	79 39			94	${ }_{1} 619$	${ }_{60}^{66}$			
${ }_{23}^{29}$		1906 20	88				111	1,132	60 74	114		${ }_{47}^{46}$
57		197	109				85	2,485	75	112		
318	20	202	615	43	10	75	${ }_{34}^{39}$	3,756	84	483		49 50
212 169	154 178	495 1,710	626 4,010	1 65 1.153	230	208 358	$\begin{array}{r}64 \\ 594 \\ 594 \\ \hline\end{array}$	${ }^{3,976}$	82 100	${ }_{694}^{438}$	111	
3,211	80	1,848	${ }^{4}, 748$	1,263	225	348 3	1,385	10,788	91	1,633	171	52
2,204	3 3	1,069	1,958	${ }_{212}^{361}$	110 34	258 18	704 412	6,689 2,237	79 85	1,655 1,020	18 18	53 54
37	3	267	134	36			122	1,054	83	297		55
										160		
				3			12			160		57
9				${ }_{3}$			${ }_{10}^{12}$	142		160		-58
24		10		3 3 3		5	10		.	160 806		${ }_{61}^{60}$
87 67	34 78	57	89	18		${ }_{75}$	3	660	2	${ }_{253}$		${ }_{62}^{61}$
602	${ }_{76} 7$	${ }_{226}^{214}$	413	${ }_{5}^{56}$	${ }_{65}^{65}$	126	417	2,847	3	250	${ }^{6}$	${ }^{63}$
650 443	16	226 49	463 236	597 114	${ }_{21}^{46}$	123 80	618 77	1,526	${ }^{6}$	286 310		64 65
40 3		4	37 5	24	1		30		14	265		${ }_{66} 6$
3							10					
\$27,169	\$4, 262		\$165,755	\$633,185	\$11,722	\$10, 100	\$43,119	\$371, ${ }^{83} \mathbf{1 0 8}$	77,392 84 8.724	\$123,514	81,452	${ }_{69}^{68}$
\$17,501				\$3,852		\$254	-85, 444	${ }_{\$ 20} 8139$	+463	\$3,731	${ }^{8166}$	
\$23,946	\$3,441	\$253,332	\$154,493	\$57,508	810,763	89, 846	\$32, 239	\$316,949	\$2, 205	\$112, 368	\$1,211	71
		\$1,600	\$1,808	81,600			\$500	\$460		834		72
\$1,083, 142	\$67, 192	\$2, 447, 194	81,526, 088	\$767, 231	\$68,465	\$75, 346	\$762, 102	\$8,786,518	\$884,600	\$1, 154,698	\&17,929	73
		81, 367, 171	\$608, 358	\$294, 244	$\begin{aligned} & \$ 20,681 \\ & \hline 820,681 \end{aligned}$	\$25, 110		\$85, 019, 365	${ }_{\text {82251, }}^{837}$	\$630,078	89, 310	74
\$8429,948	$\$ 14,606$ $\$ 2,800$	$\$ 1,075,569$ $\$ 291,602$	\$854, 8084	\$266,424			- 4 \$42,			\$ \$190, 026	\$8,	${ }_{76}^{75}$
\$12,859	\$ 8193	- $\$ 18,295$	\$20, 782	\$11,357	\$1,599	\$1,565	\$10, 5778	\$50, 897	\$3, 894	\$22, 642	\$549	77
		\%5, 800				855		\$20,138	\$212	81,595	\$1190	78 79
	\$41, 130	(1, 022,060	8857,677	\$44i', 504	\$45, 172	\$47,466	\$350, 524	\$3,593,237	\$553,325	\$462, 470	85,786	80
\$ $\$ 20,639$	\$4, 81,03	, $\$ 29,497$	\$36, 35-	\$7, 931		\$1, 150	\$8,595	\$102,409	\$2,532	\$37,913	\$2, 125	81

No. 209-4

Table 14.-FRUITS AND VEGETABLES, CANNING AND

		United States.	Alabama.	Arkansas.	California.	Colorado.	Connecticut.
	Products:						
8	Aggregate value - - canned vegetables-	\$56,668, 313	\$7,947	\$100,503	\$13,081, 829	\$343,394	\$124, 280
8	'Toral pounds...	1,142,327, 265	227, 880	576,000	62, 428,288	7,092,216	800,592
8	Total value....	\$28, 734, 598	\$4, 248	\$15,000	种, 274, 037	\$247, 083	\$101,018
85	Pounds.	626, 438,753	227,880	576,000	57, 208,720	3, 393,336	3,783,312
86	Value	\$13, 666,560	\$4, 248	\$15,000	\$72, 068×18	\$94, 105	\$100,544
87	Pounds	304, 175, 223				720,000	80
88	Pease--	\$8,191,383				\$27,000	04
89	Pounds.	122, 098, 669			3, 492, 480	1,440,000	
90	Value	\$4,465,673			\$145,987	\$78,000	
91	Pounds.	71,688, 808		-	1,642,032	1,060,800	
92	Pumpkine--	\$2, 025, 123			\$20, 797	\$36, 160	
93	Pounds..	9,941, 616			74,400	478, 080	
94	Sweet potatoes-	\$202, 404	-		\$1,860	\$11,818	
95	Pounds.......	6, 013, 896			10,656		
96	Value .. Succotash-	\$124, 245			\$396		
97	Pounds.	1,768,224					
8	$\begin{aligned} & \text { Value } \\ & \text { Okra- } \end{aligned}$	\$53, 960					
99	Pounds.	202, 076					
100	Canned fruits-	\$5, 250				
101	Cantal pounds.	293,637, 273	168,360				
102	Total value... Peaches-	811,311,062	\$3,699		87, 340,059	\$3,750	\$22, 217
103	Pounds Yalue..	104, 353, 640	135, 720		65, 064, 696		
104	Pears-				\$3, 103, 775		
106	Pounds	$48,418,936$ $\$ 2,188,201$			${ }_{81,}^{31,992,672}$		
107	Apricots-.				\$1,610,900		
108	Younds	$\begin{aligned} & 38,278,628 \\ & \$ 1,583,252 \end{aligned}$		$38,272,868$ \$1,582,927		
109	Apples- ${ }_{\text {Pounds }}$						
11	Value..	$\begin{aligned} & 46,494,898 \\ & \$ 1,125,119 \end{aligned}$			$\begin{array}{r} 1,820,266 \\ \$ 71,427 \end{array}$	$\begin{gathered} 108,000 \\ 83,750 \end{gathered}$	867,744 822, 217
111	Plums- Pounds						
112	Value.	$21,781,462$ $\$ 730,562$			$\begin{array}{r} 17,198,288 \\ \$ 596 \end{array}$		
113	Strawberries- Pounds...						
114	Value.	$11,059,628$ $\mathbf{8 4 6}$			$\begin{array}{r} 1,218,744 \\ \$ 70,272 \end{array}$		
115	Raspberries- Pounds..						
116	Value...	$\begin{array}{r} 8,542,889 \\ \$ 344,598 \end{array}$			$\begin{aligned} & 522,652 \\ & \$ 41,756 \end{aligned}$		
117	Pounds						
118	Value..	5, $\$ 3979,788$			$\begin{array}{r} 2,369,976 \\ \$ 155,812 \end{array}$		
119	Blackberries- Pounds						
120	Value.	9,217,584	32,640		2,461,680		
	Dried fruits-				\$106, 705		
121	Total pounds.	81, 189, 406					
122	Total value... Apples-	\$4, 415, 005		1, $\$ 80,861$	\$2,569,520		
223	Pounds.	33, 212, 309		1,402,000			
124	Prunes-	\$1, 906, 642	\$80, 861	\$ $\$ 155,893$		
125	Younds.	25, 413, 763					
126	Raisins-	\$970, 927			$\begin{array}{r} 24,102,329 \\ \$ 907,041 \end{array}$		
127	Pounds.	10, 734, 221					
128	Value.	\$ $\$ 720,268$			$\begin{array}{r} 10,734,221 \\ \$ 720,268 \end{array}$		
129	Apounds.						
130	Value.	\$ 455,394			$5,310,217$		
131	Peaches--						
132	Value.	5, 662,392 $\$ 312,495$			5,502,390		
	Pears-				\$301, 495		
134	Pounds..	701,506					
135	Value of all other products	\$49, 279			\$42, 279		
	Comparison of produets:	\$12, 207,648		\$4,642	\$898,213	\$92,561	\$1,015
136	Number of establishments reporting for both years.	1,036					
138	Value for census year -............	\$39,974, 339	\$1,800	\$13, 820	85, 879,608		
	Power:	\$33, 286, 939	\$1,800	\$15, 250	\$4,639, 734	$\begin{aligned} & \$ 335,719 \\ & \$ 315,845 \end{aligned}$	$\begin{aligned} & \$ 96,180 \\ & \$ 49 \end{aligned}$
139	Number of establishments reporting...	822					
140	Total horsepower owned-	27,172	1.5	40	$\begin{array}{r} 33 \\ -y 53 \end{array}$		5
	Engines-					. 253	161
	Steam-						
142	Number.....	1,030	1				
	Gas or gasoline--	25,336	15	40	35 838	8	${ }^{6}$
143	Number.....					208	161
144	Horsepower.	405			5		
145	Water wheels-				48		
146	Horsepower	132 ${ }^{9}$					
	Electric motors-	132					
147	Number						
148		266			4		
149	Other powerNumber	266			35		
150	Hersepower	110					
151	Rented-	110				40	
152	Elctric horsepower	929					
153	All other horsepower.	244	,		17	5	
154	Furnished to other establishmenis, horsepower.	679			15	5	

PRESERVING: BY STATES AND TERRITORIES, 1900-Continued.

Table 14.-Fruits and VEgetables, canning and

PRESERVING: BY STATES AND TERRITORIES, 1900.

Table 14.-Fruits and vegetables, Canning and

		Missouri.	Nebraska.	New Hamp- shire.	New Jersey.	New York.	North Carolina.
	Miscellaneous expenses:					\$495, 478	\$414
$\begin{aligned} & 68 \\ & 69 \end{aligned}$	Total............	$\$ 23,399$ $\$ 2,630$	\$10,325	$\$ 270$ $\$ 250$	\$ $\$ 1,440$	\$15,910	\$775
70	Taxes, not including internal revenue	\$1,526	\$500	\$20	\$66,493	\$17,503	$\$ 146$ $\$ 193$
71	Rent of offices, interest, insurance, and all sundry expenses not bitherto included.	\$17,831	\$9,825		875,485	- \$461,302	
72	Contract work...	\$1,412				\$763	
73	Materials used:	\$ 8559,651	\$130,573	\$21,111	\$1, 401,101	\$5,592,462	\$44,494
74	Aggregate cost............ Prineipal materials- Total cost.....	\% 3 \% 31,489	J130,573 $\mathbf{9 4 8 , 7 8 9}$	\$19,014	\$1, 8649,720	\$3.352, 396	\$21, 985
75	Purchased in raw state	8130,739	\$ $\$ 30,320$	\$11,802	\$606, 206	\$2, 986, 579	\$20, 181
76	Purchased in partially manufactured form	\$230,750	\$18,469	877,212	\$43,514	\$365, 817	- $\begin{array}{r}81,804 \\ 8797\end{array}$
77		\$7, 117	\$1,965	\$1,167	\$17, 380	\$138,468	$\$ 797$ $\$ 282$
78 79	Rent of power aud beat	812 81.624			85, 715	\$22,854	\$190
79 80	Mill supplies-...-...	\% $\mathbf{\$ 1}, 624$ $\$ 185,279$	$\$ 1,177$ $\$ 77,649$	\$921		\$1,989,626	\$ $\$ 20,462$
81	Freight	* \$4, 130	\$ 8993	\$9	\$42,008	-487,212	\$778
82	Products: Aggregate value	\$869,977	\$210,688	\$29,964	\$2, 199, 176	\$8, 975, 321	\$64,440
	- Canned vegetables-				,		
83	Total pounds.	26,628, 096	7,429,488	744,144	84, 423,137	135, 432, 524	1, 797,840
84	Total value..	\$535, 307	\$193, 286	\$18,603	\$1,858,489	\$4, 410,251	\$49,709
85	comatoes-	23,274, 696	1,512,000		77, 764, 232	18,332, 340	893, 160
86	Value	\$460, 264	\$31, 800		\$1,668,855	\$483, 112	\$19, 292
87	Corn- Pounds	2,472,000	5, 740,800	652,512		64, 384,896	57,120
88	Value.	2, 860,050	\$157, 890	\$16,313		\$1,925,496	\$1,485
89	Peas- Pounds				3,840,273	36,073,696	528,000
90	Value.				- $\$ 96,255$	\$1,473,912	\$22,000
91	Beans-		162, 288		1,596,960	13,196,752	319,560
92	Value.		\$3,396		\$64,768	\$448, 314	\$6, 932
93	Pumpkins- Pounds	881,400			182, 520	1,783,368	
94	Value.	\$14,993	\$200		\$3,902	\$35,370	
	Sweet potatoes-						
95 96	Pounds				$1,009,152$ $\$ 23,829$	720,000 815,000	
	Succotash-						
97	Pounds			91,632		887.616	
98	Value			\$2,290		\%27, 506	
99	Pounds				30,000	53, 856	
100	Value				\$880	\$1,541	
101	Canned fruit- Total pounds	1,433,352	451, 200	213,120	3,224,512	41, 241,240	
102	Total value..	\$ $\$ 27,827$	\$13,900	\$6,660	\$107,013	\$1,347,390	\$10, x<1
103	Pounds				62, 400	2,096,112	328,536
104	Value.				\$2, 500	\$72, 591	87, 996
105	Pears-						
106	Value.				1,\$63,356	\$ \$226,082	
	${ }_{\text {Apricots- }}^{\text {Pounds }}$						
108	Value.					2,400 $\$ 150$	
	Apples-					\$1.50	
109	Pounds	1,433, 352	451, 200	213,120	1,137,528	23, 088,792	288, 440
110	Plums-	\$27, 827	\$13, 900	\$6,660	\$26, 945	\$560,048	\$692
111	Pounds					3, 398,400	
112	Value...					\$94,879	
113	Strawberries - Pounds						
114	Value.				$\begin{array}{r}108,504 \\ \hline 8,554\end{array}$	$\begin{array}{r} 2,953,728 \\ \$ 141,049 \end{array}$	
115	Raspberries- Pounds				138, 768		
116	Value..				-81,785	\$ \$163, 494	
	Cherries-						
118	Vounds..					1, 017, 958	
	Blackberries-						
119	Pounds..				18,816	313,488	118,560
120	Dried fruits- Value..				\$873	\$17, 216	\$2, 193
121	Total pounds.	116,900	6,600	53,750		21,542, 897	
122	Total value.	\$4,800	\$100	\$3,725		81,275, 109	
123	Apples-	116,900	6,600	53,750			
124	Value.	\$4,800	\$100	\$8,725	- --- -	\$1, 275, 109	
125	Prunes- Pounds.						
126	Value.						
	Raisins-						
128	Pounds.						
	Apricots-						
129	Pounds..						
130	Value						
	Peaches-						
131	Pounds.						
132	Valu						
	Pears-						
133	Pounds..						
134	Value						
137	Value of all other products. Comparison of products:	\$302,043	43,402	\$976	$\$ 233,674$	\$1,942, 571	83,850
136	Number of establishments reporting for both years						
137	Value for census year	\$590, 203	\$189, 150	\$26,664			10
138	Value for preceding business year	8534, 749	\$117,000	\$ $\$ 23,314$	$\begin{aligned} & \$ 1,770,752 \\ & 81,611,680 \end{aligned}$	$\begin{aligned} & \$ 6,118,082 \\ & \$ 5,443,779 \end{aligned}$	$\begin{aligned} & \$ 14,908 \\ & \$ 9,376 \end{aligned}$

PRESERVING: BY STATES AND TERRITORIES, 1900--Continued.

Table 14.-FRUITS AND VEGETABLES, CANNING AND

		Missouri,	Nebraska.	New Hampshire.	New Jersey.	New York.	North Carolina.
	Power:						7
140	Number of establishments reporting .	30 613	127	150	1,959	4, 682	307
	Owned- Engines-						
	Steam-						6
143	Number......				8	5 39	
144	Horsepower .						
145	Water wheels- Number...					5	
146	Horsepower.					80	
	Electric motors-						
148	Other power-						
149	Number..						
150	Horsepower						
	Rented-						
151	Total horsepower.......					278	6
152	Electric horsepower .-					260	
154	All other horsepower					260	6
	Establishments classified by number of persons employed, not ineluding		-				
	proprietors and firm members:						
155	Total number of establishments..	45	5	3	73	511	19
156	No employees............						2
157	Under 5............	1				118	1
158	5 to 20.	1	1	2	9	241	12
159	21 to $50 \ldots$.	11			5	72	
160	51 to 100	15		1	22	27	3
161	101 to 250	17	4		33	37	
162	251 to 500.				4	13	
163	501 to 1,000.					2	
164	Over 1,000..					1	

PRESERVING: BY STATES AND TERRITORIES, 1900—Continued.

Ohio.	Oregon,	Pennsylva- nia.	South Carolina.	Tennessee.	Texas.	Utab.	Vermont.	Virglnia.	Washing- ton.	West Virginia.	Wisconsin.	All other states. 1	
49 1,178	[${ }^{5}$	24 950	3 45	5 75	4 9	8 310	3 47	68 1,329	3 25	${ }_{150}^{2}$	15 814	2 44	139 140
49 1,075	\% ${ }_{6}$	32 940	3 45	5 75	94	8 310	3 4 4	61 1,202	23	150 ${ }^{3}$	21 814	3 42	141
2 30		10						7 67				${ }_{2}^{1}$	148
									145 146
1													147
1 40								2					149
25								30	2				151
$\stackrel{\square}{2}$								30	2				152
		2											154
70	17	39	12	11	10	8	3	88	18	9	16	6	155
	4		1							1			157
	7	11	8	2	3			\cdots	10	1		3	158
18	3	15	1	5	3	2		- 44	2	6	i-	1	159
23	1	6	1	4	3	3		19		1	3	1	160
14	1	4			1	2	3	2		1	9		161
1	1	-..........-		-				2		${ }_{163}^{162}$
													164

${ }^{1}$ Includes establishments distributed as follows: Florida, 2; 1daho. 2; New Mexico, 1; Rhode Island, 1.

FISH, CANNING AND PRESERVING.

Table 15 is a comparative summary of the statistics for the establishments engaged in the canning and preserving of fish, as returned at the censuses of 1890 and 1900 , with the percentages of increase for the decade.

TAble 15.-FISH, CANNING AND PRESERVING: COMPARATIVE SUMMARY, 1890 AND 1900, WITH PER CENT OF INCREASE FOR THE DECADE.

${ }^{1}$ Includes proprietors and firm members, with their salaries; number only
reported in 1900, bnt not included in this table. (See Table 24.)
The canning and preserving of fish existed as an industry as early as 1850 , but it was usually carried on in connection with the canning and preserving of fruits and vegetables and oysters, and statistics for the industry do not appear separately until the census of 1890. At that time the number of establishments reporting canned fish as the principal product had grown to 110 , with a capital of $\$ 3,186,975$, giving employment to 5,020 wage-earners, and paying for wages $\$ 1,128,143$; for materials, $\$ 4,710,709$. They reported $\$ 6,972,268$ as the value of products. From 1890 to 1900 the in crease in every item was most marked. The increase in the number of establishments was 238 , or more than the total number reported for 1890 . The capital showed a most notable increase of $\$ 16,327,240$-that is, the capital in 1900 was more than six times that given for 1890. The average capital per establishment increased from $\$ 28,972$ to $\$ 56,075$-that is, the average capital in 1900 was nearly twice that reported in 1890. These figures indicate the internal growth and development of these establishments since 1890 , as well as the expansion of the industry by the construction of new plants. In this last particular, the fish-canning industry differs from the other two industries included in this report. The total number of wage-earners increased $8,390-$ that is, there were nearly two and one-half times as many wage-earners in 1900 as in 1890 . The wages have shown a comparatively larger increase. The relative proportion of wages and cost of materials to the value of products was about the same for the two periods.

In this branch of the canning industiy, also, the individual form of organization appears to predominate. Of the total number of establishments 134 , or 38.5 per cent, were conducted by individuals; 112, or 32.2 per cent, were operated by incorporated companies, and 102, or 29.3 per cent, by firms and limited partnerships.

Table 16 shows by states and territories, arranged geographically, the number of establishments from which returns were received in 1900 , with the increase during the decade.

Table 16.-Fish, Canning and preserving, ComparATIVE SUMMARY: NUMBER OF ACTIVE ESTABLISHMENTS, 1890 AND 1900, AND THE INCREASE DURING THE DECADE, BY STATES AND TERRITORIES ARRANGED GEOGRAPHICALLY.

${ }^{1}$ Decrease.
2 No statistics available for 1890.
Table 16 shows that the greatest development occurred in the New England states, where 64 establishments were reported in 1890 and 179 in 1900, an increase of 115 , or 179.7 per cent. Of these states, Maine reported an increase of 234.3 per cent and Massachusetts 110.3 per cent.

The above table should be considered in connection with Table 17, which is a summary of the totals for the canning and preserving of fish as returned at the censuses of 1890 and 1900.

Table 17.-Fish, CANNING aND PRESERVING: COMPARATIVE SUMMARY, BY STATES AND TERRITORIES, 1890 AND 1900.

	Year.	United States.	Alaska. ${ }^{1}$	California.	Delaware. ${ }^{1}$	District of Columbia. ${ }^{2}$	1llinois. ${ }^{1}$	Louisiana. ${ }^{1}$	Maine.	Mary. land. 1	Massachusetts.
Number of establishments.	1900	348	36	19	3		4	6	117	3	61
Capital:	1890	110		,		3			35		29
Total	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{gathered} \$ 19,514,215 \\ \$ 3,185,975 \end{gathered}$	\$3, 203, 228	$\begin{array}{r} \$ 691,285 \\ \$ 47,070 \end{array}$	\$1,985	\$5, 630	\$2, 655	\$180, 689	$\begin{array}{r} 88,481,056 \\ 8527,420 \end{array}$	865,600	$\begin{array}{r} \$ 1,734,227 \\ \$ 741,301 \end{array}$
Land.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 757,510 \\ & \$ 45 \overline{6}, 970 \end{aligned}$	\$73, 135	$\begin{aligned} & \$ 51,000 \\ & \$ 3,250 \end{aligned}$	\$400	\$1,700	\$475	\$10,150	$\begin{gathered} \$ 137,355 \\ \$ 23,550 \end{gathered}$	\$7,500	$\begin{array}{r} \$ 194,557 \\ \$ 34,575 \end{array}$
Buildings.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} \$ 3,914,853 \\ \$ 467,340 \end{array}$	\$971, 094	$\begin{aligned} & \$ 70,100 \\ & 84,250 \end{aligned}$	$\$ 500$	$\$ 800$	\$750	\$35,121	$\begin{aligned} & \$ 740,315 \\ & \$ 110,300 \end{aligned}$	88, 900	$\begin{array}{r} \$ 20 €, 559 \\ \$ 60,500 \end{array}$
Machinery, tools, and implements.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} \$ 5,164,046 \\ \$ 487,420 \end{array}$	\$1,849, 264	$\begin{aligned} & \$ 69,235 \\ & \$ 4,600 \end{aligned}$	\$185	$\$ 230$	\$330	\$33, 538	$\begin{array}{r} \$ 2,045,117 \\ 885,235 \end{array}$	\$7,400	$\begin{array}{r} \$ 256,568 \\ \$ 27,755 \end{array}$
Cash and sundries..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 9,677,806 \\ & \$ 1,765,245 \end{aligned}$	\$309, 735	$\begin{aligned} & \$ 500,950 \\ & \$ \$ 34,970 \end{aligned}$	\$850	\$2,800	\$1,100	\$107,880	$\begin{array}{r} \$ 5,558,269 \\ \$ 308,335 \end{array}$	\$41,800	$\begin{array}{r} \$ 1,076,543 \\ \$ 618,471 \end{array}$
Salaried officials, clerks, etc., number..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	618 ${ }^{6182}$	64	33 5		3		8	177 49	6	122 29
Salaries.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 585,160 \\ & \$ 120,253 \end{aligned}$	\$106, 430	$\begin{aligned} & \$ 49,710 \\ & \$ 2,815 \end{aligned}$		\$1,600		\$9,600	$\begin{array}{r} \$ 139,497 \\ \$ 23,887 \end{array}$	\$2,880	$\begin{gathered} \$ 103,131 \\ \$ 25,794 \end{gathered}$
Wage-earners, average number .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 13,410 \\ 5,020 \end{array}$	2,092	376 74		5	5	236	5,567 2,342	442	1,328 603
Total wages.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 4,229,688 \\ & \$ 1,128,143 \end{aligned}$	\$1,242,642	$\begin{array}{r} \$ 158,888 \\ \$ 12,439 \end{array}$		\$1,546	\$2,642	\$4, 710	$\begin{array}{r} \$ 1,184,850 \\ \$ 447,806 \end{array}$	\$63,500	$\begin{aligned} & \$ 475,123 \\ & \$ 236,318 \end{aligned}$
Men, 16 years and over.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 9,781 \\ & 3,787 \end{aligned}$	2,091	279 58		5	5	45	$\begin{aligned} & 2,895 \\ & 1,351 \end{aligned}$	207	1,194 448
Wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} \$ 3,733,506 \\ \$ 980^{\circ}, 689 \end{array}$	\$1,242,237	$\begin{gathered} \$ 136,422 \\ \$ 10,779 \end{gathered}$		\$1,546	\$2,642	\$22,450	$\begin{aligned} & 8833,157 \\ & \$ 349,180 \end{aligned}$	\$36,900	$\begin{aligned} & \$ 449,781 \\ & \$ 204,250 \end{aligned}$
Women, 16 years and over.........	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	2,533 ${ }_{841}$	1	73 16				161	1,746 635	179	134 155
Wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 369,781 \\ & \$ 121,059 \end{aligned}$	\$405	$\begin{array}{r} \$ 19,680 \\ \$ 1,660 \end{array}$				\$21, 260	$\begin{gathered} \$ 245,302 \\ \$ 80,951 \end{gathered}$	\$22,600	$\begin{aligned} & \$ 25,342 \\ & \$ 32,068 \end{aligned}$
Cbildren, under 16 years.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	1,146 392		24				30	$\begin{gathered} 926 \\ 356 \end{gathered}$	56	-....-..-.
Wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} \mathbf{\$ 1 2 6 , 3 5 1} \\ \$ 20,395 \end{array}$		\$2,786				\$1,000	$\begin{array}{r} \$ 106,391 \\ \$ 17,675 \end{array}$	\$4,000	.-........
Miscellaneous expenses	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 883,363 \\ & \$ 280,660 \end{aligned}$	\$150, 854	$\begin{array}{r} \$ 23,370 \\ \$ 1,906 \end{array}$	$\$ 89$	\$391	\$526	\$6,408	$\begin{array}{r} \$ 97,859 \\ \$ 94,712 \end{array}$	\$11,020	$\begin{array}{r} \$ 118,058 \\ \mathbf{\$ 3 6}, 917 \end{array}$
Cost of materials used	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{gathered} \$ 13,232,001 \\ 84,710,709 \end{gathered}$	\$1, 587,883	$\begin{gathered} \$ 449,718 \\ \$ 20,475 \end{gathered}$	86,238	\$7,006	83,195	\$67,583	$\begin{array}{r} \$ 2,578,636 \\ \$ 900,674 \end{array}$	\$154,605	$\begin{aligned} & \$ 3,471,112 \\ & \$ 2,031,863 \end{aligned}$
Value of products	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} \$ 22,253,749 \\ 86,972,268 \end{array}$	\$3, 821, 136	$\begin{array}{r} \$ 866,432 \\ \$ 44,120 \end{array}$	88,473	\$11, 302	\$8,900	\$144,379	$\begin{aligned} & \$ 4,779,733 \\ & \$ 1,660,881 \end{aligned}$	\$248, 100	$\begin{aligned} & \$ 4,619,362 \\ & \$ 2,537,088 \end{aligned}$
	Year.	Michi- gan. ${ }^{4}$	Mississippi. ${ }^{1}$	W York. ${ }^{4}$	Obio.	Oregon.	Pennsylvania. ${ }^{2}$	Virginir. ${ }^{4}$	Washington.	$\begin{aligned} & \text { Wiscon- } \\ & \text { sin. } \end{aligned}$	All other states.
Number of establishments.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	4	4	9	3 5	24 15	5	5	36 7	6	68 88
Capital: Total	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$6,800	\$122,580	8100,564	$\begin{aligned} & \$ 56,068 \\ & \$ 18,404 \end{aligned}$	$\begin{aligned} & \$ 2,558,642 \\ & \$ 1,365,800 \end{aligned}$	\$37, 250	\$10,325	$\begin{array}{r} \$ 2,222,726 \\ \$ 320,790 \end{array}$	\$4,590	$\begin{array}{r} \$ 65,245 \\ \mathbf{\$ 1 2 3 , 4 1 0} \end{array}$
Land	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$700	\$4,362	\$17,021	$\begin{aligned} & \$ 200 \\ & \$ 300 \end{aligned}$	$\begin{aligned} & \$ 127,522 \\ & \$ 372,000 \end{aligned}$	\$3,800	$\$ 200$	$\begin{array}{r} \$ 118,288 \\ \$ 14,945 \end{array}$	\$1,125	$\begin{aligned} & \$ 13,520 \\ & \$ 12,850 \end{aligned}$
Buildings	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$1,850	\$9,003	\$25, 553	$\begin{aligned} & \$ 1,025 \\ & \$ 1,125 \end{aligned}$	$\begin{array}{r} \$ 1,539,129 \\ \$ 220,000 \end{array}$	\$11, 000	\$2,700	$\begin{array}{r} \$ 284,804 \\ \$ 53,615 \end{array}$	\$1,150	$\begin{array}{r} \$ 16,300 \\ \$ 5,750 \end{array}$
Machinery, tools, and implements.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$250	\$12,628	\$10,005	$\begin{aligned} & \$ 42,943 \\ & \$ 3,000 \end{aligned}$	$\begin{aligned} & \$ 363,795 \\ & \$ 275,0.50 \end{aligned}$	\$5,300	\$1,825	$\begin{array}{r} \$ 457,473 \\ \$ 46,800 \end{array}$	8815	$\begin{aligned} & 812,675 \\ & \$ 39,450 \end{aligned}$
Cash and sundries..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$4,000	\$96,587	\$47,985	$\begin{aligned} & \$ 11,900 \\ & \$ 13,979 \end{aligned}$	$\begin{aligned} & \$ 528,196 \\ & \$ 498,750 \end{aligned}$	\$17,150	\$5,600	$\begin{array}{r} \$ 1,362,161 \\ \$ 205,430 \end{array}$	\$1,500	$\begin{aligned} & \$ 22,750 \\ & \$ 65,360 \end{aligned}$
Salaried officials, clerks, etc., number..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$		9	7	5 6	$\begin{aligned} & 58 \\ & 51 \end{aligned}$	8	6	116 15		${ }^{7} 16$
Salaries..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$		\$7,600	\$6,520	$\begin{aligned} & \$ 4,160 \\ & \$ 3,910 \end{aligned}$	$\begin{aligned} & \$ 56,125 \\ & \$ 29,362 \end{aligned}$	\$5,570	\$550	$\begin{array}{r} \$ 93,117 \\ \$ 8,655 \end{array}$		$\begin{array}{r} \$ 5,940 \\ \$ 18,710 \end{array}$
Wage-earners, average number	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	19	231	66	51 17	$\begin{array}{r} 636 \\ 1,473 \end{array}$	22	18	2,190 316	3	150 168
Total wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	87,961	\$41,028	\$20,842	$\begin{array}{r} \$ 21,600 \\ 85,280 \end{array}$	$\begin{aligned} & \$ 219,744 \\ & \$ 300,824 \end{aligned}$	\$12,520	\$4,545	$\begin{gathered} \$ 711,214 \\ \$ 63,820 \end{gathered}$	\$1,010	$\begin{aligned} & \mathbf{\$ 2 9 , 3 3 9} \\ & \mathbf{\$ 4 7 , 5 9 0} \end{aligned}$
Men, 16 years and over.............	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	18	71	39	51 6	$\begin{array}{r} 620 \\ 1,467 \end{array}$	22	11	$\begin{array}{r} 2,086 \\ 306 \end{array}$	2	$\begin{aligned} & 117 \\ & 124 \end{aligned}$
Wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	87,886	\$20, 353	818,424	$\begin{array}{r} \$ 21,600 \\ \$ 3,500 \end{array}$	$\begin{aligned} & \$ 217,750 \\ & \$ 300,624 \end{aligned}$	\$12,520	\$2,995	$\begin{array}{r} \$ 693,480 \\ \$ 62,820 \end{array}$	\$720	$\begin{aligned} & \$ 26,709 \\ & \$ 41,470 \end{aligned}$

[^4]Table 17.-FISH, CANNING AND PRESERVING: COMPARATIVE SUMMARY, BY STATES AND TERRITORIES, 1890 AND 1900-Continued.

	Year.	Michigan. ${ }^{3}$	Mississippi. ${ }^{1}$	New York. ${ }^{3}$	Ohio.	Oregon.	Pennsylvania. ${ }^{2}$	Virginia. ${ }^{3}$	Washington.	Wisconsin. ${ }^{1}$	All other states.
Women, 16 years and over	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$		98	27	3	11		6	73		24 32
Wages.	1900 1890		\$14,125	\$2, 418	$\$ 680$	\$1,494		\$1,325	\$13,730		$\mathbf{8 2 , 1 0 0}$ $\$ 5,700$
Children under 16 years.	1900 1890	1	62		8	5		1	31 10	1	- $\begin{array}{r}9 \\ \hline 12\end{array}$
Wages .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$75	\$6,550		\$1,100	$\begin{aligned} & \$ 500 \\ & \$ 200 \end{aligned}$		\$225	$\begin{aligned} & \$ 4,004 \\ & \$ 1,000 \end{aligned}$	\$290	$\$ 830$ $\$ 420$
Miscellaneous expenses.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$1,318	\$17,997	\$11, 741	$\begin{aligned} & \$ 2,610 \\ & \$ 1,364 \end{aligned}$	$\begin{gathered} \$ 147,858 \\ \$ 92,972 \end{gathered}$	\$5,175	\$496	$\begin{array}{r} \$ 285,353 \\ \$ 33,801 \end{array}$	\$1,005	$\begin{array}{r} \$ 6,801 \\ \$ 13,422 \end{array}$
Cost of materials used....	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$52, 949	\$190,441	\$134, 211	$\begin{aligned} & \$ 70,406 \\ & \$ 21,388 \end{aligned}$	$\begin{aligned} & \$ 1,182,218 \\ & \$ 1,066,127 \end{aligned}$	\$91, 885	813,239	$\begin{array}{r} \$ 3,086,865 \\ \$ 346,532 \end{array}$	\$28,142	$\begin{aligned} & \$ 154,560 \\ & \$ 224,759 \end{aligned}$
Value of products.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\$65,077	9337,939	\$197,869	$\begin{array}{r} \$ 251,040 \\ \$ 42,759 \end{array}$	$\begin{aligned} & \$ 1,788,809 \\ & \$ 1,643,324 \end{aligned}$	\$126,370	\$24, 700	$\begin{array}{r} \$ 4,831,038 \\ \$ 525,000 \end{array}$	\$35,792	$\begin{aligned} & \$ 224,970 \\ & \$ 381,424 \end{aligned}$

${ }_{2}$ None reported in 1890.
${ }_{8}^{2}$ Reported nnder head of other states in 1900.
${ }^{8}$ Reported under head of other states in 1890 .

Table 17 is interesting in that it shows concisely the status of the industry in each state in 1890 and 1900 , and hence the growth and development in each state since 1890. In that year the canning and preserving of fish was carried on in 13 states by 110 establishments, and in 1900 the number had increased to 348 , distributed among 24 states and territories. In order to avoid disclosing the operations of individual establishments, states having less than three establishments were grouped under the heading "all other states." Nearly every state and territory showed a marked increase in the number of establishments, capital, and value of products, with the exceptions of the District of Columbia, Ohio, and Pennsylvania. The former reported 3 establishments in 1890, the latter 5 , but in 1900 no establishments were returned by either. Ohio, although reporting a decrease in the number of establishments since 1890 , showed a notable increase in both the capital and the value of products. There is in this industry, as in the canning and preserving of fruits and vegetables, a tendency to centralize in points nearest the sources of the supply of material, and the states and territories located nearest the fish supply led in the number of establishments, capital, and value of products both in 1890 and in 1900, and have also shown
the most marked increase and development during the decade. These states and territories, ranked according to the value of products for the census year, were as follows: Washington, $\$ 4,831,038$; Maine, $\$ 4,779,733$; Massachusetts, $\$ 4,619,362$; Alaska, $\$ 3,821,136$; Oregon, $\$ 1,788,809$; California, $\$ 866,432$. The total value of products of these 5 states was $\$ 20,706,510$, or over 90 per cent of the total value of products of the industry. The number of establishments reported by these states and territories was 293 , or 84.2 per cent of the total number, and the capital was returned as $\$ 18,891,164$, as compared with $\$ 19,514,215$ for the entire countrythat is, the capital for these states and territories formed 96.8 per cent of the total capital. Of the remaining states, Louisiana and Mississippi have become engaged in the industry since 1890 and showed most gratifying returns.
The summary of establishments engaged in the canning and preserving of fish, classified according to the number of wage-earners employed, is shown in Table 18. In this connection, attention is here directed to the fact that the data contained in this table were computed from the greatest number of wage-earners employed at any one time during the year. This should be taken into consideration in making deductions.

Table 18.-FISH, CANNING AND PRESERVING: ESTABLISHMENTS CLASSIFIED BY NUMBER OF WAGE-EARNERS EMPLOYED, BY STATES AND TERRITORIES, ARRANGED GEOGRAPHICALLY, 1900.

	Total number of estab-lishments.	NOMBER OF ESTABLISHMENTS EMPLOYing-							
		No wageearners.	Under ${ }^{\text {a }}$	5 to 20	21 to 50	$\begin{aligned} & 51 \text { to } \\ & 100 \end{aligned}$	$\begin{gathered} 101 \text { to } \\ 250 \end{gathered}$	$\begin{gathered} 251 \text { to } \\ 500 \end{gathered}$	$\begin{aligned} & 501 \text { to } \\ & \mathbf{1 , 0 0 0} \end{aligned}$
United States.	348	20	43	103	69	36	60	11	6
New England states	179	3	26	69	40	17	17	3	4
Maine..........	117 1	1	15	44	27	10	12	3	4
Massachusetts ..	61		11	25	13	7	5		

Table 18.-FISH, CANNing and PRESERVING: Establishments CLASSIFIED By Number of wage-Earners EMPLOYED, BY STATES AND TERRITORIES, ARRANGED GEOGRAPHICALLY, 1900-Continued.

Table 18 shows that the largest number of establishments employed from 5 to 20 wage-earners, and 6 establishments, 4 of which were located in Maine and 2 in Washington, gave employment to over 500 wage-earners. Maine, with her sardine factories, and Washington and Alaska, with their salmon canneries, reported the largest number of establishments, employing the greatest number of wage-earners. The largest number of establishments in Maine was reported for the group from 5 to 20 , for Massachusetts the same, for Washington 21 to 50 , and for Alaska 101 to 250 . It appears that the establishments located in the New England states employed the greatest number of wage-earners, while the Pacific states ranked second and Alaska third. In 20 small establishments no wage-earners were employed, presumably all the work being done by the owners.

Table 19 presents a comparative summary of the statistics of capital for 1890 and 1900, with the percentages of the total and the increase for the several items.

Table 19.-FISH, CANNING AND PRESERVING: STATISTICS OF CAPITAL, 1890 AND 1900.

	1900		1890		Per sent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total.	\$19,514, 215	100.0	\$3, 186,975	100.0	512.3
Land.	757,510	3.9	466,970 467,340	14.6 14.7	62.2 737.7
Buildings	3, 914,853	20.1	467, 340	14.7	73.7
Machinery, tools, and implements.	$5,164,046$ 9,677806	26.4 49.6	487,420 $1,765,245$	15.3 55.4	959.5 448.2
Cash and sundries	9,677,806	49.6	1,865, 240		

Every item of capital except the value of land showed a most notable increase, and even the value of land showed an increase of 62.2 per cent. The item, cash and sundries, including cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, formed the principal item of capital in both years, but constituted a relatively larger per cent of the total in 1890 than in 1900. This follows from the nature of the industry, which does not necessitate the use of intricate machinery and mechanical appurtenances or costly structures for housing the same. The value of machinery, tools, and implements formed the second largest item in both years, and not only exhibited the most striking increase of all of the items of capital, but constituted a relatively larger per cent of the total than in 1890. This is a noteworthy fact and is significant of the increasing use of machinery especially adapted for the different processes employed in the canning and preserving of fish. The value of land, although showing an increase, formed a much smaller per cent of the total than in 1890.

As the several items of miscellaneous expenses for 1890 can not be shown separately, a detailed comparison with those reported for 1900 can not be made. The expenses of this nature in this industry do not call for special comment, but the several subdivisions for 1900 are shown in Table 24.

The cost of materials used, with the proportion each formed of the total, for 1900 , is given in Table 20.

As shown in Table 20 the total cost of materials for 1900 was $\$ 13,232,001$, of which the amount reported for principal materials formed 97.1 per cent. The
materials purchased in the raw state, including the several varieties of fish, and also the cost of fruits and vegetables, which were canned in connection with the fish industry, amounted to $\$ 6,512,438$, or 49.2 per cent of the total cost. The amount reported as the cost of materials purchased in partially manufactured form was $\$ 6,343,635$, or 47.9 per cent of the total. This item includes the cost of cans, solder, boxes, etc., and such other materials reported under "all other materials" as were required in the preparation of the product. It also includes mill supplies which, together with all other materials, are shown separately in Table 24. The amount paid for fuel and rent of power and heat was insignificant. The cost of freight should only be considered in connection with the cost of the principal materials, as many establishments buy their materials delivered, and it was impossible in every instance to segregate the amount chargeable to freight.

Table 20.-FISH, CANNING AND PRESERVING: COST OF MATERIALS USED, 1900.

	-	Amount.	Per cent of total.
Total		\$13,232, 001	100.00
Principal materials ${ }^{1}$.		12,856,073	97.1
Rent of power and he		176,935 6,365	1.3
Freight................		193,628	1.5

${ }^{1}$ Includes mill supplies and all other materials, which are shown separately in Table 24.

Table 21 shows the value of products, by states, for 1900.

Table 21.-FISH, CANNING AND PRESERVING: VALUE OF PRODUCTS, BY STATES AND TERRITORIES, ARRANGED GEOGRAPHICALLY, 1900.

states and territories.	value.		
	Total products.	Fish.	All other products.
United States	\$22, 253, 749	\$20, 808, 709	\$1,445, 040
New England states	9, 400, 565	9, 147, 420	253, 145
Maine All other states	$\begin{aligned} & 4,779,733 \\ & 4,620,832 \end{aligned}$	$4,753,071$ $4,394,349$	26,662 226,483
Middle states	484, 842	446,365	38,477
New York.	197, 869	175,392	22,477
Maryland	248, 100	232,100	16,000
All otherstates ${ }^{\text {a }}$	30,400	30,400	
${ }^{1}$ Includes establishments distributed as follows: New Hampshire, 1; Massachusetts, 61. ${ }^{2}$ Includes establishments distributed as follows: New Jersey, 1; Pennsylvania, 1; District of Colnmbia, 1.			

Table 21.-FISH, CANNING AND PRESERVING: Value OF PRODUCTS, BY STATES AND TERRITORIES, ARRANGED GEOGRAPHICALLY, 1900-Continued.

States and territories.	value.		
	Total products.	Fish.	All other products.
Southern states	\$550, 118	\$380, 972	\$169,146
Virginia	24, 700	24, 700	
Mississippi	337,939 144,379	211,001	126,938
All other states ${ }^{\text {i }}$	43, 100	37,150	5,950
Central states.	510,809	188,144	322, 665
Ohio	251, 040	79,140	171,900
Michigan .	65,077	64, 877	${ }_{565}^{200}$
Wisconsin	35,792 158,900	35,227 8,900	565 150,000
Pacific states	7,486,279	6, 824, 672	661,607
Washington.	4,831,038	4,281,962	549,076
Oregon.-.	$1,788,809$ 866,432	$1,746,073$ 796,637	42,736 69,795
Outlying districts.	3, 821,136	3,821,136	
Alaska .	3, 821,136	3,821,136	

${ }^{1}$ Includes establishments distributed as follows: North Carolina, 1 ; South Carolina, 1; Texas, 1.
${ }_{2}$ Includes establishments distributed as follows: Illinois, 4; Missouri, 1.
Table 21 is designed to show the relative proportion of the value of all other products canned to the value of preserved fish. Of the total value of products, $\$ 20,808,659$, or 93.5 per cent, was given as the value of canned and preserved fish, and $\$ 1,445,090$, or 6.5 per cent, as the value of "all other products." The latter item includes the value of fresh fish handled in bulk by establishments engaged in the canning and preserving of fish, and as it was impracticable to separate the anounts directly chargeable to this branch of the industry, the totals were included under "all other products." It will be noticed that in some states this item reaches goodly proportions while in others it is insignificant.
The tables which have thus far been shown give an incomplete showing of the fish canning and preserving industry for the reason that, as has been explained, establishments are classified according to the predominating product, and in many instances the canning and preserving of fish is carried on in connection with some other branch of the canning industry, and the totals have not been included in the above tables. It is possible, however, to show the total quantity and value of fish canned and preserved during the census year as reported by establishments of any character. This is done in Table 22.

Table 22.-FISH, CanNing and PREserving: quantity and value of products,

${ }^{1}$ Includes establishments distributed as follows: Massachusetts, 61; New Hampshire, 1.
${ }^{2}$ Includes establishments distributed as follows: New Jersey, 1; District of Columbia, 1; Pennsylvania, 1.

BY STATES AND TERRITORIES ARRANGED GEOGRAPHICALLY, 1900.

${ }^{1}$ Includes establishments distributed as follows: North Carolina, 1; South Carolina, 1; Texas, 1.

The figures in Table 22 include the quantity and value of fish canned in fish-canning establishments as such, and also the quantity and value reported as a subsidiary product in establishments engaged primarily in the canning and preserving of oysters, or in the canning and preserving of fruits and vegetables. The values reported do not include the amounts reported as the value of all other products, and therefore the totals given in Table 22 do not agree with the total products given elsewhere in this report, or with those of the report on this industry as presented in the general report on Manufactures, Parts I and II. In addition to those included under "other varieties" there are some varieties of fish, known to be canned or preserved, which do not appear in Table 22. This is accounted for by the fact that it was impossible to ascertain the quantity and value of each, as they were not separately reported. Accordingly they were included under "all other products" in Table 21.
Table 22 shows that the total value of fish canned, smoked, and salted daring the census year was $\$ 20,836,057$. The total number of pounds of canned fish was $172,856,178$, valued at $\$ 14,589,127$; of smoked fish, $21,723,426$ pounds, valued at $\$ 986,003$; and of salted fish, $125,669,131$ pounds, valued at $\$ 5,260,927$. Attention is here directed to the fact that the values
given are those fixed at the factory. In making deductions relative to the average value per pound this should be borne in mind.
It appears that the New England states led in this industry, reporting $\$ 9,179,616$ as the value of the fish products, or 44 per cent of the total value. The Pa cific states ranked second, reporting $\$ 6,824,672$ as the value of prepared fish, or 32.7 per cent of the total value. Alaska ranked third, with $\$ 3,821,136$. The Middle and Central states followed in the order given.
In the total number of pounds of canned fish, Alaska ranked first, reporting $52,011,552$ pounds, or 30.1 per cent of the total number; Maine ranked second, with 48,451,808 pounds; Washington third, with $43,195,262$ pounds; Oregon fourth, with $16,469,602$ pounds, and California fifth, with $3,869,124$ pounds. The total number of pounds of canned fish reported by these 5 states was $163,997,348$, or 94.9 per cent of the total number of pounds reported for the entire country.

The smoking and salting of fish, although carried on extensively in the Pacific states, is principally confined to the states on the Atlantic coast.

The principal details of the statistics for the canning and preserving of fish as carried on in cities of over 20,000 population are shown in Table 23.

Table 23.-FISH, CANNING AND PRESERVING: STATISTICS OF CITIES OF 20,000 POPULATION OR OVER, 1900.

Citieg.	Rank by value of products.	Number of es-tablishments.	Capital.	SaLARIED officIALS, CLERKS, ETC.		WAGE-EARNERS.		Miscellaneous expenses.	Cost of materials used.	Value of products.
				Number.	Salaries.	Average number.	Total wages.			
Total		108	\$2,653, 878	196	\$184, 150	1,977	\$746,315	\$192,637	\$4, 847, 813	86, 857, 803
Gloucester, Mass	1	38	1, 479, 647	85	68,106	1,154	398,703	100,759	2, 845, 657	3,746,326
Seattle, Wash..	${ }_{3}^{2}$	7	1336, 620		- 25,380		106, 334		743, 602	1, 037,174
Boston, Mass...	$\stackrel{3}{4}$	13	200, 030	32	- 31,494	96	49, 156	13,151	553,645	725, 785
San Francisco, ${ }_{\text {Sew }}$	4 5	12	132,385 51,915	13 4	24,420 2,620	$\begin{array}{r}123 \\ 23 \\ \hline\end{array}$	58,518 13,074	13,817 9,327 1	190,927	384,969 140,985
Tacoma, Wash	6	3	26,725	2	1,400	27	11, 690	1,600	48, 596	140,985 74,375
Portland, Me..	7	5	10, 290			14	6,180	1906	27, 881	74,375 39,975
Chelsea, Mass	8	3	5,125			4	2,128	784	22,136	39, 375
Milwaukee, Wis	9	5	2,540			1	${ }^{2} 129$	452	16,172	20,667
Chicago, Ill.......	10	${ }_{4}^{4}$	2,655			5	2,642	526	3,195	8,900
All other cities ${ }^{1}$.		11	405, 946	27	30,730	271	97,600	18,814	299, 857	646, 752

[^5]It appears from Table 23 that of the total value of products, $\$ 6,857,803$, or 32.9 per cent, was reported for the cities named, and of this amount $\$ 3,746,326$, or 18 per cent of the total for the United States, was returned for Gloucester. In this connection attention should be directed to the fact that in general the Eastern cities included in Table 23 are not only engaged in canning, but also in the salting and smoking of almost every variety of fish that is native of the surrounding waters. Many large establishments also handle fresh fish in large quantities, and as it was impossible to separate
the amounts directly chargeable to the manufacturing branch of the business, the value of fresh fish handled is included in the total value of products. This is especially true of Gloucester, and should be taken into consideration in making comparisons and deductions. The Western cities named are engaged almost exclusively in the canning of salmon caught in the waters of the Columbia river and its tributaries. The industry has its center in the city of Astoria, Oreg., but, inasmuch as it has less than 20,000 population, separate statistics are not shown for that city.

HISTORICAL AND DESCRIPTIVE.

No food supply is so subject to rapid putrefaction as fishery products, and for their preservation all the generally known processes are employed. The canning of various kinds of fish has always been an important branch of the canning industry. Even before the processes of Soddington and Appert were known the people of Holland put up salmon in tin cans in the following manner: The head of the fish was severed immediately after caught, and the fish was then hung up by the tail to permit the blood to flow from it. The viscera were then removed, and the fish, after being carefully washed, was boiled in a brine of white salt. Before being completely cooked, however, it was taken out of the brine, cooled, smoked for a day or two by exposure to juniper, and then placed in tin cans liberally supplied with butter freshly salted and melted. In winter, olive oil was used instead of butter. The cans were then covered and soldered. ${ }^{1}$

After the introduction of the Appert process, and the substitution of tin cans for glass, fish canning was successfully and extensively carried on at Aberdeen, Scotland; Sligo, Ireland; and various other points in Europe. About the year 1845, the canning of sardines was successfully established on the coast of France, and up to the present time the industry in that country has had an uninterrupted and remarkable growth.

Prior to 1843 , the canning of fish in the United States was very limited, but in that year the firm of Treat, Noble \& Holliday, with the assistance of Mr. Charles Mitchell, a native of Scotland who had mastered the methods used in the canneries of Aberdeen, successfully began the canning of lobsters and mackerel at Eastport, Maine. Chiefly through the efforts of Mr. U. S. Treat they succeeded in introducing their goods, and with a ready market at their command the enterprise proved a success. The business after 1849, rapidly increased, and in 1860 canneries engaged in putting up lobsters, mackerel, and fruits and vegetables were found in many of the coast cities of Maine. The supply of lobsters on the coast of Maine rapidly decreased, and a prejudice also existed against the canneries, resulting in the enactment of stringent laws restricting the time of operation of canneries and canning of short lobsters. This caused a rapid decrease in the number of factories engaged in lobster canning, and in the year 1895 the last establishment engaged exclusively in the canning of lobsters suspended operations. During the census year, as indicated in Table 22, there were no lobsters reported as canned.
Salmon canning, one of the most important branches of the fish-canning industry, was carried on to a limited extent in Europe and the United States, prior to 1864. In that year the industry was started on the Pacific coast

[^6]at Washington, Yolo county, Cal., on the Sacramento River, by Messrs. Hapgood, Hume \& Co. Their success can be attributed to the fact that a member of the firm had previously mastered the process of canning as practiced on the eastern coast, and consequently the goods packed found a ready market. With the increasing demands for the product, an establishment was built on the Columbia River, at Eagle Cliff, in 1866. The industry developed rapidly and reached its maximum production in 1883. The constant fishing for salmon along the river seriously affected the possible supply, but the exhaustion of these fisheries, threatened in the early years of the decade, was averted by more rigid laws against improvident fishing and also by the artificial propagation of fish. ${ }^{2}$ The waters of the streams and rivers of Alaska were found to possess an unlimited supply of salmon, and in 1878 canneries were located at Klawak and Old Sitka, the latter cannery being removed to Cook Inlet in 1882. In the following year there were 5 canneries located in Alaska, and six years later, 37 were in operation, with an output of 714,196 cases. The great production of these canneries in 1890 and 1891 glutted the markets, with a considerable loss to the owners of the canneries. This led to a combination of the firms engaged in this business to limit the yearly output of each salmon cannery. This plan has been successfully adopted, and the average output each year is now regulated to meet the probable consumption.

Since the beginning of the industry, in 1864, the methods in the process of canning have been greatly improved. The original appliances and devices used were very crude and involved considerable labor and expense in operation. The improvements made have mainly been in lessening the period of cooking, permitting the escape of heated air in the cans, softening the bones of the small fish, and in the filling, capping, labeling, and boxing of the cans.

Salmon canneries are generally located at the water's edge or partly projecting over the water. The fish are received by the Chinese, who have practically a monopoly on the labor performed in salmon canneries, weighed, and thrown from the scales upon a floor where they are washed and treated to an ice-cold water bath to keep them fresh and cool. They are then taken to the dressing tables, where the head, fins, and tail are severed. After this they are passed to another operator, who removes the viscera and thoroughly scrapes the carcass inside and out. The waste if not used for oil or fertilizer is thrown back into the water. The fish is then subjected to another washing and at the same time the scales are removed. It is now placed in a second tank of clear water for its final washing and cleaning. By a mechanical device, operated either by hand or machin-

[^7]ery, the fish is cut transversely in sections of the exact length of the cans to be filled. The fish is then ready for the fillers' table, where it is placed in cans either by machinery or by hand, after which the cans are topped and soldered together. After the cans are tested for defects they are sent to the "bathroom" for their first cooking. Here they are heated in retorts made of heavy plank well bolted to sustain the steam pressure, or in retorts made of iron or steel plate. It is necessary to cook not only the fish thoroughly but also the bones in order to make them crumble to pieces. After the first cooking, the cans are tested by the process known as "blowing" or "renting," which consists of making a small perforation in each can to permit the escape of the steam, which if allowed to remain would ruin the can. The can is then placed in another retort for its second or final cooking, after which it is subjected to a lye bath to remove the grease and dirt. Fresh water is then poured on the can to remove the lye. When once cooled. the cans are lacquered, and after being labeled and cased they are ready for the market. ${ }^{1}$
The sardine canning of Maine is next in importance to the salmon canning of the Pacific coast. The sardine is a general term applied to various small-sized fishes, varying in length from 5 to 10 inches. They are found in various parts of the world, the best known being the young of the pilchard, which are plentiful along the coast of France, and the young of the sea herring, found along the coast of Maine. The canning of the sardine was begun at Nantes, France, in 1834, and although attempts had been made to put up herring along the coast of Maine as early as 1867 , it was not a decided success until 1875. For the first five years the industry was confined within narrow limits, but by 1880 the in-

[^8]dustry was augmented by the establishment of canneries at Eastport, Robinson, Labec, Jonesport, East Lamoine, and Camden, Maine. This industry during its early days at Eastport and Labec, outranked all other branches of business in importance, furnishing employment for a majority of the inhabitants.

The process used in putting up the sardine is an exceedingly complicated one, and the methods employed in different places are quite at variance. Wherein the treatment of the sardine differs from that accorded the salmon is the use of oil in putting up the former. The fish is fried in oil and then placed in a can with a solution of oil. The oil used in the French sardine canneries is either olive oil or peanut oil, while cottonseed oil is the most extensively used in Maine. The sardine is also put up in mustard, spices, and tomato sauce.

In addition to the fishes named, eels, herring, menhaden, smelt, sturgeon, halibut, Spanish mackerel, and several other varieties are canned in the principal canneries.

Canned marine products are very aptly divided into five general classes, viz: First, plain boiled, steamed, or otherwise cooked; second, preserved in oil; third, preserved with vinegar, sauces, spices, jellies, etc.; fourth, cooked with vegetables; fifth, preserved by some other process, but placed in cans for convenience. In the first class, salmon, mackerel, halibut, lobsters, clams, etc., are included, while sardines make up the second class. Herring put up as "brook trout," eels, sturgeon, etc., comprise the third division, and the fourth class is made up of fish chowder, clam chowder, codfish balls, etc. The last class includes fishes prepared by smoking and salting, and then canned for convenience. ${ }^{2}$

Table 24 shows the detailed statistics, by states and territories, for the industry as returned for 1900 .

[^9]Table 24.-FISH, CANNING AND PRESERVING:

BY STATES AND TERRITORIES, 1900.

1 Includes establishments distributed as follows: District of Columbia, 1; Missouri, 1; New Hampshire, 1; New Jersey, 1; North Carolina, 1; Pennsylvania, 1; South Caroli a, 1; Texas, I.

Table 24.-FISH, CANNING AND PRESERVING:

BY STATES AND TERRITORIES, 1900-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Maine. \& Maryland. \& Massachusetts. \& Michigau. \& Mississippi. \& New York. \& Ohio. \& Oregon. \& Virginia. \& Washington. \& Wisconsin. \& All other states. \({ }^{1}\) \& \\
\hline \$4, 779, 733 \& \$248, 100 \& \$4, 619,362 \& 865, 077 \& \$337, 939 \& \$197, 869 \& 8261,040 \& \$1, 788, 809 \& \$24,700 \& \$4, 831,038 \& \$35,792 \& \$224,970 \& 1 \\
\hline \(48,411,624\)
\(84,309,184\) \& 2,620,571
\(\$ 232,100\) \& \[
\begin{array}{r}
1,836,796 \\
\$ 256,481
\end{array}
\] \& \& \(2,376,190\)
\(\$ 211,001\) \& \[
\begin{aligned}
\& 166,896 \\
\& \$ 23,025
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 16,469,602 \\
\& \$ 1,697,064
\end{aligned}
\] \& \[
\begin{aligned}
\& 36,000 \\
\& 85,000
\end{aligned}
\] \& \[
\begin{aligned}
\& 43,195,262 \\
\& \$ 3,762,169
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 302,592 \\
\& 837,150
\end{aligned}
\] \& \(\stackrel{2}{3}\) \\
\hline \[
\begin{aligned}
\& 303,750 \\
\& \$ 16,200
\end{aligned}
\] \& \& 10,560
\(\$ 980\) \& \& \& \& \& \[
\underset{81}{15,915,}
\] \& \& \[
\begin{aligned}
\& 42,969,114 \\
\& \$ 3,745,957
\end{aligned}
\] \& \& \& \(\stackrel{4}{5}\) \\
\hline \[
\begin{aligned}
\& 44,420,236 \\
\& \$ 4,049,784
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 142,300 \\
\& 883,707
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \& 6
7 \\
\hline \[
\begin{gathered}
3,096,086 \\
\$ 207,201
\end{gathered}
\] \& \[
\begin{aligned}
\& 400,000 \\
\& \$ 40,000
\end{aligned}
\] \& 80,400
\(\$ 5,853\) \& \& \& \[
\begin{aligned}
\& 166,896 \\
\& \$ 23,025
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 192,000 \\
\& \$ 20,000
\end{aligned}
\] \& \[
\begin{aligned}
\& 36,000 \\
\& 85,000
\end{aligned}
\] \& \[
\begin{aligned}
\& 221,952 \\
\& \$ 15,045
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 177,600 \\
\& 823,600
\end{aligned}
\] \& 8
9 \\
\hline \& \(1,920,000\)
\(\$ 100,000\) \& \& \& \[
\begin{array}{r}
1,822,568 \\
\$ 144,283
\end{array}
\] \& \& \& \[
\begin{aligned}
\& 362,250 \\
\& \$ 21,735
\end{aligned}
\] \& \& \& \& \& 10 \\
\hline \[
\begin{aligned}
\& 34,464 \\
\& \$ 2,488
\end{aligned}
\] \& \& \[
\begin{array}{r}
1,555,436 \\
\$ 161,691
\end{array}
\] \& \& \& \& \& \& \& \& \& \& 12
13 \\
\hline \& \& \[
\begin{array}{r}
7,200 \\
\$ 800
\end{array}
\] \& \& \[
\begin{aligned}
\& 539,782 \\
\& \$ 62,707
\end{aligned}
\] \& \& \& \& \& \& \& \[
\begin{aligned}
\& 64,992 \\
\& \$ 4,550
\end{aligned}
\] \& 14 \\
\hline ----............ \& \[
\begin{aligned}
\& 330,571 \\
\& \$ 92,100
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& 12,840 \\
\& \$ 4,011
\end{aligned}
\] \& \& \& \& \& 4,196
\(\$ 1,167\) \& \& \& 16
17 \\
\hline \[
\begin{aligned}
\& 557,088 \\
\& \$ 33,511
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 40,900 \\
\& \$ 3,900
\end{aligned}
\] \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& 60,000 \\
\& 89,000
\end{aligned}
\] \& 18
19 \\
\hline \[
\begin{array}{r}
6,766,196 \\
\$ 150,310
\end{array}
\] \& \& \[
\begin{array}{r}
6,141,232 \\
\$ 328,540
\end{array}
\] \& \[
\begin{aligned}
\& 834,169 \\
\& 864,877
\end{aligned}
\] \& \& \[
\begin{array}{r}
2,309,600 \\
\$ 101,082
\end{array}
\] \& \[
\begin{aligned}
\& 146,500 \\
\& \$ 13,100
\end{aligned}
\] \& \[
\begin{aligned}
\& 250,000 \\
\& \$ 10,000
\end{aligned}
\] \& ...-....... \& \[
\begin{array}{r}
3,700,800 \\
\$ 226,992
\end{array}
\] \& 468,900
\(\$ 35,227\) \& \[
\begin{aligned}
\& 220,100 \\
\& \$ 21,180
\end{aligned}
\] \& \({ }_{21}^{20}\) \\
\hline \(6,422,476\)
\(\$ 136,310\) \& \& \[
\begin{array}{r}
3,025,878 \\
\$ 105,729
\end{array}
\] \& \[
\begin{aligned}
\& 697,425 \\
\& \$ 45,668
\end{aligned}
\] \& \& \[
\begin{array}{r}
1,694,000 \\
\$ 17,040
\end{array}
\] \& \[
\begin{array}{r}
100,000 \\
\$ 7,000
\end{array}
\] \& \& \& \[
\begin{aligned}
\& 593,600 \\
\& \$ 17,500
\end{aligned}
\] \& \& \[
\begin{array}{r}
107,500 \\
\$ 4,910
\end{array}
\] \& 22
23 \\
\hline \& \& 1, 862, 4162,432 \& \& \& \& \& \& \& \[
\begin{array}{r}
1,757,000 \\
\$ 114,400
\end{array}
\] \& \& 2,000
\(\$ 200\) \& 24
25 \\
\hline \& \& \[
\begin{aligned}
\& 25,392 \\
\& \$ 4,059
\end{aligned}
\] \& \& \& \[
\begin{array}{r}
97,000 \\
\$ 13,900
\end{array}
\] \& \& \[
\begin{aligned}
\& 250,000 \\
\& 810,000
\end{aligned}
\] \& \& \[
\begin{array}{r}
1,347,400 \\
\$ 93,772
\end{array}
\] \& \& \[
\begin{aligned}
\& 19,500 \\
\& \$ 8,900
\end{aligned}
\] \& 26
27 \\
\hline \& \& \& 1,300
\(\$ 169\) \& \& \[
\begin{aligned}
\& 454,000 \\
\& \$ 66,110
\end{aligned}
\] \& \[
\begin{aligned}
\& 22,500 \\
\& \$ 3,500
\end{aligned}
\] \& \& \& 2,800
\(\$ 320\) \& \& \[
\begin{array}{r}
26,800 \\
\$ 6,660
\end{array}
\] \& 28
29 \\
\hline \[
\begin{aligned}
\& 80,000 \\
\& \$ 8,800
\end{aligned}
\] \& -.......... \& 1, 227,500 \& \& \& \& \& \& \& \& \& \[
\begin{aligned}
\& 62,000 \\
\& \$ 3,640
\end{aligned}
\] \& 30
31 \\
\hline \[
\begin{array}{r}
262,720 \\
\$ 5,200
\end{array}
\] \& \& \& \[
\begin{aligned}
\& 235,444 \\
\& \$ 19,040
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 64,600 \\
\& \$ 4,032
\end{aligned}
\] \& \[
\begin{aligned}
\& 24,000 \\
\& \$ 2,600
\end{aligned}
\] \& \& \& \& \[
\begin{aligned}
\& 468,900 \\
\& \$ 35,227
\end{aligned}
\] \& \[
\begin{aligned}
\& 12,300 \\
\& 81,870
\end{aligned}
\] \& 32
33 \\
\hline \[
\begin{array}{r}
17,845,321 \\
\$ 293,577
\end{array}
\] \& \& \[
\begin{aligned}
\& 81,240,501 \\
\& \$ 3,807,908
\end{aligned}
\] \& \& \& \(1,167,814\)
\(\mathbf{8} 51,285\) \& \[
\begin{array}{r}
2,218,000 \\
\$ 66,040
\end{array}
\] \& \[
\begin{aligned}
\& 335,328 \\
\& 839,009
\end{aligned}
\] \& 1, 310,000 \& \(8,303,160\)
\(\$ 293,801\) \& \& \[
\begin{aligned}
\& 260,000 \\
\& \$ 10,690
\end{aligned}
\] \& 34
35 \\
\hline \(8,535,000\)
480,454 \& \& \[
\begin{aligned}
\& 48,501,427 \\
\& \$ 2,544,552
\end{aligned}
\] \& \& \& \& \& \& \& \[
\begin{aligned}
\& 954,400 \\
\& \$ 45,445
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 52,000 \\
\& \$ 3,120
\end{aligned}
\] \& 36
37 \\
\hline \& \& \[
\begin{array}{r}
10,262,099 \\
\$ 644,523
\end{array}
\] \& \& \& \[
\begin{gathered}
111,214 \\
\$ 7,785
\end{gathered}
\] \& \& \& \& \& \& \[
\begin{aligned}
\& 35,000 \\
\& \$ 2,700
\end{aligned}
\] \& 38
39 \\
\hline \[
\begin{array}{r}
3,549,045 \\
\$ 73,029
\end{array}
\] \& \& \(7,147,950\)
\(\$ 165,147\) \& \& \& 1, 046,600
\& 42,500 \& \[
\begin{array}{r}
2,000,000 \\
\$ 60,000
\end{array}
\] \& \& \(1,275,000\)
\(\$ 19,000\) \& 736,260
\(\$ 15,344\) \& \& \[
\begin{aligned}
\& 60,000 \\
\& \$ 1,800
\end{aligned}
\] \& 40 \\
\hline \[
\begin{aligned}
\& 681,050 \\
\& \$ 12,652
\end{aligned}
\] \& \& \[
\begin{array}{r}
6,163,869 \\
\$ 182,868
\end{array}
\] \& \& \& \& \[
\begin{array}{r}
18,000 \\
\$ 540
\end{array}
\] \& \& 35,000
\(\$ 700\) \& \[
\begin{array}{r}
30,000 \\
\$ 600
\end{array}
\] \& \& \& 42 \\
\hline \(5,080,226\)
\(\$ 127,442\) \& \& \(9,165,156\)
\(\$ 270,818\) \& \& \& 10,000
\(\$ 1,000\) \& \[
\begin{array}{r}
200,000 \\
\$ 5,500
\end{array}
\] \& \[
\begin{aligned}
\& 335,328 \\
\& \$ 39,009
\end{aligned}
\] \& \& \begin{tabular}{l}
6, 582,500 \\
\$232, 412
\end{tabular} \& \& \[
\begin{array}{r}
113,000 \\
\text { \$3, } 070
\end{array}
\] \& 44 \\
\hline \$26, 662 \& \$16,000 \& \$226, 483 \& \$200 \& \$126,938 \& \$22, 477 \& \$171,900 \& \$42, 736 \& \& \$549, 076 \& \$565 \& \$155, 950 \& 46 \\
\hline r
\(\mathbf{\$ 1 , 2 0 8 , 1 0 4}\)
\(\$ 959,493\) \& 1
\(\mathbf{1}\)
\(\$ 2,100\)
\(\$ 2,100\) \& \[
\begin{array}{r}
51 \\
\$ 4,474,351 \\
\$ 3,931,912
\end{array}
\] \& \[
\begin{array}{r}
1 \\
\$ 2,168 \\
\$ 1,900
\end{array}
\] \& \[
\begin{array}{r}
4 \\
\$ 337,939 \\
\$ 223,433
\end{array}
\] \& \[
\begin{array}{r}
8 \\
8196,469 \\
\$ 181,005
\end{array}
\] \& [\(\begin{array}{r}3 \\ \$ 251,040 \\ \$ 245 \\ 800\end{array}\) \& \[
\begin{array}{r}
15 \\
\$ 794,152 \\
\$ 875,782
\end{array}
\] \& a

$\$ 19$

$\$ 19,000$ \& $$
\begin{array}{r}
24 \\
\$ 3,094,077 \\
\$ 2,254,100
\end{array}
$$ \& \%

$\mathbf{6}$
$\mathbf{8 3 5}, 792$

$\$ 25,900$ \& $$
\begin{array}{r}
6 \\
\$ 198,070 \\
\$ 175,100
\end{array}
$$ \& 47

48
49

\hline 41
1,421 \& 1
220 \& 10
127 \& 1
3 \& 3
99 \& $1{ }_{10}^{2}$ \& \& 18

312 \& \& $$
\begin{array}{r}
28 \\
1,258
\end{array}
$$ \& \& 104 \& 50

51

\hline 83
1,354 \& 3
220 \& $\begin{array}{r}3 \\ 80 \\ \hline\end{array}$ \& \& 4
9 \& 1
2 \& \& 26

262 \& \& $$
\begin{array}{r}
60 \\
\mathbf{1 , 1 1 1}
\end{array}
$$ \& \& 5

104 \& 62
53

\hline ${ }_{15}^{2}$ \& \& $\frac{1}{7}$ \& 1 \& \& \& \& 2
40 \& \& 44 \& \& \& 54
55

\hline \& \& \& \& \& \& \& \& \& 1 \& \& \& 56
57

\hline 3
52 \& \& \& \& \& \& \& 10^{2} \& \& 15 \& \& \& 58
59

\hline \& \& 3 \& \& \& \& \& \& \& \& \& \& 60

\hline \& \& 40 \& \& \& 8 \& \& \& \& 89 \& \& \& 61

\hline 117 \& 3 \& 61 \& 4 \& 4 \& 9 \& 3
2 \& 24 \& 5 \& 36 \& ${ }_{6}^{6}$ \& 8 \& 62

\hline ${ }_{15}^{2}$ \& \& ii \& i \& \& 4 \& \& 1 \& \& 2 \& 2 \& \& 64

\hline 44 \& 1 \& 25
13 \& 12 \& 1 \& 4 \& \& 10 \& 3
2
2 \& 11 \& \& 3
1 \& 65
66

\hline 10 \& \& 7 \& \& \& 1 \& \& 5 \& \& 6 \& \& 1 \& 67

\hline 12 \& \& 5 \& \& 3 \& \& 1 \& 4 \& \& 8 \& \& 1 \& 68

\hline 4 \& \& \& \& \& \& \& \& \& 2 \& \& \& 70

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

1Includes establishments distributed as follows: District of Columbia, 1; Missouri, 1; New Hampshire, 1; New Jersey, 1; North Carolina, 1; Pennsylvania, 1; South Carolina, 1; Texas, 1.

OYSTERS, CANNING AND PRESERVING.
Table 25 is a comparative summary of the statistics for the establishments engaged in the canning and preserving of oysters as returned at the censuses of 1890 and 1900, with the percentages of increase for the decade.
Table 25.-OYSTERS, CANNING AND PRESERVING: COMPARATIVE SUMMARY, 1890 AND 1900, WITH PER CENT OF INCREASE FOR THE DECADE.

1 Includes proprietors and firm members with their salaries;
eported in 1900 , but not included in this table. (See Table 34.)
reported in 1900
2 Decrease.
Although the canning and preserving of oysters existed as an industry as early as 1850 , it was usually carried on in connection with the canning and preserving of fish, and as the statistics were included under this classification they do not appear separately until the census of $189 \dot{9} 0$. In that year the number of establishments engaged primarily in this industry had increased to 16 , and the capital to $\$ 1,106,962$. They reported 3,453 wage-earners, $\$ 642,610$ paid for wages, $\$ 2,088,867$ for materials, and $\$ 3,260,766$ as the value of products. Between 1890 and 1900 the increase in the number of establishments was more than the total number reported for 1890 , while the capital and value of products showed a normal increase. Thus the average capital, per establishment, has decreased from $\$ 69,185$ to $\$ 31,813$ that is, the average capital in 1900 was less than onehalf that reported for 1890 . This is probably accounted for in a great measure by the fact that some of the largest establishments have become engaged in the canning and preserving of fruits and vegetables or fish, and have made oyster canning subsidiary to these. The table further indicates that a number of small establishments have engaged in the industry during the decade. The total number of wage-earners has decreased 674 , or 19.5 per cent, and the wages have also decreased, but they show a relatively smaller decrease than is shown in the number of wage-earners. The number of children employed, however, and their wages, have exhibited a substantial decrease. The apparent decrease in the number of wage-earners is due, as has been explained before, to the difference in the method of computing adopted for the two censuses. An examination of the schedules for different states shows that the establishments engaged in canning and preserving oysters were in operation eight months during the census year, but many large plants continued in operation during the
summer months canning and preserving fruits and vegetables. The operations of these large establishments during the summer months, increased the average time of employment for the wageearners employed in this industry to nine and one-half months. Reduced to the basis of 1890 the average number of employees in 1900, for the "industrial year" of eight months, was 3,510, which is greater than the average reported for 1890. The relative proportion of the cost of materials to the value of products has slightly increased since 1890.

In the canning and preserving of oysters, as in the other two branches of the canning industry included in this report, the individual form of onganization predominates. Of the total number of establishments, 20 , or 51.3 per cent, were conducted by individuals; 11, or 28.2 per cent were operated by firms and limited partnerships; and the remaining 8 , or 20.5 per cent by incorporated companies.

Table 26 shows, by states arranged geographically, the number of establishments from which returns were received in 1900, with the increase during the decade.
Table 26.-OYSTERS, CANNING AND PRESERVING: COMPARATIVE SUMMARY, NUMBER OF ACTIVE ESTABLISHMENTS, 1890 AND 1900, AND INCREASE DURING THE DECADE, BY STATES, ARRANGED GEOGRAPHICALLY.

	1900	1890	Increase.
United States.	39	16	23
Middle states.	17	8	9
Delaware Maryland	${ }_{16}^{16}$	8	8
Soutberu states .	18	7	11
Virginia	1	1	
North Carolina.	1		1
South Carolina	1		1
Georgia ..	1	1	5
Kentucky		1	${ }^{1} 1$
Alabama.	1	1	
Mississippi	4 3	3	1
Michigan Iowa.....		1	${ }^{1} 1$
Iowa.	1	1
Pacific states.	3		3
Washington.	3		3

It appears that the greatest increase occurred in the Southern states, which group reported 7 establishments in 1890 and 18 in 1900 , an increase of 11 , or 157.1 per cent. Of the states of this group, Florida showed the greatest development, reporting an increase of 5 . The number in the Middle states increased from 8 to 17 , an increase of 9 . The greatest increase in this group was shown by Maryland, which reported an increase of 8, or an even 100 per cent.

The above table should be considered in connection with Table 27, which is a summary of the totals for the canning and preserving of oysters as returned at the census of 1890 and 1900 .

Table 27.-OYSTERS, CANNING AND PRESERVING: COMPARATIVE SUMMARY BY STATES, 1890 AND 1900.

	Year.	United States.	Florida.	Louisi. ฉлa.	Maryland.	Mississippi.	Washington.	All other states.
Number of establishments.	1900	39	6	3	16	4	3	${ }^{2} 7$
Cepital:	1890	16	${ }^{(3)}$		8	3		45
Total	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 1,240,696 \\ & \$ 1,10,962 \end{aligned}$	$\$ 78,895$ (${ }^{3}$)	\$64, 250	\$799, 005 \$953, 232	$\begin{aligned} & \$ 205,549 \\ & \$ 132,940 \end{aligned}$	\$9,800	$\begin{aligned} & \$ 83,197 \\ & \$ 20,790 \end{aligned}$
Land	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} \$ 95,000 \\ \$ 234,200 \end{array}$	$\underset{\left({ }^{3}\right)}{\$ 16,000}$	\$4,900	$\begin{array}{r} \$ 51,650 \\ \mathbf{\$ 2 2 9 , 0 0 0} \end{array}$	$\begin{array}{r} \$ 17,500 \\ \$ 4,000 \end{array}$		$\begin{aligned} & \$ 4,950 \\ & \$ 1,200 \end{aligned}$
Buildings.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 238,713 \\ & \$ 180,750 \end{aligned}$	$\begin{aligned} & \$ 10,820 \\ & (8) \end{aligned}$	\$31, 200	$\begin{aligned} & \$ 135,793 \\ & \$ 148,000 \end{aligned}$	$\begin{aligned} & \$ 42,000 \\ & \$ 32,000 \end{aligned}$		$\begin{array}{r} \$ 18,900 \\ \$ 750 \end{array}$
Machinery, tools, and implements.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 151,717 \\ & \$ 89,300 \end{aligned}$	$\underset{(8)}{\$ 18,975}$	88,700	877,748 $\$ 88,000$ $\$ 68,000$	$\begin{aligned} & \$ 31,000 \\ & \$ 18,000 \end{aligned}$	\$5,300	$\begin{aligned} & 89,994 \\ & \$ 3,300 \end{aligned}$
Cash and sundries.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 755,266 \\ & \$ 602,712 \end{aligned}$	$\underset{\left({ }^{(}\right)}{\$ 33,100}$	\$19,450	$\begin{aligned} & \$ 533,814 \\ & \$ 508,232 \end{aligned}$	$\begin{array}{r} \$ 115,049 \\ \$ 78,940 \end{array}$	\$4, 500	$\begin{aligned} & \$ 49,353 \\ & \$ 15,540 \end{aligned}$
Salaried officials, clerks, ete., nnmber.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	119 161	${\left({ }^{3}\right)}^{8}$	9	79 46	7 7	2	14 8
Salaries.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	8112,879 1869,891	$\underset{(3)}{\$ 7,001}$	\$6,540	$\begin{aligned} & \$ 81,048 \\ & \$ 59,060 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 89,300 \\ 86,625 \end{array} \end{aligned}$	\$1,400	$\begin{aligned} & \$ 7,590 \\ & 94,206 \end{aligned}$
Wage-earners, average number	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 2,779 \\ & 3,453 \end{aligned}$	${\left({ }^{3}\right)}^{148}$	97	1,444 2,834	419 391	24	647 248
Total wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 8630,016 \\ 8642,610 \end{array} \end{aligned}$	$\underset{\left({ }^{(}\right)}{\$ 32,392}$	\$33, 915	$\begin{aligned} & \begin{array}{l} \$ 37,591 \\ \$ 559,040 \end{array} \end{aligned}$	$\begin{aligned} & \$ 81,954 \\ & \$ 83,300 \end{aligned}$	\$12,070	$\begin{aligned} & \$ 90,094 \\ & \$ 20,270 \end{aligned}$
Men, 16 years and over.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	1,355 1,482	$(3)^{44}$	81	712 1,161	113 171	22	383 150
Wages..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 419,032 \\ & \$ 303,778 \end{aligned}$	$\underset{\left({ }^{3}\right)}{812,957}$	\$32,165	$\begin{aligned} & \begin{array}{l} 8247,117 \\ \$ 2055,380 \end{array} \end{aligned}$	$\begin{aligned} & 847,254 \\ & \mathbf{8 3 5}, 300 \end{aligned}$	\$11,550	$\begin{aligned} & \mathbf{8 6 7}, 989 \\ & \$ 13,098 \end{aligned}$
Womeu, 16 years and over	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	1,123 1,702	$\left({ }^{(3)} 80\right.$	7	618 1,523	219	2	197 54
Wages	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 175,865 \\ & \$ 316,080 \end{aligned}$	$\underset{(3)}{\$ 16,300}$	\$1, 000	$\begin{aligned} & \$ 114,000 \\ & \$ 294,460 \end{aligned}$	$\begin{aligned} & 826,100 \\ & \$ 16,200 \end{aligned}$	\$520	$\begin{array}{r} \$ 17,945 \\ \$ 5,420 \end{array}$
Children, under 16 years.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	301 269	$(3)^{24}$	9	114	87 95		67 24
Wages.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 35,119 \\ & \$ 22,752 \end{aligned}$	$\underset{(8)}{\$ 3,135}$	\$750	$\begin{array}{r} \$ 18,474 \\ \$ 9,200 \end{array}$	$\begin{array}{r} \$ 8,600 \\ \$ 11,800 \end{array}$		$\begin{aligned} & \$ 4,160 \\ & 81,752 \end{aligned}$
Miscellaneous expenses...	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 93,707 \\ & \$ 80,199 \end{aligned}$	${ }_{\left({ }^{3}\right)}^{8,881}$	\$3,123	$\begin{aligned} & \$ 70,100 \\ & \$ 43,301 \end{aligned}$	$\begin{array}{r} \$ 8,518 \\ \$ 33,450 \end{array}$	\$1,249	$\begin{aligned} & \$ 4,836 \\ & \$ 3,448 \end{aligned}$
Cost of materials used.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 2,608,757 \\ & \$ 2,088,867 \end{aligned}$	$\underset{(3)}{848,029}$	\$109, 205	$\begin{aligned} & \$ 1,771,377 \\ & \$ 1,877,353 \end{aligned}$	$\begin{aligned} & \$ 427,490 \\ & \$ 153,957 \end{aligned}$	\$38, 061	$\begin{array}{r} \$ 214,595 \\ \$ 57,557 \end{array}$
Value of products .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \$ 3,670,134 \\ & \$ 3,260,766 \end{aligned}$	$\underset{\left({ }^{3}\right)}{\$ 10,543}$	\$165, 458	$\begin{aligned} & 82,417,331 \\ & 82,834,400 \end{aligned}$	$\begin{aligned} & \$ 569,000 \\ & \$ 334,250 \end{aligned}$	\$65, 980	$\begin{array}{r} \$ 351,822 \\ \$ 92,116 \end{array}$

${ }^{1}$ Includes proprietors and firm members, with their salaries: number only reported in 1900, but not inclnded in this table. (See Table 34).
${ }^{2}$ Includes establishments distributed as follows: Alabama, 1; Delaware, 1 ; Georgia, 1; 1owa, 1; North Carolina, 1; South Carolina, 1; Virginia, 1.
8 Included under all other states in 1890.
${ }_{4}$ Included establishments distributed as follows: Alabama, 1; Florida, 1; Keutucky, 1; Micbigan, 1; Virginia, 1.

Table 27 gives a concise résumé of the industry for 1890 and 1900 and indicates the growth and development in each state during the decade. In 1890 the canning and preserving of oysters was carried on by 16 establishments distributed among 7 states, whereas in 1900 there were 39 establishments reported by 12 states, the number of establishments having increased 23 , and the number of states engaged in the industry, 8. The same arrangement as has been explained before was pursued in order not to divulge the operations of individual establishments, and states reporting fewer than 3 establishments were reported under "all other states." The states generally reported a substantial increase in the number of establishments, capital, and value of products. Maryland, however, although showing twice as many establishments in 1900 as in 1890 , showed a considerable decrease in both the capital and value of products, owing to the fact that a number of small establishments have engaged in the industry since 1890, while several of the larger factories on the other hand had become interested principally in the canning and pre-
serving of fruits and vegetables, and were so classified by this office, according to the rule adopted to classify according to the predominating product. As in the case of the other industries treated in this report, the canning of oysters is localized in points nearest the supply of oysters. Maryland, which is in close proximity to the famous oyster beds, notwithstanding the apparent decrease which is above accounted for, led in both years in the number of establishments, in capital, and in the value of products. The value of products for the census year for this state was $\$ 2,417,331$, or 65.9 per cent of the total value of products of this industry. Mississippi, Louisiana, and Florida, which were supplied by the oyster beds of the Gulf of Mexico, followed Maryland in the order named.
The summary, by states, of the establishments engaged in the canning and preserving of oysters, classified according to the number of wage-earners employed, is shown in Table 28. In this connection attention is here directed to the fact that the data contained in this table were computed from the greatest number of wage-
earners employed at any one time during the year. This should be taken into consideration in making deductions.

Table 28.-OYSTERS, CANNING AND PRESERVING: ESTABLISHMENTS CLASSIFIED BY NUMBER OF WAGEEARNERS EMPLOYED, BY STATES, ARRANGED GEOGRAPHICALLY, 1900.

States.	Total number of estab-lishments.	NUMBER OF ESTABLISHMENTS EMPLOYING-					
		ato 20	$\begin{gathered} 21 \text { to } \\ 50 \end{gathered}$	51 to 100	$\begin{gathered} 101 \text { to } \\ 250 \end{gathered}$	$\begin{gathered} 251 \text { to } \\ 500 \end{gathered}$	$\begin{aligned} & 501 \text { to } \\ & 1,000 \end{aligned}$
United States.	39	6	9	9	9	4	2
Middle states	17	2	5	4	2	2	2
Delaware.	1			1			
Maryland	16	2	5	3	2	2	2
Southern states.	18		4	5	7	2
Virginia..	1		1				
North Carolina	1				1	--.-..
South Carolina	1		.	1			-......
Georgia.	1					1	
Florida	6	-	2	1	3		
Alabama	1				1		
Mississippi	4			1	2	1	
Louisiana .	3		1	2		
Central states.	1	1					
lowa	1	1		-----			
Pacific states	3	3					
Washington ..	3	3					

As indicated by Table 28, the classes of establishments employing 21 to 50,51 to 100 , and 101 to 250 wage-earners, each reported 9 establishments, while 6 establishments were reported in group 5 to 20,4 in the group 251 to 500 , and only 2 in the group 501 to 1,000 . The Middle states reported the largest number of establishments employing from 21 to 50 wageearners, but the Southern states returned the largest number for the groups 51 to 100 , and 101 to 250 . All of the establishments located in the Central and Pacific states were small ones, employing from 5 to 20 operatives. Maryland was the only state having establishments employing over 500 wage-earners, but in this state the largest number of establishments employed from 21 to 50 wage-earners. Florida reported 3 establishments employing over 100 wage-earners, and Maryland and Mississippi each reported 2 in this class.
Table 29 presents a comparative summary of the statistics of capital for 1890 and 1900, with the percentages of the total and of the increase for the several items.
Table 29.-OYSTERS, CANNING AND PRESERVING: STATISTICS OF CAPITAL, 1890 AND 1900.

	1000		1890		Per cent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total...	\$1,240,696	100.0	\$17, 106,962	100.0	12.1
Land.	95,000	7.7	234, 200	21.2	159.4
Buildings...............	238,713	19.2	180, 750	16.3	32.1
Machinery, tools, and implements Cash and sundrie	151,717	12.2	89, 300	8.1	69.9
Cash and sundries	755, 266	60.9	602, 712	54.4	25.3

[^10]The item cash and sundries, including cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, formed the principal item of capital in both years. This is but natural in an industry which neither requires large and expensive buildings especially adapted for the purpose, nor necessitates the use of costly and complicated machinery and mechanical appliances in the preparation of its product. This item also formed a relatively larger per cent of the total capital in 1900 than in 1890 . The value of land, which formed the second largest item in 1890, actually decreased to $\$ 95,000$, or 59.4 per cent, and formed but 7.7 per cent of the total as compared with 21.2 per cent in 1890.

As the several items of miscellaneous expenses for 1890 can not be shown separately, a detailed comparison with those reported for 1900 is impossible. The expenses of this nature in the oyster-canning industry do not call for special comment, but the several subdivisions for 1900 may be found in Table 34.
The cost of materials used with the proportion each formed of the total, for 1900, is given in Table 30.

Table 30.-OYSTERS, CANNING AND PRESERVING: COST OF MATERIALS USED, 1900.

	Amount.	Per cent of total.
Total	\$2,608, 757	100.0
Principal materials ${ }^{1}$	2,571, 027	98.5
Rent of power and hea	25,090	1.0
Freight.................	12,580	${ }^{(2)} 0.5$

${ }^{1}$ Includes raw materials, mill supplies, and all other materials. These are shown separately in Table 34 .
${ }^{2}$ Less than one-tenth of 1 per cent.
Of the total cost of materials the amount reported for principal materials formed 98.5 per cent. This included the materials purchased both in the raw state and in partially manufactured form. Those purchased in the raw state, including oysters and fish, amounted to $\$ 1,792,725$, or 68.7 per cent of the total cost of materials. The remainder of principal materials, amounting to $\$ 778,302$, includes mill supplies and "all other materials," the cost of cans, solder, and such other materials as were necessary to prepare the product for the market, which amounted to $\$ 768,927$, or 29.5 per cent of the total. These items are shown separately in Table 24. It is a significant fact that the cost of fuel formed only 1 per cent of the total cost of materials. The cost of freight is an insignificant item in this industry, but it should be considered only in connection with the cost of materials, as the latter in many cases are bought delivered, and manufacturers find it impossible to report separately the amount directly chargeable to freight.
Table 31 shows the value of products by states for 1900.

Table 31.-OYSTERS, CANNING AND PRESERVING: VALUE OF PRODUCTS, BY STATES, ARRANGED GEOGRAPHICALLY, 1900.

States.	value.		
	Total products.	Oysters, etc.	All other products.
United States.	\$3,670,134	\$1,649,480	\$2,020,654
Middle states.	2,417,381	570, 478	1,846,853
Maryland	2, 417,381	570,478	1,846,853
Southern states.	1,186, 823	1,049,547	137,276
Florida	100,543	97,743	2, 800
Mississippi	569, 165 158	569,000 94,702	70,756
All other states ${ }^{1}$	351, 822	288, 102	63,720
Pacific states	65, 980	29,456	36,525
Washington	65,980	29,465	36,625

${ }^{1}$ Includes establishments distributed as follows: Alabama, 1; Delaware, 1; Georgia, 1; Iowa, 1; North Carolina, 1: South Carolina, 1; and Virginia, 1.
Table 31 is of interest as showing some curious facts regarding the industry. It will be noticed that of the total value of products, $\$ 1,649,480$, or 44.9 per cent, was reported as the value of oysters, while $\$ 2,020,654$, or 55.1 per cent, was given as the value of all other products. Iu 2 states, Maryland and Washington, the value of all other products exceeded the value of oysters. This is especially true of Maryland, which reported 76.4 per cent of the value of products under "all other products." The value of all other products for the industry includes the value of fish canned and preserved in connection with oysters; but it is the correlation of fishing industry with the canning and preserving of fish and oysters that is chiefly responsible for the apparent inconsistency. Over 75 per cent of the value of other products represents the value of fresh oysters which are handled in bulk in large quantities by several large oyster-canning houses. As it was impossible to separate the amounts directly chargeable to the manufacturing branch of the business, the value of fresh oysters has been included in the total value of products.

The tables which have thus far been shown give an incomplete statistical picture of the oyster canning and preserving industry for the reason that, as pointed out above, establishments are classified according to the predominating product. In many instances, the canning and preserving of oysters is carried on in connection with some other branch of the canning industry, and the totals have not been included in the above tables. It is possible, however, to show the total quantity and value of oysters canned and preserved during the census year as reported by establishments of any character. This is done in Table 32.
Table 32.-OYSTERS, CANNING AND PRESERVING: QUANTITY AND VALUE OF PRODUCTS, BY STATES, ARRANGED GEOGRAPHIOALLY, 1900.

STATES.	Pounds.	Value.	PER CENT OF TOTAL.	
			Pounds.	Value.
United States	33, 356,677	\$2, 380, 711	100.0	100.0
Middle states.	17, 295,216	1,249, 478	51.9	52.6
Maryland.	17,295,216	1,249, 478	51.9	52.5

Table 32.-OYSTERS, CANNING AND PRESERVING: QUANTITY AND VALUE OF PRODUCTS, BY STATES, ARRANGED GEOGRAPHICALLY, 1900-Continued.

states.	Pounds.	Value.	PER CENT OF TOTAL.	
			Pounds.	Value.
Southern states	16,011,961	\$1,114, 698	48.0	\$46.8
Florida ...	1, 604, 416	96,793	4.6	4.0
Mississippi.	7,900, 472	639,603 71,625	$\begin{array}{r}23.7 \\ 3.8 \\ \hline\end{array}$	26.9 3.0
Other states ${ }^{1}$.	5, 384, 323	307, 677	16.0	12.9
Pacific states..	49,500	16,535	. 1	. 7
Washington.	49,500	16,535	. 1	. 7

${ }^{1}$ Includes establishments distributed as foliows: Alabama, 1; Georgia, 1; Iowa, 1; North Carolina, 1; and South Carolina, 1.
Table 32 shows the quantity and value of oysters canned and preserved in oyster-canning establishments as such and also the quantity and value reported as a subsidiary product in establishments engaged primarily in the canning and preserving of fish and fruits and vegetables. The values reported do not include the amounts reported as the value of all other products, therefore the totals given in Table 32 do not agree with the total products given elsewhere in this report, or with those of the report on this industry as presented in the general report on Manufactures, Parts I and II. This should be taken into consideration if comparisons are made with the figures reported in Table 31, as the totals given in the latter table include the value of " all other products"-the value of shrimps, crabs, and other fish canned. Furthermore, there are in Baltimore several large establishments engaged in handling fresh oysters in bulk in connection with the canning business, and, as it was impossible to segregate the amounts directly chargeable to the manufacturing part of the business, the value of raw oysters sold is included under the heading " all other products."

Table 32 indicates that there were $33,356,677$ pounds of oysters canned during the census year, valued at $\$ 2,380,711$, an average value of $\$ 0.071$ per pound. It should be noticed that the average value is that fixed at the factory and is obtained from the totals of the whole number of establishments reporting, and that it therefore does not represent the actual value in any particular locality. Quite naturally, Maryland, the home of the famous "cove oyster," took first rank in this industry, and the quantity and value of oysters canned in that state formed over 50 per cent of the totals for the country. Mississippi followed Maryland with a product about half as large, or approximately 25 per cent of the total for the United States. Florida and Louisiana followed Mississippi in the order named, the combined totals for these states constituting nearly 9 per cent of the total. The oysters canned in Mississippi, Florida, and Louisiana are received from the Gulf of Mexico. The industry is also carried on to a limited extent in Washington and Oregon.

The principal details of the statistics for the canning of oysters as carried on in cities of over 20,000 population are shown in Table 33.

Table 33.-OYSters, CanNing and Preserving: statistics of cities of 20,000 Population or over, 1900.

CITIES.	*	Rank by value of products.	Number of estab-lishments.	Capital.	salabied officials, clerks, etc.		Wage-Earners.		Miscellaneous expenses.	$\begin{aligned} & \text { Cost of } \\ & \text { materials } \\ & \text { used. } \end{aligned}$	Value of products.
					Number.	Salaries.	Average number.	Wages.			
Total			19	\$798,446	81	\$82,608	1,442	\$389, 441	\$69,570	\$1,772,094	\$2,443, 948
Baltimore, Md. All other cities ${ }^{1}$.			15 4	784,271 14,175	77 4	80,248 2,360	1,416 26	376,591 12,850	$\begin{array}{r} 67,988 \\ 1,582 \end{array}$	$\begin{array}{r} 1,724,513 \\ 47,581 \end{array}$	$\begin{array}{r} 2,364,968 \\ 78,980 \end{array}$

${ }^{1}$ Includes establishments distributed as follows: Des Moines, lowa, 1; Seattle, Wash., 3.

It appears from Table 33 that of the total value of products, $\$ 2,443,948$, or 66.6 per cent, was reported for the cities named, and that of this amount $\$ 2,364,968$, or 64.4 per cent of the total for the United States, was re-
turned for Baltimore. With the exception of Baltimore, which since the inception of the industry has always been the home of oyster canning and preserving, the industry can not be said to be preeminently a city industry.

HISTORICAL AND DESCRIPTIVE.

The oyster is a marine bivalve mollusk of the genus Ostrea, the most important species being the Ostrea edulis, the oyster commonly found in Europe, and the Ostrea virginiana, the common American oyster. They are usually found attached to a solid substance in the most brackish waters at the mouth of rivers or in the shallow waters along the seacoasts, in depths varying from 15 to 180 feet, according to the temperature of the water. Moving sand or muddy ground is not conducive to their growth, as they require some solid substance to which to attach themselves.
Oyster fishing has always been an important industry in European, Asiatic, and American waters. The oyster, however, in the oyster regions of Europe and Asia, is not found at the present time in natural reefs in its primitive condition, but is produced on areas of ground under individual ownership or protection, as the public reefs in those countries have been depleted. France and Great Britain lead all European countries in the production of the oyster, and its calture is carried on more extensively and successfully in France than anywhere in the world.

When the first settlements were made in America, oysters were found in lavish abundance all along the Atlantic coast from Maine to Florida, the principal beds being in Chesapeake Bay, Cape Cod, and Long Island Sound. Constant fishing, however, soon had its effect upon the more Northern fisheries, and by the year 1860 the natural beds of the North Atlantic coast were exhausted. Chesapeake Bay and the waters along the coast of Virginia still produce a good supply, and the young were transplanted from these sections to the more Northern beds, where they were fattened and prepared for market. Were it not for the supply of seed oysters secured from these southern waters, the states north of Connecticut would be in the same condition as the European countries in oyster culture. The public beds along the coasts of Connecticut, New York, New Jersey, and Delaware are so far depleted that the supply is very irregular and uncertain
and the oyster found is very small. In the Chesapeake Bay and Southern waters the public reefs are somewhat exhausted, the oysters are small, and many are transplanted to private grounds for maturing. ${ }^{1}$ Oysters are found in the Gulf of Mexico, and also to a small extent along the Pacific coast. Seed oysters from the Atlantic coast have been planted on the Pacific coast, but with little success. ${ }^{*}$

The inception and growth of oyster canning bas been practically simultaneous with the canning of fish. In the early days of the canning industry the two were often carried on under the same roof, and the canning of oysters as a distinct industry did not begin prior to 1850 , although Thonas Kensett, the pioneer in this branch of canned goods, began in Baltimore as early as 1820. Kensett was followed by several others, and in the year 1850 the industry was established on a permanent footing. ${ }^{3}$ Many New Englanders, attracted by the excellent fisheries of the place, located in Baltimore, and in time engaged in oyster canning. Oysters are canned at one or two Chesapeake ports, and at four or five cities on the northern coast of the Gulf of Mexico. The term "cove" is applied to oysters put up in tin cans, cooked, hermetically sealed, and kept for some time. The original "cove oysters" were found in coves on the west side of Chesapeake Bay, above the Potomac, and were famous for their size and quality.
Improvements in the methods of preserving have been as marked in oyster canning as in any other branch of the canning industry. Originally the oyster shells were opened by hand, but in 1858, Louis McMurray, of Baltimore, introduced the scalding of the oysters before they were "shucked," and this treatment greatly facilitated their removal from the shell. This method was replaced two years later by steaming, a process in which the oysters were put in baskets having a capacity of three pecks or more, and a large number of the baskets were placed

[^11]in a huge box, through which steam was passed. The modern method of "shucking" was inaugurated by Henry Evans in 1862. His process consists of placing the oysters in cars of iron framework, 6 to 8 feet long, and holding about 20 bushels of unshucked oysters, and the cars are run on a track from the wharf to a steamtight box, ranging from 15 to 20 feet long, and fitted with appliances for admitting the steam at any desired pressure, and a door at each end of the box permitting the entry of the car, and then so arranged that the doors can be closed, thus making a practically air-tight compartment. ${ }^{1}$ The steam is turned on for about fifteen minutes, the chest is then opened and the cars run into the shucking shed, where employees, each provided with a knife, are able to separate very easily the oysters from the shell. After they are steamed and "shucked" they are washed in cold water and sent to the "fillers' table." Here they are placed in cans, weighed, and hermetically sealed. The cans are then put into a cylindrical basket and lowered into the "process kettle," in which they are steamed to a sufficient degree to kill all germs of fermentation. After coming from the "process kettle," they are cooled in a large vat of cold water and then transferred to the labeling and packing department." The total cost of handling a bushel of oysters in the Baltimore canneries has been estimated at

29 cents, while the average price during recent years of a bushel of oysters for the canning trade has been about 55 cents. ${ }^{3}$
The structure of the oysters on the Gulf of Mexico is such that it disintegrates and is shiny in appearance when canned in the manner of the more Northern oyster. In canning this variety, the following process was introduced in 1880 by Mr. J. T. Maybury: "To ten gallons of pure water, add one-half gallon of good commercial vinegar and one-tenth gill of a saturated aqueous solution of salicylic acid, to which mixture sufficient common salt is added to impart the requisite salty flavor to the oysters. The mixture is boiled a few minutes and poured over the oysters in the cans, which are at once sealed and placed in a steam bath, the temperature of which is $202^{\circ} \mathrm{F}$. This temperature is gradually raised to 240° and maintained at that degree for about forty-five minutes. The cans are then vented, resealed, and steamed as before for about thirty minutes, after which they are ready to be labeled and packed." ${ }^{*}$ By this process the fatty portion of the oyster is coagulated and the body made more dense and firm.

Table 34 shows the detailed statement, by states, of the industry for 1900 .
${ }^{3}$ Fish Bulletin, 1899 , page 517.
${ }^{4}$ Ibid, page 518 .
${ }^{1}$ Letters Patent, No. 35511, June 10, 1862.
Fish Bulletin, 1899, page 517.

Table 34.-OYSTERS, CANNING AND PRESERVING: BY STATES, 1900.

	United States.	Florida.	Louisiana.	Maryland.	Mississippi.	Washington.	All other states. 1
Number of establishments.	39	6	3	16	4	3	7
Character of organization:							
Individual Firm and limited partnership	11	3 1	$\stackrel{1}{2}$	112	${ }_{1}^{2}$	$\stackrel{1}{2}$	$\stackrel{2}{3}$
Incorporated company.........	8	2		3	1		2
Capital:	\$1, 240,696	878, 895	\$64, 250	\$799,005	\$205,549	\$9,800	883, 197
Land.	*1, 895,000	\$16,000	\$4,900	\$51,650	\$17,500		\$4,950
Buildings	\$238,713	\$10,820	\$31, 200	\$135, 793	\$42, 000		\$18,900
Machinery, tools, and implements	8151, 717	\$18,975	\$8,700	\$77, 748	831,000	\$5, 300	\$9,994
Cash and sundries	\$755, 266	\$33, 100	\$19,450	\$533, 814	\$115,049	$\$ 4,500$ 5	\$49,353
Proprietors and firm members	47			15			11
Salaried officials, clerks, ete: Total number....	119		9	79	7	2	14
Total salaries	8112,879	\$7,001	\$6,540	\$81,048	\$9,300	\$1,400	\$7,590
Officers of corporations-	15	1			2		3
Salaries.	\$34, 850	\$1,000		\$26, 350	\$5,100		\$2,400
General superintendents, managers, clerks, etc.Total number.	104 878.029		- ${ }^{9}$	$\begin{array}{r}70 \\ \hline 54,698\end{array}$		$\stackrel{2}{2}$	${ }^{11}$
Total salaries.	\$78,029	86,001	\$6,540	\$54, 698	84, 200	\$1,400	\$5,190
$\xrightarrow{\text { Mumber }}$							
Salaries	\$74,967	\$6,001	\$6,540	\$52,136	\$4, 200	\$900	\$5,190
Women-							
Number. Salaries	83, 068			\$2,562		\$500	
Wage-earners, including pieceworkers, and total wages:		521	180	2,603	875		
Greatest number employed at any one	5,122 2,051 2	399	118	2, 506	374	40 15	903 639
Average number...	2,779 $\$ 630,016$	\$ $\$ 32,392$	$\begin{array}{r}\text { 97 } \\ \hline \$ 38,915\end{array}$	1,444 $\$ 379,591$	419 881,954	24 $\$ 12,070$	647 890,094
Wages..............	\$630,016	\$32, 392	\$33, 915	\$379,591	881, 954	\$12,070	\$90,094
Men, 16 years and overAverage number	1,355	44		${ }_{7} 712$	113	22	383
Wages..............	\$419, 032	\$12,957	\$32, 165	\$247,117	\$47, 254	\$11,550	\$67, 989
Women, 16 years and over-	1,123					2	197
Wages...........	\$175, 865	\$16,300	\$1,000	\$114,000	\$26, 100	\$520	\$17, 945
Children, under 16 years-			9	114			67
Waras	835, 119	\$3,135	\$750	\$18, 474	\$8,600		\$4, 160

Table 34.-OYSTERS, CANNING AND PRESERVING: BY STATES, 1900-Continued.

${ }^{1}$ IncIndes establishments distributed as follows: Alabama, 1; Delaware, 1; Georgia, 1; Iowa, 1; North Carolina, 1; South Carolina, 1; Virginia, 1.

Census Bulletin.

MANUFACTURES.

CHEMICALS AND ALLIED PR0DUCTS.

Hon. Williay R. Merriay,
Director of the Census.
SIr : I transmit herewith, for publication in bulletin form, the statistics of chemicals and allied products, prepared under my direction by Charles E. Munroe, Ph. D., professor of chemistry, Columbian University, Washington, D. C., and by T. M. Chatard, Ph. D., his associate, acting as expert special agents of the division of manufactures.

The unusually exhaustive and valuable character of the work is described in the introduction to this report by the expert special agents. Nothing approaching it in any particular has ever before been presented at any census of the United States.
The statistics are presented in 9 tables: Table 1 is a summary of the statistics for the entire industry, by states, 1900; Table 2 is a summary for fertilizers, by states, 1900; Table 3 is a summary for dyestuffs and tanning materials, by states, 1900; Table 4 is a summary for paints, by states, 1900; Table 5 is a summary for varnishes, by states, 1900 ; Table 6 is a summary for explosives, by states, 1900; Table 7 is a summary for essential oils, by states, 1900 ; Table 8 is a summary for chemicals, by states, 1900 ; and Table 9 is a summary for bone, ivory, and lampblack, by states, for 1900.
In drafting the schedules of inquiry for the census of 1900 care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the items of inquiry except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total
anmount of wages paid. Live capital, that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, was first called for at the census of 1890 . No definite attempt was made, prior to the census of 1890 , to secure a return of live capital invested.

Changes were made in the inquiries relating to employees and wages in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1900 the greatest and least numbers of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12 , the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wageearners during the entire year may have resulted in a variation in the number, and should be considered in making comparisons.
At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors
and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was ascertained, and no salaries were reported for this class. It is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.

Furthermore, the schedules for 1890 included in the wage-earning class, overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wage-earning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890.
In some instances, the number of proprietors and firm me.mbers, shown in the accompanying tables, falls short of the number of establishments reported. This is accounted for by the fact that no proprietors or firm members are reported for corporations or cooperative establishments. The number of salaried officials, clerks, etc., is the greatest number reported employed at any one time during the year.
The reports show a capital of $\$ 238,529,641$ invested in the manufacture of chemicals and allied products.

This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, but does not include the capital stock of any of the manufacturing corporations of the state. The value of the products is returned at $\$ 202,582,396$, to produce which involved an outlay of $\$ 11,340,385$ for salaries of officials, clerks, etc.; $\$ 21,799,251$ for wages; $\$ 14,825,112$ for miscellaneous expenses, including rent, taxes, ete.; and $\$ 124,043,837$ for materials used, mill supplies, freight, and fuel. It is not to be assumed, however, that the difference between the aggregate of these sums and the value of the products is, in any sense, indicative of the profits in the manufacture of the products during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. The value of the product given is the value as obtained or fixed at the shop or factory. This statement is necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Chief Statisticiun for Manufactures.

CHEMICALS AND ALLIED PR0DUCTS.

By Charles E. Munroe and Thomas M. Chatard.

The publication of special reports relating to the manufacture of chemicals, which was begun in the Tenth Census, was a feature of the Eleventh Census, although, as stated in the report on "chemicals and allied products" of the latter census (Eleventh Census, Manufacturing Industries, Part III, page 275), "owing to changes in the form of inquiry and the inclusion of certain allied industries not reported as chemicals at the census of 1880 , and the exclusion of others that were included under this head at the Tenth Census, a true comparison is impossible."

The same may be said of the report on chemicals and allied products for the Twelfth Census, now presented. Pharmaceutical preparations, included as chemicals by the Eleventh Census, have beeu excluded from the present report, while "bone, ivory, and lamp black," previously reported elsewhere, is here included. Still, the data for so many of the industries included in the classification are comparable that a fairly correct idea of the growth of the combined industries as a whole, during the past decade, may be obtained.

The total number of actire establishments included in this inquirr, as set forth in this report, is 1,827 . Thirty-six establishments were reported as idle, making the total number of establishments 1,863 . The report on "chemicals and allied products" for 1890 covered 1,626 establishments, including those making pharmaceutical preparations as the principal product, but the latter are not considered in the present report. The Census Office classifies an establishment according to the nature of its principal product, this being determined by its value as compared with that of any other product which may be made therein. The special schedules for the various industries call for the main products of the industry with sufficient detail, while subordinate products are, in most cases, brought together under the caption "all other products." Hence, chemical products made by works helonging to other categories can not, in most cases, be ascertained from the returns and do not appear in this report except in a few specified instances. The amount so lost to this inquiry is, however, not so large as to materially affect these returns, and as the value of such products is included in the figures of the other categories, the final total value of all manufactures is not affected. Moreover, establishments whose products during the census year were valued at less than $\$ 500$ are not included in the general tabulations, but are taken into consideration in this special report.

Owing to the hearty cooperation of most of the leading chemical works it is believed that the figures here presented are as nearly correct as the difficulties attending the collection of the information have permitted. In probably no branch of the census work is the need of a permanent, trained force more keenly felt than in this particular inquiry, the wide range of which is shown by the character of the "Special Schedule, No. 17," used in,the collection of these returns. The products were classified under 19 groups, as follows: Group 1, Acids; II, Sodas; III, Potashes; IV, Alums; V, CoalTar Products; VI, Cyanides; VII, Wood Distillation; VIII, Fertilizers; IX, Bleaching Materials; X, Chemicals produced by the aid of Electricity; XI, Dyestuffs; XII, Tanning Materials; XIII, Paints, Pigments, and Varnishes; XIV, Explosives; XV, Plastics; XVI, Essential Oils; XVII, Compressed and Liquefied Gases; XVIII, Fine Chemicals; and XIX, General Chemicals. In the course of the work it was found necessary to form a subgroup, XIXA, to classify certain establishments whose main products were not originally included in "chemicals." A final group named "miscellaneous" includes a number of products not chemical but made by works belonging to the category of "chemical industries." By bringing such products together their nature, quantity, and value are given and the figures may be used to supplement the returns elsewhere given for such substances so far as they may be separately reported.

Separate tabulations have been made of the data for Group VIII, Fertilizers; Groups XI and XII, Dyestuffs and Extracts; Group XIII, Paints; also Group XIII, Varnishes; Group XIV, Explosives; and Group XVI, Essential Oils. The data for the remainder of the groups are included in the general tabulation of "chemicals." There is also a tabulation of "bone, ivory, and lamp black," but as results showed that the product was exclusively hydrocarbon black or lampblack, the figures may be properly included in those for "paints," and are so treated in the special group report. These tabulations are continued from previous censuses and are necessary in order that the condition of the manufactures of states, cities, etc., may be promptly shown with sufficient detail, but for the proper presentation of the chemical industries of the United States a certain reclassification of products became needful. For example, a certain large establishment made paints, acids, and general chemicals, its paint product being the largest in value; the establishment was classified
under "paints," the other products being there reported as subproducts. In another instance a large fertilizer works, making its own acid, had such an extensive business in the manufacture of cottonseed products that, although it was really a chemical works of much importance, it could not be put in this category, but had to go elsewhere. So far as possible, the chemical products of this latter class of works have been taken into consideration in the special group reports, but separately noted, so that any duplication may be made evident.

In the special group reports, all of the products belonging to the group are brought together. When the main product of a works belongs to the group under consideration, the establishment is a "main" one and belongs to Class A. When the group product is a minor one for an establishment, this is counted in, but as a "sub" works and placed in Class B. The chemical
product of an establishment not belonging to the category of "chemical industiies," as noted above, is also taken into account, but the establishment and its chemical product are placed in a third class, C. By this system each group report can present its special operations and products in any desired detail; and while the figures of product may differ from and often exceed those of the general tabulations, no confusion can result if it is clearly understood that the purpose of the special group reports is to give as clear and complete a presentation of the American chemical industry as the available information may permit.

The following table gives, first, the totals for establishments, capital, labor, cost of materials, and value of products as shown in the tabulations, and second, for purposes of comparison, the total values for the same classes of products as shown by the reclassified figures of the group reports:

COMPARISON OF TABULATION VALUES WITH GROUP VALUES: 1900.

TABULATION.	Number of establishments.	Capital.	WAGE-EARNERS.		Materials, cost.	Products, value.	Reclassified . products, value.
			Average numher.	Total wages.			
Total	1,740	\$238, 529,641	46,765	\$21, 799, 251	\$124, 043, 837	\$202, 582, 396	\$221, 217,217
Chemicals.	459	89,091, 430	19,054	9, 401, 467	34, 564, 137	62,676,730	$178,414,840$
Dyestuffs ${ }^{2}$.	77	7,839, 034	1,648	787,942	4,745,912	7,350,748	7,767, 226
Essential oils.	70	612,657	199	69, 100	596, 112	850,093	859,401
Explosives	97	19, 465, 846	4,502	2,383,756	10,334, 974	17,125, 418	${ }^{3} 16,950,976$
Fertilizers.............	422 615	60, 685, 753	11,581	4,185, 289	28,958,473	44, 657, 385	$45,911,382$
Paints and varnisbes ${ }^{4}$.	615	60,834,921	9,782	4,971, 697	44, 844, 229	69,922,022	$71,313,392$
${ }^{1}$ Including miscellaneous, $\$ 4,175,656$ from all tabulations. ${ }^{2}$ Including tanning materials. ${ }^{3}$ Excluding miscellaneous. 4 Including hone, ivory, and lamp black.							

Taking the table of "principal products, their quantity and value, $1890, "$ given on page 275 of the abovementioned special report of the Eleventh Census, and

COMPARISON OF THE QUANTITIES AND VALUES OF THE PRINCIPAL PRODUCTS REPORTED: 1890 AND 1900.

Pronucts.	1890		1900	
	Quantity.	Value.	Quantity.	Value.
Total		163,547,685		\$221, 217, 217
Alum, pounds	93, 998, 008	1,616,710	179, 467, 471	2,446,576
Dyeing and tanning				1, 421, 720
extracts and sumac, ponnd	187, 906, 911	8,857,084	169, 525, 536	7,767,226
Gunpowderand other explosives, pounds.		10,903,131		
Fertilizers, tons	1,898, 806	35,519, 841	215,590, $3,091,717$	16, ${ }^{15,911,382}$
Paints, colors, and varnishes		52, 908, 252	3,01, 17	71, 313, 392
Potash and pearlash, pounds	5, 106, 939	197,507	3,864,766	178,180
Sodas, pounds	333, 124,375	5, 432, 400	1,279, 082,000	10, 237,944
	1,009, 863, 407	$4,307,067^{\circ}$	1,906, 878,903	7, 965, 832
Sulphuric acid, 60°,			1, $06,878,003$	7,060,832
Sulphuric ac.acial 660 ,	20,379,908	122,940	34, 023, 131	246,284
pounds	354,533,657	3, 249,466	754, 558, 455	6,035,069
Wood alcohol and acetate of lime		1,885, 469		
Chemicals (including all acids, hases, and salts not heretofore enumerated) \qquad		$1,886,469$ $24,751,974$		10,775,290
All other products		13, 018,253		$\begin{array}{r} 40,791,690 \\ 4,175,656 \end{array}$

${ }^{1}$ Tncluding essential oils, $\$ 859,401$.
comparing the returns for the same products as given by the figures of the Twelfth Census, the following results are shown:

This table shows that while the chemical industries of the United States have greatly advanced in quantity of product, the value per unit of product has much decreased, a tendency of much importance to those industries which use these products as materials for their own operations.

Each of the groups into which products are classified represents a special form of establishment, sometimes two or more forms, even though a single establishment may, and often does, furnish products belonging to two or more groups. Hence it is practically impossible to construct for this special branch of inquiry a single schedule which, by the wording of the interrogatories and the indications as to the proper nature of the replies, will enable the Census Office to elicit the desired information from all alike. The difficulties experienced in collecting the statistics have, however, indicated improvements needed for future work, and, with a permanent Census Bureau, there is every reason to expect that at the next census the statistics of chemical manufactures will show results of much wider scope than it has been possible to present even at the census of 1900 .

The willingness of the manufacturers, notably of the great combinations, to furnish information has been most gratifying, and when difficulties have occurred in most cases they have been due to the fact that the establishments did not hare such records as would give the information desired. The absence of such records has generally been regretted by the manufacturers, who have recognized the value such information would have been to them in their business. In the few cases where information was at first refused on the ground of interference with private business, a courteous letter of explanation rarely failed to elicit a pleasant reply, giving everything desired so far as it could be furnished.

While the groups above mentioned cover most of the products usually recoguized as chemicals, inspection of the index of any standard work on chemical technology will show that the subjects considered as belonging to this domain are far more numerous. The reason for this becomes evident when it is remembered thatevery form of industry must be either physical or chemical or a combination of both. The manufacture of pig iron or the tanning of a bide is a chemical process, while the rolling of a rail or the making of a shoe is a physical process, but many manufacturing processes in which chemical reactions occur can not be sharply classified, since, while the products are the results of chemical action, the practical success of the operations depends upon the correct arrangement of the mechanical plant, a good example of this being the ammoniasoda process. Modern industrial chemistry tends to develop itself more and more along engineering lines; hence the increasing demand for the chemical engineera mechanical engineer with a special equipment of chemical science and technology.

A list of the topics treated of in Wagner's Chemical Technology is here given as an example of what the term "chemical technology" as a rule embraces, to which is added a list of the special schedules and bulletins issued by the Census Office showing how far these topics are the subject of special inquiries and reports at the census of 1900 , thus facilitating the obtaining of a comprehensive view of this industrial complex.

COMPARISON OF THE TOPICS OF CHEMICAL TECHNOLOGY WITH THE CLASSIFICATIONS OF THE CENSUS OF 1900.

TOPICs.	Special schedule number.
Fuel:	
Charcoal (chemical manufactures)	7
Gas, illuminating and fuel.	(no number)
Oil, mineral (petroleum refining)	
Paraffin, etc (petroleum refining)	8
Metallurgy:	21 and 23
Iron and steel.	${ }_{24}$
Copper	25
Zinc	26 3
Other metals, general sc	3

COMPARISON OF THE TOPICS OF CHEMICAL TECHNOLOGY WITH THE CLASSIFICATIONS OF THE CENSUS OF 1900-Continued.

TOPICS.	Special schedule number.
Chemical manufactures, inorganic:	
Common salt.	9
Acids, bases and salts .)	
Fertilizers..............	
Explosives .-...------- (chemical manufactures)	17
Compressed gases (chemical manufactures)	17
Electrolytic products..	
Paints and varnishes..	
Chemical manufactures, organic:	
Alcohols and ethers-----.-.--	
Organic acids................. (chemical manufactures)	17
Organic coloring matters..... Coal-tar product and colore. (chem manufactures)	17
Glass:	
Pottery and fire-clay prodnets	6
Bricks-.................	5
Cements and mortar, general schedule	
Food, beverages, etc.:	
Starch, general schedule	
Sugar, general schedule.	
Fermentation...	
Brewing, general schedule	
Wine making, general schedule	
Spirits, general schedule	
Flour and grist products	31
Meat products (slaughtering and meat packing)	33
Milk, butter, and cheese.....-........................	32
Fibers:	
Preparing, bleaching, dyeing, printing, and fitishing.........	12
Silk	-16
Wool.	14 and 15
Cotton	11
Hemp, flax, and jute	13
Paper	34
Miscellancous:	
Tanning (leather, tamed and curried)	18
Giue, size, gelatine, general schedule..	
Bone distillation-	
Bone charcoal, general schedule	
Bone oil .-.........-................	
Fats, oils, soaps, general schedule	
Stearin and glycerin, general schedule	
Resins, generai schedule	
Essential oils (ehemical manufactures)	17
Wood preservation, general schedule	

While some of these topics may at first appear to the laymen to have but a very slight connection with chemistry, as, for example, the manufacture of flour or bricks, yet flour and bricks, as well as all of the other chemical substances named, are chemical substances, and they have been the subject of extended chemical stady by specialists, through which there has resulted great improvement in the quality and cheapness of the products. In such industrial chemical investigation Germany leads all other countries, and its present preeminence in the field of chemical manufacture has been deservedly won by its work, although it has been materially aided by the character of the patent laws of England and of the United States.

The German chemical manufacturer is far in advance of those of all other nations in recognizing the value of specialized chemical skill in the conduct of the works and in employing trained chemists in laboratory investigations. Thus McMurtrie ${ }^{1}$ points out that the Fabriken der Actien-Gesellschaft Farbewerke Meister Lucius und Bruning in Höchst, who were in 1890 making between 1,700 and 1,800 different colors, numbered

[^12]among their 3,000 employees 70 chemists and 12 engineers. Green ${ }^{1}$ states that in 1900 the six largest coal-tar color firms in Germany employed about 500 chemists and 350 engineers and technical men, while Sir Henry Roscoe" states that at the German works which he had visited, highly trained chemists were employed in original researches with a view to now discoveries. "One employee, who received $£ 1,000$ a year, worked for several years without producing any results; but eventually he made a discovery which repaid the firm ten times over, and placed an entirely new branch of manufacture in their hands."

Owing to the extended discussions going on in England and America relative to the tremendous growth of the chemical industries of Germany during the past twenty years, in which many have attributed much of this growth to the extensive employment of doctors of philosophy in chemistry and other university-bred chemists in the German technical works, a census has been taken of the establishments in the United States which are the subject of this report, with the following result:

CHEMISTS EMPLOYED IN THE ESTABLISHMENTS TREATED OF IN THIS REPORT.

$\begin{gathered} \text { GROLP } \\ \text { NUMBER. } \end{gathered}$	Group name.	Number of chemists.
I	Acids.	28
II	Sodas.	9
III	Potashes.	
IV	Alums	11
V	Coal-tar products.	8
VI	Cyanides - --.....	8
VII	Wood distillation.	3
VIII	Fertilizers........	10
${ }^{1 \times}$	Bleaching materials.	4
XI	Electro-chemicals.	9 13
XII	Tanning materials..	7
XIII	Paints and varnishes.	53
XIV	Explosives.............	32
XV	Plastics............	5
XV1	Essential oils...	2
XVII	Liquefied gases.	9
XVIII	Fine chemicals....	25
XIX	General chemicals.	41
	Total	276

When, in German works, the results of the investigations of the expert chemists indicate commercial possibilities, practical working tests follow, and, in the end, one more patent is added to those which hamper the development of chemical industry in countries which, like the United States, give the foreigner the monopoly of a patent without requiring that the protected article shall be made where the patent is issued. The effect is that since it is often more profitable to make the higher grade chemicals abroad than in the United States, foreign labor and capital are protected to the injury of the labor and capital of this country. Hence, while the manufacture of acids, alkalies, fertilizers, and other heavy chemicals has greatly increased in the United States, this is mainly because of transportation

[^13]costs. The tariff on alkalies has certainly added much in the development of this branch because it has been to the interest of the foreign patentees to establisb alkali works here either by their own capital or by granting licenses to others. When, as in the case of dyestuffis and other high-grade chemicals, the transportation cost is a minor consideration, the tariff has little effect in inducing the domestic manufacture of a foreign article protected by a local patent. So long as the demand for his article insures a sufficient price, the foreign patentee can make it abroad and ship it here, paying whatever duty may be demanded; by simply refusing to granta license for manufacture here, he is secured from all competition. Other countries may have refused to grant him a patent, which may even bave become void in the original country, and the article be made by others; yet under our laws, he, and be alone, may vend the article here. The English, who are suffering from a similar condition of their patent laws, are bestirring themselves to have the situation ameliorated, and a special conimittee of the Society of Chemical Industry has lately made a report upon this subject. ${ }^{3}$ The effects of granting British patents to foreigners without requiring domestic operation are thus stated:

1. We foster foreign labor and assist in the development of foreign industries.
2. As the introduction of a new article gencrally replaces another article hitherto in use, we throw out of employment a certain number of our own workpeople.
3. Very frequently the foreign patentee has either not succeeded in getting a patent in his own country or such patent has already run its course there, whilst his British monopoly remains in full force. The result is that we stifle invention and increase the prices of a number of articles by closing the doors to our own inventors and manufacturers, whilst our foreign competitors may make and vend abroad the patented article without any restriction or payment of royalty.

Several examples are given of the practical working of the English patent laws. Artificial alizarine was invented in Germany but no patent was granted there. English patents were, however, granted, with the result that the patentees, having the monopoly of the English market anyhow, simply made it in Germany, as being cheaper so to do, and built up an enormous trade which was the foundation of Germany's present supremacy in the manufacture of coal-tar dyestuffs. Again, the production of artificial indigo is destroying the natural indigo industry of India and producing much distress there. England, which is thus a heavy loser, can do nothing to offset this loss, because the patent monopoly granted to the foreigner enables him to supply the English market on his own terms.

Every country, save England and the United States, has a provision in its patent laws that a patent can be revoked if not worked in the country granting the patent. Moreover, the French patent law has, in addi-

[^14]tion, the following provision, article 32, section 3, "The patent shall be revoked if the patentee has introduced into France articles of manufacture made abroad and similar to those which are protected by the patent." In this way France provides that, in giving to anyone the protection of her patent laws, her domestic industry shall be fostered, and not, as in England and the United States, often injured and sometimes destroyed. Instances have occurred in this country where chemical substances once made here are no longer produced, because the foreign manufacturer, protected by his American patent, has been able to make the domestic manufacture unprofitable.
The report under consideration states that "There is but one remedy for this vexed question which is both simple and efficacious, viz, to enact that 'A patent may be revoked if it be proved that an article patented is worked abroad and not in the United Kingdom, the onus of proof that the patent is worked, bona fide, in this country, resting with the patentee or licensee.'" Some such provision as this in the laws of the United States would materially aid the development of our American chemical industry.

In order to bring out the relations existing between the growth of the chemical industry and of the patents which have been granted in this country covering inventions in this industry, an abstract has been made of all chemical patents issued from the founding of the United States Patent Office up to the year 1900, and this Digest of Chemical Patents is given as an appendix to this report. It was prepared by Mr. Story B. Ladd, M. E., whose experience as a patent attorney especially fitted him for this duty, and he elsewhere shows the effect which the granting of these monopolies has produced on the industries of the United States.

The Nineteenth century, the closing year of which is marked by the taking of the Twelfth Census, will always be a notable one in the history of chemical manufacture, since practically all of its present working processes have had their origin and development during this period. Indeed, chemical manufacture, as such, can hardly be said to have existed until the continuously working chamber process for sulphuric acid was introduced, about 1810, while the Leblane soda process, although discovered by him in 1789 , failed to get a footing until 1814, when it was introduced into England by Losh. Thereafter the development of chemical technology proceeded rapidly, and now, at the end of the century, we find that the great Leblanc process is approaching extinction through the inroads of the later ammonia-soda process and the electrolytic chlorine process, while the chamber process for sulphuric acid appears to be about to meet a formidable competitor in the recently developed contact process.
As the nature and working conditions of this process have been only lately made public, and as its general introduction will have such a profound effect upon industrial chemistry, especial attention is given to it in the next
section. Moreover, contact action or catalysis continually occurs in chemical operations, has already numerous applications, and the number is continually increasing.
By catalysis in meant that peculiar action of a substance by which it can, when in contact with two or more substances capable of reacting upon each other, either cause the reaction, or, if the reaction is already occurring, greatly diminish the time required for its completion. At the same time, the catalytic substance, so far as respects the nature of the ultimate products, appears to have undergone no change. Hence, Ostwald's definition, "A catalytic agent is such material as affects the velocity of a chemical reaction without itself appearing in the final product." A very familiar example of catalytic action is the effect of adding manganese peroxide to potassium chlorate when making oxygen. Either of the substances gives off oxygen when heated to a temperature sufficiently high, but when mixed the reaction is effected at a much lower temperature and with much less danger of explosion. When the reaction is completed, examination of the residue shows that only the chlorate has lost its oxygen, becoming chloride, the peroxide being apparently unchanged. It is probable that the latter has taken full part in the reaction, giving off oxygen and taking it up again, but, looking only at the final result, it appears to have been effective merely by its presence.

The action of the niter gas in the sulphuric acid chamber is also catalytic. The union of sulphur dioxide and atmospheric oxygen can and does take place without the help of the niter gases, but the unassisted reaction is very slow and incomplete. The niter gases are oxygen carriers; the oxygen which they contain is in a much more active condition than that of the air, so that they oxidize the sulphur dioxide but replace the loss by taking up oxygen from the accompanying air. As water, in the form of steam, is always present in this reaction, the final product is sulphuric acid, which, in theory at least, is free from oxides of nitrogen, the niter gas remaining in its original active condition. In practice, however, a certain amount of this gas is reduced to inactive forms and this loss must be made up by addition of fresh gas, so that for every hundred parts of acid produced, a certain quantity of niter is used up, but this quantity, being theoretically nothing, depends upon the care of the management and other conditions.

Other applications of catalysis are met with in the Deacon chlorine process, the manufacture of chlorates, aldehydes (the formaldehyde lamp for disinfection being an example), acetone, carbon tetrachloride, and many other organic products, the entire subject being one of great and increasing importance.

Group I.-Acids.

Sulphuric Acid.-The manufacture of sulphuric acid has practically doubled during the past decade, the increase of product resulting more from the expansion of
works than from an increase in their number. The following table gives a comparison between the output for the census year of 1900 and that for 1890 . The figures for quantity and value of 50° acid include acid made and consumed in the works in the production of fertilizers and other products.

COMPARISON OF SULPHURIC ACID PRODUCED IN 1890 AND 1900.

strength, Bacme.	1900-127 establishments.			1890-105 ESTABLISHMENTS.		
	Acid produced.			Acid produced.		
	Pounds.	Value.	Value per ton.	Pounds.	Value.	Value per ton.
Total..	2,695,460,489	\$14,247,185		1,384, 776, 962	\$7,679,473	
	$\begin{array}{r} 1,906,878,903 \\ 344,023,131 \\ 754,558,455 \end{array}$	$\begin{array}{r}7,965,832 \\ 246,284 \\ \hline\end{array}$	$\$ 8.35$ 14.47	$1,009,863,407$ $20,379,908$	$4,307,067$ 122,940	$\$ 8.53$ 12.06
66°.		6,035, 069	16.00	354, 533, 657	3,249, 466	18.33

The figures of quantity and value of the 50° acid for both periods include the amount of this acid made at certain works and consumed there in the manufacture of fertilizers. In addition there is given the quantity and value of the acid consumed at works in 1900 for making mixed acids for explosives and for other purposes. The acid used for fertilizers was really 50° or chamber acid. The rest of the acid included for 1900 was of various strengths, but for purposes of comparison these have been reduced to 50°. In reducing 66° acid to 50°, the quantity is multiplied by 1.50 , and for 60° acid, multiplied by 1.25 , these factors being closely approximate to the usual strengths.

	1900.		1890.	
	Pounds.	Value.	Pounds.	Value.
Total..............	2,097,268,570	88, 819,526	581,536, 200	\$2, 480,495
Fertilizers................ Other purposes	$\begin{array}{r} 1,578,718,000 \\ 518,550,570 \end{array}$	$\begin{aligned} & 6,591,147 \\ & 2,228,379 \end{aligned}$	$\begin{gathered} 581,536,200 \\ \left({ }^{1}\right) \end{gathered}$	$\begin{gathered} 2,480,495 \\ (1) \end{gathered}$
${ }^{1}$ Not given.				

The census report for 1890 also gave the total acid production reduced to a uniform strength of 50°. Doing this for the acid production of the present census gives the following comparison:

Total acid as 50° :

The census of 1870 was the first at which separate figures were given for sulphuric acid, but only the number of establishments and the total value of product were given. In 1880 the total quantity in pounds was given, but no separation into the various strengths was made, so that the returns are not strictly comparable.

Even with these restrictions a comparison is interesting as showing the growth of this branch of manufacture.

Year.	Number of works.	Quantity of products.	Value of products.
1870	4	${ }^{(1)}$) 4	
1880	49	$308,765,432$ $1,384,776,972$	$3,661,876$ 7,679
1890	120	2, $1,695,460,489$	14,247, 185

The first manufacturer of sulphuric acid in the United States appears to have heen Mr. John Harrison, of Philadelphia, who in 1793 had a lead chamber capable of producing 300 carboys of acid per annum. ${ }^{1}$ The business proving very remunerative, he built, in 1807, a lead chamber 50 feet long, 18 feet wide, and 18 feet high. This was a large chamber for the time, and was capable of making nearly half a million pounds of sulphuric acid annually, the price of the acid being then as high as 15 cents a pound. Mr. Harrison was also the first person in the United States to use a platinum still for the concentration of the acid, this having been up to then done in glass, a very precarious and dangerous operation. This first still was made in 1814 by Dr. Eric Bollman, and was at once put in use. It weighed 700 ounces, had a capacity of 25 gallons, and was in continuous use for fifteen years.
Powers \& Weightman, of Philadelphia, report that they began the manufacture of sulphuric acid in 1825, while a letter from Mr. Nicholas Lennig, containing much valuable information, states that about 1829 his father, the late Mr. Charles Lennig, erected a sulphuricacid plant which " was so successful that the then existing New York Chemical Company went into liquidation, and put the funds realized therefrom into a banking company now well known as the Chemical National Bank."
It also appears that, in 1829, the manufacture of sulphuric acid was begun in Baltimore by two companies, the Maryland Chemical Works and the Baltimore Chemical Manufactory. The industry extended, and the figures given at the census of 1870 of 4 works, with a total product of the value of $\$ 212,150$, are undoubtedly erroneous. Of the works reporting acids as principal products at the census of 1900,16 reported starting in business prior to 1870 , while some of the fertilizer factories were making acid prior to that time. While nothing positive can now be said on this subject, it is not unlikely that in 1870 there were at least 25 sulphuric acid works in operation, with a product of over a million dollars in value. Such a supposition is certainly more reasonable when compared, as above, with the figures of subsequent censuses, since everyone, at all conversant with this subject, is well aware that between 1870 and 1880 there was no such outburst of energy in this branch of industry, as would be indicated by the

[^15]figures of the respective years. Moreover, the figures of value for the total chemical industry, so far as they can be compared, were, for $1870, \$ 60,998,214$, and for $1880, \$ 89,388,172$; while the figures for 1890 were $\$ 161,067,190$. The comparatively small increase of the figures of total value of product for 1880 over those for 1870 is what would be expected in the slow uphill course of business between 1873 and 1880 , while the next decade opened with a revival which, with occasional backsets, beld good until 1893.
The total number of sulphuric-acid works reporting at the census of 1900 was 127 . Of these, 31 burned brimstone only, 79 burned pyrites only, while 17 reported that they used both brimstone and pyrites.

Brimstone Plants.-Seven brimstone-burning plants made 66° acid, burning $18,042,072$ pounds of brimstone and producing $51,20 \pm, 775$ pounds of 66° acid, or an average of 279 parts of 66° acid (equivalent to 419 parts of $50^{\circ} \mathrm{acid}$) to 100 brimstone, the figures for each plant running from 308 to 260 parts of acid. Thirteen brimstone plants, making 50° acid only, used $35,955,680$ pounds of brimstone and produced $140,534,027$ pounds of 50° acid, an average of 391 parts of acid to 100 parts of brimstone, the figures running from 446 to 321 parts of acid for 100 parts of brimstone. Two works reporting, respectively, a yield of 321 and 334 parts, stated that they were using a very low grade of brimstone, which was obtained under advantageous conditions. Taking the 20 works together and the whole product as 50° acid, it is found that the grand average is 402 parts of acid for each 100 parts of brimstone.

Pyrites Plants.-Nine pyrites plants, making 66° acid only, consumed $248,026,399$ pounds of pyrites and produced $311,924,674$ pounds of 66° acid, an average of 133.8 parts of acid (equivalent to 200.7 parts of 50 acid), for 100 parts pyrites. Thirty pyrites plants, making 50° acid only, consumed $425,050,296$ pounds of pyrites and produced $889,222,560$ pounds of 50° acid, an average of 209 acid to 100 pyrites, the figures running from 234 to 160 parts. The grand average for the 39 works is 206 acid to 100 pyrites.

The figure 160 is given by 3 works burning low grade domestic pyrites, while the highest figure, $23 \pm$ parts acid, is furnished by a new model plant burning pyrites with an average content of 50.05 per cent of sulphur and using 1.26 parts of nitrate of soda to every 100 parts of pyrites. Other works give, per 100 pyrites, 224 acid, 1.66 niter; 213.4 acid, 2.13 niter, while a large combination reports that it allows 2.5 parts of niter and expects a yield of 225 parts of 50° acid. The brimstone works show approximately a consumption of 4.29 parts of niter per 100 brimstane. In considering these figures, it must be remembered that the 66° acid does not average more than 93 per cent of $\mathrm{H}_{2} \mathrm{SO}_{4}$, corresponding to $65.6^{\circ} \mathrm{B}$. Similarly, the 50° acid runs from 52° to $48^{\circ} \mathrm{B}$., and even lower, and the chamber acid made and used in fertilizer works is usually under
50°. The continued use of brimstone in this industry in the Uuited States is remarkable. as practically no brimstone acid is now made in England or on the continent of Europe.

The Cintact Process.-In 1900, at the meeting of the German Technical Chemists at Hanover, Clemens Winkler, the founder of the contact process, as we now have it, delivered an address entitled "The Development of the Sulphuric Acid Industry During the Nineteenth Century." In this paper, published in Zeitschrift fur Angewandte Chemie, 1900, page 731, he gives a short review of the history and present status of the chamber process, and then shows the lines he followed in his celebrated research upon contact action in the production of sulphur trioxide, which he made public in 1875. He then speaks of the subsequent development of this process, and concludes by impressively stating that the contact process has already demonstrated its ability to conmpete with and finally to supersede the chamber process. The subject is so important that a summary of this paper is given here, and, following it, an abstract of the very raluable paper by Knietsch upon the derelopment of the contact process in the works of the Badische Anilin und Soda Fabrik to which Winkler calls attention. This paper is very recent, having been published in the "Berichte der Deutschen Chemischen Gesellschaft" for December, 1901, and is so full of valuable information that its presentation here, in abstract, seems appropriate.

Winkler stated that the only acid known to the ancients was vinegar, and that the first indication of the recognition of any other acid is when Geber, in the Eighth century, speaks of the "spirit" which can be expelled from alum and which possesses solvent powers. Albertus Magnus, Thirteenth century, speaks of a "spiritus vitrioli Romani" which can only have been sulphuric acid, while Basilius Valentinus, Fifteenth century, describes its preparation not only from copperas, but also by burning together sulphur and saltpeter, pointing out very distinctly not only that sulphur, in burning, produced some sulphuric acid, but also that the yield is much increased if saltpeter is added.

> Dormaeus, in 1570, described its properties accurately; Libavius, 1595, recognized the identity of the acids from different processes of preparation; Angelus Sala, 1613, pointed out the fact, which had sunk into oblivion since Basilius, that sulphuric acid can be made by burning sulphur in moist vessels; after that time it was prepared by the apothecaries in that way. ${ }^{1}$

The addition of saltpeter was introduced by Lefevre and Lemery, 1666, and Ward, in London, 1740, began to make sulphuric acid on a large scale in glass vessels. The lead chamber was first used by Roebuck, of Birmingham, who, in 1746, erected such a chamber 6 feet square. The first chamber erected in France was at Rouen, in 1766. At this place, in 1774, De la Follie introduced the important improvement of the intro-

[^16]duction of steam into the chambers during the combustion of the brimstone. In 1793 Clement and Desormes showed that the chambers could be fed by a continuous current of air, by which much saltpeter could be saved. By this time the general principles of sulphuric-acid making were established, and by the end of the century there were already six or eight works in Glasgow alone, while the price of a kilogram (2.2 pounds), which, in 1740 , in Germany, was about \$1.12, sank in 1799 to 22 cents, and is now (1900) about three-fourths of a cent.
Lampadius (Grundriss d. tech. Chemie, Freiberg, 1815, p. 3) has given a description of a sulphuric-acid works and the manner of operation at the beginning of the Nineteenth century. From this it is learned that a mixture of five parts of sulphur and one part of niter was burned in successive charges in the lead chamber, steam being admitted at the same time and air being let in when deemed necessary. The acid obtained was weak and had to be concentrated in glass retorts up to about 1.80 sp . gr., while the yield was less than half of what would be obtained at present.

The proper construction of lead chambers involved great difficulties, it being almost impossible to make them gas-tight, until Debassyns de Richemont invented autogenic soldering. The chamber described by Lampadius contained about 300 cubic meters (10,594 cubic feet), but the dimensions have been increased until now the biggest chambers contain 4,000 to 5,000 cubic meters (140,000 to 176,000 cubic feet). The last figures appear to be too large, and the present practice is not to increase the chamber space, but to supplement the surface by means of other devices, such as the LungeRohrmann plates.

Finally, in the earlier years of the Nineteenth century, the chamber process became a continuously working one, and thus was enabled to be what it now is, the foundation of the chemical industry and the measure of its extent. Improvements rapidly followed. The investigations of Gay-Lussac, on the recovery of the nitrogen oxides from the escaping gases, have given us the tower which bears his name, while the form of tower invented by Glover furnishes an efficient denitrator for the acid flowing from the Gay-Lussac tower. The simultaneous use of these two towers is a necessity in any modern, rationally managed establishment.

The use of pyrites, in place of brimstone, was firstintroduced in 1836, on a manufacturing seale, hy Wehrle, in Nussbaum, near Vienna, and by Brem, in Bohemia. In 1862, Spanish pyrites began to be used in England, and by 1868 the use of brimstone in English works had almost entirely ceased, and now very little brimstone is used in any country of Europe for the manufacture of sulphuric acid, while the consumption in the United States for this purpose is still quite large, amounting, in the census year 1900, to $125,427,000$ pounds, or about one-tenth of the total weight of the pyrites so used.

Attempts to use the roaster gases from smelting works were made in 1856-1858, and in 1859 a set of chambers using such gases was started at Oker. At present the smelting works in Germany produce (1899) 186,000 tons of $\mathrm{H}_{2} \mathrm{SO}_{4}$, about 22 per cent of the total production. As elsewhere, the principal use of this acid is in the manufacture of superphosphate, of which 500,000 tons were made in Germany in 1899.
The methods of concentration of the weaker acids have been greatly improved, the increasing cost of platinum making it necessary to exercise the greatest economy. Platinum, which in 1870 cost about $\$ 150$ per kilogram, cost in 1900 over $\$ 700$ per kilogram, and the price is now little less than that of gold. Heræus, in 1891, introduced the use of gold-plated platinum stills, which were found to be a great improrement.
Fuming sulphuric acid, or Nordhausen acid, as it is also called, is a mixture of sulphur trioxide (or sulphuric anhydride), with a varying proportion of monohydrated sulphuric acid. When the relation is about one part of SO_{3}, to one part of $\mathrm{H}_{2} \mathrm{SO}_{4}$, it is solid at ordinary temperatures, melting at $35^{\circ} \mathrm{C}$., and is the "solid sulphuric acid" of the trade. As it is obtained by heating copperas, alum, or other metallic sulphates, it was the first forn of sulphuric acid known, and the Pilsen acid works are already mentioned in 1526. This industry was destroyed during the Thirty Years War, but was revived at Nordhausen. In 1778 Starck reestablished the industry in Bohemia, where, on account of the cheapness of labor and of the necessary vitriol stone, his successors enjoyed a practical monopoly of this substance, until the increasing demand for it, in the manufacture of alizarin, and for many other purposes, led to researches which have given methods by which it can be made far more cheaply than by the distillation of vitriol stone, since when this is used only small charges can be worked, because the larger the charge, the higher the heat required, and the greater the loss of acid through the consequent splitting up of sulphur trioxide into sulphur dioxide and oxygen.

That these two gases could be made to recombine by the contact action of platinum and other substances, had long been known and methods of utilization proposed, but nothing of importance had been accomplished until Clemens Winkler published, in 1875, the results of his researches. In the beginning of his work, Winkler heated the vitriol stone in much larger quantities, without regard to the decomposition of the trioxides, passed the gases over platinized asbestos, thus recombining the SO_{2} and O , and then absorbed the trioxide in strong sulphuric acid. The results were very satisfactory, but it was necessary to find a material cheaper than the ritriol stone. As the course of the work indicated that, for the best results, the SO_{2} and O should be in stochiometrical proportions, sulphuric acid was used, because when heated sufficiently high it breaks up thus:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{SO}_{2}+\mathrm{O}+\mathrm{H}_{2} \mathrm{O} .
$$

The water vapor was easily removed and the residual gases remained in the exact proportion needed.

The need of a still cheaper material than sulphuric acid becoming manifest, Winkler began to experiment with the roaster gases of the Freiberg Smelting Works, and in time it was found that in this way two-thirds up to three-fourths of the SO_{2} in these gases could be converted into SO_{3}. Still there were many difficulties in the way of commercial success, such as purification of the gases, etc., so that Winkler was unable to publish his further results for many years.
In the meantime the matter was taken up by the Badische Anilin und Soda Fabrik at Ludwigshafen on the Rhine, and after years of unwearied scientific investigation, in which no expense was spared, this great corporation has succeeded in solving the problem and has reaped a rich pecuniary reward.

What the commercial success of the contact process means for the future of industrial chemistry may best be expressed in the words of Winkler, who, having stated that at Ladwigshafen the new process can compete with the lead-chamber acid, goes on to say: "Therefore we can anticipate that, in no distant time, the lead chambers of to-day will be dispensed with, a condition amounting to a complete revolution in the domain of sulphuric-acid manufacture." Such a statement from so authoritative a source is a sufficient warrant for the presentation in this place of the following abstract of Knietsch's paper:

THE CONTACT PROCESS FOR THE MANUFACTURE OF SULPHURIC ACID. ${ }^{1}$

I. Historical.-The production of sulphuric acid is a matter of the greatest importance, as it is not only the foundation of the inorganic heavy-chemical industry and is used for many other purposes, but also has lately become a most important material in the organic dye-stuff industry, especially in the production of alizarine colors and of synthetic indigo. The contact process is causing a complete revolution in the methods of manufacture of sulphuric acid; hence an account of its historical development and present status should be of great interest. The historical development of this process may be divided into four periods.

First period: Phillips, in 1831, discovered the catalytic action of platinum in hastening the union of SO_{2} and O to form SO_{3}.

Second period: Wohler and Mahla, in 1852, showed that many other substances besides platinum possess catalytic properties, and explained the character and course of the reaction.
Third period: Winkler used definite gas mixtures for the production of sulphuric anhydride, as it was then considered that only in this way could good quantitative yields be obtained.

Fourth period, the present one, is noted by the successful use of the furnace gases directly.

[^17]The investigations of the third period were directed toward the production of fuming sulphuric acid, which was then very expensive, while the investigations of the first and second periods had the same end as the work of the present time, that is, the replacement of the chamber process by improved methods.

The catalytic action of platinum was discovered by Humphry Davy in January, 1818, who showed that platinum wire, when warmed and then introduced into a mixture of oxygen (or air) with H, CO, ethylene, or cyanogen, became incandescent, and that the gas mixture oxidized, usually gradually, but often rapidly.

Edmund Davy, in 1820, discovered that finely divided precipitated platinum, when moistened with alcohol and exposed to the air, becomes incandescent and the alcohol burns.

Doebereiner, in 1822, found that finely divided platiцum, obtained by heating ammonio-platinic chloride, aded in the same manner, and, in 1824, that such platinum could ignite a stream of hydrogen, when this impinged upon it in contact with air, and utilized this discovery in bis celebrated "lighting machine."
The honor of having first utilized this catalytic action, for the production of sulphur trioxide, is due to Peregrine Phillips of Bristol, England, who, in 1831, took out an English patent for his discovery, and, in 1832, Doebereiner and Magnus each confirmed the observations of Phillips. Although this discovery attracted much attention, nothing practical followed until 1848, when Schneider exhibited a working model of an apparatus, which produced sulphuric acid through the contact action of a specially prepared pumice. This alleged discovery was presented with great claims, but never was able to show a success, although wonderful results were confidently predicted. The same may be said of the method of Richard Laming, who also used a contact mass of pumice, prepared by boiling it in concentrated sulphuric acid, washing it in ammoniacal water, drying, and then impregnating it with about 1 per cent of manganese dioxide, finishing by heating the mass in a retort to 600° and allowing it to cool out of contact with the air. Here we note for the first time, the use of another contact substance which, like platinum, can exist in varions grades of oxidation, namely, manganese.

Especially noteworthy in this connection is the English patent of Jullion, 1846, because here, for the first time, the use of platinized asbestus as a contact mass is claimed. In 1849, Blondeau passed a current of a mixture of sulphur dioxide, steam, and air through a highly heated tube containing ferruginous, argillaceous sand and obtained sulphuric acid, while, in 1852, Wohler and Mahla found that oxides of iron, copper, and chrome also work catalytically upon a mixture of SO_{2} and O , a mixture of cupric and chromic oxides being especially efficacious. These investigators gave, moreover, a correct explanation of this catalytic action; they found, namely, that cupric and ferric oxide, when heated in a current of sulphur dioxide free from oxygen, became
reduced to cuprous and ferroso-ferric oxides with simultaneous formation of sulphuric acid which, however, ceased as soon as the reduction of the oxides was completed. On the other hand, chromic oxide, under similar conditions, remained entirely unaltered and no sulphuric acid was produced, while metallic copper, in spongy form, exerts no action upon a mixture of 2 vol . $\mathrm{SO}_{2}+1$ vol. O at ordinary temperatures, but, when heated, cupric oxide is first formed, and then sulphuric acid.

They also call attention to the fact that this union of SO_{2} and O can take place in the complete absence of $\mathrm{H}_{2} \mathrm{O}$.

Upon these important discoveries are based the later researches of Lunge and others upon the catalytic action of pyrites cinder in causing the formation of SO_{3}. Quartz has also been recommended for this purpose, as have also platinized asbestus, platinized pumice, and even platinized clay.

Hundt, 1854 , passed the hot roaster gas through a flue, filled with quartz fragments and heated by the gas, expecting to convert the greater part of the SO_{2} into sulphuric acid with further treatment of the residue. The work of Schmersahl and Bouk, 1855, followed the same lines, as did also the method of Henry Deacon, which was patented in 1871, and may be considered as closing the second period.

So far, not only had all attempts to supersede the chamber process failed, but also no practical method for the production of fuming sulphuric acid had been devised. In 1875, Clemens Winkler published his celebrated researches upon the formation of sulphuric anhydride, for which industrial chemistry must always be greatly indebted to him, as originating successful methods for the economical production of the fuming sulphuric acid for which, as it has become cheaper, many new uses have been discovered.

Winkler concluded, as a result of his experiments, that the SO_{2} and O should always be present in the molecular proportion of $2: 1$, any excess of either gas having a deleterious influence upon the completeness of the reaction, and he obtained this desired proportion by simply breaking up ordinary hydrated sulphuric acid into $\mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}$, and O , removing the $\mathrm{H}_{2} \mathrm{O}$, and then recombining the SO_{2} and O by means of appropriate contact snbstances, the preparation of which he greatly improved by utilizing the reducing action of formic acid. All subsequent work in this branch continued to follow the lines laid down by Winkler; hence, while little progress was made toward superseding the lead chamber, the manufacture of fuming sulphuric acid became highly developed.
II. Knietsch's Work-Purification of the Gas.-This work was undertaken by the Badische Anilin und SodaFabrik to determine if a complete conversion of the SO_{2} in roaster gas was as practically feasible as it is theoretically possible.

It is well known that the outgoing gases of the chamber process still contain 6 volume per cent of oxygen, and that the roaster gas employed in the contact work contained a similar excess. Hence it was difficult to understand why, in the latter process, the yields were not nearer that of the former.
Experiments showed that when pure SO_{2} was used the yield was close to the theoretical, even when a very large excess of O was present, which was contrary to the accepted views of Winkler.

When roaster gas was used in laboratory experiments, it was found that when this was carefully cooled, washed with sulphuric acid, and completely purified before it was allowed to enter the catalytic tube, the results were very satisfactory, nor could any diminution of the efficiency of the contact mass be noted eren after several days' use. It was therefore supposed that the problem had been solved, and arrangements were made to carry on the process on full working scale.
It was, however, soon found that in practice the contact mass gradually lost all of its efficiency, no matter how carefully the gases were cooled and purified. Extended laboratory investigations were undertaken to determine the cause of this inefficiency, and it was ultimately discovered that there are substances which, when present in the gas, even in excessively small quantities, injure the catalytic properties of platinum to an extrao:dinary degree. Of all of the substances which may be found in roaster gas, arsenic is by far the most deleterions, next mercury, while $\mathrm{Sb}, \mathrm{Bi}, \mathrm{Pb}, \mathrm{Fe}, \mathrm{Zn}$, etc., are injurious only so far as they may coat the contact mass.
It was also found that as the white cloud of sulphuric acid which was present in the gas contained arsenic, the complete removal of this was necessary, although such removal had always been considered an impossibility. This was, however, finally accomplished after an enormous expenditure of time, labor, and money, so that, in the end, by extended washing and filtration, the gases were obtained in a condition absolutely free from all impurities. (D. R. P. 113933, July 22, 1898.)

Slow cooling of the gas was found to be absolutely necessary as a preliminary to its purification. It is a fact, the cause of which is not yet clearly known, that the removal of the white cloud is rendered far more difficult if the gas is rapidly cooled.
To insure slow cooling, a system of iron tubes was used because it was supposed that, as the sulphuric acid in the gas was in a so highly concentrated condition, any action upon the metal would yield SO_{2} only. It was now found that although the contact mass remained active for a much longer period, it still gradually lost its power, no matter how carefully the gas was purified. The cause of this was ultimately found to be a gas containing arsenic, probably hydrogen arsenide, produced by the action of the acid upon the iron by which hydrogen was evolved, although the formation of this gas
under such conditions had always been considered impossible. As soon as the cooling apparatus was so arranged that no condensed acid could attack the iron, the trouble from this source entirely ceased.

A final difficulty occurred in the occasional formation of a faint cloud of unburnt sulphur which contained arsenic. The cure for this was found to be a proper mixing of the hot gases, thus insuring complete combustion, and this mixing was effected by means of steam, which is also beneficial, by diluting the strong sulphuric acid present in the gas, so that it did not condense in the iron pipes of the first portion of the cooling apparatus, and attack them; when condensing in the lead pipes of the remainder of the apparatus, the acid was too weak to injure the lead. The use of steam also prevented the formation of hard dust crusts, which tend to stop up the pipes.
III. Cooling of the Gases.-The next important element in the successful carrying out of the contact process is the effective and economical utilization of the heat developed by the reaction which is exothermic.

$$
\mathrm{SO}_{2}+\mathrm{O}=\mathrm{SO}_{3}+22600 \mathrm{cal} .
$$

The utilization of this heat had been suggested by Lunge, but only in the case of the use of a mixture of pure SO_{2} and air, containing about 25 per cent of the former. On the other hand, it was universally considered that it was necessary to employ extra heat when the much weaker roaster gases are to be treated. Hence the apparatus used in this work was furnished with special heating arrangements so that the tubes could be kept at red heat, the tubes being arranged vertically like those of an upright boiler. Small, vertical tubes are much superior to the larger, horizontal ones, originally employed, as economizing the expensive platinized asbestus and insuring a more certain contact of the gases with the mass. The proper filling of the tubes with the asbestus is a matter of importance; it must be so done that no portion of the gas can pass through a tube without coming in contact with the mass, while the mass must not offer much resistance to the passage of the gas. Owing to the nature of the asbestus, this latter difficulty is likely to occur, but can be avoided by the simple device of packing the asbestus in successive layers, separated by perforated diaphragms sliding upon a central rod, but kept apart at regular intervals. In this way all of the tubes can be similarly and evenly packed.

As soon as this apparatus was started in the ordinary way at low red heat, the surprising discovery was made that not only was the output of acid increased, but that the strength of the gas current could be made greater when the tubes, instead of being heated artificially, were, on the contrary, cooled by the admission of cold air. This discovery, a contradiction of what bad been considered correct practice, gave a rational method of work; i. e., the apparatus must be systematically cooled to obtain the maximum effect and production. As now
operated, the tubes are cooled by the cold, purified gases, which thus become beated to the proper temperature for the reaction. In this way the following advantages are gained:

First. Overheating of the apparatus is avoided, and thus a yield of 96 per cent- 98 per cent of the theoret-ical-is obtained.

Second. The iron parts of the apparatus are protected by this cooler working, and are therefore more durable.

Third. The contact mass does not become overheated and its efficiency remains unimpaired.

Fourth. The absolute efficiency of the contact mass, and of the entire apparatus, is greatly increased because the rapidity of the gas stream can be increased, and the contact mass be maintained at the most efficient temperature.

Another important discovery is that the reaction proceeds at atmospheric pressure, since it was formerly supposed that compression of the gases was necessary to overcome the hindrance of the indifferent gases present. In fact, if the other conditions are right the reaction proceeds almost quantitatively at atmospheric pressure. This is very important since, if this method is to compete with the chamber process, every unnecessary expense must be avoided.
IV. Absorption of the Produced Anhydride.-The affinity of sulphuric anbydride for water is greaterthan for concentrated sulphuric acid, as shown by the relative amount of heat developed during the absorption; hence it might be expected that the easiest and most complete absorption of anhydride from the contact process would be effected by the use of water. It is found, however, that oil of vitriol containing 97-99 per cent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is much more effective than either water or sulphuric acid of any other strength. The absorbing power of the acid at this degree of concentration is so great that a single absorption vessel is sufficient for the removal of the SO_{3} from a very rapid current of gas, provided that the strength of the acid be kept uniformly between the above limits by a steady inflow of water or weak acid, and a proportional outflow of the excess of strong acid thus produced.

Sulphuric acid, at this particular degree of concentration, possesses certain marked qualities. Its boiling point is a maximum, so that if a weaker acid is evaporated, it loses water or weak acid until the residue attains a strength of 98.33 per cent $\mathrm{H}_{2} \mathrm{SO}_{4}$, at which point it distills without further change at a constant temperature of about 330°. Similarly, a stronger acid gives off anhydride until this constant strength is reached. Again, at this particular degree, the vapor pressure is at its minimum, the specific gravity is at the maximum, the electrical resistance suddenly rises, while the action on iron decreases considerably.

When fuming sulphuric acid is to be made, one or more absorption cells must precede the regular appa-
ratus. For these, cast iron, which is quite suitable as the material for the other vessels, becomes unavailable, because, although it is only slomly attacked, it, what is worse, becomes fragile and eren explodes. This appears to be due to the fuming acid diffusing into the iron and then breaking up into SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$, thus causing a condition of internal stress. Wrought iron is attacked by fuming acid containing less than 27 per cent of SO_{3}, but when the contents of anhydride exceeds this, the acid has practically no action upon wrought iron, and vessels of this material can be used for years without sensible corrosion.
V. Theory of the Contact Process.-The results of many experiments showing the influence upon the reaction of variations in the temperature, the composition of the gases, the rate of flow (or the proportion of contact substance over which the gas passes) are given in the form of curves, and discussed, yielding the following results:

1. Complete conversion of the SO_{2} into SO_{3} occurs only when there is at least twice as much oxygen present as the reaction formula indicates. When using the gas obtained from the roasting of pyrites, and which contains about 7 vol. per cent of $\mathrm{SO}_{2}, 10 \mathrm{vol}$. per cent of O , and 83 vol . per cent of nitrogen, the nitrogen is absolutely without influence upon the reaction, except as diluting the gas and reducing the output.
2. The completeness of the reaction depends solely upon the temperature and not upon the nature of the contact substance. The reaction begins at about 200°. As the temperature rises, so does the degree of conversion, until, at about 400°, a nearly complete (98 to 99 per cent) conversion of the SO_{2} is feasible. Any further rise in temperature is injurious, the degree of conversion falling so that at about 700° only about 60 per cent can be converted, while at about 900° the reaction ceases entirely.
3. The nature of the contact substance has no influence upon the completeness of the reaction, but, for practical results, a substance must be employed which shows a high degree of efficiency at the proper temperature of 400°. Substances, which require a higher temperature to develop their greatest efficiency, are evidently unsuited, since, as shown abore, the degree of conversion falls with the rise in temperature. Up to the present time only one substance fulfilling the necessary conditions is known, and that is platinum. None of the other metals of the platinum group approaches it in efficiency.
This valuable paper concludes with a series of tables, giving the results of exbaustive sets of determinations of the following properties of sulphuric acid, and of fuming sulphuric acid of various strengths from 1 to 100 per cent of SO_{3} :
4. Melting point. 2. Specific gravity. 3. Specific heat. 4. Heat of solution. 5. Electrical resistance. 6. Action upon iron. 7. Boiling point. 8. Vapor pres-
sure. 9. Viscosity. 10. Capillarity. 11. Table giving the percentage of free SO_{3} in a fuming sulphuric acid when the total contents of SO_{3} is known.
Production of Sulphur Trioxide.-The growth and present magnitude of the operations of this process in the works of the Badische Anilin-und-Soda-Fabrik are shown by the following figures:

Sulphur trioxide produced in-	Tons.
1888	18,500
1894.	39,000
1899	89,000
1900.	116,000

It will be seen from the foregoing, that this process has long passed the experimental stage, and now that the general couditions of successful operation are known, its speedy adoption in this country is to be expected. The advantages are many: First, no expense of construction and maintenance of the entire chamber system, including the Gay-Lussac and Glover towers and the steam and uiter plant. Second, no expense for niter and for the sulphuric acid used therewith; although the resulting niter cake can be utilized, it is rarely a desirable product. Third, the acid produced is pure, strong oil of vitriol, requiring no concentration for sale or use. Concentration of chamber acid to high strengths requires the use of platinum stills, which thereby lose in weight, the dissolved platinum being irrevocably lost. The rate of loss is much reduced by previous purification of the acid, but is always a considerable item of cost. Fourth, the contact acid is also free from arsenic, lead, or iron salts. The fundamental difference in the character of the reactions in the chamber process and of those in the contact method indicates the possibility of substantial improvements in the methods of roasting. Fifth, although the 50 degree acid, as it comes from the chambers, is desirable for many purposes-for example, in making superphosphates-it is held by some authorities that it can be made more cheaply by diluting the strong acid with the needed proportion of cold water, than by introducing this water into the chambers in the form of steam. This, however, is denied by others, and it is probable that the chamber process will continue to exist, though in a more restricted field.

On the other hand, this new process appears to require a well planned and carefully managed system of purification for the roaster gases, and will need, for its successful operation, a higher order of chemical engineering skill than has usually been deemed necessary for the operation of.an acid plant. This, however, should hardly be considered an obstacle in this country, where all other branches of engineering manufacture have reached such a height, mainly because the works have demanded and made liberal use of the highest order of trained ability, and have not hesitated to "scrap" expensive plant where it failed to give satisfactory results. In this connection the Badische Anilin-und-Soda-Fabrik is an instructive example. Its chemical
force numbers over 100 men, many of whom are engaged solely upon researches, the results of which, when promising, are at once put into operation on a sufficiently large scale to determine their practical value. That such a course pays in a strict business sense is shown by the enormous dividends paid by this company, and by the practical monopoly which it has long maintained in certain lines, simply because it has been a little abead of its competitors in knowing just how a given thing should be done, and then at once protecting the discovery by patents.

In addition to sulphuric acid, reports have been received regarding the production of the acids enumerated in the following table:
acids, other than sulphuric, by kind, quantity, and Value: 1900.

| Kinn. | |
| :--- | :--- | ---: | ---: | ---: |
| | |

It is to be understood that the quantities and values given in this table represent only the acids sold as such, or produced for sale in the establishments, for the actual production, in many cases, is much greater than that given above. Thus the first item on the list, nitric acid, is used in the making of the "mixed acids," which is the second item on the list. This mixed acid is not only manufactured in the acid factories and sold to explosive works, to manufacturers of pyroxylin for use in the making of plastics and of varnishes, and to other manufacturers, but many of the larger works now make the nitric acid which they consume in this manner. There is thus made and consumed more nitric acid than is sold as such, the production as reported amounting to $62,473,295$ pounds, which is probably less than the total amount actually made for use and sale. Theoretically, 74.13 parts of nitric acid monohydrate can be made from 100 parts of pure sodium nitrate, but in practice, only 95 per cent of this is condensed, while 5 per cent passes to the towers. From this, then, there would be required 43,841 tons of nitrate of soda and 47,348 tons of sulphuric acid to produce the abovegiven quantity of nitric acid, and there would result as a by-product 52,609 tons of niter cake. It is to be borne in mind that nitric acids of various degrees of strength, ranging from single aquafortis of specific gravity 1.22, and double aquafortis of specific gravity 1.36 , to the strongest nitric of 1.50 specific gravity, and red fuming of 1.60 specific gravity are to be found in the market, and that no attempt has been made to sepa-
rate them as to quantity, or to reduce them to a common basis, so that the data must be regarded as of average value.

Nitric acid was manufactured at Philadelphia in 1834 by Carter \& Scattergood. The most notable recent advance made in its manufacture is in the form of apparatus employed, which is due to Edward Hart and Oscar Guttman. It is used in the manufacture of nitrates like silver nitrate, or nitrites like sodium nitrite; in making "mixed acids" and aqua regia; in making nitrosubstitution compounds, like nitrobenzene, nitronaphthalene, and picric acid; organic nitrates, such as gun cotton and nitroglycerin; as an oxidizing agent in many chemical processes; and for the etching of metals.

By "mixed acids" is meant mixtures of nitric and sulphuric acids which are employed in "nitrating" organic substances such as glycerin, cellulose, and carbolic acid. The commercial use of such a mixture began with the manufacture of nitrobenzene and picric acid, but it received its greatest impetus about 1862 when the commercial manufacture of nitroglycerin began. Originally the users of this mixed acid purchased the sulphuric and nitric acids and mixed them in the desired proportions for use, the acids being transported in separate carboys of glass. These not infrequently became broken during transportation, and as the nitric acid rapidly reacts with and "fires" such organic matter as is used as packing for carboys, its transportation gave rise to many serious accidents, which led to restrictive legislation. It is not known to whom the credit is due for the discovery that mixed acids of the highest concentration did not act upon iron, but for upward of twenty years manufacturers have been making the desired mixtures at the acid works and shipping them in iron drums, old glycerin drums having been first employed. With the increase in the production in works, attention has naturally been given by chemists to the utilization of the residues, and large economies have resulted from the regaining of the "spent acids" by which the sulphuric acid has been obtained of a strength sufficient for reuse in the ordinary course of manufacture, and the nitric acid, though recovered in a weak state, has been of value in other arts.
Owing to the necessity of having concentrated nitric acid to mix with this regained sulphuric acid, and to the fact that the transportation charges on nitric acid are rery high, and the necessary regulations governing its transportation are vexatious to the consumers, many of the larger establishments have erected nitric-acid plants. In considering the magnitude of this industry there is to be noted not only the mixed acid sold as such, $42,368,819$ pounds, the mixed acid produced and consumed in chemical works, $8,902,371$ pounds, and the mixed acid reported produced and consumed in explosive works, $12,000,000$ pounds, making in all $63,271,190$ pounds, but there is also to be taken into account this repeated reuse of the acid. From the products reported of all kinds, nitroglycerin and dynamite; gun-
cotton; pyroxylin for varnishes, for smokeless powder, for plastics, and for photography; and the nitro.substitution compounds, it is safe to say that 65,000 tons of mixed acids were employed during the year 1899-1900.

Hydrochloric acid, commercially known as muriatic acid, is made by acting on common salt with sulphuric acid. The ordinary muriatic acid of commerce is an aqueous solution containing about 40 per cent by weight of dry hydrogen chloride. For the amount of hydrochloric acid reported on this standard there would be required for its production 37,000 tons of common salt and 39,000 tons of sulphuric acid of 60° Baumé, and there would be obtained in addition to the muriatic acid 47,000 tons of salt cake, which consists of sodium sulphate, together with some undecomposed comnon salt, and an excess of sulphuric acid. A new development in this trade is in the use of wooden barrels as containers in place of the glass carboys in which it was formerly transported.

Carter \& Scattergood manufactured muriatic acid in Philadelphia in 1834, and Charles Lennig began its manufacture by modern methods in Philadelphia in 1869. Hydrochloric acid is used in the preparation of many organic and inorganic chlorides. Mixed with nitric acid it forms aqua regia, which is used in dissolving the precious metals. It has largely been used as a source of chlorine in the manufacture of bleaching powder and potassiun chlorate. It is used in the manufacture of acetic acid and gelatin, in the manufacture of soda, and in a multitude of minor arts. The salt cake is used in the Le Blanc process for the manufacture of soda, for glass making, for ultramarine, in dyeing and coloring, and for the production of Glauber's salts.

Acetic acid as treated of under "chemicals" does not include vinegar, which is a very dilute acetic acid made largely by fermentation, but it covers such acid as is produced by chemical action from acetates, principally the calcium and sodium acetates. Calcium acetate is obtained in the destructive distillation of wood. The acetic acid is obtained from it by treatment with hydrochloric acid and distillation. This may be purified by rectification with potassium dichromate. A better product is obtained by converting the acid into a sodium salt and evaporating to dryness to destroy tarry matters and then distilling with hydrochloric or sulphuric acids.

Acetic acid, varying in strength from 28 per cent to 90 per cent, is sent to the market in barrels holding on an average 425 pounds. Acetic acid is used in the preparation of metallic acetates, which are extensively used in dyeing and printing; or of organic acetates, such as ethyl and amyl acetates, which are used as solvents and flavors; in the manufacture of white lead; and the preparation of organic compounds. As an example of its use Lachman ${ }^{1}$ states that in the preparation of the chloracetic acid used by the Badische Anilin-und Soda-Fabrik in the manufacture of synthetic indigo in 1900 there were used $4,500,000$ pounds of glacial acetic acid, requiring 26,000 cords of wood for its production.
Lactic acid, citric acid, and tartaric acids are used in dyeing and in calico printing. Lactic acid is prepared by fermenting a sugar solution by means of certain bacteria, neutralizing the acid with calcium carbonate, and decomposing the calcium lactate thus formed with sulphuric acid. Lactic acid was manufactured by the Avery Chemical Company at Littleton, Mass., in 1882.

Citric acid occurs in the free state in the juices of all the plants of the genus Citrus, such as limes, lemons, and sour oranges. Good lemons yield about $5 \frac{1}{2}$ per cent of the crystallized acid. It is obtained by neutralizing the juice of the fruit with chalk and decomposing the resulting calcium citrate with an equivalent amount of sulphuric acid. This acid was manufactured by Carter \& Scattergood at Philadelphia in 1834.
Tartaric acid occurs free or combined in many plants, but the only source from which it is commercially obtained is the grape. During the fermentation of grape juice, as the alcohol increases in quantity the calcium and potassium tartrates present in the juice are precipitated out, together with a quantity of organic coloring matter, forming what is known as argols. After purification it is treated with chalk and calcium sulphate to convert it into calcium tartrate, and this when decomposed with sulphuric acid yields free tartaric acid. This acid was manufactured by Carter \& Scattergood in Philadelphia in 1834.

The foreign commerce in acids is exhibited in the following tables, compiled from the publications of the Bureau of Statistics, of the United States Treasury Department:

[^18]IMPORTS FOR CONSUMPTION DURING THE YEARS ENDING JUNE 30, 1891-1900.

Year.	${ }^{1}$ sULPHURIC ACID or oil of virRIOL (N. E. 8.).		1 SULPhuric acid.		boracic acid.							chromic acid.		Chromic and lac-TIC ACID.	
	Pounds.	Value.	Pounds.	Value.	Commercial.		Pure.		All kinds.			Pounds.	Value.	Pounds.	Value.
					Pounds.	Value.	Pounds.	Value.	Pou		Value.				
1891	15, 377	$\$ 836$			152,093	\$7, 975	39,394	\$2,906			§30, 138	506	\$1,587 155		
$1892 .$	8,277	478	8,735								39,418	426	156		
1894	17,063	43 405	8,736 400		32						40,568	3,318 5,048	609 824		
1895	12,574	186	7,459		61						42,056	4,461	707		
1896	36,798	475	48,759								21, 899	2,440	409		
1897	3,200	43	59,729								19, 494	2,708	430		
1898	25, 350	786	2,725		40 -134,707	4,053	244,073	7,978			46,265	6,720	906	64,066	\$4,917
18999	40, 175	1,874					436,958	14, 303			56,428			23,969	4,843
1900	34,944	972					466, 879	17,467			53, 625			34, 741	6,044
year.	CITRIC ACID.		tartaric actu.			oxalic acid.		salicylic acid.				ACID, TANNIC OR tanNin.		ALL OTHER ACIDS.	
	Pounds.	Valu		nds.	Value.	Pounds.	Value.	Poun		Val		Pounds.	Value.	Pounds.	Value.
1891.	45,197		482	1,511	\$468	2, 743, 222	\$200,595					659	\$239	1,350,710	\$380,054
1892.	80, 034		,461	10	5	2,209, 940	150,529					564	216	1,024,580	347, 510
1893.	13, 315		,633	130	39	2,464, 443	143, 194		027			1,443		685, 677	175, 637
1894.	5,502		,810	113	32	2,783, 876	159,026					794	287	835,215	134, 665
1895.	8,895		,480	356	88	2,889, 513	189,606		974		197	1,500		1,798,417	228, 430
1896	39,671		, 521	212	66	3,164,969	219,630		354		013	1,745	681	1,027,235	240,522
1897.	73,133		168	225	71	3,602,124	246, 200		187		980	3,144	1,296	3,040, 325	223,458
1898.	4,323		108	455	128	3, 747, 041	242, 276		943		688	2,335	927		45, 265
1899.	65, 190		, 659	23, 298	6,737	3, 981, 768	246,027		358		192	3,697	1,371	66. 428
1900.	60,354		213	954	252	4, 990, 123	275, 747		687		175	1,415	671	53,625

${ }^{1}$ From the value given this would appear to be fuming sulphuric acid.

Grode II.-Soda Products.

The great increase in this branch noted in the Census report for 1890 has continued during the past decade. The number of establishments making soda products as the main part or as a subsidiary of their business has increased from 32 to 50 , while the products have increased as shown in the following table. To these figures for 1900 must be added " other soda products," not otherwise specified, produced by these works and valued at $\$ 143,432$, and also $11,756,000$ pounds of borax, valued at $\$ 541,160$, made by seven borax works. These items were not included in the report for 1890 and are therefore not taken into the comparison. Where the figures of this table show an increase over the figures for the same items in other tables of this census, the difference is due to the inclusion here of all such products made by works belonging to other groups, for example, the caustic soda produced by electrolysis, which is included in the products of that group and not separately reported. This table shows the total actual production of the United States for the census year from all sources; and while the figures differ, there is no discrepancy.
SODA PRODUCTS, BY. QUANTITY AND VALUE, 1890 AND 1900.

The decrease in the production of sal soda is noteworthy and is due to the increasing use of soap powders and other specially prepared washing materials. A comparison of these totals with the corresponding figures for 1880 is interesting.
SODA PRODUCTS, BY DECADES, 1880 TO 1900, WITH

Y EAR.	Number of estab-lishments.	total product.		PER CENT OF inCREASE.	
		Pounds.	Value.	Quantity.	Value.
1880.	3	40,259,938	8866, 660		
1890	32	333, 124, 375	5,432,400	727.4	526.9
1900.	50	1,279, 082, 000	10, 237, 944	284.0	88.5

There are no figures for soda products anterior to 1880 , except that at the census of 1860,11 establishments were reported manufacturing saleratus, with a total value of $\$ 1,176,000$, while at the census of 1870 , only 4 were reported, with a value of products of $\$ 231,647$, a decrease which is remarkable in view of the general development of other industries during that decade.

Although the production has almost quadrupled during the past decade, the value per unit has fallen greatly. Taking the customary unit of 100 pounds, we find the following decrease of values:

year.	Soda ash.	Sal soda.	$\begin{gathered} \text { Bicar- } \\ \text { bonate of } \\ \text { soda. } \end{gathered}$ soda.	Caustic soda.
1890.	\$1. 24	\$1.09	\$3.31	\$2.00
1900.	. 62	. 77	. 97	1.35
Decrease...	.62 50.00	29.32	2.34 70.69	. 65
				32.50

This great increase in domestic production has resulted in a corresponding diminution of importations. The Treasury report of importations for 1890 gives soda ash and sal soda together as $332,733,952$ pounds, valued at $\$ 3,493,288$; caustic soda, $80,125,732$ pounds, valued at $\$ 1,470,335$; and bicarbonate of soda, 917,034 pounds, valued at $\$ 16,319$; while the same report for 1900 gives soda ash, $78,571,870$ pounds, valued at $\$ 648,450$; sal soda, $6,624,194$ pounds, valued at $\$ 31,072$; and caustic soda, $11,429,989$ pounds, valued at $\$ 177,857$; but does not report bicarbonate separately. A comparison of these quantities shows what progress has been made toward supplying the home market.

year.	Soda ash and sal soda, pounds.	Caustic soda, pounds.
$\begin{aligned} & 1890 . \\ & 1900 . \end{aligned}$	$\begin{array}{r} 332,733,952 \\ 85,196,064 \end{array}$	$\begin{aligned} & 80,125,732 \\ & 11,429,989 \end{aligned}$
Decrease. Percentage	$\begin{array}{r} 247,537,888 \\ 74.39 \end{array}$	$\begin{array}{r} 68,695,743 \\ 35.73 \end{array}$

The ratios of quantities of these materials imported to the domestic production are as follows:

YEAR.	SAL SODA AND SODA $A S H$.		CAUSTIC SODA.	
	Foreign.	Domestic.	Foreign.	Domestic.
1890	100	72	100	41
1900	100	1,075	100	1,979

Some of the imported soda ash and caustic has undoubtedly been used to make a part of the soda products reported at the census of 1900 , but the quantity so used can not be ascertained and is in any case not large. The remainder, so far as concerns works making soda products from purchased soda ash, etc., was drawn from domestic sources, hence to this extent there is a dúplication of quantities and values. This duplication is unavoidable. Had there been no imported stock on hand at the beginning of the census year and no importations during it, there would have been no difficulty in making any deductions needed to make the totals of quantities and values given in the table of soda products by quantity and value, 1890 and 1900 , quite accurate. The returns for 1900 have been sufficiently studied to show that this duplication is proportionally small, that the totals given above are fairly correct, and that the real growth and present condition of the industry is substantially as shown. Most of the soda ash and bicarbonate reported are products of the ammonia-soda process, the cryolite process being limited by the supply of the mineral, and the natural soda industry restricted by cost of transportation to markets.
Natural Soda. -The manufacture of soda products from the natural soda of the West has increased from $10,964,390$ pounds, valued at $\$ 124,783$, in 1890 , to $20,420,000$ pounds, valued at $\$ 106,600$, in 1900 . This
increase is very small, because, although the raw material is available in inexhaustible quantities (and with a well-arranged plant, soda ash can be delivered f. o. b. cars at the works at a cost less than onehalf of that of ash at any ammonia-soda works in this or any other country), the distance from large eastern markets and consequent high freight rates have precluded successful commercial competition, especially in the face of steadily falling prices of the product. Of late the economic conditions have materially changed and will continue to improve. The past two years have seen great enlargements in the industries and commerce of the Pacific states, while the recent political occurrences in the Pacific and in Asiatic countries have profoundly altered trade conditions and indicate an enormous increase in our Pacific commerce in the near future. In supplying the demands of this commerce our natural soda deposits, when properly developed, can distance all rivals.
Although the operations so far carried on have been on a comparatively small scale, the subjecthas been carefully studied and much valuable information obtained. For example, at Owens Lake, California, the cost of making a ton of soda ash under local conditions is fairly well ascertained, and the lines to be followed to reduce manufacturing cost clearly indicated. Again, the extent of land suitable for evaporating vats is, in this locality, the measure of the possible development of the industry, and this is known. Many other important data have thus been secured, and as a general conclusion it may be safely stated that at Owens Lake alone there is space for works large enough for a production of soda ash more than equivalent to the entire demand of this country for soda products. All this is unquestioned by anyone having a practical acquaintance with the matter, and only the limited radius of profitable marketing has retarded the development of this locality. This industry is therefore not a hypothetical one, but based on solid fact and experience, and because of this and the prospects for the future, it has been deemed advisable to devote especial attention to it in this report.
The report on chemical products for the census of 1880 gave an interesting résumé of the existing information concerning the occurrences of natural soda, and later the subject was investigated, the result being published in "Natural Soda, its Occurrence and Utilization," T. M. Chatard, Bulletin No. 60, United States Geological Survey, 1888. An extensive abstract of this paper was made by Prof. George Lunge and published in the Zeitschrift für Angewandte Chemie, 1893, pages $3-11$, because, as he states, he considered the existence of such enormous quantities of natural soda a most important factor in the future of the alkali industry. This same eminent authority, in The Mineral Industry for 1892 , page 64 , also says:
There can be no doubt that the immense quantities of "natural soda" shown by Dr. Chatard and other authorities of the United States Geological Survey to exist in the Californian and other soda
lakes, will not be allowed to lie dormant any longer. If these lakes are once worked with the energy which is otherwise not wanting in America, the days are numbered when Liverpool soda will rule in the New York market.

In 1892 Dr. Lunge visited Owens Lake, California, the most important natural soda locality, and, while confirming the general conclusions given in the abovementioned bulletin, placed the cost of product at a much lower figure than there stated.

In the same volume of "The Mineral Industry" there is an article on "Natural Soda" which gives additional data and suggestions as to the lines to be followed in the commercial development of this industry.

Natural soda is the residue obtained by the evaporation of natural alkaline waters without the aid of artificial heat. It is composed of sodium carbonate and bicarbonate in varying proportions, mixed with other salts, mainly sodium sulphate and chloride. It is found to some extent in all dry regions, such as Hungary, Lgypt, and the deserts of Africa and Asia, but in no other country does it occur in such enormous quantities as in the region lying east of the Sierra Nevadas. It forms the white incrustations of the alkali plains, but these are rarely of sufficient thickness and extent for prospective utilization, particularly as the "sinks," or lakes without outlet, in which nature has collected and concentrated the leachings and drainage of the alkaline districts, already contain more sodium carbonate than would suffice to supply the entire world demand for generations. That this is no exaggeration is made evident by considering only three of these lakes, the dimensions of which are known and the waters of which have been repeatedly and carefully analyzed.

In southeastern Oregon is Abert Lake; area 40 square miles, average depth 10 feet. In Mono County, Cal., we find Mono Lake; area 85 square miles, average depth 60 feet. In Inyo County, Cal., lies Owens Lake, with an area of 110 square miles and an average depth of over 17 feet. In computing the volume of water the usual unit is an acre-foot, which is equal to 43,560 cubic feet, and as the analysis tells the amount of the sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and bicarbonate, NaHCO_{3}, in a given volume, we get the following results for these three lakes:

	Acre-feet.	$\mathrm{Na}_{2} \mathrm{CO}_{3}$, tons.	NaHCO_{3}, tons.
Abert Lake	256,000	3, 428, 352	1,560,000
Mono Lake	3,264,000	75, 072, 000	17, 936,000
Owens Lake	1, 088, 000	39,875, 200	8,431, 000
Total.		118, 375, 552	27, 927, 000

These are the largest occurrences, but there are many others, aggregating probably a far greater amount.
In addition to these two carbonates the waters of these lakes contain much sodium sulphate and chloride, with smaller proportions of sodium borate, potassium chloride, and other salts. The valuable constituents are
the two carbonates, and the method of separating them from the other salts is based on fractional crystallization, which means the methodical stoppage of a crystallizing process by drawing off the mother liquor from the "crop" of crystals so far formed. This "first crop" may be either the desired material in a purer condition than it was in the original solution, or else may consist mainly of impurities which we wish to remove, this depending upon the proportions of the substances in solution or their relative solubilities under the conditions.
Now, all solutions of natural soda contain both sodium carbonate and bicarbonate, and it is upon the property of these two salts when in solution to unite to form a compound more soluble than bicarbonate but less soluble than carbonate, that the method of extraction is founded. If a solution of the two salts be exposed to spontaneous evaporation, there will be formed, at a certain degree of concentration, a crop of acicular crystals which have a composition corresponding to 46.90 per cent of $\mathrm{Na}_{2} \mathrm{CO}_{3}, 37.17$ per cent of $\mathrm{NaHCO} \mathrm{H}_{3}$, and 15.93 per cent of $\mathrm{H}_{2} \mathrm{O}$ (water). The scientific name of this salt is urao, but it is usually called "summer soda." The amount of this salt thus obtained will depend upon the amount of bicarbonate present, as every 37.17 parts of bicarbonate will, in crystallizing, take with it 46.90 parts of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. If more bicarbonate is present than is needed to form summer soda, the excess will crystallize out before the summer soda forms. If too little is present, the excess of carbonate remains in solution.

If a sample of water be evaporated from any of these lakes to a certain concentration point (sp. gr. 1.260 for Owens Lake water), crystallization will begin, the crystals being crude summer soda. Owing to the presence of so much sulphate and chloride in the solution, the crop becomes more and more contaminated with these salts as the concentration proceeds. Hence, to obtain an article of a fair degree of purity, the process must be - interrupted at some definite degree of specific gravity and the mother liquor drawn off. If the mother liquor be further evaporated, successive crops can be obtained, the earlier ones, in the case of Owens Lake, being principally sulphate and the later ones chloride. Finally remains a mother liquor rich in potash salts, from which, on cooling to a low temperature, the ordinary sal soda ($\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$) crystallizes.

While all of these localities can produce summer soda in the manner described, the proportion of bicarbonate present is, in each case, insufficient to give the largest possible yield. To obtain this, it is necessary to increase the proportion of bicarbonate, which can be done in several ways but most economically, probably, by utilizing the carbonic acid driven off in the process of furnacing to convert the urao into soda ash. When summer soda is heated to a moderate degree (about $150^{\circ} \mathrm{C} ., 300^{\circ} \mathrm{F}$.) it loses its water and excess of carbonic acid; 100 parts yielding 70.35 parts ash, 9.74 parts
gas, and 19.91 parts of water. This furnacing must be done in any case to reduce weight and save transportation charges; hence, if the gas can be economically used, there is a clear gain in so doing. While the refining work in which the crude product is converted into various marketable forms requires special training and use of improved machinery, arranged and handled to save labor and fuel, the production of the crude material is comparatively simple and can be done on a large or small scale with probably equal advantage. At the "little lake" at Ragtown, Nev., two men, in 1886, made 300 tons and could have made much more had the conditions of the locality permitted. The product of the "big lake," made under very adverse conditions, required but little more labor in proportion. The entire product was hauled 16 miles to the railroad and shipped to San Francisco where it was refined. Notwithstanding these heavy transportation costs, the operations were profitable and the works have been running steadily ever since.
These examples show that in the development of this industry the innumerable small localities can be utilized quite as well as the larger ones, if transportation to the refining point be not too expensive. An intelligent, industrious man, working a small but well-situated pool, can produce, with only occasional outside aid, an amount of summer soda which a refining works can take at a price advantageous to itself and remunerative to him. Furnacing before shipping to the refinery is not always advantageous, since, although the reduction in weight is about 25 per cent, the saving in transportation will rarely pay for the cost of furnacing when this is done on a small scale. Moreover, refiners prefer unfurnaced material, and by devoting attention exclusively to the production of summer soda, regularity of composition, which is very important, can be better assured. Such work can therefore be made a "poor man's job," a thing much needed in that region, and in time there would be a large direct consumption of the crude materials.

Borax and Other Soda Products.-Seven establishments manufactured borax during the census year, with a combined production of $11,756,000$ pounds, valued at $\$ 541,160$. No figures for borax were given at the census of 1890 , so that no comparison can be instituted. The present number of borax works is undoubtedly smaller than it was ten years ago, because it has been found more economical to ship the crude material to central points for treatment than to work it up locally, as was formerly done.
"Other soda products," valued at $\$ 143,432$, represent the total value of products so reported by many establishments. As they are not otherwise specified, no further distribation is possible.

The following table gives the geographical distribution of the soda industry, states having less than three establishments being grouped:

SODA PRODUCTS, BY STATES, ARRANGED GEOGRAPHICALLY: 1900.

states.	Number of estab-lishments.	Value of products.
United States.	55	\$10, 922, 536
North Atlantic division	28	6,559,295
New Jersey.	3	105,507
New York...	12 9	4,691,495
Massachusetts, Rhode island, Maryland, and Virginia.	4	893,112
North Central division	16	3,694,436
Illinois.	4	353,429
Michigan........	3 4 4	2,814,969
Wisconsin -................	5	1752, 937
Indiana, Missouri, and Ohio	5	352,937
Western division.	11	668,805
California	6	647,175
Nevada..	5	21,630

The foreign commerce in soda products is set forth in the following table, compiled from the reports of the Bureau of Statistics of the United States Treasury Department:

SODA ASH IMPORTED DURING THE YEARS ENDING JUNE 30, 1891 TO 1900.

YEAR.	Pounds.	Value.
1891.	1354, 744, 335	\$4,382, 917
1892.	${ }^{1339, ~ 057, ~} 006$	4,496,597
1893.	388, 910, 183	4,855, 098
1894.	256, 293, 395	2,520,921
1895.	300, 599, 257	2,367, 109
1896.	251, 067, 856	1,950,981
1897	162, 585, 074	1,241, 321
1898.	87, 809,619	589, 714
1899.	45, 444, 305	310, 742
1900.	78, 571,870	648, 450

${ }^{1}$ Includes sal soda for 1891 and 1892.
SAL SODA IMPORTED DURING THE YEARS ENDING JUNE 30, 1893 TO 1900.

year.	Pounds.	Value.
1893.	27,531,554	\$238, 029
1894.	16, 893, 760	120,794
1895.	28,761, 108	167, 325
1897.	17,966,996	84, 423
1898.	18,876,029	82,695
1899.	4,224,680	40,266 20,905
1900.	6,624, 314	31,072

CAUSTIC SODA IMPORTED DURING THE YEARS ENDING JUNE 30, 1891 TO 1900.

ALL OTHER SALTS OF SODA IMPORTED DURING THE YEARS ENDING JUNE 30, 1891 TO 1900. ${ }^{1}$

	YEAR.	Pounds.	Value.
1891.			
1892.		18,136, 888	\$118,713
1893.		$22,348,670$ $47,664,938$	167,634
1894.		47,664,938	297,761
1895.		14, 829, 622	104, 800
1896.		11, 803,171	141,070
1897.		9,090, 367	149, 248
1898.		$3,919,389$ $21,400,585$	67,684 225,628
1899.		$21,400,685$ $23,891,135$	225,628 $\mathbf{3 1 7}, 032$
1900.		23,632, 374	314,425

${ }^{2} 1893$ to 1900 includes bicarbonate of soda.

Group III.-Potashes.

This classification was intended to include not only potash, which is an impure potassium carbonate, but also pearlash, which is the refined potassium carbonate, yet, though returns for the census year 1900 were received from 67 establishments, producing 3,864,766 pounds of potash, valued at $\$ 178,180$, no pearlash was reported manufactured. Of these 67 establishments, 12 produced products valued at less than $\$ 500$.

The burning of wood and the lixiviation of the ash to extract the potash, though of minor importance so far as the monetary value of the product is concerned, is one of the oldest of the purely chemical industries. Cognizance was taken of it in the census reports of the United States as early as 1850 , so that the data is at command for comparing the condition of the industry in this country for each decade since 1850, as set forth in the following table:

TOTAL PRODUCTION OF POTASHES, BY DECADES: 1850 TO 1900.

year.	Number of estab-lishments.	Product.		Average price per pound (cents).
		Pounds.	Value.	
1850.	569	\$1, 401, 533	-
1860.	105	…..........	538, 327,671
1880	68	4, 771,671	232, 643	5.09
1890	75	5,106, 939	197,507	3.86
1900	67	3, 864, 766	178,180	4.82

This table shows that there has been'a constant decrease in the value of the product, though the quantity has varied somewhat. Starting with 1880, for which year both quantity and value were reported, it appears that the increase in the quantity of product for 1890 over that for 1880 was 11.7 per cent, but the decrease in the value for 1890 compared with that for 1880 was 15.1 per cent. In 1900 the decrease in the quantity as compared with that of 1890 was 24.3 per cent, while the decrease in the value was 9.8 per cent. The establishments reported were distributed as follows:

GEOGRAPHICAL DISTRIBUTION OF POTASH FACTORIES: 1900.

STATES.	Number of es-tablishments.	Average number of wageearners.	Capital.	Value of product.	Per cent of total.
United States	67	92	\$70,899	\$178, 180	100.0
Michigan	44	52	25,851	79,642	44.7
Ohio .	15	25	20,050	35,519	19.9
Indiana	3	4	2,275	6,560	3.7
Maine, Wisconsin, and Illinois.	5	11	22, 723	56,459	31.7

There were reported as having been used in this manufacture 812,399 bushels of wood ashes, valued at $\$ 40,191$. The yield of potash per bushel of ashes, as reported, varied from 2.4 to 7 pounds. In the product given above there is included potash packed in cans, amounting to 820,000 pounds, having a value of $\$ 53,349$. Excluding this, as being in the nature of a duplication, it appears that the total production of potash for 1900 was $3,044,766$ pounds, and that therefore the average yield of potash per bushel of wood ashes, as shown by the entire returns, was 3.75 pounds. Pelouze and Fremy ${ }^{1}$ give the yield by weight as 10 per cent, and this appears in other text-books; but all returns for ashes received at the census of 1900 were given in bushels.

As stated, potash is prepared by dissolving out the soluble contents of wood ashes and evaporating the solution to dryness. The process as carried out on a commercial scale is described by Muspratt, ${ }^{2}$ as follows:

The American process for the extraction of potashes is thus described by Morit. The incineration of the plant is effected in dry pits sunk into the ground to a depth of 3 or 4 feet. The plant is thrown in in portions, and burned until the pit is nearly full of ashes. The latter are then removed, mixed with about 5 per cent of lime, and drenched with successive portions of fresh water. The ash tubs or vats employed in this operation are usually formed from tar barrels, by cutting them in half. A number of these are furnished with two crossbeams, upon which rests a false cullendered bottom covered with straw, and below this is a cock for the removal of the lye. The first liquor running through, being saturated, is passed at once to the evaporating pan; while the second or third runnings, being weaker, are reserved and poured upon fresh ash until completely saturated. The evaporating pans are broad and shallow, and made of iron, with corrugated bottoms, to produce greater extent of heating surface; and as evaporation progresses, new supplies of strong liquor are ponred in, and the heat is continued until a sirupy consistence is attained, when the fire is gradually slackened and the contents of the pan, becoming solid, are dug out and placed aside as crude potashes. By subjecting this mass to the heat of a reverberatory furnace, most of the sulphur (sic) and all excessive water and empyreumatic matters are expelled, causing a loss of 10 to 15 per cent. This modified product is white, with a bluish tinge; contains more carbonic acid than the original crude product, and takee the name of pearlash. The process em-

[^19]ployed in Russia and northern Europe is the same in principle as that above described, and is conducted in a similar manner, except that no lime is used in the lixiviation process.

According to Mendeléeff: ${ }^{1}$

For the extraction of potash, which was formerly carried on extensively in the east of Russia (before the discovery of the Stassfurt salt), the ash of grasses and the green portions of potatoes, buck wheat, etc., are taken and treated with water (lixiviated), the solution is evaporated, and the residue ignited in order to destroy the organic matter present in the extract. The residue thus obtained is composed of raw potash. It is refined by a second dissolution in a small quantity of water, for the potash itself is very soluble in water, whilst the impurities are sparingly soluble. The solution thus obtained is again evaporated, and the residue ignited, and this potash is then called refined potash, or pearlash.

According to Wiley: ${ }^{2}$

The composition of the ash of woods is extremely variable. Not only do different varieties of trees have varying quantities of ash, but in the same variety the bark and twigs will give an ash quite different in quantity and composition from that furnished by the wood itself. In general, the hard woods, such as hickory, oak, and maple, furnish a quality of ash superior for fertilizing purposes to that afforded by the soft woods, such as the pine and tulip trees. The character of the unleached wood ashes found in the trade is indicated by the subjoined analyses. The first table contains the mean, maximum, and minimum results of the analyses of 97 samples by Goessmann. ${ }^{3}$

	MEAN COMPOSTTION OF WOOD		
	Means.	Maxima.	Minima.
Potash	5.5	10.2	2.5
Phosphoric acid	1.9	4.0	0.3
Lime..........	34.3	60.9	18.0
Magnesia,	3.5	7.5	2.3
Carbon dioxide and undetermined.	29.9	28.6	0.7

The data obtained in sixteen analyses made at the Connecticut station are given below: ${ }^{4}$

	Means.	Maxima.	Minim^.
Potash .	5.3	7.7	4.0
Phosphoric acid.	1.4	1.8	1.9

In fifteen analyses of ashes from domestic wood fires in New England stoves the following mean percentages of potash and phosphoric acid were found:

Potash.
9. 63

Phosphoric acid
2.32

[^20]In leaching, ashes lose chiefly the potassium carbonate and phosphate which they contain. Leached and unleached Canada ashes have the following composition:

-	Unleached (per cent).	Leached (per cent).
Insoluble.	13.0	13.0
Moisture.	12.0	30.0
Calcium carbonate and hydroxide.	61.0	51.0
Potassium carbonate	5.5	
Phosphoric acid.....	1.9	1.4
Undetermined.	6.6	3.5

In the wood ashes of commerce, therefore, it is evident that the proportion of the potash to the lime is relatively low.
The number of parts by weight of the chief ingredients of the ash in 10,000 pounds of woods of different kinds is given in table below, together with the percentage composition of the pure ash; that is, the crude ash deprived of carbon and carbon dioxide.

POUNDS OF THE INGREDIENTS NAMED IN 10,000 POUNDS OF WOOD.

The pure ashes of the woods contain the following per cents of the ingredients named:

From the data for production given above it is evident that, although the average price of potash for 1900 was higher than for 1890, the industry was not remunerative,
and that consequently the quantity and value of the product decreased. Indeed, owing to the competition of foreign potash, the industry can now exist only in localities where wood is very cheap and where there is a local demand for the product. In such places the product is of domestic manufacture and is an article of trade at the country stores, but with the increasing value of timber, the field of operations is continually being contracted.

The cost of producing a barrel of 650 pounds of potash is stated in a private communication from a Michigan manufacturer to be as follows:
Ashes, 150 bushels, at 3 cents. $\$ 4.50$
Hauling ashes. 6.00
Fuel. 2.00
Labor 3.00
Barrel, cost of. 1. 25
Repairs, interest, etc. 1.50
Total cost 18. 25
Selling price at works. 25.00
Gross profit per barrel 6. 75

The ashes therefore yielded $4 \frac{1}{8}$ pounds of potash per bushel, and the potash sold at 3.85 cents per pound. It will be noted that the weight of a barrel of potash is given above as 650 pounds. From the returns it appears that the net weight of a barrel of this material varies from 650 pounds to 740 pounds, the average being about 700 pounds.

Competition with the ashes of wood as a source of potash is found in beet-root molasses and residues; wool scourings, known as suint; and the potash salts mined at Stassfurt and elsewhere abroad. In the case of the beet-root molasses and residues, and of the suint, the mass is calcined and the potassium carbonate extracted, as is done for wood. The potassium exists in the Stassfurt and other mineral salts as chlorides and sulphates in combination with magnesium and calcium, and after the potassium chloride is extracted from them, it is converted into pearlash by the Le Blanc process, or it may be converted into carbonate by the Solvay process, using trimethylammonium carbonate. Mendeléeff ${ }^{1}$ states that about 25,000 tons of potash annually are now (1897) prepared from KCl at Stassfurt. Other proposed sources of potash salts are sea water; the mother liquor of salt works and mineral springs; the residues from seaweeds; and the feldspars and similar rocks.
There are, moreover, some industries which produce considerable quantities of wood ashes as a by-product, from which potash may be extracted with profit. For example, the wood-distillation industry uses hard wood and consumes much of the charcoal produced as fuel under the retorts. Hard-wood ashes are richer in potash than soft-wood ashes, and as the extra cost of obtaining the potash should be very trifling in connec-

[^21]tion with the other operation, considerable quantities of it might be obtained from this source.
As potassium carbonate crystallizes with difficulty, it can not well be purified by the method often employed for purifying salts. The pure material must, therefore, be obtained by indirect means. Among other methods in vogue, one is to purify cream of tartar, obtained from grapes, by repeated crystallization, and then, by burning it, obtain the refined potash. When the cream of tartar is ignited by contact with air there is left a mixture of finely divided charcoal and potassium carbonate, and this comes into the market under the name of "black flux," and is used in smelting operations as a reducing agent.
Potash is used in the manufacture of soft soap; in making potassium salts, such as potassium chromate; in making caustic potash; and, in the form of pearlash, in the making of glass.

The potassium found in wood ashes is extracted from the soil by the plant during its growth, the presence of potassium compounds in the soil being essential to the growth of vegetation. Consequently, wood ashes aré a valuable fertilizing material. Wiley ${ }^{2}$ says of this:
The beneficial effects following the application of ashes, are greater than would be produced by the same quantities of matter added in a purely manurial state. The organic origin of these materials in the ash has caused them to be presented to the plant in a form peculiarly suited for absorption. Land treated generally with wood ashes becomes more amenable to culture, is readily kept in good tilth, and thus retains moisture in dry seasons and permits of easy drainage in wet. These effects are probably due to the lime content of the ash, a property, moreover, favorable to nitrification and adapted to correcting acidity. Injurious iron salts, which are sometimes found in wet and sour lands, are precipitated by the ash and rendered innocuous or even beneficial. A good wood-ash fertilizer, therefore, is worth more than would be indicated by its commercial value calculated in the usual way.

From the census returns for 1900 it appears that the leached ashes have a certain manurial value and the returns show that the establishments reported above sold 87,040 bushels of leached ashes to be used as a fertilizer at a total value of $\$ 3,268$, or, on an average, at 3.75 cents per bushel. It is stated by the manufacturers that wood ashes in leaching gain one-third in bulk; one manufacturer specifically stating that his 15,000 bushels of raw ashes yielded 20,000 bushels of leached ashes.
From Wagner's Chemical Technology, 1892, page 299, it appears that " the yearly production of potash, according to H . Grüneberg'; is from
Wood ashes, Russia, Canada, United States, Hungary, and Tons.
Galicia --... 20,000
Beet sugar ash, France, Belgium, Germany 12, 000
Mineral salts, Germany, France, England.................... 15, 000
Suint, Germany, France, Belgium, Austria.................... 1, 000
Total from all sources......................................- $\overline{48,000}$
"These conditions differ strikingly from those which existed thirty [thirty-eight] years ago, when wood ash was in exclusive use and Russia potash ruled the mar-

[^22]ket. The potash extracted from wood ashes amounts to scarcely one-haif of the total production; it decreases year by year, and the time when it will disappear from the market seems within measurable distance." This agrees with the data shown in the table above for the "Total Production of Potashes by Decades, 1850 to 1900."

The foreign commerce in potashes for the United States i : exhibited in the following tables compiled from '"The Foreign Commerce and Navigation of the United States for the years ending June 30, 1891-1900, Vol. II."

DOMESTIC EXPORTS OF ASHES, POT AND PEARL: 1891 TO 1900, INCLUSIVE.

YEAR.	Pounds.	Value.	YEAR.	Pounds.	Value.
1891.	430,582	\$24, 432	1896.	969, 874	\$41, 208
1892.	1,307,634	99,566	1897.	511,830	21,727
1893.	634,421	31,775	1898.	869, 841	33, 202
1894.	650, 261	29,205	1899.	745,433	29,676
1895.	664,876	30,188	1900.	1,273,905	49,566

IMPORTS OF ASHES, WOOD AND LYE OF, AND BEETROOT ASHES, FOR CONSUMPTION: 1891 TO 1900, INCLUSIVE.

year.	Value.	year.	Value.
1891	842,624	1896.	\$67,393
1892	54, 855	1897.	66, 423
1893	76,306	1898	62, 206
1894	74, 050	1899	59, 970
1895	77,708	1900	66, 453

IMPORTS OF POTASH, CARBONATE OF, OR FUSED, FOR CONSUMPTION: 1891 TO 1894, INCLUSIVE.

year.	Pounds.	Value.
1891.		\$39, 980
1891.	6, 207,419	219, 557
1892.	8,745,268	309, 585
1893.	10,115, 017	329,895
1894.	8,130,975	262,818

IMPORTS OF POTASH, CARBONATE OF, CRUDE OR BLACK SALTS, FOR CONSUMPTION: 1895 TO 1900, INCLUSIVE.

year.	Pounds.	Value.
1895.	11, 602, 272	\$364, 506
1896.	12, 439, 180	401, 819
1898.	7,501,497	229,029
1899.	16,844,374	471,919
1900.	21, 191, 258	625, 922

LITERATURE.

[^23]
Group IV.-Alums.

During the census year 1900 there were 13 establishments engaged in the manufacture of alums either as a principal or subordinate product. The comparison with previous censuses is as follows:

PRODUCTION OF ALUMS, BY DECADES: 1880 TO 1900, INCLUSIVE.

year.	Number of estab lishments.	PRODUCT.		PER CENT OF INcrease.	
		Pounds.	Value.	Quantity.	Value.
1880	6	39,217, 725	\$808,165		
1890	10	$98,998,008$ $179,467,471$	$1,616,710$ $2,446,576$	139.7 90.9	100.0 51.3
1900.	13	179,467,471			

There are no census statistics of production anterior to 1880 , and the census of 1900 is the first one at which the various alums were separately reported, as shown in the table which follows:

KINDS OF ALUM PRODUCED IN 1900.

KIND.	Number of estab-lishments.	Pounds.	Value.
Total.		179,467,471	\$2,446, 576
Ammonia alum.	4	6,580,373	102,308
Potash alum	5	14, 200, 393	215,004
Concentrated alum	10	103, 016,815	1, 062,547
Alum cake.	4	4, 048,655	34,047
Other alums	7	35, 592,771	629,570

The legend "other alums" is as reported on the schedules, and no doubt under it are included some of the kinds named in the list above, but it has nọt been possible to separate them. However, there are in the classification $1,526,000$ pounds of aluminum hydroxide (hydrate of alumina), valued at $\$ 31,500$. There are included under "burnt alum" $9,399,550$ pounds of material, with a value of $\$ 228,500$, returned as "soda alum" from 4 establishments. In addition, there were reported $3,928,160$ pounds of ammonia alum, valued at $\$ 58,922$, and $1,149,666$ pounds of aluminum sulphate, ralued at $\$ 10,922$, as having been produced and consumed in the manufacture of other products.

It should be said that of the 13 establishments reported above but 2 of them were reported as producing alum only, the others being engaged in the manufacture of many other chemical substances. Taking the ratio of value which the alum bears to the total value of products for these last-mentioned establishments as a guide, it appears that these 13 establishments employed 802 wage-earners and a capital of $\$ 3,888,455$ in the production of alum, and that there were consumed 34,000 tons of bauxite, having a value of $\$ 230,000 ; 5,000$ tons of cryolite, of a value of $\$ 110,000 ; 2,000$ tons of sodium sulphate, in the form of salt cake or niter cake, of a
value of $\$ 4,100 ; 360$ tons of ammonium sulphate, of a value of $\$ 21,900 ; 477$ tons of potassium sulphate, of a value of $\$ 19,600$; and 61,424 tons of sulphuric acid, there being used for this acid 3,323 tons of sulphur, of a value of $\$ 66,000 ; 49,081$ tons of pyrites, of a value of $\$ 107,000$; and 513 tons of sodium nitrate, of a value of $\$ 18,000$.

The geographical distribution of these establishments is set forth in the following table:

GEOGRAPHICAL DISTRIBUTION OF ALUM FACTORIES: 1900.

STATER.	Number of es-tablishments.	Average number of wageearners.	Capital.	Value of product.	Per cent of total.
United States	13	802	\$3, 888,445	\$2, 446, 576	100.0
Pennsylvania.............	6	530	2, 747, 482	1,411,652	57.7
Massachusetts	3	74	255, 930	306,754	12.5
Illinois, New York, and Michigan	4	198	885, 033	728, 170	29.8

Alum was known to the ancients and was used by them in dyeing, tanning, and in making medicine. Aluminum sulphate, mixed with more or less iron sulphate, occurs as efflorescences on rocks and as the mineral feather alum, and it was this limited natural supply that was the source of the material used. The manufacture of alum is of oriental origin and was introduced into Europe about the Thirteenth century, the materials used being the mineral alunite or alum stone, which has the formula $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 4 \mathrm{Al}(\mathrm{OH})_{3}$ mixed with compounds of iron. This mineral is insoluble in water, but by calcining it and exposing it in heaps, with occasional moistening, the mass weather's, and after some months a potassium alum may be dissolved out which crystallizes in cubes and contains inclosed iron oxides which give it a red color. Such alum is known as "Roman alum" from its having been extensively manufactured at Tolfa, near Rome. Later, alum slates and shales, clay, bauxite, and cryolite have been employed as the raw materials of the alum manufacture, and the lastnamed two are the substances which are now almost exclusively used for this purpose.

When the minerals-clay, in its purer form of kaolin $\left(\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$, or bauxite, which is aluminum hydroxide mixed with ferric, silicic, and other oxides in varying proportions, are used as the source of alumina, the process consists in decomposing the mineral with sulphuric acid and evaporating the solution of aluminum sulphate formed until, when cool, it sets to a stone-like mass. This cake contains impurities in the form of silica, ferric sulphate, and free sulphuric acid, there being usually from 2 to 3 per cent of the latter present. When but little iron is present, the substance is known as "alum cake;" when much iron is present it is known as "alumino-ferric cake." Bauxite is especially liable to yield this last-named product.

A purer aluminum sulphate is made from bauxite by calcining it with soda ash until sodium aluminate is formed. This is dissolved, the solution filtered, and carbon dioxide passed through it, by which the aluminum is precipitated as hydroxide. This purified hydroxide is dissolved in hot sulphuric acid and the solution formed run into leaden pans to cool, when it forms a crystalline mass much used in the arts under the name of "concentrated alum," and having the composition $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} 2 \mathrm{H}_{2} \mathrm{O}$, though the separate crystals have but 18 molecules of water of crystallization. Manufacturers specify that bauxite for use in the manufacture of alum shall contain not more than 3 per cent of ferric oxide nor less than 60 per cent of aluminum oxide.

Cryolite is used not only as a source of alum, but also for the manufacture at the same time of caustic soda, calcium or sodium fluorides, and hydrofluoric acid. This mineral, which in commercial quantities is found only in southern Greenland, is a double fluoride of sodium and aluminum, having the formula $\mathrm{AlF}_{3}(\mathrm{NaF})_{3}$. By calcining cryolite with powdered limestone and lixiviating the frit, or by boiling cryolite with milk of lime, sodium aluminate is obtained as one of the products of the reaction, and this may be converted into "concentrated alum" by the means above described. A modification of this consists in boiling sodium aluminate liquor with powdered cryolite, through which the sodium in each molecule is converted into sodium fluoride and the aluminum into alumina, and then producing "concentrated alum" by dissolving the alumina in sulphuric acid.

When "concentrated alum" is dissolved in water and mixed with a solution of potassium sulphate, the solution, on concentration, deposits beautiful, transparent, colorless, octahedral crystals, which have a vitreous luster and the composition $\mathrm{K}_{2} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$. This substance is known as "potassium alum" or "potash alum," and was the first complex alum recognized. It was the first to be manufactured commercially, since by this means the easily soluble aluminum sulphate was separated from the iron sulphates, and a very superior article for use in dyeing was obtained. Since purer raw material has been found, and improved methods for purification have been devised, concentrated alum has largely displaced the complex alums in dyeing as well as in the other arts.

Crystallized potassium alum of the composition given above is the type of a large number of complex alums which may be produced by mixing a solution of aluminum sulphate with a solution of an alkaline sulphate and crystallizing out the double salt. Among these we have in commerce crystallized ammonium and crystallized sodium alum, though the latter is not common, owing to its being difficult to crystallize and to the fact that the crystals, when formed, readily effloresce. When these crystallized alums are heated, the water of crystalliza-
tion, and usually a little of the sulphuric acid, is driven off and the material falls to a white powder known as "burnt alum," which is used in pharmacy. A similar sodium alum which is largely used in baking powders is prepared by mixing concentrated solutions of sodium sulphate and aluminum sulphate, allowing them to set in a cake, and roasting the alum to drive off the water, or by mixing the sulphates in the solid condition and heating them. By varying the proportions of the sulphates and the temperature, various desired properties are inparted to the burnt alum, and these preparations are sold under various trade names.

Effloresced sodium alum is sometimes known under the name of "porous alum," but this name, in the trade, is given to porous alum cake containing a little sodium alum and basic aluminum sulphate, which is made by stirring into alum cake, just before it sets, a desired quantity of soda ash. As the aluminum sulphate possesses an acid reaction it reacts with the sodium carbonate and the carbon dioxide evolved puffs up the mass and leaves it in a condition so that it may be readily dissolved.
Alums may be formed with selenic and other acids in place of the sulphuric acid of ordinary alum. Moreover, chromic, ferric, manganic, and other sulphates form double salts with the alkali sulphates, and though these compounds contain no aluminum whatever, they are called alums because they crystallize in the same form, have the same crystalline habit, the same oxygen ratio, and the same number of molecules of water of crystallization as the double sulphates of alumina and the alkali metals. None of these numerous alums has any commercial importance except "chrome alum," which has the formula $\mathrm{K}_{2} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$.
Potash and ammonia alums were made by Charles Lennig, of Philadelphia, in 1837, and concentrated alum was manufactured by him in 1859. Harrison Bros. \& Co., of Philadelphia, began the manufacture of crystal alum about 1840, and they began the manufacture of concentrated alum from bauxite in 1877. The Pennsylvania Salt Manufacturing Company began the manufacture of concentrated alum at Natrona, Pa., in 1876 , and they were the first to manufacture porous alum.

Alums are used in dyeing, printing, tanning, paper making, in making lakes and other pigments, in purifying water and sewage, as a constituent of baking powder, in medicine, in stucco work for bardening plaster, in photography for hardening films, in rendering woodand fabrics non-inflammable. in "carbonizing" wool, in bleaching, and in the preparation of various aluminum compounds.

The foreign commerce in alums is shown in the following table, compiled from the reports of the Bureau of Statistics of the United States Treasury Department:

IMPORTS OF ALUMS FOR CONSUMPTION: 1891 TO 1900, INCLUSIVE.

YEAR.	Pounds.	Value.	YEAR.	Pounds.	Value.
1891.	4, 652,985	\$58, 863	1896.	5,525,825	\$86, 371
1892.	4, 140,916	59,336	1897.	5, 301, 544	96,529
1893.	4,572,923	73, 806	1898.	2, 787,639	36,099
1894.	1,838,728	30,831	1899.	1,601,829	14,244
1895.	2,983, 682	46,815	1900.	2,186, 266	19,354

And in the following tables, obtained from the same source, are shown the quantities and values of the raw or partly manufactured materials so far as they were set forth:

IMPORTS OF CRYOLITE FOR CONSUMPTION: 1891 TO 1900, INCLUSIVE.

YEAR.	Tons.	Value.	YEAR.	Tons.	Value.
1891.	7,129	\$95, 405	1896.	7,024	\$93,198
1892.	8,298	76, 350	1897.	3,009	40,056
1893.	8,459	111,796	1898.	10,788	144, 178
1894.	12,756	170, 215	1899.	5,529	79,455
1895.	8,685	116,273	1900.	5,878	78,658

IMPORTS OF BAUXITE FOR CONSUMPTION: 1897 TO 1900, INCLUSIVE.

year.	bautite, crude.		ALUMINUM HYDRATE, OR REFINED BAUXITE.	
	Pounds.	Value.	Pounds.	Value.
1897	8,722, 074	\$14,915		
1899	7,722,000	14,168	2,092,082	860,194 92,019
1900.	6,850,000	11,413	3,474,421	109,574

LITERATURE.
Outlines of Industrial Chemistry, F. H. Thorp: Macmillan, New York, N. Y., 1898.
Manufacture of Alum, Lucien Geschwind: D. Van Nostrand, New York, N. Y., 1901.
Manual of Chemical Technology, Rudulf von Wagner: D. Appleton \& Co., New York, N. Y., 1892.

Watts, Dictionary of Chemistry, Vol. V, Longmans, Green \& Co., London, 1869.

Group V.-Coal-Tar Products.

Notwithstanding that as early as 1815 Accum had devised a process for obtaining a volatile oil from coal tar for use as a substitute for spirits of turpentine; that in 1845 A . W. Hofmann had discovered that this body contained benzene; that in 1856 a great impetus was given to tar distilling by the discovery of anilin colors by Perkin, since the benzol, which is the raw material for their manufacture, was exclusively derived from coal tar, and that from 1806, when coal gas was introduced for lighting by David Melville at Newport, R. I., coal tar had been a by-product of the industry in this country; yet it was not until 1880 that any mention was made in the United States Census Reports of these
bodies, and they are apparently given there in two classifications, as follows: On page 1001 of Statistics of Manufactures there are reported $344,11 \pm$ pounds of anthracene of a value of $\$ 99,242$, and in the table of specified industries on page 20 of the same report, it is stated that three works produced "coal tar" having a value of $\$ 466,800$, from which it is inferred that as the original coal tar was being produced in the several hundred gas works then existing, the three works enumerated were engaged in producing coal-tar products. On pages 288 and 289 of Part III, Census of Manufacturing Industries, 1890, there are reported coal-tar products of a value of $\$ 687,591$. The establishments were distributed as follows:

GEOGRAPHICAL DISTRIBUTION OF FACTORIES FOR COAL-TAR PRODUCTS: 1890.

STATES.	Value of products.	Per cent of total.
United States.	8687, 591	100.0
New Jersey	330, 200	48.C
Pennsylvania	168,180	24.5
New York ${ }_{\text {District of }}$	138,324 20,000	20.1 2.9
Georgia..............	20,000	2.9
Massachusetts and Tennessee	10,887	1.6

At the census of 1900 there were reported 14 establishments devoted to the manufacture of coal-tar products, which amounted in value to $\$ 1,322,094$, and 8 establishments in which this manufacture was of secondary importance, with a value of $\$ 99,626$, the total value being $\$ 1,421,720$. These establishments were distributed as follows:

GEOGRAPHICAL DISTRIBUTION OF FACTORIES FOR COAL-TAR PRODUCTS: 1900.

states.	Number of estab-lishments.	Average number of wageearners.	Capital.	Value of products.	Per cent of total.
United States	22	466	\$1, 448, 622	\$1,421,720	100.0
Missouri	3	155	381,959	415,600	29.2
Pennsylvania............	${ }_{3}^{6}$	177	651,482 25,457	396,759 44,016	27.9 3.2
New York................... Louisiana, California, Minnesota, Massachusetts, and New Jersey.	10	101	25,458 389,724	$4,0.6$ 565,345	3.2 39.7

Of these products, chemicals having a value of $\$ 205,047$ were obtained from further action on , the distillate of the coal tar. In addition, these factories produced tarred felt and tarred paper (in which part of the material from the coal tar was consumed), having a value of $\$ 442,529$.
Coal tar, as its name implies, is obtained from coal, and it is produced by the destructive distillation of coal out of contact with the air, the other products being gas, coke, and ammoniacal liquor. From the beginning of the Nineteenth century the chief commercial
source of the coal tar was found in the manufacture of coal gas for illuminating purposes, but to-day it is also obtained from the by-product coke ovens, while gas producers, blast furnaces, and water-gas plants furnish tars which now find commercial uses, though they differ in composition from coal tar. In the special report on coke for the census of 1900 , it is reported that the production of tar from the by-product coke ovens for 1899 amounted to $104,687,330$ pounds, or 52,344 tons. Although the returns for gas for 1900 are given in the special report on gas for the census of 1900 , no separate returns are therein presented for the by-product of tar. This may, however, be estimated as follows: In Table 8 of that report it is stated that the total production of gas was $67,093,553,471$ cubic feet, and in Table 9 that over 75 per cent of the gas manufactured during the census year was water gas. Putting the coal gas at 20 per cent, we have $13,418,710,694$ cubic feet of coal gas.

The average yield of gas per ton of gas coal is 10,000 cubic feet, and dividing the volume of gas by this there results $1,341,871$ tons of coal as having been used for making coal gas. The yield of tar per ton of coal is about 5 per cent by weight, which gives from the above figure $6 \mathbf{6}, 094$ tons of tar. The total quantity of coal tar from the by-product coke ovens and the coal-gas industry in 1900 was, then, approximately 119,438 tons. The quantity of "water-gas tar" may also be estimated from the quantity of oil consumed, which is given in the special report on gas as $194,857,296$ gallons. According to Douglas, ${ }^{1}$ about 25 per cent of the oil is recovered as tar, which gives for the oil recorded above $48,714,324$ gallons of tar. As, according to A. H. Elliott," "water-gas tar" has a specific gravity of 1.1, a gallon will weigh 9.15 pounds, and therefore the total weight of "water-gas tar" obtained in the United States for 1900 as derived from the data given above is 222,868 tons. No tar is reported from any other source, though it is known that abroad the blast furnaces and gas producers are utilized as sources of this material. The total computed production of coal tar and water-gas tar for the United States for the census year 1900 is therefore 342,306 tons. It is worth noting that though the first by-product coke oven in the United States was erected in 1892,' yet the industry has grown so fast that the yield of coal tar from this source closely approaches that from coal gas making.

In connection with these estimates it is interesting to compare the following statement made by Lunge ${ }^{4}$ in the recent edition of his standard work: "White and Hess (Jour. Soc. Chem. Ind., 1900, page 509), quote a number of analyses, from which they conclude that American coal tars are not well adapted to distillation for the recovery of benzol, etc., as they are inferior in

[^24]quality to European tars except as regards anthracene. Their estimate of the production of coal tar in the United States, 400,000 tons, is probably much too high, since by far the greater portion of illuminating gas made there is (carburetted) water gas. Probably the quantity of 120,000 tons, which I gave as the production of coal tar in the United States in 1886, is not much, if at all, exceeded at the present time." The amount of coal tar reported as consumed in the United States in the census year 1900 was $22,004,650$ gallons, which at 10 pounds per gallon gives 110,023 tons.
The yield of tar from the manufacture of gas in Europe in 1898 is given by Lunge ${ }^{1}$ from data supplied by Dr. Bueb, as follows:

TAR PRODUCED IN MAKING GAS IN EUROPE IN 1898.

COUNTRY.	Tons.	COUNTRY.	Tons.
Total.	1,120,000	Belgium	20,000
Great Britain	666,650	1taly...	16,650
Germany	166, 650	Holland	15,000
France.	135,000	Denmark	13,500
Anstria-Hungary	41,500	Switzerland......	6,750
Scandinavia	21,650		

The data of the census of 1900 places the United States fourth in the list of countries in the amount of tar produced in the distillation of coal for the manufacture of gas.
It is of historical interest that the first English patent referring to the destructive distillation of coal (that of John Joachum (sic) Becher and Henry Serle, dated August 19, 1681) does not treat of the manufacture of illuminating gas, but of "a new way of makeing pitch and tarre out of pit coale, never before found out or used by any other," and this German chemist, Johann Joachim Becher, appears to have been the originator of the coal-tar industry, he having employed the coal tar as a substitute for "Swedish tar from firwood" in tarring wood and ropes. The French metallurgist de Gensanne ${ }^{2}$ describes a furnace in use before 1768 at Sulzbach, near Saarbrücken, for coking coal and recovering tar, the light oil from the tar being used for burning in lamps.
Notwithstanding the various inventions for producing coal tar, it is, according to Lunge ${ }^{3}$ -
Certain that the manufacture of coal tar was never carried out on any extensive scale until it appeared as a necessary by-product in the manufacture of illuminating gas from coal, the idea of which seems to have occurred toward the end of the last century at the same time to the Frenchman Lebon and the Englishman William Murdoch. The former had already recommended the use of tar for preserving timber; but it was the latter who, along with his celebrated pupil Samuel Clegg, really laid the foundation of the enormous industry of gas making. The first private gas works was erected in 1798 at the engineering works of Bolton \& Watts;

[^25]the first public gas works in London in the year 1813; in Paris, 1815, and in Berlin, 1826.
The tar formed in the manufacture of coal gas necessarily forced itself upon the notice of the gas manufacturer, since it could not be thrown away without causing a "nuisance." It was probably from the first burnt under the retorts, but the method of doing this without giving very much trouble was not understood then. Other quantities, no doubt, were used, in lieu of wood tar, as a cheap paint for wood or metals, but it must have been soon found out that in the crude state it is not well adapted for this purpose. * * It was also quickly perceived that in this respect tar is improved by boiling it down to some extent, and as early as 1815 Accum showed that if this boiling down is carried out in closed vessels (stills) a volatile oil is obtained which may be employed as a cheap substitute for spirits of turpentine. But this does not seem to have been carried out to any great extent, and coal tar remained, for more than a generation from the first introduction of gas lighting, a nuisance and hardly anything else.
In Germany the first more extensive employment of gas tar was for making roofing felt, for which purpose it has to be deprived of water and the more volatile constituents. Instead of condensing these, they were at first almost everywhere, and later on in many cases, removed by evaporating the tar in open vessels, thus creating a considerable risk from fire. In Germany, Brönner, of Frankfort, was the first (in 1846) to condense the more volatile tar oils, from which he prepared a detergent, long after known by his name, and consisting principally of benzene.
In England, where the manufacture of illuminating gas originated, and where it has always been, and still is, carried on to a very much greater extent than on the Continent, a more extensive industrial employment for coal tar was first opened out by the invention of Bethell (1838) for preserving timber, especially railway sleepers, by impregnation with the heavy oil distilled from gas tar. From that time dates the introduction of tar distilling on a large scale. The light oils may have heen lost even here in some cases, but more usually they were condensed and employed as "coal-tar naphtha" for burning and for dissolving india rubber. .
The day of the light tar oils came after A. W. Hofmann (1845) had shown the presence of benzene in them, but especially when Mansfield, in his patent specification (1847), for the first time accurately described the composition of these oils, along with a process for preparing benzene in a pure state and on a large scale, and with proposals for utilizing the tar oils of lowest boiling point for lighting purposes. The industrial preparation of benzene was soon followed by that of nitrobenzene, at that time only employed as a substitute for the essential oil of bitter almonds, and known by the French fancy name of "essence de Mirbane." But all these applications produced only a limited demand for the light oils which could be made from the rapidly increasing quantities of gas tar; so that the latter, except in a few instances locally, did not attain any considerable commercial value. But a sudden impetus was given to tar distilling in 1856 by the discovery of the anilin colors, the material which forms their starting point, benzol, being - exclusively derived from coal tar.

Coal tar is an extremely complex mixture of chemical compounds, some of which have not yet been even isolated. As before stated, the tars from other processes than the destructive distillation of coal contain other constituents, and varying quantities of similar constituents, from those existing in coal tar. Likewise, coal tar will vary in its composition with the coal which is distilled and the manner in which the distillation is carried out. The "products" are obtained from the coal tar by fractional distillation, and the first products are crude naphtha and light oils of a specific gravity below 1.000 , distilling over below $180^{\circ} \mathrm{C}$.; dead oils and
creosote.oils of a specific gravity above 1.000 , distilling over between $180^{\circ} \mathrm{C}$. and $270^{\circ} \mathrm{C}$.; green or anthracene oils, distilling over between $270^{\circ} \mathrm{C}$. and $360^{\circ} \mathrm{C}$.; and soft pitch, which is left in the still.

The proportions of yields from different coals is shown in the following tables given by J. D. Pennock, ${ }^{1}$ chemist in charge of the oldest by-product coke-oven plant in the United States:

ANALYSES OF COAL.

ANALYSES OF TAR.

Specific gravity	A	B	I	II
	1.163	1.203	1.205	1.281
	Per cent.	Per cent.	Per cent.	Per cent.
Water	2.40	2.70	1.40	1.10
Light oil	4.60	2.03	3.12	1. 63
Creosoting oil	1.26	0.50	0.29	0.34
Dead oil.	22.81	16.40	25.09	19.23
Naphthalene	6.00	Trace.	0.20	1.72
Anthracene	0.60	Trace.	0.19	0.24
Soft pitch ..	68.80	70.50	67.40	74.14

Tars A and B, made from Coals A and B, whose analyses are given above, show what differences may exist in tars made from coals very similar in composition as shown by proximate analysis. Tars I and II represent two tars from gas works. They also vary greatly in composition. As a usual thing, they are found to be of much higher specific gravity and to contain less light oils than tars from the by-product coke oven, making them inferior as sources of benzene and for the manuture of tarred paper.

To obtain the desired commercial products, the distillate must be subjected to further treatment. Thus the light oil on fractional distillation, gives "benzol" to the extent, for the coke-oven practice, of from 0.6 to 0.9 per cent of the weight of the coal used. According to Lunge, " the final products of general trade into which the crude benzol should be split up without residues, are the following:

	FURNISHES DISTILIATE PER CENT UP TO-					Specific gravity.
	100°.	120°.	130°.	160°.	200°.	
90 per cent benzol.	90					0.885 0.880
50 per cent benzol.	50	90	20	90		0.880 0.875
Solvent naphtha..			2	9	90^{-7}	0.880
Heavy naphtha						

[^26]"Ninety per cent benzol" is a product of which 90 per cent by volume distills before the thermometer rises above $100^{\circ} \mathrm{C}$. A good sample should not begin to distill under $80^{\circ} \mathrm{C}$., and should not yield more than from 20 to 30 per cent at $85^{\circ} \mathrm{C}$., or much more than 90 per cent at 100° C., but it should distill completely below $120^{\circ} \mathrm{C}$. A 90 per cent benzol of good quality contains about 70 per cent of benzene, 24 per cent of toluene, including a little xylene, and from 4 to 6 per cent of carbon disulphide and light hydrocarbons.
"Fifty per cent benzol," often called 50/90 benzol, is a product of which 50 per cent by volume distills over at a temperature not exceeding $100^{\circ} \mathrm{C}$., and 40 per cent more (making 90 per cent in all) below $120^{\circ} \mathrm{C}$. It should wholly distill below $130^{\circ} \mathrm{C}$. It contains a larger proportion of toluene and xylene than the 90 per cent benzol. It is nearly free from carbon disulphide, and contains comparatively little of the light hydrocarbons. It is employed for producing the heavy anilin used in manufacturing rosaniline or magenta.
"Thirty per cent benzol" is a product of which 30 per cent distills below $100^{\circ} \mathrm{C}$. and about 60 per cent more passing over between 100° and $120^{\circ} \mathrm{C}$. It consists chiefly of toluene and xylene with smaller proportions of benzene and cumene.
"Solvent naphtha" consists of xylene, pseudocumene, and mesitylene and is used in dissolving caoutchouc in the manufacture of waterproof materials and other articles.
From these "light oils," by fractional distillation and purification with sulphuric acid, water, milk of lime, and caustic soda, pure benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$, and xylene, $\mathrm{C}_{8} \mathrm{H}_{10}$, may be obtained, the benzene being crystallized out.

According to Pennock ${ }^{3}$ the light oil obtained is from 6.6 pounds to 8.5 pounds per long ton of coal and it varies with the percentage of volatile matter in the coal. The light oil contains from 58 to 63 per cent of benzene, divided thus:

Per cent.
90 per cent benzol .. 57
50 per cent benzol.. 2

The dead oils and creosote oils which compose the material that is collected from the coal-tar distillate between 180° and $270^{\circ} \mathrm{C}$. contain the "middle oil," and this fraction on further treatment yields crystallized carbolic acid, cresols, heavy solvent naphtha, pyridine bases, and naphthalene. In practice this is divided into further fractions, the fraction between 240° and $270^{\circ} \mathrm{C}$. furnishing the creosote oil, which is a commercial source of naphthalene, coal-tar creosote, and the cresols. The naphthalene, which exists to the extent of 40 per cent or more in the creosote oil, is removed by chilling the oil, which causes the naphthalene to crystallize out, leaving the cresols. The crystals are

[^27]then drained and pressed and purified further by sublimation.
The heavy coal-tar oil is used not only as a source of the more valuable products obtained by rectification or by " breaking" in red-hot tubes, but also for "pickling" timber; softening hard pitch; preparing varnishes; preparing cheap mineral paints, where the heavy oil is used in place of linseed oil; as an antiseptic; in the blue steaming of bricks; in carburetting gas; in the manufacture of lampblack; and by burning, as a source of heat and light.
The fraction between 150° and 200° furnishes the carbolic acid, it being obtained by treating the oil with caustic soda, through which sodium phenolate is formed, which separates from the oil. The sodium phenolate is drawn off and then decomposed by sulphuric acid or carbon dioxide and the carbolic acid set free. The crude carbolic acid is now purified by distillation or other means and the pure carbolic acid, or phenol, which crystallizes in colorless crystals, obtained. Pure carbolic acid is used in the manufacture of the dyestuffs, picric acid, and corallin, and of some azo dyes, also in the manufacture of salicylic acid, but most of the carbolic acid, both pure and crude, is used for antiseptic purposes. The oil drawn off from the sodium phenolate contains some of the higher homologues of benzene, and naphthalene with pyridine bases. In commerce it furnishes principally naphthalene, pyridine bases, and solvent naphtha of various degrees, the treatment being determined by the products sought. The pyridine bases are used in the manufacture of pharmaceutical preparations and in denaturizing grain alcohol for use in the arts.
The anthracene oil, which is the portion of the coal-tar distillate passing over above $270^{\circ} \mathrm{C}$., is known also as green oil, green grease, and red oil, and it contains naphthalene, methyl naphthalene, anthracene, phenanthrene, acenaphthene, diphenyl, methyl anthracene, pyrene, chrysene, retenie, fluoranthene, chrysogen, benzerythrene, carbazol, and acridine, together with a mixture of liquid high-boiling oils, of whose composition nothing is yet known, the whole forming a mass rather thinner than butter, filled with crystalline scales of a greenish-yellow color. The anthracene oil is treated by cooling and pressing, the liquid portion being sent to the heavy oil to be reworked with it. The solid portion is either sold as rough anthracene or it is further purified by washing with solvents which dissolve the impurities. On oxidation anthracene yields anthraquinone, which is used for the production of alizarine and other coal-tar colors. According to Pennock ${ }^{1}$ there is as yet no market for anthracene in this country, but it is necessary that some anthracene should be present in coal tar pitch in order to produce a pitch of the right consistency for roofing purposes.
As indicated, the naphthalene is accumulated in the

[^28]creosote oil and extracted from it in the crude condition by freezing and pressing, when it is purified by sublimation. It is used in the manufacture of artificial colors and as a substitute for camphor in protecting goods from the ravages of moths.
The coal-tar pitch, which forms the residue in the still, is used in the manufacture of roofing compositions and tarred felt and tarred paper; incorporated with coal or coke dust, it is fashioned into briquettes for use as fuel; dissolved in creosote oil or other solvents, it is used as a paint for iron and woodwork; and it is used as a substitute for asphalt in street pavements.
Beazene is employed as a solvent in the manufacture of nitrobenzene and dinitrobenzene, which are used in several arts and in the manufacture of many benzene derivatives. One important product is anilin, which is obtained by the reduction of mononitrobenzene. The anilin of commerce, which is known as anilin oil, is obtained from benzol, and this, as before stated, is a mixture of different cyclic hydrocarbons, the particular mixture used being determined by the color which it is sought to produce. In this case, as with pure benzene, the mixture is nitrated by exposure to a mixture of nitric and sulphuric acids, and the nitrosubstitution compounds that are produced are reduced by exposure to tin and hydrochloric acid or some other source of nascent hydrogen. Benzol is also used as a cleansing agent and as a vehicle in paint.

The nitrosubstitution compounds, and amido bodies, like anilin oil, represent in this group the "chemicals made from coal-tar distillery products."
The foreign commerce in coal-tar products is set forth in the following tables, compiled from the reports of the Bureau of Statistics of the Treasury Department on imported merchandise entered for consumption into the United States:

IMPORTS FOR CONSUMPTION OF COAL TAR DURING THE YEARS ENDING JUNE 30, 1891 TO 1896.

Y EAR.		COAL TAR, CRUDE, AND PITCH.	
		Barrels.	Value.
1891.		89,313	\$263,593
1892.		117,056	\$203, 301
1893.		102, 136	244,291
1895.		96,068	218,514
1896.		112,536	247,957
		139,976	288,750

IMPORTS FOR CONSUMPTION OF COAL-TAR PRODUCTS, NOT MEDICINAL AND NOT COLORS OR DYES, ${ }^{1}$ DURING THE YEARS ENDING JUNE 30, 1898 TO 1900.

[^29]IMPORTS FOR CONSUMPTION OF PREPARATIONS OF COAL TAR, EXCEPT MEDICINAL, AND PRODUOTS OF, NOT SPECIALLY PROVIDED FOR, FOR THE YEARS ENDING JUNE 1, 1895 TO 1900.

year.	Value.
1895.	\$187,373
1897	313,943
	134,416
1890.	221, 101
1900.	274,946

Literature.
A Treatise on Chemistry, by H. E. Roseoe and C. Schorlemmer, Vol. III: New York, 1887.
The Rise and Development of Organic Chemistry, by Carl Schorlemmer: London, 1894.
A Handbook of Industrial Organic Chemistry, by Samuel P. Sadtler: Philadelphia, 1895.
The Retort Coke Oven and the Chemistry of its By-Products, by J. D. Pennock, J. Amer. Chem. Soc., 21, 678-705. 1899.

The Spirit of Organic Chemistry, by Arthur Lachman: New York, 1899.

Coal Tar and Ammonia, by George Lunge: 3d ed. New York, 1900.

Group VI.-Cyanides.

In this classification are included potassium ferrocyanide, potassium ferricyanide, potassium and ammonium sulphocyanates (known commercially as sulphocyanides), and potassium, sodium, and other cyanides. No separate account was taken of the cyanides at any census previous to 1900 . At the census of 1900 returns were made only for potassium ferrocyanide and for potassium cyanide. Twelve establishments were reported in which the cyanides were the principal products, the value being $\$ 1,466,061$, and 6 establishments in which they formed secondary products, the value being $\$ 12,844$. These 18 establishments employed $\$ 1,322,719$ of capital and 391 wage-earners and produced $\$ 1,595,505$ of product. They were distributed as follows:

GEOGRAPHICAL DISTRIBUTION OF CYANIDE FACTORIES: 1900.

states.	Number of estab-lishments.	Average number of wageearners.	Capital.	Value of product.	Per cent of total.
United States	18	391	81,322, 719	\$1, 595, 505	100.0
New Jersey.	6	166	533,001	1,053,472	66.0
Pennsylvania............	4 3	107 43	317,816 71,750	303,245 86,852	19.0 5.5
Ohio Maryland, Massachusetts, and Missouri............	3	75 7	400,252	80,802 151,936	5.5 9.5

Of the products reported, 6,165,407 pounds, having a value of $\$ 994,014$, were potassium ferrocyanide, and $2,317,280$ pounds, having a value of $\$ 601,491$, were the so-called potassium cyanide. There were consumed in this manufacture $9,315,080$ pounds of potassium car-
bonate, having a value of $\$ 279,602 ; 3,456$ tons of hoofs and of horn waste, having a value of $\$ 87,502 ; 19,417$ tons of scrap leather, having a value of $\$ 150,213 ; 1,200$ tons of spent iron oxide from the gas works, having a value of $\$ 3,000 ; 300,000$ pounds of sodium, having a value of $\$ 93,183 ; 2,400$ bushels of lime, having a value of $\$ 480 ; \$ 9,520$ worth of scrap iron, and $2,401,180$ pounds of potassium ferrocyanide.

Potassium ferrocyanide (ferrocyanide of potassium; yellow prussiate of potash; blood-lye salt) was discovered by Macquer in 1752, through acting upon prussian blue with an alkali. It is made by fusing potassium carbonate in cast-iron vessels and adding to the fused mass a mixture of nitrogenous organic matter, such as horns, hair, blood, wool waste, and leather scraps, with from 6 to 8 per cent of iron turnings or borings, until the mixture added equals about $1 \frac{1}{4}$ parts of the potash. The fused mass, when cooled, contains, among other substances, potassium cyanide, carbonate, and sulphide, iron sulphide, metallic iron, and separated carbon. This mass is broken up and digested with water at $85^{\circ} \mathrm{C}$. for several hours, during which reactions take place by which the potassium ferrocyanide is formed. The solution is clarified and the potassium ferrocyanide purified by crystallization, when it appears in fine large yellow crystals, having the formula $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} .3 \mathrm{H}_{2} \mathrm{O}$.

Potassium ferrocyanide is also prepared from the spent oxide of iron from gas works' purifiers, thereby utilizing the nitrogen compounds that have been taken up or formed during the process of purification. In this operation the oxide is lixiviated with warm water to remove the ammonium sulphocyanate and other ammonium compounds, and the residue is mixed with quicklime and heated by steam in closed vessels to $100^{\circ} \mathrm{C}$., through which calcium ferrocyanide is formed, and separated by lixiviation. By treating this with potassium chloride, the difficultly soluble calcium potassium ferrocyanide is formed, and by decomposing this with potassium carbonate the potassium ferrocyanide results.

Potassium ferrocyanide was manufactured on a commercial scale by Carter \& Scattergood in Philadelphia, before 1834. It is used largely for making prussian blue, potassium cyanide and ferricyanide, prussic acid, in calico printing, in dyeing, for case-hardening iron, and in white gunpowder and pyrotechnics.

Potassium ferricyanide (ferricyanide of potassium; red prussiate of potash) was discovered by Leopold Gmelin in $1822,{ }^{1}$ and is formed by passing chlorine gas through a solution of potassium ferrocyanide until the solution will no longer give a blue reaction with a ferric salt. Or the salt may be formed by exposing dry powdered ferrocyanide to the action of chlorine gas; or by acting on a calcium and potassium ferrocyanide solution with potassium permanganates; or, according to

[^30]Lange, ${ }^{1}$ by boiling a solution of the ferrocyanide with lead peroxide, while a stream of carbon dioxide is passed through the solution. Potassinm ferricyanide crystallizes without water of crystallization in blood-red prisms. It is very soluble, yielding an intensely yellow solution which forms the blue pigment, known as Turnbull's blue, with ferrous salts.

Carter \& Scattergood were manufacturing red prussiate of potash on a commercial scale at Philadelphia in 1846. When in solution with caustic potash, it is a powerful oxidizing agent, and as such is used in calico printing as a "discharge" on indigo and other dyes. It also forms a part of the sensitive coating for photographic "blue-print" papers, and has been recommended for use with potassium cyanide in the extraction of gold from its ores.
Ammoniunı sulphocyanate (sulphocyanate of ammonium; ammonium thiocyanate; ammonium sulphocyanide), the acid of which was first observed by Bucholz in 1799 , is prepared by heating carbon disulphide and ammoniup hydroxide to $125^{\circ} \mathrm{C}$. in an autoclave until the pressure rises to 15 atmospheres, when the ammonium dithiocarbamate is formed: The pressure is now released and the autoclave heated to $110^{\circ} \mathrm{C}$., when the dithiocarbamate is decomposed and the products distilled over. The anmonium sulphocyanate produced is obtained by evaporating the liquid remaining in the still in tin vessels and crystallizing out.
As pointed out above, ammonium sulphocyanate is also obtained by lixiviating the spent iron oxide ased in purifying illuminating gas. The salt crystallizes in colorless plates which are very soluble in water and alcohol. It is used as a source of other sulphocyanates and in dyeing, to prevent the injurious action of iron on the color.
Among the sulphocyanates produced from it is the barium sulphocyanate which results from heating ammoniam sulphocyanate with barium hydroxide solution under slight pressure; and this barium salt is ased generally for the manufacture of potassium and aluminum sulphocyanates, which are used in textile dyeing and printing.
Potassium cyanide (cyanide of potassinm) has been generally prepared by fusing potassinm ferrocyanide with potassium carbonate until the evolution of gas ceases. Potassium cyanide, potassium cyanate, ${ }^{2}$ carbon dioxide, and metallic iron are formed. The metallic iron sinks to the bottom of the crucible and the fused mixture of cyanide and cyanate is run off. Part of the cyanate may be reduced to cyanide by adding powdered charcoal to the fused mass, or it may be reduced by metallic zinc or sodinm; or the cyanide may be extracted from the mass by a solvent such as alcohol, acetone, or carbon disulphide. By fusing the potassium ferrocy-

[^31]anide with sodium carbonate a mixture of sodium and potassinm cyanide known under the name of "cyansalt" may be produced. An almost pure cyanide can be obtained by heating the ferrocyanide per se according to the following equation:
$$
\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}=4 \mathrm{KCN}+\mathrm{N}_{8}+\mathrm{FeC}_{2}
$$
but this method entails the loss of one-third of the nitrogen in the ferrocyanide, and to avoid the waste of nitrogen Erlenmeyer proposed to add the proper amount of an alkali metal to the melted ferrocyanide, giving for sodium the following reaction:
$$
\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}+2 \mathrm{Na}=4 \mathrm{KCN}+2 \mathrm{NaCN}+\mathrm{Fe}
$$
and it is in this way that most of the so-called chemically pure potassium cyanide now sold is made, though it consists of a mixture of potassium and sodium cyanides. It also contains a considerable quantity of potassium carbonate, which is added to it during the course of manufacture to reduce its strength, for the combined cyanides produced as above described have a higher percentage of cyanogen than chemically pure potassium cyanide could possibly have. The carbonate is added in sufficient amount to reduce the cyanogen contents to from 39 to 40 per cent, which is equivalent to from 98 to 100 per cent potassium cyanide.

Other processes have been devised for using sodiam in making cyanides. One is to first convert the sodium into sodamine, thus: $2 \mathrm{Na}+2 \mathrm{NH}_{3}=2 \mathrm{NaNH}_{2}+\mathrm{H}_{2}$ by heating it in contact with ammonia gas, and then heating the amine with carbon to form the cyanide thas: $\mathrm{NaNH}_{2}+\mathrm{C}=\mathrm{NaCN}+\mathrm{H}_{2}$. Another and later method by which it is claimed a better yield is obtained, is to form a stable cyanamid, at a temperature of about $400^{\circ} \mathrm{C}$., from the sodamine and carbon, thus:

$$
2 \mathrm{NaNH}_{2}+\mathrm{C}=\mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{C}+2 \mathrm{H}_{2},
$$

and then reacting on the cyanamid with a further quantity of carbon at a temperature of $800^{\circ} \mathrm{C}$. to form the cyanide according to the equation:

$$
\mathrm{Na}_{2} \mathrm{~N}_{2} \mathrm{C}+\mathrm{C}=2 \mathrm{NaCN}
$$

Each of these methods requires a large amount of expensive sodium for a given output of cyanide. J. D. Darling has lately devised a process of using sodium in the synthetic production of sodiam cyanide, which gives good results and in which the larger portion of the metallic base is furnished in the form of caustic soda, and but a small amount of sodium is needed to finish the process. It is claimed that by this process a mod-erate-sized sodium plant can produce enough metal to manufacture a large amount of cyanide.

Potassium cyanide has been commercially manufactured by passing nitrogen over an intensely heated mixture of charcoal and potassium carbonate. Cyanides have also been produced by conducting ammonia
gas through vertical retorts, heated to a red heat, and containing a mixture of charcoal and alkali carbonates. Potassium cyanide is sometimes obtained in considerable quantity from blast furnaces, being formed from the potassium carbonate in the ash of the fuel. ${ }^{1}$ Because of this reaction between carbon and nitrogen in the presence of alkaline salts numerous efforts have been made to utilize the reaction in making the atmospheric nitrogen available.

Potassium cyanide was commercially manufactured by the H. V. Davis Chemical Works, at New Bedford, Mass., in 1852. As it is a powerful reducing agent, potassium cyanide is used as a flux in assaying and in metallurgy; as a solvent of silver sulphide it is used in cleaning silver articles; it has been used as a fixing solution in photography; for the preparation of Grénat soluble and potassium isopurpurate in dyeing; and, as it forms a soluble double cyanide with silver, gold, copper, and other metals, it is much used in electroplating; but its largest use is now found in the cyanide process for the extraction of gold from its ores.

The foreign commerce in the cyanides is set forth in the following tables, compiled from the publications of the Bureau of Statistics of the Treasury Department of the United States:

IMPORTS FOR CONSUMPTION DURING THE YEARS ENDING JUNE 30, 1891 TO 1900.

year.	yellow prussiate of POTASH.		RED PRUUSIATE OF POTASH.	
	Pounds.	Value.	Pounds.	Value.
1891	2, 223,154	\$368, 366	35, 826	\$10,650
1892	1,302,632	232,058	35, 933	11, 111
1893	1,047, 910	206, 259	16,679	5,743
1894	599, 103	114, 826	11, 135	3,339
1895	878,727	161,009	26,703	7, 593
1896	1,056, 662	157, 457		8,579
1897	3, 252,931	359,037	69,087	14,893
1898	1,340,305	132,508	77,246	18, 674
1899	1,809,089	204, 974	62,697	15,211
1900	1,771,394	224, 274	53,716	12.954

IMPORTS FOR CONSUMPTION DURING THE YEARS ENDING JUNE 30, 1897 TO 1900.

	year.	CYANIDE OF POTASH.	
		Pounds.	Value.
1897		16,232	$\$ 4,190$ 120,252
1898		1,102, 780	258, 613
1900		2, 2 , ${ }^{\text {2 }}$, 974	444,703

LITERATURE.
Handbook of Chemistry, by Leopold Gmelin, Vol. VII: London, 1852.

Encyclopédie chimique, by M. Fremy, vol. 2: Paris, 1886.
On the Fixation of Atmospheric Nitrogen, by A. A. Breneman, J. Am. Chem. Soc., 11, 2-48. 1889.

A Dictionary of Chemistry, Henry Watts, vol. 2: London, 1870.

[^32]Manual of Chemical Technology, by R. von Wagner: London, 1892.

Outlines of Industrial Chemistry, by F. H. Thorp: New York, 1898.

The Cyanide Process for the Extraction of Gold, by M. Eissler: London, 1898.
Die Cyan-Verbindungen, by F. Fenerbach: Leipzig, 1896.
Manufacture and Uses of Metallic Sodium, by J. D. Darling, J. Frk. Inst., 153, 65-74. 1902.

The Composition of Commercial Cyanide of Potassium, by Russell W. Moore, J. Soc. Ch. Ind., 21, 391-392. 1902.

Group VII.-Wood Distillation.

Wood distillation as now classified for census purposes deals solely with that treatment of wood by which wood alcohol, acetic acid, acetate of lime, pyroligneous acid, and charcoal, or any of these, are produced. This interpretation was given to it in 1880, the first census at which separate returns were set forth for the industry. The manufacture proceeds in two stages: First, the production of crude wood alcohol or wood spirits and crude acetate of lime; second, the refining of the alcohol, and the refining of the acetate of lime, or the production therefrom of acetic acid or acetone. The refining processes are usually carried out at other works than those in which the crude materials are produced, but while in the census reports the alcohol refineries remain identified and classified with the wood distillation works, the factories where the acetate of lime is treated are classified with "chemicals, acids." With this preface it can be stated that 99 establishments were reported as producing some of the crude substances enumerated above during the census year 1900. Of these, 84 were regular wood-distilling establishments and produced of crude alcohol 4,191,379 gallons, having a value of $\$ 1,660,061$; of acetate of lime $81,702,000$ pounds, having a value of $\$ 926,358$; and of charcoal $14,428,182$ bushels, having a value of $\$ 612,009$.
These works employed $\$ 4,858,824$ of capital, and 1,268 wage-earners. There were 9 establishments reporting the production of the crude material and the refining of the alcohol in the same factory; and these establishments produced of refined alcohol 637,856 gallons, having a value of $\$ 370,513$; of acetate of lime $5,124,000$ pounds, having a value of $\$ 54,928$; and of charcoal $2,726,120$ bushels, having a value of $\$ 114,663$. They employed $\$ 760,156$ of capital and 254 wageearners. Besides these there were 9 establishments engaged in refining wood alcohol only, producing $2,400,284$ gallons of refined alcohol, having a value of $\$ 1,926,385$, and employing $\$ 1,098,719$ of capital, and 52 wage-earners. Finally, there were 6 other establishments engaged in the production of pyroligneous acid or pyrolignite of iron as incidental to other manufacturing processes, the total quantity of pyroligneous acid reported from all sources being 182,446 gallons, valued at $\$ 9,481$; of dye liquors 308,400 gallons, valued at $\$ 29,440$, and of sundries, such as wood creosote,
wood oil, ashes, tar, and the like, amounting in value to $\$ 71,452$.

At the first census of this industry in 1880 only crude materials were reported. At the census of 1890 refined wood alcohol was reported for the first time, and it was then stated that the total output of crude alcohol was found by adding to that produced at the "acid factories" that which was produced and refined in the same establishment. Proceeding in this way for the 9 establishments reported above for 1900 as producing the crude alcohol and refining it in the same establishment, and converting the refined 97 per cent alcohol into crude 82 per cent alcohol at a value of 42 cents per gallon, a total is obtained for these establishments of 754,584 gallons of crude alcohol having a value of $\$ 316,925$. By taking, in these instances, the per cent of the total value for all products added in the refining of the alcohol, the proportion of capital and labor devoted to the production of the crude material is found to be, for these 9 establishments, $\$ 641,052$ of capital and 219 wage-earners. There were, therefore, 93 factories producing crude alcohol, in which $\$ 5,499,876$ of capital and 1,487 wage-earners were employed. The total output thus ascertained is compared with the returns for the previous censuses in the following table:

WOOD DISTILLATION, CRUDE MATERIAL PRODUCED: 1880 TO 1900.

year.	Number of estab-lishments.	WOOD ALCOHOL.		acetate of lime.		charcoal.	
		Gallons.	Value.	Pounds,	Value.	Bushels.	Value.
1880.	17		\$86, 274	6,593, 009	\$156, 892		\$31, 770
1890....	53	1,116, 075	688,764	26,778,416	315, 430		
$1900 \ldots$	93	4, 945, 963	1,976,986	86,826,000	981,286	17,154, 302	726,672

The increase of 1890 over 1880 in acetate of lime was 306.2 per cent in quantity and 101 per cent in value. The increase for 1900 over 1890 was 224.2 per cent in quantity and 211.1 per cent in value. The increase for 1890 over 1880 in wood alcohol was 698.3 per cent in value. The increase for 1900 over 1890 was 343.2 per cent in quantity and 187 per cent in value.

These establishments were distributed as follows:
WOOD DISTILLATION, GEOGRAPHICAL DISTRIBUTION
OF WORKS PRODUCING CRUDE PRODUCTS: 1900.

state.	Number of estab-lishments.	Average number of wage- earners.	Value of products.	Per cent of total.
United States..	93	1,487	\$3, 833, 266	100.0
Pennsylvania	58	878	2, 339,536	61.3
New York	24	354	786, 252	20.3
Michigan......	5	169	505, 069	13.2
North Carolina-	3	12	18,409	0.4
setts \qquad	3	74	184, 000	4.8

Only the number of refineries and quantity of products were reported for 1890 , and only with these can
the present condition of the refined wood-alcohol industry be compared, but this is sufficient to show how marked the growth has been.

PRODUCTION OF REFINED WOOD ALCOHOL: 1890 AND 1900.

YEAR.	Number of estab-lishments.	Gallons.	Value.
1890	4	166, 342	
1900	18	3,038,140	\$2,296,898

The increase of 1900 over 1890 is more than seventeenfold.

Although wood is usually spoken of as consisting of cellulose, it really consists of cellulose associated with a great variety of other organic substances, the kind differing with the different species of wood, and it is only necessary to recall the various gums, resins, tannins, sugars, and coloring matters found in commerce, which are obtained by simple processes of extraction from wood, to make this fact especially apparent. When subjected to heat out of contact with the air, the constituents of the wood are decomposed into liquids, gases, and a solid residue, and this process has been resorted to for ages as a means for obtaining charcoal. During the middle ages it became known that wood vinegar or pyroligneous acid could be obtained by distilling wood, but the identity of the acetic acid present with that obtained by the fermentation of alcohol was not known until 1802, when it was established by Thènard. The presence of wood spirit in the distillate from wood was discovered by Robert Boyle, in 1661, but its analogy to grain alcohol was first recognized by Taylor in 1812, and its composition was definitely fixed by Dumas and Peligot in 1831. Although charcoal, acetic acid, and methyl alcohol are the principal commercial products of the wood distillation industry, there is also produced, besides methyl alcohol, other alcohols, acetic acid and other acids, furfural and other aldehydes, acetone and other ketones, methyl acetate and other esters, methylamine and other amines, woodtar creosote containing guaiacol and other phenols, and various hydrocarbons.

Originally wood was treated for charcoal alone by charring it in heaps or in kilns, thus allowing all the other products named above to go to waste. This process is still carried on, but before the middle of the Nineteenth century the process of distillation in retorts, by which the acetic acid in the form of pyroligneous acid, pyrolignite of iron, or acetate of lime, and the wood spirits were recovered, was well established in Europe. The manufacture of pyroligneous acid was begun in the United States by James Ward in 1830, at North Adams, Mass. The manufacture of acetate of lime and methyl alcohol was started in the United States about 1867 by James A. Emmons and A. S.

Saxon, in Crawford County, Pa., and in 1874 George C. Edwards established the Burcey Chemical Works at Binghamton, N. Y., ${ }^{1}$ to refine the crude wood spirit produced by the various acetate manufacturers. In 1876 Dr. H. M. Pierce obtained the first of a series of United States letters patent relating to inventions in this industry, which he was the first to apply to the recovery of the by-products from the smoke of the charcoal kilns in Michigan, where charcoal was being produced for use in blast furnaces. From that time he was most active in the promotion of the wood distillation industry, and largely. contributed to the revolution which has since been effected in our foreign commerce in the products of this industry.
The wood used for the making of wood alcohol and acetate of lime is hard wood, preferably oak, maple, birch, and beech. It is cut in 50 -inch lengths, so that a cord of wood in this industry measures 48 by 48 by 50 inches. It should be seasoned two and one-balf years before "burning," to get the best results. The wood is burned in retorts, in ovens, or in kilns. The retorts are cylindrical, are made of three-eighths inch steel, 9 feet long by 50 inches in diameter, and are provided with a large, tightly fitting door at one end and an outlet pipe about 15 inches in diameter at the other end. The retorts are set horizontally in pairs in brickwork, and batteries of from 6 to 16 pairs are common. The cord wood is fed through the door and carefully stacked so as to completely fill the retort. The ovens consist of rectangular iron chambers set in pairs in brickwork and provided with large doors at one end and three or more delivery pipes on the side of each oven. They are usually 27 feet long, 6 feet wide, and 7 feet high inside, and rails are laid upon the floor of the oven by which steel cars loaded with cord wood may be run in. These cars each hold $2 \frac{1}{2}$ cords of wood, and an oven of the above dimensions will receive two such cars. Ovens, however, are in use in this country that are from 48 to 50 feet in length and capable of receiving four cars at one charge. The retorts are heated from beneath by burning wood, coal, or charcoal, supplemented by the tar, red oil, and gas, which are byproducts of the industry. A very large part of the charcoal made in retorts is thus consumed. This furnishes another example of a chemical industry in which the former by-products have now become the principal products. The ovens are heated by natural gas.

When the wood is heated the moisture is driven out, but no decomposition occurs until the temperature approaches $160^{\circ} \mathrm{C}$. Between this and 275° C. a thin, watery distillate, known as pyroligneous acid, is chiefly formed; from 275° to $350^{\circ} \mathrm{C}$. the yield of gaseous products becomes marked; and between 350° and 450° C. liquid and solid hydrocarbons are most extensively formed. The quantity and character of the yield

[^33]depend upon the character and age of the wood and the temperature and rate at which the charge is heated. In the ovens the wood is heated for twenty-four hours and then the cars containing the charcoal are drawn and immediately run into iron sheds where, when the doors are closed and luted, the charcoal is allowed to cool. The volatile portions, from retorts or ovens, are carried to condensers where the pyroligneous acid and tar are condensed and the gases are carried off to be burned under the boilers for generating steam, or under the retorts.

The yield of pyroligneous acid is about 30 per cent and of tar about 10 per cent of the weight of the dry wood. The acid averages about 10 per cent of acetic acid, 1 per cent of methyl alcohol and 0.1 per cent of acetone. As acetone is produced by the heating of acetates the yield of these two bodies will vary with the manner in which the heating is carried on. The pyroligneous acid is a dark red-brown liquid, having a strong acid reaction and a peculiar empyreumatic odor, and its density varies between 1.02 and 1.05 specific gravity. It is used to a limited extent in the manufacture of an impure acetate of iron, known as "black iron liquor," or "py rolignite of iron," butit is usually treated to separate the methyl alcohol, acetone, and acetic acid from it. This is done by distillation, the alcohol being concentrated by dephlegmators, as is done in the manufacture of grain alcohol, to 82 per cent, when it is shipped to the refinery in iron drums holding about 110 gallons each, or in barrels holding from 45 to 46 gallons each. The acetic acid is recovered in two forms, viz, as "gray acetate of lime" or as "brown acetate of lime;" the first being produced when vapors from the distillation are passed through milk of lime, while the second is produced when the pyroligneous acid is neutralized with lime before distilling off the alcohol, and the resulting acetate of lime is thus contaminated with considerable tar.

The crude wood alcohol is sent to the refinery to be purified and rectified, which is accomplished by further distillation from lime or caustic alkalies. The acetone can not be separated by simple distillation, but it may be converted into chloracetones of high boiling points and thus removed, or the separation may be effected by crystallizing out the methyl alcohol with calcium chloride, or the acetone may be converted into chloroform and volatilized by distilling the mixture with chloride of lime. Most of the methyl alcohol of commerce contains acetone in varying quantities, even as much as 15 per cent, and such acetone containing alcohols are especially desired in several arts, as they serve for the purpose to which they are put better than pure methyl alcohol. A pure methyl alcohol is now produced in very considerable quantity which is of 100 per cent strength as it leaves the works, but it soon absorbs water on exposure so as to reduce its alcohol strength to 98 or 97 per cent.

In the Pierce process, as described by Landreth, the charring of the wood is effected in circular, flat-top, brick kilns holding 50 cords of wood each. The wood is charred by the heat produced by gas burned in a brick furnace under the kiln, into and through which the products of combustion pass. The gaseous products of the dry distillation of the wood pass from the kiln to condensers, where the tarry and liquid products are condensed and the gas sent back to the kiln. Thus none of the charcoal produced is burned to carbonize other wood, as in the common pits or ovens. The gas which elsewhere is wasted is here not only sufficient to effect the carbonizing of the wood, but furnishes fuel for the boilers required about the works.
The wood used is as thoroughly seasoned as the conditions of maintaining a year's supply in advance, cost of storage room, and interest on capital invested in stock render economical. If not thoroughly dry when placed in the kilns, the carbonization of the wood is automatically deferred, by the absorption of the heat in the evaporation of the sap and other moisture, until the seasoning process is complete. This seasoning commences at the top of the kilns and proceeds regularly downward, by a definite plane of seasoning. When this plane reaches the bottom and the seasoning is complete, which is indicated by a sudden change in the color of the escaping vapors, the process of charring begins at the top and proceeds downward precisely like the seasoning process.
The watery vapors driven off during seasoning are not preserved, but are allowed to escape through vents temporarily left open around the base of the kilns and through the top of the kiln chimneys, which, during this stage, are open at the top, but which, so soon as the watery vapor has escaped, are connected with a suction main. The time required for the several stages in the cycle of operations in producing a kiln of charcoal is as follows:

Total length of cycle 18

As one 60 -ton blast furnace requires 5,000 bushels of charcoal daily, or the output of 2 kilns, the total number of kilns in a plant to furnish a continual supply of fuel must be equal to twice the number of days in a cycle plus a margin for relays, for repairs, and unusual delays; the margin is usually chosen at one-sixth the effective number of kilns, so that the total number of kilns comprising a plant $=2(18)+\frac{1}{6}(36)=42$, of which at any one time-

[^34]These 42 kilns are arranged in 2 distinct batteries of 21 kilns each. Each battery has its own condensers and suction main carrying the products of distillation to the condensers, and its own gas main leading the noncondensable gases back to the kiln furnaces.
The condensers are composed of tall wooden tanks, 5 feet square by 20 feet high, through which the products of distillation pass, each inclosing 99 vertical copper pipes, 2 inches in diameter, through which the condensing water flows. The condensed products are trapped out at the bottom of each condenser, of which 10 comprise a battery, and conveyed to cooling tanks, where the tar is separated from the pyroligneous acid liquor by cooling. The tar is used to coat the kilns to render them impervious to air, and for this purpose one coating of tar suffices for four burnings, while the usual coating of lime whitewash has to be repeated after each buruing. The circulation of the gaseous products through the system is maiutained by exhaust fans, which draw the noncondensed gases through the condensers and force them through the gas main back to the kilns, when they are injected into the furnaces by a steam jet from a one-sixteenth-inch orifice playing in the center of an inch nozzle on the gas pipe. The minimum amount of air necessary to effect the perfect combustion of the gases is admitted through regulating dampers in the front of the furnace.

From the liquor coolers the pyroligneous acid liquor is conveyed to the distilling house, where the acetic acid in the liquor is converted into acetate of lime; the liquor is then sent to the fractional distillation system, which comprises 8 primary stills and condensers, 4 intermediate stills and condensers, and 2 final or shipping stills and condensers. The stills are circular tanks each holding about 2,500 gallons and are heated by steam coils of 2 -inch copper pipe. The several stills of each of the 3 series are operated abreast. The distillation is not carried on continuously, but each series is charged and the distillation carried on until all of the alcohol available is evaporated, when the stills are emptied and recharged with new liquor. The degree of concentration attained in each series of stills is as follows:
The liquor entering the primary stills contains $1 \frac{1}{2}$ per cent of alcohol.
The distillate from the primary stills contains 15 per cent of alcohol.
The distillate from the intermediate stills contains 42 per cent of alcohol.
The distillate from the final stills contains 82 per cent of alcohol.
The yields of products differ with the different works and with the different processes employed. According to Landreth the yields by the Pierce process with brick kilns are as follows:

DRY WOOD.	Volume per cord of wood.	Mass per cord.	Per cent.
Resulting charcoal	50.6 bush	1,012]bs	
Resulting methylic alcohol	4.4 gals......	1,012 30 lbs	25.30
-Resulting acetlc acid - .	4. 4 gals...... $4.6 \mathrm{gals} . .$.	30 lbs	0.75
Resulting tarry compounds..............	16.5 gals......	40 lbs	1.00
Resulting water	220.7 gals.	1,838 lbs	4. 45. 90
Resulting noncondensable gases ...	11,000.0 cu. ft	1,838 920 lbs	$\begin{aligned} & 45.95 \\ & 23.00 \end{aligned}$
Total		4, 000 lbs .	100.00

Though 1 factory reports as high as 12.93 gallons of alcohol per cord of wood, yet the yields from the retort and oven processes average about 10 gallons of alcohol, 200 pounds of acetate of lime, and 50 bushels of charcoal per cord of wood in addition to the gas, tar, and chemical oil, all of which are burned. The yield of brown acetate of lime is about one-third larger than that of gray. As has been said, where retortsare used much of the charcoal is burned. Where coal is used, four-tenths of the charcoal produced is burned under the retorts. Where no coal is used six-tenths of the charcoal produced is thus consumed. In all of the works the whole of the gas, tar, and chemical or red oil is burned by the aid of steam, but it is probable that investigation will show that the tar and red oil are too valuable to be thus consumed.

The methyl alcohol is used for domestic fuel, as a solvent in varnishes, as a solvent in the manufacture of pyroxylin plastics, in the production of formaldehyde, in the making of methylated spirit, and in the manufacture of anilin colors.

The acetate of lime is used for the manufacture of acetic acid, acetone, "red liquor," and, when purified, as a mordant in dyeing.

Acetone is employed in the manufacture of chloroform, iodoform, and sulphonal, for denaturating grain alcohol, in making smokeless powder, and as a solvent in several of the arts.

A complete treatment of the wood distillation industry should include the production of turpentine, rosin, and tar by the distillation of the wood of the long-leaved pine, but this is made the subject of special report No. 126, issued January 11, 1902, entitled "Turpentine and Rosin."

The factories for the prodiction of the crude products of this industry must be located near an abundant supply of hard wood and where there is a sufficient supply of water for cooling the condensers and charging the steam-generating boilers, this steam being employed in distilling the liquors, evaporating the acetate solutions, drying the acetate, and operating the pumps by which the liquors are raised from one level to another. In some cases, however, the acetate pans are placed over the retorts so that the heat radiated from them may be usefully employed. The total amount of wood reported as consumed in this industry for 1900 was 490,939 cords, having a value of $\$ 1,241,972$, which gives an average value for it of $\$ 2.53$ per cord as laid down at the works. Assuming one man to average one and one-half cords of wood per day, the cutting of the wood used would give employment to 3,273 men for one hundred days each. Comparing this total quantity of wood reported with the total quantities of crude wood alcohol, acetate of lime, and charcoal the average yields per cord of wood for all processes are found to be 10 gallons of alcohol, 176 pounds of acetate of lime, and 35 bushels of charcoal.

It is alleged in the "trade" that the importations of acetate of lime into the United States before the introduction of the by-product processes amounted to as much as $3,000,000$ pounds annually. The only statistics discoverable in the records of the Treasury Department relative to this, is that in 1880 there were 38,000 pounds imported, having a value of $\$ 76$. On the other hand, the following table, compiled from "The Foreign Commerce and Navigation of the United States for the Year Ending June 30, 1900," shows that the United States is exporting large quantities of both acetate of lime and wood alcohol:

EXPORTS, WOOD ALCOHOL AND ACETATE OF LIME: 1898 TO 1900, INCLUSIVE.

		WOOD ALCOHOL.		acetate of Lime.	
		Galloas.	Value.	Pounds.	Value.
Total		1,653,799	\$934, 411	134, 274, 564	\$2,014, 269
1898		385,938	199, 230	37, 496, 288	537,856.
1899		727, 062	414, 875	48, 987, 511	700,900
1900		540,799	320, 306	47,790, 765	776,413

From the same source is the following record of imports of charcoal and pyroligneous acid:

IMPORTS, CHARCOAL: 1891 to 1898, INCLUSIVE.

YEAR.	Value.	YEAR.	Value.
1891	\$56,020	1895	\$20,272
1892	48,029	1896	42,970
1893	51, 634	1897	32, 106
1894	40,249	1898	2,404

IMPORTS, FOR CONSUMPTION, ACETIC OR PYROLIGNEOUS ACID: 1891 TO 1900, INCLUSIVE.

	YEAR.	Pounds.	Value.
1891.		10,946	\$1,036
1892.		12, 280	2,302
1893.		18,421	2,795
1894.		22, 244	3,959
1895.		92,889	8,938
1896.		
1897.			
1898.		127,949	9,776
1899.		202,838	14,467
1900.		292,891	19,189

LITERATURE.
Acetic Acid, Chemistry of Arts and Manufactures, by Sheridan Muspratt, Vol. 1, 1-48. 1860.
The Economical Production of Charcoal for Blast Furnace Purposes, by O. H. Landreth, Proc. A. A. A. S., 27, 145-151. 1888.

Outlines of Industrial Chemistry, by F. H. Thorp: New York, 1898.

Handbook of Industrial Chemistry, S. P. Sadtler: Philadelphia, 1895.

The Distillation of Pine Wood in the South, by Franklin S. Clark, School of Mines Quarterly, 9, 163-166. 1888.
Charcoal Production and Recovery of By-Products, by ConsulGen. Frank H. Mason, U. S. Consular Reports, 66, 253-261. 1901.
The Manufacture of Charcoal in Kilns, by T. Egleston, Trans. Amer. Inst. of Mining Engineers, May, 1879.

The Composition of Wood Oil, G. S. Fraps, Amer. Chem. Jour., 25, 26-54. 1901.

Commercial Organic Analysis, Alfred H. Allen, revised by Henry Leffmann, 3d ed., Vol. 1: Philadelphia, 1898.

Group VIII. Fertilizers.

The term "fertilizer," as used in this report, includes all manufactured products which are intended to promote the growth of plants and which can be, and customarily are, so used without needing any further factory treatment. Under this definition raw phosphate rock, even if finely ground, can hardly be included, nor can crude cottonseed, ordinary tankage, nor unground bone. All of these have fertilizing properties, but require further treatment, usually chemical, if the full effect is to be economically obtained. The term "fertilizer works" should, strictly speaking, be confined to establishments producing "finished fertilizers," such as superphosphate, with or without ammoniates; "complete fertilizers," by which is meant a mixture of superphosphate with both potash and ammoniates; and "all other fertilizers," including bone meal and similar substances. But under the principle governing the classification of industries at the census of 1900 there can be included in fertilizer works all factories of which the main product, though not a finished fertilizer, was, nevertheless, a fertilizer material - say, tankage-in a condition of advanced manufacture, such products being included in "all other fertilizers."
The total number of establishments thus classified as fertilizer works, and forming Class A, is 422 . In addition there are 18 small establishments, each of which reported a value, for all products, of less than $\$ 500$, and hence are not included in the regular census tabulations. As the total fertilizer product of the 18 establishments amounted to but 46 tons of complete fertilizer, valued at $\$ 1,047$, and 213 tons of "all other fertilizers," valued at $\$ 3,489$, it will be seen that the omission to tabulate establishments under $\$ 500$ is of small consequence.

Under Class B are included 10 establishments whose main product places them in some one of the 19 groups of "chemical industries," but which made more or less fertilizers as a subordinate, though sometimes very important, part of the product. The total fertilizer product of this class amounted to superphosphate, tons 1,810 , value $\$ 20,417$; complete fertilizer, tons 17,707 , value $\$ 350,077$; and " all other fertilizers," tons 7,983, value $\$ 98,510$.

Class C includes 28 works, none of which belongs to "chemical industries," yet at which were made a certain amount of fertilizers. The importance of taking this class into consideration, if a full presentation of the industry is desired, is evident, since the total product of this class was superphosphate, tons 12,000 , value $\$ 100,000$; ammoniated superphosphate, tons 750 , value $\$ 13,500$; complete fertilizer, tons

24,391 , value $\$ 521,825$; and "all other fertilizers," tons 27,409 , value $\$ 443,147$.

Class D includes such by-products of "slaughtering and meat packing," "garbage reduction," "glue," and similar industries as were reported as "fertilizers." So far as known, such materials are bones, bone tankage, ammoniates, and the like, utilized in the preparation of ammoniated and complete fertilizers. While included here for the sake of completeness, it must be remembered that the amounts and values of these products, as well as those of Class C, are elsewhere reported in the census tables of their respective industries, and their presence here is a not unnoticed duplication. Of this class, 10 "garbage-reduction" works produced such materials aggregating 17,809 tons, value $\$ 256,322$, while the report for "slaughtering and meat packing" gives "fertilizers," tons 160,962 , value $\$ 3,326,119$, and "glue" gives tons 15,942 , value $\$ 331,268$, a total of 204,713 tons, and a value of $\$ 3,913,709$.
Included in " all other fertilizers" is fish scrap, the residue after the oil is pressed out of the fish, amounting to 27,035 tons, of a reported value of $\$ 448,602$, in addition to which certain establishments made 1,942 tons which were consumed in works in making fertilizers. The fish oil reported from the 25 establishments engaged in this industry amounted to $1,135,264$ gallons, valued at $\$ 222,929$. The returns of scrap and oil per thousand fish, the customary unit of measure, naturally vary considerably, according to the condition of the fish, whether fat or lean, the lean fish yielding little oil in proportion to the scrap. In one case of a large and well-managed factory having good fish, the yield per thousand fish was given as 4.17 gallons of oil and 185 pounds of scrap, while another large works, having very lean fish, reported a yield of only 1.87 gallons of oil and but 140 pounds of scrap. The general average for all reports was, 2.98 gallons of oil and 149.2 pounds of scrap per thoussand fish. After the scrap leaves the press in which the oil is expressed, it must be protected from decomposition, as this not only produces a local nuisance but results in serious pecuniary loss. In one case where 500 tons of good scrap were valued at $\$ 10,000,500$ tons of decomposed scrap were valued at only $\$ 3,000$. In order to prevent this decomposition the laws of several states, for example, Massachusetts and Connecticut, require that the daily output of scrap shall be sprinkled with sulphuric acid, as this prevents the lighting of flies upon it and the consequent development of maggots. When acid is so used, finely ground phosphate is often mixed with the scrap before shipment, thus taking up the excess of acid and hindering the rotting of the bags in which the scrap is shipped.

The use of fish as a fertilizer was known to the aborigines of New England before the arrival of the whites, since it is stated in the records of the Plymouth colony that Squantum, a friendly Indian, showed the colonists
how to manure their corn by putting a fish into each hill. It would seem, therefore, that the colonists were ignorant of the fertilizing value of fish, which is rather surprising, since the value of barnyard manure has been known since a very early period in the history of agriculture, and marl, a phosphatic lime earth, was used in England, at least, prior to this period. It is possible, however, that the value of marl was considered to lie in its improving the physical condition of the soil rather than as furnishing any plant food, as the advantage of mixing clay with sandy soils or sand with clayey soils was known to the Romans.

As soon as the true action of fertilizers became known, it was seen that the presence of grease or oil in a fertilizer was harmful, as bindering the conversion of the fertilizing ingredients into the soluble forms into which they must pass before they can be assimilated by the plant. Hence by extracting the oil from fish a valuable substance was obtained and the residue of scrap became more quickly efficient. The same thing occurs in the cottonseed industry, the oil and "linters," valuable for other purposes, containing very little fertiizer material, while the cake and hulls are in much better condition for utilization as feed or fertilizer than in their original condition as part of the seed.

Little is known about the beginnings of the fish-oil industry, but it is stated that the Herreshoffs, of Rhode Island, were making fish oil and scrap as early as 1863. The fish generally used for this purpose is the menhaden or mossbunker, which appears on the Atlantic coasts in the summer in large schools and is a very oily fish, in no demand for edible purposes. The number reported as caught during the census year is $458,963,200$, and yielded the quantities of oil and scrap noted above.

The most available statistics of this industry are those given by Eugene G. Blackford in One Hundred Years of American Industry, 1895, page 394. These are here presented with the statistics derived from reports classified at the census of 1900 as chemical industries, group "fertilizers," and may therefore not include all of the reports received from this industry. It is believed, bowever, that the showing is substantially complete, although the figures show an enormous reduction in capital invested and number of men
employed, from the figures given for 1894. It is true that in some cases where complete fertilizers are also made, the men reported as employed are those engaged at the factory only, those employed in fishing being represented only by the cost of the fish as covering wages, supplies, and maintenance of vessels. Still the total capital, $\$ 497,760$, bears a fair relation to total value of product, which is $\$ 703,866$, made up of oil, $\$ 222,929$; scrap sold, $\$ 448,602$; and scrap used in works, 1,942 tons, of a calculated value of $\$ 32,237$; and the general statistical position of the industry bears out the statements of some of those engaged in the industry to the effect that in 1900 there was little profit in it.

MENHADEN INDUSTRY, SEASONS OF 1874, 1880; 1890, 1894, AND 1900.

YEAR.	$\begin{aligned} & \text { Fac- } \\ & \text { to- } \\ & \text { ries. } \end{aligned}$	Sail vessels.	Steam- ers.	Men employed.	Capital invested.	Number of fish caught.	Gallons of oil made.	$\begin{aligned} & \text { Tons } \\ & \text { oi } \\ & \text { serap. } \end{aligned}$
1874.	64	283	25	2, 438	\$ $2,500,000$	492, 878, 000	3, 372, 847	50,976
1880.	79	366	82	3,261	2,550,000	776, 000,000	2, 035, 000	19,195
1890.	28	27	52	4,368	1,750,000	553, 686, 156	2, 939, 217	21,173
1894.	44	30	57	2, 560	1,737, 000	540, 361, 900	1,999, 505	27, 782
1900.	25			500	497, 760	458, 963, 200	1,135, 264	28,977

"Slaughtering and meat packing" furnishes a large quantity of fertilizer materials, because, in the large packing establishments of the present day nothing utilizable is allowed to go to waste. The blood is carefully collected and dried, making a high-priced ammoniate, and the gelatin, glue, grease, etc., of the horns, hoofs, and other bones and other offal extracted. The residues from this part of the work are sold as bones, tankage (which is meat offal dried and ground), and as "bone tankage" (which is tankage containing bone fragments). Dried blood, tankage, and all of the like materials, which are called "ammoniates," are valuable by-products of the packing industry, and are the most expensive constituents of a complete fertilizer.
The final aggregate of the reported amounts and values of the fertilizer products for 1900 from all sources so far as found, superphosphate and other products made but consumed in the works in the making of mixed fertilizers not being included, is as follows:

FERTILIZER PRODUCTS: KINDS, QUANTITY, AND VALUE, 1900.

The total product, by classes, is as follows:

	Tons.	Value.
Class A	2,794,695	\$40,445, 661
Under \$500	, 259	4,536
Class B	27,500	469,004
Class C	64,550	1,078,472
Total	2,887,004	42,097,673
Class D	204, 713	3, 913, 709
Final total	3,091, 717	46,011,382

The total number of establishments in Classes A, B, and C, the only ones which can properly be denominated fertilizer works, is 476 . This shows a considerable increase-392-over the figures for the census of 1890 but falls short of the estimates for 1898 made by the author of "The Fertilizer Industry." ${ }^{1}$ The estimated number given by him, is "about 700 ." It is evident that this figure was too high, because while the business, as a whole, has much increased, the tendency, as in all other branches of manufacture, is to concentrate the industry into the hands of larger companies or combinations, who by reason of greater facilites in, and control of, the market can, if necessary, undersell competitors and work on a closer margin of profit. The author of the interesting bulletin just noted complains of the indifference, even " positive unwillingness of manufacturers to furnish the information desired." The experience of the Census Office with this group has been much more satisfactory. With but one exception, every establishment that was reached, either by the field force or by correspondence, endeavored to give a correct statement of the operations. From the large combinations and firms, reports were often received which were most valuable, and offers of any further information which might be needed. In other cases the reports, owing to the deficiencies of a hastily assembled field force were sometimes unsatisfactory, but correspondence brought the information, if existing. In the case of the positive refusal above mentioned, a little local inquiry enabled us to constructa'satisfactory report, because the nature, quantity, and value of the product of the establishment were known, and from correct reports from establishments in the vicinity the quantities of ingredients and their cost could be fairly estimated. Such editing work must be done with great caution if the results are to have real value, and it is satisfactory to be able to state that, owing to the cheerful cooperation of manufacturers, such work has been reduced to a minimum.
"Fertilizers" appears as a special item for the first time in the census report for 1860 . The condition of the industry then and its growth since are shown by the following comparison, the percentage of gain for each decade over the preceding one being also given:

[^35]FERTILIZER MANUFACTURE, BY DECADES: 1860 TO 1900.

YEAR.	Number of estab-lishments.	Per cent of increase.	Product - (tmons).	Per cent of increase.	Value.	Per cent of increase.
1860					\$891, 344	
1870.	126	168			5,815,118	552
1880.	278	120	727,453		19,921, 400	242
1890..	392	41	1,898, 806		35, 519, 841	78
1900.	478	21	2,887,004	52	41, 997, 673	18

These figures are fairly in accordance with what is otherwise known of the history of the development of this industry. Of the 422 establishments in Class A only 7 stated that they manufactured fertilizers prior to 1860, 3 of these being in Baltimore, Md., where, so far as is known, the manufacture of fertilizers began. In 1840 Liebig published his classical researches on plant nutrition, in which he asserted that "the food of all vegetation is composed of inorganic or mineral substances." This was contrary to the then prevailing view, which was that the humus of the soil was the support of plant life, the mineral substances, the ash of the plant, being considered of subordinate importance. The researches of Wiegman and Polstorf showed, however, that a luxuriant plant growth could be obtained by planting the seeds in soil which had, by burning, been deprived of the last trace of humus or other organic matter, and then watering them with dilute solutions of the needed inorganic salts. Other investigators continued this line of research, and a rational agriculture was then developed. It was found that a plant derives its carbon from the air directly by means of its leaves, and also, but in a minor degree, through its roots by the absorption of water containing carbonic acid. On the other hand, while the plant can to a small extent supply its demand for nitrogen from the ammonia of the atmosphere by means of its leaves, this supply is quite inadequate for healthy growth. The deficiency, as also the demand for mineral salts, must be supplied through the roots. As these can only take up such substances when dissolved in water, it follows that not only the nitrogen which is taken up by the plant must be in soluble forms which are now considered to be nitrates, which are always soluble, but also the mineral constituents such as phosphoric acid, silica, lime, potash, iron, etc., must be in forms soluble in water to be available for the nourishment of the plant.

The importance of phosphoric acid being early recognized, the manufacture of superphosphate began. According to Kerl the first scientifically planned fertilizer works in Germany were erected in 1850. A letter from Dr. R. W. L. Rasin, of Baltimore, states that-

The manufacture of chemical fertilizers in the United States began about 1850. In that year Dr. P.S. Chappell, and Mr. William Davison, of Baltimore, made some fertilizer in an experimental way. About the same time Professor Mapes was experimenting. Later De Burg utilized the spent bone black derived from the sugar refineries and made quite a quantity of "dissolved bone black"
(superphosphate). In 1853 or 1854 Mr. P. S. Chappell commenced the manufacture of fertilizers, as did B. M. Rhodes, both of Baltimore. In 1855 Mr. John Kettlewell, recognizing the fact that Peruvian guano (then becoming quite popular), and containing at that time 18 to 21 per cent of ammonia, was too stimulating and deficient in plant food (phosphates), conceived the idea of manipulating the Mexican guano, containing no ammonia but 50 to 60 per cent of (bone) phosphate of lime, and called his preparation "Kettlewell's manipulated guano."

While in 1856 the sales of Peruvian guano had increased to 50,000 tons and of Mexican guano to some 10,000 tons, there was not at that date 20,000 tons of artificial fertilizers manufactured in the entire country. Baltimore was not only the pioneer but the principal market for fertilizers until some time after the Civil War: The 50,000 tons of Peruvian guano referred to was bought and sold in this market, and there was little demand for that or the Mexican guano in any other market unless the inspection brand of the guano inspector of Baltimore was upon the package. The Peruvian Government agent, who received and disposed of all importations, was located here, and all other markets were supplied from Baltimore. At that time no fertilizers were sold west of Pennsylvania.

Owing to the exhaustion of the sources of supply the importation of guano has almost ceased. In 1900 but 1,150 tons, value $\$ 15,543$, were imported from Peru, the total amount of guano imported being 4,756 tons, value $\$ 56,956$. Much of this is, however, practically phosphate rock, requiring chemical treatment before using. The original guano of Peru was produced from the excrements and remains of sea birds deposited upon islands in a very arid region. Its agricultural value was well known to the ancient Peruvians, whose wise laws forbade the killing or molestation of the birds. Owing to the scarcity of rain the ammoniacal salts developed in the deposits remained in the guano, while in less arid regions the soluble salts were leached out, and where the underlying rock was a limestone this became altered to a certain depth, becoming a more or less pure tricalcic phosphate, usually called bone phosphate of lime. The guanos of Sombrero, of Navassa, and of many other places are examples, and all require chemical treatment.

The importation of phosphate rock for 1900 amounted to 110,065 tons, value $\$ 504,092$, coming mainly from Germany and Spain. The term "phosphorite" is used to cover all of the varieties of phosphate rock which range from the crystallized apatite of Canada to the comparatively amorphous rock of South Carolina, but was originally applied to the fibrous phosphate from Estremadura, Spain, which occurs in large quantities and is extensively exported. The German phosphate from the Lahn region and other places is usually concretionary in appearance. This concretionary structure is very characteristic of phosphorites, as shown in many places in Florida and in the so-called coprolites of England and other localities.

By treating phosphate rock or bones with sulphuric acid, superphosphate or acid phosphate is formed. The works making this, mix more or less of it with ammoniates, or potash or both, producing the various grades of ammoniated superphosphate, superphosphates with
potash, or complete fertilizer. The remainder is sold as such, being bought by establishments that make various mixtures to suit local demands, while a very large quantity goes directly into consumption, being bought by farmers, who make their own composts.

Of the 422 fertilizer works belonging to Class A, 76 made sulphuric acid. The total quantity of acid thus made amounted to 642,938 tons of chamber acid of 50° Baumé, of which 571,831 tons were consumed by the works producing it in making superphosphates, while the remainder, 71,107 tons, was sold elsewhere mainly as chamber acid, only 5,360 tons being concentrated to higher strengths before sale. Thirty acid-making works did not make enough for their own demand and supplied the deficiency from other sources. In Classes B and $\mathrm{C}, 3$ works made 12,028 tons of 50° acid and consumed it in making superphosphate, making a total of 583,859 tons thus made and consumed by 79 works.

Of the 478 works producing fertilizers, 76 made superphosphate, but purchased the needed acid, while 208 bought the superphosphate; in each case the final product sold was mixed fertilizers. The remaining works, 115 in number, as well as all of Class D, produced the fertilizer materials above mentioned and placed under "all other fertilizers." In so far as any of these products are purchased by other fertilizer works and used in making mixed fertilizers, the quantities and values of such purchases reappear in the mixed fertilizers, and to that extent there is a duplication. The extent of this duplication can only be estimated, since a considerable quantity of the products included in "all other fertilizers" consists of bone meal and other substances, which are used for composting or put on the land without further treatment. On the other hand, it is certain that "all other fertilizers"--tons 532,235 , value $\$ 8,637,139$-falls far short, both in quantity and value, of the real production of such materials. For example, the establishments under Class A report using 37,868 tons of cottonseed meal, and those in Class C, 3,608 tons, a total of 41,476 tons. These figures evidently represent only a fraction of the amounts actually used for fertilizer purposes, since the total product of cotton seed meal for 1900 was 884,391 tons, value $\$ 16,030,576$, a very large proportion of which, amounting to 638,638 tons, was used in composting, as shown by the large quantity of superphosphate which goes into consumption as such.

The figures for superphosphate, ammoniated superphosphate, and complete fertilizer are quite close to the truth, as an examination of the complete returns will show. The total quantity of superphosphates reported as made and sold as such by all of the classes A, B, and C is 937,008 tons. The quantity of superphosphate purchased for mixing purposes is, for Class A, 286,918 tons; Class B, 240 tons; Class C, 9,402 tons; a total of 296,560 tons. Deducting this from the total, 937,008 tons, leaves the residue of 640,448 tons which was sold as such to
the ultimate consumer. To this amount must be added the superphosphate in the mixed fertilizers to obtain the total quantity produced for the census year. The returns show great variations in the proportions of superphosphate in the products of the various establishments, but comparisons show that ammoniated superphosphate will average 70 per cent of superphosphate and complete fertilizer 50 per cent, giving the following result:

Superphosphate, sold as such, total to	937,008
Superphosphate, purchased, total tons	296, 560
Difference, equals finally consumed as such, tons	640, 448
In ammoniated superphosphate, 70 per cent of 143,648 tons \qquad	100,553
In complete fertilizer, 50 per cent of $1,478,826$ tons	739, 413

Total superphosphate produced, tons. 1, 480, 414
The total product of superphosphate may also be ascertained from the amount of sulphuric acid reported as being used in its manufacture. Comparison of the returns at the census of 1900 fully confirms the current statement that in making superphosphate from a standard phosphate such as South Carolina rock the practice is to mix equal weights of phosphate and chamber acid. Reaction at once sets in, the mixture becoming quite hot and giving off vapors consisting of steam and volatile ingredients of the phosphate, such as carbon dioxide, fluorine, and chlorine. This volatilization loss amounts, for South Carolina rock, to 10 per cent of the total weight of the ingredients. Other phosphates, such as high-grade Florida rock, bones, etc., will of course require other proportions of acid and the volatilization loss will also differ, but the general average of all returns shows that every ton, 2,000 pounds, of phosphatic material required 2,000 pounds of chamber acid, lost 10 per cent, 400 pounds, by volatilization, and yielded 3,600 pounds of superphosphate. Taking all of the sulphuric acid reported as consumed in works and that purchased the results are as follows:

Comparing the final quantity with that reported above, namely, $1,480,414$ tons, the difference is found to be ouly 11,875 tons, or 0.80 per cent. This agree-
ment is surprisingly close, since, under the conditions, a much larger difference would have been sufficient to demonstrate the general correctness of the returns.
The quantity of phosphate rock estimated above as used is 815,855 tons. Class A reported the purchase of 806,445 tons; Class B, 4,810 tons, and Class C, 7,700 tons; a total of 818,955 tons, or a difference of only 3,100 tons. This close agreement is, however, only fortuitous. Many of the larger works undoubtedly had more or less phosphate rock in stock at the beginning and end of the census year, and it is not always clear that the quantity reported is the amount actually used or only that which was purchased during the year. A part of the superphosphate estimated above as contained in the mixed fertilizers was made from bones, spent boneblack, and other materials, but how much can not be ascertained, because, although Class A reported the consumption of 96,679 tons of bones, part of this was used to make boneblack, part was disposed of as bone meal, and part mixed with the compounded fertilizers without any special addition of acid. Again, part of the tankage bought by the works is "bone tankage," containing considerable quantities of crushed bone, so that it is impossible to determine how much of the acid used actually went to make bone superphosphate.
Examination of the reports shows that only a comparatively small quantity of "concentrated phosphate" is made, although it would seem that there ought to be a considerable demand for this product which is so largely made in England, France, and Germany. It is made by treating phosphate rock with an amount of sulphuric acid sufficient to entirely decompose it, converting all of the lime into sulphate, allowing this to settle, and drawing off the solution of phosphoric acid. "The solution is then evaporated in lead pans to a density of 45° Baumé, at which strength the solution contains nearly 45 per cent $\mathrm{P}_{2} \mathrm{O}_{5}$. During this concentration the iron and aluminum phosphates separate and are removed. The strong solution of phosphoric acid is then treated with finely ground phosphate rock to form mono-calcium phosphate, which is dried and disintegrated. ${ }^{11}$
The phosphoric acid solution may be made from any form of phosphate, and low-grade material too poor for the manufacture of superphosphate can be used for this purpose. The phosphate rock added in the second stage of the process should, however, be high grade, if the best results are to be attained. For this reason, the Florida rock which contains up to 80 per cent or more of phosphate is mainly shipped abroad to supply the foreign demand for this purpose, while our own manufacturers, making only ordinary superphosphate, mainly use South Carolina rock containing about 60 per cent phosphate. The manufacture of superphosphate from South Carolina rock is a much simpier process and

[^36]the product is a satisfactory one, although its contents in soluble phosphoric acid is low, ranging from 20 to 24 per cent as compared with concentrated phosphate or "double super," which may contain up to 47 per cent. The further development of this industry in this country will depend upon transportation conditions as well as upon the advance of agricultural knowledge, but it would seem that there is a field for this work in the phosphate regions where much poor rock occurs for which there is no present demand, but which might
be utilized in the local manufacture of "double super."
The use of tetrabasic phosphate, or slag phosphate, appears to have almost completely ceased in the United States, while its use is continually extending in Europe. The reasons assigned for this situation need not be given here, but doubtless in time this valuable material will assume the importance it deserves.

The following table shows the total fertilizer product of the United States, arranged geographically:

FERTILIZERS, PRODUCTS, BY STATES,

	states.	Number of estab lishments.	total.		SUPERPHOSPHATE.				
			Tons.	Value.	Tons.	Value.	Per cent of product.	Per cent of value.	Value per ton.
1	United States...North Atlantic division	478	2,887, 004	\$42, 097,673	937, 008	88, 592, 360	32.5	20.4	\$9.17
2		155	685, 893	11,978, 666	139, 232	1,316, 208	20.3	11.0	9.45
3	Maine.	3109373066	1,828	27,902					
4 6	Massachusetts		83,733	2,108, 575	1,282	12,820	1.5	0.6	10.00
6	New York.-		164,266	2,610,435	$\cdots 9,810$	105, 645	6.0	4.0	10.77
8	New Jersey		247, 144	3, 220,189	105,165	887,470	42.6	23.2	8.44
8	Pennsylvania		177, 845	3,097, 955	22,975	310, 273	12.9	10.0	13.59
9	South Atlantic division.	198	1,531,688	19,462, 816	622, 614	5,302,997	40.7	27.3	8.52
10	Delaware	11427422024457	49,942	634,213	2,385	28,250	4.8	4.5	11.84
11 12	Maryland - Columbia		386, 133	6, 213, 925	124,696	1,178,367	32.3	22.6	9.45
13	Virginia		258,474	3, 325,542	120,633	1, 024,893	46.7	30.8	8.49
14	North Carolina		139, 582	1,727, 270	60, 820	1, 497, 397	43.6	28.8	8.17
15	South Carolina		388,572	4,657,275	173, 183	1,404,569	44.6	30.2	8.12
16	Georgia		278,982	3, 331, 469	131, 503	1, 075,681	47.1	32.3	8.17
17	Florida		26,144	496, 642	9,394	93,940	35.9	18.9	10.00
18	North Central division	63	258,726	4,349,157	62,945	814,300	24.3	18.7	12.93
19	Ohio .-	28121643	103, 814	1,562,638	24,728	285,698	23.8	18.3	11.55
1	Indiana		104, 120	1, 842, 300	26,108	313, 850	25.1	17.0	12.02
22	Missouri		11,668	238, 161	${ }^{365}$	10,006	3.1	4.2	27.41
23	Kansas.		- 30,371	156,115 549,943	2,766 8,978	44,248 160,498	31.6 29.6	28.3 29.2	16.00 17.11
24	South Central division...	39	352,778	5, 053,564	110,649	1, 140, 376	31.4	22.5	10.30
25	Kentucky.	452121	17,315	295,520					
7	Alabama.		93, 054	1, 464,788	35,959	456, 568	38.6	31.2	12.70
88	Mississippi		139,282 37,704	1,944, ${ }^{492}$ 77.	38,246	369,587	27.5	19.0	9.70
29	Louisiana.		65, 423	856, 201	29, 244	263,821	19.1	10.2 30.8	7.00 9.00
30	Western division.	9	22,131	636,687					
31	California.	9	22,131	636,687					
32	All other states'.	14	35, 788	616, 783	1,568	18,479	4.4	3.0	11.80

IInclndes establishments distributed as follows: Iowa, 1; Michigan, 1; Minnesota, 1; Nebraska, 1; Oregon, 1; Rhode Island, 1; Texas, 2; Washington, 1; West
Virginia, 2.

AMMONIATED SUPERPHOSPHATE.					COMPLETE FERTLLIZERS.					ALL OTHER FERTILIzERS.					
Tons.	Value.	Per cent of product.	Per cent of value.	Value per ton.	Tons.	Value.	Per cent of product.	Per cent of value.	Value per ton.	Tons.	Value.	Per cent of product.	Per cent of value.	Value per ton.	
143,648	\$2,462,888	5.0	6.9	\$17.14	1, 478,826	\$26, 318, 996	51.2	62.5	\$17.79	327, 5222	\$4, 723, 430	11.3	11.2	\$14.42	1
21,429	574, 251	3.1	4.8	26.79	431,621	8,899, 884	62.9	74.3	20.62	93,711	1,188,623	13.7	9.9	12.63	2
					828 78,171	21,602 $1,988,605$	45.3 93.4	77.4 94.3	26.09 25.44	1,000 4,280	6,300 107,150	54.7 5.1	22.6 5.1	6.30 25.03	3
1,0000	23,000	9.0	7.3	23.00	7,325	1, 205 , 931	66.1	65.7	28.11	2,752	84, 679	$\stackrel{54.9}{ }$	27.0	30.84	5
10,300	338, 400	6.3	13.0	32.85	87, 862	1, 623,638	53.5	62.2	18.48	56,294	542, 752	34.3	20.8	9. 64	6
7,283 2,846	159,580 58,271	3.0 1.6	4.2	21.91 18.71	126,839 131,496	2, 629,611 $2,430,297$	51.0 73.9	68.8 78.5	20.90 18.48	8,857 20,528	143,628 304,114	3.6 11.5	3.8 9.8	16.22 14.81	7
71,661	1,056,542	4.7	5.4	14.74	701,361	11,307,083	45.8	58.1	16.26	136,052	1,796, 194	8.9	9.2	13. 20	9
					17,180	283, 873	34.4	60.8	16.52	30,377	322,090	60.8	44.8	10.61	10
48,608	690,671	12.6	13.2	14.21	184,095	2,985,015	47.7	57.3	16.21	28,734	359, 872	7.4	6.9	12.52	11
					3,410	69,800	88.4	91.3	20.47		6,680	11.6	8.7	14.87.	12
4,300	72,100	1.7	2.2	16.72	106,828	1,820,771	41.3	54.8	17. 41	26,713	407, 778	10.3	12.3	15. 26	13
3,400	51,000	2.4	3.0	15.00	61,017 207,875	$1,891,669$ 9,147,202 3	43.7 53.5 8.8	56.8 67.6	16.08 15.14	14,345 7,614	197, 304	10.3 2.0	11.4 2.3	13.75 14.04	14
15,353	242,771	5.5	7.3	15.81	105, 521	1,641, 318	37.8	49.3	15. 55	26, 605	371, 799	9.5	11.2	13.98	16
					15,435	377,535	69.0	76.0	24.46	1,315	25, 167	5.0	5.1	19.13	17
34,840	565, 281	13.5	13.0	16. 22	105, 358	1,891,260	40.7	43.6	17.95	55,583	1,078,316	21.5	24.8	19.40	18
	380, 936	23.0	24.4	16.00	43,351	700,606	41.8	44.8	16.21	11,930	195, 398	11.5	12.5	${ }^{16.39}$	19
4,150	58,100	4.0	3.2	14.00	43,483	835, 335	41.8	45.3	19.21	30,379	635, 015	29.2	34.5	20.90	${ }^{20}$
27	500	0.2	0.2	14.81	5,750	116,280	49.3	48.8	20.22	5,526	111, 375	47.4	46.8	20.16	${ }_{22}^{21}$
		22. 6	22.9	18.33	2,774 10,000	39,039 200,000	31.7 33.0	25.0 36.4	14.07 20.00	3,213 4,535	63,700	14.9	11.6	14.05	23
15,037	256,599	4.3	5.1	17.06	199,609	3,242,648	56.6	64.2	16.75	27, 483	413,941	7.8	8.2	15.06	24
					17,315	295,520	100.0	100.0	17.07						25
					36,695	704, 220	39.4	48.1	19.22	20,400	304, 000	21.9 4	20.8	14.90	${ }_{27}^{26}$
2,000	35,000	1.4	1.8	17.50	92, 253	1,433, 355	66.2	73.7 89 89	15.42	6,783	106,341	4.9	5.5	15.70	128
$\cdots \cdots$	221,599	20.0	25.9	17.00	22,842	367, 181	34.9	42.9	16.07	300	3,600	0.5	0.4	12.00	29
					19,570	591,187	84.4	92.9	32.08	2,561	45,500	11.6	7.2	17.76	30
					19,570	591,187	84.4	92.9	32.08	2,561	45, 500	11.6	7.2	17.76	31
681	10,215	1.9	1.7	15.02	21,407	387, 233	59.8	62.8	18.08	12,132	200, 856	33.9	32.6	16.55	32

The establishments of the above table have been grouped according to the customary census divisions. Of the total product of the United States, 2,887,004 tons, valued at $\$ 42,097,673$, superphosphate, sold as such, amounted to 32.5 per cent of quantity, and 20.4 per cent of value, the average value per ton being $\$ 9.17$; ammoniated superphosphate, to 5 per cent quantity, 5.9 per cent value, and $\$ 17.14$ per ton; complete fertilizer, 51.2 per cent quantity, 62.5 per cent value, and $\$ 17.79$ per ton; and all other fertilizers, 11.3 per cent quantity, 11.2 per cent value, and $\$ 14.42$ per ton. It must be remembered that while the quantities given in this table and elsewhere in this report are substantially correct, the values given in the reports are in most cases far below the market prices, since freight and other expenses must be added so that the final price to the consumer is very much higher. Moreover, as already stated, of the 937,008 tons of superphosphate, sold as such, 296,560 tons, or 31.7 per cent, were bought by other works and used for making mixed fertilizers, leaving 640,448 tons, or 68.4 per cent, which went directly into final consumption. At the average value of $\$ 9.17$ per ton, the 296,560 tons would be worth $\$ 2,719,755$, and, from one point of view, might be deducted, leaving superphosphate 640,448 tons, valued at $\$ 5,872,605$, and the total product of the country $2,590,444$ tons, valued at $\$ 39,377,918$. Such a presentation, while possibly nearer the truth as regards ultimate consumption, would, however, be incorrect in a census report of manufactures which deals with capital, labor, materials, and products. The production of the 296,560 tons of superphosphate required capital, labor, and materials, and the figures of these demands are included in the general tables for this industry. The establishments purchasing this material saved the capital and labor required to produce it, so that if the deduction were made from the product, it would be necessary to make a corresponding deduction on the other side, which is plainly impossible.
On examining this table it will be noted that the South Atlantic division leads in quantity and value of product, the North Atlantic division being second. The average fertility of the Atlantic coast states is not high, and rational farming requires the continued application of fertilizer, much of it of high grade. The general status of agriculture in the various states in these two divisions is well shown by the figures. When the size of the average farms is small and most of these devoted to the growth of vegetables, fruit, and such products, as is the case in New England, the fertilizers demanded are high priced, as the requirements of the soil must be carefully studied and supplied if profits are sought. Proceeding southwardly, agriculture is on a larger individual scale and of a simpler character, until, in the cotton states, we find practically only a single market product, requiring a simpler fertilizer, low in price, and to be applied with judgment. Any excess of
fertilizer acts injuriously upon the crop by stimulating a growth which can not resist the inevitable drought of the region. Moreover, a too liberally stimulated cotton plant runs to stems and foliage, with but little fruit, as may be seen in plants grown in gardens. For convenience in picking, the cotton plant should not be more than 3 feet high, nor more than an average arm's length to the center. and the bolls should open nearly simultaneously.

When a plant is grown in the rich soil of a garden, as is frequently done, for its beauty, it may reach a height of seven, eight, or more feet, with corresponding diameter, but, while quite beautiful, the yield of cotton is comparatively small, and costly to gather. The possibilities in cotton culture become evident when it is considered that for upland cotton the average yield of lint cotton is from 150 to 250 pounds per acre, while careful cultivation under favorable weather conditions has been known to bring up this yield to 1,000 pounds. Indeed, although a yield of 1,500 pounds has never been attained, it is the goal which many intelligent planters consider can be reached by careful selection of seed, and proper methods of planting, fertilizing, and tending. While it is not faasible, here, to make an extended comparison between the quantities and values of the fertilizers used in the different states in relation to the character of the agriculture and products, such a study will disclose that, while each state can show poor farming, yet in the main, what is done is best suited to local conditions so far as understood. The methods which may enrich a farmer in Massachusetts would impoverish him in South Carolina, while the methods which insure a good cotton crop are quite inapplicable to truck growing.

In comparing the various states it will be noted that South Carolina leads in quantity of product, 388,572 tons, while Maryland leads in value, $\$ 5,213,925$. In the production of superphosphate, sold as such, South Carolina leads with 173,183 tons, valued at $\$ 1,404,569$, Georgia being second with 131,503 tons, and Maryland third with 124,696 tons. The Maryland product is, however, valued at $\$ 1,178,367$, thus exceeding the Georgia valuation of $\$ 1,075,581$. In the proportion of such superphosphate to the total production of the state, Georgia is first as it disposes of 47.1 per cent of its total product in this form, and is followed by Virginia, Louisiana, South Carolina, North Carolina, New Jersey, and Maryland, in the order given. This large sale of superphosphate in these states is due to the numerous manipulators who mix special brands for local consumption, and also to the demands of farmers for home composting. This latter kind of work is naturally mostfrequent in the cotton states where the cottonseed and cottonseed cake furnish a large local supply of ammoniates, while the extensive truck farming of New Jersey and Maryland causes a similar demand.
The value of the superphosphate per ton ranged from
$\$ 7$ in Mississippi to $\$ 27.41$ in Indiana. The Mississippi valuation is very low, the average for the United States, $\$ 9.17$, being about the price for superphosphate made from rock. The high value of this product in Indiana and other states of the North Central division is due to its having been made from raw bone and being practically an ammoniated superphosphate. Indeed, this value is higher than that given by any state for its product of "ammoniated super," with the exception of New York, which rates this product at $\$ 32.85$, the average for the United States being only $\$ 17.14$. In the production of "ammoniated super," Maryland leads all of the states, with a production of 48,608 tons, valued at $\$ 690,671$, which is, however, only $\$ 14.21$ per ton.

In the production of complete fertilizer South Carolina leads both in quantity and value, producing 207,875 tons, valued at $\$ 3,147,202$, but the value per ton is low, \$15.14. Leaving out California, the high valuation of whose fertilizer, $\$ 32.08$, is due to the high cost of materials, it is found that the North Atlantic division, especially the New England states, makes the most expensive complete fertilizers. Connecticut leads with $\$ 28.11$ average value per ton, followed by Maine with $\$ 26.09$, and Massachusetts with $\$ 25.44$. The Maryland product, next in quantity and value to South Carolina, being 184,095 tons, valued at $\$ 2,985,015$, is quoted at ouly $\$ 16.21$ per ton.
"All other fertilizers" amounts, for the United States, to 327,522 tons, valued at $\$ 4,723,430$, being 11.3 per cent of the total product, 11.2 per cent of the total value, and averaging $\$ 14.42$ per ton. As might be expected, New York leads in quantity, with a production of 56,294 tons, of an average value of $\$ 9.64$ per ton. This low value shows the nature of the product, which is mainly garbage tankage, made by the garbage-reduction works near the large cities. Illinois, next in tonnage, 30,379 tons, is first in value, $\$ 635,015$, or $\$ 20.90$ per ton, while Missouri gives a value of $\$ 22.67$ per ton; the reason in both cases being that the product is largely made from slaughterhouse offal, which yields high-grade products. The "fertilizers" of Class D, 204,713 tons, valued at $\$ 3,913,709$, show an average value of $\$ 19.12$ per ton, and belong to this category.
So far as it is possible to show the capital employed, also the labor and other elements of cost in the production of fertilizers, the statistics are given in the special tabulation of Class A for this industry. It is, however, not possible to do this for the other classes, since fertilizers form only a subordinate part of the product, and the capital employed and the costs can not be separated from the general operations of the works.

The importations of fertilizer materials for the census years 1890 and 1900, as given by the United States Treasury Department in "The Foreign Commerce and Navigation of the United States," 1890, pages 1150 to 1151; 1900, page 102, is as follows:

IMPORTS FOR IMMEDIATE CONSUMPTION FOR THE YEARS ENDING JUNE 30, 1890 AND 1900.

YEAR.	PHOSPHATES, CRUDEOR NATIVE.		KIESERITE, KYANITE or cyanite, and KaINITE.		gUANO.	
	Tons.	Value,	Tons.	Value. -	Tons.	Value.
$\begin{aligned} & 1890 \ldots \\ & 1900 . . . \end{aligned}$	81,179 14,075	$\begin{array}{r} \$ 309,764 \\ 86,763 \end{array}$	62,871 133,244	$\$ 422,225$ 762,493	8,482 4,765	$\begin{array}{r} \$ 111,811 \\ 58,474 \end{array}$
YEAR.	BONE DUST OR ANIMAL CARBON AND BONE ASH, FIT ONLY FOR GERTILIZING PURPOSES.		apatite.		ALL OTHER SUBSTANCES NOT ELSEWHERE SPECIFIED.	
	Tons.	Value.	Tons.	Value.	Tons.	Value.
18900.	3,219	\$59,059	126	\$1,297	21, 277	\$333, 109
1900.	1,968	30,189	333	4,019	99, 169	745, 724

The literature of the fertilizer industry is very voluminous, and it is difficult to make a selection. The books giving the most useful information are probably The Phosphates of America, by Francis W yatt, Scientific Publishing Company; Principles and Practice of Agricultural Analysis, Vol. II, Fertilizers, H. W.Wiley, Chemical Publishing Company, 1895; and the articles on Fertilizers in Muspratt-Kerl, Technical Chemistry, Wagner's Technology, and The Mineral Industry, the yearbook published by the Engineering and Mining Journal.

Group IX.-Bleaching Materials.

Although bleaching materials of various kinds have been long in use and bleaching by chlorine or hypochlorites has been in vogue since the latter part of the eighteenth century, no separate returns have been secured for this industry at any previous census. Chlorine production has practically been, until recently, incidental to the manufacture of soda by the Le Blanc process, and as this process has not secured a foothold in the United States, the production of chlorine bleaches has heretofore undoubtedly been insignificant in quantity and value. As pointed out in the treatment of Group X , with the introduction of electricity as an agent in effecting chemical transformations, common salt and other chlorides are being electrolyzed on a commercial scale with the result that the production of chlorine and hypochlorites is assuming importance. The chlorine thus produced is converted into bleaching powder by means of lime, but other hypochlorites, and notably sodium hypochlorite, are made from imported bleaching powder. In addition there are produced and used in bleaching, disinfection, or as a preservative, hydrogen dioxide, sodium dioxide, sulphurous acid, sodium, calcium, and potassium bisulphites, and many special compositions.

In considering this industry in its entirety there must be discussed, not only those bodies specifically reported
as bleaching materials produced by the older processes, but also such bleaching agents as have been produced by the aid of electricity, or sent out for use in the compound or liquefied state, and also those which are the subordinate products of establishments whose principal products classify them with other industries. Combining these there were 26 establishments in 7 states, producing $26,794,338$ pounds of material having a value of $\$ 592,658$, and employing a capital of $\$ 672,969$ and 216 wage-earners. These establishments were distributed as follows:

- GEOGRAPHICAL DISTRIBUTION OF FACTORIES PRODUCING BLEACHING MATERIAL: 1900.

states.	Number of estab-lishments.	Average number of wage- earners.	Capital.	Product.	Percent of total.
United States	26	216	๕672,969	\$592,658	100.0
New York.	10	126	529, 746	407,327	68.7
Pennsylvania............	6	4	25,853	15,878	2.7
New Jersey	3	10	14,500	39,171	6.6
Mllinois .-.............	3	12	15,03y	42,399	7.2
Missouri, Michigan, and Ohio \qquad	4	64	87,831	87,883	14.8

Among the principal products were 10,979 tons of hypochlorites of a value of $\$ 462,949 ; 588,335$ pounds of hydrogen dioxide of a value of $\$ 63,754 ; 350,585$ pounds of sulphur dioxide of a value of $\$ 4,826$, and 1,461 tons of bisulphites of a value of $\$ 34,486$. There were consumed in this manufacture 15,000 tons of salt brine, equivalent to 1,574 tons of salt, or, together with the other salt consumed, 9,055 tons of salt of a value of $\$ 19,105 ; 158,561$ bushels of lime of a value of $\$ 20,532 ; 168$ tons of caustic soda of a value of $\$ 7,618$; 92,600 pounds of metallic sodium; 93,000 pounds of black oxide of manganese of a value of $\$ 1,325 ; 227$ tons of muriatic acid of a value of $\$ 4,325 ; 974$ tons of soda ash of a value of $\$ 23,368 ; 7$ tons of potash of a value of $\$ 420 ; 171$ tons of sulphur of a value of $\$ 4,000 ; 74$ tons of barium dioxide of a value of $\$ 16,540 ; 74,490$ pounds of phosphoric acid of a value of $\$ 14,898$; and 44 tons of bleaching powder of a value of $\$ 1,570$.

Sulphur Dioxide (sulphurous acid gas; sulphurous anhydride; SO_{2}). -This substance has been used as a bleaching agent from ancient times. It results from the burning of sulphur or sulphur-containing bodies in air or oxygen. In the presence of water it bleaches wool, hair, straw, and other tissues; but the bleaching is not permanent. Sulphur dioxide is used also as a disinfectant and germicide; in ice machines as a refrigerating agent; in the preparation of bisulphites; to a small extent in the leather and glucose industries; and as the first product in the manufacture of sulphuric acid. Next to its use in making sulphuric acid, the largest consumption of sulphur dioxide is undoubtedly in the sulphite process for converting wood into wood pulp for the purpose of making paper. As it is made and consumed in the works no returns are available to
determine how much of the gas is produced in this industry.

Bisulphites.-There is returned as having been manufactured during the census year bisulphites of sodium, calcium, and potassium. They are manufactured by saturating a solution of sodium carbonate, milk of lime, or potassium carbonate with sulphur dioxide and crystallizing out the salt formed. Or the solution may be used as made. These bodies are employed as antichlors in bleaching to remove the excess of chlorine from the fibers of the goods which have been bleached by hypochlorites, and thus prevent this chlorine from rotting the fiber. They are thus used to treat wood pulp in paper making, and it is probable that much of the material used in this art is not included here. The bisulphites are also employed in chrome tannage, in brewing, in glucose and starch making, and as preservatives.

Hydrogen Dioxide (bydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$). -Hy drogen dioxide is made by treating barium dioxide, or \cdot sodium dioxide in suspension or solution in water, with a dilute acid, and keeping the temperature at a low point by means of ice. Hydrochloric, hydrofluoric, sulphuric, nitric, or even carbonic acid may be employed. The hydrogen dioxide is set free as a gas, which dissolves in the water present. This solution is decanted off or filtered, phosphoric acid is added to it, and it is diluted, if necessary, so as to contain 3 per cent of $\mathrm{H}_{2} \mathrm{O}_{2}$, when it is sent into commerce, and is then known as a 10 volume solution. Hydrogen dioxide is a powerful oxidizing agent, and it is used in bleaching bair, silk, wool, feathers, bone, and ivory. It has been quite extensively used for toilet purposes; also as an antiseptic and disinfectant in surgery; as an antichlor; as a reducing agent in chrome tannage; and as a preservative for milk, beer, wine, and other fermentable liquids. The Oakland Chemical Company began the manufacture of hydrogen peroxide in Brooklyn, N. Y., in 1881.

Sodium Dioxide (sodium peroxide, $\mathrm{Na}_{2} \mathrm{O}_{2}$). -Sodium dioxide is made by heating metallic sodium in aluminum trays, in a specially contrived furnace, to 300° C. while purified air is being passed over it. It is a yellowish white very hygroscopic powder, and is chiefly used as a bleaching agent, being a very powerful one, as it gives off 20 per cent of its weight of active oxygen. Its solution is too strongly alkaline for silk or wool bleaching, and for this purpose it should be converted into magnesium dioxide, which is easily effected by adding a solution of magnesium sulphate to the solution of sodium peroxide.

Hypochlorites.-There have been returns made for bleaching powder (which, according to Lunge, is a compound containing in the same molecule calcium attached to chlorine and to a hypochlorous acid residue) and sodium hypochlorite. The bleaching powder is made by passing chlorine gas into absorption chambers so as to come into contact with lime which has been so slaked
as to contain from 24.5 to 25.5 per cent of water. The lime is exposed to the action of the gas until the test shows that the product contains from 36 to 37 per cent of available chlorine. The yield from 100 pounds of good lime is 150 pounds of bleaching powder. Bleaching powder is but partly soluble in water and when treated with water forms a milk-like fluid. It is an efficient bleaching, deodorizing, and disinfecting agent. To liberate the chlorine for bleaching purposes, an acid should be employed. The carbon dioxide of the atmosphere will effect this result, but in practice a dilute mineral acid is usually employed, the cloth first being saturated in the bath of bleaching-powder emulsion, called the "chemic," and then in the bath of dilute acid, called the "sour." Bleaching liquors may be made by passing chlorine gas into the milk of lime, and it was in this form that it was first used.

The emulsion of bleaching powder reacts with magnesium sulphate to form magnesium hypochlorite, with alum to form aluminum hypochlorite, with zinc sulphate to form zinc hypochlorite, and with sodium carbonate to form sodium hypochlorite. They are all efficient bleaching agents and are especially desirable because they are completely soluble in water. Potassium bypochlorite and sodium hypochlorite have been sold under the respective names of Eau de Javelle and Eau de Labarraque, they having been prepared by passing chlorine gas through a solution of potassium carbonate for the first, and sodium carbonate for the second. Sodium hypochlorite is still used for domestic purposes in removing spots from linen and also, together with oxalic acid, as an ink eradicator.

Bleaching by chlorine was first suggested and applied by Berthollet in 1785 , and its adoption revolutionized the textile industry. He employed solutions of chlorine gas in water, but Tennant in 1798 patented a liquid bleach consisting of a solution of calcium or sodium hypochlorite prepared by passing the gas into milk of lime or a solution of caustic soda. This liquid bleach is difficult to transport and keep, and Tennant introduced a marked improvement by the invention of bleaching powder in 1799. Bleaching powder was made in this country at Bridesburg, Pa., by Charles Lennig in 1847. The Mathieson Alkali Works, at Niagara Falls, N. Y., and the Dow Chemical Company, of Midland, Mich., began the manufacture of bleaching powder from electrolytic chlorine in 1898.

Bleaching powder is still imported in very large quantities. The extent is shown in the following table, compiled from Volume II of the Foreign Commerce and Navigation of the United States for the years ending June 30, 1891 to 1900 :
IMPORTS OF LIME, CHLORIDE OF, OR BLEACHING POWDER: 1891 TO 1900, INCLUSIVE.

YEAR.	Pounds.	Value.	Year.	Pounds.	Value.
1891.	107, 475, 715	\$1, 429, 509	1896.	104, 053, 877	\$1,579, 358
1892.	110, 748,289	1,839, 640	1897	99, 274, 138	1,375,560
1893	120,811, 918	2, 213, 121	1898	114, 232,578	1,421,920
1894	81,610,463	1,507,076	1899	113,107, 250	1,159,271
1895.	100, 456, 774	1,644,835	1900	136, 403, 151	1,464,019

LITERATURE.

Die Bleichmittel, Beizen und Farbstoffe, by J. Herzfeld, Volume I: Berlin; 1889.

Pharmacopœia of the United States. 1890.
The Chemistry of Paper Making, by R. B. Griffin and A. D. Little: New York, 1894.

A Theoretical and Practical Treatise on the Manufacture of Sulphuric Acid and Alkali, by George Lunge, Volume III: London, 1896.

Bleaching and Calico Printing, by George Duerr: London, 1896.
Outlines of Industrial Chemistry, by Frank Hall Thorp: New York, 1898.

Practical Treatise on the Bleaching of Linen and Cotton Yarn and Fabrics, by L. Tailfer: London, 1901.

Group X.-Chemical Substances Produced by the Aid of Electricity.

In no prior census has any mention been made of this art. As a fact, as shown in the historical account which follows, this industry has practically been developed since the census of 1890 was taken. Nevertheless, it has already grown to such magnitude in these ten years as to effect serious inroads on the older processes, and it will undoubtedly in the future assume a greater importance. Already it is found that sodium and other metals, caustic soda, bleaching powder and other bleaching agents, bromine and potassium bromide, potassium cblorate, litbarge, graphite, calcium carbide, carborundum, carbon disulphide, and phosphorus are reported as being produced on a commercial scale, the total value of the output for 1900 being reported at $\$ 2,045,535$. It is particularly to be noted that the Le Blanc soda process, which has for a century been a standard process for chemical manufacture, is now endangcred not only by the Solvay ammonia process, but that the last prop on which it relied for profit has been thrown down by the development of economic methods for the electrolytic production of bleaching powder. It is to be regretted that statistics of the electrical energy efficiency, and other data which are essential to a full understanding of this art are not at present accessible. But it can be stated that, apart from works producing aluminum (which is not included in the chemical industries), there are 14 establishments in the United States belonging in Group X, and that these employ $\$ 9,173,060$ of capital and 739 wage-earners. These establishments were distributed as follows:

GEOGRAPHICAL DISTRIBUTION OF ELECTRO-CHEMICAL FACTORIES: 1900.

STATES.	Number of estab lishments.	Average number of wageearners.	Capital.	Value of products.	Per cent of total.
United States	14	739	89,173,060	\$2,045, 535	100.0
New York	10	614	8,311,538	1,836, 606	89.8
Maine, Michigan, Connecticnt, and New Hampshire...............	4	125	861,5\%2	208,929	10.2

It is to be observed that the total value of the product given here differs from that given in the tabulation
of "Chemicals" under the legend "Electro-chemicals," because canstic soda is classed with Group II, bleaching powder with Group IX, and the like; while there is gathered here the value of everything in all the classes which has been reported as having been produced by the use of the electric current. It is evident that while in the tabulation the value for a substance appears but once, by this method of treatment the value of a given substance will appear each time that it is treated of in a different group, and that therefore the value of that caustic soda which was produced electrolytically will not only appear in the total value given for Group X, now under consideration, but also under Group II, when the caustic-soda industry is considered as a whole. For this reason, as well as because the establishments devoted to the manufacture by electricity of any particular product are too few to be discussed under the rules separately, the statistics will be found combined with other statistics in the treatment of other groups.

Sodium.-The remarkable experiments conducted by Sir Humphry Davy in 1807, which resulted in the isolation of sodium ${ }^{1}$ and of potassium, not only added to the list of known chemical elements two of its most interesting and important members, but the method devised by him and used here for the first time, in which an element was isolated by the passage of an electric current through its fused electrolyte and in which also the vessel used to contain the fused electrolyte and in which the fusion was effected was made of conducting material and served simultaneously as a container, and as one pole of the decomposing cell, has been largely applied in recent times, since easily controlled supplies of electrical energy at reasonable cost have been at command. Unfortunately no adequately cheap source of electrical energy was available until the dynamo was invented in $1867 .{ }^{2}$ In the meantime, and subsequent to Davy's discovery, Gay-Lussac and Thénard found that sodium could be displaced from fused caustic soda by metallic iron at a high temperature, and later Brunner discovered that this reduction could be effected under these circumstances by carbon also. Upon this discovery, and making use of the condenser of Donny and Maresca, Sainte-Claire Deville based the method of manufacture which he devised, and this was for many years the only one employed in the commercial production of this metal. In practicing this process a mixture of sodium carbonate, lime or chalk, and charcoal were heated in iron retorts, and the displaced sodium distilled off and condensed, the reaction taking place being represented by the equation:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{C}=2 \mathrm{Na}+3 \mathrm{CO} .
$$

Darling says, "Deville ——brought its manufacture to a high degree of perfection, reducing the cost of a

[^37]kilo from 2,000 francs, in 1855, to 10 francs, in $1859 .{ }^{\prime 3}$
About 1886, H. Y. Castner, an American, greatly simplified the manufacture by acting on sodium hydroxide with iron and carbon, or iron carbide, effecting the following reaction:
$6 \mathrm{NaOH}+\mathrm{FeC}_{2}=2 \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{Fe}+2 \mathrm{Na}+3 \mathrm{H}_{2}$ by fusing the mass in steel or iron crucibles and passing the vapors into condensers opening under high-test petroleum. According to Mendelèeff,4 "At present (1897) a kilogram of sodium may be purchased for about the same sum (2 shillings sterling) as a gram cost thirty years ago."

In 1890 Castner devised an electrolytic process which completely superseded the chemical processes for the isolation of sodium, and this has since been, until recently, the only process in use in this country or abroad for the commercial production of this metal. The electrolyte consists of fused caustic soda, which is melted in a cylindrical steel crucible with a contracted neck at the bottom, so set in a flue that as the crucible is heated from the outside the body of it only becomes heated while the neck remains cool, so that the caustic soda which fills the crucible remains solid in the neck and protects the joint between the cathode and the crucible at that point. There is a perforation in the bottom of the crucible at the neck, through which the cathode is passed up vertically and sealed by the solid caustic soda, as described above. The electrodes are of iron, and the anode, which may be cylindrical in form, is inserted from above so as to surround the end of the cathode. Encircling the cathode within the anode, and depending from a collecting pot above, is a cylinder of iron-wire gauze which serves to prevent the sodium, as it is liberated, from passing into the anode compartment. The inverted collecting pot above the cathode is filled with hydrogen, which is one of the products of the electrolysis, and this protects the sodium, as it collects, from chance oxidation. The sodium is baled from the collecting pot as soon as it has accumulated in sufficient quantity. More recently Darling bas devised a process by which sodium is obtained from sodium nitrate.

Metallic Sodium and Nitric Acid from Fused Sodium Nitrate.-The Darling process, as carried out in the works of Harrison Bros. \& Co., of Philadelphia, Pa., is characterized by the kind of diaphragm used. A cast-iron pot, set in a brick furnace and containing the nitrate to be decomposed, acts as the anode or positive electrode. A 6 -inch layer of refractory insulating material is placed in the bottom of the pot and the porous cup rests centrally upon this, leaving a 3 -inch space between the cup and the pot. This space is then filled with sodium nitrate and the cup itself nearly filled with melted sodium hydroxide. The cathode, or negative electrode, consisting of a short length of 4-inch wrought-iron pipe, provided with proper elec-

[^38]trical connections, is suspended inside the cup, reaching nearly to the bottom, and bridges made of wroughtiron pipe support these cathodes in a row of porous cups. When external heat is applied to the furnace, the electrolytes melt, and, permeating the walls of the cup, allow the passage of the current which, when of suitable strength, causes the decomposition of the sodium nitrate into sodium, nitrogen dioxide, and oxygen. The nitrogen dioxide and oxygen are liberated as gases at the positive electrodes, escape through a hole in the cover provided for that purpose and are utilized.
The positive sodium ions pass through the walls of the cup and on through the molten sodium hydroxide to be ultimately liberated in the metallic state at the cathodes. The first sodium liberated is absorbed by or combined with the sodium hydroxide, hydrogen gas being evolved and sodium monoxide, probably, being formed. After some time, metallic sodium rises to the top of the electrolyte in the cups and at intervals of about one hour is dipped off with a spoon and preserved under mineral oil. This style of porous cup and furnace gives excellent results. The use of two electrolytes of different character, yet having a common base, allows of the sodium being liberated in a neutral medium away from all danger of oxidation by the nitrate from which it is obtained. At first the sheet-metal walls of the porous cup had a very short life, being quickly eaten away by the local action caused by the secondary effects of the current. This trouble was overcome by shunting about 5 per cent of the current directly through the metal walls of the cup, making them positive. This plan reduced the local action and increased the life of the cup about ten times. The material now used for the porous cup is a mixture of ground dead-burnt magnesite and Portland cement, and it makes a very satisfactory diaphragm.

The nitrogen dioxide and oxygen evolved at the positive poles are conducted by means of earthenware pipes to a number of receivers or Woulff bottles connected together and containing water. The nitrogen tetroxide which is produced on coming in contact with the water combines to form nitric acid, $3 \mathrm{~N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}=4$ $\mathrm{HNO}_{3}+\mathrm{N}_{2} \mathrm{O}_{2}$. The $\mathrm{N}_{2} \mathrm{O}_{2}$ takes up a molecule of oxygen to again form $\mathrm{N}_{2} \mathrm{O}_{4}$, and more nitric acid is formed. If it is desired to make a very strong acid for use in the manufacture of high explosives, a system of towers that automatically brings the strength of the acid up to a high degree is used.

Each furnace takes a current of about 400° amperes at an average E.M.F. of 15 volts. External heat is used only when starting up and when changing the cups, which have a life of from 425 to 450 hours; at other times during the operation the heat generated by the resistance to the passage of the current is sufficient to keep the electrolytes melted.
It is interesting to note, in connection with this proc-
ess, that in December, 1902, the supply of metallic sodium on hand and in storage at these works had become so great that the city authorities, fearing accidents, compelled the operation of the process to cease. ${ }^{1}$

Up to some ten years ago, about the only use for sodium outside of the laboratory was in the isolation of aluminum, and when the electrolytic method for the production of aluminum was developed it looked as if the isolation of sodium on any large scale would cease. It was only when electricity was also applied to the isolation of sodium that it could be obtained cheaply enough to permit of its use in fields that had hitherto been closed to it on the score of cost. Chief among these new uses is the manufacture of alkaline cyanides, which are so largely used in the extraction of gold from low-grade ores and tailings; for "quickening" mercury in gold amalgamation; for electroplating; in photography; and other minor uses. Large amounts are also converted into sodium peroxide to be used in bleaching wool, silk, and feathers, and thereby replacing the more expensive hydrogen peroxide. It is also used in making certain anilin colors and organic compounds, and wherever a powerful reducing agent is needed.

Caustic soda and hypochlorites.-When common salt is electrolyzed it is separated into its constituents, sodium and chlorine, and this electrolysis may be effected by passing a proper current through fused sodium chloride, or through an aqueous solution of the salt; but in the latter case the sodium set free at the cathode immediately reacts with the water present, forming sodium hydroxide and liberating hydrogen. As shown in the discussion in Group II, the soda industry is one of the most important of the chemical industries, and as common salt is used in the Le Blanc, Solvay, and the other established processes of soda manufacture as the raw material of the art, it is not surprising that since, as stated above, common salt is readily electrolyzed, numerous processes and devices have been invented for effecting this on a commercial scale. Among them are the Vautin, Hulin, and the Borchers processes, in which fused sodium chloride is the electrolyte, and the Holland and Richardson, HargreavesBird, Castner or Castner-Kellner, Solvay, Le Sueur, and the Dow, in which an aqueous solution of common salt, which in some instances is native brine, is used as the electrolyte. According to Blount, ${ }^{2}$ the CastnerKellner process is the only one which in 1900 was being worked in England on a large scale and in a profitable manner, but while this process is carried on in the United States, the Le Sueur and Dow processes are also in active operation here.

The difficulties in making the simple electrolysis of common salt a commercial success have been various. In the fused electrolyte processes they have been

[^39]largely due to the corrosive action which fused salt exerts on most materials that can be used for making the vessels in which the electrolysis can be conducted, while, since the melting point of sodium chloride is 800° C., and metallic sodium begins to distill below $900^{\circ} \mathrm{C}$., the metal comes off mostly as a vapor, which greatly increases the difficulties of collecting it. In the dissolved electrolyte processes, among other difficulties, trouble has arisen from the evolved chlorine wandering into the cathode compartment and reacting with the previously formed sodium hydroxide, or vice versa, to form hypochlorites and chlorates, while the complete separation of the caustic soda from the sodium chloride was not at first easily effected.

C. L. Parsons, ${ }^{1}$ writing in 1898 , says:

Ernest A. Le Sueur enjoys the distinction of having invented the first electrolytic process for the commercial decomposition of sodium chloride, which became a regular contributor to the markets of the world. Since February, 1893, caustic soda and bleaching powder have been manufactured at Rumford Falls, Me., on a commercial scale.

It appears that Le Sueur began his experiments in the winter of 1887-1888, and after associating with him Charles N. Waite, who afforded him valuable assistance and some facilities at his chemical works in Newton, Mass., they together ran an experimental cell from October, 1890, to May, 1891, in a paper mill at Bellows Falls, Vt. In 1892 an association was formed, which in August of that year began the erection of a plant at Rumford Falls, and in February, 1893, began the manufacture of caustic soda and bleaching powder, using to generate the required current one 200 -kilowatt dynamo of the Thompson-Houston pattern. The success of the venture was such that three more dynamos of the same capacity were installed in the fall of 1894, and the Electro-Chemical Company was organized.
Parsons describes the Le Sueur cell as follows:
The cell as now used is contained in a tank 5 by 9 feet and $1 \frac{1}{2}$ feet deep, and made of one-quarter inch boiler steel. Excepting the asbestos, which composes the diaphragm, the wire netting of the cathode, and the materials of the positive electrode, it is built entirely of spruce, red brick, Portland cement, sand, and slate. These substances are so disposed in the cell as to be practically permanent, the wood being exposed to no action except that of the caustic solution, which has little effect upon it. The anodes are introduced from the top of the cell and may be removed singly without interrupting the process. Troublesome joints are closed with a specially prepared plastic cement. The diaphragm is tipped somewhat from the horizontal for the purpose of permitting the easy egress of the hydrogen bubbles. The foundation of the cell within the tank consists of an oblong frame of spruce, 8 feet 4 inches by 4 feet 10 inches, outside measurement, and 8 inches less on both dimensions inside. This frame is 11 inches deep, only the side pieces, however, resting upon the floor of the tank. The end pieces consist of four 4 -inch timbers, whose upper surfaces are 10 inches above the floor of the tank and 1 inch below the top surface of the longer side. The frame is divided transversely by a timber, similar to each of the end timbers, which crosses the middle of the frame at the same level as the end pieces. This center beam forms a bridge over which the flat iron ribs supporting the cathode are hung.

[^40]The cell is thus divided into two equal spaces merely for mechanical convenience. The ribs referred to consist of four parallel pieces of flat iron, three of them being $1 \frac{1}{2}$ by three-eighths inch, and the fourth, twice as wide. This wider piece is fastened at both ends to the containing tank, so as to receive from the latter the electric current, which enters through the material of the tank and communicates the current to the cathode, which rests upon these iron ribs. The diaphragm rests directly upon the cathode. The depth of the trough formed by the slanting ribs is 4 inches. There is an adequate arrangement at the ends of the bridge pieces by means of which the hydrogen, finding its way to this higher level, is delivered to exit pipes communicating with the atmosphere, or with any system of piping to which it is desired to deliver it. The inch of space between the tops of the cross timbers and the side pieces is utilized to take a piece of slate 4 feet long by 4 inches wide by 1 inch thick. This presses down upon the diaphragm and the cathode netting and keeps all solid. On top of the sides and ends of the frame there are four courses of common brick laid in clear cement. There is a coating of cement applied to the inside walls of the portion of the cell forming the anode compartment, and this includes not only the brick walls, but the small portion of the wooden sides above the cathode, which would otherwise come in contact with the anode liquid. The ceiling of the cell consists simply of pieces of slate, 2 feet by 1 foot, and suitably supported by transverse strips of slate, 1 inch thick by 4 inches wide. Through the ceiling plates pass the glass tubes to which the anodes are attached.
The anodes which are now used are made from an alloy of iridium and platinum, and are so constructed that a very large anode surface is presented at an almost incredibly small cost, when it is considered that it is not at all of the nature of a plated surface, but is an anode of solid metal. Sixty anodes on an average are used to each cell, and each anode costs 73 cents at the present market price of platinum. They are acted upon chemically bnt slightly, if at all. If the glass holders break there is no loss of platinum, and a new anode can immediately be put in place. The total cost for the anodes of a plant producing, per month, 200 tons of bleaching powder, is approximately $\$ 5,000$, or $\$ 40$ for a cell producing 55 pounds of sodium hydroxide and 50 pounds of chlorine per day; and this allows for a very low cell efficiency. The total cost for the renewal of the platinum, including labor, is less than half the cost of the bare carbon alone, as it was formerly used. Besides, it must be remembered that carbon anodes are certain to give more or less carbon dioxide if hypochlorite be present, while with these iridio-platinum anodes no carbon dioxide can possibly be produced.

At Rumford Falls, the Electro-Chemical Company obtains power at a very low cost, so that it pays to obtain a maximum of work from each cell by using a higher current density in proportion to the anode surface than might be tenable under other conditions. As the cells are now constructed, a current of 1,000 amperes is passed through each cell under a pressure of six and one-half volts. I am aware that this voltage is high, and from a statement in Lunge ${ }^{2}$ he would probably, at first thought, condemn the process on this ground alone. But it will readily be understood how this increased voltage can be economically employed when it is considered that at $\$ 8$ per electrical horsepower per year, which is the cost of power to the company at Rumford Falls, the extra cost per pound of product, on an average efficiency of 80 per cent, is but $\$ 0.00015$ for each extra volt used. This high voltage is by no means an essential of the process, and each cell can be run on a lower amperage, when of course less pressure would be required. It is simply a fact that at Rumford Falls it is economical to run the cells on this voltage, forcing through them all the current they can take without undue heating. Under these conditions, the renewal of the cell is usually made necessary only on account of the deterioration of the diaphragm. The diaphragms have an average life of seven weeks, and have been used twenty-four consecutive weeks

[^41]without renewal. The cathodes are but little acted upon, and the steel tanks are practically indestructible.
The cells are arranged so that twenty-two are in series, and three series are run in parallel on two dynamos. The hydrogen is used only for working platinum, the larger part being allowed to escape into the atmosphere. The chlorine is conducted by earthenware pipes to lead chambers and absorbed by lime in the usual manner, although at present a part is used for manufacture of potassium chlorate. The caustic solution is concentrated by evaporation in vacuo, and is separated from the major part of the undecomposed salt by centrifugals. Any chlorate is now readily removed, and the solution is then boiled down in cast-iron kettles to a first-quality caustic soda, analyzing about 74 per cent sodium oxide. The recovered salt is converted into brine and is used in the cathode compartment of the cells, nothing bot fresh brine and some hydrochloric acid ever being added to the anode side. Whole bays of twenty-two cells have shown daily averages of over 90 per cent chlorine efficiency, and weekly averages of 87 per cent. If the anode compartment could be kept constantly acid, as can be done with single cells, a chlorine efficiency approaching very closely to the theoretical may be reached. The efficiency, reckoned upon the sodium hydroxide produced, is not quite so high.

One great field for electrolytic processes is the production of bleaching liquors and canstic solutions for bleacheries, paper mills, and the like. Large economies might be introduced by companies of this kind by making their own solutions electrolytically instead of by the usual method of first transporting the chlorine in the form of bleaching powder and the alkali in the solid state. This is almost self-evident when one considers that the final evaporation of the canstic soda, which is quite costly, is done solely for purposes of transportation; that the absorption of chlorine by milk of lime is a very simple operation, and the bleach liquors so produced are much more efficient per unit of chlorine than bleaching powder; and that the raw material (salt) is easily and cheaply obtained and transported without deterioration, while a small plant can be run almost as economically as a large one. In fact, the ElectroChemical Company has sold a great deal of chlorine in the form of bleach liquors to pulp mills at reasonahle distances from the works, that preferred to take this liquid carrier of chlorine on account of its ready-settled solution, ease of manipulation, and its greater efficiency, although the cost of transportation might be somewhat greater. In works which do not require canstic soda, the process would also be highly economical, for under such conditions the cathode liquor can be directly used to absorb the chlorine, in excellent condition for bleaching purposes, thus doing away entirely with the cost and use of lime. I do not hesitate to predict that we shall yet see many Le Sueur plants established in connection with mills now using bleaching powder. In fact, one of our largest American sulphite pulp mills has already made arrangements for a trial of the Le Sueur plant, with a view of bleaching to a very large extent.

Parsons points out that the chief difficulty of the process from the outset has been to keep the sodium hydroxide in its proper compartment, for with the best of diaphragms a limited amount of diffusion into the anode compartment goes on, and sodium hypochlorite is formed, which is oxidized to sodium chlorate either before diffusion into the outer space or during evaporation of the cathode solution, and is eventually recovered as a by-product in the form of potassium chlorate. In addition, the diffusing sodinm hydroxide is partly electrolyzed, and, if carbon anodes are used, the oxygen liberated will attack them, forming carbon dioxide. The sodium hypochlorite may also be electrolyzed, giving rise to nascent oxygen and increasing
the amount of carbon dioxide produced, and this formation of carbon dioxide is a very serious matter, for unless removed from the chlorine gas, it renders the manufacture of a standard grade of bleaching powder impossible. Le Sueur has overcome many of these difficulties, first, by having the liquid in the anode compartment at a higher level than that of the cathode, thus diminishing the entrance of sodium hydroxide by diffusion; second, by using platinum-iridium anodes; and third, by adding hydrochloric acid to the anode compartment so as to keep the solution slightly acid. This acid, so added, at once decomposes any bypochlorite, and is itself oxidized so that all of its chlorine is regained in the form of that gas. No chlorine is lost by this operation, for the chlorine obtained as bleaching powder is greater than the equivalent of the sodium hydroxide by the amount of chlorine in the added hydrochloric acid. This use of hydrochloric acid is a matter of some expense, for an equivalent of chlorine at Rumford Falls costs more in the form of hydrochloric acid than it is worth as bleaching powder, but in other localities, and especially near the Le Blanc soda factories, such use of hydrochloric acid may prove a positive advantage from the standpoint of economy. Parsons points out that while in 1892, when the Rumford Falls plant was built, bleaching powder sold in Boston for $\$ 45$ per ton and caustic soda for $\$ 74$ per ton, in 1898 the prices were $\$ 30$ and $\$ 36$, respectively.

According to Chandler, ${ }^{1}$ all the difficulties enumerated above were completely overcome by the Castner process, in which the usual porous diaphragm is avoided, and a moving cathode of quicksilver is used in its place which absorbs the metallic sodium as fast as it is produced and removes it at once from the decomposing cell to a neighboring one, where the sodium is withdrawn electrolytically and converted into sodium hydroxide. The operation is accomplished in what is known as the "tipping cell," which is so arranged that once a minute it is rocked upon its support just enough to cause the mercury cathode in the bottom to flow back and forth under the partition to and from the neighboring cell, where the sodium hydroxide is produced free from chlorine. The metallic sodium never exceeds more than 0.2 per cent of the mercury, and consequently there is very little loss from the recombination of sodium and chlorine in the decomposing cell.

An important adjunct to the tipping cell is Castner's graphitized anode. With the ordinary carbon anodes, such as have been previously employed, it was found that the combined action of the chlorine and other substances resulting from the electrolysis of sodium chloride, together with the chemical reactions which occurred at or near the surface, disintegrated them rapidly. By converting the anodes after they have been shaped and baked into the graphitic form, they are of much greater durability, and the graphitizing process

[^42]has been regularly employed on a large scale for this purpose. Other modifications and improvements in the details of construction of the tipping cells have been made which facilitate the production and have increased the efficiency of the process. The Castner process yields pure caustic soda and pure chlorine, and has been in successful operation for several years in England, on the Continent, and at Niagara Falls, N. Y. At the last-named locality the company now using it is extending its plant.

According to Blount, ${ }^{1}$ the Castner-Kellner process is at work in England, at Weston Point, in Lancashire, where a plant of about 1,000 horsepower is in use and where a second plant of equal size is now being put down. Another plant of 2,000 horsepower (also about to be doubled), belonging to the Mathieson Alkali Company, is running at Niagara, using current supplied by the Niagara Falls Power Company. The output of this company is stated to be 10 tons of caustic soda and 24 tons of bleaching powder per day of twenty-four hours; the current efficiency, from 85 to 90 per cent; the pressure required, 3.5 volts-i. e., the energy efficiency is from 55.6 to 58.9 per cent. These statements are found to be concordant if we assume that the joint efficiency of the transformers and dynamos is 80 per cent.
This is not an unreasonable loss, inasmuch as the current has not only to be let down in voltage, but has to be transformed from an alternating to a direct current. The current comes from the power house at a pressure of 2,200 volts; it is transformed down in stationary transformers to a pressure of 120 volts. At this pressure the current, (which is, of course, still alternating,) passes to motor transformers, which transform it to a direct current delivered at a pressure of 200 volts, this being a convenient voltage for working a group of electrolytic cells.

The anodes used are ordinary "squirted" carbons; they are subjected to a "special treatment," designed to render them more refractory, and are said to last a year. Connection is made with them by means of a lead cap cast on one end. The caustic soda solution obtained is fairly concentrated, e. g., about 20 per cent strength. Much is sent in liquid form in tank wagons to soapmakers in Buffalo, about 20 miles from Niagara. Some is boiled down and sold in the solid state to the ElectroChemical Company, whose works are close to those of the Mathieson Alkali Company.
The Dow process, as set forth in United States patent No. 621908, of March 28, 1899, has for its object the production of the chlorine and sodium hydroxide from common brine, consisting of sodium chloride, calcium chloride, and magnesiun chloride in aqutous solution, and the invention is in the peculiar kind of diaphragm employed and its method of formation. To form this diaphragm a quantity of metallic iron is introduced into the brine in the neighborhood of the anode. On the

[^43]electric current being passed through the solution the first actions that take place are the decomposition of the electrolytic solution near the anode and cathode, free chlorine being formed at or near the anode, and free sodium, calcium, and magnesium being formed at the cathode. These latter in turn react with the water of the electrolyte to form sodium, magnesium, and calcium hydroxides, this formation also taking place near the cathode, thus $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{NaOH}+\mathrm{H}_{2}$. Part of the chlorine at the anode combines with the iron and forms iron chloride $\left(3 \mathrm{Cl}_{2}+2 \mathrm{Fe}=2 \mathrm{FeCl}_{3}\right)$. The sodium, calcium, and magnesium hydroxides and the iron chloride diffuse toward the middle of the cell and meet between the electrodes. On such meeting the iron is precipitated as iron hydroxide, which forms part of the diaphragm,
\[

$$
\begin{gathered}
3 \mathrm{NaOH}+\mathrm{FeCl}_{3}=\mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{NaCl}, \\
3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{FeCl}_{3}=2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{CaCl}_{2}, \\
3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{FeCl}_{3}=2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{MgCl}_{2} .
\end{gathered}
$$
\]

Calcium and magnesium hydroxides are precipitated by the sodium hydroxide from the calcium and magnesium chlorides,

$$
\begin{aligned}
2 \mathrm{NaOH}+\mathrm{CaCl}_{2} & =\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NaCl} \\
2 \mathrm{NaOH}+\mathrm{MgCl}_{2} & =\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NaCl}
\end{aligned}
$$

The diaphragm begins to form and build up from these precipitates, consisting of iron, calcium, and magnesium hydroxides. The chlorine diffusing toward the cathode on passing into the diaphragm, is absorbed by the calcium and magnesium hydroxides, forming calcium and magnesium hypochlorites, thus preventing the contamination of the cathode solution by the chlorine. These hypochlorites, whose formulæ are not positively known, decompose very rapidly, probably into chloride and oxygen. In actual working these hypochlorites are not found present. The iron hydroxide being inert so far as the chlorine is concerned, is not disturbed, so that eventually the side of the diaphragm near the anode is almost completely depleted of calcium and magnesium hydroxide by the action of the chlorine, and only iron hydroxide is left, while the cathode side consists mainly of calcium and magnesium hydroxides. The iron hydroxide prevents to a great extent the chlorine of the anode compartment from being consumed by the parts of the diaphragm with which it will combine. As the pores of the diaphragm contain iron, calcium, and magnesium chlorides, the sodium hydroxide of the cathode side upon entering the diaphragm is absorbed by these chlorides before it can diffuse to the anode side, so that the sodium hydroxide can not contaminate the anode solution.
Thus the products of electrolysis are effectually prevented from passing into and contaminating the opposite solutions. The precipitation and formation of the diaphragm will take place most rapidly where the diffusion is the greatest, and should any portion become
detached or mutilated diffusion will be greater at the mutilated point, and the consequent greater precipitation at this point will mend the break. It is thus seen that the diaphragm will thicken evenly. While one or more sheets of porous material-such as paper, cloth, asbestus, and the like-might be placed as a nucleus upon which the two essential layers of the diaphragm would be precipitated in the practical working of the cell, such a procedure has not been found necessary or advantageous, the diaphragm being readily produced in the proper place without such foundation. The physical qualities of the mixed hydroxides when made into a diaphragm in this manner are such that they form a coherent and self-supporting mass offering very little resistance to the passage of the electric current, but at the same time they offer a high resistance to the diffusion of the products of electrolysis and the electrolyte.

In the Dow process carbon electrodes are used. In all the processes bleaching powder is produced by absorbing the chlorine in dry slaked lime kept at a temperature below $46^{\circ} \mathrm{C}$. The yield of bleaching powder from 100 pounds of good lime is 150 pounds.

Chlorates.-Chlorates have heretofore been prepared by passing chlorine into alkaline solutions maintained at a temperature at or above $100^{\circ} \mathrm{C}$. In making potassium chlorate, which is the salt most largely used, the chlorine was first passed into a hot milk of lime, and after this had become saturated with chlorine and had acquired a density of 25° to 30° Twaddle, the solution was run off to settle. When clear, potassium chloride in calculated quantity was added, which, by reacting with the calcium chlorate, gave rise to calcium chloride and potassium chlorate.

As noted above, sodium chlorate may be obtained as a secondary product in the Le Sueur and other processes of electrolyzing common salt, and by metathesis with potassium chloride the potassium chlorate results. Since potassium chloride occurs native, and is mined at Stassfurt, it would appear to be a simple matter to electrolyze a hot solution of this salt directly to the chlorate, using a vessel without any diaphragm, but this is found feasible only up to a small concentration. Kellner has proposed to add to a saturated potassium chloride solution about 3 per cent of a sparingly soluble hydroxide, such as slaked lime or magnesia, and to keep the whole in agitation as the current is passed. The lime or magnesia assists in the formation of the chloric acid and serves to bring about the transfer of the potassium from its combination as a chloride to that as a chlorate. By concentration of the solution the potassium chlorate formed crystallizes out. As shown by United States patent 493023, of March 7, 1893, Gibbs and Franchot make use of a cathode of copper oxide in electrolyzing the potassium chloride. The theoretical yield of potassium chlorate is 164 parts for every 100 parts of potassium chloride used.

Potassium chlorate is used in manufacturing explosives, fireworks, fuse compositions, safety and parlor matches, and as an oxidizing agent in color works, in dyeing, and in other arts.

Lead Oxides.-Under Salom's process these are produced by the oxidation of spongy metallic lead, which is obtained by the electrolytic reduction of galena. Dilute sulphuric acid is used as the electrolyte, and sheets of lead are employed for electrodes. As neither the galena nor the lead reduced from it is soluble in the electrolyte, there is no ionization of the lead compounds or conveyance of the lead, but the latter is left as a porous mass, having the form of the original mass from which it was obtained, while the sulphur is evolved as hydrogen sulphide, and in this regard this process differs from all other electrolytic processes in use or proposed for use. The porous lead heats up on exposure to air, and is readily converted to oxides, or may be employed in the Dutch process of making white lead, where its porous condition constitutes an advantage in promoting the speed of corrosion. The lead may also be directly compressed into grids for secondary batteries.

Graphite.-Graphite is distinguished by being the first substance existing in nature as a mineral which has been commercially produced in the electric furnace. Its existence as a mineral under the names plumbago and black lead has long been known, and its employment in pencils is described in a work written by Conrad Gessner in 1565 , but it was not until 1779 that its identity was established by Scheele and it became recognized as one of the allotropic forms of carbon. Several methods for the artificial production of graphite have been discovered, and that it is obtained from other forms of carbon by exposure to high temperatures, such as obtain in the electric furnace, has long been known, but the discovery that this is brought about through the formation first of carbon compounds, such as silicon carbide, and their subsequent decomposition is due to E. G. Acheson, and he has reduced this discovery to practice, producing graphite in quantity. An interesting feature of his discovery is that the phenomenon of the conversion is a progressive one and that a small portion of the other constituent of the carbide acts, as he says, "by catalysis" to convert a large mass of the amorphous carbon into graphite. This conversion is effected in a similar furnace to that used in the manufacture of carborundum, and the methods employed are similar.

The factory for working this process and making graphite from coke, bituminous coal, or other amorphous forms of carbon was established at Niagara Falls in 1899, and is to-day the only factory in the world, and the material has been here produced in several forms. One is an intimate mixture of pure amorphous carbon and graphite in fine powder for use as paint and for foundry facings. Another consists of articles pre-
viously molded from amorphous carbon which contains the catalytic agent. Among them are electrodes for use in alkali processes, like the Castner process, and carbon plates for use as brushes in dynamos and motors; and the life as well as the efficiency of these articles is much increased by being graphitized. It is expected that this process may utilize much of the fine refuse from the coke ovens.

Graphite is used in the manufacture of pencils, crucibles, stove polish, foundry facing, paint, motor and dynamo brushes, antifriction compounds, electrodes for metallurgical work, conducting surfaces in electrotyping and for glazing powder grains.
As pointed out, the chief source of graphite is from mines, and the extent of its production from this source in the United States will be shown when the census of the mining industry is taken. The amount imported is, however, very large, as shown by the following table, compiled from Vol. II of the Foreign Commerce and Navigation of the United States, for the year ending June 30, 1900 :

IMPORTS OF PLUMBAGO, 1891 TO 1900, INCLUSIVE.

YEAR.	Tons.	Value.	Year.	Tons,	Value.
1891.	10,135	\$509, 809	1896.	11,891	\$384, 554
1892	13,511	726,648	1897.	12,459	321, 355
1893.	14, 207	866, 309	1898.	11, 154	472,401
1894.	7,935	410,819	1899.	15,970	1,081,859
1895.	7,051	208, 935	1900.	20,597	2,345,294

Calcium Carbide, CaC_{2}, was prepared in 1862 by Woehler, by heating an alloy of zinc and calcium with an excess of carbon, and in 1893, by Travers, by heating a mixture of calcium chloride, carbon, and sodium. Its commercial production began in the United States at Spray, N. C., in 1894, when Thomas L. Willson produced it by heating lime and coke together in an electric furnace, and out of this has grown the large industry which exists to-day. The furnace employed by Willson was of the simplest kind, as it consisted merely of a rectangular fire-brick box lined with carbon, to serve as one electrode, into which a stout carbon rod or bundle of rods dipped vertically to serve as the other electrode. The charge of mixed lime and coke was piled about the vertical electrode, which, after making contact to establish the arc, was raised as the mass was caused to react. Since the reaction is effected solely by the high temperature attained in the electric furnace, and not through electrolysis, either an alternating or a direct current can be employed, and as the former can be brought from a distance at a high voltage and transformed on the spot where it is to be used, by a stationary transformer, it is generally to be preferred.

As carried on at Spray, the operation was a discontinuous one, since, when the movable electrode had been raised to its greatest height and a prismatic mass of the carbide had been formed between the electrodes, the current had to be cut off, the furnace cooled, and the
carbide removed, before a fresh charge could be put in. Besides, a very large part of the charge of coke and lime failed to be heated to the reaction temperature, and yet its presence was necessary to protect the walls of the furnace from the high temperature of the arc.
Through the invention of Charles S. Bradley, this process has now been made continuous. He prefers to employ a rotary wheel or annulus, into which projects at one side an electrode; the wheel being provided with means for preventing the material from spilling; with means for supplying fresh material to be acted upon by the current; and with facilities for removing the product; the whole being so arranged that the operation may be carried an in an uninterrupted manner, as the furnace is constantly forming fresh additions to the product and permitting the latter to be removed as frequently as may be necessary. The wheel is preferably turned by power-driven machinery, and is provided with a hollow periphery, to which (over an arc covering the lower part of the wheel) buckets are attached, forming throughout the are a closed receptacle for the material to be operated upon. These buckets are arranged to be withdrawn or opened when they reach the discharge-end of the wheel-arc. The material, in the form of powder or granules, is supplied to the side of the wheel which contains the electrode or electrodes. The electric arc, or the limits of the space within which the electric action on the material takes place, is wholly within the mass of pulverized material, so that a wall of unchanged or unconverted material will surround the product of the furnace, and the motion of the wheel is in such direction as to keep the converted material surrounded by a body of unconverted material, and thus to exclude air until the converted mass has become sufficiently cool to permit of its removal and further treatment for packing for shipment or storage.

In the formation of the calcium carbide, the intimate mixture of ground lime and ground carbon is supplied to that side of the wheel-arc into which the current is introduced and is here fused and forms a pool of liquid carbide within the wheel rim, the pool being surrounded by a mass of the uncombined mixed carbon and lime which acts as an efficient heat insulator and keeps the walls of the receptacle comparatively cool. As the wheel turns, the pool is withdrawn from the neighborhood of the are, or region of electrical activity, so that the liquid carbide cools and solidifies under a superincumbent and surrounding mass of material, which prevents access of air and thus prevents wasteful consumption of carhon by combustion. Thus a core of solid calcium carbide is formed within a granular or pulverized mass of material, the core growing in length as the receptacle recedes from the electrode until it emerges from the other end of the wheel-arc, when the removable sections of the wheel rim may be taken off one at a time, which permits the pulverized material to fall away
from the solid core of carbide, so that the latter may be broken off or otherwise removed periodically. Thus the formation of carbide goes on continuously without any necessary interruption for recharging or removal of the product.
The wheel used is formed in sections which are bolted together, and it has a horizontal axis mounted in boxes at or near the floor level. The rim of the wheel is concave in cross section and is provided at intervals with pivoted latches to engage studs on semicylindrical sections of plate iron and thereby support them on the wheel. Auxiliary plates of thin sheet iron may be bent around the joint between the sections on the inside of the wheel rim, to prevent the pulverized material from sifting through the cracks at the joints. The wheel may with advantage be made about 15 feet in diameter, and the rim and plate-iron sections of such proportions as to form a circular receptacle of 36 inches in diameter. The inner wall of the wheel rim is provided with holes at intervals to receive copper plugs connecting with the several plates of a commutator on which bears a brush, connecting with one pole of an electric generator. The other pole of the generator connects with a carbon electrode about 4 inches in diameter, mounted in a sleeve and provided with a screw thread on the outside, which engages an internally threaded sleeve secured to a bevel gear, on the axis of which is a crank for adjusting the electrode. The electrode and its regulating mechanism are mounted on a framework adjacent to the wheel pit, so that the electrode may be fed into the receptacle formed by the wheel rim and the rim sections when partly consumed.

A feed hopper is provided with a spout projecting into the wheel rim and a gate for regulating the supply of mixed material to be acted upon. The wheel pit is preferably provided with sloping sides, so that any powdered material which drops from the wheel at its discharging end or elsewhere may slide by gravity to a conveyor, the buckets of which return it to the feed hopper, to again pass through the furnace.

The wheel is preferably connected with an electric motor by speed-reducing gearing. The motor shaft carries a worm, acting on a spur gear, on the shaft of which is secured another worm, meshing with another gear, on the shaft of which is a third worm, meshing with a gear on the wheel shaft. By this mechanism, a very slow speed of the wheel may be maintained, a complete revolution being made once in five days. In using the apparatus, the rim sections are latched over the wheel rim above an arc covering the lower part of the wheel, and the gate of the feed hopper is opened. A charge of intimately mixed carbon and lime, in proper proportions to form calcium carbide, falls into the receptacle around the wheel rim and accumulates until the top of the electrode is immersed therein. The circuit of the electric machine may then be closed and the electric
motor thrown into operation. As the charge is moved away from the electrode, intense heat is created and the refractory material fuses. As the wheel turns, the pool gradually recedes from the electrode and slowly cools while inclosed within walls of refractory, uncombined material on all sides, and the cool product forms a bottom for the liquid compound. Thus a continuous core of the product is formed, new rim sections being added by the workman at intervals of a few hours.
The electrode, at starting, should project well into the receptacle, and, as the wheel turns, the electrode rises relatively to the charge, and when it reaches a point near the top of the rim section, a new rim section is hung on the wheel by means of the next set of supports, and a strip of sheet iron is bent around the joint between the rim sections. The gate of the hopper is then opened and the rim filled, or partly filled, with material. As this material in its powdered state is a very poor conductor of electricity as well as of heat, the immersion of the electrode does not interfere with the heating action. When a new rim section is added on the electrode side of the wheel, one is removed at the other side. Thus the process continues until the solid core of the furnace product appears at the discharge end of the wheel, when a rim section is taken off and the powdered material falls into the pit, leaving a pillar of solid product projecting vertically, which may be broken off or otherwise removed. Solid calcium carbide is a conductor of electricity, and the copper plugs make a good contact with it, thereby constituting the carbide itself one of the electrodes. The action of the commutator leads the current to a point of the carbide core close to the electrode, and prevents unnecessary resistance, which would intervene if the plugs were more widely spaced. The conducting plugs which are remote from the arc help to carry the current, and thus the heating of any one contact with the carbide core is reduced.
Calcium carbide is used in generating acetylene gas, the reaction taking place when it is brought in contact with water at the ordinary temperature. As the manufacture of calcium carbide is a fairly efficient process, and as it may be produced wherever a head of water is available, as the energy is stored in it in a compact form, and as this energy may be readily made available again by generating the acetylene and burning it, calcium carbide is looked upon as a material by means of which the energy of remote waterfalls that is now going to waste may be made useful to man.

Carborundum (Silicon carbide, SiC), the production of which is covered by E. G. Acheson in United States patent No. 492767, of February 28, 1893, is made in the United States only, and is made by heating a mixture of 34.2 per cent of coke, 54.2 per cent of sand, 9.9 per cent of sawdust, and 1.7 per cent of common salt in an electric furnace. The furnace is built up of bricks put together without any binding material, because of the necessity
of permitting the gases generated during the process to freely escape, and because the furnace must be pulled down at the end of each run. At each end of the bin-shaped furnace, which is about 15 feet long, 7 feet high, and 7 feet wide, is a heary bronze casting to which the leads are attached, which carries, on its inner surface, a bundle of sixty 3 -inch carbon rods, each of which is 2 feet in length. These electrodes project into the furnace and are discontinuously connected by a cylindrical mass of coarsely powdered coke which forms a core about 9 feet long by 2 feet in diameter in the center of the furnace. The charge of the above-described mixture, weighing about 10 tons, is packed all about this core.
When the current is turned on, heating proceeds slowly until, after about two hours, carbon monoxide is evolved at all the openings in the brickwork and from the upper surface of the charge, where it burns with a blue flame. After some twelve hours the outside of the charge becomes red hot, and after twelve hours more the reaction has proceeded as far as practicable. After cooling, the furnace walls are pulled down, when the charge is now found to be separated into several layers, viz.; an outer one consssting of about 11 per cent salt, 56 per cent silica, and 33 per cent of carbon, which represents the portion of the charge which has not been heated sufficiently high to be converted into carbide. Within this outer layer is a layer of greenish-colored material, concentric with the core and consisting of amorphous silicon carbide, mixed with raw materials. It is not hard enough for use as carborundum, and is reworked in the next charge. The third layer, which is about 10 inches in thickness, consists of crystallized silicon carbide, the crystals being small on the outside and increasing in size toward the core. This is the carborundum. Within this layer is the portion about or within the core, which has been converted into graphite. The 10 -ton charge yields about 2 tons of carborundum, though the theoretical yield of a charge of this size, consisting of silica and carbon mixed in equivalent proportions is about 4.2 tons. The energy used is about 1,000 horsepower.

Although pure silicon carbide is colorless, the crystals obtained in the commercial manufacture are blue, black, or dark brown, and are iridescent; and as they possess an almost adamantine luster, they are very beautiful. They are hard enough to scratch ruby and very permanent. Carborundum is largely used as an abrasive, the crystals being crushed in edge runners, washed with water and acid, dried, and graded by sieving. In this condition it is molded in a great variety of forms. It is also employed in the manufacture of steel as a substitute for ferro-silicon, and in the manufacture of graphite.

Carbon Disulphide.-One of the most ingenious as well as one of the most recent chemical applications of electricity is in the manufacture of carbon disulphide
(carbon bisulphide; bisulphide of carbon; CS_{2}), a substance which was discovered by Lampadius in 1796, and which has been heretofore manufactured by passing the vapors of sulphur over coke or charcoal which has been heated to a "cherry red" in retorts made of cast iron or glazed earthenware. The further steps in the process are for the purpose of purifying the carbon disulphide by removing uncombined sulphur, hydrogen sulphide, sulphur dioxide, and other foreign bodies which may be present, and this is accomplished by condensation in towers, washing in water, treatment with chemicals, such as lead acetate, caustic soda, milk of lime or anhydrous copper sulphate, mercury or men curic chloride, and redistillation. For certain uses the presence of certain of the impurities adds to the efficiency of the material, and in such cases the methods of purification alluded to are dispensed with. Owing to the corrosive action of the heated sulphur vapors and their products, but few materials can be employed in the construction of retorts, and those which have been used have been short lived, so that the manufacture has not only been conducted in a discontinuous manner, but the renewal account has been large.
In the electric process of Edward R. Taylor, which was put into operation in 1900 at Torrey, N. Y., several sets of carbon electrodes are introduced into the base of a stack furnace and connected by a bridge consisting of broken coke or other conductive carbon, while the body of the stack' is filled with charcoal. Sulphur is fed in by suitable ports so as to cover the electrode faces when, as the current is passed through, it becomes melted and vaporized. At the same time the charcoal is heated above the electrodes, and reaction with the sulphur occurs. From the construction of the furnace, the heat radiated through the walls of the stack is utilized in heating the sulphur to the melting point, and the heat resident in the carbon disulphide vapors is largely utilized in heating up the charcoal as the latter descends the stack. The process is a continuous one, and the current may be regulated either by the amount of conductive carbon introduced into the furnace or by reducing the working surfaces of the electrodes by partly submerging them in the molten sulphur.

Carbon disulphide is extensively used as a solvent and extractive agent, as it dissolves sulphur, phosphorus, iodine, rubber, camphor, wax, tar, resins, and nearly all oils and fats. It is a germicide and insecticide and is very largely used by transportation and storage companies for the destruction of weevils in wheat, and other insect pests, and by farmers for exterminating mice, rats, prairie dogs, gophers, and other subterranean animals that damage the crops. It is employed in the manufacture of thiocyanates, carbon tetra-chloride, sulpho-carbonates, viscose, rubber cement, and in organic preparation work, and for prisms.

Phosphorus.-Heretofore phosphorus has been pro-
duced from burnt bone or mineral phosphates by treating them with sufficient sulphuric acid to convert part or all of the calcium present into calcium sulphate and the phosphorus contents into calcium metaphosphate or eventually into phosphoric acid, and reducing these products by charcoal.

Quite long ago Wöhler suggested that the manufacture be carried out by heating the calcium phosphate, such as exists in burned bones or rock phosphates, with sand and carbon, by which a reaction of the following nature may be realized:

$$
2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{SiO}_{2}+10 \mathrm{C}=6 \mathrm{CaSiO}_{8}+10 \mathrm{CO}+\mathrm{P}_{4}
$$

but until recently it has been impracticable to use this simple process on account of the high temperature required. This difficulty is now met in the electric furnace, and at present the electric production of phosphorus is on a profitable basis. In the continuous process of Readman, Parker, and Robinson, 100 parts of calcium phosphate, 50 parts of sand, and 50 parts of coke are intimately mixed and heated in a tightly covered electric furnace provided with an outlet pipe leading to a condenser and a tap hole. The phosphorus volatilizes as it is liberated, and, together with the carbon monoxide, passes to the condenser, where the phosphorus condenses and is collected in water. The residue of calcium silicate and foreign bodies fuses to a slag and is tapped off at intervals, fresh charges of the phosphate mixture being introduced into the furnace without interrupting the electric current.
The phosphorus as first produced is contaminated with sand, carbon, clay, and other impurities, and this crude phosphorus is purified by melting under warm water and straining through canvas, or by redistillation from iron retorts. For final purification it is treated, when molten, with a mixture of potassium dichromate and sulphuric acid, or by sodium hypobromite. Theoretically, 100 parts of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ should yield 20 parts of phosphorus, but in practice with the electric furnace only about 17 parts are recovered. This is, however, much more than the yield given by the older process, in which part of the phosphate was converted into calcium metaphosphate; there the maximum yield on the original phosphate was but 11 parts in 100 .
Phosphorus is used in the manufacture of friction matches and fuse compositions; for making rat poison; and as a source of phosphoric acid and other phosphorus containing compounds that are used in medicine and in the arts. As phosphorus is a very active reducing agent, it has found some application in the precipitation of the precious metals and in electrotyping.

Other Products.-As an evidence of what may be expected in the future, attention is called to the fact that hydrogen sulphide (which may be burned to produce sulphuric acid), white lead, chromic acid from chromium sulphate, and lampblack from acetylene are being made by the aid of electricity. Especial activity is to be looked for in the field of organic chemistry. So long
ago as 1849 Kolbe' $^{\prime}$ electrolyzed alkaline salts of fatty acids, obtaining hydrocarbons, and since then halogen derivatives of the hydrocarbons have been made from organic salts or alcohols and haloid compounds; chloral from alcohol and potassium chioride; mono and dichloracetones and monobrom acetone from acetone and hydrochloric or hydrobromic acid; azoxybenzene, azobenzene, hydrazobenzene, benzidine, and anilin from the reduction of nitrobenzene; piperidine by the reduction of pyridine in acid solutions; and vanillin and heliotropine from the ozonization of eugenol or oil of cloves; and many other laboratory reactions. According to Swan" the manufacture of iodoform, vanillin, chloral, azo and hydrazo compounds, oxidation products of fusel oil, dyestuffs of the triphenylmethane type, anilin blue, anilin black, Hofmann's violet, alizarin, Congo red, oxidation products of the alcohols, sulphonic acids, piperidine, dihydroquinone, benzidine, and amidophenol have already been produced abroad by electrochemical means, and that at least the first five are being so produced on a commercial scale.

LITERATURE.
Electric Smelting and Refining, W. Borchers: Philadelphia, 1897.

Practical Electro-Chemistry, Bertram Blount: New York, 1901.
Notes on Electro-Chemistry, by Charles F. Chandler. The Mineral Industry, vol. 9, 763-772. 1901.

Manufacture and Uses of Metallic Sodium, James D. Darling, J. Frk. Inst., 153, 65-74. 1902.

The Le Sueur Process for the Electrolytic Production of Sodium Hydroxide and Chlorine, Charles Lathrop Parsons, J. Am. Chem. Soc., 20, 868-878. 1898.
Production of Phosphorus and Chlorides of Carbon by means of the Electric Furnace, Sci. Am., 74, 180. 1901.

Lighting by Acetylene, William E. Gibbs: New York, 1898.
Carbon Disulphide in the Electric Furnace, Elect. World and Engineer, 38, 1028. 1901.

Graphite; Its Formation and Manufacture, E. G. Acheson, J. Frk. Inst., June, 1899.

Some Electrolytic Processes for the Manufacture of White Lead, Sherard Cowper-Cowles. The Electro-Chemist and Metallurgist and Metallurgical Review, 1, 145-147. 1901.

Applications of Electrolysis to Organic Compounds, J. T. Hewitt. The Electro-Chemist and Metallurgist, 1, 34-35, 99-100, 120-122, 170-172. 1901.
Chemical and Technical Education in the United States, Charles F. Chandler, J. Soc. Chem. Ind., 19, 591-620. 1900.

Electro-Chemical Industry, Jos. W. Swan, J. Soc. Chem. Ind., 20, 663-675. 1901.

Group XI.—Dyestuffs.

Under the classification "dyestuffis and extracts" reports have been rendered for the two previous censuses. As the sources of much of the natural raw materials of the two industries and the methods for their treatment are in many respects similar, both dyestuff and tanning materials were embraced in this

[^44]classification. Combining the returns of the census of 1900 in the same manner we have the following comparison:

COMPARISON OF DYESTUFF AND EXTRACT FACTORIES: 1880 TO 1900.

YEAR.	Number of establisbments.	Capital.	Wageearners.	Value of product.
1880.	41	\$2, 363, 700	992	85, 253, 038
1890.	62	8,645,458	2,302	9,292, 514
1900.	77	7, 839,034	2,094	7,350,748

This comparison shows a gain of 76.9 per cent in the value of the product for 1890 over that for 1880, and a loss of 20.9 per cent in the value of the product for 1900 as compared with that of 1890 . Considering the general character of trade conditions in 1900 and the activity of the dyemg and tanning industries, it is believed that this falling off is not real, but that it is due to a difference in rulings as to the category in which certain of the products reported should be put. For instance, the chromium compounds are used in dyeing, in tanning, for paints, and as chemicals in many arts. Where shall they be classified? Again, citric, lactic, tartaric, and other acids are used in calico printing and in other arts. Shall they be classified under acids or under dyestuffs? Questions like these continually arise, and they will necessarily be settled, to a certain extent, in different ways in the different censuses. The endeavor in the present report has been to classify substances as chemicals in the categories of acids, sodas, potashes, alums, cyanides, and fine or heavy chemicals unless they very distinctively belonged in one of the other categories in the scheme of classification.

Another cause might arise from an extension of the work and an increase in the output of an establishment, if that increase took place in another industry, for the return would be classified under the principal product. Thus, if in 1890 an establishment were grinding sumac leaves part of the time and wheat part of the time, and the value of the ground sumac in 1890 exceeded that of the flour, the establishment would in that year have been classified under "dyestuff's and extracts;" but if in 1900 the value of the flour exceeded that of the sumac, the returns would be classified under "food and kindred products." As a rule these variations tend to balance one another and to give a result that is a close approximation to the true one, but in certain instances this may not be the case, though in each census they all appear in the final summation.
Taking the returns thus assembled, the geographical distribution of the dyestuff and extract industry is presented in the following table:

GEOGRAPHICAL DISTRIBUTION OF DYESTUFF AND EXTRACT FACTORIES: 1900.

states.	Number of estab-lishments.	Capital.	Wageearners.	Value of product.	Per cent of value.
United States	77	\$7,839, 084	2,094	\$7,350, 748	100.0
New York	19	2,548, 136	562	2,111,811	28.7
Massachusetts	10	592,510	56	1,320, 881	18.0
Pennsylvania	- 12	1,778,173	361	1,269,246	17.3
New Jersey...	10	591,916	172	502,798	6.9
Virginia....................	8	385, 904	271	479, 372	6.5
West Virginia	5	272, 192	98.	245, 754	3.3
California, Connecticut, Florida, Illinois, Kentucky. Maine, Michigan, Rhode lsland, and Tennessee. \qquad	13	1,670,203	574	1,420,886	19.3

A clearer idea of the dyestuffs industry may be obtained by separating the statistics for this industry from those rendered for tanning materials and by combining with them the data from those schedules in which dyestuffs bave appeared as a minor product and which have therefore been sunk in another classification. There have been 72 establishments found in which such manufacture is carried on and the product is shown in the following table:

TOTAL PRODUCTION OF DYESTUFFS IN THE UNITED STATES: 1900.

CHARACTER OF PRODUCT.	Number of estab-lishments.	Quantity (pounds).	Value.
Total.	72	61,209,231	\$5,868,006
Natural dyestufis.	21	48,245,628	3,435,808
Artificial dyestuffs	32	7,698,435	2, 280, 899
Mordants ...	6	734,000	85,466
1ron liquor..	5 5	3, 344, 568	32, 065
Other products.	5 3	707,040 479,560	$\begin{array}{r} 7,340 \\ 26,428 \end{array}$

There were consumed in the manufacture 51,955 tons of logwood, of a value of $\$ 1,084,746$; of fustic 3,104 tons, of a value of $\$ 51,586$; of cutch 798,508 pounds, of a value of $\$ 61,697$; of indigo 109,034 pounds, of a value of $\$ 125,069$; of yellow oak bark 4,907 tons, of a value of $\$ 29,451$; of anilin dyes $1,734,717$ pounds, of a value of $\$ 840,229$; of alizarine and other coal tar colors $1,417,325$ pounds, of a value of $\$ 333,317$; of logwood extract 2,364,792 pounds, of a value of $\$ 163,408$; and of wood for the manufacture of iron liquor 2,838 cords, of a value of $\$ 9,629$; besides small amounts of nicwood, quercitron, turmeric, quassia, persian berries, myrabolans, gambier, sumac, nutgalls, quill-bark and oils, and other materials for assistants and mordants.
Coloring matter obtained from vegetable or animal substances have been used in coloring textiles from prehistoric times, and as they were supposed to exist ready
formed in the organism, they became known as natural dyestuffs. Prominent among natural dyestuffs is the coloring matter obtained from logwood and known as " hæmatein." The color-forming substance (or chromogen), hæmatoxylin, exists in the logwood partly free and partly as a glucoside. When pure, hæmatoxylin forms nearly colorless crystals, but on oxidation, especially in the presence of an alkali, it is converted into the coloring matter hæmatein, which forms colored lakes with metallic bases, yielding violets, blues, and blacks with various mordants. Logwood comes into commerce in the form of logs, chips, and extracts. The chips are moistened with water and exposed in heaps so as to induce fermentation, alkalies and oxidizing agents being added to promote the "curing" or oxidation. When complete and the chips have assumed a deep reddish-brown color, the decoction is made which is employed in dyeing. The extract offers convenience in transportation, storage, and use. It is now usually made from logwood chips that have not been cured. The chips are treated in an extractor, pressure often being used, but a pressure above 15 pounds to the square inch is to be avoided, as it may cause a decrease in the coloring power of the product. The liquor is settled to remove fibers and resin, and evaporated in a vacuum pan to a density of about $50^{\circ} \mathrm{Tw}$., or it may be continued until a solid extract is obtained on cooling. The yield of solid extract produced with pressure is about 20 per cent and without pressure about 16 per cent. The extract is sometimes adulterated with chestnut, hemlock, and quercitron extracts, and with glucose or molasses. Reynolds \& Innis made "dyestuffs" at Poughkeepsie, N. Y., in 1816. Browning and Brothers made extracts in Philadelphia in 1834.

Fustic is the heart wood of certain species of trees indigenous to the West Indies and tropical South America. It is sold as chips and extract, yields a coloring principle which forms lemon-yellow lakes with alumina, and is chiefly used in dyeing wool. Young fustic is the heart wood of a sumac native to the shores of the Mediterranean, which yields an orange-colored lake with alumina and tin salts.

Cutch, or catechu, is obtained from the wood and pods of the Acacia catechu, and from the betel nut, both being native in India. Cutch appears in commerce in dark brown lumps, which form a dark brown solution with water. It contains catechu-tannic acid, as tannin and catechin, and is extensively used in weighting black silks, as a mordant for certain basic coal-tar dyes, as a brown dye on cotton, and for calico printing.

Indigo, which is obtained from the glucoside indican existing in the indigo plant and in woad, is probably one of the oldest known dyestuffs. It is obtained from the plant by a process of fermentation and oxidation, the yield being from 0.2 to 0.3 per cent of the weight of the plant. Indigo appears in commerce in dark blue cubical cakes, varying very much in composition as they often
contain indigo red, and indigo brown (which affect the color produced by the dye), besides moisture, mineral matters, and glutinous substances. Thus Java ${ }^{1}$ indigo contains from 70 to 80 per cent of the pure color; Bengal, 60 to 70 per cent; and Kurpah, 30 to 55 per cent. It has been found that "lots" of natural indigo sold as one quality varied in themselves, and that samples drawn from the same chest and identical, so far as appearances went, differed as much as 7 to 8 per cent in their contents of pure indigo. Powdered indigo dissolves in concentrated fuming sulphuric acid, forming monosulphonic and disulphonic acids. On neutralizing these solutions with sodium carbonate and precipitating the indigo carmine with common salt there is obtained the indigo extract, soluble indigo, and indigo carmine of commerce. True indigo carmine is the sodium salt of the disulphonic acid, and when sold dry it is called "indigotine." Alexander Cochrane made extract of indigo at Lowell, Mass., in 1849.

One of the most important of the recent achievements of chemistry is the synthetic production of indigo on a commercial scale. For some years approaches have been made, as in the case of what was known as "propiolic paste," containing about 25 per cent of o-nitrophenylpropiolic acid, which was used for a time in calico printing, but abandoned because of the unpleasant odor which was developed in the process, and which persistently adhered to the goods, and because the blue color produced was slightly gray in shade, and in the case of Kalle's artificial indigo prepared from o-nitrobenzene chloride. The synthetic indigo now made by the Badische Anilin und Soda Fabrik is manufactured by the Heumann ${ }^{2}$ process (D. K. P. 91202). Starting with naphthalene, the cheapest and most abundant of the coal-tar products, by treatment with highly concentrated sulphuric acid, phthalic acid is obtained. This phthalic acid is converted into phthalimide by the use of ammonia; the phthalimide is converted to anthranilic acid by means of sodium hypochlorite; the anthranilic acid is united with chloracetic acid to form phenylglycocollorthocarboxylic acid; by fusing this last mentioned acid with caustic soda, indoxyl or indoxylic acid is formed, according to the existing conditions, and when these are oxidized by air, in the presence of alkalies, they pass into indigo. In this manufacture 10,000 tons of naphthalene, over $1,200,000$ pounds of ammonia, $4,500,000$ pounds of glacial acetic acid, and $10,000,000$ pounds of salt are consumed. The recovery of the 40,000 tons of sulphur dioxide, which occurs as a by-product in the treatment of the naphthalene with sulphuric acid (which is the first step in the process of making indigo) is an important matter, and the recently perfected contact process for its conversion into sulphuric acid for reuse comes in most opportunely.

[^45]
Lachman says: ${ }^{1}$

The present annual production of synthetic indigo has not been given to the public, but from the data obtainable it can not be far from $3,000,000$ pounds, about one-fourth of the world's supply. It is going to be a question of business rather than of manufacture when the indigo factories will have supplanted the indigo fields. Some of the above calculations will give a faint idea of the purely commercial side of this stupendous undertaking. The 'Badische' has already invested over $\$ 4,500,000$ in the plant and the preliminary experiments.

Although mineral dyes such as prussian blue, chrome yellow, orange and green, and iron buff, or nankin yellow, have long been used, artificial dyestuffs assumed preponderating importance with the discovery of the lilac color mauve by Perkin in 1856, and fuchsine or magenta by Verguin in 1859, for with each succeeding year other colors have been discovered, until at the present time there are several thousand artificial organic dyes or colors on the market. Since the first of these were prepared from anilin or its derivatives the colors were known as "anilin dyes," but as a large number are now prepared from other constituents of coal-tar than anilin they are better called "coal-tar dyestuffs." There are many schemes of classification. BenediktKnecht ${ }^{2}$ divides them into I, aniline or amine dyes; II, phenol dyes; III, azo dyes; IV, quinoline and acridine derivatives; V, anthracene dyes; and VI, artificial indigo.
Of the anthracene dyes, the alizarin is the most important, since this is the coloring principle of the madder. The synthesis of alizarin from anthracene was effected by Gräbe and Liebermann in 1868, but a commercial process for its production was not developed until some years later, when it was worked out by the above-named chemists in conjunction with Caro, though the process was discovered simultaneously by Perkin. Schorlemmer ${ }^{3}$ said in 1894: "Gräbe and Liebermann's discovery produced a complete revolution in calico printing, turkey-red dyeing, and in the manufacture of madder preparations sooner than was expected. Madder finds to-day only a very limited application in the dyeing of wool. Twenty years ago the annual yield of madder was about $5,000,000$ tons, of which one-half was grown in France, while ten years ago the whole export from Avignon was only 500 tons."

It is to be observed that the quantities of substances like indigo, coal-tar dyes, alizarin, and the like reported as consumed in the United States in the further manufacture of dyestuffs are less than the amount of

[^46]these articles that is imported; but this follows naturally from the fact that a large, and in some instances the largest, part of this material goes directly to the dye works and print works, while there is recorded here only such as is the subject of further manufacture before being offered for sale. As much of the material is made up in the dye and print works into other compositions of matter before being used, a complete summary of the dyestuff manufacture of the country would embrace also the manufacture at this point of consumption, but such data are not at command.

In textile dyeing and printing, substances called mordants are largely used, either to fix or to develop the color on the fiber. Substances of mineral origin, such as salts of aluminum, chromium, iron, copper, antimony, and tin, principally, and many others to a less extent, and of organic origin, like acetic, oxalic, citric, tartaric, and lactic acid, sulphonated oils, and tannins are employed as mordants. In all technologies and treatises on dyeing and printing the mordants are regarded as of equal importance with the coloring matters, and from this standpoint they are properly included in a census of the dyestuffs industry; but in the larger scheme of the chemical industries, such as is now under consideration, the point of view will necessarily be different, and therefore when a substance like alum or copperas or tannic acid is a distinctively chemical substance and is applied to other uses than in dyeing or printing, it is classified in its proper category under acids, bases, or salts, but when a substance is a composition of matter and is used exclusively or principally as a mordant it is embodied under that heading in the table given above.

Iron liquor, known as black liquor or pyrolignite of iron, is made by dissolving scrap iron in pyroligneous acid. It is sold as a dirty olive-brown or black liquid, having a density of about 25 Tw . (1.12 sp . gr.) and consists mainly of ferrous acetate with some ferric acetate and tarry matters. It is used as a mordant in dyeing silks and cotton and in calico printing. It was manufactured by James Ward, at North Adams, Mass., in 1830.

Red liquor is a solution of aluminum acetate in acetic acid, and is produced by acting on calcium or lead acetate solutions with aluminum sulphate or the double alums, the supernatant liquid forming the red liquor. The red liquor of the trade is often the sulpho-acetate of alumina resulting when the quantity of calcium or lead acetate is insufficient to completely decompose the aluminum salt. Ordinarily the solutions have a darkbrown color and a strong pyroligneous odor. It is called red liquor because it was first used in dyeing reds. It is employed as a mordant by the cotton dyer and largely by the printer.

IMPORTS FOR CONSUMPTION DURING THE YEARS ENDING JUNE 30, 1891-1900.

Literature.

A Practical Handbook of Dyeing and Calico Printing, by William Crookes: London, 1874.
History of Anilin and Allied Coloring Matters, by W. H. Perkin: London, 1879.

Chemistry of the Coal-Tar Colors, by R. Benedikt: London, 1889. Chemistry of the Organic Dyestuffs, by R. Nietzki: London, 1892.

The Rise and Development of Organic Chemistry, by C. Schorlemmer: London, 1894.
Systematic Survey of the Organic Coloring Matters, by G. Schultz and P. Julius: London, 1894.

Handbook of Industrial Organic Chemistry, by S. P. Sadtler: Philadelphia, 1895.

Dyeing and Calico Printing, by Antonio Sansom, London, Vol. I, 1895; Vol. II, 1896; Vol. III, 1897.

Outlines of Industrial Organic Chemistry, by F. H. Thorp: New York, 1898.

Group XII.-Tanning Materials.

The making of leather is one of the older arts. From the best records attainable, according to Robert
H. Foerderer, ${ }^{1}$ it appears that the first tannery in this country was operated about the year 1630 in Virginia. A year or two later the first tannery in New England was established in the village of Swampscott, Lynn, Mass., by Francis Ingalls, and the vats used by him remained until 1825. With the establishment of the tanning industry necessarily came the gathering of the tanning materials from forest and field, and subsequently their preparation for use, but the first mention of this industry in census reports appears under the head of "sumac" in the report for 1850 , and from this time, except in 1880, separate returns for tanning materials have been made in each census report, though the methods of statement have been so varied as to make comparison, except in certain items, almost impossible. Thus in 1850,1860 , and 1870 there are the classifications "sumac," "sumac bark and prepared sumac," and "ground sumac;" in 1860 and 1870 also, "ground

[^47]bark;" in 1870, also "hemlock-bark extract;" in 1890, "dyeing and tanning extract," and "chipped wood and other products of this group."

In this report for the census of 1900 there are included, under "tanning materials," the ground, chipped, and other comminuted materials, and the extracts obtained from oak bark and wood, hemlock, sumac, and palmetto root, together with the chrome solutions that are employed in tanning. Under this classification, and taking into account establishments not in the chemical classification of the census, but which produce tanning materials in addition to other products, like drugs or leather, 39 establishments were reported, employing $\$ 2,107,040$ of capital and 700 wage-earners, and producing $\$ 1,899,220$ of product. They were distributed as follows:

GEOGRAPHICAL DISTRIBUTION OF FACTORIES PRODUCING TANNING MATERIALS: 1900.

STATES.	Number of establishments	Capital.	Wageearners.	Value of product.	Per cent of total.
United States	39	82, 107, 040	700	\$1, 899, 220	100.00
Virginia	8	385, 904	271	479, 372	25.33
Pennsylvania.............	8	566, 869	103	357, 462	18. 82
New York.	4	341, 870	90	295, 356	15. 55
West Virginia	4	270, 192	90	232, 365	12.23
New Jersey . .	6	94, 762	27	181, 800	9.57
Massachusetts,Maryland, Florida, Tennessee, Kentucky, llinois, Michigun, and California.	9	447, 443	119	352, 865	18.50

There were 23 establishments employing $\$ 1,055,665$ of capital and 351 wage-earners in the manufacture of tanning materials from the oak. There were used of oak and chestnut oak 36,897 cords of bark, of a value of $\$ 265,557$, and 34,871 cords of wood, of a value of $\$ 92,252$, and there were produced of ground bark $29,948,237$ pounds, having a value of $\$ 186,381$, and of extract, $34,673,997$ pounds, having a value of $\$ 661,119$.
There were 10 establishments employing $\$ 586,681$ of capital and 156 wage-earners engaged in the manufacture of tanning materials from the hemlock. There were used of hemlock bark 43,566 cords, having a value of $\$ 210,930$, and there were produced $35,591,329$ pounds of extract, of a value of $\$ 572,882$, whereas in 1870 (the only previous record at command) 2 establishments were reported employing $\$ 85,000$ of capital and 37 wage-earners, and having a product valued at $\$ 185,300$.
There were reported 11 establishments employing $\$ 333,648$ of capital and 105 wage-earners engaged in the manufacture of tanning materials from sumac. There were used of sumac leaves 11,538 tons, having a value of $\$ 214,353$, and there were produced $9,528,800$ pounds of ground sumac, valued at $\$ 11+, 660$, and $8,102,742$ pounds of sumac extract, valued at $\$ 215,677$. This output is compared with data accessible in previons census reports in the following table:

PRODUCTION OF SUMAC, BY DECADES: 1850, 1860, 1870, AND 1900.

YEAR	Number of estab-Jishments.	Capital.	Wageearners.	Value of product.
1850.	9	\$15,550	25	\$36,731
1860.	4	11, 700	12	16,850
1870.	19	167, 450	85	267, 180
1900.	11	333, 648	105	330, 337

There was produced of chrome tannage solution, as reported, $1,837,134$ pounds, of a value of $\$ 52,516$, but it is probable that much of this material produced and consumed in tanneries is not accounted for. Besides these materials there was a quantity of tannic acid from nutgalls and other sources reported, but this is more properly classified and treated of under acids.
The sources of tannin in nature are very numerous. Bernadin, in his book, ${ }^{1}$ treats of 350 different vegetable sources. Mineral salts have also been employed as tanning agents, while more recently still the electric current and organic compounds, such as formaldehyde, have been employed to couvert hides or skins into leather. The tannin which exists in or is produced from vegetation varies with the genus and the species, and even, it is believed, with the part of the plant from which it is obtained. Trimble ${ }^{2}$ classifies the tannins as follows: Group a, gallo-tannic acid; chestnut-wood tannin; chestnut-bark tannin; pomegranate-bark tannin; sumac tannin. Group b, oak-bark tannin; mangrove tannin; canaigre tannin; rhatany tannin; kino tannin; cetechu tannin; tormentil tannin. According to the prevailing views, tannin is a glucoside and the tannic acid obtained from it is digallic acid. Gallnuts are the richest in tannin contents of any vegetable source, amounting to upward of 50 per cent, but the sources of tanning materials reported as used in tanning in the United States are oak and hemlock barks, oak wood, sumac leaves, and palmetto root.

Oak and Hemlock.-The bark and the wood are chipped fine and sold in this form for making the tan liquor, or they are treated to extract the tannin and other principles, and this extract is put upon the market. For maki, g leather it has been found essential that the aqueous extract shall contain sugars, gums, resins, and coloring matters as well as tannin, since the above-mentioned substances play an important part in the conversion of the hides into leather. According to Hough, ${ }^{3}$ the yield of bark is 3 cords per acre, and 4 to 6 trees yield a cord of bark.
Sumac.-The sumac stands next in importance to the hemlock as a source of tanning material in the United States. It is obtained from several species of the Rhus, but chiefly from the R. glabra and R. tyhina.

[^48]The sumac best suited for tanning and dyeing purposes grows wild in a belt of country extending from Maryland down through the Atlantic states to Georgia, Alabama, Mississippi, Louisiana, and Texas, and in portions of Kentucky and Tennessee. The northern climate appears too cool for developing the tanning properties of this plant to the best advantage, although in the past large quantities of the leaves gathered in Pennsylvania and New York have been sold to tanners of goatskins, who put them in vats to strengthen and keep the sewed skins from leaking, and they have been used by many tanners to brighten the color of their leather.

According to Hough, ${ }^{1}$ in 1877 the state of Virginia led in the production of sumac, and the business of collecting, grinding, and packing was carried on at Richmond, Fredericksburg, Alexandria, Culpeper, Winchester, and perhaps other places. According to Bernadin, ${ }^{2}$ in $1880,6,000$ tons of American sumac were annually brought into the market, principally from Alabama, Tennessee, Kentucky, and, above all, Virginia. Sumac leaves contain 24 per cent of tannin, but a sample of Rhus glabra from Georgetown, D. C., went as high as 26.10 per cent in tannin contents.

The season for picking sumac begins about the first of July and ends the last of September, or with the first frost, for when the leaves turn red in the autumn they are no longer of value. The tanning properties of the sumac reside in the leaves, and only these sbould be gathered. The differences existing in various samples of sumac is found often to be due to the care with which the leaves were gathered and dried. The blossoms and berries, as well as the stems, should be thrown out and the leaves should be dried in the shade. When cured, the sumac is ground in mills under heavy wooden wheels, revolving in circles, at the ends of axles attached borizontally to a vertical shaft. These grinding wheels are inclosed in a tight covering to prevent the escape of the dust, which arises quite abundantly. John G. Hurkamp began grinding sumac at Fredericksburg, Va., in 1847.

Palmetto Root.-The palmetto root is a source of tannin which has attracted attention in recent years in the South. It is found abundantly in Florida, and grows in Alabama, Louisiana, and Tennessee. It shows 10 per cent of tannin and the root can be cut up like bark. The tannin from this source produces tough grain and strong, durable leather. It tans rapidly, giving a pleasing light color, toughness, and pliability, and is a good filler of leather. There was but one factory reporting palmetto extract at the census of 1900 . The extract is put up in barrels containing 52 gallons, and a gallon weighs about $10 \frac{1}{2}$ pounds.

Tanning Extracts."-"The use of extracts in tanning has grown to large proportions during the past

[^49]fifteen years. There are many advantages in the use of such extracts. The liquids are always under perfect control; that is, by putting in so much extract the quantity of tanning material is known. It does away with the storing of large quantities of bark, as 1 barrel of extract is equivalent to about 1 cord of bark128 cord feet. Where space costs money, this is quite an item, and it also saves interest and insurance on the bark.
"'There is no difference in the fiber produced by bark liquors and pure tanning extracts, as properly prepared extract is nothing more than concentrated liquor. Tanning extracts in common use in the United States are made from chestnut oak bark, chestnut oak wood, chestnut wood, hemlock bark, quercitron bark, canaigre, and sumac. Blacik oak bark extract is used to give a bloom to leather, and coloring or dyeing extracts are made from logwood, fustic, and from a large number of other materials.
"The chestnut tree, after it is felled is peeled of the bark, which is objectionable on account of the coloring matter which it contains. The chestnut oak tree is used as it comes from the stump. The chestnut tree and the chestnut oak tree are cut into suitable lengths, say about 4 feet long, in the forest. These pieces are then carried to the factory, where they are further reduced by "chipping' by a machine built especially for the purpose. This machine is a cast-steel disk 4 feet in diameter, revolving rapidly, and carrying a suitable arrangement of knives, which cut the wood into small chips. These chips are carried to the leaches and leached or extracted as is usual in tanneries. No chemicals should be used in the leaches. The liquor is then run into settling tanks, and next passed through 10 wire-cloth strainers of the finest meshes to clarify it, after which the liquor goes to the vacuum pan and is concentrated under diminished pressure at a temperature of between 120° and $140^{\circ} \mathrm{F}$.
"The above-described method of settling and straining is the one in common use in the United States, and it produces a liquor which is pure and transparent enough to be made into an extract suitable for tanneries.
"When the degree of heat has been carried too high in the leaches, such liquor can only be clarified sufficiently by first lowering the temperature below the coagulating point of blood and adding blood; second, raising the temperature of the liquor sufficiently high to coagulate the blood, which gathers up the fine suspended matter and settles to the bottom of the vat or tank, and is then still further strained. It is then concentrated as usual.
"Extract, however, made from a liquor which has been produced at too high a degree of heat, although clarified by blood albumen, will not produce a satisfactory article; that is, such an extract is not, strictly speaking, a concentrated liquor.

[^50]"Theextract maker, it is true, obtains a larger yield or number of pounds of finished extract from his material, but it is at the expense of the tanner. The excessive degree of heat in the leaches extracts not only nontanning substances, which are objectionable, but destroys also certain bodies which act favorably in the production of leather.
"In the concentration of the liquor in the vacuum pan, extreme caution must be observed as to the degree of heat. A temperature of over $140^{\circ} \mathrm{F}$. or thereabouts produces a change in the tanning substances and in its allied nontanning substances which is very objectionable, and which produces an undesirable leather, not only in color but in quality. In other words, a liquor, although carefully made, when subjected in the pan to a degree of heat in excess of $140^{\circ} \mathrm{F}$., or thereabouts, yields an extract which, when diluted with water, is not what it was before concentration It is on this account that the multiple vacuum pans-that is, more than one pan-can not successfully be used in the concentration of liquors or the making of extracts.
"In the use of extracts the tanner should always be on the lookout for only the pure article, free from adulterations of any kind. Extract is now being extensively used for sole, upper, belting, harness, union, enameled, and patent leather, and in nearly all the cases which have fallen under our observation giving good results in both tannage and weight.
"There are various methods followed in the preparation of hemlock extract, but that used by a prominent extract company in Pennsylvania is a good one. The bark is ground in the old-fashioned mill and is very carefully leached in the old-fashioned way and boiled down in the vacuum pan under the least degree of heat that can be employed. No chemicals whatever are used. They do not press or crush their bark to get from it a larger yield, but are doing their best to give a pure article which will produce a pure, strong, oldfashioned liquor. They take a good, fresh 10° barkometer liquor and boil it down to $27 \frac{1}{2}^{\circ}$ Baumé in vacuum. There is no other description than this, for this is all they do.
"The manufacture of tanning extracts now closely resembles the process for extracting sugar; the sliced wood is exhausted by diffusion in autoclaves under slight pressure, and the liquor is filter-pressed and evaporated in some cases in triple-effect apparatus which differs from those used at the sugar works merely in being constructed entirely of copper and bronze, to the exclusion of iron, and in being worked at a higher vacuum than sugar pans are. Most manufacturers decolorize the liquor before concentration, either br the addition of some metallic salt or with albumen and bisulphite of soda. In the former case the acid of the salt remains in the extract, and in the latter, sulphate of soda and noncoagulable albuminoids are retained, whilst in both cases tannin is necessarily precipitated. The presence of salts in tanning extracts
is much to be deprecated, since they accumulate in the \tan pits to the detriment of the leather.
"Roy has shown that the so-called decolorizing processes are beneficial to the extract, not because they eliminate coloring matters, for they do this in a very minor degree, the color of the liquor after treatment being but slightly diminished if estimated on the basis of equality of tannin content, but because they precipitate together with the first portions of tannin, certain earthy and metallic bases, such as lime, maguesia, manganese, iron, and copper, derived from the wood and from the apparatus. It is these foreign matters combined with tannin, which are taken up, by the leather, imparting bad color and harsh and brittle grain. By substituting an aqueous solution of potassium ferrocyanide for the precipitate previously used, Roy has succeeded in removing these metallic compounds without appreciably decolorizing the extract, and finds that the leather produced by the treated extract is in every way comparable with that prepared with oak-bark liquor made in the tanyard.
"It follows that tanning extracts must be examined for salts of the alkalies and the alkaline earths and for metallic compounds, and valued in accordance with their content of these, as well as with their content of tannin."

John H. Heald \& Co. began the manufacture of hem-lock-bark extracts at Baltimore, Md., in 1860; at Elmira, N. Y., in 1862; and at Lynchburg, Va., in 1869.

Chrome Solution.-As far back as 1856 the system of tanning, or tawing, by the use of chromium compounds was discovered by a German chemist, ${ }^{1}$ but all the early experiments failed because the tannage could not be made permanent. A remedy was finally found in the subsequent use of hyposulphite of soda by which the tannage was made lasting. The discovery of the remedy and its successful application were made in Philadelphia, and the use of hyposulphite of soda for this purpose is covered by United States letters patent of June 28, 1888, granted to William Zahn. According to Foerderer ${ }^{2}$ the consequence of this invention was the creation in Philadelphia of what is to-day the largest and best equipped leather factory in the world. In carrying out the process, the skin is first dipped in a solution of a chromium salt, such as potassium dichromate, acidified with hydrochloric acid, and subsequently in a solution of sodium thiosulphate or a bisulphite acidified with hydrochloric or sulphuric acid. It appears that for 100 pounds of skins 4 to 5 pounds of potassium dichromate, 2.5 to 4.5 pounds of hydrochloric acid, 8 to 10 pounds of sodium "hyposulphite," and 0 to 1.5 pounds of sulphuric acid are consumed. Of course any equivalent chromium salt may be used, and latterly the use of other metallic radicals as coagulants has been tried.
Considering leather as a chemical product (and it is always treated as such in the full chemical technologies) a notable example of the application of electricity is found in its use in the tanning of hides and skins to con-

[^51]vert them into leather. There have been many such electric processes invented, some employing tannin solutions, but most of them referring to the use of mineral tannage, with chromium, aluminum, tin, and other metallic salts, on light skins, such as calf, goat, and sheep. One of these electric processes, "the Groth system of rapid tannage by electricity," has, according to Davis, " "so far been demonstrated in the United States at Kansas City, Mo., where good results are claimed for it." Further on, in discussing electric and other rapid tannage systems, Davis ${ }^{2}$ says:

The bark methods of tanning are passing away with great rapidity, extracts and chrome are taking their place, and in the larger establishments the chemist has become an invaluable part of the personnel of the tannery, and he is kept busy making investigations and suggestions.

The foreign commerce in tanning materials is set forth in the following tables, compiled from the publications of the Bureau of Statistics of the United States Treasury Department.

[^52]DOMESTIC EXPORTS OF BARK AND EXTRACTS FOR TANNING DURING THE YEARS ENDING JUNE 30, 1891 TO 1900.

YEAR.	Value.	YEAR.	Value.
1891	\$241, 382	1896..	\$354, 007
1892	239,708	1897.	241,979
1898	232, 269	1898	329, 994
1894	271,236	1899	369,698
1895	290,362	1900	376, 742

miterature.

Report upon Forestry, by Franklin B. Hough: Washington, Government Printing Office, 1878.
Classification de 350 matieres tannantes, by M. Bernadin: Paris, 1880.

The Tannins, by Henry Trimble, Philadelphia, Vol. I, 1892; Vol. II, 1894.
One Hundred Years of American Commerce; Hides and Leather, by Robert H. Foerderer, Vol. II, pages 494-497: New York, 1895.
The Manufacture of Leather, by Charles Thomas Davis: Philadelphia, 1897.
Organic Chemistry, V. Von Richter, Philadelphia, Vol. I, 1899; Vol. II, 1900.

Group XIII.-Paints (Including Varnishes, and Bone, Ivory, and Lamp black).

Although paints (including pigments), varnishes, and bone, ivory, and lampblack have been separately tabulated, a large proportion of the establishments of the first two classes make both classes of products, and the product of the last class belongs entirely to pigments; hence it is advisable to consider them together in this special treatment.
The following table gives a summary of the principal totals of the three tabulations, with a final column giving the value of that portion of the products which really belongs to this group, the remainder belonging to other groups and being there considered. To the total of this colunn is added the value of the paint and varnish products from other groups, Class B, and also from other categories, Class C, so far as known, the values of these last being of course reported elsewhere under their respective classes, although usually not separately.

The importance of considering, in this connection, the products of Class C is shown by the following list of their kinds, quantities, and values:

krnd.	Quantity.	Value.
White lead, dry, pounds.	6,968,000	\$289, 897
Oxides of lead, pounds	11,626,033	312,403
Oxide of zinc, pounds.	60, 235, 154	2,212,787
Dry colors, pounds	1,394, 595	55,450
Paints in oil, in paste, pounds.	2,594,824	255, 566
Paints, ready mixed, gallons	${ }^{1} 479,998$	268,756
Total		3,394,859

${ }^{1}$ Quantities not always given; in such cases, calculated from the average value of product.

There were 23 establishments of Class A and 2 establishments of Class C reported as making white lead and oxides of lead. Including the figures of Class C, the total quantity of white lead reported as having been sold dry was $123,070,316$ pounds, valued at $\$ 4,501,078$, in addition to which $131,621,628$ pounds were reported as having been consumed in the manufacture of other paint products, making a total of $254,691,944$ pounds. The total quantity of oxides of lead reported as sold as such is $62,385,656$ pounds, valued at $\$ 2,862,743$, in addi. tion to which $2,080,374$ pounds were reported as being consumed, making a total of $64,466,030$ pounds. The entire paint and varnish products, sold as such, from all sources are as follows:

KıND.	Quantity.	Value.
White lead, pounds	123, 070, 316	\$4,501, 078
Oxides of lead, pounds	62,385, 656	2, 862,743
Oxide of zinc, pounds	60,235, 154	2, 212,787
Lamp black, pounds	7,519,345	420,037
Fine colors, pounds.	4, 080, 902	1,028,754
lron oxides and other earth col	33,772,256	324, 902
Dry colors, pounds.	169, 128, 836	4,483,478
Pulp colors, sold moist, pounds	20,060, 935	861,531
Paints in oil, in paste, pounds	310,072, 689	17, 858,693
Paints, ready mixed, gallons	17,380, 348	15, 139, 431
Varnishes- Oil and turpentine, gallons	14,286,758	14, 337, 461
Alcohol, gallons...	-563,212	943,069
Pyroxylin, gailons	204, 069	237,012
Liquid dryers, cte., gallons	6,564,370	3,085,254
Putty, pounds....	17, 287, 323	238,427
All other products.		2, 778,725
Total		71, 313, 392

While it is not possible to give an equally complete list of materials, since the reports frequently give merely an aggregate of "all other materials" or report
only one or two constituents separately, the following list may be of interest:

KIND.	Quantity.	Value.
Gums, pounds.	36,533,632	\$3, 470,695
Alcohol, grain, gallons.	78, 309	175,907
Alcohol, wood, gallons	310,059	285,510
Dry colors, pounds ${ }^{1}$		7,002,913
White lead, pounds	39, 689, 235	1,970,614
Whiting, pounds	10,690,441	55, 157
Linseed oil, gallons.	16, 157, 117	7, 495, 196
Turpentine, gallons	6,519, 408	2,965, 051
Benzine, gallons	10,081, 945	1,045, 488
Total		24,466,531

${ }^{1}$ Dry colors includes ainc oxide, barytes, earth colors, and other dry paint materials not otherwise specified.
The growth of this industry as shown by previous census reports is as follows, the same chemicals being included for each census as far as comparable, although the Census Report for 1850 has some remarkable figures. This report gives 51 establishments making white lead with 1,508 employes, combined capital of $\$ 3,124,800$, and a total product valued at $\$ 5,242,213$, while only 4 paint works and 3 varnish works are rcported, with a total force of 26 employees, capital $\$ 14,550$, and product valued at $\$ 92,375$. These figures seem to be erroneous, unless the "white-lead works" were really paint works, although each may have corroded lead for its own use, but this too is doubtful. This view seems to be borne out by the figures of the next census, that of 1860 , which gives white lead 36 establishments with 994 employees, capital $\$ 2,453,147$, product $\$ 5,380,347$; paints 50 establishments; varnish 48; total employees 991 ; and capital $\$ 3,711,450$; product $\$ 286,675$. Included in paints for 1860 is an establishment reported as making zinc paints, with a capital of $\$ 1,000,000$, employing 100 people, the product being valued at $\$ 250,000$. Also 4 establishments making zinc oxide, with a combined capital of $\$ 1,228,000$, employing 141 people, the total product amounting to only $\$ 226,860$. These remarkable cases show that even at that early date overcapitalization was not unknown, at least in the zinc industry, unless, as is probable, the entire capitalization of the New Jersey zinc-mining companies, which were then the sole producers, was entered as being employed iu the manufacture of this by-product.

PAINT AND VARNISH: 1850 TO 1900.

YEAR.	Number of establish ments.	Capital.	Wageearners.	Value of products.
1850.	68	\$3, 217,100	1,579	85, 466, 052
1860.	164	7, 402, 697	2,216	11, 107, 342
1870.	224	13, 949,740	8,504	22,512, 860
1880.	325	17, 333, 392	5,056	29, 111, 941
1900.	${ }_{615}^{522}$	$45,318,146$ $60,834,921$	10,588 13,518	54, $67,376,641$

In order to make the figures for 1900 fairly comparable with those of the preceding censuses, only the establishments of Class A are taken into account, the capital, value of products, and total number of employees, office force as well as factory workers, being given. The table at the beginning of this special group report gives the true statistical position of this industry, but so far as can be learned no attempt was made in any former census to separate the products there given under Classes B and C.

The paint and varnish industry in this country had its beginning in the early part of the last century. In 1804 Samuel Wetherill \& Son began the manufacture of white lead in Philadelphia, followed in 1806 by Mr. John Harrison, the founder of the present firm of Harrison Brothers \& Co., of Philadelphia. At that time all of the white lead used in this country was imported, but was greatly adulterated and very high priced. A letter from Mr. W. H. Wetherill, of Wetherill \& Brother, the successors of Samuel Wetherill \& Son, states that the American manufacture of white lead was much opposed by the agents of the foreign manufacturers and that the factory started in 1804 was shortly after destroyed by fire and that "evidence was not wanting" that this was done "by an incendiary sent to this country for this purpose." In 1808 operations were again started against heavy foreign competition, which lasted until the War of 1812 which enabled the domestic manufacturers to get a solid footing. From that time the business rapidly increased.

According to an article by W. P. Thompson in One Hundred Years of American Commerce, 1895, page 436, by 1830 there were 12 establishments in the country, of which 8 were east of the Alleghenies. This author gives the white-lead production of the country by decades as follows:

WHITE-LEAD PRODUCTION: 1810. TO 1890.

YEAR.	Tons.	YEAz.	Toms.
1810	369	1860	15,000
1820		1870	35,000
1830	3,000	1880	50,000
1840	5,000	1887	65,000 75,000
1850	9,000	1890	75,000

The manufacture of oxides of lead appears to have begun at about the same time as that of white lead, since by 1812 there were at least three establishments in Philadelphia. Both processes were very simple, litharge and red lead being made from the metal by regulated heating in a reverberatory furnace, while the white lead was made by the so-called Dutch process, which is still the favorite, the product being considered to be superior in quality to that made by any other process. While, as in everything else, skill is required to make a good grade of product in an economical manner, the process itself is so simple that the large number of white lead works reported for the census of 1850 may be explained by the development of the lead regions of Missouri and Illinois during the forties, as furnishing cheaper material, together with the idea, then probably prevalent, that anyone could make it, since it appeared to require only pots, lead, a little vinegar, and some spent tan bark.
The mixing of paints for sale naturally preceded the making of white lead, but there is no information available as to the beginning of such work. The first varnish factory, according to an article by D. F. Tiemann, ${ }^{1}$ was founded by P. B. Smith, in New York in 1828, another early manufacturer being Christian Schrack, of Philadelphia, who began business as a maker of paints in 1816. The quality of the American varnishes proved so satisfactory that as early as in 1836 an export trade began. In 1857 D. F. Tiemann \& Co. began making carmine from cochineal, and in 1860 solnble laundry blue and quicksilver vermilion, these products not having previously been made here. At present, American paint and varnish products enjoy a large and increasing foreign demand, and although the census returns for 1900 show that the great increase in the cost of materials during the census year has decreased profits, still the general condition seems to be a satisfactory one.

The foreign commerce in paints and varnishes for the United States is exhibited in the following tables, compiled from "The Foreign Commerce and Navigatiou of the United States," for the years ending June 30, 18911900.
${ }^{1}$ One Hundred Years of American Commerce, 1895, Vol. II, page 621.
PAINTS, PIGMENTS, AND COLORS: IMPORTS AND DOMEstic exports, FOR THE YEARS ENDING JUNE 30 , 1891-1900.

YEAR.	1mports, value.	Exports, ${ }^{1}$ value.	YEAR.	lmports, value.	Exports, ${ }^{1}$ value.
1891	\$1, 439,127	\$690,698	1896.	\$1, 309, 041	\$880, 841
1892.	1,372,052	709, 857	1897.	1, 387,353	944, 536
1893.	1,466,761	700, 308	1898.	1,065,088	689,797
1894	. 980,715	825, 987	1899	1,207,440	938,736
1895.	1,246, 924	729, 706	1900.	1,535, 461	1,213,512

VARNISHES, SPIRITS, AND ALL OTHER, IMPORTS AND DOMESTIC EXPORTS FOR THE YEARS ENDING JUNE 30, 1891-1900.

YEAR.	IMPORTS.		EXPORTS.	
	Gallons.	Value.	Gallons.	Value.
1891	35,073	\$97,298	153,365	\$203, 285
1892	38,737	101, 692	215, 266	293, 059
1893	41, 216	111, 675	210, 067	258,400
1894	20, 337	54,746	226, 760	282, 278
1895	39,095	106,927	256,890	303, 959
1896	40,644	105, 551	335,979	362, 975
1897	62, 665	159,024	409,569	431,761
1898	32, 848	79, 702	398,841	422,693
1899	33, 227	79, 461	436,817	463, 547
1900	43,743	103,985	588,545	620,104

Group XIV.-Explosives.

This industry, which, as measured by the value of the output, is the fifth in importance among the industries classified under chemical products, has shown a most promising growth during the last decade, as presented by the returns of the Census of 1900 , for 97 regular establishments in 21 different states were engaged in the production of explosives. These establishments employed $\$ 19,465,846$ of capital and 4,502 wage-earners, and produced $215,590,719$ pounds, having a value of $\$ 16,950,976$. They were distributed as follows:
geographical distribution of explosives facTORIES: 1900.

states.	$\begin{gathered} \text { Number } \\ \text { of estar- } \\ \text { lishments. } \end{gathered}$	Value of products.	${ }_{\text {Per er ent }}^{\text {of total. }}$
United States	97	816,950,976	100.0
Maine, Massachusetts, Connecticut, and Vermont. New York, New Jersey, Pennsylvania, Dela- ware, Virginia, and West Virginia......... Alabama, Tennessee, Missouri, and Kansas. Iowa, Indiana, ,llinois, Ohio, Michigan, and California...	$\begin{array}{r}54 \\ 56 \\ 6 \\ \hline 25 \\ \hline\end{array}$	654, 862 $6,846,212$ $1,447,100$ $3,728,249$ $4,274,553$	

These factories were most numerous in the sections where mining or engineering operations were carried on most extensively. Though Pennsylvania had 36 factories and the largest output was in the Middle Atlantic states, yet California alone manufactured over one-fourth of the entire annual output, and was much the largest producer in the United States. In addition to these establishments 5 were reported idle, 1 in operation with less than $\$ 500$ in value of products, and 2 belonging to the United States Government that were in active operation during the census year, making 80,000 pounds of explosives, having a value of $\$ 60,506$.
The growth of this industry may be shown by a comparison of the returns at the various censuses for which reports have been recorded. In compiling this data it was observed that the different methods of collecting and reporting the statistics would not permit of a comparison in every detail, yet so far as it can be made it is very instructive. It was also borne in mind that while
up to 1860 the data of the explosives industry were for gunpowder alone, in that year blasting powder was included, in 1870 nitroglycerine, in 1880 dynamite, in 1900 smokeless powder, and for several of these decades, variable small amounts of guncotton, fulminate of mercury, and perhaps other explosives. The returns for seven decades are as follows:

TOTAL PRODUCTION AND VALUE OF EXPLOSIVES, BY DECADES: 1840 TO 1900.

${ }^{1}$ This value is for the explosive substances only. When materials of all kinds produced in these establishments are included the value is $\$ 17,125,418$.

A better idea of the industry may be had by the discussion of each of the products so far as the statistics will permit. This is done for gunpowder (blasting powder being included in this term) in the following table:

PRODUCTION AND VALUE OF GUNPOWDER, BY DECADES: 1840 TO 1900.

Year.	Number of establishments.	Capital.	Average number of wage-earners.	PRODUCT.	
				Pounds.	Value.
1840.	137	\$875, 875	496	8,977,348	
1850	54	1,179, 223	579		\$1,590, 332
1860.	58	2,305,700	747		3, 223,090
1870.	33	4, 060, 400	939		4,011, 839
1880.	33	4,983,560	1,011		3, 348,941
1890.	37 47	9, 60909775	1,622	95,019, 174	6,740,099
1900.	47	8,297,773	1,708	123, 314, 109	5,310,351

Gunpowder.-Although since the Eleventh Census smokeless powder has come to be used for military and sporting purposes, 1 pound, speaking roughly, replacing 3 pounds of black gunpowder, yet the amount of black gunpowder produced and consumed is still large, and it bids fair to be so for some years to come. This is due to several causes, among which are the following: First, because in ordnance it is necessary to use a priming charge of black gunpowder with which to fire the smokeless powder. Second, because smokeless powder can not be efficiently substituted for black gunpowder in the older forms of small arms that are widely scattered over the country. Third, because black powder is most suitable for use in fuses and in pyrotechnics. Fourth, because smokeless powder is too expensive, and in no way superior to black gunpowder for saluting purposes. From the returns it is found that in the census year there were 10 establishments in 9 different states making black gunpowder, and that they employed $\$ 3,397,288$ of capital, and 556
wage-earners, and produced $25,638,804$ pounds of powder, having a value of $\$ 1,452,377$. In making this there were consumed 8,614 tons of potassium nitrate (India saltpeter), 174,810 bushels of charcoal, and 1,282 tons of refined sulphur. About 6,800 tons of the potassium nitrate were made by conversion of sodium nitrate with potassium chloride, consuming 5,700 tons of sodium nitrate (Chile saltpeter). The wood employed for the making of the charcoal was willow, alder, or dogwood, and the yield of charcoal was about 25 per cent by weight of the air-dried wood.

While the composition of gunpowder may vary somewhat, the formula usually followed for black gunpowder is 75 per cent of potassium nitrate, 15 per cent of black charcoal, and 10 per cent of sulphur. In recent years brown prismatic powder has been used in heavy ordnance of the general composition of 78 per cent of potassium nitrate, 20 per cent of charcoal, and 3 per cent of sulphur, in which the "charcoal" was underburned charcoal from peat or rye straw, or in which carbohydrates were used, but such gunpowder has been almost, if not completely, displaced.

The manufacture of gunpowder is a very old one, this material having been used as a propellant in cannon at the battle of Crecy in 1346. It was manufactured in the United States prior to and during the Revolutionary War by means of stamp mills which consisted of mortars and pestles of wood and bronze by which -the ingredients were pulverized and mixed, the damp material being grained by rubbing through sieves. This method produced not only a very coarsely made and irregularly acting powder but it was very dangerous, as, for instance, according to Chaptal, in France about one-sixth of the total stamps at work blew up annually. In 1787, Cossigny introduced at the Isle de France the practice of pulverizing and mixing the ingredients in wheel mills. In 1791, Carny devised the method of pulverizing in drums, wheel mills being used for incorporating the mass. During the latter part of the Eighteenth century the manufacture of gunpowder was brought to a high degree of perfection in France by the eminent chemist Lavoisier, who had supervision of the Government powder works.

The modern methods of manufacture in the United States began with the founding of the works at Wilmington; Del., in 1802, by Eleuthére Irenée du Pont de Nemours, who had learned powder making from Lavoisier, and who obtained from France the most approved machinery; and these works, constantly growing, have been in regular operation up to the present time, and the methods and kinds of machinery employed have been introduced into the mills subsequently erected elsewhere in this country.

The more recent improvements have been in the introduction of retorts for burning the charcoal, the manufacture of the saltpeter by conversion, and the devising of various forms of press mills. The method
of manufacturing potassium nitrate from sodium nitrate by metathesis with potassium chloride was suggested by Longchamps, Anthon, and Kuhlmann in 1859, and was adopted at the Dupont works about 1868. With the large deposits of sodium nitrate available in Chile and potassium chloride accessible at Stassfurt, in Germany, this artificial source for saltpeter successfully competed with the native sources in India, where the supply is limited. This method of manufacture of potassium nitrate has also so reduced the cost of the article as to remove all temptation to continue the vicious system of niter plantations, which robbed the soil of one of its most valuable plant foods.

Blasting powder.-This industry, which is a development of the last century, was pursued during the last census year in 37 different establishments, located in 13 different states, the state of Pennsylvania alone having 19 separate works. There was employed $\$ 4,900,485$ of capital, and 1,153 wage-earners, and the product amounted to $97,744,237$ pounds of powder, having a value of $\$ 3,880,910$. In the manufacture of this powder there were consumed 38,000 tons of sodium nitrate (Chile saltpeter), 746,000 bushels of charcoal, and 5,100 tons of sulphur.

Between 1802 and 1840 two large gunpowder factories, as well as a few smaller ones, were established in the United States. The active construction of canals and the exploitation of mines caused a considerable and growing demand for gunpowder for use in blasting, which eventually became so marked that to meet it the powder makers placed a " blasting powder" upon the market, which contained the same ingredients as black gunpowder except that they were not so carefully purified and the powder was less carefully made. In 1856 the material now commonly known as blasting powder was made, and it differs from the older blasting powder chiefly in the fact that the expensive potassium nitrate (India saltpeter) of the latter is replaced by the cheap sodium nitrate (Chile saltpeter). For some years prior to the above date, the idea of using sodium nitrate had obtained, but the fact that it was a deliquescent substance had proved an obstacle; yet the difficulties which were supposed to be insurmountable were overcome, and in 1856 its manufacture was begun on a large scale by the leading powder makers. A patent for a gunpowder containing sodium nitrate was granted to L. Dupont in 1857, and upon this an enormous industry, not only in the United States but throughout the world, has been built, and through it an additional impetus has been given to engineering and mining operations. Furthermore, this increased consumption of Chile saltpeter led to an increased development of the enormous deposits of this salt in the desert of Tarapaca, which so cheapened the nitrate as to benefit and stimulate the nitric acid, fertilizer, and many other industries in which this material is used.

The proportions of the ingredients in blasting pow-
der may vary widely. Thus the census returns for 1900 showed gunpowders composed of 67.3 per cent of sodium nitrate, 22.9 per cent of carbon, and 9.4 per cent of sulphur, up to powder composed of 77.1 per cent of sodium nitrate, 8.6 per cent of carbon, and 14.3 per cent of sulphur. Guttman, in his "Manufacture of Explosives," gives a powder consisting of 60.19 per cent of sodium nitrate, 21.36 per cent of charcoal, and 18.45 per cent of sulphur. From a large number of returns we find the average composition to be 74 per cent of sodium nitrate, 16 per cent of charcoal, and 10 per cent of sulphur.
Blasting powder is usually put upon the market in corrugated iron kegs, holding 25 pounds each.
Nitroglycerin.-Nitroglycerin appeared for the first time among the chemical products of the United States in the census returns for 1870 , but in 1890 it disappeared under the legend "high explosives," which term usually includes dynamite, gun cotton, nitrosubstitution explosives, and fulminates. While the larger part of the nitroglycerin made is subsequently consumed in the manufacture of dynamite, blasting gelatine, and smokeless powder, there is still a quantity made and sold as such. For the census year 1900 there were 22 establishments located in 6 different states, employing $\$ 293,881$ of capital and 105 wage-earners. The product amounted to $3,618,692$ pounds and had a value of $\$ 783,299$. There were consumed in its manufacture $1,897,448$ pounds of glycerin and $12,134,869$ pounds of mixed acids.

In addition to the nitroglycerin produced and sold as such, $31,661,806$ pounds were made and consumed, and there were required to make it $15,043,483$ pounds of glycerine and $96,092,451$ pounds of mixed acids. The total production of nitroglycerin, therefore, for the census year was $35,482,947$ pounds, and there were used as materials $16,983,918$ pounds of glycerin and $108,227,320$ pounds of mixed acids. Although all but two of the factories purchased their sulphuric acid originally, many of them regained their spent acids and some of them manufactured their nitric acid. The quantity of acid reported as regained was $15,916,907$ pounds, and of nitric acid manufactured, $26,058,779$ pounds. There were consumed in the manufacture of this nitric acid 19,817 tons of nitrate of soda and $28,177,000$ pounds of 66° sulphuric acid, but much of the latter was regained acid.

The production of nitroglycerin for 1900 as compared with that reported in previous decades is set forth in the following table:
PRODUCTION OF NITROGLYCERIN FOR THREE DECADES, 1870, 1880, AND 1900.

year.	Number of estab-lishments.	Capital.	Average number of wage-earners.	Product.	
				Pounds.	Value.
1870.	3	\$39,500	34		\$225, 700
1880.	19	1,601,625	329	3,039,72L	1,830,417
1900.	22	293, 881	105	3,618,692	783,299

Nitroglycerin was discovered by Ascanio Sobrero in Turin, Italy, in 1847, and it is interesting to note that upwards of 7 ounces of the first nitroglycerin made by Sobrero are still kept at the Nobel dynamite factory at Avigliana, in Italy, and are tested every year. Itscommercial manufacture seems to have been begun by Alfred Nobel, in Sweden, in 1862, and in 1863 he received his first patent in this art for a mixture of ordinary gunpowder with nitroglycerin, he having at first employed gunpowder as a means of exploding the nitroglycerin. In 1863, however, he discovered that nitroglycerin could not only be exploded with certainty by means of a copper capsule containing mercuric fulminate (now known as a blasting cap or detonator), but that the power developed by the nitroglycerin was enormously greater than could be obtained from it by any other means, and this discovery marked an epoch, not only in the history of nitroglycerin, but in that of all high explosives, since it revealed the method of inducing explosion by detonation.

So near as can be ascertained, the manufacture of nitroglycerin in the United States began at the Giant Powder Company's works in California, in 1867, using Nobel's methods. In 1867 George M. Mowbray also began the manufacture, by independent methods, at North Adams, Mass. Mr. Dupont says: ${ }^{1}$
There are two engineering works which indicate very well the era of the introduction of high explosives in this country. In the year 1870 the Nesquehoning tunnel, near Wilkesbarre, was excavated in very hard rock by the use of black powder only. The . engineers in charge were unwilling to introduce the then new and untried explosive. The work was, however, completed in good form and very quickly, owing largely to the extensive use of compressed air drills. About the same time the Hoosac tunnel was completed, nitroglycerin alone being used in the work. This explosive was principally manufactured upon the ground, and was much used in the liquid state. This work was a greater one than the tunnel first mentioned, but the two serve to mark the transition period in the practical use of explosives. One of the greatest of modern engineering works, the Chicago drainage canal, is now (1895) being carried on largely by high explosives. It is an example of the magnitude of the work that is attempted with explosives.
Nitroglycerin is manufactured by mixing glycerin with a mixture of nitric acid and sulphuric acid. Each of the materials used is the most concentrated that can be made, and the demand for large quantities of nitric and sulphuric acids and glycerin of the highest grades which has been created by the high-explosives industry has had a marked effect on the development of the acid and glycerine industries. The acids are usually mixed in the proportion of 3 parts by weight of sulphuric acid to 2 parts by weight of nitric acid, and they should contain 61.9 per cent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 34.5 per cent of HNO_{3}, with not more than 0.7 per cent of $\mathrm{N}_{2} \mathrm{O}_{3}$. These previously mixed acids are sent out from the acid works in iron drums holding about 1,500 pounds, and this weight of mixed acids makes a convenient charge for one run in the nitroglycerin converter, from 210 to 230 pounds of glycerin being there mixed with it.

[^53]The reaction goes on between the glycerin and the nitric acid, the sulphuric acid present serving chiefly to take up and retain the water which is one of the products of the reaction. When the reaction is completed the materials are run into a tank, where they rest until, owing to their differences in specific gravity, the nitroglycerin and spent acids form into separate layers; then the nitroglycerin is run off into washing and purifying tanks, and the acids are run off to be reworked. The dilute nitric acid thus obtained is sometimes used in the manufacture of ammonium nitrate for use in dynamite dopes. The diluted sulphuric acid is sometimes used in the manufacture of nitric acid, but it is more often concentrated in iron pans, and, after being mixed with strong nitric acid, again used in making nitroglycerin. This spent acid averages in composition 72 per cent of sulphuric acid, 10 per cent of nitric acid, and 18 per cent of water. Theoretically, 100 parts by weight of glycerin should yield 246 parts of nitroglycerin, but in practice the yields are from 200 to 220 parts.

Nitroglycerin is used directly in torpedoes, which are cylinders holding 20 quarts each, for "shooting" oil wells. It also is used in medicine as a heart stimulant. The principal use of nitroglycerin is in making dynamite and blasting gelatin.

Gun Cotton or Pyroxylin.--By the returns for the census of 1900 there were 10 establishments in 3 different states engaged in the manufacture and sale of cellulose nitrates, for various uses and they employed $\$ 255,3 \pm 3$ of capital and 163 wage-earners. There were produced 922,799 pounds of the various cellulose nitrates, having a value of $\$ 486,773$, and there were consumed 691,115 pounds of cotton and $8,247,668$ pounds of mixed acids. Besides these there were produced and consumed in other establishments $2,739,834$ pounds of cellulose nitrates, making a total product for the year of $3,662,633$ pounds.

Gun cotton, or pyroxylin, is the name given to various cellulose nitrates which were discovered by Schönbein in 1846, and which result from the reaction between nitric acid and cellulose. There is a considerable number of cellulose nitrates; authorities differ as to their number. In fact, there is still doubt as to the real constitution of cellulose, and therefore nothing can be pronounced with certainty as to the constitution of the nitrates produced from it. However, it is generally accepted that the formula of cellulose is some multiple of $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$, and that the nitrates are produced by replacing one or more atoms of the hydrogen present by NO_{2}. It is also accepted, following Vieille, that, taking the formula as $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{20}$, there may be at least 8 different cellulose nitrates in which from 4 to 11 groups of NO_{2} have been introduced into the molecule. In the following table these different nitrates are so named as to indicate the number of NO_{2} groups present, and there is also shown the per cent of N present in each.

CElLDLOSE Nitrates.	Per cent of nitrogen.	Weignt obtained from 100 parts of cellulose.
Cellulose endecanitrate.	13.47	176.4
Cellulose decanitrate.	12. 75	169.4
Cellulose enneanitrate	11.96	162.5
Cellulose octonitrate	11.11	155.7
Cellulose heptanitrate	10.18	148.6
Cellulose hexanitrate.	9.15	141.7
Cellulose pentanitrate	8.02	134.7
Cellulose Letranitrate.	6.76	127.8

In addition to these nitrates containing different per cents of nitrogen, there are undoubtedly isomers of many of them. According to their difference in nitrogen contents, or in intermolecular arrangement, these nitrates exhibit different degrees of solubility toward organic solvents, and are in consequence put to different commercial uses. Thus the higher ones are, under ordinary conditions, insoluble in a mixture of 2 parts of strong ethyl ether and 1 part of strong ethyl alcohol, and such cellulose nitrate is called gun cotton. On the other hand, the lower nitrates are soluble in the mixed solvent named under these conditions, and these cellulose nitrates are called pyroxylin. It should be said that later researches tend to show that, according to the conditions under which they are nitrated or the conditions under which they are exposed to the solvent, the higher nitrations are acted upon by the ether-alcohol solvent.

Cellulose nitrates are prepared by immersing purified cotton in mixtures of nitric and sulphuric acid. In making gun cotton, the acid mixture consists of 1 part, by weight, of nitricacid of 1.5 specific gravity to 3 parts, by weight, of sulphuric acid of 1.845 specific gravity, and 1 pound of steam-dried cotton is immersed in and digested for twenty-four hours with 12 pounds of this acid mixture. The acid is then wrung out and the gun cotton is pulped, washed, and compressed into blocks for use. The spent acids which are thrown out in the wringing have been found to contain 79.91 per cent of $\mathrm{H}_{2} \mathrm{SO}_{4}, 9.52$ per cent of $\mathrm{HNO}_{3}, 1.04$ per cent of $\mathrm{N}_{2} \mathrm{O}_{4}$, and 9.65 per cent of water, and they are reworked to be used again. In making the lower cellulose nitrates weaker acids are used, the strength being determined by the use to which the nitrate is to be put. Examples of such acid mixtures are given under smokeless powder and under pyroxylin plastics.

Cellulose nitrates are used for many purposes in the arts. Finely pulped, compressed material, consisting principally of the highest nitration, is known as gun cotton and is used in military mines and torpedoes, and for destructive purposes generally in military operations. Owing to the discovery by E. O. Brown, of Woolwich, in 1868, that it can be detonated when wet, it is now stored and used while saturated with water. In 1847 or 1848 Doctor Maynard, of Boston, discovered that pyroxylin was soluble in ether-alcohol and that the liquid, called "collodion," could be used as a vehicle for medicine and as a substitute for sticking
plaster. In 1851 Frederick Scott Archer invented the process of coating photographic plates with collodion. In 1869 John W. Hyatt, Jr., and Isaiah S. Hyatt, of Albany, N. Y., invented the process for manufacturing "celluloid" from cellulose nitrate. Still later, Frederick Crane invented pyroxylin varnishes, and Chardennot invented a process for making artificial silk from pyroxylin. A large use for cellulose nitrates is in the manufacture of smokeless powder, explosive gelatine, and gelatine dynamite. By the use of pyroxylin solutions a form of artificial leather is obtained.

Dynamite.-This explosive first appears in the report of the census of 1880 , and then amounted in value to but one-third of that for the nitroglycerin produced. According to the census of 1900 , there were 31 different establishments, located in 8 different states, employing $\$ 7,551,121$ of capital, and 1,758 wage-earners engaged in the manufacture of dynamite. There were produced $85,846,455$ pounds, having a value of $\$ 8,247,223$, and there were consumed in making it, $31,661,806$ pounds of nitroglycerin, 20,090 tons of sodium nitrate, $9,934,360$ pounds of wood pulp, 82,558 pounds of pyroxylin, and 483,975 pounds of ammonium nitrate.

The production and value of dynamite for 1900, compared with that reported in previous decades, is set forth in the following table:
PRODUCTION OF DYNAMITE, BY DECADES: 1880 to 1900.

YEAR.	Number of establishments.	Capital.	Average number of wage-earners.	PRODUCT.	
				Pounds.	Value.
1880..	2				\$622,671
1890..	32	\$3,929,503	731	30,626,738	4,253,032
1900...	31	7,551,121	1,758	85,846,456	8,247,223

Dynamite was invented by Alfred Nobel in 1866, and its manufacture began shortly after at the various works established by him. In his testimony before the select committee on explosive substances of the British Parliament, in 1874, Nobel testified that there were then 13 factories, in which he was interested, engaged in this manufacture, 2 of them being in America, while there were many independent works in addition. The returns for dynamite were not so rendered in the prior census reports that the growth of this important industry can be readily ascertained, but some general idea of its growth may be gained from the following table, given by George McRobert, setting forth the annual sales of dynamite for each of sixteen years, from the factories with which Nobel was associated.

McROBERT'S TABLE.

	Year.	Sales, tons.		YEAR.	Sales, tons.
1867		11	1875		
1868		78	1876		4,300
1869		184	1877		5,500
1870		424	1878		6,200
1871		785	1879		7,000
1872		1,350	1880		7,500
1873		2,050	1881		8,500
1874		3,120	1882		9,500

Dynamite is a material of most variable composition. It consists of a solid porous absorbent which holds the liquid nitrogly cerin, and its invention was a necessity, since so many frightful accidents due to the liquid state of nitroglycerin led to legislation in Europe which forbade the transportation and use of the latter explosive. Kieselguhr (known as infusorial silica) was largely used at first, and is still much used in Europe, as the absorbent, but this "dope," as the absorbent base is called, is almost entirely replaced in this country by an explosive dope, which is most frequently a mixture of wood pulp and sodium nitrate, with a very small percentage of calcium or sodium carbonate to act as a neutralizer to any acid present. Such a dynamite is known as a straight dynamite, but there are others which contain a dope of coarsely made gunpowder or of resinous compositions. In 1875 Nobel invented an explosive made by dissolving pyroxylin or soluble cellulose nitrate in nitroglycerin until, when the mixture was cool, it set to a jelly-like mass which is known as explosive or blasting gelatin. This is often mixed with wood meal or wood pulp, and then gelatin dynamite is produced. As may be inferred, dynamites vary greatly in their nitroglycerin contents, and they may be found on the market containing from 5 per cent, as in a bank blasting powder, up to 94 per cent, as in a blasting gelatin. The grade which is probably the most extensively used is that known as 40 per cent dynamite, and analysis has shown a straight dynamite of this grade to contain of nitroglycerin 39.8 per cent, sodium nitrate 46.1 per cent, wood pulp 11.5 per cent, calcium carbonate, 0.7 per cent, moisture 1.9 per cent. It can be safely assumed that 40 per cent is the average nitroglycerin content of the dynamites of all kinds put on the market.
Dynamite as sold is usually loaded into paraffined paper cases, thus making it into "sticks" or "cartridges." These sticks may vary much in size, but the average stick will be 8 inches in length by $1 \frac{1}{2}$ inches in diameter, and they are packed in sawdust in boxes holding 50 pounds each.

Smokeless Powder.-At the time the Eleventh Census was taken no smokeless powder was reported, nor was there then any factory in operation for its regular production, while for the census year 1900 there was an output of $3,053,126$ pounds of powder having a value at the works of $\$ 1,716,101$. This industry, which is wholly a growth of the last ten years, embraced 9 factories, having $\$ 2,153,958$ of capital, gave employment to 730 wage-earners, and consumed $14,000,000$ pounds of mixed acids, $1,600,000$ pounds of cotton, $2,600,000$ pounds of alcohol, $1,400,000$ pounds of ether, 143,000 pounds of acetone, and 88,000 pounds of nitroglycerin. There is little doubt that the growth will be much more rapid in the immediate future, as smokeless powder is rapidly supplanting black gunpowder for military and sporting purposes, and, as a large part of the time during the last ten years has been spent in the invention of machinery for handling the materials, in planning
works so as to secure the maximum of safety with the maximum of speed and economy in manufacture and in the devising of means for the recovery and renewal of the spent acids and solvents.
The very earliest manufacture of smokeless powder in the United States was carried on by Charles Lennig, at Philadelphia, Pa., about 1850. His small-arm charges were made of long staple, fibrous gun cotton, and, as elsewhere, they were found to be so dangerous that their use was soon abandoned. The next factory to be started was erected by Carl Dittmar, at Quincy, Mass., about 1870, where a soft, granulated powder was made, but this was also abandoned.

The first of the factories erected for the manufacture of modern smokeless powder was planned, erected, and operated at the United States Naval Torpedo Station at Newport, R. I., in 1890, by Charles E. Munroe, under the direction of Commander Theodore F. Jewell, United States Navy, inspector of ordnance, in charge of the station, and it is to-day in regular operation, having been much enlarged. Following this, 4 factories were erected in 1891, 1 in 1895, 1 in 1898, and 2 in 1900, all of which were producing during at least a part of the census year. These factories were scattered through 7 states, 3 of them being in New Jersey and 2 of them being factories belonging to and operated by the United States Government. The Government factories produced military powder only, 4 of the private factories produced sporting powder only, while the remaining private works, though manufacturing largely for military purposes, produced some sporting powder also.

The earliest recorded attempt to use a smokeless explosive as a propellant is found in the experiments of Howard, who in 1800 attempted to use mercury fulminate in place of gunpowder in a firearm, with the result that he burst the piece. Immediately after the discovery of gun cotton by Schönbein in 1846, extensive trials of it as a propellant were made in Germany, France, England, and the United States, but as it was then used in the ordinary fluffy or thread-like condition of cotton it proved too violent. In 1866 Frederick A. Abel devised a method for granulating gun cotton by introducing pulped nitrocellulose containing water and a small quantity of a binding material into a vessel to which a vibrating motion was inparted, thereby producing soft grains, but this does not seem to have come into vogue.

The first person to realize any considerable degree of success was Captain Schultze of the German army, who, in 1862, made a soft-grained powder from wellpurified and partly nitrated wood. The first nitrocellulose powder to approach modern requirements was the E. C. powder, invented by Reid and Johnson in 1882, in which the soft grains, produced by rolling pulped nitrocellulose containing water in barrels were superficially hardened or waterproofed after granula. tion. The first successful military smokeless powder
was made in France by Vieille, and it consisted of a hard, dense-grained flake, or fagot powder, made from nitrocelluloses mixed with a nitrate, like barium nitrate, and with or without picric acid. This was followed in 1888 by the ballistite of Nobel, and in 1889 by the cordite of Abel and Dewar, each of which was composed of mixtures of nitrocelluloses with nitroglycerine and a restrainer of some kind. The whole was worked, by admixture with suitable solvents and by use of the proper machinery, into grains which were hardened throughout. In 1889 Richard Von Freeden discovered that gelatinized nitrocellulose, still containing the solution employed for its gelatinization, on being exposed to certain liquids, or the vapors thereof, undergoes a kind of coagulation and division into small lumps, which latter is promoted by stirring, and upon this he based a method of manufacture by which small-grained powders that are hardened throughout could be produced, and the method is now quite extensively followed.
Up to this time all gunpowders throughout the world, both black and smokeless, were made of mixtures of various ingredients, even the smokeless powders, which were made from nitrocellulose only, being made from mixtures of cellulose nitrates of different degrees of nitration; but in 1889 Charles E. Munroe proposed that smokeless powders be made of a single chemical substance in a state of chemical purity, and he pointed out that cellulose nitrate, of uniform nitration, then offered the best material from which to produce such a powder, and this is the principle which to-day governs the manufacture of military smokeless powders, at least in the United States.
Although up to 1898 the United States Army proposed to use smokeless powder composed of nitrocelluloses and nitroglycerin, the United States Navy adopted in 1890 a cellulose powder of uniform nitrogen contents, and the Army followed in 1898. As made to-day, the nitrocellulose used contains from 12.45 to 12.80 per cent of nitrogen. Such cellulose nitrate is made by dipping 1 pound of cotton (free from oil and mechanical impurities and containing about 57 per cent of moisture) in 19 pounds of "mixed acids," containing about 57 per cent of $\mathrm{H}_{2} \mathrm{SO}_{4}, 28.2$ per cent of HNO_{3}, and not more than 2 per cent of $\mathrm{N}_{2} \mathrm{O}_{4}$. The acid has an initial temperature of $25^{\circ} \mathrm{C}$., and the crock containing the mixed acids and cotton is heated to $36^{\circ} \mathrm{C}$., the cotton being exposed at this temperature, with one turning over of the cotton, for sixty minutes. After purification by wringing, washing, and steaming to remove the acid, the nitrocellulose is freed from the water remaining in it by extraction with alcohol, and it is converted into a gelatinous mass by kneading or stirring in a Werner and Pfleiderer mixing machine with a mixture of ethyl ether and ethyl alcohol, 2 parts by weight of ether and 1 part by weight of alcohol being used for every 3 parts by weight of nitrocellulose. The
subsequent processes have for their object the more intimate mixing of the material and straining off of the unconverted portions, the shaping of the mass into grains, and the drying of the grains. The finished grains still contain some of the solvent, particularly alcohol, the amount varying with the thickness of the walls of the grains. In the very smallest grains this amounts to about one-half of 1 per cent, while in the larger grains there may be as much as 4 per cent of solvent present.

It is not easy to check the data in this manufacture, and for this reason round numbers are given. It may be said, however, that 100 pounds of perfectly dry cotton will yield 169 pounds of this nitrocellulose, but the cotton as used may contain as much as 7 per cent of moisture, while the final product may contain from one-half of 1 per cent to 2 per cent of solvents. The quantities of acids can not well be checked, because the spent acid is "rebuilt" and used again. The difficulty is even greater with the solvents, since most of the works manufacture the ether used from part of the alcohol purchased or supplied to them besides reusing the recovered solvents. An additional complication in comparing costs arises from the fact that, when the powder is being made in private works for the United States Govermment, the manufacturer is permitted to use tax-free alcohol, while if he be making such powder for other parties he must use tax-paid alcohol. Where the Government supplies the alcohol, the weight of alcohol allowed is 1.4 times the weight of the finished powder.

The foregoing description is for military powder, and though picrates and metallic salts, such as nitrates and bichromates, are used to some extent in sporting powders, yet they are to so large an extent composed of nitrocellulose that they may be regarded for purposes of census classification as composed wholly of this material. The methods of manufacture are as a rule quite different from those employed in the making of military powders, and the gelatinizing agents used are ethyl acetate, amyl acetate, and the like, in place of ether-alcohol. It is to be noted that a small portion of the smokeless powder reported for the census year was a nitrocellulose-nitroglycerin powder which had been gelatinized by acetone. Smokeless powder is usually sold in metal canisters holding 1 bulk pound each.

Fulminates.-Although charges of dynamite and other high explosives are invariably fired by detonators or blasting caps charged with mercuric fulminate, and, although percussion caps, friction primers, and fixed ammunition are also charged with this explosive, yet the amount of this most important and essential explosive which is returned as manufactured in the United States was quite insignificant. On the other hand, as shown by the following table, compiled from the records of the Bureau of Statistics of the United States Treasury Department, the importation of fulminate is assum-
ing greater and greater importance as our home industry in other explosives grows, and this is shown even more markedly if to the values for the fulminates there be added those for the blasting caps, percussion caps, and cartridges that are also imported:

IMPORTS, FOR CONSUMPTION, OF FULMINATES, FULMINATING POWDERS, AND LIKE ARTICLES: 1884 TO 1900, INCLUSIVE.

YEAR.	Value.	Year.	Value.
1884	\$487	1893	\$48,509
1885	5,577	1894	42,567
1886	10,647	1895	65,891
1887	10,099	1896	77, 197
1888	20,984	1897	76,515
1889	10,717	1898	46,703
1890	19,460	1899	108,741
1891	44, 403	1900	105,999
1892	36,278		

The fact that, notwithstanding the dangers attendant on the transportation of this violent explosive substance, its home manufacture has been almost completely superseded by the foreign product, is explained on stating that it is manufactured from grain alcohol, mercury, and nitric acid; that for every 12 parts by weight of mercury fulminate produced 110 parts by weight of 95 per cent alcohol are consumed; and that the tax levied in the United States on alcohol makes the foreign commerce in this article a very profitable one, and home competition practically impossible.

Tage-earners and wages.-There were employed in the entire explosives industry $4,349 \mathrm{men}, 117$ women, and 36 children under 16 years of age. The wages for the men varied from $\$ 365$ per annum in New Jersey to $\$ 790$ per annum in California, the average for the whole country being $\$ 539$ per annum. The average wage for women was $\$ 263$ per annum, and for children $\$ 169$ per annum.

Power.-The total horsepower reported as being employed in these factories was 22,920 horsepower, of which 5,674 horsepower was supplied by 190 water wheels, $13,2 \pm 2$ horsepower by 315 steam engines, 2,885 horsepower by 177 electric motors, and 279 horsepower from other sources. The returns are chiefly interesting in marking changes in methods, for, formerly, in erecting black gunpowder works especial care was tàken to secure a location for the works where there was an abundant water supply and plenty of wood for charcoal making; whereas, in the manufacture of the modern explosives, while a sufficient isolation to obtain security for the works and limit the damage resulting from accidental explosions is sought, yet readiness and convenience in transportation of the materials used and the goods manufactured are regarded as of the first importance. The improvements in the methods for generating, conveying, and transforming the energy in steam or electricity have now rendered it relatively safe to employ these sources of energy.

Imports and Exports.-A more nearly correct idea of
the condition of this industry may be obtained if there be added to the census statistics those for the imports and exports of explosives. The imports of fulminates have already been considered, and attention is now called to the statistics for the foreign commerce in all explosives as compiled from "The Foreign Commerce and Navigation of the United States for the year ending June 30, 1900," Vol. II.

IMPORTS OF GUNPOWDER, FULMINATES, AND ALL LIKE ARTICLES: 1891 TO 1900, INCLUSIVE.

YEAR.	GUNPOWDER.		All other explosives, fulminates, etc., value.	Total value.
	Pounds.	Value.		
1891	34,312	\$19,148	\$124,528	\$143,676
1892	31, 111	29, 533	100,977	130,510
1893	78,306	68,974	124,661	193,635
1894	85, 481	71,285	67, 342	138,627
1895	104, 990	84, 882	96,940	181,822
1896	68,993	49,857	77, 192	127, 049
1897	87,921	63,722	98,727	162,449
1898	98,708	79,992	65,123	145, 115
1899	44,405	29,824	160, 620	190,444
1900	31, 212	15,885	169,073	184,908

DOMESTIC EXPORTS OF GUNPOWDER AND OTHER EXPLOSIVES: 1891 TO 1900, INCLUSIVE.

YEAR.	GUNPOWDER.		All other explosives, value.	Total value.
	Pounds.	Value.		
1891	733, 834	\$88, 676	\$906, 870	\$995, 546
1892	903, 077	108, 276	752, 079	860,355
1893	885, 263	105, 647	755, 966	861,513
1894	495,566	66,839	935, 287	1,002,126
1896	1,159, 935	124,823	1, $1,256,279$	1,381,102
1897	1,086, 465	118,001	1,437, 317	1,555, 318
1898	1, 202, 971	139,644	1, 255, 762	1,395,406
1899	1,504, 624	181,642	1,350, 247	1,531,889
1900	1,612,822	197,438	1,694,166	1,891,60-1

LITERATURE.
Powder and Explosives, by Francis G. Du Pont. One Hundred Years of American Commerce, I, 192.
The Manufacture of Explosives, Oscar Guttmann: Macmillan \& Co., New York, 1895.
Report and Proceedings of the Select Committee on Gun Cotton, etc., 1871-1874: London, 1874.
Ascanio Sobrero, by Vincenzo Fino: Turin, 1889.
On the Manufacture of Dynamite, G. E. Barton. Jour. Amer. Chem. Soc., 19, 500-509. 1897.
Notes on Nitroglycerine, Dynamite, and Blasting Gelatine, George McRoberts. Philosophical Soc. of Glasgow, April 25, 1883.
Lectures on Chemistry and Explosives, Charles E. Munroe: Torpedo Station Print, 1888.
On the Development of Smokeless Powder, Charles E. Munroe. Jour. Amer. Chem. Soc., 18, 819-846. 1896.
Specifications for United States Navy Smokeless Powder. Proceedings U. S. Naval Inst., 24, 477-480. 1898.
Smokeless Powder, Lieut. Joseph Strauss, U. S. N. Proceedings U. S. Naval Inst., 27, 733-738. 1901.

Geschichte der Explosivstoffe, S. J. Von Romocki: Berlin, 1895. Christian Friedrich Schönbein 1799-1868, by Kohlbaum \& Schaer. Monographieen aus der Geschichte der Chemie IV Heft 1900, VI Heft 1901, Leipzig.

Group XV.-Plastics.

During the census year 8 establishments manufactured cellulose plastics and also engaged in the further manufacture of these plastics into articles of various sorts. The value of the plastics produced was $\$ 2,099,400$. The total value of the plastics and of the finished articles was $\$ 3,063,673$. There were employed a capital of $\$ 7,558,720$, and 1,221 wage-earners. The growth of the industry can be shown only for the pyroxylin plastics, including the finished article as displayed in the following table:

production of pyroxylin plastics, by decades, 1880 TO 1900, INCLUSIVE.

Year.	Number of establishments.	Capital.	Number of employees. ${ }^{1}$	Value of products.
1880.	6	\$1, 214, 000	736	\$1, 261,540
1890.	12	3,158,487	1,023	2,575,736
1900.	7	7,210,548	1,176	2, 864, 044

${ }^{1}$ For 1900 this means wage-earners only.
Pyroxylin Plastics.-The best known of all the pyroxylin plastics is "celluloid." The art of making pyroxylin plastics was begun in England when Alexander Parkes discovered, in 1855, that a solution of pyroxylin, mixed with other substances, could, after the solvent was evaporated, be made into a substance having the qualities of horn or ivory, and could then be easily molded or worked or colored as desired. He entered vigorously upon the manufacture of this substance, which he called "parkesine," and put on exhibition various articles made from it, but the enterprise did not succeed and was abandoned in 1867. About this time Daniel Spill began the making of what he styled "zylonite" from pyroxylin or zyloidin by treatment with solvents and admixture with other materials, but owing to the fact that quite fluid solutions were employed, and to the difficulty of getting rid of the excess of the solvents, the operations were not commercially practicable.

In 1869, John W. Hyatt, Jr., and Isaiah S. Hyatt, of Albany, N. Y., made the important discovery that camphor by itself is a solvent for pyroxylin, if, after the camphor has been mixed with the pyroxylin, the mixture be heated to from 150° to $200^{\circ} \mathrm{F}$. and subjected at the same time to a heavy pressure, and that the product can be worked like rubber. To this discovery, for which United States Patent No. 105338, July 12, 1870, and its reissues were granted, to the process which those inventors based on it, and to the knowledge and skill which were developed by its practice, is due the present commercial success of pyroxylin plastics.
The Hyatt Brothers began the manufacture of celluloid in a small way at Albany, N. Y., in 1869, but capital was soon interested in the venture, and in 1870 the business was removed to Newark, N. J., where the Cel-
luloid Manufacturing Company has since remained in active operation. It had so expanded in 1896 that the floor space occupied at the factory was nearly eight acres in extent, and it is claimed that over 6,000 persons throughout the country were employed, either in producing the celluloid, or shaping the product of this factory into various articles.

The manufacturing operations at the factory involve the production of the pyroxylin, its conversion into celluloid, and the manufacture of part of the product into wearing apparel and toilet and fancy articles. According to Field, the pyroxylin is made by dipping cotton or tissue paper into a mixture of sulphuric acid 66 parts, nitric acid 17 parts, and water 17 parts, 100 pounds of the acid mixture being used for 1 pound of the paper, and the immersion being continued from twenty to thirty minutes at $30^{\circ} \mathrm{C}$. The pyroxylin used in this art is of low nitration, containing about 10.18 per cent of nitrogen. ${ }^{1}$ The purified pyroxylin is mixed with camphor by sprinkling it with a solution of camphor in wood alcohol, and incorporating the mass with other desired ingredients on steam-heated maxillating rolls. The solid celluloid which is thus obtained, and which is a composition of pyroxylin with camphor, an ant-acid, and coloring matter, is then shaped by cutting into sheets, stuffing through die plates, molding under pressure while hot, turning, and the like, into various objects.

Celluloid is used in making collars and cuffs; piano and organ keys; billiard balls; paper cutters; combs; backs for brushes and hand mirrors; handles for canes, umbrellas, whips, and cutlery; mouthpieces for pipes, cigarette and cigar holders; chessmen; dolls' heads and other toys; electrotype plates, and a great variety of other articles of adornment and use.

Viscose.-This body represents the most recent development in the production of plastic bodies from cellulose, and was invented by C. F. Cross, E. J. Bevan, and C. Beadle, to whom United States Patent No. 520770 , of June 5, 1894, was issued. In the manufacture, purified cotton is treated with an excess of a 15 per cent solution of sodium hydroxide and squeezed until it retains about three times its weight of the solution. It is then placed in a vessel with carbon disulphide, the quantity used being about 40 per cent of the weight of the cotton. After digestion for about three hours at the ordinary temperature, sufficient water to cover the mass is added and digestion allowed to proceed overnight, when, on stirring, a homogeneous liquid is obtained, which is a solution of cellulose thiocarbonate, or xanthate, and from which a jelly or coagulum of cellulose is produced by spontaneous decomposition, by precipitation with dehydrating agents, or by heating the solution. By incorporating viscose with mineral matters, hydrocarbons, and like substances, solid ag-

[^54]gregates are produced which may be cast or molded into convenient forms, and after purification and sufficient aging made available for various structural uses. More recently these investigators have found the cellulose tetracetate to be especially suitable for the formation of viscose.

Other Plastics.-Many plastic substances are now made from caoutchouc, gutta-percha, casein, fibrin, gluten, and like bodies which act as gelatinizing or cementing agents, by which the zinc oxide, antimony sulphide, kaolin, and other fillers are held in solid aggregations which may be molded or shaped with lathes and other tools as desired.

The foreign commerce in the pyroxylin plastics, as compiled from the Foreign Commerce and Navigation of the United States for the year ending June 30, 1900, Vol. II, is set forth in the following table:

IMPORTS AND EXPORTS OF PYROXYLIN PLASTICS, 1891 TO 1900, INCLUSIVE.

YEAR.	Imports, value.	Exports, value.
1891.	\$10,595	
1892.	43, 353	\$39,004
1898.	57,062	36,597
1894.	96,977	85,234
1895.	371, 873	72,926
1896.	337, 862	146,354
1897.	262, 675	149,631
1898.	160, 836	155,444
1899.	249,619	173,771
1900.	378,583	174,310

LITERATURE.

Pyroxylın, Its Manufacture and Applications, by Walter D. Field, J. Am. Chem. Soc., vols. 15 and 16, 1893 and 1894.

Das Celluloid, by Fr. Böckmann, Leipzig, 1880.
Cellulose, by Cross and Bevan, London, 1895.
Reséarches on Cellulose, 1895-1900, by Cross and Bevan, London, 1901.

Group XVI.-Essential Oils.

Though one of the less important, as measured by the value of the product, this is one of the oldest of the chemical industries, and it received recognition as a distinct industry in census statistics so long ago as 1860. It appears, however, that there have been varying views at the several censuses as to what substances should properly be placed under this classification. For the census of 1900 , there are included in this report, under this title, all those bodies reported as baving been manufactured in the United States during the census year, that are usually included in the text-books and treatises under the legends "volatile oils" or "essential oils," except vanillin, and oil or spirits of turpentine, which was made the subject of a special census report, while in addition witch-hazel is included. In this classification, then, there are, for the year ending June 1, 1900, 100 establishments in 14 states, engaged wholly or chiefly in the production or refining of these oils. Of these, 30 establishments produced a product of less than
$\$ 500$ in value. These 100 establishments employed $\$ 622,385$ of capital and 201 wage-earners, and the value of their products was $\$ 850,133$. In addition, there were 3 establishments which produced $\$ 9,268$ of essential oils as a subordinate product. As pointed out, there is included here the refined natural oils and the crude natural oils, and in addition the artificial oils. These last named are manufactured by 4 establishments, employing $\$ 33,720$ of capital and 13 wage-earners, and they reported $\$ 54,450$ in value of products. The vanillin industry, which is classified with "fine chemicals," returned 124,874 ounces of the product, having a value of $\$ 113,050$. This was manufactured in 4 establishments, and gave employment to 26 wage-earners and $\$ 65,689$ of capital. The product of refined natural oils for 1900 amounted in value to $\$ 370,500$. The establishments for the production of the crude natural oils were distributed as follows:

GEOGRAPHICAL DISTRIBUTION OF CRUDE ESSENTIAL OIL FACTORIES: 1900.

This tabular view shows that though this industry was widely distributed, it did not attain to any magnitude except in the states of New York, Michigan, Connecticut, and Virginia, and that in these states, as elsewhere, it was carried on by a large number of persons in a very small way. In fact it is usually carried on as an employment accessory to farming, the farmers taking advantage of the idle time between seasons to gather roots, herbs, bark, and leaves, and by means of a simple and often portable still (which is frequently erected for the time being in the woods near where the material is gathered) extracting their essential oils. This accounts for the small number of wage-earners in proportion to the number of establishments reported, as the farmer, in a large number of instances, carries out all the operations without hired labor. The character of the industry and the methods employed are especially illustrated by the great variety of products reported, for there are, among others, returned and combined in the values given in the table, the natural oils of peppermint, spearmint, erigeron (fleabane), pennyroyal, wormwood, tansy, fireweed, golden rod, wintergreen, black birch, sassafras, spruce, cedar, juniper, and witch-hazel.

The peppermint-oil industry was confined principally to Michigan, Indiana, and New York, there having been 95,000 pounds produced in these three states; the sassafras-oil industry was located principally in Virginia, where 104,931 pounds of this oil were produced; the wintergreen-oil industry was located chiefly in Pennsylvania, where 2,075 pounds were reported as having been produced; and the witch-hazel industry was located chiefly in Connecticut and New York, where 110,260 gallons of this substance, having a value of $\$ 54,649$, were produced.

As previously stated, the methods of classifying this industry, as well as the methods used for collecting the statistics, have varied somewhat in the different censuses, but they have been sufficiently consistent for the last three decades to admit of the comparison made in the following table:

TOTAL PRODUCTION OF ESSENTIAL OILS (CRUDE) BY DECADES, 1880 TO 1890, INCLUSIVE.

YEAR.

The increase in the value of the product for 1890 over the value for 1880 was but 2.8 per cent, while the increase for 1900 over 1890 was 69.8 per cent. It is not possible to state how great a part of this increase for 1900 is due to a more complete collection of the returns for this rural industry. There is an apparent falling off in the number of wage-earners, but if, since these operations are usually conducted by the owner of the establishment, there were added one man for each establishment to the number of wage-earners, there would be a total of 264 , which is probably not far from the truth. Another method of reckoning the number of wageearners would be to take into account those engaged in the cultivation of the herbs, like mint, which are grown for the production of essential oils, and it is probable that at the census of 1870 , where the number of hands employed is reported as 2,365 , a method such as this has been followed. It is necessary to recall that the essential-oil distilleries would, as a rule, be in operation but a part of each year.
The essential oils are those volatile oils which exist ready formed in animal and vegetable organisms, and they are called essential because they possess, in a concentrated form, certain of the characteristic properties of the plants from which they are derived. They are also known as the volatile oils; because they are easily evaporated, and as distilled oils, from the method by which a number of them are usually extracted from the plant. They exist in all odoriferous vegetation, sometimes pervading the plant, and in other cases being confined
to a single part of the plant. In some instances the oil is contained in distinct cells, where it is preserved after desiccation of the part, while in others, as in flowers, it is secreted on or near the surface, and exhaled so soon as formed. Occasionally two or more different oils are formed in different parts of the same plant, as in the orange tree, which contains one kind of oil in its leaves, another in its flowers, and a third in the rind of its fruit. Some essential oils are formed during distillation from substances of a different nature preëxisting in the plant, as in the case of oil of bitter almonds, which is produced by the action of water on the amygdalin which exists in the bitter almond. These oils are compound substances, or mixtures of compound substances, consisting of carbon and hydrogen alone, or of these elements combined with oxygen, sulphur, or nitrogen. These compounds are found among the derivatives of both the acyclic and cyclic series, and in addition to the various hydrocarbons there have been found among them alcohols, aldehydes, acids, esters, ketones, phenols, phenolethers, lactones, quinones, oxides, sulphides, nitrils, and isothiocyanates. In the mixed oils the oxygenated bodies are often of greater importance than the hydrocarbons because they are usually the possessors of the characteristic odor of the oil in which they are contained. Latterly these oils have been concentrated for sale by the removal of the nonfragrant hydrocarbons, this concentrate representing from 2 to 30 volumes of the original oil. Thus, 1 volume of the concentrated oil represents 2 volumes of the oils of anise, cassia, fennel, gingergrass, mentha crispa, mentha piperita, cloves, sassafras, and star anise; $2 \frac{1}{2}$ volumes of the oils of bergamot, caraway, and lavender; 4 volumes of cumin and rosemary; 5 volumes of thyme; 6 volumes of coriander; 8 volumes of calanus; 10 volumes of absinthe (wormwood); 20 volumes of juniper; 30 volumes of angelica, lemon, and orange. It is asserted that these concentrated oils are more permanent, more soluble in alcohol and water, have a finer odor, and a more nearly constant composition than the original oils. They are undoubtedly superior to the ordinary essential oils both in odor and strength, and they are now offered in the market under the name of "terpeneless volatile oils."

The natural essential oils as ordinarily obtained are of a thin, oily consistency at ordinary temperatures. They partly rise in vapor at ordinary temperatures, diffusing their peculiar odors, and are wholly volatile at higher temperatures; they have a characteristic and generally pungent odor; they are sparingly soluble in water, but readily soluble in alcohol and ether, and most of them are optically active. In the later works, solid camphor-like bodies and vanillin are included with the essential oils.

The essential oils are recovered by several different processes, depending upon the nature of the plant in which the oil exists and the nature of the oil. Thus, oils such as those of peppermint, sassafras, winter-
green, and the like, are obtained by distillation; oils, such as those from the orange and lemon peel may be recovered by expression; and oils, such as those existing in blossoms and constituting their perfumes, may be obtained by the process of enfleurage.

The process of distillation is well described in a circular issued by Albert M. Todd, of Kalamazoo, Mich., entitled "The Essential Oil Industry of Michigan," of which the following is an abstract:

The essential-oil industry of Michigan was inaugurated in St. Joseph county in 1835, being confined for many years to the production of oil of peppermint by the crude and primitive apparatus brought from the East, consisting of a copper kettle containing water in which the plants were placed, to which heat was directly applied, this being connected with a rude form of worm for condensation of the distillate.

As the area under cultivation increased, the need for better appliances was felt, and Michigan's genius gave to the world the greatest invention of the century in the distillation of essential-oil plants-the steam distilleryby which the rate of distillation was increased from about 15 pounds to over 100 pounds of essential oil per day. The increased rapidity of distillation now secured was unfortunately not followed by a corresponding advance in quality, for no true system of tests was known by which the quality of the oil could be established, and weedy, resinous, or adulterated oil continued to be the rule. Beginning in 1868, Mr. Todd labored to advance the standard, the result being that a system of tests was established, and a process of steam rectification, with elaborate appliances, was perfected for bringing the crude oil to a uniform state of purity and excellence.

The manufacturing system is as follows: The plants having been carefully cultivated are cut when in full bloom, usually during the months of August and September, and after being partially dried are placed in large wooden vats having a capacity of from 2,000 to 3,000 pounds dried plants each, which, after being filled, are closed with steam-tight covers. A pipe from the steam-generating boiler is connected with the distilling vats, entering them at the bottom under the plants. As the steam enters it is diffused evenly and forced upward through the plants. The heat of the steam expands the globules of oil, which are contained in the minute cells of the leaves, causing them to burst, and the oil being thus freed is carried off in the current of steam. This steam, now charged with the essential oil, having passed through the mass of plants to the top of the vat, escapes through a "changing valve" to the primary condenser, which consists of a series of tin-coated pipes about 6 inches in diameter and 12 feet long, over which a large supply of cold water is made to flow evenly through a perforated trough from above.

The steam of the distillate, consisting of oil and water, is condensed in a primary condenser, but, for the
purpose of reducing to a uniform temperature, it is conveyed to a large block-tin worm, supplied constantly with cold water. The distillate, after traversing this worm, falls into the receiver, a vessel about 3 feet in height and 10 inches in diameter, having an exterior pipe leading from the bottom to a height nearly equal to that of the receiver. As the distillate flows into the receiver, the water, being heavier than the oil of peppermint, sinks to the bottom of the ressel, and is forced from thence upward and out through the pipe mentioned. The essential oil collects upon the top of the receiver and is dipped off. The same separation occurs with spearmint, wormwood, tansy, and the other oils lighter than water. With wintergreen and sassafras, which are heavier, the system is reversed; the water rising to the top and being returned from thence to the boiler, while the oil sinks to the bottom. As the water of the distillate does not throw off the entire amount of essential oil contained, it is returned to the boiler and reconverted into steam and continuously used. Many of the distillers, however, allow this water to run to waste, and the amount wasted in America (which in England was formerly bottled and sold) amounted, until recently, to not far from $5,000,000$ pounds. The vats in the largest distilleries in the United States require about 3,000 pounds of the dried plants for a charge. If the plants are properly dried, and an adequate supply of steam is at command, the oil may be distilled from the charge in forty-five minutes. As thus distilled from the plants the product obtained is the natural oil, which, even though pure plants are used, always contains an insoluble resin, and it is in this form that oil is usually sold.

For the purpose of rendering the oil of absolute purity and the highest possible concentration, aroma, solubility, and therapentic value, and freeing it from any foreign substances contained therein, it is placed in special refining stills, by means of which fresh steam is diffused through the oil in numerous jets, evaporating the most valuable and aromatic portions. This steam is generated at a distance from the refiners, so that no direct heat is used, and by this process the scorching of the oil or formation of any empyreumatic product is rendered absolutely impossible. The supply of steam admitted and the consequent rate of distillation is carefully regulated. The first fraction is distilled very slowly, so that any foreign hydrocarbons present are eliminated. Afterwards the pure aromatic essential oil is volatilized, the speed of distillation being increased. After the aromatic oil has been recovered, there remains an oleo-resin (the bitter and insoluble principle), which is cast away. This in old and oxidized oil, sometimes is found to the extent of over 25 per cent. The refined essential oil thus ohtained has the pure and sweet odor of its true plant in a high degree, is of the greatest strength, unusual solubility, brilliant and limpid, and is absolutely pure.

The method of enfleurage consists in the absorption of the perfume exhaled from fresh blossoms by a neutral fat or oil. For this purpose pans are filled with fresh lard or beef fat and thickly covered with fresh petals, this covering being renewed until the fat is saturated with the perfume. The fat is then pressed through a sieve, and the thick substance which is expressed and which contains the odoriferous principle is styled pomade; or plates of glass are smeared with fresh lard, or cotton wool is coated with fresh olive oil, and the perfume is allowed to pass over these surfaces, and when the fat or oil is saturated the perfume is extracted from them by solution in alcohol.
The oil of peppermint, which is commercially among the more important of the natural oils produced in the United States, is obtained from several varieties of mint, all classified under the species Mentha piperita, which are cultivated in Europe and North America. The plant from which Japanese oil of peppermint is obtained belongs to another species. It is not known that any of the mints referred to in the Liber de arte distillandi ${ }^{\text {i }}$ were peppermint. The oldest known specimens of this plant were those collected by John Ray in Hertfordshire, England, in 1696, and to which, in his Historia Plantanum, publisbed in 1704, he gave the name of peppermint. Tbese specimens are still preserved in the herbarium of the British Museum, and they correspond in all essential characteristics with the peppermint which is to-day cultivated in England. The comnercial history of this industry dates from about the year 1750, when the cultivation of peppermint was begun in a very small way at Mitcham, Surrey county, England, and by the year 1800 the area under cultivation had reacbed 100 acres. The industry in England reached its maximum about 1850 , when 500 acres were under cultivation, but from that time it diminished, owing to American competition.
According to a private communication firom Leander S. Drew, of Lodi, Wis., the records of his establishment show that oil of peppermint was produced in Connecticut before 1812, and that his grandfather, Daniel Drew, made oil of peppermint in Corinth, Orange county, Vt., before 1814, and redistilled oil bought near Cleveland, Ohio, in 1819. Further, he states that Leander Drew, M. D., his father, began the distillation of oils of wormwood, peppermint, spearmint, erigeron, and dittany, in Wisconsin, in 1843. The distillation of pepperment oil began in Wayne county, N. Y., in 1816, and later this became the most important center of its production in the United States. As stated, the cultivation of peppermint was begun in St. Joseph county, Mich., in 1835 and this state has since rivaled New York in this industry.
Formerly it was supposed that a larger yield of oil was obtained from the use of fresh plants in the still, but Todd has shown experimentally, and experience

[^55]has verified the showing, that the yield is equally large from the dried as from the fresh material, while a larger quantity of the dried material may be placed in a given still for a single charge, and oil may be displaced from it with threefold the rapidity that it can be from the fresh mint. In addition, as it is the practice of the local distillers to treat not only their own crop but that of their-neighbors (one distillery, on an average, serving for about ten planters), the cost of transportation is reduced by previously drying the mint, since the shrinkage in weight is over 49 per cent. Gildemeister and Hoffman, ${ }^{1}$ however, suggest that the known difference in solubility of the English and American oils may be due to the fact that the former is distilled from the fresh herb and the latter from the dried herb. The charge for treatment by the distillers is about 25 cents for each pound of oil produced.

Peppermint plants are propagated from roots or runners, the "sets" being planted out in the spring. There are therefore "old or second-crop" plants of previous plantings, which mature usually in August, and the "new crop," which matures in September. The proper time for cutting the mint is when the plants are full blown. The average yield of essential oil varies greatly, depending largely on the extent to which the plants are covered with leaves and blossoms, as it is these which contain the oil. The average yield of oil from green plants is about one-third of 1 per cent, or $6 \frac{2}{3}$ pounds of oil for each 2,000 pounds of plants. Todd ${ }^{2}$ has obtained 18 pounds of oil from 2,000 pounds of well-leaved plants, and but $1 \frac{1}{2}$ pounds from a like quantity of coarse plants devoid of leaves. The average yield of oil per acre for the first and second year's crop is 11 pounds.

According to Todd, ${ }^{3}$ the average annual production of peppermint oil for the ten years prior to 1886 was about 100,000 pounds. According to Gildemeister and Hoffman, ${ }^{4}$ the largest yearly production of peppermint oil in the United States was in 1897 and was distributed as follows:

Michigan:	Pounds.
Eastern..	13,000
Western.	79,000
Northern	25, 000
Southern	55,000
Total.	172,000
Indiana.	32,000
New York	37,000
Other localitie	10,000
Total U	251,000

The consequence of this enormous production was an entirely unexpected drop in price, which has since restricted production.

[^56]A by-product of the mint distillation industry is found in the mint hay. After the distillation is completed this is lifted from the steam vat in the form of a large cylindrical cake, and when dried it is eaten with great relish by horses and cattle, or it is composted and returned to the fields as a fertilizer.

Peppermint oil is used as a flavor in food, drink, and confectionery, and in medicine. It is also used as a source of menthol, or peppermint camphor. This menthol separation differs according to the oil used. The Japanese oil is so rich in menthol that it forms a crystalline mass, saturated with the oil, at ordinary temperatures. The American oil solidifies completely in a freezing mixture. The English and Saxon oils very often show crystalline separations only after standing for a long while in the freezing mixture.

Spearmint Oil. ${ }^{\text {b }}$-The American spearmint oil is distilled in New York and Michigan from the fresh herb of Mentha viridis, L. The herb is cultivated to a not inconsiderable extent, as much as 12,000 pounds being obtained in the two states mentioned. The oil is colorless, yellowish or greenish yellow, is liquid, and possesses the characteristic penetrating and disagreeable odor of spearmint. With age and on exposure to the air the oil becomes viscid and darker. It has a specific gravity of 0.92 to 0.94 and is soluble in equal parts of 90 per cent alcohol, but the solution is rendered turbid by the addition of more solvent. An oil distilled by Fritsche Brothers had somewhat different properties. The spearmint had been cultivated on the factory grounds at Garfield, N. J., and was just in blossom when distilled. The yield was just 0.3 per cent. The oil had a specific gravity of 0.98 with an odor quite different from the commercial oil. It is possible that in the distillation of the commercial oil a part of this heavy oil is lost, thus accounting for the lower specific gravity. After the first harvest, toward the close of July, a second was made early in October. The yield from the fresh herb was only 0.18 per cent. The odor of this oil was somewhat less delicate, its specific gravity and rotatory power were lower, 0.961 , but it was still heavier than the commercial oils, though never heavier than water.

Oil of Wormwood. ${ }^{6}$-Artemisia absinthium, L., is indigenous to many European countries. It has been introduced into North America and is frequently cultivated for commercial purposes. The distilled oil of wormwood was known to Porta about 1570, who called attention to its blue color. It is named in the price ordinances of Frankfort in 1587, and was first examined by Hoffman in 1722 and recommended by him for medicinal purposes.
Whereas, the French oil formerly controlled the market, it is now largely replaced by the cheaper American oil from New York, Michigan, Nebraska, and Wiscon-

[^57]sin. The consumption of wormwood oil has decreased considerably, due possibly to the toxic properties of the oil to which attention has been directed. The fresh herb cultivated in Germany yields one-half per cent of oil, which at first is colored dark brown but changes to green after long exposure to the air.

Oil of Erigeron. ${ }^{1}$ - Erigeron canadensis, L., is a very common weed, which is known in America as fleabane, horseweed, or butterweed. It is frequently found in peppermint fields. The fresh herb yields upon distillation 0.2 to 0.4 per cent of oil, which finds limited medical application in the United States, and which was made official in the United States Pharmacopœia of 1890.

Oil of Sassafras."-The sassafras tree is widely distributed in North America, from Canada to Florida and Alabama, and westward as far as Kansas and the northern part of Mexico. The older bark and wood are odorless; the green parts of the tree, when crushed, smell faintly aromatic, but not of safrol; the wood of the roots, and especially the root bark, are more rich in oil cells.

Next to turpentine oil the oil of sassafras was the first volatile oil distilled in a primitive fashion in North America. On account of the pleasant aroma the root bark was chewed by the aborigines, who called it pavame. It was also mixed with smoking tobacco (Rafinesque) and added as an aromatic to refreshing beverages and was used as a remedy. On account of its marked characteristics the sassatras tree is said to have attracted the attention of the Spaniards at their first landing in Florida under Ponce de Leon in 1512; also under De Soto in 1538. They are said to have regarded it as a kind of cinnamon tree. As late as the first half of the Nineteenth century the bark, leaves, and buds were used in the Middle and Central states as a substitute for Chinese tea. As early as 1582 , sassafras wood and bark became known in Germany as a new American drug and were used under the name of Lignum pavanum (German, Fenchelholz). The bark and wood were apparently first distilled by Angelus Sala in 1620, who mentions that the oil is heavier than water. Schroeder's Pharmacopoia medicochymica, published in Frankfort-on-the-Main in 1641, is the first pharmacopoia that gives directions for the distillation of the oil, whereas the municipal price ordinance of Frankfort-on-the-Main of 1587 already enumerates Oleum ligni sassafras. Schoepf, who was a careful observer, and who traveled through the Atlantic states in 1783 and 1784 , repeatedly refers to the sassafras tree, but does not mention the oil. Evidently the distillation of the oil did not become an industry until the close of the Eighteenth or the early part of the Nineteenth century.
The original process of distillation seems to have been generally very primitive, but it is now conducted in a

[^58]somewhat more rational manner. The stills, made of 3 -inch planks, are from 4 to 5 feet high, about 12 feet square, and strengthened by iron bands. Oue of the sides is provided with two close-fitting doors, an upper one for charging the still, and a lower one for removing the exbausted material. The wood is split or sawed iuto thin pieces. The steam, generated in a boiler, enters the still at the bottom, and the distillate is cooled in a coiled condenser and collected in a large copper flask of 20 gallons capacity. About 2 inches from the bottom this flask is provided with a stopcock, through which the oil is drawn off from time to time. The exhausted wood is dried and used as fuel. Such a still has a capacity for 20,000 pounds of wood, and the distillation of this quantity lasts from about forty-eight to fifty hours. The root bark yields from 6 to 9 per cent of oil, and the wood part of the root less than 1 per cent. According to W. H. Phelps, ${ }^{3}$ Big Island, Va., 35 pounds of oil per ton of 2,000 pounds of sassafras is a good average yield. The yield from all the factories in Virginia, by the returns, average 23 pounds per ton.

Up to the middle of the Nineteenth century the oil was distilled principally in Pennsylvania, Maryland, and Virginia, and Baltimore and Richmond were the principal commercial centers. In 1860 , just prior to the Civil War, not less than 50,000 pounds of sassafras oil were sold annually in Baltimore alone (Sharp). Since the sixties considerable quantities of the oil have also been distilled in New Jersey, New York, Ohio, Indiana, Tennessee, and the New England states, but the practical extinction of the tree has rendered the industry unprofitable.

Wintergreen Oil. ${ }^{*}$-Wintergreen, Gaultheria procumbens, L. (Family Ericaceæ) grows from the New England states to Minnesota and south as far as Georgia and Alabama. On account of the peculiar odor and taste which develop when the plant is chewed, it was early used by the natives. The distillation of the oil was probably begun in the first decades of the Nineteenth century along with that of sassafras bark and birch bark in the states of Pennsylvania, New Jersey, and New York. At first these aromatics were used for chewing, later for the preparation of refreshing beverages and home remedies, and especially for the muchused "blood purifiers." When the preparation of the volatile oils became successful, these were often used instead of the aqueous extract of the drug. This use is of considerable importance in the history of the introduction of wintergreen and sassafras oils, as both of these were used as popular remedies in the United States since the beginning of the Nineteenth century under the title of patent medicines. The preparation and use of these remedies soon became general, and with these came a greater demand for the oils. Wintergreen oil was especially in demand for the prepara-

[^59]tion of one of the oldest known remedies in the United States, namely, Swaim's Panacea, introduced in 1815 , which at that time had an enormous sale and in the efficiency of which great confidence was placed.

Wintergreen oil does not appear to have been used at that time for any other purpose. The first mention of it in literature is found in a botanical work by Bigelow, a physician of Boston, published in 1818. In it Gaultheria oil is mentioned as a staple article of the drug stores, and it is also stated that this oil occurs not only in Gaultheria, but also in Spiræa ulmaria, the root of Spirra lobata, and especially in the bark of Betula lenta. 'The oil first appeared in pharmacopœias in the United States Pharmacopæia of 1820. The medicinal use of the oil did not become general until after 1827, when the New York Medical Society made known its use in the preparation of the popular specific mentioned above.

Although the similarity of the volatile oil from Gaultheria procumbens, L., with that from the bark of Betula lenta, L., was known before 1818, the ideutity of their principal constituent was shown scientifically about the same time by William Proctor, jr., of Pbiladelphia, in 1842 and Cahours in 1844. From that time on, the oil was no longer distilled exclusively from wintergreen, but often from this, together with birch bark, or from the latter only. The oil came more and more into use as an aromatic for pharmaceutic and cosmetic preparations, for beverages and medicinal remedies, and thus became an article of commerce. In recent time, however, it is often adulterated with kerosene and alcohol. Methyl salicylate has been prepared on a large scale and brought into the market as artificial oil of wintergreen since 1886 by Schimmel \& Co. It is official in the United States Pharmacopœia.

The preparation of oil of wintergreen has always been carried on in a primitive manner, the distillation being conducted by the smaller farmers at the place where the plant grows. This was first done in the New England states and later in the mountain and forest districts of the states of New York, New Jersey, Pennsylvania, Virginia, and Maryland. Usually old copper whisky stills of various sizes, mostly from 200 to 400 gallons capacity, serve as stills. Sometimes the distillation is done in boxes of oak wood about 8 feet long, 4 feet high, and from 4 to 5 feet broad; mostly, however, in larger alcohol barrels, held together by strong iron hoops, the perforated bottom of which is fitted as tightly as possible into a suitable cast-iron kettle, which is filled with water for distillation. On the upper part of the barrel is placed a copper helm, which is connected with a condensing worm in a large wooden tub.

In the distillation, which is carried on for only a few months in the year, the still, barrel, or box is filled with finely chopped, well-wetted plants. The charge is allowed to stand over night and firing begun in the morning. The distillation is usually complete in eight
hours. About 90 per cent of the oil passes over during the first two or three hours, the remaining 10 per cent in the course of the next three or four hours. The crude oil is colored dark by the iron of the condenser. The small producers sell the crude oil obtained to wholesale druggists, who purify it by rectification.

Sweet-birch oil (wintergreen oil). ${ }^{1}$ - Cherry birch, or sweet or black birch (Betula lenta, L., family Betulaceæ) is a tree which grows on good forest soil throughout southern Canada and the northern United States, westward as far as Minnesota and Kansas, and to the south as far as Georgia and Alabama. When chewed, its redidish bronze-colored bark develops a peculiar fragrance and taste, and on this account has been used by the natives for chewing and in the preparation of refreshing and medicinal beverages. Next to turpentine oil, the oils of sassafras, wintergreen, and birch bark were among the first oils obtained by distillation in the United States. The similarity in odor and taste of birch-bark oil, with true oil of wintergreen from Gaultheria prooumbens, was shown before 1818 (Bigelow). The chemical identity of the principal constituent of both was demonstrated by Proctor in 1843. As the demand for wintergreen oil increased, sweet-birch bark was distilled indiscriminately with wintergreen leaves, or even distilled alone, as a substitute, so that the commercial oil is at present obtained almost exclusively from the bark of sweet birch (Betula lenta, L.).

For purposes of distillation the young trunks and branches were formerly used. These were cut into pieces from 1 to 4 inches in length, which were macerated for twelve hours previous to distillation. For the latter operation stills like those described under wintergreen oil were used. The bark of the trunk and larger branches is now used, being peeled off in late summer, and either cut or torn by means of toothed rollers, and freshly distilled with water from copper stills. If wintergreen grows abundantly in the neighborhood, it is added to the bark in the still. Preference is given to the one which is the more abundant and more conveniently gathered. According to Kennedy, maceration for twelve hours is considered indispensable to a good yield. A ton of 2,240 pounds of birch bark yields about 5 pounds of oil, which amounts to 0.23 per cent. A like amount of wintergreen yields about 18 pounds of oil. By rational distillation, however, as much as 0.6 per cent of oil can be obtained from the bark.

Proctor recognized, in 1843 , that the oil does not preexist in the bark, but results from the interaction of two of the constituents present with water in a similar way to that attending the formation of the oils of bitter almonds, mustard, etc. According to more recent investigations by Schneegans, these substances are Betulase, a ferment, and Gaultherin, a glucoside, which crystallizes with one molecule of water.

[^60]Oit of Red Cedar Wood. ${ }^{1}$--The Virginia or red cedar is a shrub or tree which is distributed throughout the United States. Its wood is used in the manufacture of cigar boxes, lead pencils, and small ornaments. It is adapted to this purpose on account of its uniform structure, its mild sandalwood odor, and because it is not attacked by insects. For the distillation of the oil, the waste from the lead-pencil manufactory is used, yielding from 2.5 to 4.5 per cent. The exhausted chips are then utilized by the furriers in the preparation of skins. A very inferior oil is obtained in this country as a byproduct from the drying chambers of the lead-pencil factories. These chambers are so constructed that the escaping vapors from the cedar wood can be condensed. In this case, however, the high-boiling constituents of the wood remain behind and only the more volatile constituents are obtained. The oil thus obtained is more mobile and its odor is both less fine and less permanent than that of the normal, making it unserviceable for use in perfumery.

Hemlock or spruce needle oil. ${ }^{2}$-The needles and young twigs used in the distillation of this oil seem to be contributed by three different species: The hemlock or spruce, which occurs throughout North America from Canada to Alabama and westward as far as the Pacific; the white spruce; and the black spruce. They are equally widely distributed. In the collection of the leaves and twigs it seems highly probable that no distinction is made between these three species, so that a commercial oil may contain variable amounts of the oils from all three. In fact, the oils, being regarded as identical, are brought into the market under the common name of hemlock or spruce oil. Inasmuch as they are alike in properties and composition, quantitatively, the confusion in this case may be regarded as being of little or no consequence.

Witch-hazel ${ }^{3}$ (Hamamelis virginiana, L.).-Witchhazel is a shrub indigenous to and growing in almost all sections of the United States. It is the only species of the genus found in eastern North America. The bark has a bitter, astringent, somewhat sweetish and pungent taste, but no odor. Walter B. Cheney examined witchhazel bark and found in it tannin, resin, and an extractive, but no indication of an alkaloid or other crystalline principle. ${ }^{4}$ It contains a trace of volatile oil, however. Dr. John Marshall, of the University of Pennsylvania, found that hamamelis root contains tannic acid and a trace of volatile oil, but no other active substance. ${ }^{5}$

The bark of the witch-hazel is said to have first attracted attention on account of its use by the North American Indians as a sedative application to external inflammations. It was many years ago strongly recommended by Dr. James Fountain and Dr. N. S. Davis for

[^61]hemorrhage of the lungs and stomach. ${ }^{6}$ Of late years professional attention has been very strongly directed to witch-hazel on account of the enormous sale of a proprietary remedy said to have been made by distilling the bark with very dilute alcohol (6 per cent), and used externally for sprains and bruises and internally for many diseases.

The preparation known as witch-hazel extract, or witch-hazel water, is obtained by digesting 100 parts by weight of Hamamelis shoots and twigs with 200 volumes of water and 15 volumes of alcohol fortwenty-four hours. The mixture is then distilled by applying direct heat, but better by means of steam, until 100 volumes of the distillate have been obtained. The preparation should be made from the fresh young twigs of the Hamamelis only, and these are preferably to be collected in the late autumn when the plant is in flower. The returns for 1900 show that 13,248 gallons of alcohol, having a value of $\$ 31,606$, were consumed in this industry during the census year.

Artificial Essential Oils.-One of the greatest achievements of modern chemistry is the production in the laboratory of chemical substances, such as have been previously known only as the results of vital processes going on in vegetable or animal organs, and this achievement is especially marked in the production of those essential oils which are used as flavors or perfumes. The first step in this development was the discovery by analysis of the compound or compounds which constituted the odorous or fragrant principle existing or produced from the natural substance, as in the recognition by Woehler and Liebig of the existence of benzaldehyde in the oil of bitter almonds; the next was the discovery of a method or methods by which this chemical substance could be artificially produced. Sometimes, however, bodies have been discovered which, while unlike the natural principle, possess an odor which resembles that of the naturally occurring body. There is an example of this in the mono-nitrobenzene, which in its odor resembles oil of bitter almonds and which, together with mono-nitrotoluene, is sold for scenting soap under the name of oil-of-mirbane. In addition to the above, there have long been known and used, amyl acetate as essence of Jargonelle pear, amyl valerate as essence of apple, cinnamic aldehyde as oil of cinnamon, cumic aldehyde as oil of cumin, and many others.

One of these synthetic flavors that has especially attracted attention is vanillin, which is the active odorous ingredient of the vanilla pod, in which it exists to the extent of about 2 per cent, appearing on the surface of the bean as a fine white crystalline efflorescence. It was found to be methyl protocatechuic aldehyde, and it was first prepared artificially by Tiemann from coniferin, which is a glucoside occurring in the cambium of various coniferous woods. Later, Tiemann, and

[^62]simultaneously De Laire, discovered that it could be produced by the oxidation of eugenol, the chief constituent of oil of cloves, and this is now the principal source of artificial vanillin, which is manufactured on a considerable scale both in this country and abroad.

Another artificial principle is conmarin, which is the chief ingredient in the favorite perfume known as "new mown hay." This body is in nature the active, odorous principle of the Tonquin (Tonka or Tonco) bean, and it is found chemically to be the d-lactone of coumarinic acid. Perkin ${ }^{1}$ pointed out that if salicylic aldehyde be heated with acetic anhydride and sodium acetate, and the melt be treated with water and again heated, coumarin and acetic acid are formed.
The odorous body present in the heliotrope blossom finds its likeness in the methylene ether of protocatechuic aldehyde, which is also known to chemists under the name of heliotropin and also piperonal. It was originally made from piperine extracted from pepper, but it is now commercially prepared by the oxidation of safrol or iso-safrol.
The odor of may blossom. or hawthorn, is fairly well reproduced by anisic aldehyde, which, chemically speaking, is the methyl ether of para-oxybenzaldehyde. It can be prepared from carbolic acid by a series of reactions, but it is more easily obtained by oxidizing aniseseed oil.
The much-desired perfume of the violet finds its synthetic rival in the chemical ionone, which Tiemann and Krüger succeeded in producing in 1893, after years of patient research. This is produced by the condensation of citral with acetone in the presence of alkalis, by which pseudo-ionone is formed, and the subsequent heating of this pseudo-ionone with dilute sulphuric acid and a little glycerine or with alkalies. Citral, which is the aldehyde of geraniol, is found in lemon oil, orange oil, the oil of Eucalyptus maculata (var. citriodora), and lemon-grass oil, the last two named having a considerable proportion of it.
The production of artificial musk has aroused especial interest, since, while in the cases of the preceding chemicals their character had been ascertained from a careful study of the plants in which they naturally occurred, in the case of musk, which is the preputial secretion of the musk deer, the chemistry of the substance is yet unknown. There have been several artificial musks produced, but practically the only one used is manufactured under the patents of Albert Baur and is known as "musk Baur." The patents cover several nitroderivatives of tertiary butyl-xylene, each of which has the odor of musk.

The synthetic nerolin is prepared by heating b-naphthol 'with methyl alcohol and sulphuric acid, while the artificial neroli oil is a mixture of geraniol and linalol with their acetic esters and the methyl ester of anthranilic acid. Artificial lilac is terpineol prepared from

[^63]oil of turpentine, and this body is used in mixtures for the preparation of other perfumes, such as artificial hyacinth. Cinnamyl alcohol and benzyl alcohol have the odor of hyacinth; methyl benzoate the odor of niobe oil; linalyl acetate the odor of bergamot oil; while secondary styrolyl acetate has a marked odor of jasmine oil.
It has already been noted that methyl salicylate has been prepared on a large scale and brought into the market since 1886 as artificial oil of wintergreen. Yet this enumeration of synthetic chemicals used as flavors, or as perfumes, by no means exhausts the list, and it is easily believable that the number of these substances and the quantity of the product will greatly increase. It should be especially noted that these artificially prepared substances are often purer and better than those which are extracted from plants or animal substances.

Foreign Commerce in Essential Oils.-The extent of this commerce is displayed in the following tables, compiled from "The Foreign Commerce and Navigation of the United States" for the year ending June 30, 1900:

IMPORTS OF OILS, VOLATILE OR ESSENTIAL AND DISTILLED, 1891 TO 1900, INCLUSIVE.

YEAR.	Pounds.	Value.	YEAR.	Pounds.	Value.
1891.	3, 459,533	\$1, 523,491	1896.		81, 554, 289
1892.	3,451,519	1,676,064	1897		1,885,523
1893.	4,022,117	1,654,036	1898.		1,511,078
1894.	2,861,875	1,102,108	1899		1,691, 257
1895.		1,398,956	1900		1,859, 184

EXPORTS OF OILS, VOLATILE OR ESSENTIAL AND DISTILLED: 1891 to 1900, INCLUSIVE.

YEAR.	peppermint oil.		All other, value oaly.	year.	peppermint oil.		All other, value only.
	Pounds.	Value.			Pounds.	Value.	
1891 ..	45,321	\$120, 831	\$65, 104	1896	85, 290	\$174, 810	\$102,487
1892	54,987	156,418	68,501	1897	162,492	257, 484	146, 569
1893	99,629	267,422	79,920	1898.	145, 375	180, 811	201, 497
1894	80,225	209, 722	64,907	1899	117,462	118, 227	162, 358
1895	87, 633	194,616	190,798	1900	89,558	90,298	166,424

LITERATURE.

Watts's Dictionary of Chemistry, 4, 182-191. 1868.
The Volatile Oils, Gildemeister and Hoffmann, trans: Ed. Kremers, Milwaukee, 1900.
Essential Oils and Resins, Wagner's Chem. Tech., Crookes \& Fischer. Pages 935-938; 1892.
United States Dispensatory; Volatile Oils (18th ed.), pages 904 910; 1899.
The Treatment and Distillation of Peppermint Plants, A. M. Todd, Am. Druggist, July, 1888.
The Oil of Peppermint, A. M. Todd, Proc. Am. Phar. Assn., 34, 121. 1886.

Semiannual Report of Schimmel \& Co. (Fritzsche Brothers), April, 1895-October, 1901, Miltitz, London and New York.
Scientific and Industrial Bulletin of Roure-Bertrand Fils, of Grasse, Semiannual from March, 1900, Evereux, France.
Piesse's Art of Perfumery, Charles H. Piesse, London, 1891.
A Practical Treatise on the Manufacture of Perfumery, by C. Deite: Philadelphia, 1892.
Odorographia, by J. Ch. Sawer, London: 1892.
The Chemistry of Essential Oils and Artificial Perfumes, by Ernest J. Parry: London, 1899.

Group XVII.-Compressed and Liquefied Gases.
In the report of the Eleventh Census, Part III, page 279 , it is stated that " the use of compressed ammonia gas has reached large proportions in the last decade, and has proved a valuable aid in the preservation of food, the refrigeration of malt liquors, and the manufacture of ice. The introduction of the use of anhydrous ammonia has given great impetus to the manufacture of special machinery adapted to its employment in the departments named. Taken as a whole, its manufacture may be classed as a distinct industry." Although Prof. A. C. Twining, ${ }^{1}$ of New Haven, Conn., had in 1850 received a patent for an ice machine using ethyl, ether, or other compressed gas, and had in 1855 a machine of 1 ton capacity in operation in Cleveland, Ohio, ${ }^{2}$ and although in 1867, and probably earlier, the ammonia ice machines of Ferdinand Carré were in active operation, this seems to have been the first allusion in the census reports to compressed gases, and no data are there given for them. At the census of 1900 returns were made not only for compressed or liquefied ammonia (known technically as anhydrous ammonia), but also for sulphur dioxide, carbon dioxide, nitrogen monoxide (known technically as nitrous oxide), oxygen, and liquid air, the manufacture being carried on during the census year in 30 different establishments regularly devoted to this business. In addition there were 6 establishments reported in which liquefied gases were produced as a subordinate part of the product, the major part of the product being in some instances other than chemicals. Besides, 1 idle establishment was reported. Taking the returns together, it is found that there were 37 establishments devoted to this manufacture, producing $\$ 1,220,297$ of products and giving employment to 251 wage-earners and $\$ 2,185,535$ of capital. These establishments were distributed as follows:
geographical distribution of establishments FOR COMPRESSING AND LIQUEFYING GASES: 1900.

States.	Number of es-tablishments.	Capital.	Average number of wageearners.	Product.	Per cent of total.
United States	37	\$2, 185, 535	251	\$1,220,297	100.0
New York.	9	631,143	68	238, 882	19.6
New Jersey	7	232,542	30	144, 276	11.8
Pennsylvania	5	457,720	47	239, 713	19.6
Ohio	3	52,980	18	53, 085	4.3
Illinois..	3	285,435	35	180,350	14.8
Missouri, Michigan, Delaware, California, Massachusetts, Vermont, and Wisconsin..................	10	525,715	53	363,991	29.9

Of these establishments 19, employing 181 wageearners and $\$ 1,650,094$ of capital, were engaged in producing liquefied carbon dioxide, and the output for the census year amounted to $12,196,061$ pounds, of a value

[^64]of $\$ 708,864$. In addition, 1 establishment using carbon dioxide in manufacture reported having produced and consumed $165,000,000$ pounds of this gas during the yeai; but, though it was compressed, it was not liquefied for use. There was employed in the manufacture of the liquefied carbon dioxide reported above, 7,027 tons of magnesite, 2,011 tons of limestone, 774 tons of coke, and 4,771 tons of sulphuric acid, and among other products there were obtained $3,095,000$ pounds of Epsom salts, 3,278 tons of calcined magnesite, and 5,000 bushels of lime. About $3,500,000$ pounds of the carbon dioxide reported came from fermentation or from effervescent springs.
Ten establishments employing 52 wage-earners and $\$ 453,328$ in capital were engaged during the census year in producing anhydrous ammonia, and the output for the year amounted to $2,443,729$ pounds, having a value of $\$ 448,157$, and there were consumed in this manufacture 2,148 tons of ammonium sulphate, 4,199,708 pounds of aqua ammonia, and 83,402 bushels of lime.

Carbon Dioxide (carbonic acid gas, CO_{2}). -Carbon dioxide was liquefied by Faraday in glass tubes as early as 1823 , through the pressure resulting from the gas being set free from combination. In 1834 Thilorier operated this method on a much larger scale by the use of wrought-iron cylinders in place of the glass tubes. He discovered that by allowing the liquid to rapidly evaporate the reduction in temperature was so great that a portion of the CO_{2} became solid. By moistening this solid CO_{2} with ethyl ether he obtained a temperature of -100° C. In 1837 Dr. John Torrey, of New York, liquefied this compound in tubes and applied the liquid to guns as a propellent. In 1844 Natterer invented a pump by which very higb pressures were obtained, and through which the liquefaction of carbon dioxide could be better accomplished than by the selfcompression method previously used. In all these cases when liquefying carbon dioxide the gas was not only subjected to pressure, but it was also cooled. In 1869 Prof. W. N. Hill, at the United States naval torpedo station, Newport, R. I., proposed the use of liquefied CO_{3} in torpedoes. In June-August, 1873, ${ }^{3}$ he made more than 500 pounds of the material, and the manufacture was continued at the station at intervals for some years.

In a private communication from John B. Stobaeus, of Charles Cooper \& Co., Newark, N. J., it appears that he began the liquefaction of carbon dioxide on a commercial scale in the United States in July, 1884, and put the product on the market. The gas was generated from magnesite imported from Greece, by reaction with sulphuric acid, and the by-product was Epsom salts. The material was sent to the trade in steel tubes weighing about 27 pounds each, and these tubes were fitted with a valve having a conical seat, which was invented by Mr. Stobaeus. The books of this firm show that 1,188

[^65]cylinders, containing 14,256 pounds of CO_{2}, were produced in 1885, and 10,704 cylinders, containing 128,448 pounds of CO_{2}, in 1891. The manufacture has since been taken up by others, and in addition to the method used by Mr. Stobaeus the carbon dioxide is now obtained by burning magnesite, by which magnesia is obtained as the by-product; or dolomite, by which a cement is obtained as the by-product; or marble or limestone, by which quicklime is obtained as the by-product; by treating marl with sulphuric acid; and by burning coke. The carbon dioxide issuing from effervescent mineral springs, and that produced in the fermenting tubs during the brewing of beer, is also collected and liquefied. In all of these processes the gas is washed and otherwise purified before compression.

From the data given by Mr. Stobaens it appears that the cylinders supplied by his firm held 12 pounds of CO_{2} each. The American Carbonate Company, of New York, advertise to supply cylinders in two sizes, containing 10 and 20 pounds of CO_{2}, respectively, representing 600 and 1,200 gallons of gas, the net weight of the cylinders being 27 and 70 pounds. Several of the companies announce that the cylinders are tested for a pressure of 3,700 pounds per square inch.

Compressed carbon dioxide is used in charging soda water, mineral waters, cider, beer, and other effiervescent drinks. By attaching a charged cylinder of the gas, governed by a proper regulating valve, to a barrel of beer or other beverage the liquid is not only continuously charged with the gas, but by the gas pressure the liquid is forced to the point where it is desired to serve it. By its use the old art of "Kraeusen," which consisted in adding to stored beer, as it was being casked or bottled, some beer in the firststages of fermentation, has been displaced. Carbon dioxide is used in the manufacture of salicylic acid and of many carbonates. It is proposed for use as a medicinal agent by inhalation and in baths; for raising dough in the manufacture of aerated bread; as a refrigerating medium; as a buoyant material in raising wrecks or preventing disabled ships from sinking; and for extinguishing fires, R. Ogden Doremus having found that but 20 per cent of CO_{2} in the air of the locality where fire exists is sufficient to arrest the progress of the flames. It has been used by the Government as a motive power for automobile torpedoes.

Anhydrous ammonia.--This material is the chemical substance ammonia $\left(\mathrm{NH}_{3}\right)$ in a pure and dry condition and in a compressed and liquefied state, and it is manufactured by the distillation of the ordinary 26° ammonia of commerce in a suitable apparatus. This apparatus, which should be of sufficient strength to stand a pressure of 65 pounds to the square inch, comprises a still, a condenser, three separators, and a drier or dehydrator. The still is heated by a suitable steam coil to a temperature of about $212^{\circ} \mathrm{F}$., when the ammoniacal gas, together with a certain amount of water, passes off into the first separator, which latter is usually situated on the top of, and forms an upward extension
of, the still. In this first separator the greater portion of the watery particles carried over are eliminated by a series of perforated plates, through the perforations of which the gas has to pass, and are returned to the still through a dip pipe. From this first separator the partly dried gas passes through a water-cooled worm in the condenser, and then successively through the two other separators to the drier or dehydrator, where it is passed through a set of similarly perforated plates to those in the first separator, but having small-sized lumps of freshly burnt lime placed upon them, by which any moisture that may still remain in the gas is removed, and the completely anhydrous product can then be passed into the ammonia pump or compressor. It is found advisable to work the still at a pressure above 30 pounds to the square inch, so as to admit of the liquid being raised to a slightly higher temperature than the boiling point of water at atmospheric pressure, withont causing the water to boil, the result of this being that the whole, or practically the whole, of the ammonia will be set free, while at the same time the least possible amount of the water will be vaporized and passed over with the ammonia gas.

Or it may be obtained from ammonium salts by beating them with lime and treating the gas as above described. The salt usually employed is ammonium sulphate. Aqua ammonia, or ammonia water, is of different strengths, according to the amount of NH_{3} dissolved in it, but the standard strength has a specific gravity of 26° Beaumé, and it contains 38.5 per cent by volume, or 26.6 per cent by weight of anhydrous ammonia. Thus 3.76 pounds of 26° ammonia will be required to make 1 pound of anhydrous ammonia. An excellent table of the yields of anhydrous ammonia from 26° ammonia is given by Iltyd I. Redwood. ${ }^{1}$ The ammonium sulphate or sulphate of ammonia of commerce is reckoned as containing 25 per cent of anhydrous ammonia.

It is believed that some at least of the owners of ice machines produce the anhydrous ammonia that they employ, either in originally charging their machines, or in making good any loss which may take place, but there are no returns on this point. It appears also that there is some anhydrous ammonia imported, the report on "The Foreign Commerce and Navigation of the United States" from the Treasury Department placing this at 14,210 pounds, having a value of $\$ 5,870$ for the year 1891, but the data for such importations as may have occurred in other years of the past decade do not appear separately.

Although Fourcroy and Vauquelin and, at about the same time, Guyton de Morveau, announced that they had accomplished the liquefaction of ammonia gas, it is believed that, as they bad no suitable means for drying the gas, they failed to obtain the auhydrous ammonia.

[^66]It was first certainly liquefied by Faraday in 1823, and it was not long before it was being produced in considerable quantities. Larkin and Scheffer began the commercial manufacture in St. Louis, Mo., in 1879.
Anhydrous ammonia appears, as stated above, to have first been used for refrigeration by Ferdinand Carré in his absorption machine, but it was not long before it was employed in compression machines of the type invented by Perkins and Twining, based on the refrigerating principle, which was demonstrated by Doctor Cullen in 1755, and although it has had to compete with ethyl ether, carbon dioxide, sulphur dioxide, and air, it is to-day the material which is most largely used in ice machines, and this is the principal use for this substance, though recent researches indicate that other uses will soon be found for it in chemical manufacture and in other arts.

Sulphur Lioxide (sulphurous acid gas, SO_{2}). -This substance is produced by burning sulphur in air or oxygen, 1 pound of sulphur giving 2 pounds of sulphur dioxide. It was liquefied by Monge and Clouet about the beginning of the Nineteenth century. The liquefied sulphur dioxide is now a regular article of commerce, and is sent into the trade in glass "siphons" and in iron flasks, as being a convenient means of transportation and storage of the substance for use in chemical laboratories and in manufacture. The liquid has found some use in ice machines. The substance is used as a reducing agent, as a bleaching agent, and as a disinfectant. Hardin ${ }^{1}$ states that at present (1899) "about $4,0: 0,000$ kilograms of this liquid are being prepared annually."

Nitrogen Monoxide (hyponitrous oxide, nitrous oxide, laughing gas, $\mathrm{N}_{2} \mathrm{O}$). -This body is prepared by heating ammonium nitrate to a temperature not exceeding 258° C., when the gas is evolved. It is carefully purified, well washed, and then compressed in steel cylinders. This gas was first liquefied by Faraday in 1823. The Lennox Chemical Company began the liquefaction of the gas for the trade at Cleveland, Ohio, in 1883. The exhilarating properties of the gas were discovered by Sir Humphry Davy, who was the first to inhale it, in 1809 , and it then received the name of laughing gas. It is now used as an anaesthetic agent in minor surgical operations, especially in dentistry, its use for this purpose having been suggested by Dr. Horace Wells, and it was first applied to him in the extraction of a tooth at Hartford, Conn., December 11, 1844.

Oxygen. - This gas, as commercially supplied in the compressed condition, is produced by heating potassium chlorate mixed with black oxide of manganese. It is sold in the market for use in medicine by inhalation, when it is usually mixed with nitrous oxide, essential oils, and other bodies which are believed to possess

[^67]therapeutic qualities. Liquid oxygen is not known to be produced commercially except as referred to under liquid air, but it was the first of the so-called permanent gases to be liquefied, this having been independently effected by Pictet and Cailletet in 1877.
Liquid Air.-Atmospheric air is a mixture of approximately 21 per cent of oxygen and 78 per cent of nitrogen by volume, with ninety-four one-bundredths of 1 per cent of argon, about four one-hundredths of 1 per cent of carbon dioxide, and variable quantities of water vapor, ammonia, and other bodies, according to locality and conditions. After 1823, when Perkins ${ }^{2}$ erroneously believed that he had liquefied air, numerous unsuccessful attempts were made to accomplish this result, but in 1877 Raoul Pictet and Louis Cailletet, working independently in Switzerland and in France, achieved the result on a small laboratory scale, and it was later repeated by Wroblewski, Olzewski, and Dewar, who improved the methods so as to notably increase the yields, and in 1893 Dewar froze air into a clear, transparent solid. The liquefaction of air on an industrial scale began about this time with the invention of the machines of Linde, Hampson, and Tripler, and later those of Ostergren and Burger, Dewar, Kuhn, Chase, Code, O'Doherty, Johnson, and others.
The methods may be classified as the cascade method of Pictet, Cailletet, Wroblewski, and Onnes; the selfintensive motor method of Siemens, Kuhn, and Johnson; the countercurrent free-expansion system of Linde, Hampson, Tripler, and Ostergren, and Burger; and the self-intensive work method of the American Liquid Air Company, known as the Ala system. Emmens* states that the principal features. of the method by which the liquefaction of air can be effected on a commercial scale was clearly described in the specifications of British patent No. 2064, granted to Charles William Siemens in 1857.
Owing to the complex composition of air, several different products are obtained by its liquefaction, notably liquid oxygen and nitrogen and solid carbon dioxide. Pictet has invented a separator by which these bodies may be rapidly separated for use, and there is thus drawn off at $-70^{\circ} \mathrm{F}$., solid carbon dioxide; at $-290^{\circ} \mathrm{F}$., commercial oxygen gas of 50 per cent purity; at $-296^{\circ} \mathrm{F}$., oxygen gas of 99 per cent purity; at -300° F., liquid oxygen and nitrogen gas of 95 per cent purity; at $-310^{\circ} \mathrm{F}$., nitrogen gas of 99 per cent purity; at $-312^{\circ} \mathrm{F}$., liquid air; and at $-316^{\circ} \mathrm{F}$., liquid nitrogen.
While many commercial uses for liquid air have been proposed, it is not known to be so used at present. It may, however, be now looked upon as a source of oxygen which promotes combustion and enables man to obtain high temperatures and high illuminating power, but it is not yet proved that this method of

[^68]heating and lighting can compete econonically with electricity. Liquid air does enable man to readily obtain low temperatures, which can be usefully employed in chemical operations, and a continually extending use may be looked for in this direction. Elihu Thomson has pointed out that it may possibly find a useful application in increasing the efficiency of conductors of electricity.

Chlorine.-This gas, which may be produced by the action of muriatic acid on black oxide of manganese or by the electrolysis of common salt, is produced commercially abroad in the liquid state, but no returns are made of it in this country. It is used in chemical manufactures and for bleaching and disinfection. It is sent out to the trade in iron cylinders.

LITERATURE.

Reports of the United States Commissioners to the Paris Universal Exbibition, 1867, Volume III. Machinery and Processes of the Industrial Arts, and Apparatus of the Exact Sciences, by F. A. P. Barnard: Washington, 1870.

Liquid Carbonic Acid, Its Preparation and the Construction of Vessels to Contain It, by Walter N. Hill, United States Torpedo Station. 1875.
Encyclopédie Chimique, by M. Fremy, 2, Section 1• Paris, 1885.
Compressed Carbonic Acid Gas. American Carbonate Company, New York, 1887.
No More Kraeusen; Carbonating of Beer: The Universal Carbonating Company, New York, 1897.
Refrigerating and Ice-Making Machinery, by A. J. Wallis-Tayler: London, 1897.
Theoretical and Practical Ammonia Refrigeration, by Iltyd I. Redwood: London, 1898.
The Rise and Development of the Liquefaction of Gases, by Willet L. Hardin: New York, 1899.
Liquid Air and the Liquefaction of (iases, by T. O'Conor Sloane: New York, 1899.

Liquefied Air; an address delivered by the president of the American Liquid Air Company, by Stephen B. Emmens: New York, 1899.

Liquid Air: the Separation of Its Constituent Gases and Their Commercial Application, by Raoul Pictet and Moritz Burger: Philadelphia, 1900.
The Experimental Study of Gases, by Morris W. Travers: London, 1901.

Group XVIII.---Fine Chemicals.

Under this classification are grouped the chemically pure chemicals manufactured for sale, the chemical substances which are made for use in laboratories and in pharmacy, and those in which, like the salts of silver and of gold, the price of the unit of measure is relatively very high. It is to be noted that though this term is used in the market the dividing line between "fine chemicals" and "heavy chemicals" is, by no means sharply drawn or constant. The statistics for tine chemicals, 1900 , are:

FIAE CHEMICALS, BY KIND, QUANTITY, AND VALUE: 1900.

KIND.	Number of estab-lishments.	Unit of measiure.	Quantity.	Value.
Acetone	3	Pounds.	1,638,715	\$178, 666
Acids, C. P	8	Pounds	2, 847,575	148, 971
Alkaloids.	5	Ounces	3,387, 522	1,743,264
Ammonia, C. P	3	Pounds	254, 952	18, 131
Ether. .	8	Pounds	263, 238	
Esters	7	Pounds	576,571 8,594	66,675 90,145
Gold salts.	7	Ounces	8, 20,714	32, 831
Iodides	3	Pounds	20,714 19,030	32, 831
Pepsia.	3	Pounds.	19, 487,690	76,120 150,100
Phosphorus....	3	Pounds	487, 7, 1912	150,100 54,600
Platinum salts.	3	Ounces	5,373	28, 200
Silver salts	9	Ounces	1,252,604	499, 345
Vanillin.	4	Ounces	124,874	113, 050

In this table only those fine chemicals that were produced in notable quantity and in more than two different establishments are enumerated. How large the list is may be understood when it is stated that the total value of all the products classitied under this legend is $\$ 4,216,744$ while the total value of those enumerated in the table, excluding such as appear also in other classifications, is $\$ 3,148,974$.
Under the term alkaloids is included caffeine, morphine, pilocarpin, quinine and the other alkaloids from the cinchona barks, and strychnine. To the quantity of ether given in the table should be added $1,400,000$ pounds of ether used in the explosive industry, much of which was made from tax-free alcohol and known as "Government ether." Among the esters manufactured for sale were ethyl acetate, ethyl butyrate, amyl acetate, and amyl butyrate. Under the legend "phosphorus" are included upward of 300,000 pounds which were produced by electro-chemical processes. Under "rare earths" there were reported cæsium zirconate, cerium oxide, didymium oxide, lanthanum oxide, radioactive barium, thorium nitrate, and thorium oxide. The gold and platinum salts were chlorides and the silver salts consisted of the nitrate. The vanillin was synthetic.

In addition, as showing the variety of this manufacture, it may be remarked that there were returned reports on acetanilide, bromine, chloral, chloroform, chloride of sulphur, coumarin, ethyl chloride, formaldehyde, and glycosine. Many fine chemicals are undoubtedly lost to this group from having been reported under the head of "pharmaceutical preparations" or drugs, and thus passed to another classification outside of the "chemical industry."

Acetone is produced by the dry distillation of calcium acetate or other acetates, the other product of the reaction being a metallic carbonate. A commercial source of it is therefore found in the treatment of the residue left after manufacturing anilin by the distillation of nitrobenzene with acetic acid and iron. E. R. Squibb,
M. D., ${ }^{1}$ has developed a commercial process for its manufacture from acetic acid. It occurs largely in some varieties of wood spirit.

Formerly all nitrogen-containing bodies occurring in plants and possessing basic characters or the derivatives of these, from which bases could be isolated were designated as alkaloids, but with the better knowledge of their constitution which modern organic chemistry has furnished, these bodies have been distributed among various classes of organic compounds. Thus caffeine is a uric acid derivative; piperine, a pyridine derivative; quinine, a quinoline derivative; and morphine, an isoquinoline derivative. In the commercial treatment of these bodies, however, it has seemed best to use the term alkaloid with its old significance because, that substances of a similar nature have been found in animals, we must more properly speak of these as vegetable alkaloids; all of the bodies returned in this census being from this source. As they occur in plants they are generally combined with acids such as malic, citric, or tannic and the like, and the commercial preparation of the alkaloids consists in their extraction from the bark, fruit, leaf, or root by means of suitable solvents, among which ether, chloroform, amyl alcohol, grain alcohol, petroleum ether, and benzene may be enumerated. By the use of alkalies the bases may be isolated, and by the use of sulphuric, or other acids, salts may be formed by which to facilitate the extraction and purification of the alkaloids.

In 1820 the separate alkaloids in cinchona bark (quinine, cinchonine, etc.) were determined, and, shortly after, Pelletier began their manufacture in France. About the same time John Farr started a quinine factory in Philadelphia, and was followed at a later day by John Currie, who built one in New York. From the correspondence it appears that the establishment of Rosengarten \& Sons, of Philadelphia, manufactured sulphate of quinine in 1823 , sulphate of morphine and acetate of morphine in 1832 , piperine in 1833 , strychnine in 1834, veratrine in 1835, and codeine in 1836. Extract of quinine was manufactured by John Farr, ${ }^{2}$ of Philadelphia, in 1825.

Ether (ethyl ether, common ether, sulphuric ether) is the di-ethyl oxide and is made by the reaction of grain alcohol with sulphuric acid. The process invented for its manufacture by Williamson is a continuous one, and, theoretically, one portion of sulphuric acid will convert an unlimited quantity of alcohol into ether. As a fact, some of the sulphuric acid is reduced, and not only is there loss of acid and alcohol, but in consequence of this reduction the ether becomes contaminated with sulphur dioxide and must be purified for use. According to Squibb, ${ }^{3} 360$ pounds of concentrated sulphuric acid suffices to etherify 120 barrels of

[^69]clean spirit. The acid charge must then be changed, as the mixture bas become dark and tarry, and liable to froth in the still. The production of sulphur dioxide in the process may be prevented by using benzenesulphonic acid in place of sulphuric acid in the still. Other ethers are also produced in the continuous process by substituting other alcohols for ethyl alcohol.

Ether was manufactured by Rosengarten \& Sons at Philadelphia in 1823, and by Carter \& Scattergood, of the same city, in 1834. It is used as an anæsthetic agent and as a solvent in many arts; but its largest use to-day is as a solvent in the manufacture of smokeless powder.

The esters known also as ethereal salts, were formerly styled conipound ethers. They are compounds in which there is present both an alcohol radical and an acid radical. They are usually commercially prepared by treating an alcohol with sulphuric acid in the presence of a mineral salt containing the desired acid radical. Thus, ethyl acetate (known as acetic ether) is obtained by distilling dried sodium acetate with ethyl alcohol and sulphuricacid, and ethyl nitrite (which is the active principle of spirit of niter or spirits of nitrous ether) is prepared by distilling sodium nitrate with ethyl alcohol and sulphuric acid. Acetic ether and spirit of niter were manufactured at Pbiladelphia by Rosengarten \& Sons in 1823.

According to Mr. John McKesson ${ }^{4}$ it was an American surgeon, Beaumont, who made, between 1825 and 1833, the famous classical observations upon the phenomena of digestion in the living stomach, which revealed the functions of the gastric juice, and it is to Schwann that the discovery of the active principle of this juice in 1836 is due. Schwann named this principle pepsin, though he was unable to separate it. The history of American commerce in pepsin practically begins with the introduction of Scheffer's pepsin in 1872. To Scheffer is due the credit of the invention of the simple, practical, and widely adopted "salt" process for isolating the pepsin from the gastric juice of the stomachs of hogs. "Pepsin prepared by this method appeared in commerce principally as 'saccharated pepsin,' the ferment being incorporated with a large proportion of milk sugar. In 1879 Fairchild introduced the original form of pepsin in scales, 'free from added substance or reagents.' The appearance of this pepsin of phenomenal strength, with the recognition of the fallacy of administering the ferment in the largely diluted form then in vogue, was the signal for great activity in the manufacture and improvement of commercial pepsins. The obvious importance of stomach digestion naturally directed attention chiefly to the stomach ferments, and the medicinal use of the digestive ferments still remains popularly identified with pepsin; yet the other digestive ferments, especially those of the pancreas, possess far wider scope of activity

[^70]and are relatively of wider importance. Practical recognition and application of these pancreas ferments must fairly be attributed to Fairchild, who in 1880 introduced the extractum pancreatis, containing diastase for the conversion of starch, trypsin for the conversion of albumin, the emulsifying ferment for the digestion of fats, and the milk-curdling ferment.
"Pepsin now appears in a great number of popular as well as official forms, and is prepared generally by pharmaceutical manufacturers everywhere. We have in the United States the only house in the world engaged, in the manufacture of the digestive ferments and predigested foods, as an exclusive specialty. The digestive ferments occupy a brilliant position in modern therapeutics, and the progress of physiological chemistry suggests still further utilization of the animal organic principles as recently shown in the successful and important treatment of disease by the thyroid gland." The pancreatin, trypsin, and other ferments, except pepsin, mentioned above are included in the statistics for pharmaceutical preparations.
The statistics for the bromine production of the United States in 1900 were largely collected on the Salt schedule (No. 9), and were published in a special report of the census. Since this element is isolated from the mother liquors of salt works it is natural that the material should be returned as a minor product of that industry. There are instances, however, where the bromine collected as such, or in the form of bromide, is the chief or sole product of the industry, and these more naturally have been reported on the Chemical schedule (No. 17). Reducing the bromides thus produced to bromine and combining the data received on all the schedules, it appears that during the census year 1900 there were produced in the United States 480,742 pounds of bromine having a value of $\$ 111,121$, which is the value at the works.

It may be of interest to compare this result with the following statistics from The Mineral Industry for 1899, page 68. The production of bromine in the United States, including the proportionate amount of
bromine contained in potassium bromide, decreased during 1899 , falling from 486,978 pounds to 433,003 pounds; the price, however, increased from 28 to 29 cents. The production of bromine in the world is still coutrolled by the association of American producers, and by the Leopoldshall-Stassfurt convention. which has several years longer to run.

PRODUCTION OF BROMINE IN THE UNITED STATES.

Year.		Ohio, pounds.	Pennsylvania, pounds.	West Virginia, pounds.	Total, pounds.	Metric tons.	Total value.
1895	30,280	152,360	104,647	107,567	394, 854	179	\$102, 662
1896	42,000	212,850	152, 600	149,835	559,285	249	143, 074
1897.	${ }^{1147,256}$	124,972	116,967	97,954	487, 149	221	136,402
1898	1141, 232	106,860	119,998	118,888	486, 978	221	136,354
1899	${ }^{1138,272}$	82,368	111, 150	101,213	433, 003	196	125,571

${ }^{1}$ Including the bromine equivalent of the product recovered as potassium bromide.

The manufacture of bromine was begun in the United States in 1846 by Dr. David Alter, ${ }^{1}$ of Freeport, Pa. In 1866 works were erected at Tarentum, Pa., and in 1868 at Pomeroy, Meigs County, Ohio. By the introduction of improved processes the price of this article has fallen from $\$ 6$ per. pound in 1856 to 28 cents per pound, which is the approximate price to-day.

Among the chemicals used as anæsthetic agents and as a solvent for organic substances, chloroform holds a high position. It was formerly manufactured by the. action of bleaching powder on grain alcohol, but the latter is now largely zeplaced by acetone. Squibbs ${ }^{2}$ says that if 58 pounds of acetone be used to 600 pounds of bleaching powder containing 35 per cent of available chlorine, the yield of chloroform will be 150 to 180 per cent of the weight of acetone employed.

The foreign commerce in fine chemicals is exhibited in the following tables, compiled from the publications of the Bureau of Statistics of the United States Treasury Department:

[^71]IMPORTS FOR CONSUMPTION FOR THE YEARS ENDING JUUNE 30, 1891-1900.

YEAR.	ACONITE BARK, LEAF, AND ROOT.		NTX VOMICA.		ALL BALT PHIA OR	OF MORRPHINE.	SULPHATE OF MORPHIA OR MORPHINE AND ALL ALKALOIDS OR SALTS OF.		ALL SALTS OF STRYCHNIA OR STRYCHNINE.		ETHERS, SULPHURIC.		FRUITE, ETHERS, OILS, OR ESSENCE.	
	Pounds.	Value.	Pounds.	Value.	Ounces.	Value.	Pounds.	Value.	Ounces.	Value.	Pounds.	Value.	Pounds.	Value.
1891	2,761	\$266	1,394, 013	\$32, 930	29, 564	\$42, 269			230	\$175	8	\$1		
1892			1,392, 437	34, 038	38,758	43,301			305	153	100	28	611	\$1,540
1893.	4,351 1,329	236 108	1,720,315	41,567	23, 580	25, 035			16,538	7,053	20	2	762	\$1,800
1894.	1,329	108	$1,720,056$ 595,497	39,821 9,620	29,076 16,029	36,452 18,507			566	259	145	32	1,148	2,285
1896	3,034	197	1,275,500	15,668	-896	1,083			8, 8,768	3. 502	$\stackrel{55}{ }$	5	756	964
1897	4,020	620	1,248,637	15, 200	14,949	30,301			1,760 1,377	3,405 578	191	24	1, 132	1,731
1898			2,026,465	29,529	2,382	2,832	13,409	\$32,836	13,049	578 6,381	466 476	44 103	2,375	9,158
1899	1,392	120	1,636, 152	28,995			13,081	-35, 357	15,394	6,581 6,570	476 187	103 35	3,276 2,290	5,781 3,669
1900.	3,808	274	3,070, 536	65,460			26, 208	75,274	-7,753	3,570 3,362	817	35 110	2,290 2.573	$\begin{aligned} & 3,669 \\ & 4,507 \end{aligned}$

IMPORTS FOR CONSUMPTION FOR THE YEARS ENDING JUNE 30, 1891-1900-Continued.

Group XIX.-Chemicals General (Including all Chemical Products not Especially Enumerated ELISEWHERE).

This group includes a very large variety of products, and while they are enumerated here more in detail than has been feasible in any previous census report, it is not to be concluded that the presentation is complete.
The total number of establishments belonging to this group, and forming Class A, is 78, while 107 other establishments, forming Class B, made these products as a subordinate part of their industry. The great variety of products belonging to this group permits only a few general divisions, tabulated in table below, the amount of each product made in the works, but consumed there in the manufacture of other products, being entered separately so far as known. Classes A and B are combined for the sake of brevity.

CHEMICALS GENERAL, BY KIND, QUANTITY, AND VALUE: 1900.

PRODUCTS.	Number of establishments.	PRODUCTS.	
		Pounds.	Value.
Ammonia, aqua	A, 16; B, 12.......	26,758,068	\$1, 237,745
Ammonia, consumed		11,094,554	288,667
Ammonium, aqua sulphate ... ${ }^{\text {Ammanium, sulphateconsumed }}$ Ammen	A, 2 ; B, 4	1, $1,681,700$	23,724
Ammonium salts, sundry	A, 2 ; B, 4	1, 9494,479	128,768
Ammonium salts, codsumed		211,956	${ }^{1}$ (22,778
Antimony salts...	A, 3; B, A, B, ,	15, ${ }_{\text {2107, }}$	1,130,257
Chrome products	A, A, $1 ; ~ B, ~$ B,	27, 746, 570	133, 392
Copperas	А,1, B,	1,987,000	7,948
Copeam tartar	A,8	11,286,680	2, 130, 104
Dyers' chemicals...................	A, $2 ; 3$	6,653,247	105,895
	${ }^{1}$ Not given.		

CHEMICALS GENERAL, BY KIND, QUANTITY, AND VALUE: 1900-Continued.

PRODUCTS.	Number of establishments.	PRODUCTs.	
		Pounds.	Value.
Epsom salts	A, 2; B, 5	9, 239, 809	\$75, 066
Glauber's salts	A, 3; B, 15	31,314, 255	160, 065
Glycerin..	A, 5 ; B, $\mathbf{0}$.	15. 388 , 798	2,012,886
Glycerin, consume		4,000,000	480,000
Lead acetate	A, 3; B, $3 \ldots \ldots \ldots$.	1,296,991	73, 190
Saltpeter	A, 6	13,088, 680	482,580
Silicate, sodium	A, 5 ; B, 3 .	65, 302, 901	416,005
Sulphur, refined	A, 4.	25, 998, 638	393,548
Tin salts...		6,247, 205	
Vitriol, blue		$8,460,243$ $9,511,909$	544,817 353,902
		$9,011,90$	350, 302

The incompleteness of even this partial return is evident when it is noted that the ammonium sulphate produced by the gas and coke industries, the glycerin frow soap and other works, and the metallic salts, such as blue vitriol, etc., produced in metallurgical works, are not included here. The difficulty of obtaining a fairly complete enumeration of chemical products is shown by the fact that the returns collected on Special Schedule No. 17 give a total value for "chemicals, not otherwise specified," of $\$ 2,142,419$. In many cases it would not have been possible for the respective establishments to give these products in more detail, because this item is made up in part of small quantities of special chemicals made to fill certain orders, nor would the information have sufficient practical value to warrant the expenditure of the labor required to make more complete returns. In some instances, however, more definite information would have been desirable and could have been secured had circumstances permitted.

While 17 establishments reported a production of $26,506,818$ pounds of niter cake, valued at $\$ 37,360,15$ establishments produced $81,191,424$ pounds of salt cake, valued at $\$ 345,277$, and 10 establishments produced 62,701 tons of pyrites cinder, valued at $\$ 105,631$, it is at once evident that these figures are only a small portion of the actual product. Where an acid chamber is operated in connection with a fertilizer works, the niter cake is usually consumed in the manufacture of fertilizers. While there is usually no sale for the pyrites cinder, a few works report using pyrites, the cinder of which is returned to other works for special treatment, but, in most cases, the cinder is simply "dumped," in the hope that at some time in the future a market may be found for it.

The following table gives the quantities and values of the various chemical products enumerated in this group, the amounts designated by " C " being the figures collected from other branches of industry. As these are elsewhere reported, they must be so entered to prevent apparent duplication:

In considering the various items of this table, the quantities given for the lead and sodium acetates, as also
for aluminum chloride, probably, fairly represent the total production of these articles, since they are made only in works which belong to "chemical industries," and which have given fairly detailed reports. Still, and this is true for all other cases, where these substances are made in small quantities, they may be, and usually are, included in "chemicals not specified," which aggregates so large a value.

The quantities of aqua ammonia and of the various ammonium salts enumerated are probably less than the true amounts, since these are made in many industries, some of which do not belong to the chemical category. It is, however, reasonable to suppose that these figures do cover the greater part of such product because, although it has not been possible to get direct figures for the quantity of ammonia liquors, produced by the gas works, still most of these sell their liquors to outside chemical works which have furnished figures of their own production. Similarly, while some of the makers of boneblack, and other industries producing ammonia liquors, were classified in other categories, most of their ammonia product was refined elsewhere, and appears in this tabulation.

The ammonium products reported, other than sulphate, and their contents in NH_{3} (anhydrous ammonia) are as follows:

	Pounds.	Pounds.
Ammonia, anhydrous liquid	2, 443, $729=\mathrm{NH}$	2, 443, 729
Ammonia, aqua, 20 per cent	$28,282,700=\mathrm{NH}_{3}$	5, 656, 540
All other ammonia salts	1, 894, $474=\mathrm{NH}_{3}$	531, 387
	32,620, 903	8,631, 686

In addition to these figures, a certain amount of ammonium nitrate, picrate, etc., has been made and consumed in the explosive industry, and, moreover, it is likely that not all of these products have been so reported as to be identified and separated. It is, therefore, fair to assume that the total quantity of ammonium products, other than sulphate, made in the United States during the census year, and entering into consumption, is equivalent to $10,000,000$ pounds of anhydrous ammonia.

The total reported quantity of ammonium sulphate is as follows:

	Pounds.	Po
From chemical industry.-.....-.-.	$11,094,554=\mathrm{NH}_{3}$	2, 773, 639
	$1,681,700=\mathrm{NH}_{3}$	420, 425
From coke industry	$11,984,931=\mathrm{NH}_{3}$	2,996,283
From other categories. --. -- -- . . .	$216,000=\mathrm{NH}_{3}$	54, 000
Used by	24, 977, $185=\mathrm{NH}_{3}$	6, 224,347
	$8,239,445=\mathrm{NH}_{3}$	2,059, 061
Available tor other purposes . $16,737,740=\mathrm{NH}_{3}$		4,165, 286
		5, 834, 714
Total requ	NH	0, 000

To supply this deficit, the coke industry reports in addition, a production of ammonium liquor of $1,572,325$ gallons which, at 8 pounds to the gallon and an average of 18 per cent NH_{3}, equals $2,517,720$ pounds, leaving $3,316,994$ pounds to be supplied either as ammonia liquor, or sulphate, by the gas industry and by such other industries as are not already included. Since the
quantity contributed by this last class is comparatively very small, the $3,316,994$ pounds may be taken as being furnished by the gas industry. The total amount of ammonia produced by it is undoubtedly much greater, but it must be remembered that, in many of the smaller works, the local conditions are such that the ammonia liquor can not be profitably utilized, and hence is run to waste. Despite the demand for ammonium sulphate for fertilizer purposes, it is not a simple matter to make a sulphate suitable for this use, since the crude salt contains sulphocyanate and other impurities which must be removed, as they are highly deleterious to vegetation. Such purification requires special skill and can not be profitably undertaken unless the supply of crude material is sufficiently large to warrant the erection of the proper plant.

Considerable quantities of ammonia liquor and sulphate are made in Europe as by-products from the gases of olast furnaces, and this production will undoubtedly increase with the extending use of gas-driven engines. This use requires that the furnace gases must be carefully cooled and systematically washed, so that the gas shall enter the engine with the minimum of impurities, as these rapidly destroy the working parts of the combustion chambers. Where the gas is used only for heating the stoves and for burning under boilers, such purification is not necessary, and so far, no serious attempt has been made here to produce ammonium salts in blast-furnace work.

In considering the other items of this list, the quantities of antimony salts and barium salts probably cover the entire product. The quantity of bone ash reported is undoubtedly less than the actual product, as is also the case with calcium chloride, since none is reported in the special census report on salt, although formerly a large quantity was produced as a by-product in the Ohio River salt region. The salt of this region contains calcium chloride in place of the calcium sulphate of the New York, Michigan, and other regions, and owing to its presence the salt when made is "soft salt," slightly deliquescent and quickly dissolved. The northern salt, which contains no calcium chloride, is "hard salt" and dissolves nuch more slowly. Owing to its ready solubility the "soft salt" was formerly preferred in the South for curing meats, as it "struck in" faster, hence there was a better chance of saving the meat in the comparatively warm climate, where ice was unattainable.
Calcium chloride is largely used in solution as the circulating medium in the manufacture of ice and in refrigeration; also, to a subordinate extent, as an air drier and in the manufacture of textile goods; also to some extentas the solution used in charging fire extinguishers. It recommends itself for this last-mentioned use because of the low freezing points of strong solutions of the salt. It is stated that a solution of calcium chloride of 1.25 specific gravity, and containing 27 per cent of the salt, freezes at $32.6^{\circ} \mathrm{F}$., and that one at 1.175 specific gravity, freezes at zero. It is, therefore, an easy matter
to prepare solutions which will not freeze at the lowest winter temperature of the locality where used, and hence be always ready for service in case of fire.

Chrome products, mainly bichromates of potash or soda, form a considerable iten in this list. Ten establishments reported making such products during the census year. The industry has an especial interest, because the methods of manufacture have been largely developed in this country. The Baltimore Chrome Works, still the largest producer, began operations in 1845 , which have been continued with great success up to the present time.
The copperas reported is only a portion of the total product, as the product of the metallurgical works is not included. It is made in large quantities by wire mills galvanizing works from the "spent pickle." Before wire rods can be drawn or iron can be galvanized the surface must be carefully cleaned, part of this work being the pickling or immersion of the steel or iron in a bath of moderately diluted sulphuric acid. This dissolves the rust and also some of the metal, so that in time the bath becomes spent, being then a solution of ferrous sulphate containing still much free acid. To neutralize this acid, and at the same time to utilize an otherwise waste material, the iron clippings and other iron scrap of the shops are added to the pickle which dissolves them. The solution is then evaporated and allowed to crystallize. The crystals are removed and the mother liquor used to make venetian red, by treating it with lime. This causes a precipitation of calcium sulphate mixed with hydrated oxide of iron, various shades of color being obtained by regulating the proportion of lime added and by subsequent treatment.
Cream of tartar, so extensively used in baking powders, is another large item. Eight establishments reported making it, but the bulk of the business is done by two of them.
This manufacture illustrates the refinements of which chemical manufacture on a large scale is capable; for the Tartar Chemical Co., at its works in Brooklyn, N. Y., is producing cream of tartar by the ton in a chemically pure condition.
The Epsom and Glauber's salts reported probably cover the production, but the figures for glycerine represent only a small part of the actual production, as the product of only a few of the soap-making establishments and other sources is here included.
Sodium silicate, or water glass, is produced in large quantities, as it is extensively used in soap making, calico printing, and fresco painting; for rendering cloth and other draperies noninflammable; as a preservative for timber and porous stone; in the manufacture of artificial stone and in making cements for glass and pottery.
Sulphur chloride is used in vulcanizing caoutchouc; sodium sulphide as a depilatory in tanning; and sodium hyposulphate in photography, dyeing, and calico printing, and for other purposes. The quantity of sulphites reported is only a very small part of that actually made,
since the sulphite used in making paper pulp is usually made and consumed in the works, and is not separately reported.
The other items receive no special mention. The quantities given are believed to fairly represent the production of the country, and their methods of preparation and uses may be found in the standard works on technical chemistry.

Subgroup A.-In the course of this work schedules were received from 19 establishments, whose principal products were not originally classified in "chemicals," though the products were the result of operations of a chemical nature. As such establishments are more properly included in this category than in any other, and yet can not well be placed in any of the regular groups, it is deemed advisable to form a special subgroup, XIX A, in which all such are included. Their character and the extent of their operations are shown in the following list:

	-	Number of establish ments.	Quantity.	Value.
Camphor, refined.		3	Pounds. 598, 708	\$254, 190
Caseln		3	609,210	30, 336
Dextrin and sizes.		4	12, 204, 570	221, 995
Milk sugar...		4	1, 395, 290	110, 247
Shellac, refined...		3	1,123, 752	187, 333
Sundry products.		2		176, 928

In addition, a number of establishments classified under other groups report such substances as subproducts of their operations, the aggregate becoming considerable both in quantities and values, and also emphasizing the importance of care in the preparation and correlation of schedules and in the collection of returns.

At the beginning of this report a list has been given of the principal topics included in the field of "chemical technology," and it has been indicated how far these have been separately treated of in the present census. Referring to this list, it will be observed that no provision was made for taking special returns of establishments manufacturing certain important products, such as glue, soap, starch, etc., noted below, the general schedule for manufactures, No. 3, being used for this purpose.

The following list of the products included in this group, while fairly correct for the special industries enumerated above, must therefore, for all of the otber items, be taken as representing only a portion of the total product of such articles throughout the country during the census year.

PRODUCTS INCLUDED IN SUBGROUP A.

	Number of estab-lishments.	Unit.	Quantity.	Value.
Boiler compounds	1	Barrels	200	\$6,400
Bone black.......	7	Tons...	15,100	586, 736
Brandy -	3			14, 561
Camphor, refined	4	Pounds	625,128	264,880
Caramel	3	Pounds..	1, 736,000	87,000
Casein.	3	Pounds..	609,210	30, 954
Cement.	2	Tons....	10,150	82,500

PRODUCTS INCLUDED IN SUBGROUP A-Continued.

	Number of estab-lishments.	Unit.	Quantity.	Value.
Chemical compounds, sundry	5			\$102, 228
Cider	1			563 470,518
Dextrine, sizes, etc	5	Ponnds	19,106,784	470,518 1,865
Disinfectants......	2			60,000
Extracts, flavoring	1	Gallons.	5,000 2,963	60, 36081
Filler, crown	1	Tons...	14,677	35, 000
Filler for fertilizing	1	Tons. Pom	922,261	251,872
Glue....	13	Pounds.	11, 079, 408	701, 596
Gum compound	1	Pounds.	336, 012	38,716
Gypsum, precipitated.	2	Tons.	1,264	1,264
lnk.......	3			41,000 89,610
Licorice extract...	1	Pounds	1,178, 226	89,610 110,290
Milk sugar, refined ..	4	Pounds. Pounds.	$1,375,290$ 133,300	110,290 7,000
	1	Pounds	133,300 ...	7,000 15,042
Pyrites cinder.	11	Tons..	62,701	105,631
Residues, factory	10			15,637
Shellac, refined.	7	Pounds	1,832, 290	317,585
Soaps, etc....	11			207,716
Starch	1	Pounds..	$1,372,889$ 111,500	30,890 12,400
				3, 726,292

Miscellaneous.-The examination of schedules for tabulation has furnished a large amount of products which are not chemical, and therefore would not be included in our returns, except that they are side products of establishments belonging to this category. In addition, there are values such as "custom work," increasing the profits of an establishment, and the "bonus" paid by cities to garbage-reduction works, which is necessary to the existence of such works.
The following list shows the variety and value of these articles, quantities being given where possible, and may be useful as supplementing the returns for such products so far as these may be separately reported:

	Number of estab-lishments.	Unit.	Quantity.	Value.
Apples, evaporated.	1	Pounds..	35,000	\$1,100
Asphalt, paving	1	Pounds..	47,000	1,364
Baking powder.	2	Pounds.	755, 506	54,058
Bird seed.	1	Case	13,718	30,865
Bluing	2	Pounds.	200,000	7,500
Brusbes .-.....	1	Dozens	350	3,000
Building materials.	3			68,440
Candles	3	Pounds	1,792,075	181, 475
Boncs, ${ }_{\text {Containers }}$	5			161,790
Corks...	9			213,675 5,000
Cottonseed products	5			5,001 189,021
Custom work..	12			189,021 79,940
Dental plaster	1		3,864,000	77,270
Fish, edible .	1	Barrels	2,000	8,000
		Tons		2,000 2,400
Grease, tallow, etc	61	Tons	200	2,400 $1,034,248$
Hides..	17			1, 158,198
Horns, hoofs, ete.	13			108,443
Ice, manufactured	1	Tons.	7,200	15, 000
Hay,mint	-	Tons	2,100	6, 356
Oils:	1			74, 218
Animal.	20			
	25	Gallons.		222, 929
Linseed	1	Gallons.	$1,135,264$ 460,344	222,929 207,155
Poultry foods		Pounds.	6, 051, 400	60, 514
Pottery, chemical	1	Pounds.	2, 265, 352	31,528
Pickled goods..	1	Pounds.	112,894	5,515
Metallic	3			$\begin{gathered} 62,859 \\ 42,918 \end{gathered}$
Mineral	2			42,918
wax, modeling	6 1			34,123
1	1	Pounds	25,000	3,750
				4, 175,656

The foreign commerce, in substances treated of in this group, is set forth in the following tables, compiled from the publications of the Bureau of Statistics of the United States Treasury Department:

IMPORTS FOR CONSUMPTION FOR THE YEARS ENDING JUNE 30, 1891-1900.

No. $210-7$

Table 1.-FERTILIZERS:

SUMMARY BY STATES, 1900.

Table 1.-FERTILIZERS: SUMMARY

		Maine.	Maryland.	Massachusetts.	Mississippi.	Missouri.
1	Number of establishments	3	40	9	3	3
2	Character of organization: Individual	1	11	4		1
3	Firm and limited partnership.		12	2		
4	Incorporated company........	2	17	3	3	2
5	Capital: ${ }_{\text {Total }} \ldots \ldots \ldots \ldots . .$.	\$49,350	\$7, 003, 376	83, 250, 030	\$353, 497	8219, 201
6	Land	\$1,050	\$7713,011	\$150,179	\$17, 322	\$20,767
7	- Buildings.	\$4,900	\$965, 287	\$227,967	\$40,000	\$46,957
8	Machinery, tools, and implements	\$26,400	\$1,108,947	\$396,601	\$ \$57, 162	837,607
9	Cash and sundries.................	\$17,000	\$4, 216, 131	\$2, 475, 283	\$239, 013	\$113, 870
10	Proprietorsand firm members ..			7		
11	Salaried officials, clerks, etc.: Total number	2	212	171	15	15
12	Total salaries...	\$3,400	\$245, 528	\$186,685	\$18,650	\$12, 907
13	Officers of corporations- Number c...........		42	2	6	4
14	Salaries.		\$98, 892	\$25,000	\$6,150	\$3,935
16	Total salaries.	\$3,400	\$146,636	\$161,685	\$12,500	\$8,972
17	Men-	2	162	153	9	9
18	Salaries. Women-	\$3,400	\$143,389	8153,553	\$12,500	\$8,120
19	Number		8	16		2
20	Wage-earners, including pieceworkers, and total wages:		83, 247	\$8,132		52
21	Greatest number employed at any one time during the year.	87	1,983	349	172	81°
22	Least number employed at any one time during the year	8	1,758	161	46	50
23	Average number	34	1,016	227	94	60
24	Wages. Men, 16 years and over-	\$6,990	\$457, 692	\$115,083	\$32,800	\$27,986
25	A ${ }^{\text {a }}$ erage number . .	34	1,010	226	94	59
26	Wages	\$6,990	\$455,576	\$114, 619	\$32, 800	\$27, 590
27	Women, 16 years and overA verage number					
28	Wages........		\$2,116	\$464		
	Children, under 16 years-					
29 30	A verage number....					1
30	Wages........					\$396
31	Miscellaneous expenses: Total	\$2,120			\$40,186	\$36,449
32	Rent of works	2,120	\$ $\$ 34,846$	\$ \$4, 126	\$4,186	- 8300
33	Taxes, not including internal revenue	\$220	\$35,054	\$15, 209	\$6,067	\$783
34	Rent of offices, insurance, interest, and all sundry expenses not hitherto included.	\$1,900	\$284,444	\$180,452	\$34,119	\$30,714
35	Contract work......................--					\$4,652
36	Materials used: Total cost.	\$22,190	\$3, 643,846	\$11,115,818	\$342,389	
37	Fish, thousands	5,000	-12,000	\$2,115,818	\$342, 389	8137, 306
38	Cost ...	\$1,500	\$16,500			
39	Kainit, tons	\$1,150	6, 895		3,234	40
40	Cost	\$1,500	\$58, 547		\$35, 800	\$400
41 42	Limestone, tons Cost			38		
43	Phosphate rock, tons		123,562	18,722		
44	Cost.		\$562,851			638 $\$ 1,819$
45	Pyrites, tons		\$41,075	-13, ${ }^{\text {9,054 }}$	$\$ 22,000$ 4,000	\$1,819
46	Cost		\$179,259	\$43, 459	\$28,000	
	Acids-					
47	Sulpharic, tons		24,747	1,600		
$\begin{aligned} & 48 \\ & 49 \end{aligned}$	Coost		\$146,009	\$11, 600	\$5,000	\$2,935
49 50	Nitric, pounds.			1,075		
51	Acid phosphate, tons	330	29,571			
52	Cost	\$4, 500	\$237,541	$\begin{array}{r}\text { \% } \\ \mathbf{\$ 6 2 , 5 5 3} \\ \hline 68\end{array}$	7,892 $\$ 67,178$	$\begin{aligned} & 175 \\ & \$ 1,748 \end{aligned}$
53	Ammonia-					
54	Cost.......					
55	Sulphate, pounds		278,521	200,000		
56 57 57			87,939	\$5, 500		
57 58 58	Bones, tankage, and offal Common salt, tons	\$5,580	\$1,159, 285	\$402, 020	\$93,046	\$64,690
58 59	Common salt, tons. Cost		140	12		
60	Cotton seed and meal.		\$700	\$72		
61	Lime, bushels..					
62	Cost......					
63 64 64	Nitrate of potash, tons. Cost...............			1		
64 65	Nitrate of soda, tome			816		
66	Cost.............	\$1,500	\$95,602	- 3, 120	150	
67	Potash salts..	82, 480	\$ 436,219	$\$ 112,176$ $\$ 209,755$	$\$ 5,400$ $\$ 18,560$	
68	Sulphur, tons.		6,277		\$18,560	\$1,340
69	Cost.......		\$141,281			
1	Tallow and fats					
71 72	All other components of products	\$2,310				
72 73	Fuel Rent of power	\$250	\$56, 762	\$13, 674	$\$ 8,280$	$\$ 47,968$ $\$ 7,608$
74	Mill supplies.........		${ }_{\$ 32}^{\$ 100} 845$			
75	All other materials	81.430	\$310,845	877,322	\$5, $1=0$	\$439
76	Freight		\$ $\$ 120,224$	\$92, 993	\$34,000	\$8,359
	Products:				\$16,600	
77	Aggregate value Acids-	\$40,002	\$5, 481,905	\$2, 074, 590	\$492, 772	\$236, 635
78	Sulphuric, Value 50 Baumé, tons .		19,912			
79	Sulphuric, 60 Baumer, tons		\$118,185			
81	Value'................					
2	Sulphuric, 66 Banme, to in					
83	Valne............					
84	Other acids .					
	Sodas-					
85 86	Sal soda, tons.					
86 87	Value					
87	Other soda products		\$405			

BY'STATES, 1900-Continued.

New Jersey.	New York.	North Carolina.	Ohio.	Pennsylvania.	South Carolina.	Tennessee.	Virginia.	All other states. ${ }^{1}$	
28	32	18	27	61	22	5	39	11	1
$\begin{array}{r}11 \\ 8 \\ 9 \\ \hline\end{array}$	$\begin{array}{r}17 \\ 3 \\ 12 \\ \hline\end{array}$	1 7 10	$\stackrel{9}{9}$	$\begin{aligned} & 22 \\ & 16 \\ & 13 \end{aligned}$	2 1 19	${ }_{3}^{2}$	9 18 18	8	2 3 4
$\begin{array}{r}\text { \$5, 690, } 270 \\ \$ 5565 \\ \hline 885\end{array}$	\$4,600,559	$82,818,921$	$\$ 1,887,937$	\$3, 802, 794	$\$ 10,505,043$ \$109, 441	$8900,397$ 876,947	\$4, 908, 381 \$164,328	${ }_{\substack{\text { S }}}^{\$ 515,545}$	${ }_{6}^{6}$
8608, 382	8720, 629	4403, 281	\$273,879	\% 6681 1,345	\$1,642, 600	\$313,519	\$579,504	\$120, 383	7
- 8 8652, 477	\$1,012, 378	\$213, ${ }^{\text {\$208 }}$	\$836,003	\$558, 872	\$487, 117	\$688,339	\$483,462	\$126, 811	8
$\begin{array}{r} \$ 3,872,826 \\ 30 \end{array}$	\$2,415, ${ }_{24}$	\$2, 102, ${ }^{598} \mathbf{1 6}$	\$1, 179, 293	\$2, 121, ${ }_{4} 86$	\$8,265, 885	\$491, 592	$83,681,087$ 35	\$247, 207	${ }_{10}^{9}$
$\begin{array}{r} 155 \\ 8230,330 \end{array}$	$\begin{array}{r} 192 \\ \$ 211,207 \end{array}$	$\begin{array}{r} 51 \\ \$ 65,838 \end{array}$	80 $\$ 103,608$	$\begin{aligned} & 1600,755 \\ & \hline \end{aligned}$	85 $\$ 164,716$	$\$ 48,568$	$\begin{aligned} & 112 \\ & \$ 141,872 \end{aligned}$	19 $\$ 26,89$	12
$\begin{aligned} & 888,130 \end{aligned}$	$\begin{aligned} & 859,770 \\ & \hline 8 \end{aligned}$	$\$ 29,823$	$\begin{gathered} \$ 26,850 \end{gathered}$	$\begin{array}{r} 16 \\ \$ 57,708 \end{array}$	$835,976$	\$19, $300{ }^{7}$	$\begin{array}{r} 22 \\ \mathbf{8} 54,266 \end{array}$	$\$ 10,60{ }^{5}$	13 14
$\begin{array}{r} 134 \\ \$ 142,200 \end{array}$	\$151,437	$\begin{gathered} 40 \\ \$ 36,015 \end{gathered}$	$\begin{aligned} & 676,758 \\ & \hline 67 \end{aligned}$	151 8840,047	\% 86 8128,740	r 38 $\$ 29,268$	$\begin{array}{r} 90 . \\ 987,606 \end{array}$	\% $\begin{array}{r}14 \\ 816,398\end{array}$	15
$\begin{aligned} & 126 \\ & \$ 136,746 \end{aligned}$	$\begin{array}{r} 158 \\ \$ 144,867 \end{array}$	$\begin{aligned} & 40 \\ & \$ 36,015 \end{aligned}$	$\begin{array}{r} 62 \\ \$ 74,098 \end{array}$	$\begin{array}{r} 140 \\ \$ 137,608 \end{array}$	\% $\$ 128,500$	\% 828, 788	89 887,156	\$15, 670	17
$\begin{array}{r} 85,48 \\ 85 \end{array}$	$\begin{array}{r} 14 \\ 86,570 \end{array}$		$82,660$	$\begin{array}{r}11 \\ \hline 8.439\end{array}$	\$240	1 8480		1 $\$ 728$	19 20
1,308	2,001	790 242 27	858 246 28	956 692 695	$\begin{array}{r}3,066 \\ \hline \\ \hline 54 \\ \hline 75\end{array}$	747 201 2013	2,236	286 168 168	21 22 22
($\begin{array}{r}\text { 963 } \\ \hline 8441,177\end{array}$	(1, $\begin{array}{r}1,083 \\ 4991,898\end{array}$		$\begin{array}{r}\text { 400 } \\ \text { 400 } \\ 887388 \\ \hline\end{array}$	\% 865 $\$ 851,873$	1,772 8479,449	443 $\mathbf{4 9 4}, 101$	8320,771 882	218 $\$ 110,357$	${ }_{24}^{23}$
$\begin{array}{r}\text { \% } \\ \hline 4329 \\ \hline 451\end{array}$	1,033 8491,898	\$109, 117	\$171,768	$\$ 351,773$	$\begin{array}{r} 1,772 \\ \$ 479,449 \end{array}$	$894,101$	1,171 8320,774	$\begin{array}{r} 218 \\ \$ 110,357 \end{array}$	${ }_{26}^{25}$
$\begin{array}{r} 30 \\ \$ 7,894 \end{array}$			\$2,000						${ }_{28}^{27}$
\$882		1 875	1 $\$ 120$	\$100					29 30
\$312, 500	\$317,826	\$108, 209	\$112, 317	\$288, 324	\$675,	8110,953	\$806,382	${ }_{961,276}$	${ }_{32}^{31}$
(811,069	- ${ }^{\$ 77410}$	\$17, ${ }^{835}$				- $72.73{ }^{\text {a }}$			31 34 34
\$282, 268	\$289, 846	\$90, 625	\$107,447	\$203, 364	\$621,339	\$108, 240	\$272, 844		34
\$734	\$150	\$10	\$200	\$9, 523			$\$ 311$	\$7,788	35
83, 146, 022	\$1,909,158	\$1,044, 267	\$1,016, 501	\$2, 684, 272	83, 107, 710	\$790, 101	\$2, 161,423	\$352, 221	
¢ ${ }_{\text {89,765 }}^{14,17}$		${ }^{4,218,668}$	\$2,800				\$57, 4iv	\$11, 669	${ }_{39}^{38}$
4, 8486 888	\$15,075	-89,587 ${ }^{967}$	\$21,530	${ }_{811}^{1,2659}$	${ }^{371,226}$		\$10, $\begin{array}{r}107 \\ \hline\end{array}$		39 40
			75	1,100			1,666	168	41
-85,293	\$7755	\% 88,488	28.5150	33,413	14i1,964	36,43i	${ }_{82,482}$	${ }_{10}$	${ }_{43}^{42}$
8897,982	\$142,701	8160, 554	\$114,172	${ }_{\$ 200,320}$	\$555, 861	${ }^{8118,067}$	8290,778	\$92	${ }_{44}^{43}$
14,064 874,976	$\begin{gathered} 6,940 \\ \mathbf{8 3 0} 611 \end{gathered}$	16,684 $\$ 88,818$	\$ $\begin{array}{r}513,000 \\ \$ 13,000\end{array}$		\$899,010	\$155,428	\$147,312		${ }_{46}^{46}$
60,082 \$252,099	16,559 8113,652	3,402 $\$ 19,051$	$\begin{array}{r} 21,328 \\ \mathbf{\$ 1 4 3 , 8 0 6} \end{array}$	$\begin{array}{r} 36,057 \\ \$ 193,759 \end{array}$	4,459 824,632	310 $\mathbf{3 2 , 4 1 2}$	$\begin{aligned} & 16,221,21 \\ & \$ 99,236 \end{aligned}$	646 3,429	${ }_{48}^{47}$
$\begin{array}{r} 12,05 i \\ \$ 19,061 \end{array}$	$\begin{array}{r} 18,123 \\ \$ 154,685 \end{array}$	10,256 887,276	\$82,519	${ }^{8157,600}$	\$121, 141	1,200 89,000	8140,646	\$1,690	60 62 50
							2,620		53
		50,000					730, 000	2, 4000000	55
(1920,246	\% 821,315						\$ $8.857,909$	\$249, 8600	${ }_{57}^{56}$
\$1, 104, 361	8588, 924	\$354,015	\$344, ${ }_{8}$	\$1,094, 136	\$1,061,977	\$141,576	$8.57,892$ 10	\$249, 169	${ }_{58}^{57}$
	\$336		850	\$200			\$85	860	${ }_{6}^{59}$
	i, 343			11, 430			357		61
	\$225			\$600			${ }_{877}^{862}$		${ }^{62}$
	\$200		${ }^{960}$				\$31,880		64
2,097	- $\begin{array}{r}1,199 \\ 848 \\ \hline 18\end{array}$		\$11,650 ${ }^{336}$	\$26,729 ${ }^{657}$	\% $\begin{array}{r}2,169 \\ 882,569\end{array}$	819,789 $\mathbf{8 1 9}$		\$8, 116	${ }_{66}^{66}$
877, 770 8525,341		\$ 8105,866	\$ $\$ 36,533$	8329,619	\$310, 118	\$114, 224	\$205, 327	\$11,850	${ }_{68}^{67}$
$\$ 81800$ $\$ 12,100$	1,740 $\$ 29,680$								
\$12, 100	\$29,680		\$1,000						70
\$14i,554	879,737	88,146 889	$\$ 466,456$ $\$ 20,348$	${ }_{\$}^{\$ 290} \mathbf{\$ 5 4 , 4 1 4}$	999,455 888,786	\$19,014	钅73, 424	$\begin{gathered} 925,189 \\ \$ 920 \\ \hline 999 \end{gathered}$	71
\$49,966	\$190,602						8100		73
\$14,989 ${ }^{\circ}$	\$21,074	\$13,683	\$6, 353	${ }_{814,101}^{81621}$	\% ${ }^{6} 9,909$	$\$ 2,643$ 88.140	${ }^{87} \mathbf{8 7}, 130$	\$1, 91.36	74
${ }_{\text {8160, }} \mathbf{1 1 6}$	$\begin{array}{r}\$ 185,769 \\ \$ 667 \\ \hline 987\end{array}$	\$86, 133 $\$ 36,659$	${ }_{\$ 75 \text {, }}^{\$ 96158}$	\$ $\$ 1640,031$	${ }^{\$ 2223,276}$	(888, $\begin{array}{r}8140 \\ \$ 102,819\end{array}$	$\begin{array}{r}\text { \$170, } \\ \$ 234 \\ \hline 1878\end{array}$	${ }_{\$ 96,080}$	75
$\$ 187,374$ $\$ 4,290,629$	\$3, 147, 894	\$1,497,625	\$1, 657,058	\$3,644,320	84, 882, 506	\$1, 466,288	\$8,415,850	8623,372	77
							$\begin{array}{r}309 \\ \hline 109\end{array}$		
,	\$4, ${ }^{\text {a }}$ 34						${ }^{1}, 205$		80
	${ }^{488}$						\$7,230	-	
	\$22, 603	,				8
8277									88

${ }^{1}$ Includes establishments distributed as follows: Iowa, 1; Michigan, 1; Minnesota, 1; Nebraska, 1; Oregon, 1; Rhode Island, 1; Texas, 2; Washington, 1; West Virginia, 2.

Table 1.-FERTILIZERS: SUMMARY

BY STATES, 1900-Continued.

District of Columbia.	Florida.	Georgia.	Illinois.	Indiana.	Kansas.	Kentucky.	Louisiana.	
\$71,480	\$496,642	83, 240, 304	\$1,721,760	\$235, 836	\$549,943	\$295, 520	\$856, 201	88
...........................	$\begin{array}{r} 9,394 \\ 893,940 \end{array}$	$\begin{array}{r} 131,503 \\ \$ 1,075,581 \end{array}$	26,108 $\$ 318,850$	365 $\$ 10,006$	8,978 $\$ 160,498$		29,244 $\$ 263,821$	89 90
		14,603	4,150 $\mathbf{4} 8$	- 27	6, 6 , 858		13,037	91
- 3,160	-15, 43.3	\$229,271	$\$ 58,100$ 43,483	$\$ 500$ 5,750	$\begin{array}{r}\text { \$125, } 745 \\ 10,000 \\ \hline\end{array}$		$\$ 221,599$ 22,842	92 93
\$64, 800	\$377, 635	\$1,563, 653	\$8835,385	\$116,280	\$200,000	\%295,520	\$ $\mathbf{2 2 6 7 , 1 8 1} \mathbf{1 8 1}$	9
449 $\$ 6,580$	1,315 $\$ 25,167$	26,605 $\$ 371,799$	23,433 $\mathbf{8} 14$	6,431	4,535		${ }^{83} 300$	95 95 96
								97 98
\$7, 450	\$2,764	\$121,613	\$133, 400	\$19,495	\$26, 725^{-}	\$26, 600	99
	7,065	78,655					17,718 3,025	100 101
								102
	380,000							103
878, ${ }^{63}{ }^{6}$	8500, 239	\$1,432, ${ }^{20}$	\$514, ${ }^{3}{ }^{3}$	13 $\$ 254,571$	8549, ${ }^{3} 43^{3}$	\$321, ${ }^{4} 4$	\$896, ${ }^{5} 51$	104 105 106
\$73,300	\$438,292	\$1,317, 770	\$392, 860	\$211, 270	\$421,923	\$293, 629	- \$617,632	106
2 85	5 412	32 3,823	1,315 ${ }^{4}$	14 565	2 620	- $\begin{array}{r}4 \\ 483\end{array}$	6 826	107 108
	8 400	54 3,795	1, 315	16 528	2 320	483	11 795	109 110
				2				111
	--1-- - -	...--------		37---...-.......		112
								114
		2					$\dddot{2}$	115
-		28					31	116
								117
	12							
. 20					300			120
6	7	41	5	14	3	4	6	121
	1	2	2	4	1			122 123
	1	14	1	9			$\stackrel{\rightharpoonup}{2}$	124
	4	10		1		2	1	125
	1	8	1		2	2	2	126
		1	1					128
								129

Table 1.-FERTILIZERS: SUMMARY

		Maine.	Maryland.	Massachusetts.	Mississippi.	Missouri.
	Products-Continued.					
88	Fertilizers- Total value					
	Superphosphates-	\$27,902	\$5, 174, 357	\$2,060, 575	\$492,772	\$139,395
90 91 98	Value Ammoniated, tons.		\$1, 176, 48,608	\$12,820	\$50, 400	\$44,248
${ }_{93}^{92}$	Value...		\$690,671			
94	Complete, tons.	828 $\$ 21,602$	183,705	81, 76,571	30,504	2,774
95	All other, tons.	$\$ 21,602$ 1,000	\$2, 977,015	\$1,940,605	\$442,372	$\$ 39,039$ 2,354
96		\$6,300	\$330, 572	\$107, 150		2,354 $\$ 56,108$
97	Chemica, not otherwise specified- Epsom salts, pounds...............					
98	Value Value					
99	Products consumed: Value of all otber products.	\$12,100	\$188,958	\$14,015		\$97,240
100	Sulphuric acid, tons...		94,490	18,590	9,000	
101	Acid phosphate, tons..				9,000	
103	All other prodncts consumed, pounds.		823,200			
	Comparison of products:		20, 20			
104	Number of establishments reporting for both years.	2	34		3	3
105	Value for census year..........	\$28,002	\$3, 936,185	\$2,073,910	\$492, 772	\$236, 635
106	Power:	\$28,500	\$3,731, 268	\$1,517,852	\$429,000	\$234,176
107	Number of establishments reporting					
108	Total horsepower Owned- \qquad	85	3,647	1,217	415	609
109	Steam, number .		51	26		
1110	Horsepower	60	3,263	785	415	609
111	Gas or gasoline, number Horscpower		4			
113	Water wheels, number...		75			
114	Horsepower	20	44			
115	Electric motors, number	1	7	8		
116	Horsepower Other power number	5	205	382		
118	Other power, number Horsepower			1		
	Rented-			50		
119	Electric, borsepower					
120	Establishments classified by number of persons employed		60			
	Estabishments classified by number of persons employed, not including proprietors and firm members:					
121	Total number of establishments..	3	40	9	3	3
123	No employees					
124	5 to 20 . \ldots.......		4	5		2
125	21 to 50	1	15	1		
126	51 to 100.		12		2	
127	101 to 250		$\stackrel{2}{6}$	1	1	1
128	251 to $500 .$.		1	1		
129	501 to $1,000 \ldots$			1		

BY STATES, 1900-Continued.

${ }^{1}$ 1ncludes establishments distributed as follows: Iowa, 1; Michigan, 1; Minnesota, 1; Nebraska, 1; Oregon, 1; Rhode Island, 1; Texas, 2; Washington, 1; West Virginia, 2.

Table 2.-DYESTUFFS AND EXTRACTS, SUMMARY BY STATES: 1900.

1 neludes establisbments distributed as follows: California, 1; Connecticut, 2; Florida, 2; Illinois, 2; Kentucky, 1; Maine, 1; Michigan, 1; Rhode Island, 2;
ennessee, 1 .

Table 2.-DYESTUFFS AND EXTRACTS, SUMMARY BY STATES: 1900-Continued.

	United States.	Massachusetts.	New Jersey.	New York.	Pennsyl. vanial.	Virginia.	West Virginia.	All other states.
Comparison of products:								
Number of establishments reporting for both years.	66	10	9	17	8	8	3	11
Value for census year...........................	36,929,350	\$1,320,881	\$490,798	\$1,938,086	\$1,088,473	\$479, 372	\$215, 254	\$1,396,486
Vawer:	\$6, 240, 273	81, 213,358	\$441,617	\$1, 808,320	\$1,012,812	8380, 116	\$169,569	\$1,214,481
Number of establishments reporting.	59	6	7	12	11			10
Total horsepower Owned-	11,518	347	859	4,203	2,818	785	455	2,051
Engines-								
Steam, number.	144	6	10	48	27	14	6	33
Horsepower.	10,458	297	795	4,148	2,432	470	415	1,901
Gas or gasoline, number Horsepower				1			
Horsepower Water wheels, number......	300 9				300	3		
Horsepower	325	50				140		135
Electric motors, number	15		3	3	7			
Horsepower	159			40	86		15	15
Rented-								
Electric, horsepower Other kind, horsepower.	20		5	15				
Other kind, horsepower..................	256		56			175	25	
Establishments classified by number of persons employed, not								
including proprietors and firm members:								
Total number of establishments	77	10	10	19	12	8	5	13
No employees	1				1			
Under 5	12			2	1		1	
5 to 20.	33		5	7	3	4	3	
21 to 50.	14			3	5			
51 to 100	12		2	4	1	3	1	
101 to 250	2			1	1			
	2			1				
501 to 1,000..	1			1				

${ }^{1}$ Includes establishments distributed as follows: California, 1; Connecticut, 2; Florida, 2; Illinois, 2; Kentucky, 1; Maine, 1; Michigan, 1; Rhode 1sland, 2; Tennessee, 1.

Table 3.-PAINTS: SUMMARY

BY STATES, 1900.

Table 3.-PAINTS: SUMMARY

BY STATES, 1900-Continued.

[^72] North Carolina, 2; Vermont, 2; Virginia, 1.

Table 3.-Paints: summary

Table 3.-PAINTS: SUMMARY

BY STATES, 1900-Continued.

1 Includes establishments distributed as follows: Colorado, 2; Connecticut, 2; Delaware, 2; District of Columbia, 1; Kansas,1; Maine,2; Mississippi, 1; Nevada, 1; North Carolina, 2; Vermont, 2; Virginia, 1.

Table 4.-VARNISHES:

SUMMARY BY STATES, 1900.

[^73]TABLE 4.-VARNISHES: SUMMARY

		United States.	California.	Connecticut.	Illinois.	Indiana.	Kentucky.
	Products-Continued.						
	Aggregate value-continued.	85,000					
85	Value of all other products	\$44,625					\$19,000
86	Products consumed	\$748,624		\$1,000			
	Number of establishments reporting for both years.	162					
88 89	Value for census year	\$17, 441, 726	${ }^{\text {\$130, }}$		\$2, 137, 765	- 82027,676	\$8285, ${ }_{\text {8200 }}$
	Power: Value for preceding business year.	\$15, 10 10,030	\$119,660	\$435, 113	\$1,960,058		
0	Number of establishments reporting					2	2
91	Total horsepower.	4,192		62	482	67	40
	Engines-						
${ }_{93}^{92}$	Steam, number..	102		1		$\stackrel{2}{2}^{2}$	${ }_{40}^{4}$
93 94 95 9	Gas or gasoline, num	3,699					
95 96 96	Horsepower ...	156		-	32		
	Water wheels, number	5					
98	Horsepower .-	105					
$\begin{array}{r}98 \\ 99 \\ \hline 9\end{array}$	Electric motors, numbe Horsepower	${ }_{93}^{27}$			8	17	
100	Other power, number	1		1			
101	Rented- Horsepower	25		25			
102	Rented-tric, horsepower			2	20		
	Other kind, horsepower	29					
104	Furnished to other establishments, horsepower..	120			75		
	Establishments classified by number of persons employed, not includ-						
105	Total number of establishments.		3	8	19	3	3
106	No employees						
107 108	Under $5 .$.	58			${ }_{8}^{4}$		1
109	${ }_{21}$ to 50	85	2		${ }_{5}$	${ }_{1}$	1
116	51 to 100	7			2		1
111	101 to 250.	5					

BY STATES, 1900 -Continued.

${ }^{1}$ Includes establishments distributed as follows: Louisiana, 1; Maine, 1; Minnesota, 1; Oregon, 1; Rbode Island; 1; Virginia, 1.

Table 5.-EXPlosives: SUMmary By states, 1900.

Table 5.-EXPLOSIVES: SUMMARY BY STATES, 1900—Continued.

${ }^{1}$ Includes establishments distributed as follows: Alabama, 2; Connecticut, 1; Delaware, 1; Iowa, 1; Kansas, 1; Maine, 1; Massachusetts, 2; Missouri, 1; Tennessee, 2; Vermont, 1; Virginia, 1; West Virginia, 1; Wisconsin, 1.

Table 6.-OIL, ESSENTIAL: SUMMARY BY STATES, 1900.

	United States	Connecti- cut.	1ndiana.	Michigan.	New York.	Virginia.	All other states. ${ }^{1}$
Number of establisbments.	70	5	7	22	14	13	9
Character of organization:	47	2	7	17	7	7	7
Firm and limited partnership	17	1	7	5	3	6	2
lncorporated company	6	2			4		
Capital:							
Total.....	$\$ 612,657$ $\$ 180,331$	$\$ 65,500$ $\$ 11,700$	$\$ 18,425$ $\$ 14,235$	$\$ 227,496$ 888,246		$\$ 13,884$ $\$ 145$	$\$ 30,467$ $\$ 13,785$
Buildings	\$130,401	832, 100	*1,020	\$ $\$ 57,390$	*35, 910	\$3,120	\$861
Machinery, tools, and implements	\$778, 219	\$11, 200	\$1,950	\$25, 010	\$29,075	84, 719	\$6,265
Cash and sundries	\$223, 706	\$10,500	\$1,220	\$56, 850	\$139,680	\$5,900	\$9,556
Proprietors and firm members	73	4	7	28	2	22	10
Salaried officials, clerks, etc.: Total number				13	2	2	1
Total salaries	\$25, 523	\$2,000		\$9,290	\$13, 318	\$519	\$396
Officers of corporations-							
Number....					7		
General superintendents, managers, clerks, etc.-.	\$3,680				83, 680		
Total number.................................	35	2		13	17	2	1
Total salaries	\$21,843	\$2, 000		\$9,290	89,638	\$519	\$396
Number.	31	2			13	2	1
Salaries.	821,343	\$2, 000		899,290	\$9,138	\$519	\$396
Women-							
Number.	4 $\$ 500$				$\begin{array}{r} 4 \\ \$ 500 \end{array}$		
Wage-earners, including pieceworkers, and total wages:							
Greatest number employed at any one time during the year.	505	17	80	263	63	60	22
Least number employed at any one time during the year.	283	10	76	87	52	48	10
Average number.	199		13	97	42	29	10
Wages	\$69,100	\$2,957	\$2,903	\$28, 667	\$24,295	86,819	\$3,459
Average number.....	191	- 7	13	93	39	29	10
Wages	\$67, 186	\$2,503	\$2,903	\$28, 032	\$23,470	86,819	\$3,459
Women, 16 years and over-							
Wages	\$1,839	\$454		¢5680	\$825		
Children, under 16 years-							
Average number.	1			1			
Misceilaneous expenses:	\$75			875			
Total..........	\$49,762	\$2,260	\$366	\$7,368	\$38,411	\$691	\$666
Rent of works.	\$2,720	$\$ 10$		\$10	82,427	$\$ 183$	$\$ 90$
Taxes, not including intornal revenue	\$3,240	\$235	\$152	\$1,376	\$1,326	\$51	\$100
Rent of offices, insurance, interest, and all sundry expenses not crto included	\$43, 398	\$1,615	\$214	\$5,982	\$34,658	\$457	\$472
Materials $\begin{aligned} & \text { Consedt } \\ & \text { asact work }\end{aligned}$	\$ 104	\$400					\$4
Total cost.	\$596, 112	\$29, 208	82, 876	\$124, 803	\$412,832	\$21, 807	\$4,586
Gums	\$440				\$440		
Wood, for extracts-							
Tons	1,441	692					749
Alcohol, grain-	\$5,726	\$3,003					\$2, 723
Gallons .-.	13,258	10,000			3,248		10
Cost..........................	\$31, 630	\$23, 850			\$77,756		\$24
All other components of products	\$ $\$ 1613,188$		\$2,307	\$116,723	\$373, 894	\$19,194	\$1,070
Fuel	\$16,241	\$250	\$305	81,996	\$11,929	\$1,246	\$ 815
Mill supplies..........	\$2,481	\$78	89	\$1,065	\$1,125	\$170	\$34
All other materials	\$21,604	\$1,925	\$255	\$4,519	\$13,515	\$1,182	\$208
Products: ${ }^{\text {Freight. }}$	\$4,259	\$102		\$500	\$3,630	\$15	\$12
Aggregate value.	\$850,093	\$45,530	\$14, 180	\$208,568	\$531, 000	837,772	\$13,043
Essential oils- Total value							
Natural, pounds	8843,731 881 829	\$45,530	\$14, 180	\$202, 258	\$531,000	837,772	\$12, 991
Value......	\$8787,032	300 $\$ 480$	\$17,683	218,453 $\$ 202,258$	517,462 $\$ 469,351$	117,721	- 10,210
Witch-hazel, gallons Value	110,260	91,000	\$14, 180	\$202, 258	8469,351 19,260	\$37, 772	\$12,991
Value	\$54, 649	\$45,050			\$99,599		
Artificial, value Value of all other products	\$52,050				\$52, 050		
Comparison of products:	\$6,362			\$6,310			\$52
Number of establishments reporting for both years	56			21	11		
Value for census year........	\$8805,605	\$85,480	\$14, 180	\$206, 768	\$513, 030	\$24, 643	\$11,504
Power:	\$763,770	\$25,000	\$16,898	\$204,490	8482, 830	823, 060	811,492
Number of establishments reporting	52	5	2	17			
Total horsepower	1,048	137	8	252	432	193	26
Owned- Engines-							
Steam, number ...	63	4	2	22			
Horscpower	980	87	8	252	417	193	
Gas or gasoline, number Horsepower.	2 5			4	193	23 1
Water wheels, number.	2				2		3
Horsepower...	50	50					
Rented-							
Electric, horsepower.	8						
Otber kind, horsepower.	5				5		

Table 6.-ESSENTIAL: SUMMARY BY STATES, 1900—Continued.

	United States.	Connecticut.	Indians.	Michigan.	New York.	Virginia.	All other states. ${ }^{1}$
Establishments classified by number of persons employed, not including proprietors and firm members:							
Notal employees.................	70 5	5	7	1	14	13	3
Under 5.	38		2	13	9	7	3
5 to 20.	24	1	6	6	3	6	3
21 to 50.	2			1	1		
101 to 250.	1			1--		.

${ }^{1}$ Includes establisbments distributed as follows: California, 2; Florida, 1; Massachusetts, 1; North Carolina, 1; Pennsylvania, 2; Wisconsin, 2.

Table 7.-CHEMICALS:

SUMMARY BY STATES, 1900.

Maryland.	Massachu setts.	Michigan.	Missouri.	Nevada.	New Jersey.	New York.	Obio	$\underset{\substack{\text { Pennsyl-- } \\ \text { vanial. }}}{ }$	$\underset{\substack{\text { Rhode } \\ \text { Island. }}}{ }$	Wisconsin.	${ }_{\text {All }}^{\text {Alther }}$ states. ${ }^{\text {a }}$
7		51	8	3		${ }^{92}$		100		4	15
		80 14 14			$\begin{aligned} & 14 \\ & 10 \\ & 37 \end{aligned}$	$\begin{aligned} & 25 \\ & 18 \\ & 49 \\ & 49 \end{aligned}$	$\begin{aligned} & 13 \\ & 6 \\ & 16 \end{aligned}$	$\begin{aligned} & 11 \\ & \left.\begin{array}{l} 36 \\ 58 \end{array} \right\rvert\, \end{aligned}$			
$\xrightarrow{81,806,272}$			$\substack{81,969,875 \\ 8181,24}_{\substack{\text { gi, }}}$		817, 284,675					\$288,455	,272, 031
			coisk				cois				
(\$5050,465 $\mathbf{8} 51025$		$831,268,405$ $\substack{81,666,624 \\ 46 \\ 46}$			$83,728,737$ $88,641,519$ 18		$\begin{gathered} \mathbf{8 9} 976,148 \\ 81,78,1852 \\ 21 \end{gathered}$			$\begin{array}{c}8157,995 \\ 8183,480 \\ 2\end{array}$	88889,767
$\begin{gathered} 851,424 \\ 83 \end{gathered}$		(15,998	1,686	8600	577, 387	$8718,881$	\% ${ }_{8199,166}^{166}$	$\$_{5572,816}^{415}$	812,903	43, ${ }^{38}$	8831,781
822,650		4, ${ }^{30}$	${ }^{10}$		8132,060 ${ }^{39}$	\% 8192,5898	832, ${ }^{22}$	88,098	82,500	22,876	815,700
828, 274		[151,309 ${ }^{113}$	88, 68 889	8600	${ }_{8445,277}^{363}$	\$526, ${ }^{437}$	- ${ }^{166,456}$	($\begin{array}{r}\text { 344, } \\ \hline 848\end{array}$	\%10,403	\$40, 174	\&16, ${ }^{151}$
827, ${ }^{228}$		${ }_{8147,286}^{106}$	881, ${ }^{62}$	8600		8711,4949	${ }_{8158,424}^{126}$	8423,111 ${ }^{323}$	89,983	840, ${ }^{27}$	815,161
,493		\$4,023	83, 337		\%6, ${ }^{15}$	815, ${ }^{30}$	98,036	811, ${ }^{26}$	8420		${ }_{8920}{ }^{2}$
		$\begin{gathered} 3,499 \\ 2,481 \\ 2,491 \end{gathered}$			$\begin{aligned} & 3,499 \\ & 3,519 \\ & 8,6419 \end{aligned}$	$\begin{aligned} & 5,382 \\ & 3,482 \\ & 4,531 \end{aligned}$					
\$246,43t		, 62,634	${ }_{\text {, } 351}$	170	. 575,132		8340, 332	82, 198,243	-204	${ }^{\text {258 }}$	\$267,476
		$81,155,651$	${ }_{8150,557}^{277}$	56, 880	$\begin{aligned} & 21,483,7585 \\ & 8,755 \end{aligned}$	4,49999989	8333,683 ${ }^{583}$	$\$ 2,136,9055$	40, ${ }^{854}$	224,569	${ }_{2688,846}^{7727}$
\$806 ${ }^{3}$		86,961.		5490	\$100,918 ${ }^{289}$	302 38	87,000	${ }_{\text {, } 211}^{2186}$	82, ${ }^{1500}$	81,689	83, ${ }^{20}$
			, 42		${ }_{863}{ }^{4}$		\$269 ${ }^{2}$	82, ${ }^{12}$			
810			\$135,806	82,086	13	${ }_{\text {\$ }}^{\$ 1,142,851}$ \$64,620	\$157, 8180	$\xrightarrow{9931,869}$			
¢		\$471,183		¢1,960	,796					$\begin{gathered} 85,780 \\ 851,015 \\ 8850 \end{gathered}$	
		83,790			818,477	82,500	8602	82,493			
${ }^{8781,909}$		${ }^{82,707,464}$	81, 335,798	86,050			82, 083,781	,769	${ }_{8}^{7828}$	8131;	357
											0,5i9.
5											
		838			cititile				4, 1883		402
					${ }_{12,}^{3,2}$	1,681					508
\% $\begin{array}{r}38,368 \\ \hline 180\end{array}$		838,173	${ }_{86,779}^{622}$								
								${ }_{35,000}$			
								${ }_{5}^{51,7200}$	0,000		
								${ }^{10,861}$	87,000		
					8i,044,	${ }_{9} 9915,000$		82,100			
$\underset{\substack{200,0000 \\ 86,000}}{200}$		9488,198						$105,392,150$ gin7 $1,062,458$ 804 1,002, 435			$8,563,870$ B.148, $1,127,729$ ${ }^{1,12278,729}$
		8488,162									
									\$478		
								${ }^{24,150}$			
$\begin{array}{r} \substack{41,700 \\ \hline 000 \\ 8250 \\ 8250} \end{array}$			$\begin{gathered} \$ 1525 \\ \$ 8,249 \\ \$ 5,124 \end{gathered}$			$\begin{gathered} 81,89,95 \\ 830,643 \\ \hline 830 \end{gathered}$					-
							\$13, 130		-		
							(\%03307	${ }_{\text {i, }}^{1}$			
									-....	
\$22,000		¢22, 453					${ }_{84,303}^{27}$		¢81,8265		${ }_{\text {in }}^{12,0,079}$
									\$ 5,903		
		687\% 900									
									$818,186$		-1iii
			\mid		.						
8290, 70:	4,721			4,7				2,586,	399,2	8113,526	861,054

[^74]Table 7.-ChEMICALS: SUMMARY

BY STATES, 1900-Continued.

1 Includes establishments distributed as follows: Arizona, 1; Colorado, 2; Delaware, 1; District of Columbia, 1; Kentucky, 1: Nehraska, 1; New Hampshire, 1; North Carolina, 2; Tennessee, 1; Vermont, 2; Virginia, 1; West Virginia. 1.

Table 7.-CHEMICALS: SUMMARY

BY STATES, 1900-Continued.

[^75] North Carolina, 2; Tennessee, 1; Vermont, 2; Virginia, 1; West Virginia, 1.

Table 8.-BONE, IVORY, AND LAMPBLACK: SUMMARY BY STATES, 1900.

	United States. ${ }^{1}$		United States. ${ }^{1}$
Number of establishments.	15	Miscellaneous expenses-Continued.	
Character of organization:		Total-Continued.	
Individual	2	Taxes, not including internal revenue	, 82, 260
	8 5	Rent of offices, insurance, interest, and all sundry expenses not bitherto included...	\$65,902
Capital:		Contract work	\$891
Total.	\$782, 247	Materials used:	
Land	\$149, 103	Total cost..	\$105,712
Buildings......	\$196, 422	Components of products ..	\$66,776
Machinery, tools, and implements	\$300, 571	Fuel ...	82, 663 $\$ 1,771$
Cash and sundries	\$136, 151	Mill supplies..	\%11,771
Proprietors and firm members...	-17	All other'materials ...-....-...	\$32, 126
Salaried officials, clerks, etc.:		Freigbt ...	\$2,376
Total number.	- 21	Products:	
Total salaries	\$23, 650	Total value	\$359, 787
Officers of corporations- Number.		Pigments- ${ }_{\text {Lamp }}$ and otber blacks, pounds.............................	
Number. Salaries	5 $\$ 6,360$		$\begin{array}{r} 6,454,345 \\ \$ 359,787 \end{array}$
General superintendents, managers, clerks, etc.-	0,300	Comparison of products:	
Total number..	16	Number of establishments reporting for both years...............	15
Total salaries	\$17, 290	Value for census year..........-.-...............--.........................	\$359, 787
Men-		Value for preceding business year..	\$250, 816
Number	15	Power:	
Salaries	\$16, 990	Number of establishments reporting	13
Women- Number.	1	Total horsepower. \qquad Owned-	365
Salaries.	\$300	Engines-	
Wage-earners, including pieceworkers, and total wages:		Steam, number	18
Greatest number employed at any one time during the year....	92	Horsepower...-. -	345
Least number employed at any one time during the year........	80	Gas or gasoline, number....................................	1
Average number...	85	Horsepower----- .-..............-----	20
Wages..	\$46,107	Establishments classified by number of persons employed, not in-	
Men, 16 years and over-		cluding proprietors and firm members:	
Average number. Wages	85 $\$ 46,107$	Total number of establishments. Under 5	15
Miscellaneous expenses:		5 to 20.	7
Total.................	\$75,678		1
Rent of works ...-...	\$6,625		

${ }^{1}$ Includes establishments distributed as follows: Pennsylvania, 12; Connecticut, 1; New York, 1; Ohio, 1.
Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900.

${ }^{1}$ Includes establishments distributed as follows: Arizona, chemicals, 1; New Hampshire, chemicals, 1, Washington, fertilizer, 1 ; paints, 3 .

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

States and territories.	Proprietors and firm members, number.	SALARIED officials, clerks, etc.											
		Total.		Officers of corporations.		General superintendents, managers, clerks, etc.							
				'Total.	Men.		Women.						
		Number.	Salaries.			Number.	Salaries.	Number.	Salaries.	Number.	Salaries.	Number.	Salaries.
United States........................	1,189	8,605	\$11, 340, 385	1,263	\$3,160,458	7,342	\$8, 179,927	6,637	87, 841,490	705	\$338,437		
Alabama	3230	74	$\begin{array}{r} 69,640 \\ 269,283 \\ 20,520 \\ 164,481 \\ 60,194 \end{array}$	$\begin{array}{r}17 \\ 42 \\ 8 \\ \hline\end{array}$	24,984	57	44,656	55	43,856	${ }_{13}^{2}$	$\begin{array}{r} 800 \\ 7890 \end{array}$		
California		19918108			$57,700$	$\begin{array}{r} 157 \\ 10 \end{array}$	211, 12 128 28	$\begin{array}{r} 144 \\ 9 \end{array}$	203,693 11.500	1 8	7202,695		
Connecticut	2010				$\begin{gathered} 68,200 \\ 32,450 \end{gathered}$	79	$\begin{aligned} & 96,281 \\ & 27,744 \end{aligned}$	7126	93, 58827,264				
Delaware.		108 36		29 9		27				1	2,695 480		
District of Columbia	8	$\begin{array}{r}9 \\ 3 \\ \hline\end{array}$	$\begin{array}{r} 5,433 \\ 31,031 \end{array}$	1 8	2,5009,166	825	2,933	$\begin{array}{r}8 \\ 22 \\ \hline\end{array}$	$\begin{array}{r} 2,933 \\ 20,565 \end{array}$		1,300		
Florida.	6						21, 865			3			
Georgia.	42	126	$\begin{aligned} & 156,188 \\ & 912,841 \end{aligned}$	1793	$\begin{array}{r} 44,025 \\ 227,373 \end{array}$	590	$\begin{aligned} & 112,163 \\ & 685,468 \end{aligned}$	107	111,205645,656116,611	2	${ }^{960}$		
Illinois.	34	683						511		79	39,8121,880		
Indiana..		134	163, 763	24	45, 272	110	118,491	104		6			
Iowa	102958		28,980	1313137	$\begin{array}{r} 2,400 \\ 3,640 \\ 20,350 \\ 36,460 \\ 16,200 \end{array}$		26,580 6,300	27	$\begin{array}{r} 24,880 \\ 6,300 \end{array}$	6	1,700		
Kansas ...		88	$\begin{array}{r} 9,940 \\ 61,564 \end{array}$			$\begin{array}{r}5 \\ 50 \\ \hline\end{array}$	41,21430,509	$\stackrel{42}{29}$	38,86029,729	$\begin{aligned} & 8 \\ & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} \cdots, 354 \\ 2,380 \\ 2,600 \end{array}$		
Louisiana		43	66,969			30							
Maine....		22	28,533			15	12, 333	12	9,733				
Maryland	646490	280422	$\begin{aligned} & 330,116 \\ & 526,540 \end{aligned}$	55535	129,622150,463	225	200,494376,077	213323322	195,673355,61041,788	124654	$\begin{array}{r} 4,821 \\ 20,467 \\ 21,236 \\ 1,460 \end{array}$		
Massachusetts													
Michigan..		431	$\begin{gathered} 558,934 \\ 31878 \end{gathered}$	$\begin{array}{r}5 \\ 7 \\ \hline\end{array}$	$\begin{array}{r} 123,910 \\ 10,258 \end{array}$	37625	435,02421,620	21	20, 160				
Minnesota.	8	$\begin{gathered} 82 \\ 32 \\ 18 \end{gathered}$								$\begin{array}{r} 54 \\ 4 \end{array}$			
Missouri.	16	$\begin{array}{r} 334 \\ 43 \end{array}$	$\begin{array}{r} 412,916 \\ 62,156 \end{array}$	502	$\begin{array}{r} 107,682 \\ 9,000 \end{array}$	284411	305,234 53,156	262	294,68250,120	22	10,5523,036		
Nebraska.							$53,156$	34					
Nevada.	106	$\begin{array}{r} 1 \\ 1,226 \end{array}$	$\begin{array}{r}\text { 1, } 599,059 \\ \text { 60, } \\ \hline\end{array}$	149201	$\begin{aligned} & 432,682 \\ & 620,554 \end{aligned}$	$\begin{aligned} & \mathbf{1}, 077 \\ & 1,418 \end{aligned}$	1, 166, ${ }^{600}$	1999	r600$1,126,193$	$\begin{gathered} 7 \\ 78 \\ 132 \end{gathered}$	$\begin{aligned} & 70,184 \\ & 63,861 \end{aligned}$		
New Jersey.													
New York	113	1,619	2,411,586		$620,554$		1,791,032	1,286	1,727,171				
North Carolina.	211126	$\begin{array}{r}51 \\ 820 \\ \hline\end{array}$	65,838	$\begin{array}{r} 11 \\ 128 \\ 2 \end{array}$	29,823293,5704,800	40692	$\begin{array}{r} 36,015 \\ 743,122 \\ 10,280 \end{array}$	40609	$\begin{array}{r} 36,015 \\ 701,410 \end{array}$				
Obio............			1,036,692							83	41,712		
Oregon			1$1,606,571$72,941	$\stackrel{2}{2}$				98731		10088	50,7004,664		
Pennsylvania	200	1,260 46		173 7	$\begin{array}{r} 457,626 \\ 17,000 \end{array}$	$\begin{array}{r} 1,087 \\ 39 \end{array}$	$\begin{array}{r} 1,148,945 \\ 55,941 \end{array}$		$\begin{array}{r} 1,098,245 \\ 51,277 \end{array}$				
South Carolina	5	85	$\begin{array}{r}164,716 \\ 84,243 \\ 3,900 \\ 8,468 \\ \hline\end{array}$	$\begin{array}{r}9 \\ 18 \\ \hline\end{array}$	$\begin{aligned} & 35,976 \\ & 45,800 \end{aligned}$	76	128,740		128,500	1	240960		
Tennessee	10	6722				$\begin{array}{r}49 \\ 2 \\ 11 \\ \hline\end{array}$	$\begin{array}{r} 38,443 \\ 3,900 \\ 6,868 \end{array}$	$\begin{array}{r}47 \\ 2 \\ 4 \\ \hline\end{array}$	37,4833,9004,360	2			
Texas...				4	1,600					7	2,508		
Virginia.	718103	15310837	$\begin{array}{r} 182,861 \\ 9,830 \\ 78,691 \\ 6,695 \end{array}$	295122	64,586 6,680 10,656 3,000	1245715	118,275	121	117,325	3	950		
West Virginia							3,150	5	3, 150				
Wisconsin							68, 035	61	62,020	10	6,015		
All other states							3,695	3	3,075	2	620		

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

states and territories.	Wage-earners, including pieceworkers.									
	Total.				Men, 16 years and over.		Women, 16 years and over.		Children, under 16 years.	
	Greatest number employed at any one time during the year.	$\begin{gathered} \text { Least } \\ \text { number } \\ \text { employed } \\ \text { ain any } \\ \text { one time } \\ \text { during } \\ \text { the year. } \end{gathered}$	Average number.	Wages.	Average number.	Wages.	Average number.	Wages.	A verage number.	Wages.
United States..	61, 553	37,939	46,765	\$21, 799, 251	44,635	\$21, 214, 066	1,952	\$554, 423	178	830,762
Alabama	887	289	460	99,782	456	99,334	4	448		
California	1,973	1,259	- 1,547	982, 378	1,511	967, 922	36	14, 456		
Connecticut	869	525	662	31, ${ }^{356}$	63 630	$\begin{array}{r}30,200 \\ 347583 \\ \hline\end{array}$	${ }_{3}^{4}$	1,230		
Delaware.	665	304	403	186, 005	399	185, 391	1	, 138	3	476
District of Columbia.	57	32	27	11,298	27	11,298				
Florida..	283	85	144	49,161	141	48,711			3	450
Georgia...	2,159	654	1,149	304, 731	1,140	302,591	1	600	8	1,540
Illinois....	2,294	1,602	1,880	987, 870	1,679	927, 622	180	56,563	21	3,685
Indiana	891	630	651	317, 968	614	311, 717	36	6,146	1	105
Iowa ...	183	137	160	71, 451	152	70,022	6	1,229	2	200
Kansas...	318	135	197	95,644	197	95, 644				
Kentucky ..	286 456	129 200	190 300	83, 3824	184. 279	81, 824	${ }^{6}$	1,500		
Maine	187	73	108	-38,810	105	93,750 37,710	$\stackrel{21}{3}$	4,172 1,100		
Maryland .	2,699	1,281	1,613	754, 907	1,587	748,166				
Massachusetts.		1,101	1,337	117,043	1,257	693,670	75	22,531	5	1,000
Michigan...	4,386	2,966	3,626	1,451, 730	3,469	1,421, 425	145	28,571	12	1,734
Minnesota. Mississippi.	77 176	62 50	62 98	$\begin{array}{r}1, \\ 27,466 \\ 35 \\ \hline\end{array}$	52 98	24,717 35,200	10	2,749		
Missouri..	1,315	991	1,143	513,293	1,018	485, 588	75		50	9,790
Nebraska.	199	137	174	100,686	163	97, 256	11	3,430		9,750
New Jersey	7,211		22	8,670	20	8,180	2	490		
New York.	11,180	7,657	6,091 8,940	$3,095,868$ $4,691,897$	5,674 8,615	$2,963,539$ $4,599,067$	407 313	130,419 90,455	10	1,910
North Carolina.	805	256	441	113, 860	440	113,785				
Ohio ...	3, 035	1,837	2,218	1,112,593	2,085	1,069, 151	130	43,053	$\stackrel{1}{3}$	75 389
Oregon	48.		46	26,136	43	1,24,876	3	1,260		
Rhode Island.	8,713	7,287	$\begin{array}{r}7,814 \\ \hline 258\end{array}$	3, ${ }_{132}$, 205	$\begin{array}{r}7,459 \\ \hline 242\end{array}$	$\begin{array}{r}\text { 3, } \\ \text { 1887, } \\ 1289 \\ \hline 189\end{array}$	331 16	91,443 2,508	24	4,191
Soutb Carolina.	3,066	754	1,772	479, 449	1,772	479,449				
Tenncssee.	922	310	, 594	143, 619	1,582	142,019	3			
Texas.	88	26	48	18, 376	+ 48	18, 376	3	600	9	1,000
Vermont	121	44	73	28,809	50	22, 271	23	6,538		
Virginia......	3, 452	1,379	2,154	626,159	2,114	620, 809	33	4,350	7	
West Virginia	111	103 190	87	35,469	, 87	33, 469		4,350	7	1,000
All other states.	232 69	190 30	165 44	$\begin{aligned} & 65,440 \\ & 24,947 \end{aligned}$	140 43	59,751 24,797	25	5,689		

Table 9.-CHEMICALS AND allied Products: DETAILED Statement By states and TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

gtates and territories.	average number of wage-earners, including pieceworkers-Continued.											
	Women, 16 years and over.											
	$\begin{gathered} \text { Janu- } \\ \text { ary. } \end{gathered}$	$\begin{aligned} & \text { Fehru- } \\ & \text { ary. } \end{aligned}$	March.	April.	May.	June.	July.	August.	September.	October.	$\begin{gathered} \text { Novem: } \\ \text { ber. } \end{gathered}$	December.
United States	1,911	2,000	2,066	2,063	2,052	1,986	1,823	1,830	1,876	1,945	1,944	1,927
Alabama California Colorado Connecticut	$\begin{array}{r} 2 \\ 36 \\ 4 \\ 4 \\ 27 \\ 1 \end{array}$	$\begin{gathered} 2 \\ 36 \\ 4 \\ 29 \\ 1 \end{gathered}$	$\begin{array}{r} \mathbf{2} \\ 36 \\ \mathbf{4} \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 3 \\ & 37 \\ & 3 \\ & 4 \\ & 4 \\ & 1 \end{aligned}$	$\begin{array}{r} 3 \\ 37 \\ 4 \\ 36 \\ 1 \end{array}$	$\begin{array}{r} 4 \\ 37 \\ 4 \\ 27 \\ 1 \end{array}$	$\begin{gathered} 4 \\ 37 \\ 4 \\ 30 \\ 1 \end{gathered}$	$\begin{array}{r} 5 \\ 37 \\ 4 \\ 41 \\ 1 \end{array}$	$\begin{aligned} & \hline 6 \\ & 37 \\ & 4 \\ & 47 \\ & 1 \end{aligned}$	7364471	73644361	5364272
District of Columbia Florida												
Georgia Illinois. Indiana	$\begin{array}{r} 3 \\ 185 \\ 29 \\ 29 \\ 6 \end{array}$	$\begin{array}{r} 2 \\ 193 \\ 29 \end{array}$ 7		$\begin{array}{r} 199 \\ 37 \\ 9 \\ \hdashline \left.\quad \begin{array}{r} 19 \end{array} \right\rvert\, \end{array}$	188418	$\begin{array}{r} 1 \\ 180 \\ 43 \\ 14 \end{array}$	1514443		1.157413	1694033	176303	$\begin{array}{r} 1 \\ 192 \\ \\ 27 \end{array}$$3$
Iowa.....												
Kentucky Louisiana Maine.	$\begin{array}{r} 6 \\ 24 \\ 24 \end{array}$	$\begin{array}{r} 6 \\ 32 \\ 6 \end{array}$	$\begin{array}{r} 6 \\ 31 \\ 6 \end{array}$	$\begin{gathered} 6 \\ 30 \\ 30 \end{gathered}$	6 19 3	$\begin{array}{r} 6 \\ 18 \\ 28 \end{array}$	$\begin{array}{r} 5 \\ 18 \\ 2 \\ 21 \\ 24 \\ 113 \\ 113 \\ 8 \end{array}$	515220791037	815220208510688	$\begin{array}{r} 8 \\ 15 \\ 6 \\ 17 \\ 90 \\ 137 \\ 17 \end{array}$	$\begin{array}{r} 8 \\ 14 \\ 6 \\ 16 \\ 79 \\ 152 \\ 11 \end{array}$	$\therefore \begin{array}{r} 6 \\ 16 \\ 2 \end{array}$
Maryland Michichusetts Michigan Mississippi Missippi..-........	$\begin{gathered} 19 \\ 61 \\ 169 \\ 109 \end{gathered}$	$\begin{array}{r} 19 \\ 64 \\ \\ 175 \\ 11 \end{array}$	$\begin{array}{r} 19 \\ 700 \\ 173 \\ 11 \end{array}$	$\begin{array}{r} 19 \\ 74 \\ 176 \\ 11 \end{array}$	$\begin{array}{r} 20 \\ 74 \\ 751 \\ 151 \\ 11 \end{array}$	$\begin{array}{r} 24 \\ 71 \\ 7125 \\ 11 \end{array}$						17 75 165 11
Missouri Nebrabka Nevada New Jersey New York	73 11 1 859 308	$\begin{array}{r} 72 \\ 11 \\ 1 \\ 404 \\ 320 \end{array}$	73 11 2 392 336	72 11 2 369 350	74 11 2 410 354	$\begin{array}{r} 75 \\ 11 \\ 2 \\ 441 \\ 323 \end{array}$	$\begin{array}{r}82 \\ 11 \\ 2 \\ 420 \\ 294 \\ \hline\end{array}$	($\begin{array}{r}80 \\ 11 \\ 2 \\ 428 \\ 291\end{array}$	81 11 2 435 303	79 11 1 423 298	[$\begin{array}{r}68 \\ 11 \\ 2 \\ 417 \\ 300\end{array}$	$\begin{array}{r} 70 \\ 11 \\ 1 \\ 395 \\ 288 \end{array}$
North Carolina			7153335018									
Ohio . Oregon. Pennsylvania Rhode Island	$\begin{array}{r} 722 \\ 3 \\ 346 \\ 348 \\ 18 \end{array}$	$\cdots \begin{array}{r} \cdots 3 i 1 \\ 3 \\ 340 \\ 317 \\ 17 \end{array}$		$\begin{array}{r} 174 \\ 3 \\ 346 \\ 17 \\ 17 \end{array}$	1573343415	$\begin{gathered} 129 \\ 3 \\ 38 \\ 13 \end{gathered}$		105330611	$\begin{gathered} 1 i 0 \\ 30 \\ 308 \\ 15 \end{gathered}$	1353141416	117333224	11733337
South Carolina												
Ternessee	2	2	${ }_{3}^{3}$	${ }^{3}$	3	3	3	${ }^{3}$	3	3	2
Vermont.	$\begin{aligned} & 28 \\ & 30 \end{aligned}$	$\begin{gathered} 27 \\ 30 \end{gathered}$	$\begin{array}{r} 33 \\ 35 \end{array}$	$\begin{aligned} & \text { i } 12 \\ & 31 \\ & 31 \end{aligned}$	$\begin{array}{r} 17 \\ 31 \\ 31 \end{array}$	1836	2030	2135	193030	2335		rı.3135
Virginia												
Wisconsin .i.l...	26	26	$\stackrel{26}{26}$	26 2	$\stackrel{26}{26}$	26	25	25	25	24	20

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

table 9.-CHEMICALS AND allied Products: DETAILED statement By states and territories, 1900-Continued.

gTates and territories.	Materials used.												
	Aggregate cost.	Purchased in raw state.											
		Total cost.	Fish.		Gums.	Kainit.		Limestone.		Phosphate rock.		Pyrites.	
			Thousands.	Cost.	Cost.	Tons.	Cost.	Tons.	cost.	Tons.	Cost.	Tons.	Cost.
United States..	\$124, 043, 837	\$15, 702, 216	4, 589,632	\$183,542	\$3, 817,112	54,700	8520,833	790,456	\$717, 910	816,290	\$3,620, 262	633, 837	\$3, 101,075
Alabama.	1, 428, 452 $5,502,254$	438,888 100,360			22,714	13,048	132,172	1,600	8,000	23,940 1,456	244,216 16,362	9,520 $\mathbf{6 , 3 3 1}$	62,500 34,658
Colorado .	158, 716	15,597			3,597			1,60				4, 800	12,009
Connecticut	1,615,099	680, 308	17,560	25,189	109, 668	200	7,7000			17	143	2,597	13,585
Delaware..	738,041	63,556	200,000	40,000		1,461	15, 235	2,106	752	2,062	7,569		
District of Columbia......	55, 050	1,552				154	1, 652						
Florida...	341, 681	62, 290				${ }^{723}$	8,640				32, 177		17,473
Georgia.	2,462, 109	735, 084			6,400	10,205	98, 181			120, 931	417,037	37, 879	213,466
Indiana	1,513,769	197,661			48,872							18,867	108,789
Iowa....	519,376												
Kansas ${ }^{\text {Kentuck }}$	521,979 659,350												
Louisiana	700,380	95, 158			49, 640	1, 1758	17,416	21	54	5,625 15,180	64,015	2, 40.17	13033
Maine	214, 666	20,000	5,000	1,500	12,000	150	1,500					1,000	5,000
Maryland	4,726, 232	908, 867	12,000	16,500	3,204	6,895	58,547				582, 626	55,182	247, 999
Massachusetts.	4,996, 442	563,863 714,539			232,861 222,950			315,690	133 274,161	18,722 3,465	181,734 16,807	34,894 5,238	147,470 31,791
Minnesota.	- 2325,787	74, 2,337			222,950 2,337			315, 690	274,161	3,465	16,807	5,238	31,791
Mississippi....................	349,689	85, 800				3,234	35,800			9,000	22,000	4,000	28,000
Missouri	5, 496,347	30,848			28, 629	40	400			630	1,819		
Nehraska..........................	572,898 9,500												
New Jersey..................	16, 297, 390	1,733,693	14,1i8	9,766	698,672	486	4,382						
New York	24, 756, 424	2, 942,580			1,344, 871	1,263	15,075	324, 919	316,745	22, 104	155, 401	54, 379	$227,458$
			4, 215, 600			-967	9,587	1, 815	2,400	38,858	160,554		
Ohio..........................	8, 006, 1659	$\begin{array}{r} 568,408 \\ 5,480 \end{array}$	700	$2,800$	$\begin{array}{r} 234,901 \\ 5,480 \end{array}$	2,530	21, 360	175	1,150	28, 515	114,172	42,421	194,025
Pennsylvania	18,230, 605	2, 462, 198			317, 180	1,265	11, 479	62,429	74,109	33,491	200,710	97,579	500,777
Rhode Island..............	631,859	118, 105			5, 450			168	728		20,	4,183	25,470
South Carolina.	3,107, 710	1,026,097				9,114	71,226					83, 272	399,010
Tennessee	$1,054,022$ 64,524	284,770 9,261								36, 431	118,067	20,668	155, 428
Vermont	64, 320,287	1,200	10,000	9,169						10			
Virginia..................	$3,055,220$ 205,200	803,350 106,900	104, 754	57,451	12,000	1,107	10,781	72,245	38,348	82, 482	290, 778	35, 988	147,312
Wisconsin	862, 991				22.5								
All other states............	68,257	12,912	5,000	2,500								2,602	10,412

Table 9.-Chemicals and allied products: Detailed statement by states and territories, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

gTATES AND TERRITORIES.	materials uskd-Continued.													
	Purchased in partially manufactured form-Continued.													
	Cotton seed and meal.	$\begin{gathered} \text { Dry col- } \\ \text { ors. } \end{gathered}$	Glycerine.		Lead.		Lime.		LInseed oil.		Nitrate of potash.		Nitrate of soda.	
	Cost.	Cost.	Pounds.	Cost.	Tons.	Cost.	Bushels.	Cost.	Gallons.	Cost.	Tons.	Cost.	Tons.	Cost.
United States.	\$167, 410	\$9, 476, 333	34, 635, 822	83, 419, 406	104,401	88, 618,097	7,428,885	8442,252	16, 157, 117	87,495,196	6,084	\$300, 199	147, 020	\$4, 899,622
Alabama.	80,218		63,119 5665	$8,058$									26.490	19,236
Colorado.		130,476 33,367			1,908	152,650	1,318	${ }_{224}$	20,784	118,083 37,521			26,912	837,022
Connecticut		23,666							71,496	34, 963			2,577	91,099
Delaware		11,096					7,080	1, 213	10,400	4,660			2,616	78,331
District of Columbia		245					1,190	203	800	600			15	675
Florida ..													269	9,619
Georgia	78,192	48,943							49,5511	29,997			1,333	50,035
Inimois. Indiana		$\begin{array}{r} 1,77,237 \\ 71,819 \end{array}$	$\begin{array}{r} 617,195 \\ 1,407,659 \end{array}$	$\begin{array}{r} 57,642 \\ \mathbf{1 5 7 , 9 4 5} \end{array}$	11,866	991,042	4,459 18,432	546 3,090	2, 121, 712,264	935,511 59,815	257	19,826	3,172 8,957	106,444 313,198
Yowa..		84,170							182, 856	73, 947			4,795	150,101
Kansas.		445							3,600	1,400			1,759	68, 253
Kentucky		106,826		-			1,854	315	268,625	120, 857			89	4,600
Louisiana	9,000	25, 338					557	160	66, 604	33,302			46	1,702
Maine		37, 054							30,168	15,729	95	6,000	1,468	44,700
Maryland..		88,474					190,000	22,000	112,376	54,943			3,669	132,450
Massachusetts		784,389 431,054			3,641	327, 718	27, 283 134,256	- 10,708	489,339	219,896	492	38, 51i	3,187 5,187 2,203	182,975 76,342
Minnesota		431,054	1,152,501	142, 873				22, 452	913,022	417,099 80,159				76,342
Mississippi		3,500							16,000	8,600			150	5,400
Missouri		684, 637	1,787,311	199, 741	$15,447$		50,474	8,095		526, 632			2,530	90, 263
Nebraska		92,510			$2,901$	242,666			$\begin{array}{r} 213,779 \\ 1.800 \end{array}$	102,773 1,080				
New Jersey		488,219	3, $-766,604$	434,101	3,000	275,500	98,664	15,467	844, 341	399, 581	28	2,780	31,276	1,026,282
New York.		2, 252,254	10,073, 575	839, 197	29,389	2,152, 933	5, 805, 537	255,271	4, 199, 414	1,970, 463	633	54, 453	7,663	254,274
North Carolina.		1,180							750	300			745	
Ohio ...		911, 684	7,849, 186	624, 274	9,831	817, 413	27,979	4,413	1, 806, 0771	909, 189	384	31, 342	14,585	486, 636
Oregon Pennsy		37,271 847,617	1,914, 237	258, 507	26,418	2,326,087	1, 045, 814	94,299	195 2,452 235,619	$\begin{array}{r}\text { 45, } \\ \text { 993, } \\ \hline 18\end{array}$	3,318	115, 407	16,599	557,481
Rhode Island		51,812					6,085	1,826	34,338	15, 182			229	7,524
South Carolina.													2,169	82,569
Tennessee		47,902							48,093	24,047			2,550	88, 098
Texas......		11,434 6,378					3,425	${ }^{\cdots} 1,08{ }^{\text {a }}$	11,822	5,811				
Virginia		46,649					357	62	27,737	13,868	877	31,880	1,786	65,246
West Virginia..			138,438	15, 228			612	122						
Wisconsin......		256,949 11,279							$\begin{array}{r} 493,575 \\ 28,553 \end{array}$	$\begin{array}{r} 236,945 \\ 9,097 \end{array}$			857 144	$\begin{array}{r} 26,250 \\ 7,903 \end{array}$

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY. STATES AND TERRITORIES,
1900 -Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND aLliEd PRODUCTS: DETAILED sTATEMENT BY STATES AND TERRITORIES, 1900-Continued.

States and territories.	miscellaneous expenses.					Pronucts.							
	Total.	Rent of works.	Taxes.	Rent of offices, etc.	Contract work.	Aggregate value.	Total value.	Group 1.-Acids.					
								Sulphuric.					
								50° Baume.		60° Baumé.		66° Baumé.	
								Tons.	Value.	Tons.	Value.	Tons.	Value.
United States..........	\$14, 825, 112	\$625,891	8973, 585	\$12, 963, 054	\$262, 582	\$202, 582, 396	\$12, 757, 012	187, 879	\$1, 016, 861	18,217	\$256, 557	416,017	85, 641, 823
Alabama.	97,677 386,899	1,100 10	22,969 21,846	72,850 354,166	758 117	2, 123, 102	25,000 667,440	2,934 3,537	25,000 44,091	2,369	33,460	6,071	116,124
Colorado.	28,649	1,370	21,749	23,530		8, 299,954	74,800					3,000	60, 000
Connecticut	175, 944	5,160	10,439	159, 945	400	2,544, 714	279, 804				9,126	162,815
Delaware.	112, 986	250	4,678	108,058		1,356,416							
District of Columbia	3,521	1,560	138	1,823		88, 137							
Florida	34, 890	1,545	2,397	30,948		533, 789	833	90	623				
Georgia.	416,841	6,981	37,534	374, 201		3,549, 632	5,436 407	856	5,436				
Indiana	743,905 155,204	58,636 5,536	43,353 11,662	640,096 134,506	1,820 3,500	$12,422,227$ $2,686,427$	407,263 574,962					12,450 19,419	224,130 231,487
lowa	49,311	20	3,402	45, 889		696, 022							
Kansas	59,144	280	2,644	56, 220		733, 818							
Kentucky	29, 676	4,180	4,894	20,602		1,054, 008							
Louisiana	123, 352	265	1,961	121,126		1,049,653	25,910			149	5,960	208	8,736
Maine	17,431	500	3,229	13,762		389,631	17,542	402	3,214	1,034	14,328		
Maryland	483, 898	45,030	44, 884	393, 984		7,260,580		51, 555					
Massachusetts.	649,776 $1,015,881$	37,658 8,979	51, 604 46,059	555,514 952,853	5,000 7,990	8, 9,788, 9,	900, 968	37,395	35,110			27,634	414,211
Minnesota.	1, 64, 650	7,415	-843	94, 192	2,200	9, 403,101							
Mississippi	40, 866		6,647	34, 219		. 505,972							
Missouri...	374,174 74,315	30,149 480	34,711 2,845	304,662 70,990	4,652	$\begin{array}{r}7,588,090 \\ 9.54 \\ \hline\end{array}$	81,830					2,869	54,500
Nevada..	74,315 2,382	480 96	2,845	70,990 2,110		954,840 27,225							
New Jersey	1,604,323	48,320	107, 506	1, 415, 215	33, 282	26,763, 856	3,452, 781	9,123	60,564			-123, 236	1,474,0i1
New York	2, 992,743	197,888	203, 297	2,583,408	8,150	40, 998, 911	1,740, 102	1,426	15, 050	84	1,488	60,871	-896,514
North Carolina .	109,043	39	17, 810	91, 180		1,523,030							
Ohio...	$1,165,268$ 8,313	$\begin{array}{r}40,027 \\ 2,940 \\ \hline\end{array}$	70, 327	993,412	61, 502	$13,307,431$ 239,359	1,386,325					40,147	527,944
Pennsylvania	2,309,431	72,249	106, 215	2,007, 652	123, 315	32, 154, 223	$2,389,861$	39,188	303,122	13, 356	193,799	101,643	1,279, 709
Rhode Island	104,859	8,319	5,116	2, 83,636	7,788	1, 127, 329	-153, ${ }^{294}$	$\begin{array}{r}38 \\ \hline 18\end{array}$	2,500	13, 20	$\begin{array}{r}1392 \\ \hline\end{array}$	7,092	1, 148, 952
South Carolina.	675,589	1,050	53,200	621, 339		4,882,506	225,698	41,036	225,698				
Tennessee	143, 653	, 996	3,942	138, 715		1, 917,985							
Vermont	4,089 39,591	1,540 265	215 200	2,334 39,126		$\begin{aligned} & 125,170 \\ & 408,737 \end{aligned}$							
Virginia...	421,586	12,325	37, 871	369, 579	1,811	5, 059, 465	8,929	309	1,699	1,205	7,230		
West Virginia	15,990 84,591	12,410 1100	870 3,117	14, 552	158	334,003							
All other states.	4,671	11,463	, 441	-3,767		1, 117,190	42,690					2,251	42,690

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS and allied Products: Detailed statement by states and territories, 1900-Continued.

states and territo-	PRODUCTS-continued.													
	Group II.-Sodas-Continued.							Group III.-Potashes.		Group IV.-Alums.		Group V.-Coal-tar products.		
	Bicarbonate of soda.		Caustic soda.		Borax.		Other soda products.	Pounds.	Value.	Pounds.	Value.	Totalvalue.	Coal-tar distillery products.	Chemi- cals made from coal-tar distil- lery prod- ucts.
	Tons.	Value.	Tons.	Value.	Tons.	Value.	Value.						Value.	Value.
United States.	68,185	\$1,324,843	78,779	\$2,917,955	5,637	\$502,480	81, 344, 947	3, 764, 806	8174,476	179,465, 871	\$2, 446, 576	\$1,338, 810	\$826, 546	\$512, 264
Alabama.														
California Colorado	225	9,000	3	125	5,502	490,330	91,040 3,500	-	-..........			30,632	11, 415	19, 217
Connecticut							7,038							
Delaware														
District of Columbia ..														
Georgia Illinois. Indiana														
			2,458	221,325	.		- 264,589	$\begin{aligned} & 820,000 \\ & 185,200 \end{aligned}$	53,349 6,350	10,130, $0 .$.	95,600			
Iowa........................			--...									
					.		840							
								88,290	2,935				
Maryland Massachuse............ Michigan							14,905							
				500,000			115,282 17,408			$19,766,415$ $1,480,000$	$\begin{array}{r} 30,7307 \\ 39,500 \\ 3 \end{array}$	27,513	27,613	
Michigan	10,00	100,00	18,00	50, 00			17,408	1,869,116	77,609	1, 480,000				
Mississippi					-									
Missouri \qquad Nebraska \qquad		111	8,679			21,450					394, 400	94, 400	300,000
Nevada New Jersey New York.					130	12,150								
	43, 812	885,003	$\begin{array}{r} 20 \\ 40,499 \end{array}$	$\begin{array}{r} 820 \\ 1,518,464 \end{array}$		12,150	$\begin{array}{r} 769,133 \\ 93,952 \end{array}$			46, 211,951	-939,070	231,000 44,016	227,400 29,716	$\begin{array}{r} 3,600 \\ 14,300 \end{array}$
North Carolina														
Ohio Oregon.							80,180	852, 200	34,233			243,000	243,000	
	7,700	154,000	11,754	460,845			262, 332			101,877, ${ }^{\text {a }}$	-1,4i1, 65	354,249		175, 147
Oregoni Pennsylvania Rhode Island \qquad							1,800				1, 41, 62	30,249		175,147
South Carolina														
												14,000	14,000
Texas Vermont														
Virginia West Virginia. Wisconsin All other states	6,425	122,079	5,934	207,697			74,191							
	${ }^{0} \cdot{ }^{2}$	-												
							112, 20							

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

states and terriTORIES.	Pronucts-continued.																					
	Group VI.-Cyanides.						Group VII.-Wood distillation.															
	Total value.	Potassium cyanide.		Yellow prussiate of potash.		Other cyanides.	Total value.	Wood alcohol.				Acetate of lime.										
				Crude.	Refined.																	
		Pounds.	Value.			Pounds.		Value.	Value.	Gallons.	Value.	Gallons.	Value.	Tons.	Value.							
United States...	\$1,595,505	2,317,280	\$601,362	6,165,406	\$994, 014		\$129	\$5,675, 616	4,191,379	\$1,660,061	3,038,218	\$2,297,008	43,413	\$981, 286								
Alabama.																						
Colorado.																						
Connecticut																						
Delaware...																					
District of Columbia.																						
Georgia.................							...															
1llinois Indiana							125,000			100,000	65,000	1,000	30,000									
Iowa ..																						
$\begin{aligned} & \text { Kansas } \\ & \text { Kentuck } \end{aligned}$																						
Maine	120,700			700,000	120,700																	
Mississippi. Missouri	18,216	$\cdots 24,099$	3,813	96,024	14,403																	
Oregon Pennsylvania	- 303,245	7,236	2,047	2,003,004	301,069	129																
South Carolina																						
Tennessee Texas																						
Virginia West Virginia Wisconsin. All other state																						

No. $210-10$

Table 9.-CHEMICALS and Alllied PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

STATES AND TERRITORIES.	Pronucts-continued.												
	Group IX.-Bleaching materials.				Electrochemical. products.	Group XI.-Dyestufis.							
	Total value.	Hypochlorites.		Other bleaching agents		Total value.	Natural.		Artificial.				
		Tons.	Value.	Value.	Value.		Pounds.	Value.	Pounds.	Value.			
United States	\$492,086	2,143	\$115,608	\$376,478	\$1, 305, 368	\$4,914, 686	49, 019,074	\$2,658,008	11,168, 308	\$2, 256,678			
Alabama.													
Califorado...........												
Connecticut						36,325	808,175	36,325					
Delaware			
District of Columbia.													
Florida ..						5,650	59,325	5,650					
Illinois... Indiana..	38,649	297	38,649			$13,0 \not 290$			11,200	130989			
Iowa......													
Kanses. ... Kentucky.													
					9,631	30,000			4,412	30,000			
Maryland..............................\|													
Massachusetts Michigan	$\begin{array}{r}\text { 62, } \\ \hline 12 \\ \hline 187\end{array}$	i, 782	62,387	912	193, $20{ }_{5}$	1,191,560	4,045, 302	320,347	2,123, 816	871,213			
New Jersey New York.	$\begin{array}{r} 12,972 \\ 340,612 \end{array}$	56	12,972	340,612	1,102, 481	668,068 $1,897,834$	$6,160,000$ $9,723,797$	206,240 $1,104,858$	$\begin{aligned} & 8,846,908 \\ & 2,497,162 \end{aligned}$	$\begin{aligned} & 461,828 \\ & 792,976 \end{aligned}$			
North Carolina													
Ohio Oregon	3,500			3,500								
Pennsylvania Rhode Island	11,858	-8	1,600 ..	10,258		$\dddot{889}$,213 168,453			1,162,400	73, 078			
Rhode Island						168,453	4,391, 325	$168,453$					
South Carolina.													
Tennessee.......													
West Virginia. Wisconsin....						11, 389			1,292,360	111, 389			
All other states													

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

STATES AND TERRITORIES.	PRODUCTS-continued.									
	Group XII.-Tanning materials.									
	Total value.	Natural.				Artificial.				
		Ground or chipped.		Extracts.						
		Pounds.	Value.	Pounds.	Value.	Pounds.	Value.			
United States. .-..-. - .	\$1,790,118	49, 002, 087	\$465, 956	62, 012, 788	\$1,259,007	2, 454,084	\$65,155			
Alabama										
Californdo .	31,500	300,000	1,500	1,050,000	30,000-..........			
Connecticut										
Delaware.....................										
District of Columbia										
Florida Georgia	20,000		1,050,900	20,000					
Illinois	2,500	--..........		12,500	2,500				
Indiana										
Iowa										
Kansas...										
Kentucky Louisiana	21,000	1,344,000	21,000							
Maine										
Massachusetts Michigan	16,000 100,684					376, 470	16,000			
Minnesota......				8,444,600	100,684					
Mississippi ...										
Missouri..										
Nebraska. Nevada.										
New Jersey.......................	188,800 300,756	13,872,000	98,600	719,228	46, 960	1,460,664	$36,516$			
North Carolim?.										
Pennsylvania Rhode Island	364, 701	415, 177	7,783	19,108, 020	349,679	580, 950	7,239			
Virginia................-L...	470,223									
West Virginia Wisconsin	232,365	7,925, 000	156,915	3,889,875	75,450					
All other states...										

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

atates and territories.	PRODUCTS-continued.														
	Group XVI.-Essential oils.						Group XVII.-Compressed and				Group YVIII.-Fine chemicals.				
	Total value.	Natural.		Witch-hazel.		Artificial.	Total value.	Anhydrous ammonia.	Carbon dioxide.	Compressed and liquefied not otherwise menated.	Total value.	Alkaloids.		Gold saits.	
		Pounds.	Value.	Gallons.	Value.	Value.		Value.	Value.	Vaiue.		Ounces.	Value.	Ounces.	Value.
United States.	8846,605	882,554	8757,496	110,260	\$54, 649	\$54,460	\$1,215,011	\$448, 157	\$696, 164	\$70,690	\$4, 229, 431	3,387,522	\$1,743, 264	8,594	\$90, 145
Alabama															
California	2,490	3,330	2,490				44,488	20,488	24,000		-........			
Connecticut	45,630	300	480	91,000	$40^{10} 050$										
Delaware............							78,786	77, 786							
Florida Georgia.	500	400	500	-.......		-	
Inlinois...	14,180	17,683	14,180			10	180, 350		180,350	100,060			
Iowa....															
Kansas...									.						
Kentucky															
Louisiana				……								-			
Maine												-.........			
Maryland											12,000	-
	402,295	21,930	$\begin{array}{r} 4,395 \\ 202,258 \end{array}$				13,700 2,976	2,976	500	13,200	9,390				
Minnesota Mississippi													
Missouri							142,586	79,742	62, 844		234,056			5,226	53,448
Nebraska....															
New Jersey ${ }_{\text {New }}^{\text {Nork.................. }}$	533,400	517,462	469,351	19,260	9,599	54,450	$\begin{aligned} & \because 151,600 \\ & 226,452 \end{aligned}$	92,375	$\begin{array}{r} 59,225 \\ 173,962 \end{array}$	52,490	$\begin{aligned} & 406,854 \\ & 484,590 \end{aligned}$	288,672	98,213	803 65	9,917 780
North Carolina	500	500	500												
Ohio Oregon	:						52,905	47,905		5,000	1,650 $\ldots \ldots$.				
Oregon Pennsylvania	- 2,595	1,993	2,995				239,713	126,885	112, 828	…......	$\because \dddot{2}, 930,83 i$	3,098,850	1,645,051	2,500	26,000
Rhode Island											50,000				
South Carolina.															
Tennessee															
Texas Vermont							$\cdots 3,000$		3,000						
Virginia.................	37, 772	117,721	37,772												
West Virginia	2,875	1,750	2,875				79,455		79,455						
All other states..............															

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

Table 9.-Chemicals and allied Products: detailed statement by statfs and territories, 1900-Continued.

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

states and territories.	PRODUCTS-continued.			COMPARISON OF PRODUCTS.			POWER.									
	Group XIX-Chemicals not otherwise specifiedContinued.		All other.		$\begin{gathered} \text { Census year } \\ 1900 . \end{gathered}$	Preceding business year	Number of estab-lishments report ing.	$\left.\begin{gathered} \text { Total } \\ \text { horse- } \\ \text { power. } \end{gathered} \right\rvert\,$	Owned.							
			Engines.						Water wheels.							
	Tin salts.										Steam.		Gasorgasoline.			
	Pounds.	Valne.			Value.	Value.			Value.	Number.	Horsepower	$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$	Horsepower.	$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$	Horsepower.	
United States	4,677,471	\$470,159	819,003,538	1,473	\$180, 675, 706	\$156, 604, 049	1,354	198,338	2,682	158,646	86	1,669	311	9,273		
Alabama.			$\begin{aligned} & 100,454 \\ & 629,649 \\ & 33,154 \\ & 970,673 \\ & 167573 \end{aligned}$	134842613	$\begin{aligned} & 1,817,640 \\ & 7,863,041 \\ & 299,954 \\ & 2,485,964 \end{aligned}$	$\begin{aligned} & 1,562,913 \\ & 6,981,138 \\ & 190,982 \\ & 2,313,213 \\ & 1,008006 \end{aligned}$	$\begin{array}{r} 19 \\ 42 \\ 4 \\ 21 \\ 12 \end{array}$	1,630	$\begin{array}{r} 34 \\ 65 \\ 6 \\ 38 \\ 30 \end{array}$	1,515	$\ldots . .$.		- 7	$\cdots 200$		
California								3, 653		$\begin{array}{r} 2,553 \\ 2,167 \\ \hline \end{array}$						
Colorado.								- 199			\ldots		33 r.....i1 40 1,082			
Connecticut								2,692 2,602		1,731						
District of Columbia.			$\begin{array}{r} 14,157 \\ 10,164 \\ 101,613 \end{array}$	$\begin{array}{r} 7 \\ 10 \\ 23 \end{array}$	85,637533,789	- $\begin{array}{r}83,855 \\ 469,492\end{array}$	$\begin{array}{r} 3 \\ 7 \\ 36 \end{array}$	94	110	$\begin{array}{r} 655 \\ 515 \end{array}$	….....		1	9		
Florida..								527								
Georgia			$\begin{array}{r} 869,683 \\ 56,365 \end{array}$		10,886,616	$1,409,770$$9,567,420$		3,913	76	3,855 6,086	[...... ${ }^{8}$	139	1	$\cdots{ }^{15}$		
Illinois.				7436			6634	6,726								
Indiana.					2,546, 039	2,270, 170		2,441	49	2,008						
Iowa..			4,265	$\begin{array}{r}8 \\ 4 \\ \hline\end{array}$	696. 022	$\begin{aligned} & 566,051 \\ & 554,593 \end{aligned}$	7415	753	22	753			-.........		
Kansas...			64,42526,60013,630		728, 943			1,105	6	730	1	5				
Kentucky				15	$\begin{array}{r} 953,730 \\ 1,036,453 \end{array}$	$\begin{aligned} & 829,686 \\ & 808,938 \\ & 374,600 \end{aligned}$	1588	969	1712	902835	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 36 \end{aligned}$	$\overline{17}$	2,420		
Louisiana								$\begin{array}{r}927 \\ 2,644 \\ \hline\end{array}$								
Maryland.			$\begin{array}{r} 1,027,229 \\ 515,106 \\ 1,300,784 \end{array}$	547979694	$\begin{array}{r} 4,921,377 \\ 8,027,083 \\ 9,362,568 \\ 377,031 \\ 505,972 \end{array}$	$\begin{array}{r} 4,513,513 \\ 6,526,099 \\ 7,664,301 \\ 310,500 \\ 441,000 \end{array}$	$\begin{array}{r} 47 \\ 60 \\ 52 \\ 6 \\ 3 \end{array}$	4, 487	$\begin{array}{r} 78 \\ 89 \\ \hline \end{array}$	4,0564,890	51	8710	266	44470150		
Massrecbusetts	179,587	30,191						6,190								
Michigan.								23,774	179	23,494						
Minnesota								. 271	4	201						
Mississippi								415		415						
Missouri			1,192, 242	$\begin{array}{r}36 \\ 5 \\ 4 \\ \hline 121\end{array}$	$\begin{array}{r}7,026,687 \\ \mathbf{9 5 4 , 8 4 0} \\ \hline 80\end{array}$	$6,868,038$841,650	2953	2,805	$\begin{array}{r} 49 \\ 4 \\ 5 \end{array}$	2,599360	3	37				
Nebraska			$1,12,120$2,400					380								
Nevada.-					$\begin{array}{r}\text { 27, } \\ \text { 23, } 223 \\ \hline 809\end{array}$	25,900$20,281,702$$35,058,082$		59 17817		57 16	1	2		$\begin{array}{r} \cdots 0 \\ 1,201 \end{array}$		
New Jersey	$\begin{array}{r} 3,130,578 \\ 257,329 \end{array}$	320,24651,600	4,185, 535	${ }_{246}^{131}$			3 120 224	17, 817	321	16,293	$\begin{array}{r}3 \\ 10 \\ \hline\end{array}$	47	$\begin{gathered} 2 \\ 67 \end{gathered}$			
New York.			2,557, 133		38, 930, 455	35, 058, 082	224	49, 974	538			228				
North Carolina.			$\begin{array}{r} 10,292 \\ 1,050,044 \\ 45,928 \\ 3,371,490 \\ 465,509 \end{array}$	$\begin{array}{r} 15 \\ 115 \\ 5 \\ 277 \\ 12 \end{array}$	$\begin{array}{r} 1,152,111 \\ 12,414,903 \\ 239,359 \\ 30,791,552 \end{array}$	$\begin{array}{r} 1,084,357 \\ 10,501,736 \\ 158,794 \\ 26,031,791 \end{array}$	$\begin{array}{r} 16 \\ 103 \\ 4 \\ 272 \end{array}$	1,292	$\begin{array}{r} 29 \\ 156 \\ 2 \\ 569 \end{array}$	$\begin{array}{r} 1,153 \\ 7,657 \\ 60 \end{array}$	167	56267	…12	- $\quad 603$		
Ohio -.								10,017								
Oregon.																
Pennsylvania	1,109, 977	68,122				$\begin{array}{r} 26,031,791 \\ 999,561 \end{array}$		$\begin{array}{r} 30,855 \\ 730 \end{array}$		27,372 647	17	598	102 2	$\begin{array}{r} 1,582 \\ 60 \end{array}$		
South Caroling				71353	$\begin{array}{r} 865,429 \\ 1,577,587 \\ 39,830 \\ 404,337 \end{array}$	$\begin{array}{r} 792,863 \\ 971,818 \\ 28,060 \\ 267,368 \end{array}$	181164	3,940	$\begin{array}{r} 36 \\ 23 \\ 6 \\ 6 \end{array}$	$\begin{array}{r} 3,940 \\ 1,833 \\ 175 \\ 380 \end{array}$. 250		
Tennessee			22,500					2,105			- 1	\cdots	${ }^{-1}$			
Texas.								180								
Vermont.								380								
Virginia			$\begin{array}{r} 91,091 \\ 32,750 \\ 490 \\ 9,000 \end{array}$	47795	$\begin{array}{r} 3,756,967 \\ 300,503 \\ 1,074,347 \\ 77,190 \end{array}$	$\begin{array}{r} 3,129,320 \\ 257,168 \\ 694,383 \\ 74,764 \end{array}$	5788114	9,782	1278111	$\begin{array}{r} 9,292 \\ 500 \\ \mathbf{1 , 0 8 7} \\ 130 \end{array}$	$\begin{array}{r}1 \\ \hdashline-\quad 1\end{array}$	2	7	246		
West Virginia								. 550								
Wisconsin......								1.090								
All other states																

Table 9.-CHEMICALS AND ALLIED PRODUCTS: DETAILED STATEMENT BY STATES AND TERRITORIES, 1900-Continued.

APPENDIX.

digest of united states patents relating to the chemical industries.
 (Products and processes.)

Grove I.-ACIDS.

No
Mixed165PhorOther inorganic166
Acetic 166Tartaric167
Citric 167Tannic167
Other organic 167
Caustic soda 168
onates171
Recovery processes 者
Packing processes 172
Carbonates 173
Ammonia alum 173Soda alum173
Concentrated alum174
Other alums 174
Group V.-COAL-TAR PRODUCTS
See group XVIII, Fine chemicals.
Group VI.-CYANOGEN COMPOUNDS.
176
Other cyanides 176
Wood distillation177
Products182
Group IX.-BLEACHING MATERIALS AND Page. BLEACHING PROCESSES.
Chlorine 187
Hypochlorites:
Materials 188
Processes 189
Sulphur dioxide 190
Hydrogen dioxide and ozone 190
Other metallic dioxides 190
Metallic permanganates 190
Other bleaching agents:
Materials 190
Processes 191
Group X.-CHEMICAL substances Produced BY THE AID OF ELECTRICITY.
Products:
Inorganic 191
Organic- 192
Other organic 192
Processes 192
Apparatus 201
Natural:
Inorganic 205
Organic 205
Artificial:
Inorganic 206
Organic 207
Processes 237
Mordants 240
Natural 242
Artificial, inorganic 243
Group XİII.-PAINTS, COLORS, AND YARNISHES.
Pigments 244
Paints 245
Varnishes. 245
Group XIV.-EXPLOSIVES.
Gunpowder, including blasting powder 245
Nitroglycerine 248
Cellulose nitrates and other organic nitrates. 248
Dynamites 250
Smokeless powder 252
Nitro-substitution compounds 253
Page.
Fulminates, priming compositions, and fuses 254
Pyrotechnic compositions 255
Match compositions 256
Grour XV.-PLASTICS.
Pyroxyline plastics 257
Viscose 262
Rubber and rubber substitutes 262
Caseine plastics 268
Other plastics 268
Processes 277
Group XVI.-Es SENTLAL OILS.
Essential oils, perfumes, and flavors. 280
Artificial musk 280
Group XVII.-COMPRESSED AND LIQUEFIED GASES.
Hydrogen 280
Chlorine 280
Oxygen. 280
Nitrogen 281
Nitrous oxide 281
Sulphur dioxide. 281
Carhon dioxide 281
Apparatus 281
Inorganic:
Bromine and iodine 282
Sodium and potassium 282
Selenium 282
Rare earths 282
Platinum metals. 283
Carbon compounds:
Hydrocarbons 283
Haloid compounds-
Chlorides 283
Bromides 284
Iodides 284
Fluorides 284
Alcohols and phenols. 284
Aldehydes and their products-
Aldehydes 285
Vanillin 285
Group XVIII.-FINE CHEMICALS.

DIGEST OF UNITED STATES PATENTS.

Prepared hy Story B. Ladd, under the direction of Charles E. Munroe

GROUP I.-ACIDS.

SULPHURIC ACID.

8,808-August 26, 1851. E. L. SEYMOUR. Intpravement in process of reducing ores by zine compounds.
Sulphurous gas from the calcination of sulphuret ores with air and steam is passed through feldspathic rock, magnesian limestone, sulphurets of metals or the like, converting the same into their sulphates, and the surplus gas is converted into dilute sulphuric acid. The gases remaining or evolved are combined with crude or raw ammonia or other alkaline substance producing fertilizers; or the sulphurous gases of the first operation are passed into water in the presence of metallic zinc, forming sulphate of zinc, which is converted into white
oxide of zinc.

41,647-February 16, 1864. J. SMITH AND J. R. SAVAGE. Improvement in the manufacture of sulphuric acid.
Sulphuric acid is heated for concentration by steam coils in leaden pans and still

42,985-May 31, 1864. L. CHANDOR. Improvement in the manufacture of sulphuric acid.
Columns of stoneware or clay flasks are used in lieu of lead chambers, and the sulphurous acid is passed through masses of porous hodies, such as coke or the sulphurou
43,157-June 14, 1864. R. G. LOFTUS. Improved process of recovering the acid used in refining petroleum.
The spent acid is, first, diluted with 50 per cent of water, subjected to agitation and then repose in a leaden-lined tank, and the oily matters subsequently drawn, 1.650 oiphonand subjected to further dilution and repose; third, the clear liquid to 1.700 ; and, fourth, it is concentrated in glass, porcelain, or other suitable vessels to a specific gravity of 1.845 .
$59,090-J a n u a r y$ 16, 1866. A. H. TAIT AND J. W. AVIS. Improved apparatus for desulphurizing ores.
Air heated to from 260° to $315^{\circ} \mathrm{C}$. is forced through sulphuret ore in a closed chamber under a pressure of 20 to 40 pounds. The admission of a small quantity of nitric oxide ges is advantageous.
62,919-March 19, 1867. D. ASHWORTH AND R. B. EATON. Improvement in con centrating sulphuric acid.
A series of glass retorts is used in combination with a heating apparatus.
78, 552-May 26, 1868. D. ASHWORTH AND R. B. EATON. Improved apparatus for concentrating sulphuric acid.
The hot concentrated acid is cooled and the fresh acid heated by flowing the latter through an encasing jacket of a vessel of the former. It also relates to structural details.
86,881-February 9, 1869. A. H. TAIT. Improvement in the manufacture of sutphuric acid.
Sulphurous acid is freed from nitrogen by liquefying the sulphurous acid and allowing the nitrogen gas to escape. Arsenic is removed by refrigerating the sulphurous-acid vapors. Sulphurous-acid gas is exposed to the action of nitric oxíde, air, and steam under pressure, forming sulphuric acid, which is concentrated by injecting hot air.
97,182-November 2S, 1869. L. S. FALES. Improved mode of recovering the spent acid from oil refineries.
To effect the separation of the tarry matter from the spent acid of oil refineries, etc., the spent acid, either with or without the addition of sulphate of potash or of ammonia, and diluted with water, is subjected to the action of ammoniacal vapors from gas liquor, and then allowed to stand, when the tarry matter is removed, leaving a clear solution, which is then concentrated by evaporation, sulphate of soda being first added.
127,B50-May 28, 1872. J. HUGHES. Improvement in the manufacture of acids and paints from the materials used to purify gas.
Saturated or spent gas-purifying materials are used as a base for the manufacture of acids. The resultant oxide, in the case of iron materials, is available as a base for paints.
129,204-July 16, 187\%. W. ARCHDEACON. Improvement in preparing wooden vessels for holding acids.
The interior of the vessel is impregnated with a composition of glue 1 part and beeswax 3 parts, applied under pressure.
157,692-April 8, 187s. J. KIRCHER. Improvement in obtaining sulphur, sulphuric acid, and sulphurets of sodium and potassium from gas lime, etc.
Saturated gas-purifying material-lime or iron-is heated with superheated team to evolve sulphureted hydrogen for the manufacture of sulphuric acid. Flowers of sulphur is produced by mixing gas lime with loam and sublimating the excess of sulphur; lac sulphur by mixing the gas lime with water and acid; sulphuret of sodium or potassium by subjecting the gas lime to the action of caustic soda or other alkali or salt.
148,202-September 23, 187s. E.THOMSON AND W.H. GREENE. Improvement in the manufacture of sulphuric acid.
It relates to details of structure and arrangement, including subjecting the aitrous gases evolved from the reaction of sulphurous acid and nitric acid to the nitrous gases evolved from the corrents in a chamber with porous packing, to form nitric acid.

144,928-November 25, 1873. J. SAUNDERS. Improvement in the manufacture of sulphuric acid.
Hollow glass balls with one or more openings are used for filling sulphuric-acid condensing towers.
150,095-April 21, 1874. H. SPRENGEL. Improvement in the manufaoture of sulphuric acid.
Very fine spray or mist of water or acidified aqueous solutions are used in place of steam. Sulphuric acid is sprayed to absorb the nitrous fumes in the gases from the sulphuric-acid chambers, and the acid containing the absorbed fumes is sprayed in the leaden chambers.
175,734-April 4,1876. W. H. NICHOLS. Improvement in sulphuric-acid packages. They are made of sheet iron, with the surfaces and edges coated with lead and united hy melted lead.
204,244-May 28,1878 . A. PENISSAT. Improvement in processes for recovering waste sulphuric acid.
Sulphuric acid is recovered from the refuse in the treatment of coal oil by washing the acid from the tar, evaporating down to about 60° Baumé, and then vaporizing, condensing, and producing the white sulphuric acid and concentrating.
206,909-July 23, 1878. F. F. FARRAR AND F. P. GILL. Improvement in processes and apparatus for recovering wasle sulphuric acid.
Acid is reclaimed from the residuum tar of refineries by mixing the tar with hot water and steeping with heat, then allowing it to cool and settle, when the purer liquor withdrawn from the bottom and the water evaporated.
22S,571-January 15, 1880. J. A. W. WOLTERS. Manufaoture of anhydrous sulphuric acid.
Anhydrous sulphuric acid is ohtained by the distillation of a mixture of anhydrous bisulphate of soda (or potash) and anhydrous sulphate of magnesia, or compounds of the other so-called vitriols and alkaline earths.
2s0,171-July 20, 1880. H. BOWER. Process of and apparatus for treating residuum from petroleum rofineries.
Sulphuric acid is recovered by washing the sludge acid with water in covered tanks, mechanically separating the sulphuric-acid solution and carbonaceous matters from the oily ingredients, as by centrifugal machines (for redistillation), separating the acid solution from the carbonaceous matters by heating in a series of concentrators, and finally concentrating and distilling the separated sulphuric-acid solution.
299,685-September 28, 1880. E. CLARK. Recovering sutphuric acid from sludge acid.
In the recovery of sulphuric acid from the sludge acid of oil refineries, the offensive vapors are conducted off by an exhaust produced by an induced steam blast while the sludge is being agitated by steam.
$238,680-$ October 26, 1880. E. C. E. AND L. L. LABO1S. Manufacture of carbon bisulphide and sulphuric acid from pyrites, and apparutus therefor.
A limited proportion of sulphur is first extracted from a determined quantity of pyrites and combined with carbon in a separate retort, while the bot pyritic residue is conducted to a separate furnace for the manufacture of sulphuric acid.
240,248-April 19, 1881. J. GRIDLEY. Process of and apparatus for concentrating sulphuric acid.
A strong heat is applied to the under surface of a thin body of dilute acid, and at the same time a blast of superheated steam or hot air is applied to the upper surface, and the vapors removed as they rise.
246,396-August 30, 1881. C. KOLBE AND T. LINDFORS. Apparatus for concentrating sulphuric acid.
A series of platinum retorts is arranged on a plane and connected by pipes from the bottom of one to a higher point of the next, giving an equilibrium of level in all the retorts.
250,416-December 6, 1881. F. BENKER AND H. LASNE. Manufacture of sulphuric acid.
Nitrous compounds are economized, in the manufacture of sulphuric acid, by mixing sulphurous-acid gas with the gases which enter the Gay-Lussac tower. 252,287-January 10, 1882. H. WURTZ. Process of treating mineral pyrites and sulphides for the manufaeture of sulphurous and sulphuric acids.
A new product for use in the manufacture of sulphuric acid is made by granulating sulphurets and mixing same with eomminuted metallic iron and forming into cakes or lumps. The iron in the lumps is oxidized by moistening with a saline solution. Asbestus or mica may be incorporated as a binder.
265,495-Octaber 8, 1882. J. GRIDLEY. Process of and apparalus for concenlrating sulphuric acid.
A small stream of dilute acid from the evaporating pan, of about 60° Baume, is continuously introduced into a large quantity of acid of 66° Baumé in a concentrating pan and kept at the boiling point, with a proportionate constant discharge therefrom. The pan of cast iron has its walls above the weak acid line protected.
267,582-November 14, 1882. R. N. R. PHELPS AND W. A. CLARK, JR. Process of trealing the waste pickle liquor of ironwarks.
Ferric oxide, sulphuric acid, and other products are recovered from pickle liquor by evaporating the liquor, drying and pulverizing the crystals of sulphate of iron, heating them in a retort, say to $710^{\circ} \mathrm{C}$., with air in regulated quan tities, and condensing the sulphuric and sulphurous acid vapors.

268,798-December 12, 188\%. E. HAWORTH. Manufaciure of sulphuric acid.
Sulphurous-acid gas-as from lead smelters-is first passed throngh water, which dissolves the gas and condenses any metallic fumes. The water is then passed to a heating tank and the sulphurous-acid gas there evolved conveyed to a leaden chamber wbile the water is returned to the dissolving chamber.
291,821-January 8, 1884. M. A. WALSH. Process of concentrating sulphuric acia. Monohydrated sulphuric acid is produced hy first concentrating up to 93 per cent of monohydrated acid in the usual way and then transferring it, while hot, to an iron or steel vessel and therein completing the concentration.
s06,897-October 21, 1884. R. M. BREINIG. Process of the treatment of sludgc acid. A soap compound adapted to unite with the sludge tar is mixed with the sludge, and the free acid is then readily separated from the tarry mass.
s10,147-December 30,1884 . A. B. NOBEL AND G. FEHRENBACH. Manufacture of anhydrous sulphuric acid.
Sulphuric anhydride is produced by subjecting sulphuric acid to the debydrating influence of hydrated phosphoric acid
314,548-March 34, 1885. G. THOMSON AND W. KEMP. Purifying sulphuric acid.
Sulphuric acid is purified hy treating with ammonium salphide, filtering, and finally concentrating by heat.
3\$3,58s-August 4, 1885. E. D. KENDALL. Process of recovering sulphuric anhydride.
Sulphuric anhydride is recovered from a compound containing an excess of fuming sulphuric acid hy beating the compound in a partial vacuum and condensing the volatilized sulphuric anhydride.
325,268-September 1, 1885. J. McNAB. Process of manufacturing sulphuric acid. Sick or pale acid chambers are restored by injecting thereinto nitrous vapors. s39,552-April 6, 1886. J. HUGHES. Apparatus for concentrating acids.
An evaporating pan is made of porcelain with a transparent glass cover.
\$48,785-June 1, 1886. U. CUMMINGS. Manufacture of sulphuric acid.
Sulphuric acid is produced hy calcining a mixture of clay and sulphate of lime, the proportions heing such as will give hydraulic cement as a by-product. 345,140—July 6, 1886. J. HUGHES. Process of making sulphuric acid.
Hot sulphur and ritric fumes from a sulphur furnace are projected through a spray of water, in an intermediate chamber, and then passed into a condensing chamber.
357,107-February 1, 1887. H. J. P. SPRENGEL. Obtaining sulphuric acid by the aid of waste steam.
The exbaust steam from the engine is employed for the leaden chambers. The engine boiler pressure may he raised-say 10 pounds-for the leaden chambers, and the engine exhaust provided with a corresponding hack pressure. phuric acid.
Sulphuric acid is first concentrated to ahout 86 per cent, then concentrated in a separate pessel to about 95 per cent, and this is evaporated in another vesin a separate vessel to produce a residual strong acid of 98 per cent and a condensed pure acid of 93.5 per cent.

978,7\%/4-February 28, 1888. H. DE GROUSILLIERS. Process of treating sludge acid.
Sulphuric acid is recovered from sludge acid by first removing the petroleum or tarry impurities by floating them, then adding to the waste sulphate of soda or potash and precipitating the bisulphate formed hy hoiling and evaporation, or potash and precipitating the bisulphate formed hy holling and evaporation, red heat, and finally vaporizing and condensing the sulphuric acid.
S84,841-June 19, 1888 . E. HÄNISCH AND M. SCHROEDER. Process of producing sulphuric anhydride.
Sulphuric anhydride is produced by reducing the volume of a gaseous mixture of sulphurous acid and oxygen (air 75 per cent, $\mathrm{SO}_{2} 25$ per ('ent) by compression and subjecting the mixture under pressure to the converting action of a suitable contact surface, 』s a platinized substance, at red heat.
469,439-February 29, 1892. R. S. PENNIMAN. Apparatus for the final concentration of oil of vitriol.
A continuous-process apparatus has a series of coupled glass retorts with the contents agitated by injected air or otherwise.
475,586—May 14, 1892. P. MAURO. Process of solidifying liquid acids.
Liquid acids are solidified hy adding thereto a soluble salt adapted to crystallize with the water, as sulphate of sodium or of calcium for sulphuric acla, or chloride of calcium or of magnesium for hydrochloric acid. The mixtnre is preferably,heated and agitated, and then cooled.
484,546-October 18, 189\%. E. J. BARBIER. Process of treating bisulphate of soda. Neutral sulphate of soda and sulphuric acid are ohtained from bisulphate of soda (35° to 45° Baumé) by refrigerating the bisulphare to ahont $10^{\circ} \mathrm{C}$. until decomposition takes place, separating the crystalized neutral sulphate from the sulphuric acid and concentrating the same.
509,664-November 28, 1899. H. HOWARD. Mcthod of and apparatus for concentrating sulphuric cteid.
The flow of sulphuric acid to the still is governed by an antomatic valve controlled by the specific gravity of the distillate.
514,983-Fcbruary 20, 1894. W. WOLTERS. Process of concentrating sulphuric acid. Sulphate of lead is added to the acid during concentration to prevent corrosion of the leaden vessels.
55ō,882-March 19, 1895. E. J. BARBIER. Process of and apparatus for making sulphuric acid.
The vapor of sulphurous acid circulates through a series of towers in succession Wherein it is subjected to the action of a divided strcam of sulpho-nitric, or diluted nitric acid, in the upper part of each tower, and to the action of nitrous and aqueous vapors in the lower part.
541,041-June 11, 1895. F. J. FALDING. Proccss of and apparatus for making concentrated suluphuric acid
The bot sulphurous gases are conducted through a concentrating tower, and a denitrating tower to the lead cbambers, and the acid there formed is retorned in downward flow through the denitrating tower and the concentrating tower and from thence t storage tanks, wherehy the denitrated acid is exposed to the action of the hot sulphurous gases.

541,597-June 25, 1895. J. D. DARLING. Method of and apparatus for manufacturing sulphuric acid and by-products.
See Group X, Electro-chemistry.
546,596-September 17, 1895. N. P. PRATT. Process of and apparatus for making sulphuric acid.
In the manufacture of sulphuric acid the gases in the acid chamber are commingled and agitated by withdrawing a portion of the gases at one point and reintroducing them at another.
590,826-September 28,1897 . J. D. DARLING. Porous diaphragm for electrolytic apparatus.
See Group X, Electro-chemistry.
591,730-October 12, 1897. W. BAIN. Process of and apparatus for etectrolyzing. See Group X, Electro-chemistry.
598,351-February 1, 1898. A. STAUB. Apparatus for making sulphuric acid.
The towers are filled with acid-resisting hodies, each having an inverted cup or open depression on the under side.
656,924-November 14, 1899. M. SCHROEDER. Process of combining gases by comtact process.
Sulphuric acid or sulphuric anhydride is recovered from gases containing SO_{2} and O by passing said gases through a mass comprising a catalytic agent and soluhle salts. When the efficiency of the mass has become impaired by the action of the impurities the soluhle carried salts are dissolved out. The catalytic mass is-formed by evaporating a mixture of a liquid, a platinum salt, and
a suitahle soluble salt, and then reducing the platinum salt to the metallic a suit.
state.
636,925-November 14, 1899. M. SCHROEDER. Catalytic material.
It consists of a catalytic substance, as platinum, distributed through a mass of one or more soluhle salts, which, serving as a carrier therefor, are stable in the presence of hot sulphuric anhydride. An alkali salt is dissolved in water, mixed with a platinum salt solution, evaporated, and the resulting salt crusts dried and granulated. (See 636,924.)
640,057—December 26, 1899. J. V. SKOGLUND. Apparatus for making acids.
A tower or chamber for acid vapors is coated on the inside with an acid-resisting material and silicate of potash or soda, and treated with an acid to remove from the silica any alkaline material.
641,276-January 16, 1900. J. D. DARLING. Porous diaphragm for cells employing fused electrolytes.
See Group X, Electro-chemistry.
642,590-January 30,1900. F. P. VANDENBERGH, Process of making sulphuric acid.
See Group X, Electro-chemistry.
643,578-February 18, 1900. W. WARING AND J. E. BRECKENRIDGE. Process of purifying sludge acids.
About 4 per cent of sodium nitrate is mixed with sludge acid, at a temperature between 60° and $180^{\circ} \mathrm{F}$., to purify it and permit the rccovery of the sulphuric acid. One per cent of sodium nitrate suffices to remove offensive odors. 652,119—June 19, 1900. R. KNIETSCH. Method of making sulphuric anhydride.
A gas containing sulphur dioxide and oxygen is passed through a contact substance, as platinized asbestus, while maintaining therein a temperature, at the hottest part, between the composing and decomposing temperature of sulphuric anbydride. The infowing gas 28 heated by contact with the catalytic chamber and the latter cooled, and the temperature is regulated hy adjustcases.

NITRIC ACID.

94,969-September 21, 1869. G. W. MOWBRAY. Purifying nitric acid.
Warm air is passed through nitric acid to purify it of the red fumes of nitrous acid.
125,635-April 9, 187. C. W. VOLNEY. Improvement in apparatus for the treatment of liquids with nitric acid.
Liquids, as alcoholic suhstances, to he treated with nitric acid are repeatedly withdrawn from the vessel where nitric acid is added, cooled, and returned.
176,81S-May 2, 1876. R. E. ROGERS. Improvement in methods of recovering nitric acid used in separating gold and silver.
Nitric acid is recovered from nitrate of silver solutions by precipitating the silver with hydrocbloric acid in liquid or gaseous form.
198,776-January 1, 1878. B.C. MOLLOY. Improventent in recovery of waste nitrous gascs.
A hot-water spray is used in towers or other suitable apparatus to ahsorb peroxide of nitrogen and recover nitric acid from its lower oxides.
477,s75-June 21, 1892. J. LANG, Process of making nitric acid.
The mixed vapors of nitric acid, nitrous acid, and impurities are passed from the generator into a receiver and subjected to a heat high enough to keep the impurities vaporized, but not so high as to keep the pure nitric acid vaporized (for concentrated nitric acid the temperature should be at least $80^{\circ} \mathrm{C}$.), and the vaporized impurities with any nitric-acid vapor are then passed into a cooler kept at a temperature low enough to condense the nitric-acid vapors (40° to 60° C.), which flow hack into the receiver, while the vaporized impurities pass off uncondeused.
491,481-Febraary 7, 1893. O. GUTTMANN. Process of making nitric acid.
An air hlast is introduced into the tube hetween the distilling chamber and the condenser, to act upon the gaseous nitric acid and convert the low oxides before condeusation.
500,786-July 4, 1899. C. O. VOLZ. Process of making nitric acid.
Pure and highly concentrated nitric acid is produced by placing the raw materials, as saltpcter and sulphuric acid, in an air-tight receptacle, establishing a vacuum, and condensing the vapor. Action is accelerated by beating the
retort to $85^{\circ} \mathrm{C}$.
514,124-February 6, 1894. G. LUNGE. Process of making nitric acid and caustic alkali
An alkalinc nitrate is mixed with crude ferric oxide in sufficient quantity to maintain the porosity of the mass, as two parts of ferric oxide to one of sodium nitrate, and the beated mass is suhjectcd to the action of heated air and steam at a temperature sufficient to convert the whole of the alkaline base into an
alkaline ferrite, with the evolution of nitrous fumes convertible into nitric acid. The alkaline ferrite is decomposed with hot water to recover the caustic alkali and ferric oxide.
517,001-March 20, 1894. J. D. DARLING. Mode of producing nitric acid and metals from nilrates.
See Group X, Electro-chemistry.
517,098-March 27, 1894. H. A. FRASCH. Process of making concentrated nitric acid.
Nitric-acid vapors are exposed to the action of sulphuric acld, or other dehydrating agent, and hot air at a temperature above the condensation point of the nitric acid to be obtained.
526,116-September 18, 1894. M. PRENTICE. Process of making nitric acid.
A mixture formed by dissolving sodium nitrate in sulphuric acid by heat is successively passed through a series of heated compartments and the vapors liquid matter under distillation seals the passages between the series of chombers.
527,718-October 16, 1894. M. PRENTICE. Still for obtaining nitric acid, etc. Still for process No. 526,II6.
577,628-February 23, 1897. G. J. ANDERSSON AND J. C. DITTRICH. Process of manufacturing ozone and by-products.
See Group X, Electro-chemistry.
590,14s-September 14, 1897. W. GARROWAY. Process af making alkaline silicates and nitrie acid.
See Group II, Sodium Compounds, Silicates.
591,087-October 5, 1897. J. V. SKOGLUND. Process of manufacturing nutric acid. Nitric-acid vapors are conveyed into a chamber packed with pieces of acidproof material, the temperature of the chamber heing maintained equal to or higher than the boiling point of the nitric acid and at a point that the watery materials will be condensed; the vapors are condensed and the nitric acid is allowed to run in thin films over the pieces of acid-proof material, being exposed to oxidizing action of air.
599,743-March 1, 1898. E. A. STARKE. Compound nitrate and method of making same.
A new product, a fused compound consisting of an alkaline-earth-metal nitrate with an alkaline-metal nitrate, and suitable for the manufacture of nitric acid and explosives, is formed by converting an alkaline-earth-metal salt into a nitrate, as by contact with waste nitric acid and vapors of various manufacturing processes, and then dehydrating the nitrate by fusing with an alkalinemetal nitrate.
605,508-May S, 1898. E. HART. Apparatus for distilling acids.
The still has a series of small distillation tubes, closed at bottom, depending from the receiver and presenting an extended heated surface. They may be of glass.
632,394-September 5, 1899. H. K. BAYNES. Process of decomposing alkali nitrates.
A pulverulent mixture of alkali nitrate and ferric oxide is furnaced at about $650^{\circ} \mathrm{C}$. in a revolving inclined cylinder retort, which is subjected to intermittent jarring and has longitudinal ribs to lift and shower the charge, the nitrous fumes being led off; wherehy, in a continuous operation, the material is subjected in streams or films to repeated contact with heated surfacesand the solid products are carried out of the path of the undecomposed particles. The subsequently converted into ferric oxide and caustic alkali.
648,s2\%-April 24, 1900. J. F. WHITE. Process of making nitric acid.
In the manufacture of nitric acid from sodinm nitrate and sulphuric acid, the weak nitric acid is converted into strong nitric acid by adding it to the succeeding charge of sodium nitrate and sulphuric acid, preferably by mixing it with the sulphuric acid.

MIXED ACIDS.

164,260-June 8, 1875. P. CASTELLANOS. Impravement in the manufacture of nitrosulphuric acid for manufacturing nitroglycerine.
A mixture of nitric acid and sulphuric acid is produced by condensing vaporized nitric acid in liquid sulphuric acid.
164,261-June 8, 1875. P. CASTELLANOS. Impravement in recovering acids from residuum of nitroglyeerine manufacture.
The dilute residunm, dropped in small quantities threugh a heated column filled with obstructions, is treated with sulphurous-acid gas, the resulting nitric acid collected, and the sulphuric acid drawn off.
164,268-June 8, 1875. P. CASTELLANOS. Improvement in apparatus for recovering acids from the residumm of nitroglycerine manufacture.
Apparatus for process No. 164,261.
251,988-January 3, 1882. F. V. POOL. Process of removing floceulent matter from spent acids.
Flocculent matter, in spent acid used in the treatment of soluble fiber, is removed by introducing powdered barium sulphate- 30 pounds per 650 gallons of removed by introducing powdered permitting it to stand from thirty-six to seventy hours.
284,748-September 11, 1883. F. JENSSEN. Separation of nitric acid from a mixlure of nitric and sulphuric acid.
A continuous stream of the mixed acids is passed through a connected series of retorts to which are given separate degrees of heat, and the nitric acid is of retorts to which are gretort into separate receivers, the acid in each of the receivers being of a different strength.
s06,519-October 14, 1884. F. V. POOL. Manufacture of soluble nitrocellulose. See Group XIV, Explosives.
356,829-February 2s, 1886. F. V. POOL. Art of manufacturing nitrocellulose. See Group XIV, Explosives.
343,850-June 15, 1886. F. V. POOL. Art of making nitrocellulose.
See Group XIV, Explosives.
S50, 497-October 12, 1886. G. M. MOWBRAY. Manufacture of pyroxyline.
See Group XIV, Explosives.
S50,498-October 19, 1886. G. M. MOWBRAY. Manufacture of pyroxyline.
See Group XIV, Explosives.

479,988-August 2, 1892. H. MAXIM. Method of restoring nitrating acids. See Group XIV, Explosives.
526,75\%-October 2, 1894. R. C. SCHUPPHAUS. Process of nitrating cellulose. See Group XIV, Explosives.

HYDROCHLORIC ACID.

2L0,196-April 12,1881. E. SOLVAY. Preparation of hydrochloric acid.
Hydrochloric acid is obtained in a dry state by absorbing it, or the vapors thereof, in a solution of calcium chloride, and then vaporizing the acid which is alone evolved.
299,830-June 3, 1884. L. MOND. Process of abtaining hydrochlaric acid from the rosiducs of ammonia-soda manufacture.
The liqnors obtained in the manufacture of soda by the ammonia process are evaporated, and after separating therefrom the chloride of sodium, which salts out, the remaining product is treated with sulphuric acid yielding hydrochloricacid gas, which is condensed or utilized, and, as a secondary product, sulphate of ammonia.
308,511-November 25, 1884. L. MOND. Process of making hydrochloric acid.
Chloride of ammonium is treated with an excess of sulphuric acid-say with double the quantity necessary to form the neutral sulphate-and the mixture heated until all of the hydrochloric acid is disengaged.
316, 300 -April 21, 1885. E. SOLVAY. Manufacture of hydrochloric acid.
For the manufacture of hydrochloric acid a composition is used of chloride of calcium, silicions clays, and the residuum from the manufacture of hydrochloric calcium, silicions clays, and the
s61,026-April 12, 1887. G. RUMPF. Process of obtaining muriatic acid.
For the production of hydrochloric acid metallic oxides are chloridized by passing vapors of ammonic chloride through them in a heated state, and then subjecting the metallic chlorides to a mixed current of air and
379,487-March 13, 1888. L. MOND. Obtaining ammonia and hydrochtoric acid. See Group XIX, Ammonia and Ammonium Salts.
453,986-June 9, 1891. E. SOLVAY. Process of distilling hydrochtoric acid.
A current of dehydrating material-as sulphuric acid-is cansed to flow in a
continuous circuit through a distilling apparatus and an evaporator, the solucontinuous circuit through a distilling apparatus and an evaporator, the solu-
tion of hydrochloric acid being fed into the dehydrating solution within the still, whereby hydrochloric acid is liberated and after passing off is condensed. 503,557-August 15, 1893. E. SOLVAY. Apparatus for the distillation of hydrochloric acid.
Apparatus for process No. 453,986.
474,589-May 10, 1892. W. WALKER. Process of and apparatus for making siticates and hydrochloric acid.
Hydrochloric acid is obtained as a by-product in the production of pure silicates for glass making by mixing chloride of sodium and lime with pulverized sand, and heating the mass in the presence of moisture to drive off the hydrochloric acid, which is collected, and form a silicate of soda and lime.
605,969-June 7, 1898. J. R. WYLDE AND J. W. KYNASTON. Process of making
hydrochloric acid. hydrochloric acid.
Hydrochloric acid free from arsenic is made from gases, wherein hydrochloricacid gas is present contaminated with arsenic, by cooling the gases and then passing them in the presence of chlorine throngh or in contact with coke in a "dry tower," in which the arsenic is retained, and thence to a wet tower, in which the hydrochloric acid is condensed.
612,009-October 11, 1898. G. B. BALDO. Proccss of and apparatus far electrolyzing sea water.
See Group X, Electro-chemistry.
618,772-January 31, 1899. H. S. BLACKMORE. Pracess of making alkali aluminates.
See Group XIX, Aluminates.

PHOSPHORIC ACID.

14,7 72 -A pril 22, 1856. E. N. HORSFORD. Improvement in preparing phosphoric
acid as a substitute for other solid acids. acid as a substitute for other solid acids.
"Pulverulent phosphoric acid" is produced by treating burned bones with diluted sulphuric acid for several days, then leaching the pasty mass and con centrating the extract to 25° Baumé, and adding perfectly white bone ashes and concentrating to one-half its original bnlk. Flour or farinaceous material is then added, and the material is passed throngh a sieve and dried.
156,181-October 20, 1874. J. E. SIEBEL. Improvement in recovering phosphoric acid and purifying ammonia.
A solution of phosphate of lime, obtained in the treatment of bones, is saturated with ammonia, forming a solution of phosphate of ammonia, which is evaporated, heated in a retort, and the ammonia recovered as well as the phosphoric acid. Crude ammonia thus repeatedly used is purified.
194,050-August 14, 1877. N. B. RICE. Improvement in processes of recovering phosphoric acid used in manufacture of getatine.
In obtaining gelatine from bone, ete., by means of phosphoric acid, the acid phosphate of lime is treated to recover the phosphoric acid by subjecting each lot to the action of sulphuric acid and then leaching a part or the whole of the next lot through the sediment.
229,705-July 6, 1880. E. N. HORSFORD. Pulverulent preparation of phosphoric acia.
Pulverulent phosphoric acid is formed by treating the acid liquor to bring it into the condition of free phosphoric acid, concentrating it, mixing it with starch as a neutral substance, drying, and pulverizing. It is then mixed with a
dry alkaline carbonate to form a baking powder.
2S0,874-August 10, 1880. E. N. HORSFORD. Pulverulent preparation of phosphoricacta.
The liquor resulting from the action of sulphuric acid upon bone-ash is taken directly from the leach, boiled down and mixed with starch, dried, and pulverized; forming a pulverulent product of free phosphoric acid and monocalcic phosphate direct from the liquid. It is mixed with a dry alkaline carbonate to
form a baking powder.

239,594-March 29, 1881. H.S. MAXIM. Process of and apparatus for manufacturing phosphoric anhydride.
Phosphoric anhydride is produced by bringing together a jet of vapor of phosphorous and a blast of air of sufficient volume to oxidize the phosphorous phosphorous and a blast of
258,428-May 23, 1882. W. H. HUGHES AND P. O'RIELLY. Process of preparing phosphoric acid from bones.
Liquid acid phosphates are treated with chlorate of potassa and the compound subjected to a high degree of heat to eradicate organic impurities. The process as a whole involves washing, calcining, leaching with snlphuric acid, filtering,
treating with hot air or steam and then with chlorate of potassa and heat, and treating with hot air or steam and then with chlorate of potassa
dissolving in water, with successive filtrations at different stages.
306,664-October 14, 1884. S. G. THOMAS AND T. TWYNAM. Process of obtaining phosphoric acid from metallurgical slags.
The slag is dissolved in dilute hydrochloric acid, a lime salt added in just snfficient quantity to precipitate the iron as ferric phosphate, and the solution of free phosphoric acid separated.
S12,904-February 24, 1885. C. SCHEIBLER. Process of treating phosphatic slag.
The fuid slag is allowed to cool very slowly, whereby a concentration of the phosphoric acid takes place on the one part and of the iron and manganese on the other, so as to permit of their being separately removed.
398,488-November g7, 1888. W. B. GILES AND A. SHEARER. Manufacture of 2. phosphoric acid.
Phosphoric acid is separated from impurities by distilling impure phosphoric acid at a high temperature-say a red heat-in the presence of a current of air, steam, or hydrochloric acid, and condensing the distillate in a partial vacnum. 459,576-September 15, 1891. C. GLASER. Process of making phosphoric acid.
SuIphuric acid is first diluted with phosphoric acid (instead of water), and then suceessive charges of phosphatic material are treated with sulphuric acid diluted with phosphoric acid of increasing degrees, nsing the phosphoric acid succeeding charge.
527,670-October 16, 1894. G. DESCAMPS. Phosphoric acid with an absorbent.
Phosphoric acid in a dry form is provided by charging a vegetable cellulose, as sawdust or cane bagasse, with phosphoric acid and drying, the operation being repeated to increase the percentage of phosphoric acid in the absorbing material.
540, 124-May 28, 1895. J. VAN RUYMBEKE. Process of making phosphoric acid.
A mixture of natural phosphate and clay is submitted to the action of beat in the presence of a reducing agent, as by fusing with coke, and the phosphorus vapors, produced and carried off with the prodncts of combustion, are subjected to the action of air in sufficient quantity to oxidize the vapors into phosphorus
pentoxide, which is collected in water, and concentrated to the desired density.

OTHER INORGANIC ACIDS.

76,678-April 14,1868. D. P. WEBSTER. Improvement in bottles for holding hydrofluoric acid.
They are made of wood, papier-mache, or like material, coated inside with asphalt and outside with a compound of india rubber and gum shellac. A bottle may be made of two sections fitted together.
187,072-March 25, 1873. F. GUTZKOW. Improvement in the manufacturc of boracic acid.
Boracic acid is separated from borate of lime by distillation with superheated steam.
160,761-March 16,1875 . F. FORMHALS. Improvement in proccsses of obtaining
boracic acid from borate of lime. boracic acid from borate of lime.
Sulphurous acid is passed through borate of lime while the latter is in a state of suspension in water.
274,660-March 27, 1889. W. B. ROBERTSON, JR. Process of and apparatus
for obtaining boracic acid from borates. for obtaining boracic acid from borates.
Nitrous and sulphurous vapors are formed and introduced, together with air, into a borate solution, or borate in suspension in water, forming boracic acid.
289,836-December 11, 1883. J. B. HOBSON. Process of and apparatus for obtaining boracic acid from native borate of lime.
Borate of lime is boiled with water and sulphnric acid gradually added, not, however, in excess. The solution is allowed to settle and the liquor is drawn off, filtered, cooled, and the boracic acid crystallized out and pressed to remove the remaining mother liquor and expel its impurities.
650,187-May 22, 1900. C. C. MOORE. Process of making boracic acid and chlorates.
Powdered crude borate is suspended in water, or the mother liquor of a preWious operation-say three ponnds to the gallon-chlorine is passed therethrough with agitation, and the boracic acid precipitated by refrigerating to 15°
to $20^{\circ} \mathrm{C}$. to $20^{\circ} \mathrm{C}$.
322,011-July 14, 1885. W. A. ROWELL. Manufacture of chromic acid.
Chromic acid is produced by first producing in a solution of a chromate a precipitate of chromate of strontium, then completing the precipitation of the chromate solution by means of barium; afterwards decomposing the chromate of barinm with excess of sulphuric acid and finally applying the same acid to
decompose the chromate of strontinm. decompose the chromate of strontinm.
680,61\%-August 8, 1899 . M. LE BLANC AND F. REISENEGGER. Process of producing chromic acid by electrolysis.
See Group X, Electro-chemistry.
394;887-December 11, 1888. E. W. PARNILL AND J. SIMPSON. Obtaining hydrogen sulphide.
Ammonium sulphide is first treated with dilute carbonic acid and the evolved gases permitted to escape; then the ammonium sulphide is given a second treatment with carbonic acid, yielding pure hydrogen sulphide.
403,249-May 14, 1889. A. M. AND J. F. CHANCE. Obtaining hydrogen sulphide from alkali wastc.
Gases containing carbonic acid are passed through alkali waste and the resultant gases, containing hydrogen sulphide, are then passed through fresh alkali waste so that the hydrogen snjphide unites therewith. The waste so enriched is then treated with gases containing earbonic acid, yielding a gas rich in hydro-
gen sulphide, which is collected.

461,665-October 20, 1891. T. W. CAPPON. Process of producing hydrofuosilicic acid.
Hydrofluosilicic acid is produced by passing fluoride of silicon into an aqueous solution containing free hydroflioric acid-from 10 per cent to 20 per cent or more-during the presence of which free acid the silica is dissolved.
465,607-December 22, 1891. M. W. BEYLIKGY. Manufacture of hydroftuosilicic acid.
Hydrofluosilicic acid is produced by heating a mixture of snlphate of iron and an equivalent proportion of finely powdered fnorspar to ineipient redness in a closed vessel, passing steam over it to produce fuohydric acid charged
with vapor of water, and finally passing the said acid condensed with water With vapor of
through silica.
626,511-June6, 1899. E. TEISLER. Process of obtaining silicic and hydrofluosilicic acids.
An aqueous solution of fuorine componnds, resulting from the parification of graphite, is heated to evolve a mixture of steam and gasiform fuosilicate, and the mixture is then cooled so as to cause the fluosilicate to decompose int
silicic acid and hydrofuosilicic acid, and the two compounds are separated.
489,633-January 10, 1893. F. GRUESSNER. Process of recovering metastannic acid.
Metastannic acid combined with arsenic is recovered by dissolving the compound in concentrated hot sulphuric acid, then adding an oxidizing agent, as pound in concentrated hot sulphuric acid, then adding an oxidizing age
529,100-November 13, 1894. I. A. F. BANG AND M. C. A. RUFFIN. Manufacture of anhydrous stannic acid.
A solution of an alkaline bicarbonate is added to a solution of an alkaline stannate to precipitate metastannic acid, which precipitate is mixed with sulstannate to precipitate metastannic acid, which prect,
575,240-January 12, 1897. A. K. HUNTINGTON. Process of making hydrocyanic acid.
A mixture of acetylene and nitric oxide is ignited and rapidly burned in a closed chamber-as in a gas engine. The products, hydrogen and hydrocyanicacid gases, are passed through solutions of suhstances which combine with
hydrocyanic acid-as soda or potash-prodncing cyanides. The carbonic oxide and hydrogen may be used for combustion.
101,011-March 22, 1870. M. HATSCHEK. Improved apparatus for producing sulphurous acid.
A solution of sulphurous acid is produced by spraying water through the ascending fumes of sulphur.
123,713-February 13, 1872. P. MARCELIN. Improvement in the manufacture of sulphurous acid.
Pure sulphurous acid is produced by the decomposition of sulphate of iron with sulphur in a retort at a brigint cherry-red heat.
268,530-December 5, 1882. R. P. PICTET. Production and dehydration of sulphurous oxide and apparatus therefor.
Sulphurous acid gas is passed through a refrigerator in which pure anhydrous sulphurous acid is undergoing vaporization, whereby at the low temperature (at least $-10^{\circ} \mathrm{C}$.) the hydrate of the sulphurous acid crystalizes out.
308,289-November 18, 1884. T. TERRELL. Making ferric oxide and sulphurous acid from ferric sulphate.
The ferric sulphate is decomposed by heat; free sulphur (about 10 per cent) being mixed therewith to assist the decomposition.
311,595-February 3, 1885. I. S. McDOUGALL. Production of sulphurous acid.
In the production of sulphurous acid air is forced under pressure into a closed vessel containing ignited sulphur or sulphur-bearing material, the vessel being water jacketed or cooled to maintain a temperature below that of volatilization of sulphur; the sulphurous gases are conducted from said retort into and below the surface of an absorbing liquid.
36s,457-May 24, 1887. H. B. FORD. Apparatus for and process of the manufacture of sulphurous oxide.
In the manufacture of sulphurous oxide in liquid form all moisture is removed from the air before it is supplied to the sulphur furnace.
378,678-February 28, 1888. C. E. GETCHELL. Apparatus for making sulphurous aeid.
A combining chamber has thin sinnous or zigzag passeges for the acid fumes, with water inlet at the upper part, thus affording an intimate contact with one another.
197, 574 -November 27,1877 . C. R. STUNTZ. Improvement in compositions for pro-
ducing sulphureted $7 y$ drogen.
A powder consisting of an intimate mixture of coal tar and sulphur, the latter being equivalent to or in excess of the hydrogen of the coal tar. If the gas is prepared in fragile vessels, the powder is diluted with sand to make the coke
friable. friable.
224,426-February 10, 1880. $\dot{\text { W. E. A. HARTMANN. Manufacture of hydrogen }}$
sulphide. sulphide.
Hydrogen sulphide is produced by bringing together at a red heat, in a conyerter, sulphurous acid (or the vapor of sulphur or of sulphuric acid), carbon
(coke), and steam.

ACETIC ACID.

98, 817 -August 17, 1869. L. D. GALE AND I. M. GATTMAN. Improvement in the
manufacture of sugar of manufacture of sugar of lcad and acetic acid.
Lead is corroded by vapors of vinegar mixed with atmospheric air, the vinegar concentrated by means of chloride of sodimm and the sugar-of-lead solution bleached with sulphureted hydrogen. Acetic acid, free from pyroligneous
odor and color, is obtained by the distilation of acetate of lime with sulphuric odor and color, is obtained by the distillation of acetate of lime with sulphuric
acid. acid.
121,586-Dccember 5, 1871. J. F. CAVARLY. Improvement in purifying acetic
acid. Acetic acid is deodorized and purified by mixing therewith a small quantity of any of the alcohols included in the formula $\mathrm{C}_{2} \mathrm{H}_{2}\left(\mathrm{z}_{\mathrm{n}}+1\right) \mathrm{O}_{2}$.
118,788-September 12, 1871. C. J. T. BURCEY. Improvement in the manufacture
of acetic acid. of acetic acid.
Acetate of lime and concentrated sulphuric acid are introduced into a boiler

209,978-November 19, 1878. A. PIRZ. Improvement in the manufacture of acetic acid.
A solution of permanganate of potash is added to impure acetic acid and the product distilled to remove impurities (1 pound of permanganate to 100 pounds acia).
209,979-November 19, 1878. A. PIRZ. Improvement in the manufacture of acctic
acid. acid.
Acetic acid is extructed from acetate of lime by leaching with sulphuric acid in gradually weakened solutions, using the weak acetic acid as a diluent for the sulphuric acid.
401,992-April 23, 1889. I. A. F. BANG AND M. C. A. RUFFLN. Process of purifying acetic acid.
Crude acetic acid in the liquid state is purified from pyroligneous matter by bringing into intimate contact with a carbon compound, such as a hydrocarbon of the benzene series, whereby the impurities are dissolved, and the acid then separated from the purifying agent. Air is first blown through the crude acid to oxidize the tarry matters.
414,277-November 5, 1889. I. A. F. BANG AND M. C. A. RUFFIN. Process of purifying acetic aeia.
In the purification of crude acetic acid a small quantity of an oxidizing agent, such as binoxide of manganese, is introduced as well as a heavy hydrocarbon, the former to oxidize the impurities insoluble in bydrocarbons and not affected by the air. The acid is heated to ebullition and the vapors caused to pass through the hydrocarbon purifying ageut to the air, and the condensed particles to fall back through the purifying agent.
431,248-July 1, 1890. F. C. ALKIER. Obtaining acetic acid and methyl alcohol.
Wood-pulp lyes are concentrated by repeated use; the concentrated solution neutralized by an alkali; the methyl alcohol recovered by distillation; the residuary liquor evaporated to dryness; and the acetate distilled with an acid to obtain the acetic acid.
432,926-July 22, 1890. I. A. F. BANG AND M. C. A. RUFFIN. Process of making acetic acid.
In the manufacture of acetic acid a hot solution of acetate of lime is acted upon by hot sulphuric acid and the aqueous acetic acid drawn off from the crystalline product. A concentrated solution of acetic acid is formed by dissolving the acetate of lime in a weak solution of acetic acid and decomposing the resulting solution while hot by means of hot sulphuric acid.
485,461-November 1, 189\%. F. P. DEWEY. Process of obtaining alumina and acetic acia.
A solution of acetate of alumina, which may be formed from sulphate of alumina and acetate of lime, is subjected to destructive distillation; the aceticacid vapor is collected in a condenser, and the precipitated alumina recovered.
595,787-December 21, 1897. A. SCHMIDT. Purification of crude acetic acid.
Acetic acid is filtered in a finely divided state through coal or coke, pure oxygen gas being forced up through the coal in an opposite direction.
634, 771 -October 3,1899 . H. PLATER-SYBERG. Process of extracting acetic acid from alkaline acetates.
See Group X, Electro-chemistry.

LACTIC ACID.

243,827-July 5, 1881. C. E. AVERI. Manufacture of lactates.
Lactic acid and lactates are produced by the lermentation of a sugar of vegetable origin with a lactic ferment in the presence of nitrogenous matters, chiefly of vegetable origin, and of a substance suitable to gradually neutralize the acid as formed.
290,252-December 18, 1889. G. A. MARSH. Manufacture of lactates and lactic acid. In the manufacture of lactic acid and the lactates by the fermentation of dextrine or like gums with an active lactic ferment and an acid neutralizing substance, agitation is prevented during fermentation to avoid butyric and other destructive fermentations.
290,258-December 18, 1889. G. A. MARSH. Manufacture of lactates for the production of lactic acid.
Lactic acid an she lactates are produced by the fermentation of any amylaceous substance, as corn meal, in its original form, in water, with an active lactic ferment charged with an acid neutralizing substance, as carbonate of lime.
290, 34-December 18, 1888. C. O. THOMPSON. Manufacture of lactic acid and lactates.
Neutral calcium-lactate crystals are obtained by digesting amylaceous matter, converting a portion into glucose, and adding to the glucose liquor, still mixed with the nitrogenous matters and residues, pure white glucose, fermenting with lactic ferment and neutralizing the acid as it forms with carbonate of lime. Acid crystals are obtained from the neutral crystals by digesting same in hot water, filtering, treating with suiphuric acid, again niltering, concentrating, and crystallizing.
321,925-July 7, 1885. C. N. WAITE. Process of distilling lactic acid.
It is distilled and purified by the aid of free steam; the steam takes up the pure lactic acid and is then condensed.
$330,815-$ November 17,1885 . C. E. AVERY. Manufacture of laclates.
A lactic ferment is purified and preserved by adding it to a medium specially favorable to its growth and less favorable to the growth of other ferments. A pure reagent is prepared by successive impreguations of a series of culture baths with lactic ferment, the impregnation of each solution from the preceding one being effected at the point of full height of fermentation, as evidenced by the evolution of carbonic acid gas at its first maximum. A culture bath is formed by adding 1,000 parts of starch sugar, dextrine, glucose, or milk sugar to 6,000 parts of water, then 500 parts of carbonate of lime, and finally 100 parts of vege parte nitrogenous matter, the mixture being kept at a heat of 35° to $45^{\circ} \mathrm{C}$.
965,655-June 28, 1887. C. N. WAITE. JIanufacture of lactic acid.
In the lactic fermentation of a fermentable sugar with lactic ferment and a neutralizer, glue is added to supply soluble nitrogenous matter.
368,092-August 9, 1887. C. N. WAITE. Process of lactic fermentation.
A pure lactate of lime is produced by the fermentation of sugar, glucose, or pure starch with a minute quantity of nitrogen in the form of ammonia, and a minute quantity of phosphoric acid, and lactic ferment in a closed vessel in the absence of air.

455,078-June 90,1891. C. N. WAITE. Process of manufacturing lactic acid.
Crude salts, such as zinc lactate, are dissolved in boiling water, an excess of milk of lime is added to the solution, the precipitate removed by filtration, and sulphuric acid added to the filtrate, which is then again filtered to romove the sulphate of lime.
5S4,707-June 15, 1897. P. ROOSEN. Process of making lactic acid.
Carbohydrates are heated with milk of lime in a closed vessel at not less than 130° C., by which the carbohydrates are bydrolyzed to lactic acid.

TARTARIC ACID.
199,099-January 8, 1878. F. DIETRICH. Improvement in the manufacture of tartaric acid.
Argols and residues of wine making are exposed in a dry state to a temperature of 140° to $170^{\circ} \mathrm{C}$., to facilitate the purifying of the tartaric acid salts.
221,297-November 4, 1879. H. GOLDENBERG. Improvcmenl in the manufacture of tarlaric acid.
In the manuiacture of tartaric acid, potassium hydrate is recovered by mixing neutralized tartrate of potassium, 226 parts, and water 8 times as much, with quick lime, 112 parts, slacked in 16 times the quantity of water, and pourwith quick lime, 122 parts, slacked in 16 times the quantity of water, 8 .
ing into the mixture while stirring a solvtion of tartrate of potassium.
$455,768-J u l y$ 14, 1891. R. W. SCHEDLER. Manufacture of lartaric acid.
Sulphuric acid, from 5 to 15 per cent, is added to solutions of tartaric acid oncentrated to the point of crystallization to increase the quantity of crystal lized tartaric acid. The mother liquor is used to treat tartrate of lime.

CITRIC ACID.

515,085-Fcbruary 20, 1894. C. WEHMER. Process of making citric acid.
A sugar solution of from 10 to 20 per cent, acidulated wíth from 2 to 5 per cent of citric acid, is exposed to the air until a fungous growth forms and the pure culture thus obtained is introduced into other sugar solution, and the pure chlture thus obtained is introduced into other sugar solutions acid is converted into a lime salt with carbonate of lime from which citric acid is prepared.

SALICYLIC ACID.

150,867-May 12, 1874. H. KOLBE. Improvement in the processes of preparing salicytic and other acids.
Salicylic acid, as well as the isomeric and homologous acids, is produced by the action of carbonic acid on carbolic acid, or cressolic acids, or on a mixture of them, in presence of alkalies or alkaline earths.
166,869-August 17, 1875. W. E. GRAF. Improvement in processcs of producing salicylic acid.
Salicylic acid is produced by conducting carbonic acid from a generator into a closed, heated still, containing carbolic acid and alkali. (Apparatus No. 166,862 .)
196,254-October 16, 1877. E. SCHERING. Improvement in purifying salicylic acid by dialysis.
Salicylic acid is purified by filtering it through animal membrane.
334,290-January 12, 1886. R. SCHMITT. Manufacture of salicylic acid.
Salicylic acid and its homologues are produced by subjecting the phenolates of the alkalies and earthy alkalies to the action of dry carbonic acid under alkaline salts, and then converting these salts into salicylates and their homologues by heating in hermetically closed vessels at from 120° to $140^{\circ} \mathrm{C}$.
355,875-January 11, 1887. T. KEMPF. Mfanufacture of salicylic acid and substitutes
thereof.
Salicylic acid, or the substitutes and bomologues thereof, is produced in one operation by subjecting the phenolates of the alkalis and earthy alkalis, and the substituted phenolates of said alkalis and earthy alkalis, to the action of carbonic acid under pressure at from 120° to $145^{\circ} \mathrm{C}$.
416,318-December 3, 1889. H. BAUM. Dithiosalicylic acid.
A new product, having the general formula $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{O}_{6}$, and which melts as a resin. It is formed by heating protochloride of sulphur (or the bromide or iodide) with salicylic acid.
599,188-November 13, 1894. S. MARASSE. Process of making salicylic acid.
A dry mixture of phenol and potassium carbonate in excess is treated at a gradually iucreasing temperature with carbonic-acid gas under pressure until is then produced from the potassium salicylate in the well-known way.
611,014-September $\$ 0,1898$. L. LIMPACH. Process of making salicylo-acetic acid.
Monochloracetates are caused to act on salts of salicylamid, and the product is saponified.
644,077-February 27, 1900. F. HOFFMANN. Acetyl salicylic acid.
A new product, soluble in benzene, alcobol, and glacial acetic acid, M. P. 135° C., is obtained by beating salicylic acid with acetic anhydride.

TANNIC ACID.

231,489-August 24, 1880. J. HOLTZ. Obtaining tannic acid.
Tannin or tannic acid is produced in acicular form by passing the inspissated tannin extract through a fine sieve and breaking up the dried threads.
265,797-September 5, 1882. A. MTTSCHERLICH. Manufacturc of tannic acid.
Wood is first subjected to the action of steam under pressure, and then to the action of an aqueous solution of bisulphite of lime at a temperature above the boiling point; and the tannic acid solution and a solution of bisulphite of lime are simultaneously produced by exposing small pieces of carbonate of lime to the joint action of a spray of water from above and the fumes of the aforesaid solution from below.

OTHER ORGANIC ACIDS.

276,888-May 1, 1883. C. RUDOLPH. Manufacturc of cinnamic acid.
Benzylideacetone is heated with bromine dissolved in soda lye and diluted sulphuric acid added when the bromoform generated has separated from the aqueous solution. The cinnaxuic acid is uurified by recrystallization with alco-
hol or water.

284, 862—September 11, 1883. M. H. LACKERSTEEN. Process of treating fats and oils.
See Group X, Electro-chemistry.
35s,666-November 30,1886. M. H. LACKERSTEEN. Process of manufacturing soap and glycerine.
See Group X, Electro-chemistry.
407,906-July 30, 1889. B. R. SEIFERT. Process of making paraoxybenzoic acid.
In the manufacture of this acid the heating of potassinm phenate and dry carbonic acid is done in a closed vessel under a superatmospheric pressure to $180^{\circ} \mathrm{C}$. or more.
470,9\%0—March 15, 1892. B. R. SEIFERT. 'Process of making oxymethoxybenzoic acids.
Guaiacol acid and engetinic acid are produced by evaporating an aqueous solution of gusiacol or engenol and an alkali or earthy alkali, and saturating the dry salt with carbon dioxide under pressure and heating to over $100^{\circ} \mathrm{C}$.
488,290—December 20, 1892. B. R. SEIFERT. Process of making oxyuvitic acid.
Alkaline or earthy alkaline salts of cresol are subjected to the action of carhonic acid at a temperature of from 160° to $220^{\circ} \mathrm{C}$. The prodnct is dissolved in Water and alpha oxyuvitic acid is precipitated by means of hydrochloric acid.
It has a M. P. of $290^{\circ} \mathrm{C}$. It may be purified from any cresotinic acid by partial precipitation of the solution of a salt of the acid.
511, 150 -December 26, 1893. A. A. NOYES AND A. A. CLEMENT. Process for the manufacture of paraamidophenol sulphonic acid.
See Group X, Electro-chemistry.
647,611-October 8, 1895. L. LEDERER. Process of making aromatic oxycarbon
acids.
The homologous phenoxacetic acids are melted with caustic alkalis; as ortho-cresoxacetic acid one part and caustic soda two parts, and heated to 270° C. with the addition of a little water. The aqueous solution of the melt is decomposed by dilnte sulphuric acid.
555,711-March 3, 1896. B. R. SEIFERT. . Citricphenetidin acid and process of obtaining it.
New products, having the form of white crystalline powders, of acid reaction, soluble in w ater, in alcohol, and in soda solutions, are produced by heating para-amido-phenetol with citric acid or its derivatives; treating the product with hot water or with solntions of soda or caustic soda, and of a mineral acid successively, and crystallizing.
557,410—March 51, 1896. W. MAJERT. Pyrocatechin mono-acetic acid and process of making same.
A new componnd, M. P. 131° C., is produced by subjecting one molecule of pyracatechin to the action of one molecule of chloracetic acid in the presence of an alkali or alkali carbonate.
663,076-June 30, 1896. B. R. SEIFERT. Paraphenetidin succinic acid and process of making same.
New products, derived from the dicarbon acids of the fatty series and paraphenetidin, solnble in water, M. P. 163° to 195° C., are produced by heating paraphenetidin with one of the dicarbon acids of the fatty series, boiling the product with soda solution and adding a mineral acid, and purifying by crysallization.
598,790-February 8, 1898. A. KREFTING. Process of treating seawced (tang acid).
The lime is extracted by means of dilute sulphnric acid before the seaweed is otherwise chemically treated, the liquid filtered, and the nonnitrogenous and pure tang acid precipitated.
644,381-Fcbruary 27, 1900. E. SAPPER. Process of making phthalic acid.
A substance whose formula contains that of the naphthalene nucleus is heated with sulphuric acid in the presence of mercuric sulphate.
935,962-February 9, 1886. E. SCHAAL. Converting petroleum and similar hydrocarbons into acids.
Petroleum and other hydrocarbons of the series $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{~m}}+2$ are converted into organic acids by subjecting them in the presence of alkaline substances-caustic alkalis, alkaline earths or their carbonates-to the aetion of an oxidizing agent, separating out the alkaline salts produced and decomposing them with a mineral acid, and finally separating the organic acids into liquid acids and solid acids by distillation.

GROUP II.-SODAS.

CAUSTIC SODA.

16,111-November 25, 1856. C. BICKELL. Process of trealing feldspar for manure. Potash or soda is obtained either in the canstic or carbonated state. See Group VIII, Fertilizers, Processes.
22,888-February 8, 1859. H. PEMBERTON. Improvement in the process of manufacturing caustic soda and other caustic alkalis.
The solution of eanstic soda or other caustic alkulies is separated from the earbonate of lime or other precipitate by filtration through fire brick or other porous substance capable of resisting the caustic action of the alkaline liquors.
152,845-July 7, 1874. C. AND J. JURON AND A. AND L. IMBERT. Improvement in the production of caustic alkalis from carbonates.
Superheated steam is passed through the mass of alkaline carbonates to be converted.

169,800-November 9, 1875. H. GASKELL, JR. Improvement in processcs of manufacturing caustic soda.
A heated revolving furnace is first charged with salt cake, or with cake and coal slack, and when the salt cake has become fuxed or softened the chalk or coar siack, and when the salt cake has bec
201,028-March 5, 1878. C. LÖWIG. Improvement in manufacture of caustic alkalis and preparations of alumina.
Carbonate of soda or potassa is heated to a red heat with so mueh alumina, or alumina ore, or oxide of iron, as to present one equivalent of alkali to one equivalent of alumina. By subsequent lixiviation aluminate of soda is obtained free of carbonate of alkali. The product is decomposed by the addition of a paste of hydrate of lime, of hydrate of strontia, or of hydrate of magnesia, form
ing the alnminates of said earths as precipitates, the caustic alkali remaining in solution. Gelatinous hydrate of alumina is produced by the formation of chloride of aluminium from the aluminates of the earths prepared according to this process, and the decomposition of the same by means of the earths, or their carbonic-acid salts, or the aluminates.
20s,761-Máy 14, 1878.* E. W. FARNELL. Improvement in the manufacture of caustic alkalis.
Carbonates of soda and potassa of a greater specific gravity than $1,200^{\circ}$ are heated with canstic lime in a closed vessel under pressure.
241,888-May 10, 1881. G. T. LEWIS. Perfumed caustic soda.
An essential oil is added to granulated or pulverized canstic soda while in a dry state.
254,918-March 14, 1882. E. CAREY, H. GASKELL, JR., AND F. HURTER. Purification of alkaline solutions.
Alumina in solution is added to alkaline solutions containing an excess of silica to precipitate the same.
258,850-May 30,1882 . E. CAREY, H. GASKELL, JR., AND F. HURTER. Purifcation of alkaline solutions obtained in the manufacture of soda.
The sulphur componnds are oxidized with the aid of manganese oxide or sodium nitrate, and the liquor is then heated to at least $176^{\circ} \mathrm{C}$. to cause the double decomposition of the oxidized sulphur compounds and the cyanogen compounds. Ammonia is recovered.
272,187-February 18, 188s. C. B. DUDLEY. Method of making soda-lime.
Sal soda is mixed with caustic lime-without extraneons heat-in such proportions that the water of crystallization will be taken up by the canstic lime.
274,619—March 27, 188s. C. LÖWIG. Proccss of manufacturing caustic alkalis.
A mixture of carbonate of soda-or of potash-and oxide of iron is furnaced, and subsequently lixiviated.
362,677-May 10, 1887. E. SOLVAY. Manufacture of caustic soda.
Sodinm bicarbonate obtained by the ammonia-soda process is mixed directly with oxide of iron, heated in a closed apparatus and then transferred to another With oxide of iron, heated in a closed apparatus and then transferred to another carnonic acid so as to obtain canstic soda.
402,226-April 30, 1889. J. A. BRADBURN. Process of manufacturing caustic soda.
Sodium chloride, or potassinm chloride, is treated with nitric acid and peroxide of manganese in a still. The spent liquor is treated with caustic soda or potash, the precipitated manganese oxidized and removed, and the nitrate solupotash, the precipitated manganese oxidized and removed, and the nitrate soluated.
449,354; 442,396; 442,594-December 9, 1890. I. L. ROBERTS. Electrolytic apparatus.
See Group X, Electro-chemistry.
450,103-April 7, 1891. E. A. LE SUEUR. Electrolytic apparatus.
See Group X, Electro-chemistry.
454,186-June 16, 1891. A. KAYSER. Manufacture of caustic alkati, etc.
A mixture of an alkaline chloride with a clay containing silica-in the proportions of $1 \frac{1}{2}$ pounds of silica to 1 pound of alnmina-is heated to a white heat in a converter by the direct action of highly heated gas containing steam; then melted with an alkali, leached, and the residue ground to release the alkali. The gaseous products from one converter, combined with additional highly heated gases, are applied to a second mixture of the chloride with clay.
458,563-September 1, 1891. F. ELLERSHAUSEN. Process of making caustic alkali.
In the manufacture of caustic soda and potash from solutions of their respective sulphides, the solntions are filtered through grannlated ferrate of sodium or potassium.
459,688-September 16, 1891. G. H. GRAY. Process of making soda with strontium salts.
Sodium, or potassium, hydrate is produced by treatment of sodium sulphate with strontium hydrate, followed by treatment of the strontinm sulphate thus produced with magnesium carbonate and sodium, or potassium, salts, thus producing strontium carbonate to be afterwards converted into strontium hydrate.
462,S66-November 3,1891 . J. SIMPSON. Process of making caustic soda.
Calcic phosphate is treated with hydrochloric acid, sulphate of soda is added, the liquor is drawn off and concentrated, and the concentrated mass is subjected to a red heat, fused, and the fused mass dissolved. The phosphate of soda and sodium ohloride contained in the solution are separated, the former treated with canstic lime, and the resulting phosphate of lime and caustic soda separated.
481,407-August 23, 1892. F.M. LYTE. Production of caustic alkalis and chlorine. See Group X, Electro-chemistry.
484,990-October 25, 1892. H. BLACKMAN. Electrolytic process and apparatus. See Gromp X, Electro-chemistry.
491,700-February 14, 1893. E. B. CUTTEN. Mcthod of electrolytically producing soda and chlorine.
See Group X, Electro-chemistry.
498,769-June 6, 1899. T. CRANEY. Method of electrolyzing salts.
See Group X, Electro-chemistry.
501,191-July 11, 1893. C. N. WAITE. Art of manufacturing chlorine or caustic alkali by electrolysis.
See Gronp X, Electro-chemistry.
601,783-July 18, 1893. E. HERMITE AND A. DUBOSC. Method of and apparatus for electrolyzing solutions.
See Group X, Electro-chemistry.
504,708-Scptember 12, 1893. A. BREUER. Electrolytic diaphragm.
See Group X, Electro-chemistry.
508,804-November 14, 189s. H. S. BLACKMORE. Process of and apparatus for dissociating salts of cllalis by electrolysis.
See Group X, Electro-chemistry.

510,979-Dccember 19, 1899. G. LUNGE AND C. H. M. LYTE. Process of making
basic lead salts and caustic alkali. basic lead salts and caustic alkali.
Crude pig lead is oxidized and the oxide dissolved in nitric acid; the lead bonate and pure sodic nitrate Nitric and caustic soda to form basic lead carsoda is then formed by double ditric acid, for use over again, and ferrite of oxide, and the ferrite of sada is decomposition of the sodic nitrate with ferric Silver, if any, is precipitated from the losed into ferric oxide and caustic soda. 514 125- Febmary 6 isited from the lead nitrate with finely divided lead.
514,125-February 6, 1894. F. M. LY'IE AND G. LUNGE. Process of making
caustic alkali and lead chloride. caustic alkali and lead chloride.
An alkaline nitrate is first formed by the double decomposition of nitrate of while in an alkeline chloride, and the alkaline chloride is then decomposed, while in admixture with ferric oxide in sufficient proportion to maintain the porficient to convert the whole of the heated air and steam at a temperature of the alkali with the whole of the base of the alkaline nitrate into a ferrite of the alkali with the cvolution of nitrous fumes, which are converted into
518,065-April 10, 1894. C. HOEPFNER. Electrolytic apparatus. See Group X, Electro-chemistry.
518,135-April 10, 1894. H. Y. CASTNER. Electrolytic apparatus. See Group X, Electro-chemistry.
 See Group X, Electro-chemistry.
522,614-July 10, 1894. I. L. ROBERTS. Electrolytic diaphragm. See Group X, Electro-chemistry.
52, 616-July 10, 1894. I. L. ROBERTS. Method of electrolytic decomposition of
salts. salts.
See Group X, Electro-chemistry.
59,026-July 17, 1894. C. N. WAITE. Diaphragm for electrolytic cells. See Group X, Electro-chemistry.
528,322-October 30,1894 . H. Y. CASTNER. Process of and apparatus'for electrolytic decomposition of alkatine salts. See Group X, Electro-chemistry.
581,235-December $18,1894$. C. T. J. VAUTIN. Process of and apparatus for the production of caustic alkali.
See Group X, Electro-chemistry.
594,0ss-February 12, 1895. T. CRANEY. Apparalus for manufacturing caustic soda.
See Group X, Electro-cheraistry.
541,146-June 18, 1895. H. BLACKMAN. Elcetrolytic process and apparatus. See Group X, Electro-chemistry.
541,597-June 25, 1895. J. D. DARLING. Method of and apparatus for manufacturing sulphuric acid and by-products. See Group X, Electro-chemistry.
546,928-September 17, 1895. C. HOEPFNER. Anode for clectrolytic apparatus. See Group X, Electro-chemistry.
556,088-March 10, 1896. M. H. WILSON. Electrolytic apparatus. See Group X, Electro-chemistry.
568,251-September 22, 1896. H. BLACKMAN. Electrolytic anode and apparatus. See Group X, Electro-chemistry.
572,472-December 1, 1896. H. Y. CASTNER. Anode for electrolytic processes. See Group X, Electro-chemistry.
578,457-March 9, 1897. C. KELLNER. Process of and apparatus for simultaneously producing ammonia, sodium hydroxide, and chlorine.
See Group X, Electro-chemistry.
589,930-May 25, 1897. E. A. LE SUEUR. Process of electrolysis. See Group X, Electro-chemistry.
585,387-Tune 29, 1897. C. KELLNER. Electrolytic diaphragm.
See Group X, Electro-chemistry.
586,236-July 13, 1897. L. P. HULIN. Process of electrolytic decomposition of solutions.
See Group X, Electro-chemistry.
586,799-July 20 , 1897. C. KELLNER. Method of and apparatus for effecting electrolysis.
See Group X, Electro-chemistry.
587,850-August 10, 1897. L. P. HULIN. Process of and apparatus for manufacturing metallic peroxids and couslic alkalis.
See Group X, Electro-chemistry.
588,276-August 17, 1897. C. KELLNER. Electrolytic process and apparatus therefor.
See Group X, Electro-chemistry.
590,548-Seplember21, 1897. C. KELLNER. Process of producing hydrates or other salts of clkaline metals.
See Group X, Electro-ehemistry.
590,8\%6-September 28, 1897. J. D. DARLING. Porous diaphragm for electrolytic apparatus.
See Group X, Electro-chemistry.
591,780-October 12, 1897. W. BEIN. Process of and apparatus for electrolyzing. See Group X, Electro-chemistry.
59\%,802-November 2, 1897. N. MARCHAL. Electric diaphragm.
See Group X, Electro-chemistry.
606,981-July 5, 1898. W. S. ROMME. Process of and apparatus for decomposing solid substances.
See Group X, Electro-chemistry.

609,745-August 28, 1898. W. G. LUXTON. Diaphragm for electrolytic purposcs. See Group X, Electro-chemistry.
612,009-October 11, 1898. G. B. BALDO. Process of añd apparatus for electrolyzing sea water.
Sec Group X, Electro-chemistry.
629,693-April 25, 1899. C. E. ACKER. Process of and apparatus for making caustic alkalis.
A fused alloy, containing an alkali metal, is submitted to the direct action of steam from below the surface, by means of a converter having an inverted bell with steam inlet, whereby the steam is decomposed and hydrogen gas and an alkaline hydrate are formed, the lydrate being immediately removed as formed.
629,918-April 25, 1899. W. LANG, C. PISTOR, AND M. OTTO. Proccss of purifying caustic alkalis.
The diffusiveness of a solution of the lyes, mixed with other solutions of a similar diffusiveness, is increased by increasing the degree of concentration, and the lyes are then separated from the mixture by diffusion into water through a diaphragm.
691,468-August 22, 1899. C. KELLNER. Mrethod of and apparatus for producing clkali salls.
See Group X, Electro-chemistry.
686,234-November 7, 1899. E. BAKER. Process of and apparatus for electrolytic decomposition of saline solutions.
See Group X, Electro-chemistry.
G87, 410-November 21, 1899. G. H. POND. Process of and apparatus for dissociating substances by electrolysis.
See Group X, Electro-chemistry.
641,976-Jonuary 16, 1900. J. D. DARLING. Porous diaphragm for cells employing fused electrolytes.
See Group X, Electro-chemistry.
649,565-May 15, 1900. C. E. ACKER. Process of manufacturing alkali and halogen gas.
See Group X, Electro-chemistry.
652,611-June 26, 1900. J. HARGREAVES. Combined diaphragm and electrode. Sec Group X, Electro-chemistry. .
659,761-July 9, 1900. J. B. ENTZ. Electrolytic production of caustic soda, etc. See Group X, Electro-chemistry.

SODIUM CARBONATES.

1,191-June 24, 1839. H. G. DYER AND J. HEMMING. Improvement in the manufacture of carbonate of soda.
Carbonate or bicarbonate of ammonia is used in converting common salt in to a carbonate of soda, with recovery of the ammonia for use in subsequent operations.
9,946-October 19, 1852. H. PEMBERTON. Improvement in making soda-ash and carbonates of soda.
A mixture of snlphate of soda and carbonaceons matter is melted, withont the addition of lime or other matter. An aqueous solution of the product is treated with carbonic acid and evaporated to dryneas and again treated in the dry state by carbonic acid to form bicarbonate of soda.
99,213-July 14, 1863. L. CHANDOR. Inprovement in the manufacture of alkoline carbonates.
Potassinm and sodium sulphurets in solution are transformed into carbonates by the action of cream of lime and a current of carbonic acid. By the reaction of solutions of sulphuret or barnum and sulphate of soda, sulphin acid it is passed through a solntion of sulphuret of barium, producing carbonate acid it is p
of beryta.
48,597-August 22, 1865. T. MACFARLANE. Improved process of preparing chlorine, bleaching powder, carbonate ofsoda, and other products.
Chlorine is produced by heating a mixture of calcined green vitriol, common salt, and peroxide of iron in a current of air, and the residue used for the manufacture of carbonate of soda and soda ash. A mixture of burnt lime and slag is used for the furnace hearths. In the manufacture of carbonate of soda and soda ash the deep green alkaline solution is decolorized by the application of heat and the passage of the flame and carbonic acid produced by combustion
over the solution, the gases being absorbed. The artificial sulphuret of iron is over the solution, the gases being absorbed. The artincisi sulphuret of iron is being washed out with hot water and the solution concentrated.
55,600-June 19, 1866. H. M. BAKER. Improvement in the manufacture of carbonate of soda, etc.
Bicarbonate of magnesia, produced by charging carbonate of magnesia with carbonic acid under heat and pressure, is mixed with one equivalent proportion of sodium chloride, giving bicarbonate of soda and magnesium chloride. The latter is decomposed by heat, yielding muriatic acid, which is distilled ont, and magnesie, which latter is bicarbonated and again used.
64,385-April 30,1867. A. P. VON PÖHRNHOFF. Improved process in the manufacture of bicarbonate of soda.
Hydrate of soda is treated with carbonic ges and steam.
90,140-May 18, 1869. I. WALZ AND J. M. PENDLETON. Improvement in the manufacture of carbonate of sodo and other chemicals.
A mixture of carbonate of lime and sodium nitrate in chemical proportions is hested in a retort with admission of steam to regenerate nitric acid. The product is available for caustic soda solntions.
116,664-July 4, 1871. W. H. BALMAIN. Improvement in the manufacture of bicarbonate of soda.
Bicarbonate of soda, being insoluble in a saturated solution of salt or of sulphate of soda, is washed and purified by allowing water to filter through it.
180,174-August 6, 1872. J. YOUNG. Improvement in processes and apparatus for the manufacture of carbonate of soda.
Bicarbonate of soda mixed with compounds of ammonia is boiled to reduce to carbonate of ammonia by driving off a portion of the carbonic acid and the residual compounds of ammonia, which are recovered.

186,469-March 4, 1873. E. SOLVAY. Improvement in processes and apparatus for the manufacture of carbonate of soda.
Carbonic acid gas is forced into the bottom of a high column of a solution of salt and ammonia, the liquor being fed into the column midway of its height. The ammonia is regenerated with magnesia or basic magnesium chloride, the residue being boiled down with steam and the chlorine condensed.
149,755-October 21, 1873. H. DE GROUSILLIERS. Improvement in the manufacture of alkaline carbonates.
They are produced from their baloid salts by treating same with carbonate of ammonia dissolved in strong alcobol or wood spirit.
195,142-September 11, 1877. J. MACTEAR. Improvement in manufccture of granulated crystaltine carbonate of soda.
The "vat," or "red," or similar liquor is first carbonated and then concentrated, and cooled under agitation. The residuary liquor is boiled down to dryness and the salts decomposed in a furnace, as practiced with fresh sodasulphate.
198,298-December 18, 1877. F. GUTZKOW. Improvement in the manufacture of soda from its sulphate.
Sulphate of lime is dissolyed in water with the aid of sulphurous acid and sulphate of soda added, and the precipitated sulphate of lime removed. The solution of bisulphite of soda is then heated and converted into a neutral sulplite solution and treated with quicklime to form caustic soda and sulphite of into a carbonate.
202,356-April 16, 1878. G. T. LEWIS AND W. J. MENZIES. Improvement in manufacture of bicarbonate of soda.
Bicarbonate of soda is produced by passing carbonic-acid gas through a mixture of sal soda and carbonate of soda by the ammonia process.
222,152-December 2, 1879. C. V. PETRAEUS. Improvement in processes for manufacturing alumina and carbonate of soda.
Hydrated alumina and carbonate of soda are manufactured from cryolite and bauxite, by roasting together crushed cryolite and caustic lime, adding crushed bauxite, and boiling the mixture in water and treating the solution with car-bonic-acid gas.
222,158-December 2, 1879. C. V. PETRAEUS. Improvement in processes for manufacturing atumina and carbonate of soda.
A roasted mixture of cryolite and caustic lime is treated with water, the solution separated from the sediment, the liquor boiled with bauxite, and the liquor last formed separated from the sediment and treated with carbonic-acid gas, producing bydrated alumina precipitate and carbonate of soda in solution. 222,154-December 2, 1879. C. V. PETRAEUS. Improvement in processes for manufacturing alumina and carbonate of soda.
A mixture of bauxite and cryolite is boiled with milk of lime, the solution separated, and the clear liquor treated with carbonic-acid gas to form a precipitate of alumina and solution of carbonate of soda.
224,240-February 3, 1830. A. STEARNS. Manufacture of carbonates and bicarbonates.
The substance to be charged with gas is molded into perforated blocks and then exposed to the gas.
287,082-April 27, 1880. W. J. MENZIES. Manufacture of bicarbonate of soda.
Soda ash of commerce is dissolved in water; any free soda is neutralized with carbonic acid or bicarbonate of soda; chloride of lime is added to oxidize any sulphur compounds, and the solution is finally treated with carbonic acid.
2\&7,561-May 11, 1880. W. J. MENZIES. Manufacture of bicarbonate of soda.
Bicarbonate of soda is purified of ammonia and organic coloring matter by passing a current of carbonic acid over or through dry bicarbonate of soda while under heat and pressure.
229,090-June 22, 1880. H. BURGESS. Concentrating alkaline sotutions.
The liquid trickles downward through a tower in the presence of hot air or products of combustion which are induced to take the same downward course. 24s,991-July 5, 1881. E. SOLVAY. Manufacturc of soda.

About 50 per cent of soda, already decomposed or calcined, is mixed with bicarbonate of soda previous to introduction of same into the decomposing apparatus, to prevent incrustation.
251,962-January 9, 1882. E. SOLVAY. Manufacture of soda.
Waters obtained from the distillation of ammonia in the manufacture of ammonia soda are beated in a vessel which is heated to a bigher temperature in its upper than in its lower portion, the salt being precipitated in the cooler portion and driven into a nonheated portion of the apparatus and separated port. The concentrated solution of calcium chloride is decanted from the remaining water and from the salt.
254,919-March 14, 1882. E.CAREY, H. GASKELL, JR., AND F. HURTER. Purification of alkatine solutions.
The solutions are submitted to the action of sulphur or sulphur compounds added to or produced in tbe alkaline solution, and of carbonic acid, the solution thus treated being then subjected to an elevated temperature to separate contained iron.
263,821-September 5, 188\%. E. SOLVAY. Manufacture of soda.
Bicarbonate of soda is calcined under violent agitation so as to maintain it as a cloud of dust and secure contact of every particle with the heated walls.
263,981-September 5, 1882. E. SOLVAY. Manufacturc of soda by the ammonia process.
A continuous supply of both brine and ammonia is fed to the saturating vessel, from which the overflow is conducted to a vessel in which precipitation of the sludge takes place before carbonating and during the continuous flow of the ammoniacal brine.
264,044-September 5, 1882. J. McCRODDEN. Soda block.
A block of soda has its surface grooved or furrowed to give a large surface for the action of heat and impregnating gases.
265,367-October S, 1832. B. T. BABBITT. Manufacturc of bicarbonate of soda.
Soda ash is blown against an ahutment by a blast of carbonic-acid gasiuduced by a jet of superheated steam.
265,568-October 3, 1882. B. T. BABBITT. Manufacturc of bicarbonate of soda.
Soda asb is treated with carhonic-acid gas under a super-atmospheric pressure.

270,668-January 16, 1883. E. N. HORSFORD AND C. A. CATLIN. Preparing alkaline bicarbonates.
Alkaline bicarbonates are moistened witb solutions of salts of magnesium or With solutions of other salts which by double decomposition with the bicarbonates will form a superficial inert or less active carbonate-as by moistening with a solution of sulphate of magnesium-and then dried.
271,866-January 30, 1888. E. H. RUSSELL. Process of purifying soda ash.
Sodium carbonate is purified of sodium sulphide by dissolving in water containing hyposulphite of soda or potash and adding sulphate of copper.
276,020-April 17, 1889. H. GASKELL, JR., AND F. HURTER. Manufacture of bicarbonate of soda.
Anbydrous carbonate of soda is subjected to the action of aqueous vapor and carbonic-acid gas, the aqueous vapor being so proportioned as to produce a dry bicarbouate.
276,990-May 1, 1889. E. CAREY, H. GASKELL, JR., AND F. HURTER. Manufacture of bicarbonate of soda.
Salts, ohtained by the evaporation of solutions of carbonate of soda, are mechanically agitated and treated with carbonic-acid gas, the excess being removed, and moisture removed or added as required.
283,508-Auqust 21, 1883. E. W. PARNELL. Manufacture of alkalis.
Crude alkaline solutions obtained by the ce Blanc process are purified of sulphurets by adding zinc or zinc oxide dissolved in a caustic alkali solution.
287,551-October 30,1883 . C. KNAB. Process of making sodium carbonate.
A mixture of chloride of lead and caustic soda or potash is produced by the decomposition of chloride of sodium or potassium by the oxide of lead in Water, and the caustic alkali is then dissolved out with alcobol, the alcobolic
solution treated with carbonic acid, and the lead recovered in the moist way by solution treated with carbonic acid, and the lead recovered in
298,256-May 6, 1884. J. TOWNSEND. Process of obtaining soda.
A mixture of kainit and silica, or silica and alumina, is beated to from 540° to $815^{\circ} \mathrm{C}$., then air or steam is passed through or over it, whereby chlorine or bydrocbloric acid is evolved. The sulphates in the residue are then mixed with carbonacegus material, heated and reduced to sulphides, and the latter treated with earbonic acid to form carbonates of soda and potash.
308,518-November 25, 1884. L. MOND AND G. JÁRMAY. Manufacture of sodium bicarbonate.
The crude soda is dissolved under pressure in water heated to near the decomposing point of sodium bicarbonate at that pressure; the insoluble matters separated; the solution cooled below 65° C.; the pressure removed; the solution cooled by passing through pans; and the pure sodium bicarbonate separated. The mother liquor is used for dissolving fresh crude salt.
320,256-June 16, 1885. A. KAYSER. Process of making sodium carbonate.
Sodium sulphate is heated to a low red beat below the smelting point of the sulphate and a current of carbonic-acid gas and carbon monoxide-one equivalent of each-is passed through the heated sulphate, forming carbonate of soda and sulphurous acid. The sulphurous-acid gas is employed for the conversion of sodium chloride into sodium sulphate.
326,423-September 15, 1885. H. GASKELL, JR. Process of purifying ammonia soda.
Bicarbonate of soda contaminated with ammonia is beated in an atmosphere of carbonic acid, to volatilize the ammonia without decomposing the bicarbonate, the gases withdrawn, and the ammonia condensed.
343,679—June 15, 1886. E. W. PARNELL AND J. SIMPSON. Ammonia-soda process.
The ammonium chloride obtained in the ammonia-alkali process ismixed with the alkali waste of the Le Blanc process, and the sulphide of ammonium so produced is employed for admixture with the sodium-chloride solution in the ammonia-alkali process, the hydrogen sulphide produced being collected and utilized.
357,824-February 15, 1887. J. HAWLICZEK. Manufacture of bicarbonate of soda.
A solution of a chloride or sulphate of sodium or other alkali metal is mixed with a crude carbonate or sulphide of sodium solution, and then treated witb carbonic-acid gas in two stages, the impurities deposited in the first stage being separated, and bicarbonate of soda deposited in the second stage.
961,555-April 19, 1887. H. FRASCH. Manufacture of soda by the ammonia process. The ammoniacal solution is passed through a succession of vessels, and treated with mixed live steam and exhaust steam. The ammoniacal vapors of the successive distillations are taken off separately. A large body of brine is maintained in the absorbing apparatus, and the ammonia is brought in contact witb a part only of the same. The salt strength of the ammoniated brine is restored by passage through a vessel in which a body of salt is suspended near the upper part.
861,682-April 19, 1887. H. FRASCH. Process of and apparatus for the manufacture of soda by ammonia.
Limekiln gases are washed with a solution of soda, potash, or ammonia, or a which sodium carbonate the decomposed ammonium-chloride solution from absorption of carbonic acid, and then forced directly into sooty matters without The brine is given a preliminary carbonation then cooled amd thoniated brine. bonated to precipitate sodium bicarbonate. Ammoniated and then again car nium-chloride solution are introduced into the precipitating apparatus ammoin the early stages the formation of sodium bicarbonate in a apparatus, so that a considerable proportion of ammonium chloride is insured. Clogging of openings is prevented by artificially heating the walls of the openings.
\$68.952-May 91,1887 . H. FRASCH. Process of and apparalus for making sodium
carbonate by ammonia. carbonate by ammonia.
The brine is treated with magnesium carbonate to precipitate calcium, then With sodium carbonate to precipitate the magnesium, and afterwards with ammonia and carbonic acid. The brine, under a continuous flow, is beaten into a spray in one or more tubes containing an atmosphere of ammonia. After saturation with ammonia the brine flows or percolates through a mass of solld salt to regenerate the solution. The brine is super-ammoniated, and its strength carbonic acid from above a other brine. Revolving brackets carry compressed carbonic acid from above a body of ammoniated brine down into it and there discbarge it. Ammoniated brine is treated with the gases obtained from burning lime with hydrourbon oil or similar clear fluid fuel. A continuous filter
employs a moving filter cloth.

S64,552-June 7, 1887. E. SOLVAY. Process of and apparatus for making sodium bicarbonate.
Crude bicarbonate is decomposed by heat, the carbonic-acid gas evolved is cooled and lixiviated, the soda solution decanted and cooled, and then treated with the purified gas and the resulting carbonate filtcred and dried.
376,409-January 10, 1888. A. KAYSER. Process of making alkaline silicales and carbonates.
Chloride of sodium (or potassium) is mixed with clay, and the mixture heated in a converter directly by passing highly-heated gases containing steam through gas. The converted material is smelted with an alkali and the sodium, or gas. The converted material is smelted with an
s89,551-May 8, 1888. E. W. PARNELL AND J. SIMPSON. Making sodium carbonates by sulphides of the alkaline earths.
A mix ture of ground sulphate of lime or baryta and carbonaceous matter is roasted in a nonoxidizing atmosphere; the sulphuret produced is mixed with together with carhonic-acid gas, is conducted into a solution of sodium ehloride. 584, $884-J u n e ~ 19,1888$. M. R. WOOD. Manufacture of bicarbonate of soda.
Crude bicarbonate mixed with water to a cream-like consistency is heated to 88° to $99{ }^{\circ}$ C. While subjected to pressure by forcing air into and through it to expel the excess of ammoniacal impurities. Carbonic acid is afterwards forced air.
387,61s-August 7, 1888. L. F.J. WRINKLE. Process of treating native soda.
A saturated solution of the crude soda in hot water is cleared by settling, sels and further cooled and crystallized crystalized, and run off iuto other ves-
399, F75-March 5, 1889. J. I. WATMS AND W. A. RICHARDS. Salt of sodium. A new product, a salt, " sesquicarbonate of soda," containing one equivalent of lents of water, in chemical combination ($\mathrm{NaHCO}_{3} \mathrm{Na}_{3} \mathrm{CO}_{3} 2 \mathrm{H}_{2} \mathrm{O}$), produced by process No. 399,176.
999,176-March 5, 1889. J.J. WATTS AND W.A. RICHARDS. Process of makinga sodium salt.
Sodium sesquicarbonate is produced by crystallizing at above $35^{\circ} \mathrm{C}$. an aqueous solution containing not less than 3 equivalents of soda ($\mathrm{Na} \mathrm{a}_{2} \mathrm{O}$) to 4 equivalents of carbonic acid $\left(\mathrm{CO}_{2}\right)$.
401,699-April 16, 1889. F. H. GOSSAGE. Process of making soda.
In the manuiacture of sulphide of sodium or potassium, to prevent destruction of the furnace lining, 8 parts hy weight of sodium chloride is added to the mixture lor every 20 parts of the sulphate.
415,64/-November 19, 1889. G. KERNER AND J. MARX. Process of electrolyzing salts of the alkalis.
See Group X, Electro-chemistry.
480,734-June 24, 1890. F. W. A. FRERICHS. Process of making alkaline carbonates and acetone.
The acetate of an alkaline earth, as acetate of lime, is treated with the sulphate of the desired alkali to make an acetate of the same, which is then subjected to distillation, together with the ankydride of acetic acid.
489,380-October 28, 1890. L. A. STAUB. Process of and apparatus for decomposing bicarbonate of soda.
The bicarbonate is mixed with water at about $60^{\circ} \mathrm{C}$. and treated with steam and ammonia in a closed chamber; carbonic acid is drawn off at the top and the monocarbonate, as a semiliquid mud, at the bottom.
446,267-February 10, 1891. B. PEITZSCH. Process of treating Stassfurt salts.
Potassic raw salts are treated with sulphuric acid, the sulphates thus obtained mixed with milk of lime, the gypsum thus formed and the magnesia being separated hy filtering from the resulting solution of the alkaline sulphate, and the latter mixed with sulphide of barium and converted into a solution of sulphide of alkali and treated in a concentrated condition with carbonic acid. Separation of the bicarbonates of potassium and sodium is effected by their different degrees of solubility in water, and potash is obtained from its bicarbonate by roasting, and soda by calcination.
462,567-November 3, 1891. F. M. LYTE. Process of making alkaline carbonate and chlorine.
See Group X, Electro-chemistry.
492,929-March 7, 1893. K. J. SUNDSTROM. Manufacture of soda.
Bicarbonate mud is first treated with a solvent of the ammonia combinations, such as concentrated salt hrine, and then water in fine spray is passed through the mud to remove the sodiun chloride.
516,075-March 6, 1894. H. R. BROWNE. Precess of making soda crystals.
Bicarbonate of soda obtained by the ammonia-soda process is heated until it is converted into a mixture of monocarbonate and bicarbonate of soda and the ammonia has been driven off; and the mixture thus obtained is then dissolved in caustic-soda liquor obtained by the electrolysis of brine, and the monocarbonate of soda crystallized out.
562,895-January 14, 1896. T. CRANEY. Proccss of and apparalus for making carbonates of soda.
See Group X, Electro-chemistry.
662,955-January 14, 1896. T. CRANEY. Process of and apparatus for manufacture of sodium bicarbonate.
See Group X, Electro-chemistry.
660,518-May 19, 1896. J. MEYRUEIS. Treatment of sodium chloride.
See Group X, Electro-chemistry.
679, \%17-March 28, 1897 . E. J. CONSTAM AND A. VON HANSEN. Process of manufacturing percarbonates.
See Group X, Electro-chemistry.
636,448-November 7, 1899. W. D. PATTEN. Process of making cakes of bicarbonate of soda.
Moist carbonate of soda is formed into small cakes, and then treated with carboist carbound gas, converting them into bicarbonate of soda and making them carbon

BORATES.
449,064-March 24, 1891. N. M. BELL. Art of manufacturing borax.
Borate of lime is boiled with a carbonate of soda solution under pressure, with constant agitation or circulation, and then run into settlers and crystalizers. In the manufacture, the material is sorted into coarse and fine, and the coarse particles are first charged into the solution of the full strength required for the full charge of borates, and the finer particles added during the boiling.
476,592-June 7, 1892. J. ASCOUGH. Process of making borax.
The component parts-crystal sodium carbonate 71 pounds and boracic acid 62 pounds-are placed in a suitable vessel with a small quantity of water, in the shape of steam, and subjected to heat to drive off the superfluous moisture, then agitated in other vessels during process of cooling.

RECOVERY PROCESSES.

38,958-December 17, 1861. H. LOWE. Improvement in proceses of recovering soda used in the manufacture of paper stock.
The spent solution of caustic soda is charged with carbonic-acid gas to precipitate the organic matter.
46,244-February 7, 1865. M. L. KEEN AND H. BURGESS (Reissue: 7, 485-January 30, 1877). Improvement in processes and apparatus for evaporating and calcining alkaline solutions.
The solution is evaporated to dryness and calcined, being continuously subjected to flame and hot gases, whereby the vegetable matter is consumed.
65,859-April 10, 1866. T. F. LEHMANN. Improved method of recovering waste alkali used in the manufacture of paper.
The unspent caustic alkali of alkaline solutions is converted into a carbonate by carbonic-acid gas.
64,093-April 24, 1866. H. M. BAKER. Improved process for recovering waste alkali.
The waste liquor is evaporated to drymess and the residue subjected to destructive distillation.
83,773-November 5, 1868. C. D. J. SELTZ. Improvement in recovering waste alkalies from paper stock and other fibers.
The waste liquor is evaporated down to from one-halif to one-fourth; soda is added (caustic soda or soda ash) and the hot solution run over quicklime, which disposes of the remaining water; and the mixture furnaced.
101,003-March 22, 1870. W. GOODAIRE AND G. STEAD. Improvement in
restoring waste alkali used in oil refineries.
Spent alkali liquor is evaporated to a paste, and then calcined to consume the oleaginous portions, leaving black ash, which is leached, and the hot filthe oleaginous portions, eaving black ask
trated liquid treated with hydrated lime.
132,452-October 22, 1872. C. M. TESSIĖ DU MOTAY. Improvement in recovering waste alkalis used in treating paper pulp.
The hot liquor is treated with carbonic-acid gas and sulphuret of sodium, or a bicarbonate, after which it is boiled and then recaustified and the precipitated matter removed.
156,488-November 3, 1874. D. HANNA. Improvement in processes for restoring and purifying caustic alkali.
The spent liquor is agitated, filtered, heated to boiling with agitation, and then treated with quicklime, with or without ammonia.
157,919-December 22, 1874. A. S. LYMAN. Improvement in restoring spent alkalis. -
Spent alkali is exposed to air currents for evaporation by means of revolving disks. The gases from the incinerating furnace pass through a filter stack that is kept moistened with dilute aIkali.
181,405-August 22, 1876. S. BROWN. Improvement in the process of saving caustic alkali in the manufacture of paper pulp.
Straw is boiled in a weak solution of lime, crushed and reduced in a ragengine to "half-stuff," and then subjected under steam pressure to the action of caustic alkali.
191,769-June 12,1877 . W. W. HARDING. Improvement in restoring and recov-
ering alkaline wastes.
To recover alkali from the waste liquor used in disintegrating paper stock, it is first reduced to a dry, porous, or floceulent substance, by exposing the Iiquid in thin layers to the action of heated cylinders or plates and removing the dried material by scrapers or brushes as fast as formed, and then incinerating the porous mass in the hearth of a reverberatory furnace.
194, $141-$ August 14, 1877. H. H. FURBISH. Improvement in processes for recov-
ering alkalis used for the reduction of wood to paper pulp. ering alkalis used for the reduction of wood to paper pulp.
The spent lees are washed from the cooked mass in water heated hy steam from the digester, evaporated, the ash recovered in a recovery furnace and boiled and rendered caustic by lime, and the same evaporated and reduced to proper strength.
229,264-June 29, 1880. C. C. MARKLE AND J. JORDAN. Recovering soda from spent liquors after treating vegetable fiber.
In incinerating the residue of the waste liquor, air-slaked lime is added to and burned with the residue to render the lime again caustic.
366,956-July 19, 1887. P. HOGAN. Process of and apparatus for recovering alkoli.
Dry peat is saturated with spent liquor from the manufacture of wood pulp and other materials and heated in a slowly revolving cylinder, the vapor being conveyed off and forced into a convoluted condensing flue by a fan blower.
$391,459-$ October 23, 1888. J. W. DIXON. Process of concentrating liquids.
The liquor is heated in vacuo by interior heating coils while passing through a cylinder, a vapor space being preserved above the liquor with constant exhaust of the vapors, and also continuous withdrawal of the liquor by suction.
403,869-May 21, 1889. V. G. BLOEDE. Recovering spent alkali.
Spent alkaline lyes are first saturated with phosphoric acid to precipitate the fatty and coloring matters; then decanted or filtered, any residuary color being destroyed with chlorine; and the clarified liquor is then treated with lime, barium, or like compound capable of forming an insoluhie combination with the phosphoric acid and liberating the soda or potash in an available form.

403,870-May 21, 1889. V. G. BLOEDE. Recovering alkali.
Spent alkaline lyes are saturated with sulphurous acid, effecting a separation of the impurities, and the sulphites or hisulphites of the alkali are then converted into hydrates or carbonates by the action of caustic or carbonate of lime, harium or equivalent compounds.
405,754-June 25, 1889. S. WOLF. Recovering soda.
In the sulphate cellulose process there is added to the brown lye of the process acid sulphate of soda which has previously been treated with the lime mud of the said process, transtorming the latter into gypsum, a well-known manure, the unwashed alkalis being recovered out of the calcareous mud.
418,昂55-December 31, 1889. E. N. ATWOOD. Process of recovering soda.
Spent soda liquor of wood-pulp raills is atomized and burnt as fuel under pressure. The products of combustion pass through water to catch floating particles of alkali.
418,274-December 31, 1889. F. A. CLOUDMAN. Process of recovering soda.
Chemicals, such as soda of spent soda liquors, are recovered by spraying liquor containing the chemical by means of steam and oil into a combustion chamber and burning the mixture as fuel.
494,756-April 1, 1890. H. BLACKMAN. Process of recovering soda.
The liquor is atomized by a gaseous blast, subsequently superheated, and the mixture is then injected into a furnace.
478,981-July 19, 1892. H. BLACKMAN. Apparatus for and process of recovering alkali.
The concentrated liquor is introduced in a bath on the calcining hearth and subjected to the heat of gases of combustion, the material being moved from said bath along the calcining hearth until its combustible constituents are calcined ont, and the material is finally fused and allowed to flow off.
480,109-August 2, 1892. G. LUNGE AND J. DEWAR. Process of recovering sutphur, carbonate of soda, and iron oxide.
The residue obtained by decomposing sodium sulphide with a ferrite is acted on, in a moist condition, with a suitable mixture of carbonic acid and oxygen. 558,970-April 88,1896 . O. LUGO AND H. T. JACKSON. Method of electrolytic treatment of soap-lyes.
See Group X-Electro-chemistry
620,751-March 7, 1899. L. J. DORENFELDT. Process of utilizing sulphite lyes.
The concentrated waste liquors of sulphite wood pulp mills are utilized as
fuel by heating to liquidize, filtering under pressure, and then spraying into the combustion chamber.
620,755-March 7, 1899. V. DREWSEN AND L. J. DORENFELDT. Process of utilizing sulphite lyes.
The waste liquor is neutralized with sodium carbonate; evaporated with addition of calcium carbonate; the residuum burned; the sodium carbonate in the product leached out, and the insoluble calcium sulphide treated with carbonic acid, producing calcium carbonate and hydrogen sulphide, which latter is converted into sulphurous acid or sulphur.

PACKING PROCESSES.

15,957-October 21, 1856. G. THOMPSON. (Reissue: 654-Rebruary 1, 1859; 2,569-April 16, 1867; 5,886-May 26, 1874.) Improvement in the manufacture of caustic alkali.
A block of caustic alkali is inclosed in resin, beeswax, or other similar saponifiable material.
18,214-September 15, 1857. G. THOMPSON. Improvencnt in boxes for preserving alkalis.
A metallic box has the top and bottom united to the cylinder side with an infusible cement made of fire clay moistened with linseed oil.
52,465-February 6, 1856. T. C. TAYLOR. Improvement in putting up caustic alkali.
Metal cylinders are stood on end in sand, nearly filled with molten alkali, the top sealed with cement, then reversed and the bottom sealed with cement.
52,466-February 6,1866. T. C. TAYLOR. Improvement in putting up and preserving caustic potassa and soda.
To prevent melting the solder a small quantity of alkali is poured into a case and allowed to partially cool, and the case is then filled by installments.
52,910-February 27 , 1866. T. C. TAYLOR. Improved method of putting up caustic alkali.
Blocks of alkali are packed in a case, and oil, grease, or like material poured in to fill the interstices.
86,319-January 26, 1869. J. REAKIRT. Improvement in putting up caustic alkalis.
They are packed in glazed stone jars having a shoulder to receive a disk, the whole sealed with cement.

89,704-May 4, 1869. T. C. TAYLỌR. Improved mode of putting up coustic soda for the manufocture of soap.
Caustic alkalī is comminuted, then mixed with oil or grease and packed in barrels or vessels. It can be cut out as required for use.
110,189-December 20, 1870. W. H. BALMAIN. Improvement in packing caustic alkalis.
They are granulated or pulverized and packed in cases without the admixture of other materials. When in powdered form a corrosive liquid is not formed but the moisture is absorbed until a protective coating of carbonate forms on each particle.

123,54-February 6, 1s79. J. H. SEIBERT. Improvement in packages for caustic alkalis, acids, and salts.
They are made of a plastic compound, as plaster of paris, with one-tenth flour or marble dust, cast in a protecting wrapper. The heads are cast on to combine and form a solid casing.

124,859-March 19, 187, J. H. SEIBERT. Improvement in packages for alkalis, acids, etc
The package is formed by casting a plastic substance, as a mixture of glyce rine, wax, and papcr pulp between an inside and an outside protecting wrapper.

128,176-June 18, 1872. J. H. SETBERT. Improvement in packages for putting up caustic alkalis, acids, etc.
It is cast of a plastic composition and coated with a resinous or protective coating. The alkali is congealed to conform to the package and then placed therein.
137,157-March 25,1875 . G. W. HUMPHREY. Improvement in incasing caustic alkali.
It is put up in india-rubber envelopes or coverings.
159,955-June 17, 1873. Н. B. HALL. Improvement in packages for caustic soda or alkali.
The alkali is packed in a spun or stamped metal cup with a cover of resin poured in in a liquid state.
150,508-May 5, 1874. B. T. BABBITT. Improvement in caustic-alkali packages.
A block of caustic alkali hermetically sealed and protected from atmospheric influence by a coating or envelope of turpentine.
150,509-May 5, 1874. B. T. BABBITT. Improvement in the processes for coating caustic alkalis.
Balls or hlocks of caustic alkali are submerged in melted turpentine in a vessel in which a vacuum is produced.
158,094-December 22, 1874. A. K. LEE. Improvement in putting up caustic alkalis.
Paper and wood as a carrier for caustic alkalis, ete., is first coated with a cement formed of white lead ground in oil, sulphuf, and black oxide of manganese; then with a composition of asphaltum, paraffin, black oxide of manganese, and soapstone; the asphaltum, paraffin, and black oxide of manganese being reduced to a fluid hy a product obtained from crude turpentine distilled at not exceeding 225° and from which the pyroligneous-acid water has been separated while the turpentine is in vapor.
164,405-June 15, 1875. T. C. TAYLOR. Improvement in compositions for coating blocks of coustic alkali.
It consists of a mixture of a fine earth and oil.
184,925-November 28, 1876. T. C. TAYLOR. Improvement in methods of packing caustic alkali.
It is inclosed in a solid molded form in a can, with a surrounding envelope of any mineral powder which will absorb the lye.
199,350-July 24, 1877. H. B. HALL AND E. HINE. Improvement in processes and apparatus for putting up caustic alkali.
Dry granulated caustic alkali is compressed into air-tight packages.
206,891-August 13, 1878. A. MENDLESON. Improvement in compositions for coating alkali balls.
It consists of Burgundy pitch 16 parts, plaster of paris 2 to 4 parts, and oil one-half part.
229,161-June 22, 1880. A. MENDLESON. Coated caustic-alkali ball.
A coated alkali ball has a sealing-boss formed of the coating over the spruespot.
238,064-February 22, 1881. M. M. SMITH. Manufacture of alkali balls.
A series of alkali balls is cast on a common wire and coated.
243,989—July 5, 1881. W. J. MENZIES. (Rcissue: May 9, 1889, No. 10,108 for the process; No. 10,109 for the product.) Grinding and sieving caustic alkali.
Caustic alkali is ground and sieved while hot or in a temperature sufficiently high to prevent deliquesence.
256,095-April 4,1882. B. T. BABBITT. Method of putting up caustic alkali.
The molten alkali is run into cans with soldered heads, which are set in water or otherwise cooled during the process of filling.
و60,27 (-June 27, 1889. B. T. BABBITT. Method of putting up caustic alkali.
Cans formed of a cylindrical body and a head with an outwardly turned flange inserted into the body are filled with the molten alkali, and the heads are then inserted while the alkali is still molten, and pressed down upon the alkali, and finally, after the alkali has hardened, soldered to the can.

261,228-Jul! 18, 1882. C. HEMJE AND T. C. BRECHT. Process of and apparatus for compressing plastic and other matevials.
Compressed cakes of plastic or other material, as bicarbonate of soda, have a cemented crust or film of the same material formed thereon, as by subjecting them to a bath of steam. The steam may be impregnated with gum arabic.
270,997-January 23, 1883. T. C. TAYLOR. Packing coustic alkalt.
Pulverized alkali is mixed with resinous or fatty matter-about 20 per centand compressed into balls or blocks, and finally given a suitable coating to prevent deliquescence.

270,998-January 23, 1883. T. C. TAXLOR. Facking caustic alkali.
A fatty or resinous matter is added to caustic aikali during the process of grinding or preparation to prevent the giving ofi of caustic dust.
275,498-April 10, 1883. E. KIRK. Theatment of caustic soda.
A new composition, consisting of a mixture of powdered caustic soda and powdered sand.
289,633-August 7, 1883. T.S. HARRISON. Process of producing a perfumed soap alkali.
A package of soap-making alkall contains a soluble or fusible capsule of perfume.
286,182-October 2, 1883. F. P. HARNED. Frocess of grinding caustic soda.
One or 2 per cent of carbonate of soda or soda ash is added to caustic alkali, and it is then ground and bolted without deliquescence.

287,128-October 23, 1883. C. HEMJE. Method of compressing pulverized material. In the formation of compressed cakes of pulverized material, as of bicarbonate of soda, the molds are subjected to a jet of steam prior to filling, which con denses on the sides of the mold, and the cakes formed have a glazed exterior
shell composed of the same material as the body of the cake.
318,044-May 19, 1885. C. SEMPER. Process of grinding caustic soda.
Ground salt cake or dried sulphate of soda-say 4 per cent-is added to caustic soda, and the mixture ground and bolted.
s38,924-March 3a, 1886. J.W. CARSON AND F. P. HARNED. Manufacture of
blocks of bicarbonate of soda. blocks of bicarbonate of soda.
It is compressed into blocksimmediately on removing it from the carbonating chambers or the washing tables, and before drying or grinding.
624,972-May 16, 1899. H. PRECHT. Process of packing causiic alkalies.
The caustic alkali is cast in blocks and packed in casks, with an alkaline car-

GROUP III.-POTASH.

POTASHES, CARBONATES.

228-June 10, 1837. G. CLEMENT. Improvement in the pracess of leaching ashes. In setting up the leach a small quantity of bot unslaked lime and hot ashes is 1,697-July 18, 1840. J. OSBORN. Improvement in the mode of catracting the alkali from ashes in the manufacture of potash.
A little alum with lime and salt is added to the leaching solution.
3,793-September 7, 1844. E. CHAMBERLIN. Improvement in the manufacture
of'saleratus.
The volatile products of the combustion of anthracte coal, purified only of dust in connection with steam, are employed for the conversion of pearlash.
124,964-Mareh 26, 1872. M. B. MANWARING AND R. DE WITT. BIRCH. Improvement in the manufacture of polash and phosphate of time.
Potash is extracted from the ashes of cotton-seed hulls by boiling in water and adding lime.
130,618-August 20,1872 . W. WENTWORTH AND G. W. CLEAVELAND. Improvement in the manufacture af pearlashes.
Ground bark, preferably spent tan bark, is mixed with the lye, the liqnor
evaporated, and the reaiduum incinerated. evaporated, and the residuum incinerated.
216,483-June 10, 1879. J. AND R. H. WOODRUN. Improvement in separating olanfom ashes.
Water at boiling heat is percolated through the ashes heated to a red heat.
252,653-January 24, 1882. C. R. ENGEL. Manufacture of carbonale of potassium. A double carbonate of magnesium and potassium is first formed by treating a mixture of carbonate of magnesium, or iree magnesia, and an aqueous solntion of a potassium salt with carbonic-acid gas. Carbonate of potassium is then separated ont of the double carbonate by boiling or heating in a dry state.
s76,366-January 10, 1888. F. BRÜNJES. Pracess of obtaining potassium carbonate.
A mixture of potassium chloride and ammonia-magaesium carbonate is dissolved in water and the precipitate which forms is removed and digested in water to separate the potassium chloride which goes into solution, the other carbonates being less soluble.
4sh,921-October 25, 1892. P. RÖMER. Process of making potassium carbonate.
A mixture of equal molecules of potassium sulphate and potassium bichromate in aqueous solution is converted by means of calcinm hydrate or barium or strontium hydrate into potassium chromate, the solution saturated with carbonic acid, the precipitated potassium bichromate separated from the pota-wsium bicarbonate produced, the potassium bichromate remaining in solution is sep.
arated, and lastly a potassium carbonate containing chromium is obtained from arated, and lastly a potassium cat
the lye by further evaporation.

GROUP IV.—ALUMS.
 AMMONIA ALUM.

303,62s-Vecember 2, 1884. W. J. MENZIES. Manufacture of burnt alum.
Concentrated solutions of sulphate of ammonia and sulphate of alumina are mixed in the proportion of 1 part of the former to 4 parts of the latter and evaporated to dryness.

POTASH ALUM.

\$2S,477-October 20, 1885. H. C. FREIST. Namufacture of crystal alum.
Crystal alum free from iron is produced by treating a solution of sulphate of alumina containing iron with chlorate of potash or like oxidizing agent to convert the ferrous oxide into ferric oxide, and adding, either before or after the impurities have been removed, sulphate of potash, sulphate of ammonia, or sulphate of soda, and crystallizing the alum.
521,712-June 19, 1894. J. HEIBLING. Process of making potash atum and alumina.
A mixture of clay, sulphate of potash, and sulphate of ammonia (in the proportion of the alumina of the clay and sulphate of potash each 1 part, sulphate of ammonia 3 parts) molded into bricks is heated to from 275° to $30^{\circ} \mathrm{C}$. until the ammonia is driven off, when it is dissolved, the iron eliminated, and the ammonia previously removed is added, whereby the alumnia is preci

SODA ALUM.

267,610-November 14, 1882. P. \& F. M. SPENCE. Manufacture of alum.
In the manufacture of sode alum, cold saturated solutions are mixed with stronger solutions-as of sp. gr. 1.55-of a higher temperature, to prevent solidification with crystallization, or, if solidified, to change into the crystalline form. 420,488-February 4, 1890. E. AUGÉ. Process of making soda alum.
A solution of sodium sulphate combined with a solution of aluminum sulA solution of sodium sulphatic condensed by evaporatiug in vacuo at a temperature not exceeding 60° phate is condensed by evap
485,129-August 26, 1890. E. AUGĖ. Process of crystallizing soda alum.
A solution of sulphate of alumina and sulphate of soda is coucentrated to between 1.32 and 1.42 sp . gr., cooled to a pasty form, and then exposed in layers upon inclined surfaces at a temperature of 15° to $20^{\circ} \mathrm{C}$. till the mother liquors are separated.
454,189-June 16, 1891. F. M. \& D. D. SPENCE AND A. ESILMAN. Proctes of nuaking soda alum.
Sufficient sulphate of soda is dissolved in a boiling concentrated solution of sulphate of alumina, or alumino-ferric sulphate, of a sp. gr. not exceeding 1.3 , to form with the sulphate of alumina soda a nim; the impuri.ies setted agitated and vessel; the solution evaporated to a sp.gr. of from 1.425 to 1.400 , hen agitated and cooled until a magma is formed, which is stirred and turned over from

456,294-July 21, 1891. F. M. \& D. D. SPENCE. Manufacture of soda alum.
To a boiling concentrated solution of soda alum, prepared from sulphate of alumina and sulphate of soda, or from alumino-ferric and sulphate of soda. of a sp. gr. of I.450, there is added a small quantity of a cold saturated solution of soda alum sufficient to yield on cooling of the mixture a magma not too stiff to be freely stirred and turned over until transformed into crystals of soda alum and mother liquor.
$497,579-$ May 16, 1899. T. S. HARRISON AND C. SEMPER. Aluminous compound.
A compound of sulphate of alumina and double sulphate of alumina and soda; a hard, dry compound, readily ground, but highly soluble; the product of process No. 497,571.
497,571-May 16, 1893. T. S. HARRISON AND C. SEMPER. Process of making atuminous compounds.
An aluminous solution is hardened by adding powdered sulphate of soda, say 20 per cent, to the concentrated aluminous solntion ready to rum off.

CONCENTRATED ALUM.

1,945-January 23, 1841. M. J. FUNCKE. Improvement in the manner or process of manufacturing sulphate of alumina.
The clay is prepared by desiccation, reduced to a powder, and treated with sulphuric acid, dried, then treated with water to dissolve the salt, settled, and any free acid nentralized with lime water. The clear liquor is drawn off and the iron precipitated with prussiate of potash, the exact quantity required being ascertained by a test sample.
60,780-January 1, 186\%. H. PEMBERTON. Improvement in the manufacture of sulphate of alumina, alum, and other aluminous compounds.
In place of sulphuric acid, the acid solution obtained from the tarry acid residnum resulting from the refining of petroleum, etc. (impure sulphuric acid), is used.
191,160-May 22, 1877. C. LENNIG. Improvement in processes of manufacturing aluminic sutphate and alum.
The alumina in clay or kaolin is dissolved by sulphuric acid under pressure in a closed vessel.
196,048-October 9, 1877. G. P. ROCKWELL. Improvement in manufacture of alum.
Aluminic sulphate and alum are manufactured by the decomposition of the mineral indianaite, a practically pure silicate of alumina, by means of sulphuric acid, and the elimination of the separated silica. For alum the equivalent of alkali is added prior to crystallization.
208,615-Oetober 1, 1878. F. LAUR. (Reissue: 8,882-September 2, 1879; 9,340Augusi 10, 1880.) Impravement in manufacture of sulphate of alumina.
In the process of manufacturing sulphates of alumina a neutral solntion is made and then pieces of zine ore introduced to convert the iron into a colorless componnd of íron prior to concentration.
221,787-November 18, 1879. A. A. CROLL. Improvement in the manufacture of sulphate of alumina.
The saturating vessel is jacketed to prevent the escape of heat and maintain the fuidity of the mass, and the charge is drawn off successively from different levels, producing batches of different grades.
230,106—July 20, 1880. W., T., \& J. CHADWICK AND J. W. KYNASTON.
Process of making and purifying sulphate of alumina or alum.
In the manufacture of alumina, alum cake, or alum, the iron is precipitated out of the solution by treating with arsenions acid and neutralizing with carbonate of lime. The remaining arsenic is then precipitated by hydrogen
sulphide. sulphide.
237,816-February 15, 1881. W., T., \& J. CHADWICK AND J. W. KYNASTON. Purifying sulphate of alumina.
Iron is removed from the aluminous solution by the addition of ferrocyanide of calcium, and the arsenic then precipitated by a soluble sulphide, as hydrogen sulphide, by this means carrying down the suspended ferrocyanide. A small quantity of sulphate of copper or sulphate of zinc
employed to remove the suspended ferrocyanide.
289,089-March 22, 1881. J. H. EASTWICK. Manufacture of sulphate of alumina.
Halloysite (Indianaite) is ground and bolted-roasting being dispensed withmixed with sulphnric acid, and then treated with hydrate of alumina, producing spontaneous ebullition and decomposition of the halloysite.
243,949-July 5,1881. B. E. R. NEWLANDS. Manufacture of sutphate of alumina. Sulphate of alumina is purified of sulphuric acid and iron by evaporating a solution of impure salt to the point of crystallization on cooling, or by addjng sulphate pure, and then separating themother liquor containing the impurities by pressure or centrifugal action.
245,750-August 16, 1881. C. SEMPER. Manufacture of sulphate of alumina.
A solution of ferruginous sulphate of alumina is treated in a finely divided state or in spray with sulphurous acid or hydrogen sulphide to decolorize it.
257,567-May 9, 1882. C. FAHLBERG AND C. SEMPER. Method of removing iron from ferruginous saline solutions.
The ferruginous solution is treated with plumbic dioxide either by adding bame to the solntion or by converting a neutral monobasic or polybasic salt of lead. or an oxide of lead into plumbic dioxide in said solution. Ferrous oxides are first converted into ferric oxides.
257,568-Mivy 9, 1882. C. FAHLBERG AND C. SEMPER. Rccovery of plumbic dioxide from ferruginous sotations.
The waste plumbic dioxide and ferric plumbate is treated with nitric acid, or other acid or acid salt, to recover the iron.
264,773-September 19, 1882. C. SEMPER. Removing iron from ferruginous solu-
tions. tions.
The solution is treated with manganese dioxide or manganic sesquioxide. solution she when present shoud treatment with dilute sulphuric acid.
264,774-September 19, 1882. C. SEMPER. Process of removing iron and manganese from certain solutions.
Iron and manganese are both removed by a single operation from ferruginous solutions (of such salts as are not decomposed in the operation of the process) containing manganous salts by treatment with a permanganate and heat.

MANUFACTURING INDUSTRIES.

266,451-October 24, 1882. R. A. FISHER. Sizing for paper makers.
An aluminous compound containing sodium or zinc, a new product of a viscid or creamy consistency is produced by neutralizing a portion of the acid of an acid solution of aluminum sulphate by means of sodic or zincic oxide or zinc, evaporating the solution 0 about 37° Baumé, and then cooling under agitation.
266,452-October 24, 1882. h. A. FISHER. Sizing for paper inakers' use.
Sulphate of alumina of a viscous or creamy consistency, a new product, is made by cooling under agitation a solution of sulphate of alumina evaporated to about 37° Baume when boiling.
280,088-June 26, 1883. C. SEMPER. Manufacture of sulphate of alumina
A nentral porous alumina sulphate containing magnesia sulphate is produced by treating a hot solution of alumina sulphate of such degree of concentration that it will harden when cold, with carbonate or bicarbonate of magnesia.
280,089-June 26, 1889. C. SEMPER. Manufacture of sulphatc of alumina.
A nentral or hasic alumino-magnesian compound is formed by treating a hot acid solution of sulphate of alumina with magnesic carbonate, bicarbonate, or oxide.
280,090-June 26, 1883. C. SEMPER. Uanufacture of sulphate of alumina.
Porous alumina sulphate containing zinc is produced by adding zinc snlphite to a hot solution of alumina sulphate from which silica has been removed, and which is of such degree of concentration as to harden wben cold.
s21,092—June 30, 1885. R. A. FISHER. Neutral sizing material for paper makers' use.
A solution of sulphate of alumina free from iron is made neutral or slightly hasic with oxide of zine, or other suitable neutralizing material; insoluble matter, if any, is removed; the clear solution concentrated to about 65° Baumé; bicarbonate of soda added to the hot viscid mass to produce a porous or vesicular structure, and the mass cooled and broken into lumps.
321,093-June 30, 1885. R. A. FISHER. Ncutral sizing material for paper makers' use.
For the production of a white sizing material from ferruginous aluminous sulphate a solution of sulphate of alumina containing iron is prepared, the ferric sulphate reduced to ferrous sulphate, and the solution made neutral, etc., as per No. $321,092$.
s91,094-June 50,1885 . R. A. FISHER. Manufacture of an aluminous sizing malerial for paper makers' use.
For the production from any ferruginous sulphate of alumina solution of a porous sizing material free from iron, nearly all of the iron is first converted into insoluble prussian blue by means of a slight excess of yellow prussiate of potash, the incidently formed soluble prussian blue removed and the excess of yellow prussiate of potash by means of oxide of zinc; when the solution of sulphate of ammonia is freed from prussian blue and other insoluble matter by subsidence, filtration, or otherwise, and concentrated to about 65° Baume , etc. as in No. 321,092.
321,095-June 30, 1885. R. A. FISHER. Manufacture of a sizing material for paper makers' use.
For the manufacture of a porons sulphate of alumina containing magnesia, but free from iron and excess of alumina and acid, artificial hydrate of alumina free from iron is dissolved in sulphuric acid and water; then magnesia or car bonate of magnesia is added to the hot fluid, which is then cooled until it begins to thicken, when bicarbonatc of soda is added to produce a porous or vesicular structure.
S21,096-June 30, 1885. R. A. FISHER. Sizing material to be used in the manufacture of paper.
For the manufacture of a sizing material containing both zine and iron, but free from an objectionable bnff color, hot sulphuric acid is mixed into any ferru ginous alum clay, water being added from time to time to prevent overflow; the liquor is then drawn off, settled, decanted, and treated with zinc and bicarbonate of soda.
s21,097—June 30, 1885. R. A. FISHER. Manufacture of sizing for paper makers' use.
For the manufacture of a porous sizing material free from iron direct from ferruginous aluminous mineral, hot sulphuric acid is mixed with finely ground ferruginous alum clay; all or nearly all of the iron is removed by means of a plumbic oxide, manganese dioxide or sesquioxide, or potassium permanganate or other precipitate of iron from aluminous solutions, and the solution is cleared and concentrated and bicarbonate of soda added.
321,098-June 80, 1885. R. A. FISHER. Manufacture of sizing material for papcr makers' use.
In the production of a porous sizing material direct from ferruginous aluminous minerals, hot sulphuric acid is mixed with ferruginous alum clay, the ferric oxide reduced to ferrous oxide by the addition of zinc, and the clear Iiquor decanted, concentrated, and treated with bicarbonate of soda.
33s,680-January 5, 1886. C. SEMPER. Manufacture of sizing compounds for paper makers use.
Plumbic oxide, or other substance which will precipitate iron, is added to a neutral ferruginous solution of sulphate of alumina, which is then flitered, and either before or alter treatment with plumbic oxide, oxide of zine is added to make the solution sufficiently basic not to act upon ultramarine blue. Bicarbonate of soda is finally added to make the product porous.
S45,604-July 18, 1886. C. SEMPER. Process of making porous alum.
A ferruginous solution of sulphate of alumina is treated with plumbic dioxide or other precipitant of iron from aluminous solutions, the insoluble matter is removed, and bicarbonate of soda is added to the solution in a sufficiently cool and concentrated condition, and the vesicular mass is crushed or broken into lumps.
945,605-July 19, 1886. C. SEMPER. Process of making porous alum.
A ferruginous solntion of sulphate of alumina is treated with zine to reduce ferric oxide to ferrous oxide, the insoluble impurities removed, and the clear liquor in a sufficiently cool and concentrated condition treated with bicarbonate of soda, and finally the mass is crushed into lumps.
s51,210-October 19, 1886. C. SEMPER. Sizing material for paper makers' use.
A solution of sulphate of alumina frec from iron is treated with oxide of zinc, either before or after the removal of any insoluble matter, and then, when sufficiently concentrated and cooled, bicarbonate of soda is added.
\$51,211-October 19, 1886. C. SEMPER. Sizing material for paper makers' usc.
A solution of sulphate of alumina containing iron is treated with a reducing agent to convert ferric sulphate into ferrous sulphate, and it is then treated with oxide of zine to render it neutral or basic; any insoluble matter is removed, and, when sufficiently concentrated and cooled, bicarbonate of soda is added.

509,901-August 2\%, 189s. W. E. CASE. Process of making aluminum compounds. An insoluble aluminum compound, free from iron, is obtained by treating an aqueons solution of crude aluminum sulphate with nitric and sulphuric acids, adding calcium fluoride, then adding a solution of an alkali carbonate, assodium carbonate, to precipitate iron, and mechanically separating the liquid from the solid products of the rcaction. The solution is then treated with a further quantity of the alkali carhonate to precipitate the aluminum compound.
520,416-May 29,1894 . J. ENEQUIST. Process of making porous sulphate of
alumina.
A hot concentrated solution of sulphate of alumina is run off and solidified on a zinc or aluminum surface, whereby the hydrogen given off "makes the material porous.

ALUM CAKE.

209, 488 -October 29, 1878. G. T. LEWIS. Improvement in manufacture of alum cake and sulphate of alumina.
The alnminous materials are ground and mixed with sulphuric acid in one operation, and the mixture afterwards heated from 82° to $126^{\circ} \mathrm{C}$.
$217,460-$ July 15, 1879. T. S. HARRISON. Improvement in manufacture of aluminous cake.
Fibrous aluminous cake, a new article of manufacture, bas fibrous silicate of magnesia, or fibrous sulphate of lime or equivalent material, substituted for the silica of alum cake.
220,720-October 21, 1879. F. LAUR. Improvement in the manufacture of aluminous cake.
Zinc is introduced into an acidulated ferruginous solution of sulphate of alumina to neutralize the free acid and convert the iron into a colorless iron compound prior to concentration.
225,300 -March 9, 1880. C. V. PETRAEUS. Manufacture of aluminous cake.
White aluminous cake is made from ferruginous aluminous sulphate by treating the aluminous sulphate in solution with alkaline sulphides, sulphides of alkaline earths, or metallic sulphides, such as finely ground zinc blende or galena:
225,301-March 9, 1880. C. V. PETRAEUS. Manufacture of aluminous cake.
The peroxide of iron in ferruginous aluminous sulphate is reduced to the protoxide and decolorized by the addition of powdered or spongy lead, and then boiling or agitating the solution.
23s,916-November 2, 1880. G. F. BIHN AND R. HEERLEIN. Manufacture of atuminous cake.
Aluminous sulphate in a semifluid condition is treated with sulphites, bisulphites or hyposulphites of the alkalis, alkaline earths, or the metallic bases to decolorize the iron and produce a white cake.
254, 704 -November 23, 1880. G. F. BIHN. Manufacture of white aluminous cake. A pulverized mixture of halloysite and banxite is treated with sulphuric acid and the mass decolorized as in No. 233,916 .
238,618-March 8, 1881. C. SEMPER. Manufacture of aluminous cake.
A ferruginous aluminous sulphate is treated with oxalic acid, or oxalates of the alkalis, of the alkaline earths, or of the metallic bases to produce a colorless aluminous cake containing the iron salts.
240,597-April 26, 1881. G. T. LEWIS AND C. V. PETRAEUS. Manufacture of aluminous cake.
The last traces of prussian blue are removed from an aluminous-cake solution, to which yellow prussiate of potash has been previously added, by treating the liquor with metallic zinc, oxide of zinc, or zine ore.
243,695-June 28, 1881. C. SEMPER. Manufacture of aluminous cake.
Ferruginous aluminous sulphate is decolorized by treating it in a semifused condition with zinc or zine dust.
259,377-February 7, 1882. T. S. HARRISON. Manufacture of aluminous cake.
A blue aluminous cake containing ferrocyanide of iron is produced by precipitating the iron as prussiate of iron in a lerruginous aluminous sulphate solution 271,s71-January 90,1889 . C. SEMPER. Manufacture of aluminous cake.
The aluminous sulphate in a semifused condition is treated with sulphites, bisulphites, or hyposulphites of the alkalis, alkaline earths, or the metallic bases.
342,599-May 25, 1886. F. P.'HARNED. Process of making neutral aluminous compounds.
In the manufacture of sulphate of alumina pulverized caustic soda or aluminate of soda is mechanically mixed with the product during the grinding to neutralize the free acid the quantity required for the neutralization being ascertained by a test of the aluminous cake.
344,140-June 22, 1886. C. SEMPER. Process of making a sulphate of alumina compound.
A basic compound containing basic sulphate of alumina and sulphate of magnesia and water is produced by treating a neutral or slightly basic solution of sulphate of alumina with the oxide, carbonate, or bicarbonate of magnesia. 443,685-December 30, 1890. H. W. SHEPARD. Process of making atum cake. Sufficient sulphuric acid is added to bauxite or other aluminous material to form hasic sulphate of alumina, when an alkaline or alkaline earthy sulphide, with in quantity sufficient to reduce the soluble iron to the ferrous state. The mass is then diluted with water and the dissolved sulphate separated from the insoluble impurities and concentrated.
526,205-September 18, 1894. J. V.SKOGLUND. Aluminous cake and process of making same.
An aluminous cake free from ferric iron and consisting of sulphate of alumina, ferrous iron, an excess of a stannous compound, and a stannic compound, is produced by reducing the greater portion of the iron in a ferruginous sulphate of alumina solution by means of a weaker reducing agent, such as sulphurous acid or a sulphite, and then finishing the reduction with any stannous com-
pound as stannic oxide. pound as stannic oxide.

OTHER ALUMS.

222,152-December 2, 1879. C. V. PETRAEUS. Improvement in processes for manufacturing alumina and carbonate of soda.
See Group II, Sodium Compounds.
299,42-January 18, 1880. R. A. FISHER. Preparing a sizing malerial used by paper makers.
A neutral compound consisting essentially of sulphate of alumina and zinc is made by treating a solution of sulphate of alumina with oxide of zinc.

DIGEST OF PATENTS RELATING TO CHEMICAL INDUSTRIES.

22s,44s-January 19, 1880. R. A. FISHER. Mfanufacture of a white compound for paper makers' use.
A solution of eulphate of alumina, obtained from aluminous earths containing iron, is treated with a reducing agent to con vert ferric into ferrous salts, and then with oxide of zinc to neutralize the free acid,
228.867-Junc 15,1880 . W., T., \& J. CHADWICK AND J. W. KYNASTON.

Process for the purification of alumina, bauxite, ete.
The iron in aluminous materials, such as hauxite or clay, is converted into a goluble oxalate by treating with a solution of oxalic acid, and the oxalate is then removed by filtration and decantation.
269,957-January 2, 1889. C. V. PETRAEUS. Mfanufaclure of porus zinciferous alum.
Porus zinciferous alum is produced hy adding carbonate of zine to molten sulphate of alumina.
282,878-August 7, 188s. F. GARDAIR AND T. GLADYSZ. Manufacture of
anhydrous aluminna. Cry
Crystals of chlorhydrate of aluminum are prepared by the reaction of chlorhydric acid upon a solution of aluminum sulphate, and then decomposed by beat.
301,174-July 1, 1884. A. E. SPENCER. Desiccating alum.
It is melted and dried in a revolving cylinder hy heat externally applied, the alum flowing evenly over the interior surface of the cylinder.
s19,894-February 24,1885 . C. V. PETRAEUS. Mfanufacture of alumina by paper-
mill sludge. mill sludge.
A product free from iron is produced from ferruginous aluminous material by mixing same with the spent soda-liquor from wood-pulp manufacture, evaporating down, and hurning.

GROUP V.-COAL-TAR PRODUCTS. See Group XVIII. GROUP VI.-CYANOGEN COMPOUNDS.

CYANIDES.

269,909-December 19, 1882. L. MOND. Manufacture of cyanogen compounds and ammonia.
In the mannfacture of barium cyanide and ammonia, briquettes are formed of an intimate mixture of carbon, carhonate or oxide of barium, and a refractory basic absorbent-such as magnesia-and heated in a reducing flame before exposure to nitrogen, or the mixture is heated in mass, cooled, and broken up: The nitrogenous gases are passed through the hot barium salts, thereby cooling them, and then through fresh layers of barium salts and carbon at the temperature required to form eyanogen compounds.
क77,851-May 15, 1889, A. T. SCHUESSLER. Process of treating spenilime from gas works for cyanides.
The soluble substances are extracted by leaching; the liquor treated with car-bonic-acid gas and the hydrogen sulphide utilized; while the residuum of the first process is decomposed by the addition of commercial salt of sulphate of
potash, the precipitate removed, and the liquor evaporated to form salt for the potash, the precipitate removed
manufacture of ferrocyanides.
484,579-October 18, 189\%. G. T. BEILBY, Proces8 of making cyanides.
Ammonia is passed through a liquid-fused mixture of anhydrous alkali, cyanide, and carbon. The gases may be led through secondary retorts contain-
507,75s-October 31, 1899. D. J. PLAYFAIR. Process of making cyanides.
A sulphocyanate (sulphocyanide or thiocyanate) is heated to from 800° to $1,000^{\circ} \mathrm{F}$. with a metal fusible at the said temperature, of the class comprising lead and zinc, producing a sulphide insoluble in the cyanide. The cyanide is separated by settling or lixiviation.
509,957-December 5, 1899. W. SIEPERMANN. Process of and apparatus for making cyanides.
Ammonia is passed into a mixture of alkaline carhonates and povidered charcoal, heated to a dark-red heat, and the heat is subsequently raised to a hright red. Cyanide of potassium is separated trom its aqueous solution b
525,592-September 25, 1894. C. T. J. VAUTIN. Process of making cyanides of alkaline metals.
In the manufacture of cyanides of the alkaline metals from ferrocyanides by the substitution of an alkaline metal for the iron, instead of potassium or sodium is separated from the residue of iron and lead.
$539,279-M a y$ 14, 1895. W. McD. MACKEY. Process of making potassium cyanide. A carbonaceous and potassium mixture is treated iu a vertical furnace having two sets of tuyeres at different levels and an intermediate outlet for the cyanide vapors.
541,056-June 18, 1895. H. Y. CASTNER. Process of making cyanides.
Previously or separately made alkaline metal is treated with nascent nitrogen and carbon.
543,643-July 30, 1895. H. Y. CASTNER. Process of and apparatus for making alkali cyanides.
A molten alkali metal, as sodium, at a temperature of 300° to $400^{\circ} \mathrm{C}$., is introduced into an atmosphere of anhydrous ammonia in the proportions of 23 poce is of alkali metal for each 17 pounds of ammonia gas.
546,328 -September 17, 1895. C. HOEPFNER. Anode for electrolytic apparatus.

See Group X, Electro-chemistry.

548,058 -Oclober 15,1895 . B. HUNT. Process of recovering cyanides.
A solution of zinc sulphate containing some free sulphuric acid is added to spent cyanide liquor, the supernatant liquor is drawn off, more than sufficient sulphuric acid is added to the precipitate the and the distillate washed and passed through two caustic mixture is distilled, and the distinate washed andith combine with a part only alkali solutions, the first containing sumacient ankais of alkali for ahsorbing the remainder.
567,551-September 8, 1896. J. RASCHEN. Process of making cyanides.
A sulphocyanide, as of sodium or calcium, mixed with water, is heated in the
A sulphocyanide, as of sodium or calcium, mixed with water, $\begin{gathered}\text { presence of an oxidizing agent, as nitric acid, and the evolved gases passed }\end{gathered}$
through a solution of caustic alkali or alkaline earth, whereby the hydrocyanic acid is absorbed. The unahsorbed nitric-oxide gas is reconverted into nitric acid with air and steam.
567,552—September 8, 1896. J. RASCHEN. Process of making cyanides.
Referring to No. 567,551 , the evolved oxidized gases are passed through a heated-water scrubher, where the liftrous fumes are retained, then into cold water or a water tower, by which the hydrocyanic acid is absorbed for subsequent obtainment of cyanide, then through or in contact with lime water
569,104-Oetober 6, 1896. J. A. KENDALL. Process of and apparatus for making cyanides.
The heating vessel, which may be made of nickel or sheet cobalt, with a platinum discharge flue, is inclosed in an outer vessel with hydrogen gas circulating through the intervening space.
569,925-October 19, 1896. P. DANCKWARDT. Process of and apparatus for proaucing cy/anides.
See Group X, Electro-chemistry.
576,264-February 2, 1897. J. D. GILMOUR. Process of making cyanides.
A mixture of carbonaceous material and an alkali at a high temperature is treated with atmospheric nitrogen, forming a cyanide, which is lixiviated, and carhon dioxide and nitrogen, obtained from combustion of carbon in atmospheric air, is passed through the solution whie at a high temperature, forming and carhonate are separated, and the carbonate dried and mixed with carbonaceous material in a fresh operation, and the nitrogen, freed from the said carbon dioxide, is passed therethrough while maintained at a high temperature.
577,897-March 2, 1897. H. Y. CASTNER. Process of making cyanide.
Molten alkali metal is percolated through carbon heated to redness in the presence of a current of free nitrogen. The molten alkali metal enters the retort and the cyanide is conducted out through trapped pipes.
579,689-March 90,1897 . H. W. CROWTHER, E. C. ROSSITER, G. S. ALBRIGHT, AND J.J. HOOD. Process of and apparatus for making cyanides.
In the manufacture of ferrocyanides the iron is cleaned by treating it with un alkaline or alkaline-earth sulphide. It is then mixed with a sulphocyanide and the mixture dried in the presence of an inert gas, as limekiln gases, to prevent oxidation.
579,988-April 6, 1897. C. KELLNER. Process of producing metallic cyanides. See Group X, Electro-chemistry.
590,217-September 21, 1897. A. FRANK AND N. CARO. Process of making cyanides.
Carhides of a suitable metal-as a metal of the alkalis-are heated to a red heat and suhjected to the action of nitrogen saturated with steam. A caustic alkali or an alkali carbonate may be mixed with the carbide.
591,575-October 12, 1897. J. R. MOÏSE. Process of making cyanides.
Boride of nitrogen is produced by calcining a mixture of bborate of sodium 100 pounds, and hydrochoride of ammonium 150 ponnds, lixiviating with boiling water acidified with hydrochloric acid, and filtering. A mixture of the heated to a dark red, forming cyanides and borates, which are separated by crystallization. Ferrocyanide is produced direct by adding iron filings to the mixture.
591,750-October 12, 1897. W. BAIN. Process of and apparatus for electrolyzing.
See Group X, Electro-chemistry.
596,641-January 4, 1898. H. R. VIDAL. Process of making cyanides.
Cyanogen compounds are produced by heating phospham ($\mathrm{PN}_{2} \mathrm{H}$) with a carbonate, $e, g .$, phospham, 6 parts, potassium carbonate, 19 parts. The addition
of coal carbon produces a cyanide instead of a cyanate, and iron a ferrocyanide. Sulphocyanides are ohtained in the presence of sulphur, and gaseous cyanogen by heating a mixture of phospham and dry natural potassium oxalate.
605,694-June 14, 1898. H. S. BLACKMORE. Process of naking cyanides.
Metallie sulphides, as potassium sulphide, are converted intocyanides, sulphocyanides and ferrocyanides by introducing a metallic carhide, as granular iron carbide, into the molten sulphide and passing nitrogen gas therethrough.
607,507-July 19, 1898. P. DANCKWARDT. Process of and apparatus for making ferrocyanides.
A mixture of an alkali sulphocyanide, as that of sodium, with lime, charcoal, and a carbide or carbides, preferably calcium carhide and iron carhide, is heated, leached with water, and the ferrocyanide separated.
607.881-July 26, 1898. H. REICHARDT AND J. BUEB. Process of making cyanides from molasses lyes.
Cyanide of ammonium is produced direct from molasses or molasses lyes by distilling with exclnsion of air and maintaining the gases at about $1,100^{\circ} \mathrm{C}$. until cyanide of ammonium is formed, by passing them through highly heated fire-brick flues. The cyanogen is
gases through an iron-salt solution.
69S,709-Aprit 25,1899 . A. FRANK AND N. CARO. Progess of making cyanides. A carbide, as an alkaline metal carbide, is mixed with an oxide of a metal only, and heated in the presence of nitrogen, iree or hound. It is heated to a temperature below the melting point of the cyanide until absorption of nitrogen ceases, and then the temperature is raised to the melting point.
625,964-May so, 1899. J. BUEB. Process of extracting eyanogen from coal gas.
The gas, before going to the ammonia scrubbers, is passed through a concentrated solution of a metallic salt-as chloride or sulphate of iron-thereby precipitating all of the cyanogen and part of the ammonia, and leaving the greater part of the ammonia. with the gas.
641,571-January 16, 1900. W. WITTER. Process of producing solution of cyanogen halide.
A solution of cyanogen halide-such as chloride or bromide-is produced by electrolyzing, without a diaphragm and with inert electrodes, a solution containing an alkali cyanide, an alkali halide, such as chloride or bromide, and the salt of a metal-as magnesium-which forms an insoluble hydroxide.
649,782-February 6, 1900. J. BUEB. Process of making hydrocyanic acid.
Gases resulting from the destructive distillation of organic matters, cooled and Ireed of ammonia, are subjected to contact with alcohol, as in an alcohol tower,
and the alcoholic solution of hydrocyanic acid is subjected to fractional distillaand the alcoholic solution of hydrocyanic acid is subjected to fractional distilla-
tion. The hydrocyanic-acid gas is geparated from the alcohol by reaction with alcoholic caustic alkali.

651,546-Junc 12,1900. A. DZIUK. Process of making cyanides.
Cyanides and ferroeyanides of the alkaline earth metals, including magnesium, are produced by subjecting carbides of the said metals in thenascent state to the action of a superheated current of pure nitrogen, as by passing beated nitrogen over the carbide while in a fluid state in an electric furnace.

FERROCYANIDES.

441-October 28, 1857. H. STEPHENS. (Reissue: 3-April 21, 1858.) Improved manufacture of coloring matter.
Prussiate of potash or soda is produced by passing the gases evolved from the distillation of animal matters, or other matters that yield nitrogen and hydrocarbons, direct into a mass of alkali in a state of fusion, and then into a solution of alkali contained in separate vessels. Prussian blue of commerce is digested in strong acid to render it more soluble in oxalic acid, and then dissolved in oxalic acid as a final process.
5,419-January 25, 1848. M. KALBFLEISCH. Improved mode of treating animat matters previous to calcination for the manufacture of prussiates of potash or soda.
Animal matter of any kind is dissolved in caustic potasb or soda and dried before calcining.
222,547-December 9, 1879. J. TCHERNLAC AND U. GUNZBURG. Improvement in processes of and apparatus for making ferrocyanides.
Carbon disulphide and an ammoniacal solution are mixed under heat, and the resultant sulphocyanide of ammonium is mixed with lime under heat; a soluble carbonate or sulphate, as of potassium, is added to the solution; and finally the resultant sulphocyanide is mixed with lime, carbon, and iron, and heated to a red heat.
245,661-August 16, 1881. T. RICHTERS. Manufacture of potassium ferrocyanide. Nitrogenous material is moistened with a solution of carbonate of potassium, dried without combustion while in contact with carbonic acid, then heated in a retort to drive off the volatile ingredients, and tbe residuum lixiviated with iron; the prussiate of potash being then separated from the liquor, which can be used for moistening fresh material.
259,802-June 20, 1882. H. BOWER AND W. L. ROWLAND. Process of obtaining ferrocyanides from gas liquor.
The ammoniacal liquor is treated with iron or a ferric salt, and then with lime (and the ammonia distilled off), and the ferrocyanides are extracted from the sediment by the addition of an alkaline salt, such as potassinm or sodinm carbonate.
259,908-June 20, 1882. C. C. PARSONS AND E. F. CRUSE. Process of obtaining cyanides.
Iron in the form of a saltor in the insoluble form of hydrate, carbonate, oxide, or sulphide, or of metallic iron, is added to ammoniacal gas liquor in the absence of acid and without neutralizing the ammonia; and before the ammonia is removed, to convert the cyanides of ammonium into ferrocyanides of ammonia. Lime is then added, the ammonia distilled off, and the ferrocyanides of calcium converted into prussian blue by the addition of acid and a salt of iron.
291,163-January 1, 1884. C. DE VIGNE. Manufacture of ferrocyanides.
Coal gas containing cyanogen or hydrocyanic acid is cooled and deprived of tarry products and then passed throngh a mixture of iron and an alkaline salt, as iron filings and crystallized carbonate of soda, the mixture being subsequently wasked and the solution evaporated to obtain the ferrocyanide.
s03,487-August 12, 1884. H. KUNHEIM AND H. ZIMMERMANN. Process of making ferrocyanides.
Ferrocyanide of calcium potassium is produced by precipitating ferrocyanide of calcinm from its solntion by means of chloride of potassium. Spent materials used in gas purification may be used.
s12,248-February 17, 1885. H. BOWER. Manufacture of ferrocyanide of potassium.
A mixture of nitrogenous animal matters, potassinm carbonate, and iron is beated and the resultant cake or melt treated with water and carbon dioxide. s6R,236-May 3, 1887. J. VAN RUYMBEKE. Obraining cymide and ferrocyanide from tank water.
A solution of alkali, as soda or potash, holding finely divided baryta in suspension, is added to tank water which has been prepared from animal substances by the action of steam at a bigh heat and under pressure, and the resulting solujected todestructive distillation at red of the moisture, when the residue is subjocted todestructive distillation at red heatand the ammonia generated is forced cyanides already formed.
465,600—December 29, 1891. W. L. ROWLAND. Process of recovering cyamides from coal gas.
A soluble salt of iron is added to the water used for extracting the ammonia from the gas passing throngh the serubbers, in proportion to remove cyanides, but inwurficient to remove sulphides, thus forming soluble ferrocyanide of ammonia along with the ammonia compounds. The ammonia is boiled off and the residue treated with lime to give ferrocyanide of calcium, which is treated with an alkaline chlortde or sulphate, and the resulting double salt decomposed with an alkaline carbonate to form an alkaline ferrocyanide.
556,130-March 10, 1896. H. BOWER. Proce of making prussiates.
Prussiate of potash or soda is produced from sulphocyanide of iron by forming cyanide of potassium, adding to this the sulphocyanide during fusion, and then cooling, lixiviating, and crystallizing.
560,965-Hay 26, 1896. H. BOWER. Proccss of rccovering cyanogen compounds from gas liquors.
An acidified solution of a copper salt is added to gas liquor containing soluble ferrocyanide and sulphocyanide and freed of ammonia, to form insoluble ferroeyanide and snlphocyanide of copper, and metallic iron is then added to decompose the precipitate and form a solution of sulphocyanide of iron. If the last step is conducted with beat and pressure, there is produced sulphide of copper and ferrocyanide of iron.
624,383-May 2, 1899. W. SCHRÖDER. Process of making yellow prussiate of. potash.
The gaseous products of the destructive distillation of coal are passed through an aqueous solution of protochloride of iron, and the solution is then distilled with milk of lime to precipitate calcium ferrocranide. The excess of lime in the residual solution is first precipitated; then ferric chloride is added to precipitate the remaining calcinm ferrocyanide, and the entire precipitate is treated with a solution of potassium carbonate t o precipltate calcinm carbonate and ferric hydrate, when the solution is conceutrated to crystallize out the yellow prussiate of potash.
$570,480 \rightarrow$ November 5,1896 . J. J. HOOD AND A. C. SALAMON. Manufacture of cyanogen compounds.
Carbon bisulphide, ammonia, and a fixed base or bases, as peroxide of manganese and lime, are heated together in such proportions that the products of the reactions of the carbon bisulphide and ammonia combine with the fixed base or bases, forming sulphocyanide and sulphide of the base or bases, the whole of the ammonia being utilized in the production of sulphocyanic acid.
578,908-March 16, 1897. G. J. ATKINS. Chlorocyanid salts and process of making same.
A new series of compounds, chlorocyanide salts, efficient agents for leaching ores, consist of an alkali and a compound of cyanogen fused together, at as low a temperature as possible, with one or more bases; as, for example, potassium ferrocyanide 1 part and sodium chloride 2 parts.

GROUP VII.-WOOD DISTILLATION.

s8,071-March 31, 186s. M. A. LE BRUN-VIRLOY. Improvement in drying and carbonizing wood, peat, and other fuel.
First, the material is introduced at one side or end of a furnace and withdrawn from the other side or end in a state snitable for use as fnel; second, the doors or openings are hermetically closed; third, regulated taps, valves, and registers control the admission and exit of air, gas, and other volatile products; fourth, a portion of the volatile products is collected and removed after the whole or part of its caloric has been utilized; fifth, the material and débris of little value and the cormbustible gases are utilized; and, sixth, the material to be treated is subjected first to a low temperature and then to a gradually increasing temperature.
49,247-August 8, 1865. A. H. EMERY. Improvement in the manufacture of pyroligneous acid.
In the distillation of wood in the manufacture of pyroligneous acid, steam is admitted in large quantities, while the heat is not raised sufficiently to char the wood until the wood is thoroughly dried and a large portion of the spirits of turpentine and resin taken out, when the heat is raised to commence rapid charring, the steam being nearly or quite shut off.
62,097-February 12, 1867. P. H. VANDER WEYDE. Improvement in the manufacture of white lead.
For use in the manufacture of white lead, acetic acid is produced from the distillation of wood, and at the end of the operation the remaining charcoal is transformed into carbonic acid by blowing air into the bottom of the still. The precipitate is treated with a hot alkaline solution of quicklime, or its equivalent, and the filters washed out with lime water.
99,817-August 17, 1869. L. D. GALE AND 1. M. CATTMAN. Improvement in the monufacture of sugar of tead and acetic acid.
See Group I, Acetic Acid.
118,787-September 12, 1871. C.J. T. BURCEY. Improvement in the manufacture of acetate of time.
Superheated vapors of pyroligneous acid and dry slaked lime are agitated together. The empyreumatic vapors are condensed, the gaseous products of condensation being utilized for combustion in the furnace.
181,312-September 10, 187\%. J. D. STANLEY. Improvement in processes and apparatus for producing oils, etc.
Vapor from the distillation of pine wood is passed into condensing water, the uncondensed vapor passes off as an inflammable gas, the floating oil is separated, and the condensing water and acids flow off as waste.
184,898-November 28, 1876. H. M. PLERCE. Apparatus and process for treating wood for charcoal and other purposes.
To make concentrated pyroligneous acid the hot volatile products are exhausted from a charcoal kiln and compressed until the acid vapors are liquefied, the temperature being maintained at such height that the dikuting water will be separated and permitted to escape in a vaporized condition.
185, 141-December 5, 1876. E. R. SQUIBB. Manufacture of acetic acid.
Wood in a retort is subjected to the action of heat in an oven, whereby, the temperature being even and controllable, an acid practically free from tar is obtained.
s00, 884 -June 17, 1884. J. A. MATHIEU. Distillation of wood.
The vapors resulting from the carbonization of the upper portion of a mass of material in a retort are partially condensed by passing the vapors downward material in a retort are partially condensed by pa
355,998-Decomber 7, 1886. T. W. WHBELER. Process of and apparatus for dictiking uood.
Wood is first subjected to distillation with steam under low pressure and temperature, thereby softening the wood and driving off the turpentine papors, Which are passed into a bath of limewater, warmed and agitated by a current of steam; when the wood is softened the steam valve and turpentine-vapor valve are closed, the oil valve opened, and the temperature raised to nearly $400^{\circ} \mathrm{F}$., thereby quickly running off the creosote oil and pyroigneous acid, which are and the temperature gradually lowered untill the tar and gas are run off.
285,777-July 10, 1888. G. RUMPF. Manufacture of acctone.
See Group XVIII, Ketones.
388,529-August 28, 1888. F. S. CLARK. Pracess of obtaining creosote, cte.
The process consists in mingling a caustic-soda solution containing creosote or reaction between the mingled bodies, and depositing thereby occasioning a acetate of soda by the union of the soda solution and the acetic acid of the pyroligneous-acid solution.
393,079-November 20, 1888. G. RUMPF. Manufacture of acctone.
See Group XVIII, Ketones.
4.07,442-July 23, 1889. E. MEYER. Proccss of obtaining mcthyt alcohol from
woodpulp lycs.

See Group XVIII, Alcohols.
490,497-January 24, 1898. F. H. \& R. H. PICKLES. Process of purifying pyrolignites.
Pyroligoites in a liquid state are purified of tarry matters by treatment with the carbonaceous residue obtaincd in the manufacture of prussiate of potash, or alkaline carbonaceous matter prepared by carbonizing animal matter with
504.264-August 29, 1898. F.J. BERGMANN. Method of distilting wood waste.

The method of manufacturing wood vlnegar from wood waste, such as sawdust or chips, consists in converting the same into hlocks by pressure up to about three hundred atmospheres, expressing water contained in the wood, then carbonizing the blocks in retorts, and precipitating the gases generated.
535,652-March 12, 1896. O. PORSCH. Process of making acctone.
See Group XVIII, Ketones.
577,302-February 16, 1897. A. HESSE. Terpene alcohol.
See Group XVIII, Alcohols.
622,194-March 28, 1899. F. W. J. F. SCHMIDT. Method of preparing wood for dry distillation.
The wood is cut crosswise of the grain into thin laminæ, and then distlled. $648,389-\mathrm{May} \mathrm{1}, \mathrm{1900}. \mathrm{H}. \mathrm{О}. \mathrm{CHUTE} .\mathrm{Process} \mathrm{of} \mathrm{making} \mathrm{acetone}$.
See Group XVIII, Ketones.

RESINS AND TURPENTINE.

4,412-March 14, 1846. N. U. CHAFEE. Improvement in the manufacture of rosin and spirits of turpentine.
In the manufacture of white resin and white spirits of turpentine from the gum of pines, steam isconducted in and mixed with the gum in a still and then passed through a metal heater.
5,004-March 13, 1847. N. L. MARTIN. Improvement in refining turpentine.
Spirita of turpentine are refined by the use of alkali and water, using a strong solution of potashes and water, not less than 12 pounds to the gallon, and I gill of alkalì to a gallon of spirits of turpentine.
7,528-July 30 , 1850. C. J. MEINICKE. Improvement in distilling spirits of turpentine.
Crude turpentine is mixed with grease and soda solution and heated, forming a soap, a solution of common salt is added and the spirits of turpentine distilled, leaving the resin saponified ready for soap making.
8,488-November 4, 1851. L. S. ROBBINS. Improvement in tanners' oil from rosin. The product obtained by distilling a mixture of oil, which has been distilled from resin at about $600^{\circ} \mathrm{F}_{\text {, }}$, and slacked lime, say about 5 per cent, with the addition of steam, followed by a second distillation with caustic lime, and further treatment of the product with steam.
$8,489-$ November 4, 1851. L. S. ROBBINS. Improvement in tubricating oil from rosin.
The product ohtained by distilling a mixture of oil, which has been distilled from resin at about 550° F., and slacked lime, say about 5 per cent, with the addition of steam, followed by a second aistillation with caustic lime, and further treatment of the product with steam.
8,490-November 4, 1851. L. S. ROBBINS. Improvement in distilling acid and naphtha from rosin.
Resin is melted and heated np to 325° F., or thereabouts, and maintained between $300^{\circ} \mathrm{F}$. and $325^{\circ} \mathrm{F}$. until the acid and water are driven off, when steam is injected and the temperature maintained at $325^{\circ} \mathrm{F}$. to throw off the naphtha. 8,491-November 4, 1851. L. S. ROBBINS. Tmprovement in paint oilfrom rosin.
The product obtained by the double redistillation with steam of oil which has been distilled from resin at about 650° F. and further treatment of the product with steam.
$9,680-$ April 19, 185s. S. L. DANA. Improvement in purifying rosin oil.
Resin oil is deodorized by combining the fluid formed by the first distillation of resin or resin oil with slacked lime or other alkaline, earthy or equivalent metallic base, and distilling the compound.
9,752—May 24, 185s. M. PAGE. Improvement in processes of distilting rosin oil.
Steam is introduced into the head of the goose-neck so that the vaporized oils will pass through and be commingled therewith.
10,849-May 2, 1854. H. HALVORSON. Improvement in processes for distilling rosin oil.
Clay is mixed with resin-5 parts of clay to 1 part of rosin-and the mixture distilled; no pitch residuum being left in the retort.
27,624-March 27, 1860. D. FEHRMAN. Improvement in the manufacture of resin. Resin is purified by treatment and distillation in a vacuum pan with a small quantity of water and steam at low temperature, rising from $150^{\circ} \mathrm{F}$. to $180^{\circ} \mathrm{F}$. 27,646-March 27, 1860. H. NAPIER. Improvement in the manufacture of resin.
The crude turpentine is heated in a still until it attains a temperature rather exceeding that of steam at a pressure of Io pounds, then steam at said pressure is caused to permeate and pass through the mass without cond tonsation, until witin the continued blowing of steam through the mass at the same pressure.
$28,669-$ June 19, 1860. S. FRAZER. Improvement in distillation of oils from resin. Crude resin is distilled and certain specified quantities of product are successively drawn off trom the recerver or the condenser, the temperature of the product being successively raised from $74^{\circ} \mathrm{F}$. for the first drawing to $132^{\circ} \mathrm{F}$. for the fourth drawing, and then lowered to $106^{\circ} \mathrm{F}$. for the fifth drawing.
44,314-September 20, 1864. D. HULL. Improvement in extracting rosin and other substances from pine wood.
Resin is produced direct from pine wood by heating same with heated air or uperheated steam, the outgoing blast being conveyed to a condenser, where the spirits of turpentine is collected.
44,495-September 27, 1864. G. R. H. LEFFLER. Improvement in distilling turpentine from wood.
Turpentine is distilled direct from wood saturated or thoroughly moistened with steam or water
46,092-January 31, 1865. A. H. EMERY. Improvement in obtaining spivits of turpentine, oil, resin, and other products from pine wood.
A current of ordinary steam is passed over and through the wood into a condenser, the retort being externaily heated enough to prevent condensation of team, the pressure in the boiler being sumper the temperature is increased. When the spirits of turpentine have passed over, tbe temperature is increased for tbe remaining products.
48,406-June 27, 1865. D. HULL. Improvement in extracting turpentine and other products from rcsinous woods.
Pine or otber resinous wood is distilled under less than atmospheric presstre. No. 210-I2

49,248-August 8, 1865. A. H. EMERY. Improvement in the manufacture of pitch.
Pitch is made from pine wood by one distillation, by heating the bottom of the retort to the requisite degree.
49,249-August 8,1865. A. H. EMERY. Improvement in the manufacture of turpentine, etc.
Wood is distilled under more than atmospheric pressure, say, up to 2 or 3 atmospheres, without the application of steam or superheated steam, to secure an increased production of oil of turpentine and resin before destructive distillation begins.
50,132-September 26, 1865. J. JOHNSON. Improvement in the manufacture of spirits of turpentine.
Water, steam, air or gases, and solvents are caused to circulate among the wood in sultable receptacles at a temperature sufficiently low to secure the extractive terebinthinates and resins free from empyreumatic odors. The wood is placed over a stratum of water which condenses the volatile products of the wood and fixes the resin. Two bollers are successively used to economize the heat and save waste of terebinthine products. Suitable soluble salts are added to raise the boiling point and increase the temperature for extraction. Wood is compressed after steaming to eliminate oleo-resins.
54,081-April 17, 1866. J. A. PASTORELLI. Improved method of extracting turpentine from wood.
In the distillation of resinous woods for the extraction of essence of turpentine, etc., the wood is placed in a boller over a fire together with water to form steam to prevent the burning of turpentine formed.
89,498-Aprit 27,1869 . J. MERRILL. Improvement in the manufacture of rosin oit.
Resin oil is deodorized by gradually raising the temperature and distilling off he odorous naphthaly oil until the oil coming over reaches Irom 18° to 14° Baume's hydrometer, when the distillation is stopped, the remaining oil being virtually free from odor.
100,968 -March 15, 1870. J. TREAT. Improvement in the manujacture of rosin oil.
Resin oil is refined and bleached by adding from 2 to 4 ounces of caustic soda per gallon of oil and a small quantity of gum benzoin, and distilling. Steam is introduced into the worm to commingle with the vapor before condensation.
130,598-Auqust 20, 187\&. J. D. STANLEY. Improvement in distilling and purifyng turpentine from wood.
The vapor from the distillation of pine wood is introduced into a receiver conaining the yapor generated from water or other liquid impregnated or saturated with lime, which vapors combine and condense.

139,402—May 27, 187s. A. K. LEE. Improvement in bleaching resins.
Resin is reduced to a powder or small lumps and bleached by the direct action of steam and heat while the mass is under agitation.

145,151-December 2, 1873. S. L. COLE. Improvement in the production of turpen-
tine from sawdust.
Spirits of turpentine is produced from sawdust by destructive distillation by the application of fire direct to a retort containing the same.
$179,960-J u b y$ 18, 1876. A. ROCK. Improvement in production and treatment of resin.
In the distillation of scrap turpentine and the production of resin therefrom the condensable vapors are eliminated while under treatment in a retort during distinct and separate meltings, or exposures to a melting heat, followed in each nstance by an exposure to a cooler temperature, and the vapors are condensed, Whereby colopholic acid is prevented from being unduly developed in the resin; he vapors are eliminated by means of currents of air sweeping over the turpentine or resin while successively melted and cooled.
180,467-August 1, 1876. L. J. DUROUX. Improvement in purifying spirits of turpentine.
Powdered alum, or alum water, is mixed with spirits of turpentine- 2 to 3 per cent of powdered alum or a solution of 5 to 10 per cent of alum in water cqual to the turpentine-and agitated, and the mixture allowed to settle, when the purified spirit is drewn off.
194,701-August 28, 1877. A. MARTMN. Improvement in the manvfacture of brewer's pitch.
Brewer's pitch is made direct from crude turpentine, using oil of resin instead of tallow or other oils, by first melting the turpentine and drawing off a portion, reducing the remainder by extracting spirits and acids before adding the oil of resin and ocher, and, when drawing off the mass through a strainer, adding thereto a portion of turpentine first drawn off.
200,168-February 12, 1878. D. M. BUIE. (Reissuc: 10,998-June 5, 1883.) Process of manufacturing oils from organic substances.
See Group XVI, Essential Oils.
242,015-May 24, 1881. J. A. MCCREARY. Process of and apparatus for distilling turpentine.
The crude material is diluted with a suitable menstrum, as spirits of turpentine; an alkali added, the excess of the latter precipitated, filtered, and then distilled; and pending the process of distillation the uncondensed products are conducted from the worm to the still and forced through the liquid contents of the latter.

276,981-May 1, 1883. L. PRADON. Ycthod of and apparatus for the manufacture of oil from resinous wood.
Pine oil, a mobile transparent liquid, $\mathrm{C}_{20} \mathrm{H}_{10}$, produced by distilling resinous wood at a temperature of about $400^{\circ} \mathrm{C}$. It is mixed with petroleum or coal oil to form an illuminating oil

277,505-May 16, 188s. H. M. PIERCE. Process of and apparatus for the recovery of turpentinc and other wood products, and for the manufacture of charcoal.
The vapors from wood distillation are subjected to the action of a spray of water, whercby the oils and resinous matters are separated, and the supernatan oily matter is then drawn off.

277,506-May 15, 1883. H. M. PIERCE. Process of and apparatus for the manufacture of turpentine.
Wood is subjected in aclosed chamber to the action of heated gases and steam and the gases and vapors withdrawn and condensed.

284,367-September 4, 1883. L. BELLINGRATH. Process of manufacturing rosin and spirits of turpentine.
Crude turpentine is melted and heated by steam heat to a temperature sufficient to volatilize the spirit which is driven off and condensed, the resin being passed through sieves and retained heated and in a liquid state by steam beat until all the water and vaporizable impurities are dispelled.

S24,878-August 25, 1885. D. J. OGILVY. Rosin oil.
As a new article of manufacture, resin oll of commerce treated with and containing an alkaline salt of sodium or potassium sufficient to wholly or partially neutralize the resinous acids, say from $1 \frac{1}{2}$ to $2 \frac{2}{2}$ per cent of commercial caustic soda.
s86,198-July 17, 1888. E. K0CH. Process of distilling pine wood for the production of crude dry turpentine and pine tar.
The pine oil is extracted by dry distillation; the distillate treated with milk of lime and agitation; the mixture settled; the oill and lye or other impurities combined therewith separated; the oil agitated with dilute sulphuric acid to remove the last traces of alkali; and the oil finally distilled.
390,451-October 2, 1888. F. S. CLARK. Pine-oil product.
An oily hody, light in color, sp. gr. heavier than water, not distilling over below $600^{\circ} \mathrm{F}$, , not volatile at ordinary temperatures, not flashing when heated under $350^{\circ} \mathrm{F}$ ', and hecoming solid hetween zero and $32^{\circ} \mathrm{F}$.. is produced by the fractional distillation and treatment of pine oil. (Process No. 390,454.)
S90,452-October 2, 1888. F. S. CLARK. Pine-oil product.
An oily body, ap. gr. at $68^{\circ} \mathrm{F}$. of 0.856 , completely volatilizing if soaked in paper, hoiling at $326^{\circ} \mathrm{F}$., produced from the distillation and treatment of pine oil. (Process No. 390,454 .)
$390,454-$ October 2,1888 . F. S. CLARK. Process of refining pine oil.
The process consiata in fractionally diatilling pine oil and separating the fractions at or about $540^{\circ} \mathrm{F}$., and in separately treating said fractions by two or more ractional distillations and treatments with caustic soda and one or more treat ments with sulphuric acid. . (Products Nos. 390,451 and 390,452.)
s93,942-December 4, 1888. J. B. UNDERWOOD. Process of distilling turpentine. A refined petroleum is mixed with crude turpentine and the mixture disn tilled, thereby ohta

395,781-January 8, 1889. E. A. BEHRENS. Bleoching and refining resines and other substances.
Resina are first dissolved in a volatile substance, having a low boiling point, such as naphtha, the solution mixed with an alkali to separate the impurities the alkali and impuritiea removed, the solution mixed with a suitable bleach ing agent and the latter removed, and finally the resin separated by evaporation of the solvent and the latter recovered. The movement

495, $543-$ April 18, 1895. G. COL. Process of treating crude resins and their residues.
The heated crude products are atirred, then run into gettling tanks and settled, and the upper liquid portion decanted and distilled until the volatile matters have passed into a condenser.
508,608-November 14, 1893. R. L. ETFERIDGE. Manufacture of rosin.
Bluing (indigo) is mixed with turpentine and distilled to produce a highgrade resin, and eradicate the coloring matter imparted by mixing the "virgin" and the "yearling" dips.
568,258-Seplember 22, 1896. V. J. KUESS. Process of and apparatus for distilling fotty substances,
See Group X, Electro-chemistry.
651,749-August 22, 1899. A. MULLER-JACOBS. Manufacture of substances from rasin oils.
The invention consigts in the products resulting from and in the process of producing from resin oil an oil useful as a lubricant and gums or resinous suh stances useful as substitutes for shellac, by treating the resin oil with sulphuric acid, converting the resulting sulpho-acids into water-soluble alkalif salts, removing the oil, and treating the remaining liquid with acid or with soluble salt or salts of an alkaline earth or metal forming corresponding precipitates, and washing and drying the matter precipitated.
656,252-August 21, 1900. F. G. KLEINSTEUBER. Compound for dissolving resins.
See Group XV, Other Plastics.

GROUP VIII.-FERTILIZERS.

PRODUCTS.

6,254-March 27, 1849. P. S. AND W. H. CHAPPELL. Improvement in ortificiat manures.
The residuum from the manufacture of alum and the reaiduum from the manufacture of epsom salts are mixed with sulphate of lime, the residuum from the manufacture of prussiate of potash, hisulphate of soda, common salt, and a composition resulting from the treatment of bones with gas liquor and sulphuric acid.
7,05S—January 29, 1850. R. HARE. Preparation of animal and other manure.
Animal material or nitrogenous vegetahle matter is treated with mineral acids to produce a concentrated manure; wood tar, cosl tar, or their equivalents are also added.
17,592-May 26, 1857. L. S. ROBBINS. Improvement in fertilizing compounds.
Green sand, containing little or no carbonate of lime, ia mixed with superphosphate of lime in the proportion of 2 parts of the former to 1 of the latter, and ground.
22,544-January 11, 1859. D. BRUCE. Improvement in artificial manure.
Animal matter, decomposed to a pulpy mass by standing in closed vessels at a temperature of 32° to $50^{\circ} \mathrm{C}$., is disinfected by mixing therewith charred hituminous shale or a roasted mixture of carbonaceous matter and clay, and then dried.
24,988-Auguet 9, 1859. E. BLANCHARD. Improvement in composts.
A mixture of lime, sodium chloride, wood ashes, charcoal, wheat bran, chimney soot, and gypsum.
26,184-November 22, 1859. L. HARPER. Improvement in fertitizers.
Peat, muck, or lignite are mixed with sulphate of lime, soda, potash, and magnesia, and, if desired, with grecn-sand marl, as a hase for fertilizer compositiong; phosphate and biphosphate of lime is added to the hase, and the mix ture impregnated with ammonia, as by admixture of pulpy nitrogenous matter 26,196-November 22, 1859. J. J. MAPES. Improvement in fertilizers.

One hindred parts hy weight of apatite or calcined bones or phosphate of lime is saturated with sulphuric acid, and after the superphosphate of lime is formed there is then added 36 parts of Peruvian guano and 20 parts of sulphate of ammonia.

26,507-December 20, 1859. J. J. MAPES. Improvement in fertilizers.
The fertilizer product of No. 26,196 is mixed and ground with equal quantities by weight of dried blood.
26,985-January 31, 1860. L. HARPER. Improvement in fertilizers.
Green-sand marl, after atmospheric disintegration, is spread in a layer, covered with a layer of fish or offal, and the latter covered with marl impreg: nated with sulphate or nitrate of soda or potash. After decomposition is advanced, marl mixed with hone dust dissolved in an excess of sulphuric acid is added, and sulphate of lime is sprinkled from time to time until decomposition is completed and no more ammonia is evolved; the mass being repeatedly turned toward the end, and finally dried.
27,072-February 7, 1860. A. ROLLAND. Improvement in fertilizers.
A mixture of alum, 7 parts; sulphate of iron, 29 parts; sulphate of soda, 36 parts: sulphate of lime, 25 parts; sulphuric acid, 3 parts; all hy weight, to be used direct as a fertilizer, or a solution of the same is sprinkled on manure.
28,516-May 29,1860 . L. STEPHENS. Improvement in fertilizers.
A mixture of decomposed animal matter, 1,200 pounds; animal charcoal, 150 to 200 pounds; sombrero guano, 200 pounds; Peruvian guano, 175 pounds; ammonium sulphate, 25 pounds; common salt, 100 pounds; and solution of hone in muriatic acid, 50 gallons.
SS,706-November 12, 1861. J. B. HYDE. Improvement in manufacture of manure from fish.
Dried peat, marl, clay, or plaster is mixed with fish pulp or pumice and the mixture ground, wherehy eftectual pulverizing is aecured.
S4,039-December 24, 1861. ST. J. O'DORIS. Improvement in fertilizers.
A mixture of coal ashes, 75 parts; animal manure, 15 parts; animal matter, 5 parts; and vegetahle matter, 5 parts-all in bulk.
34, 825-April 1, 1862. J. M. GALLACHER. Improved fertilizing compasition.
A mixture of liquid animal matter, obtained by condensing the gases and vapors from the charring or burning of bones, with animal charcoal and sulphuric acid.
39,519-August 11, 1869. G. F. WILSON. Improved fertilizer or manure.
Bone sulphate of lime, the residue from the treatment of bone coall with sulphuric acid for the production of phosphate of lime, is mixed with the ammoniacal and other hodies condensed in the distillation of the hones.
41,3S1-January 19, 1864. E. VON NORDHAUSEN. Improved artificial manure.
The residuum of petroleum, known as "still bottoms," is crushed and mixed with slacked lime and a sulphate of lime produced, to which is added urine, producing a sulphate or ammonia, and the mass dried.
49,659-July 26, 1864. W. H. H. GLOVER. Improved fertilizer.
Muck is dried and mixed with the refuse water, gurry, ete., from the manufacture of fish oil.
46,847-March 14,1865. W. D. HALL. Improved manure.
Lohster refuse is desiccated and pulverized.
46,957-March 21, 1865. J. B. TRIBBLE. Improved composition for preventing disease in vegetables.
A mixture of wood ashes, 3 pecks; slacked lime, 2 pecks; sulphur, 1 peck; and sodium chloride, 1 peck (per acre of land; a preventive of potato rot).
49,948-September 12, 1865. 'J. D. WHELPLEY. Improved fertitizer.
A mixture of finely pulverized feldspar, feldspathic granite, and other potashbearing rock, with gypsum and hone or phosphate of lime.
50,940-November 14, 1865. O. LUGO. Improved fertilizer.
Leather treated with sulphuric or other acids, hoiled, ground, and afterwards reated with urate of ammonia.

52,844-February 2\%, 1866. J. GOULD. Improved fertitizer.
Mixtures of gas lime, lime, salt, and animal and vegetahle or vegeto-animal matter are fermented, whereby the carbolic acid and carbo-hydrogens of the

55,871-June 26, 1866. J. AND A. FIURSH. Improved fertilizer.
Ocher, either in a raw or hurnt state, is used as a fertilizer.
61,870-February 5, 1867. F. C. RENNER. Improved fertilizer.
A mixture of rich earth, 1,600 pounds; saltpeter, 100 pounds; sulphate of ammonia, 200 pounds; and flour of raw bone, 100 pounds; the mixture being allowed to "sweat" in a heap.
64,602-May 7, 1867. W. VERMILYA. Improved composilion for invigorating fruit and forest trees.
A mixture of sulphate of copper, 3 pounds; sulphur, 1 pound; saltpeter, 1 ounce; and iron filings, half a pound. A hole is hored near the root of the tree, and after inserting some of the mixture the hole is plugged.

66,557-July 2,1867 . P. G. KENNY. Improved manure.
Sulphate of iron is mixed with manure, and dissolved by urine passed through the mass. Aluminous earth may be spread on the pile ahove a sprinkling of iron sulphate.
66,650-July 9,1867. J. A. THOMPSON. Improved composition of matter for disin-
fecting and preparing fevilizers.
Charcoal charged with sulphurous acid or other disinfecting or other gas is mixed with ground gypsum, as a disinfectant and deodorizer. It is mixed With animal and vegetable substances to form a fertilizer with or without the addition of common salt, wood ashes, bone dust, or other material.
67,\$85—July 30, 1867. J. K. MOORE. Improved fertilizer.
Powdered clam or oyster shells (not burnt) treated with acid.
67,450-August 6, 1867. H. E. POND. Improved artificial fertilizer.
Meadow muck is partially dried, then treated with sulphuric acid; lime is then added and mixed therewith, then a solution of potash, salt, and nitrate of soda, and finally superphosphate of lime, and the mass dried.
70,608-November 5,1867 . H. E. POND. Improved fertilizer.
Meadow muck is partially dried, then treated with sulphuric acid; sulphate of lime or gypsum is then mixed therewith, then a solution of nitrate of potash, salt, and nitrate of soda, and finally superphosphate or biphosphate of lime.
71,724-December 3, 1867. L.' S. FALES. Improved fertilizing compound.
A mixture of sea sand, sulphate of ammonia, charcoal, bones, and dried blood.

71,785-December s, 1867. L. S. FALES. Improved fertilizer.
A mixture of night soil treated with waste acid from petroleum refineries charcoal-preferably that made from peat-sulphate of ammonia, pulverized bones, dried blood, and saltpeter.
72,026-December 10, 1867. W. C. GRIMES. Improved fertitizer.
Eight bushels of ground bone and 80 pounds of sulphate of ammonia are dissolved in 180 pounds of oil of vitriol, and 40 gallons of urine and 10 bushels of rich earth added, and the mixture dried
74,799-February 95, 1868. J. COMMINS. Improved mode of treating mineral phosphates for the manufacture of fertilizers.
Phosphatic minerals or earths are heated to a red or white heat and saturated With a solution of sodium chloride while hot, to convert the insoluble phosphates
into soluble mineral. into soluble mineral.
76,991-April 21, 1868. W. G. BUSEY. Improved fertilizer.
Six hundred pounds of Peruvian guano and 100 pounds of sodium chloride are mixed together and then mixed with 1,300 pounds of soluble superpbosphate of lime, formed by treating carbonized bone with sulphuric acid.
$77,667-$ May 5, 1868. A. SMITH. Improvement in fertilizers.
Cracklings reduced to powder are combined with phosphates.
77,840-May 12, 1808. J. S. RAMSBÚRG. Improved fertilizer.
One hundred pounds of calcined bone is mixed with 25 pounds of sulphate of ammonia and 3 gallons of hot water or harnyard liquor, and 25 pounds of sulpburic acid added to form au ammoniated superphosphate of lime, which while hot is mixed with 60 pounds of sulphate of soda, 125 pounds of sulphate
of lime, and 150 pounds of slacked ashes or muck. of lime, and 150 pounds of slacked ashes or muck.
$77,860-$ May 12, 1868. J. ALTHOUSE. Improved fertilizer.
Seven hundred pounds of air-slacked lime is mixed with 180 pounds of ground bone and 100 pounds of wood ashes, covered with a layer of ground plaster and wet with 320 pounds of urine, and aflowed to stand for eight to twelve weeks,
when it is mixed with 400 pounds of wheat bran and 300 pounds of hen dung. 79,160-June 28, 1868. D. A. TER HOEVEN. (Reissue: 4052 and 405s-June 28, 1870.) Improvement in fertilizers.

A fertilizer composed of horns, hoofs, or like animal matter; produced by steaming, drying, and crushing or grinding.
86,574-February 2, 1869. O. A. MOSES. Improved prepared phosphaite.
South Carolina phosphates and marls are ground under water and separated according to their specific gravity and dried, thereby producing, as the finer materia, neary pure ferting phosphates.
88,44s-March 30, 1869. S. A. BURKHOLDER and G.W. WILSON. Improvement in fertilizers.
A mixture of bone dust, 600 pounds; oil of vitriol, 200 pounds; sulphate, 100 pounds; sodium nitrate, 10 pounds; sodium chloride, 50 pounds; ground plaster or sand.
88,466-March 30, 1869. L. S. FALES. Improved fertilizer.
A mixture of bones, leather scrap, and blood in sulphuric acid and water is subjected to the steam and ammoniacal vapors from a mixture of sulphate of subjected to the steam and ammoniaca vapors from a mixture of sulphate of ammonia, gas liquor, and
90,057-May 11, 1869. D. STEWART. Improved phosphate fertilizing compound. Manures are produced from soluble silicates and phosphates by composting them with caustic alkalis, as by forming alternate layers of insoluble phosphates previously moistened with a saturated solution of crude potash and quicklime, and allowing the successive layers to slack as strata after strata is
added. After cutting down and mizing, a handful of ground gypsum is added added. After cutting down an
91,667-June 22, 1869. F. C. RENNER. Improved fertilizer.
One thousand and fifty pounds of rich earth is mixed with 100 pounds of sulphate of ammonia and 50 pounds of saltpeter, and then incorporated with 300 pounds of bone dust, 100 pounds of salt cake, 200 pounds of Peruvian guano, and 200 pounds of plaster.
92,077-June 99, 1869 . E. N. MCKIMM AND H. W. BENDER. Improved fertitizing compound.
A mixture of earth, 1,000 pounds; sulphate of ammonia, 100 pounds; sodium chloride, 100 pounds; pearlash and sulphate of soda, each 25 pounds; together with ground bone, 400 pounds; Peruvian guano, 150 pounds; and ground plaster, 150 pounds.
92,810—July 20,1869 . R. FISH. Improved fertilizer.
A mixture of night soil, marl, peatashes, charcoal, copperas, salt, tobacco, gypsum, tincture of almonds, tincture of coffee, and coffee grounds.
97,169—November 29, 1869. B. R. CROASDALE. Improved bags for guano, phosphates, and other fertilizers.
They are coated inside with tar, pitch, or gum, and then inside and outside with a thin coat of crude petroleum or other oil.
97,959-December 14, 1869. O. LUGO. (Reissue: 8,840-February 15, 1870.) Improved fertilizer or guano.
An antiseptic fertilizer from fish or other auimal matter, prepared by passing hot air downward through the material until about 90 per cent of the water is extracted, and then introducing, by means of a current of air, hydrocarbon and phenol (carbonic acid) vapors, followed by a blast of hot air to expel the remaining portion of water and hydrocarhon. The oils and fatty matters in solution with the bydrocarbon and surplus phenol are condensed.
99,255-January 25, 1870. I. W. SPEYER. Improvement in fertilizers.
The minerals obtained from the mines of Stassfurt, Prussia, chiefly sulphates and muriates of potash and magnesia, are pulverized, dissolved in boiling water, and crystallized out by cooling, for use as a manuring compound.
99,294-February 1, 1870. J. COMMINS. Improvement in fertilizers.
A mix́ture of 1 part, by measure, of gas-liquor and 3 parts of blood, is coagulated with one five-hundredth part of sulphuric acid, dried, and reduced to a powder.
99,458-February 1, 1870. O. LUGO. Improvement in fertilizers or fish-guano.
Fish are dried (without scorching or roasting) before decomposition sets in, so as to secure a highly nitrogenized product, pulverized and mixed with phosso as to sect
phates, etc.

99,978-February 15, 1870. A. VAN HAAGEN AND W. ADAMSON. Improved fertilizer from glue residuum.
Glue residuum is boiled in an alkaline solution, common salt added, the soap product removed, and charcoal or plaster of paris or other fertilizing absorbent mixed with the mass.
100,16s-February 22, 1870. O. LUGO. Improvement in the manufachure of ferfilizers from animal substances.
An antiseptic fertilizer, prepared from animal matter by treating it with carbolic acid or phenol, in solution with suitable hydrocarbons or preferably in a state of vapors, with or without a current of hot air or gases.
100,62-March 8, 1870. H. A. HOGEL. Improvement in treating blood for the preparation of fertilizers, and for other purposes.
Coagulated blood, prepared by the action of steam, drained and pressed.
100,799-March 15, 1870. J. COMMINS. Improvement in fertilizers.
A fertilizer formed of gas-liquor, blood, and sulphuric acid, with dry ground
phosphate of lime, mixed and evaporated to dryness. phosphate of lime, mixed and evaporated to dryness.
101,191—March 22, 1870. H. A. HOGEL. Improvement in fertllizers.
The fat of dead animals is extracted with steam, and the flesh is subjected to
heavy pressure, dried, and pulverized. heavy pressure, dried, and pulverized.
109,488-April 26, 1870. W. I. SAPP. Improvement in the manufacture of fertilizers.
A fertílizer made from silicated phospbates, produced by treating phosphatic guana or like material with soluble silicic acid or water glass, to render the phosphates soluble.
102,648-May s, 1870. E. P. BAUGH. Improvement in drying guano.
Rock phosphate, or other material, is banked over grated flues for hot gases, so that they can penetrate the mass.
100,s13-August 10, 1870. G. BOURGADE. Improvement in compound for fertilizer. A mixture of blood and lime, formed by mixing slacked lime with the blood, adding water and heating at a low heat and subjecting the coagulated mass to
pressure to expel the albumen. pressure to expel the albumen.
106,626-August QS $_{3}$ 1870. T. SIM. Improvement in the manufacture of fertilizers.
Cottonsced residuum, or other matter, divested of oil by chemical means (as by bisulphide of carbon), is mixed with phosphate of lime.
107,878-October 4, 1870. J. COMMINS. Improvement in the manufacture of fertilizers.
Black salt-marsh grass (Spartina glabia), is chopped, macerated, and reduced to a pulpy mass, for use with phosphates or animal matter; it contains a large amount of nitrogen, 10 per cent of potash, and 8 per cent of soda.
108,369-October 18, 1870. J. M. LOEWENSTEIN. Improvement in fertilizing compounds.
Night soil is mixed with double the quantity of pulverized unslaked lime, subjected to pressure to express superfluous liquid, and is then treated with subjected to pressure
111,957—January 91,1871 . J. M. LOWENSTEIN. Improvement in fertilizing compounds.
A compositiou formed of night soil, sulphuric acid, bones or bone dust, and unslacked lime.
112,653-March 14, 18ं71. T. TAYLOR. Improvement in fertilizers.
A mixture of night soil with peat, clay, soluble silicates, a persalt of iron, and tincture of quassia.
114,189-April25,1871. W. B. HAMILTON. Improvement in fertilizing compounds. A mixture of night soil, cotton-seed meal, salt, gypsum, and bone phosphate. 114, 798 - May 16, 1871. L. C. GIFFORD. Improvement in compounds for preserving fruit trees.
A mixture of 2 parts of calomel and 1 part of carbonate of soda, by weight, mixed dry.
118,987-September 12, 1871. U. S. TREAT. Improvement in fertilizers. from seaweed.
Seaweed is reduced to a pulp by the action of steam under pressure and mixed in a mill with finely powdered quicklime.
119,994-Ociober 17, 1871. D. W. PRESCOTT. Improvement in the manufacture of soluble phosphates for fertilizers.
A mixture of 1,600 pounds of bone dust and 300 pounds of soda ash is moistened thoroughly with water and allowed to remain in a heap for two weeks and. then dried.
124, 254-March 5, 1872. B. R. CROASDALE. Improvement in bags for phosphates, etc.
It is made of a textile fabric, as burlap, coated with roofing paper, which may be saturated with an acid-proof or waterproof substance.
124, 413-March 5, 1879. J. R. WESTOVER. Improvement in compounds for fruit trees, etc.
A mixture of kerosene oil, 1 quart; fish oil, 1 pint; flour of sulphur, one-half pound; pulverized saltpeter, one-fourth pound, and 1 pint of water, as an insect destroyer and fertilizing compound.
185,9:7-April 23, 1872. J. R. BLACK. Improvement in fertilizers.
A mixture of stable manure and muck in equal parts is formed; and also a mixture of saltpeter 50 pounds, common salt 3 barrels, lime 3 barrels, and ashes 5 barrels: and a compost formed of alternate layers of the two mixtures, the latter mixture being one-fourth of the former.
125,939-April 23,1872 . J. M. DEERING. Improvement in fertilizing compounds.
Fish or lobster chum is mixed with material charged with carbolic acid, as tar water, ammoniacal water, or spent lime, spread and covered with dry earth, peat, or brick dust, then with air-slacked lime, then wet seaweed, then ground gypsum, and then dry earth or peat. The layers may be repeated, and the pile is allowed to slowly decompose.
126,418-May 7, 1872. T. SEWELL. Improvement in compositions for deodorizing and preparing fertilizers.
Ground peat charcoal is saturated with equal parts of carbolic acid and perchloride oif manganese, and used in combination with clay, earth, or soil.
128,578-July 2, 1879. W. S. AMIES. Improvement in artificial manures.
Carbon and sulphate of iron are mixed in the proportions of from 1 to 5 parts of carbon to 1 part of sulphate of iron.

132,543-October 29, 1872. C. F. SMITH. Improvement in compositions for renovating and invigorating apple trees.
A mixture of pulverized blue vitriol, 4 parts; white chalk, 1 part, and iron scales, 1 part, all in bulk; applied by horing a hole to the center of the tree near the roots and filling it with the mixture.
188,458-April 99,1878 . J. WHITEHILL. Improvement in fertilizers.
For agricultural purposes caustic lime is ground to the state of sand.
148,218-September 23, 1873. J. B. WILSON. Improvement in fertilizing soils.
Pulverized anthracite coal, either with or without manure ingredients, is used as a fertilizer; it maintaining the soil in a moist condition.
143,310-S September 30, 187s. J. J. STORER. Improvement in fertilizers from offal. A fertilizer consisting of offal, tank-stuff, hlood, etc., treated with burning gases directly in contact so as to impregnate the mass with soot and free carbon, and give a dark brown or almost black color to the product.
147,085-February 3, 1874. R. BIRDSALL. Improvement in fertilizing compounds to be used to protect trees, etc.
A mixture of 8 hushels of topsoil, I bushel of gas lime, 4 quarts of common salt, 2 quarts spirits of turpentine, 2 pounds of saltpeter, and 2 quarts of crude coal oil, with sufficient water to work into a homogeneous mass; afterwards dried.
149,243-March 31, 1874. C. PERRY. Improvement in fertilizers.
Malt; or grain, with the germinating principle destroyed, is used as a fertilizer or as an ingredient for a fertilizer and plant food.
149,944—March 31, 1874 . G. J. POPPLEIN. (Reissue: 7,296-September 5, 1876.) Improvement in fertilizers.
A fertilizer containing tripoli, or consisting of tripoli and phosphate of lime, pulverized and intimately mixed.
149,47\&-April 7, 1874. J. H. GREEN. Improvement in waterproofing compounds for guano bags, bales, etc.
A composition for waterproofing bagging consists of rubber cement, linseed oil, henzine, zinc or white lead, magnesia, umber, four hran or sawdust, litharge, and sulphur.
152,725-July 7, 1874. R. A. CHESEBROUGB. Improvement in antiseptic fertilizers.
A mixture of bonehlack and hydrocarbon oil, say in the proportions of 70 per cent and 30 per cent. It should he mixed with an equal amount of earth.
152,921-July 14, 1874. S. D. SHEPARD. Improvement in fertilizing compounds.
A composition of peat, 120 pounds: fish oil, 15 gallons; and fish liver, from which the oil has been removed, 30 gallons.
153,477-July 28, 1874. B. R. CROASDALE. Improvement in bags for phosphates, guano, etc.
Bags of a textile fabric are saturated with hydrate of lime, dried, and then immersed in oil or oil and paraffine.
154,017-August 11, 1874. B. G. CARTER. Improvement in fertilizing compounds. A mixture of Peruvian guano, 500 pounds; archilla guano, 300 pounds; dissolved bone, 200 pounds; wood ashes, 300 pounds; soda, 50 pounds; and ground plaster, 650 pounds.
155.341-September 22, 1874. G. E. E. SPARHAWK ANB M. A. BALLARD. Improvement in fertilizers.
A mixture of $2 \frac{1}{9}$ hushels each of air-slacked lime, wood ashes, hen guano, and soil; I hushel of salt, 200 pounds of gypsum, and 10 pounds of hone dust.
160,191-February 23, 1875. C. H. HOFFMANN. Improvement in fertilizing compounds.
A fertilizing liquid for germinating seeds, etc., produced by boiling a mixture of 3 gallons of liquid manure, 3 ounces of salt, and 2 ounces of saltpeter; disfolving therein three-quarters of a pound of unslacked lime; straining, and'then adding one-half ounce each of crude petroleum and sulphur balsam.
171,857-January 4, 1876. ST. J. RAVENEL. Improvement in fertilizers.
Pulverized iron pyrites is mixed with ground phosphatic material.
178,621-February 15, 1876. A. G. GRIFFITH. Improvement in fertilizers.
One hundred pounds of horse manure is mixed with 80 to 100 pounds of sulphuric acid, and then 100 pounds each of hone dust and of archilla, curacoa or Mexican guano are mixed therewith.
174,568-March 7, 1876. G. J. POPPLEIN. (Reissue: 8,187-April 16, 1878.) Improvement in fertilizers.
An intimate mixture of tripoli or infusorial earth and potash or soda.
175,846-April i1, 1876. J. B. WILSON. Improvement in composts.
A pile is formed of layers of mud, muck or marl, manure or guano, and salt, with a dilute solution of sulphuric acid poured thereover, then a layer of lime, and a coveriag of sand or earth; the mass standing for thirty days or so, when it is thoroughly decomposed.
178,194-May 30, 1876. A. W. ROWLAND. Improvement in fertilizers.
A compound of wood ashes, cottonseed, earth, manure, sulphates of magnesia of soda, and of ammonia, sodium chloride, sodium nitrate, dissolved bone, and ground plaster.
191,476-May 29, 1877, H. SELIGMAN. Improvement in deodorizing, disinfecting, and fertilizing compounds.
A compound of mineral potash salt, as carnaillit, 70 parts; gypsum or other calcareous stubstance, 25 parts; and sulphuric acid, 5 parts.
198,890-August 7, 1877. C. F. PANKNIN. Improvement in fertilizcrs.
A fertilizing compound consisting of a comminuted mixture of 95 parts of phosphate of lime and 5 parts of sulphur.
203,674-May 14, 1878. B. J. TIMBY. Improvement in compositions for protecting trecs.
A compound of 20 pounds of sulphur, 2 pounds of soot, and 900 balm-of-Gilead buds.
206,07\%-July 16, 1878. T. J. BOYKIN AND T. W. CARMER. Improvement in fertilizers.
A compound consisting of a mixture of dissolved hone, 3 hushels; ground plaster, 3 bushels; sodium nitrate and sodiam sulphate, cach 40 pounds; and ammonium sulphate, 33 pounds; to be incorporated with a suitahle base. as dry peat or muck.

208,224-September 24, 1878. A. F. CROWELL. Improvement in fevtilizers. A fertilizer consisting of the waste nitrogenous and gelatinous fuid obtained in the process of extracting oil from fish, combined with the soluble porti ns of a superphosphate, the solution heing concentrated or evaporated to dryness.
208,540-October 1, 1878. C. RICHARDSON. Improvement in fertilizers.
A fertilizer composed of hair or bristles in the form of fine powder, produced by treating them with live steam at, say, 90 pounds pressure, drying, and grinding.
209,980-November 19, 1878. A. PIRZ. Improvement in fertilizers.
A fertilizer composed of bone and artificial sulphate of lime (a waste product from the manufacture of acetic acid) in equal parts. The constituents are mixed with water and allowed to lie until the mass has become solid.
211,238—Jaruary 7, 1879. J. INGMANSON. Improvement in fertilizers.
A fertilizer composed of ground hone. 90 pounds; caustic lime, 10 pounds; mixed together with 5 pounds of oil of vitriol diluted with 5 gallons of water.
216,290-June 10, 1879. E. OSGOOD. Improvement in compounds for preventing the destruction or rolting of bags, etc.
A compound of beeswax and tallow, to which tar may be added, is applied to fertilizer hags.
232,756-September 28, 1880. H. M. POLLARD. Fertilizer.
A mixture of night soil and calcined plaster, in equal quantities, with umber in the proportion of 1 in 200 by weight, and sulphuric acid I in 25 .
238,875-November 2, 1880. J. C. PERKINS. Mixed phosphatic manure.
A mixture of sulphuric acid, water, animal charcoal, bones, marl, coprolite, sugar scum, night soil, fish or fish refuse, hard-wood charcoal, castor pomace, hydrochloric acid, sulphate of lime, ashes from calcined leather, tohacco ashes, sodium nitrate, and ammonium sulphate.
234,782-November 23, 1880. B. JOHNSON AND W. P. GIDDINGS. Fertilizer.
A mixture of ground and unhurned oyster shells, 100 pounds; common potash, 2 pounds; and carbonate of soda, 1 pound.
240,025-April 12, 1881. W. H. HUBBELL. Fertilizer.
A mixture of guano, 200 pounds; hone dust, 400 pounds; plaster, 800 pounds; and German potash, 200 pounds.
242,198-Maiy 31, 1881. W. FIELDS. Fertilizer.
A composition of limestone, 500 pounds; feldspar, 1,000 pounds; oyster shells, 300 pounds, all unburned and ground fine; cast-iron scrapings and moldings from foundry, 200 pounds; water, 9 gallons; sulphuric acid, 2 gallons; and nitric acid, 1 pint.
246,121-August 23, 1881. L. GRAF. Artificial manure.
Produced by mixing an alkaline solution of leather scrap with lime or lime salts-such as sulphate or carbonate of lime-and with phosphate of lime, and then treating the mixture with sulphuric acid.
246,242-August 23, 1881. B. TERNE. Treatment of tank waters of slaughterhouses, etc.
Concentrated tank water is comhined with sulphuric acid and used as a solvent for phosphatic suhstances in the manufacture of manures.
250,706-December 19, 1881. H. S. BRADLEY. Compost.
A mixture of 1,000 pounds each of stable manure and of swamp muck, 1 bushel of slacked lime, 8 pounds each of sulphate of ammonia and of sulphuric acid, and I pound of alum.
251,364-December 27, 1881. E. J. HOUSER. Fertilizing compound.
A mixture of́ cottonseed meal, 4 parts; dissolved hone, 3 parts; and German potash salts, 3 parts; hy weight.
251,628-December 27, 1881. G. B. OAKES. Manufacture of fish guano.
A pulverized fertilizer composed of boiled fish refuse with 5 per cent of sulphuric acid, pulverized charcoal, finely ground gypsum or mineral phosphates, and salt to prevent fermentation.
258,971-February 21, 1882. 1. BROWN. Fertilizer.
As a manure or an ingredient therefor, a solid mixture of sulphuric acid and gypsum, or peat or equivalent medium, denominated a "supérsulphate."
253,991-February 21, 1882. 1. ELSASSER. Fertilizer.
A mixture of bat guano, cottonseed meal, hone dust, and the shell known as Gnathadon cuneata, pulverized.
258,524-May 23, 1882. R. R. ZELL. Fertilizer bag.
A bag made acid proof by treatment with an aqueous solution formed of rosin soap, 100 parts by weight; alum, 5 parts; asbestos, 4 parts; and gelatine, 1 part. 269,907-September 5, 1882. W. H. HORNER AND F. HYDE. Bag for holding phosphates, elc.
Fertilizer bags are made acid proof by treatment with a composition of rosin, parafine, or mineral oil, and soap or apponified grease.
268,314-November 28, 1882. W. D. STYRON. Fertilizer compound.
A compound known as the "Norfolk Fertilizer and Jnsecticide" is a mixture of sulphur, 25 pounds; saltpeter, 40 pounds; salt, 200 pounds; kainit, 200 pounds; hone phosphate, 40 pounds; and lime, 1,495 pounds.
269,704-December 26, 1882. D. E. PAYNTER. Fertilizing compound.
A compound of calcined gypsum, water, and mineral coal dust is hurned, the ashes mixed with acidulated urine, and dried.
877,023-May 8, 1889. J. GOULD. Fertilizer.
A mixture of salicylic acid, gas lime from gas works using oyster-shell lime, animal matter (night soil or hlood), vegetable matter (sunac, seaweed, or leaves), with salt, alum, and carbolic acid.
878,383-May 29, 1889. J. R. YOUNG, JR. Fertilizer.
A mixture of night soil, bone phosphate of lime, and sulphuric acid is evaporated to dryness after the resulting chemical action is complete.
278,384-May 29, 1888. J. R. YOUNG, JR. Fertilizer.
A mixture of night soil, 1,000 pounds; dry fish scrap, 400 pounds; and sulphuric acid, 175 pounds; dried.
278,480-May 29, 1883. J. R. YOUNG, JR. Fertilizer.
A mixture of aight soil, 100 gallons; phosphatic guano, 400 pounds; and sulphuric acid, 75 pounds; evaporated to dryaess after chemical action is complete.

281,840-July 24, 188s. W. J. COURTS. Fertitizer.
A mixture of dissolved raw bone, sulphates of aluminum, of ammonium, of iron, of magnesium, and of potash, sodium nitrate, kainit, and humus or rich dirt, in certain specified proportions.
289,508-August 14, 1888. T. WELLS. Ferilizer.
A mixture of carbonate of ammonia, 8 pounds; carbonate of soda, 12 pounds; salt, 50 pounds; wood ashes, 3 bushels; and stable manure, 20 bushels.
285, 555-September 25, 1883. J. B. BECK. Fertilizer.
A mixture of bitter salt, limestone, plaster, sodium sulphate, ammouium sulphate, and potash.
290,689-December 18, 1889. A. EDWARDS. Fertilizer for tobacco crops.
A comminuted mixture of fresh horse manure, I ton, blood, 100 pounds or more; and potash, 100 pounds.
290,829-December 95, 1888. W. R. WILKINSON. Fentilizer.
Ai mixture of bone ash, 50 per cent; gypsum, 10 per cent; sulphate of iron, 5 per cent; sulphate of potash, $22_{\frac{1}{\Delta}}^{\frac{1}{8}}$ per cent; and dried blood, $12 \frac{1}{\frac{1}{3}}$ per cent.
292,470-January 29, 1884. D. R. CASTLEMAN. Fertilizer.
A mixture of pulverized tobacco stems and prepared phosphate, in equal proportions.
298,989-May 20, 1884. B. C. BR1GGS. Fertilizer.
A mixture of 1 barrel each of bone meal and plaster; 2 barrels each of ashes, hen manure or guano, muck, and urine, and I bushel of salt.
307,718-November 4, 1884. L. HAAS. Fertilizer.
A mixture of furnace slag end sulphate of ammonia composed of liquid ammonia and sulphuric acid, to which is added limestone or oyster shells and ground bone, sodium nitrate, sodium chloride, sodium sulphate, and potash, with plaster.
308,597-November 25, 1884. J. R. YOUNG, JR. Fertilizer.
A mixture of night soil, phosphate of lime, sulphuric acid, nitrogen componnd (as ammonia), and potash.
s17,010-May 5, 1885. W. S. P1ERCE. Phosphate fertilizer.
A fertilizer is made from the insoluble phosphates of alnmina, iron, lime, and other bases, by drying and pulverizing the raw material, mixing with it a certain quantity of sulphate of ammonia-sufficient to prevent the fertilizer from absorbing moisture-treating the mixture with strong sulphuric acid, and drying.
518,571-May 19, 1885. L. HAAS. Fertilizer.
A compound of furnace slag, oyster shells, charcoal, tan-bark waste, tobacco stems, broom-corn seed meal; sodinm nitrate, sulphate, and chloride; diluted sulphuric acid or ammonia, plaster, ashes, phosphatic iron ores, phosphatic rock, ground slag, and kainit.
337,256-September 29, 1885. L. HAAS. Fertilizer.
A fertilizer and insect preventive, consisting of furnace slag, 70 per cent; salt, 10 per cent; ashes, 10 per cent; charcoal, 10 per cent; and water, with 5 per cent of acid.
$330,075-$ November 10,1885 . A. E. WEMPLE. Fertilizer.
A mixture of bone flowr, 50 per cent; aulphate of ammonia, 15 per cent; sodium nitrate, 15 per cent; potassium chloride, 5 per cent; magnesium sulphate, 5 per cent; and nitrogenous matter, as dried blood, 10 per cent.
s41,968-May 18, 1886. J. VAN RUYMBEKE. Fertilizer.
A nonviscid and nondeliqnescent fertilizer, consisting of concentrated and partially decomposed tank wastea, containing carbolic acid and otber phenols without the addition or artificial mixture of said phenols; the product of No. 342,238 .
s45,507-July 18, 1886. W. W. HICKS. Treatment of humus and muck.
A mixture of calcined humus and muck, which bas been changed and sweetened by the beat and gases of the said calcining.
546,024-July 20, 1886. H. H. COLQUITT. Fertilizer.
A mixture of the raw kernels of cottonseed with phosphoric rock or phosphate of lime.
349,289-September 14, 1886. P. VINSON. Combined fertilizer and insecticide.
A mixture of cattle dung, horse dung, sheep dung, fowl dung, blue vitriol, saltpeter, slacked lime, leached ashes, cayenne pepper, black pepper, ginger, mustard seed, and garlic.
355,210-November 28, 1886. D. W. DUDLEY. Fertilizer.
Equal quantities of bone meal and wood ashes are mixed and saturated with water and allowed to stand for about three weeks, then lime is slacked in brine and added to the mixture, and gypsum and salt in equal quantities are added to the mass.
567,732-August 2,1887 . J. VAN RUYMBEKE. Fertilizer.
Nitrogenous fertilizing material, consisting of the undecomposed coagulated albuminoids of concentrated tank waters freed from undue deliquescence and viscidity produced by rendering the gelatinous substances insoluble, as by the addition of sulphate of iron.
371,650-October 18, 1887. P. B. ROSE. Tank-waste fertilizer.
A fertilizer in a dry form consisting of tank waste incorporated with cellulose or lignine vegetable material, or pannch material taken from slaughtered animals.
372,087-October 25, 1887. J. REESE. Phosphatic fertilizer.
A fertilizer composed essentially of pulverized calcareons phosphatic basic slag; pulverized to an impalpable powder.
s77,084-January 31, 1888. G. H. MURRAY. Fertilizing composition.
A compound of one-half pnlverized tan bark, one-quarter distillery slop or A compound of one-half pulverized tan bark, one-quarter and and and and potash.
\$78,688-February 28, 1888. P. C. JENSEN. Fertilizer.
Tankage or tank-water residue is dried at a low temperature, broken up and mixed with unslacked lime, and the mixture thoroughly pulverized.
382,604-May 8, 1888. S. L. GOODALE. Fertilizer.
Crude mineral containing hydrated aluminic and ferric phosphates is pulverized and mixed with carbonaceous matter wet with sulphuric acid, and the ized and mixed with carbonaceous mated to a degree aufficient to expel the constituent water contained in the bydrated phosphate.
s96,974-January 15, 1889. H. ENDEMANN. Fertilizer.
A fertilizer produced from tobacco, and having certain specified characteristics; product of process No. 404,348.
s97,056-January 29, 1889. P. HOGAN. Fertilizer.
Composed of dissolved lignine from vegetable substances, and alkaline saits from the digesters in the manufacture of chemical fiber or similar works, in combination with peat, clay, lime, carth, or other absorbent matter.
407, 240—July 16, 1889. N. B. POWTER. Phosphatic fcrtilizer.
A dry granular compound composed of phosphatic rock or earth containing over 10 per cent of alumina or iron, 1,000 pounds; sulphuric acid $\left(60^{\circ}\right), 500$ overnds; and tank water containing about 20 per cent of animal matter, 750 pounds.
407,241-July 16, 1889. Nं. B. POWTER. Phosphatic fertilizer.
A dry fertilizing composition composed of Cayman Islands phosphatic rock, 800 pounds; 600 pounds of animal matter combined with not more than the same amount of water; 550 pounds of aulphuric acid (60°), and 50 pounds of carbonate of lime.
408, 491-August 6, 1889. J. A. LIGHTHALL. Fertilizer.
Tobacco stems reduced to dry, grannlar charcoal.
415,246-November 19, 1889. J. J. HANSELMAN. Liquid manure.
It consists of water, sulphurons acid, soap, salt. lime, isinglass, spirits of ammonia, and the soluble parts of cow duug and guano.
489,091-July 15, 1890. J. D. SIMMONS. Phosphatic fertilizer.
A mixture of wood ashes, 6 parts; pbosphate of lime, 9 parts; mnriate of potash, 2 parts; pulverized sulphur, 2 parts; and sodinm nitrate, 1 part; all by weight.
454,24s-August 12, 1890. L. J. CARLILE AND G. B. RUMPH. Combined fertilizer and insecticide.
A composition of refuse tobacco, bran, cottonseed meal, paris green, powdered hellebore, arsenious oxide, and India berries (cocculus indicus).
488,859-October 21, 1890. J. PATTERSON. Ferlilizer.
A mixture of caustic lime-unslacked when introduced-gypsum, rotten rock, ${ }^{*}$ common bog, sulphate of iron, salt, and water.
466,088-February 10, 1891. J. VAN RUYMBEKE. Nitrogenous fertilizer.
A fertilizing material consisting of "stick" and a soluble salt of iron or alumina made basic by the addition of lime thereto.
448,987-March 17, 1891. J. VAN RUYMBEKE. Nitrogenous jertilizer.
A dry pulverulent and practically nondeliquescent material consisting of a mixture of liquid stick, 1 ton, and ground, dried animal matter, 600 to 800 pounds, subjected to a heat not exceeding $380^{\circ} \mathrm{F}$.
450,25S-April 14, 1891. J. REESE. Ammoniated phosphate.
A fertilizer composed essentially of pulverized, calcareous, phosphatic, basic slag and salts of ammonia, such as sulphate of ammonia.
450,854-April 14, 1891. J. REESE. Phosphatic fertilizer.
A fertilizer composed essentially of pulverized, calcareous, phosphatic, basic slag and potassic material such as kainit, sulphate of potash, or muriate of potash.
450,255-April 14, 1891. J. REESE. Phosphatic fertilizer.
A mixture of pulverized, calcareous, phosphatic, basic slag, potash, and ammonia (such as the sulphate).
450,581-April 14, 1891. J. REESE. Phosphatic fertilizer.
A mixture of muriate of potash and pulverized, calcareous, phosphatic, basic slag.
465,7ヶ9-June 9, 1891. J. VAN RUYMBEKE. Phosphatic fertilizer.
A fertilizer consisting of a metaphosphate prepared by submitting acidified rock to the action of a high degree of heat (No.446,(187), and stick loaded with about 15 per cent of carbonate of lime, mixed and allowed to stand until granulated.
45s,750-June 9, 1891. J. VAN RUYMBEKE. Phosphatic fertilizer.
A mixture of iron or alumina acid phosphates and stick, subjected to the action of beat at or above $212^{\circ} \mathrm{F}$. until it assumes a black color, when it will granulate.
462,476-November 3, 1891. C. W. DOUGHTY. Fertilizer.
A compound of gronnd and unburnt but dried carbonate of lime and human feces in equal proportions, and dried but unburnt gypsum in the proportion of 10 per cent of the carbonate of lime.
484,681-October 18, 1892. J. J. DUNNE. Nilrogenous fertilizer and process of making the same.
A fertilizing material, consisting of a bulky, flocculent, pulverulent, impalpable precipitate composed of coagulated nitrogenous albuminoids of tank waters combined with phosphatic material insoluble in water, but soluble in citrate of ammonia; produced by heating tank waters with phospartes and an acid, then reating with a neutralizing agent, separating the precipitated matter, and drying.
484,679-October 18, 1892. J. D. SIMMONS. Fertilizing composition.
A mixture of sulphuret of iron, 2 parts; sulphate of potasb, 2 parts; wood asbes, 6 parts; and phosphate of lime, 10 parts, all by weight.
508,\&20-November 7, 1898. C. J. GREENSTREET. Nilrogenous fertilizer and process of making same.
A soluble salt of manganese-as black oxide of manganese-with or without the addition of basic ferric sulphate, is mixed with "stick" and evaporated to dryness.
617,486-April 3, 1894. S. B. SCHENCK. Fertilizer.
A fertilizer produced by boiling skins or their products or other like nitrogenous materials in sulphuric acid, to produce a jelly-like mass, and adding night soil, boneblack, and ground tobacco.
517,661-April 9,1894 . N. B. POWTER. Phosphat:c fertilizer.
A dry, odorless fertilizing compound, consisting of substantially pure phosphate of alumina containing insoluble phosphoric acid mixed with slaughter honse or other refuse, without the addition of acid; the product of No. 517,662 .
592,561-July \&, 1894. E. GULICK. Mineral fertilizer.
A mixture of aluminous shale, 80 per cent, and wood cbarcoal, 20 per cent.

525,242-August 28, 1894. J. VAN RUYMBEKE. Coagulant.
A coagulant, formed by adding a boiling solution of an alkaline bichromate to a mixture of copperas and sulphuric acid.
536,285-March 26, 1895. J. W. HICKMAN. Fertilizer.
Composed of muriate of potash, black hellebore, sodium nitrate, paris green, superphosphate of lime, bydrocyanic acid, and ground bone.
537,822-April 23, 1895. C. J. GREENSTREET. Fertilizer and process of making
same.
A nitrogenous fertilizer composed of solids of tank water combined with a
soluble silicate, produced by adding an agent capable of neutralizing the silicate soluble silicate, produced by adding an agent capable of neutralizing the situble silicate of an alkali and expelling the surplus water, and drying.
589,747-May 21, 1895. J. M. MCCANDLESS AND J. F. AĹLISON. Fertilizer compound.
A mixtnre of an acid phosphate, 1,200 pounds; dried blood, 100 pounds; cottonseed meal, 250 pounds; muriate of potash, 50 pounds; and ground graphitic seed meal, 250 pounds.
550,545-November 26, 1895. C. H. THOMPSON. Fertilizing material and process of making same.
Peat moss, or like fibrous or spongy material, is boiled in a weak solution of phosphoric acid together with a fertilizing composition-as soot, bone meal, and gypsum-and then strained and partially fermented.
576,848-February 9, 1897. P. HUFF. Fertilizer.
A composition, for protecting and fertilizing corn, of coal tar, brimstone, soft soap, saltpeter, lime, and plaster.
589,197-August 31, 1897. J. E. STEAD. Phosphate and method of making same.
A silico-phosphate, readily soluble in solvents existing in the soil, of the formula: $(\mathrm{CaO})_{4} \mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{CaO} . \mathrm{SiO}_{2}=\mathrm{Ca}_{5} \mathrm{P}_{2} \mathrm{SiO}_{12}$; capable of isolation in characteristic crystals in the form of a double salt; produced by melting normally insoluble phosphates with silicious and calcareous matter in proportion to yield com-
ponnds containing the ratio of 310 of tribasic phosphate of lime to between 58 pounds containing the ratio of 3
and 116 of monosilicate of lime.
599,056-February 15, 1898. V. DOANE. Insecticide.
A composition of kainite, potassinm nitrate, and white arsenic, the kainite being in excess; for destroying cranberry insects.
601,089—March 22,1898 . J. G. WIBORGH. Phosphate and method of making same. A tetra-calcium-sodium (or potassium) phosphate, readily soluble in citrate of ammonia; produced by heating apatite to a red or yellow heat with matter containing sodium (or potassimm) in proportion to yield a compound containing the ratio of abont 426 of phosphoric acid to 560 of oxide of calcium, and from about 124 to 188 of oxide of sodium (or potassium).
619,68s-February 14, 1899. C. H. THOMPSON. Fevtilizer and method af making same.
A fermented fertilized material (which will serve as a substitute for eartb), prodnced by dissolving phosphoric acid, potassium carbonate, and sodium nitrate in water; adding thereto a mixture of soot, gypsum, and bone meal
with water; boiling therein a spongy or fibrous material as peat moss; strainwith water; boiling therein a spongy or fibrous material as peat moss; strain-
ing; adding yeast and sugar or saccharine matter, and fermenting the product. 635,628-October 24, 1899. W. WARING AND J. E. BRECKENRIDGE. Acid-
praof bag for fertilizers. proof bag for fertilizers.
The bags are treated with an acetate, preferably acetate of lime.
639,805-December 26, 1899. J. H. BREWER. Fertilizing compound.
A solution of water, saltpeter, sal soda, blnestone, nitrate of ammonia, and potash, is sprinkled on stable manure, and then wood ashes, salt, Iime, phosphatc, cottonseed meats, and kainit is mixed therewith.
649,941-May 22,1900 . H. MEHNER. Artificial fertilizer.
A fertilizer containing as an essential ingredient silicon nitrides, which form ammonia with the acid reagents in the soil.

PROCESSES.

3,189—June 24, 1843. C. BAER AND J. GOULIART. Improvement in making
manure. manure.
Vegetable matter is formed into heaps, without previous immersion in lye (as according to the Jauffret method), and subsequently the Iyc is poured onto it.
12,480-March 6,1855 . R. C. DEMOLON AND G. A. C. THURNEYSSEN. Improvement in treating fishfor manure and oil.
It is reduced to a dry powder, by steaming, expressing the oil, grating, desiccating, and pulverizing.
16,111-November 25, 1856. C. BICKELL. Process of treating feldopar for a manure.
Feldspar, either potash or soda feldspar, is decomposed by heating it with lime and phosphate of lime, to obtain potash or soda, either in the caustic or carbonated state, or for the purpose of obtaining a fertilizer.
16,882-March 24, 1857. L. REID. Improvement in processes for preparing ferti-
tizers.
The liquid matter obtained from the treatment of animal matter with bigh pressure steam, after separation of the fat and pulpy matter, is treated with sulphuric acid, and neutralized with bone dust; then the solid nfatter properly ground is mixed therewith together with pulverized bones and dried clay, and
the mass dried and ground. the mass dried and ground.
17,2s7-May 5, 1857. C. STEARNS. Improved process of preparing green-sand marl as a fertuzer of lands.
The sand is washed with agitation to separate useless earthy matters, then disintegrated, with or without the admixtnre of animal matter, and then ammonia is added, in the form of ammonia sulphate or otherwise.
25,772-October 11, 1859. D. STEWART. Improved method of preparing bones for ng purposes.
Boncs are stratified in a heap along with animal, vegetable, and mineral matter, to effect decomposition, the order of stratification being old plaster; stable manure, etc.; bones, blood, ete.; stable mannre, etc.; old plaster.
26,548-December 20, 1859. W. D. HALL. Improvement in fertilizers.
Fish is boiled in fresh water, drained, sprinkled with from 1 to 3 per cent of sulphuric acid, mixed, and dried.

35,417-May 27, 1862. L. HARPER. Improvement in ferlilizers.
Phosphatic gnano, which is deficient in soluble matter, is spread in moistened layers togetaer with layers of nitrogenous matter and layers of sulpaate of lime, sprinkled with sulphuric acid, and exposed to the sun, with turnings of the material.
s8,040-Mfarch 31, 186s. L. D. GALE. Improvement in treating phosphatic guanos.
Animal matter is treated with acid, or its equivalent, to separate the nitrogenous matter from the oil; and a concentrated manure is formed by mixing animal matter so treated with pulverized gypsum and then with guano.
41,428-February 2, 1864. L. HARPER. Improvement in restoring phosphatic guano.
A portion of the phosphatic guano is nitrogenizeu by saturating it with animal broth or juice or urine, and dried; another portion is treated with sulphuric acid; and nitrogenons animal matter is treated with alkaline salts, sulphate of iron, and magnesium chloride; the three masses a
snbjected to fermenting and heating for a month.
41,668-February 16, 1864. A. A. HAYES. Improvement in restoring deammoniated guano.
Common salt is mixed with the phosphate or gnano and oil of vitriol diluted with water, animal secretion, or ammonia water. After the moist mixture to supply the required amount of ammonia and allowed to ferment until putrefaction ceases.
42,006-March 22, 1864. G. A. LIEBIG. Improvement in treating and preparing Navassa guano.
The larger particles, available for fertilizers, are separated out, and the finer material containing peroxide of iron, organic and indefined material, is used for paint and other uses.
43,466-July 18, 1864. W. ADAMSON. Improved process of treating hair.
Hair of hogs and other animals is dried and deodorized by subjecting it to the direct action of the products cf combustion of coal or other fuel.
45,961-January 17, 1865. G. A. LIEBIG AND E. K. COOPER. Improved process for manufacturing fertilizing phosphates.
Navassa guano or other substances containing phosphate of iron or of alumina are made available for agricultural purposes by, first, treating with caustic lime or carbonate or sulphate of lime, giving a phosphate of lime convertible into
superphosphate with sulphuric acid; second, treating with caustic or carbonate or sulphate of soda or potash; third, treating with silicic acid.
46,918-February 14, 1865. W. ADAMSON. (Reissues; 2,114-November 98, 1865; Div. A 8,741 (process); Div. B 8,74\% (product), June 10, 1879.) Improved method
of treating offal. of treating offal.
Animal offal is drained and dried by subjecting it to the direct action of the products of combustion, in a chamber, at one operation.
46,700-March 7, 1865. R. B. POTTS. Improved process for treating Navassa guano.
Superphosphate of lime is made from Navassa guano or all guano containing more then 6 per cent of iron and alumina, by sprinkling it with the requisite quantity of sulphuric acid while the mass is continually agitated.
47,610-May 9, 1865. E. P. BAUGH. Improved mode of manufacturing superphos-
phate of lime. phate of lime.
Bones and other offal or guano are fed into a closed or nearly closed tank, a long with a stream of snlphuric acid, and therein thoroughly mixed; the product heing continuously discharged from the bottom.
47,611-May 9, 1865. E. P. BAUGH. Improvcd method of treating manure.
Sewage, guano, etc., is dried by passing the products of combirstion from a furnace through the material; the same being fed by traveling aprons across the current of hot gases.
47,941-May 30, 1865. R. B. FITTS. Improved process for treating and compounding marl.
Marl is treated with nlght soil in combination with sulphuric acid, and to the product there is added sait cake, gas lime, and animal charcoal.
49,831-September 5, 1865. G. A. LIEBIG. Improvement in the manufacture of superphosphates.
Sulphurous acid, or muriatic acid, or sodium chloride is used as a substitute for sulphuric acid in the production of a superphosplate from Navassa guano or other phosphatic compound.
49,891-September 12, 1865. F. KLETI. Improvement in the manufacture of fertilzers.
A mixture of feldspar, carbonate or hydrate of lime, fluoride of calcinm, and phosphate of lime or iron is calcined at a red heat for about five hours, using 2 parts of the carbonate or hydrate of lime and 1 part of the phosphate of lime or iron for every 1 part of the feldspar and 2 parts of fluoride of calcium for every 1 part of alkali contained in the mineral.
52,869-February 27, 1866. A. AND E. LISTER. Improvement in deodorizing offal
Hot air and gases are forced into closed offal-drying chambers, aud at the same time the gases, vapors, and exbalations are withdrawn therefrom and passed
54,635-May 8, 1866. J. WISTER. Improved mode of grinding bonesfor manure, etc. Hard plaster is mlxed with bones in grinding to facilitate the process and prevent gumming of the mill
59,978-November 27, 1866 . A. DE FIGANIERE. Improvement in the manufacture
of super-phosphates of lime. of super-phosphates of lime.
The powdered guano is brought into contact with a surface wet with sulphuric acid, as the surface of a revolving cylinder.
60,948-January 1, 1867. A. SMITH. Improved fertilizer.
Boiled animal matter is subjected to pressure, as in a hydraulic press, to preserve the flesby matter from decomposition.
68,760-March 12, 1867. G. A. LEINAU. Improvement in preparing fcrtilizers.
Sod is banked up with quicklime, and after standing for some time blood, urine, domestic guano, and land plaster are successively applied or spread on the bank, and then spent charconl is worked into the mass.
70,671-November 5,1867 . W. DE ZENG. Improvement in the preparation of fer-
tuizers. tuzers.
Finely pulverized slags of redncing and smelting furnaces are used in combination with acids and alkalis, as the waste acids of dyeworks, and also with urine. farm-house manure and otber ammoniacal compounds.

71,689-December 3, 1867. J, W. BITNER. Improvement in fertilizers.
Manure is damp-rotted, then dried and pulverized.
75,325-March 10, 1868. G. F. WILSON. Improvement in the manufacture of phosphatic fertilizers.
A mixture of bones, bone ash or bone coal, and hot viscid niter or salt cake is treated in a revolving cylinder with hot water and steam under pressure.
75,3e6-March 10, 1868. G. F. WILSON. Improvement in the preparation of bones for the manufacture of pho6phoric acid and phosphates.
To remove the cyanides, sulphides, and other organic compounds from bones which have been distilled according to No. 75,329. The bone-black material is heated in a muffle furuace and the material turned over from time to time until it assumes a uniform gray tint.
75,927-March 10, 1868. G. F. WILSON. Improvement in the manufacture of phosphates for agricullural purposes.
Bones are treated with water and oll of vitriol in a vat having a steam heating coil until the whole mass is reduced nearly or quite to dryness.
78,061-May 19, 1868. J. COMMINS. Improved mode of treating mineral phasphates for the manufacture of fertilizers.
Mineral or earthy or natural phosphates are heated and plunged into gas liquor, combined with sulphuric acid or other acid or salt. The phosphates may be first treated with a solution of sodium chloride.
78,730—June 9, 1868. L. S. FALES. Improvement in the manufacture of fertilizers. Bones, blood, and highlynitrogenous material are treated with the waste acid from oil refineries and the vapors from waste ammoniacal water of gas works, and the mass reduced to a pasty consistency and cooled to a powder. This is mixed with blood digested with sulphuric acid and peat.
79,160-June 2s, 1868. D. A. TER HOEVEN. (Reissue: 4,052 and 4,05s-June 28, 1870). Improvement in the manufacture of fertilizers.

- Horns, hoofs, or other animal matter of an equivalent character are steamed, dried, and crushed or ground.
88,2ZS—March 2s, 1869. A. SMITH. Improved fertilizer.
Refuse leather is steamed at about 75 pounds pressure for four to eight hours, dried and pulverized without the use of chemical agents. It may then be mixed with a phosphate.
$90,588-$ May 18, 1869. G. F. WILSON. Improved process of treating offal-gelatine and serap for the manufacture of feritizers.
offal-gelatine and scrap is treated with acid phosphate of lime concentrated and dried, and mixed with bone sulphate of lime, dried peat, gypsum, clay, etc. 90,967-May 25, 1869. W. LALOR. Improved fertilizer.
The refuse acid of petroleum-oil refineries is used instead of sulphuric acid in the conversion of bone into superphosphates.
92,744-Juiy 20, 1869. J. G. NICKERSON. Improved fertilizer from seaweed.
Seaweed is cut into small pieces, dried, mixed with any of the fertilizing ingredients, and ground.
99,924-February 15, 1870. O. LUGO. Improvement in the manufacture of fertilizers and in extracting oils and fats.
Fish, offal, blood, and other animal matter is treated with sulphurous acid or with nitrous fumes and sulphurous acid, separate or in connection with hot air, steam, or gases of combustion.
100,457 -March 1, 18\%0. C. U. SHEPARD, JR. Improvement in preparing ammoniated sulphuric acid for the manufacture of fertitizers.
Phosphatic material is treated with ammoniated sulphuric acid for the production of an ammoniated superphosphate, said acid being produced by treating ammoniacal water with lime or other liberating material, or by the liberation of ammonia from boneblack or other ammoniacal matter, and the absorption of the vapor by sulphuric acid in such proportions as to leave a part of the sulphuric acid uncombined.
102,689-May 5, 1870. O. LUGO. Improvement in the manufacture of fertilizers and oil from $\mathrm{flsh}_{\mathrm{s}}$.
Fish is boiled, steamed, or cooked in acid or acid-salt solution to retaind and bind the nitrogenous substances.
104,S27-June 14, 1870. O. LUGO. Improvement in manufaclure of fertilizers from flsh, etc.
Fish liquor is treated with sulphuric acid, acid sulphates, hydrochloric acid, or pyroligneous acid, and may then be concentrated, either to dryness, forming a highly nitrogenized product, or partially concentrated and mixed with fish scrap or pomace previous to desiccation.
105,288-July 12, 1870. E. WHITLEY. Improvement in the manufacture of fertilizers.
Vegetable matter is burned under a covering of earth, so that the latter is impregnated with the gaseons products of comhustion, and the earth and ashes are then mixed.
105,519-July 12, 1870. A. DUVALL. Improvement in trealing vitriolized phosphates.
Pulverized crude phosphate mixed with sulphuric acid, in a semiliquid state, is run into a large bin, the heat generated in the mass keeping it in a state water. The side of the bin is afterwards removed and the mass broken up.
108,909-November 1, 1870. C. P. HOUGHTON. Improvement in the manufacture of fertilizers.
Pulverized crude marl is treated with a solution of soda-ash, niter, and salt to correct its caustic qualities, and may be mixed with bones and Peruvian guano. 111,734-February 14, 1871. L. S. FALES. Improvement in treating blood for the manufacture of fertilizers.
Blood is treated with lime, soda, or potash, and acids and afterwards subjected to heat and agitation to evaporate its water.
111,851-February 14, 1871. W. B. JOHNS. Improvement in lreating bones, horns, hoofs, etc., for manufacture of fertilizers.
They are desiccated and rendered friahle by treating with steam in contact
therewith, at the commencement of the operation, and then subjected to heat evolved from steam not in contact; in one continuous operation and in one vessel or apparatus.
111,910-February 21, 1871. J. J. CRAVEN. Improvement in lreating blood for the manufacture of fertilizers and ammoniacal salts.
Dried salt cake-either the bisulphate or binitrate of soda-is mixed with
blood and submitted to heat sufficient to dissolve the salt.

118, 416-April 4, 1871. D. FORBES AND A. P. PRICE. Inpprovement in the treatment of sewage and the manufacture of fertilizers.
Natural phosphates of alumina are treated with the sulphuric acid or hydrochloric acid, or mixtures of the same, either with or without a base such as lime, and sewage is then treated with the product.
114,69s-May 9, 1871. G. T. LEWIS. Improvement in grinding phosphate substances.
Mineral phosphates are ground with water, instead of grinding dry, to reduce them to extremely fine powder.
119,000-September 19, 1871. W. ADAMSON AND C. F. A. SIMONIN. (Reissue: Div. A, 5610; Div. B, 5611; Div. C, $5612-$ October 21, 1878.) Improvement in treating offal, flesh, entrails, etc., for preservation of manure, etc.
Animal oils and fats are extracted by means of hydrocarbon vapors in a closed vessel; the residue, deprived of its fatty constituents and retaining the ammonia, constitutes a fertilizer.
122,273—December 26, 1871. W. H. McNEILL. Improvement in deodorizing the gases from lard boiling, etc.
The vapors are subjected to the action of a disinfectant previous to passing to the condenser.
122,773-January 16, 1872. J. A. MANNING. Improvement in processes for manufacturing fertilizers.
The contents of vaults and cess pits is treated with 5 per cent of sulphuric acid, and then evaporated in tanks. Products of combnstion passing over or in contact with the material are then forced, with the vapors, into a condenser; the carbureted hydrogen passing to a purifier and thence to a gas holder; the weak solution of ammonia treated for the manufacture of sulphate of ammonia; and the dry product for a fertilizer.
123,744-February 13. 1872. B. TANNER. Improvement in the manufacture of superphosphates of lime.
Slowly soluble superphosphate of lime; produced by heating a mixture of sulphate of lime and phosphate of soda or of potash, with or without water; or by treating lime or sulphate of lime with any of the forms of phosphate of soda or of potash; or with phosphoric acid and sodium or potassium chloride, or equivalent agents. Soda or potash in a caustic condition, or in combination with an acid, are produced as by-products.
124,041-February 27, 187\%. J. E. DOTCH. Improvement in deodorizing and fertilizing materials.
Pulverized clay, argillaceous earth, and clay marl is treated with sulphomuriatic acid and then mixed with night soil, etc. Clay thus treated may be mixed with coal ashes, coke, or gas-house silt, as a disinfecting substitute for dry earth.
124,901-March 26, 1872. J. M. LOEWENSTEIN. Improvement in deodorizing and fertilizing compounds.
Dilute sulphuric acid is nentralized with caustic or carbonate of lime, and then equal quantities of peat, charcoal, sand, carbolic acid, clay, common salt, and river sediment are added; the composition to be used in a dry state to deodorize night soil.
124,964-March 26 , 187 2. M. B. MANWARING AND R. DE WITT BIRCH. Improvement in the manufacture of potash and phosphate of lime.
See Group III, Potash.
125,017-March 26, 1872. S. BROW N. Improvement in preparing fertilizing materials from earth, etc.
A fertilizer composed of burnt earth and wood ashes, prepared by charging and hurning a kiln with alternate layers of wood and earth.
125,074-March 26, 1872. H. H. PARISE. Improvement in treating sewage for fertilizers, etc.
A mixture of retorted charcoal (the product of pyroligneous-acid works), 1 part, and slacked lime, 2 parts, is mixed with sewage to deodorize and convert into manure.
125,112-March 26, 187 2. M. J. STEIN. Improvement in rendering animal matters and drying and pulverizing the same.
A fertilizer derived from the treatment of animal matters in a confined condition, the material not coming in contact with the air at any stage of the process. 125,343-April 2, 1872. A. SMITH. Improvement in apparatus for pulverizing animal matters for fertilizers.
Animal matter is desiccated and pulverized by triturating the same in a hot chamber in a revolving cylinder, mixed with hard substances, as pieces of iron or stones.
125,61s-April 9, 1872. N. A. PRATT. Improvement in treating phosphates of lime
for the manufacture of fertilizers. for the manufacture of fertilizers.
Crude phosphates treated with sulphuric acid are at once subjected to hydraulic or other pressure to extract the soluble phosphates. The liquor, and a thin smooth paste of lime, are heated to ahout $180^{\circ} \mathrm{F}$. and one poured into the other in such proportions as to neutralize, and boiled and stirred until the phosphate of lime is precipitated, when it is compressed into cakes.
126,904-May 21, 1872. N. A. PRATT AND G. T. LEWIS. Improvement in the treatment of phosphates for the manufacture of fertilizers, etc.
Crude phosphate is ground with acid and water, and the product pressed in bags, to obtain the phosphoric extract, which extract is then ground with lime, magnesia, or other base, or their salts to produce an artificial phosphate.
127,670-June 4, 187\%. M. J. STEIN. Improvment in drying and deodorizing animal matters, oils, etc.
The vapors and gases are exhausted from the heating chamber or vessel as fast as generated.
128,454-July 2, 1872. H. C. BABCOCK. Improvement in baling manures.
It is formed and pressed into bales, either with or without embedded handles.
129,517-July 16, 1872. E. P. AND D. BAUGH. Improvement in the trealment of horns, hoofs, and other organic matter.
Exhaust steam is passed through a mass of horns, hoofs, hones, or other organic offal preparatory to grinding (steam, under pressure, having a tendency to force in the glutinous constituents and obstruct the trituration).
128,752—July 9, 1872. N. A. PRATT AND G. T. LEWIS. Improvement in treating phosphatic rock, etc.
The phosphatic extract of No. 126,904 is evaporated to dryness, alone or mixed with salts of soda, potash, magnesia, or ammonia; or such mixtures are calcined to produce compound phosphates of lime and of the alkalis. It may he mixed with other fertilizing components.

150,616-August 20, 1872. K. C. BABCOCK. Improvement in preparing manure for transportation, storage, or market.
The straw is eliminated and the residuum is compressed into a bale, and may be covered with a coating of clay, cement, or the like.
131,131-September 3, 1872. J. J. STORER. (Reissue: 5,70s-December 2s, 1873.) Improvement in processes and apparatus for deodorizing and destroying the gases from offal-treating establishments.
The gases are deodorized by passing them through an independently heated furnace, flue, or other heat-radiating chamber; also by contact with burning furnace, flue, or other heat-radiating chamber; also by
coke, charcoal, or coal, or a blast of fine pnlverized fuel.
132,498-October 22, 1872. J. J. STORER. Improvement in treating offal so as to produce fertilizers and destroy offensive gases and vapors.
Animal refuse is treated in a reverberatory furnace, the steam being drawn Animal refuse is treated in a reverberatory furnace, the steam being drawn
off through hot-wall flues and passed through burning fnel, or into the fireoff through ho
139,404-November 26, 187\%. L. W. BOYNTON. Impravement in preparing manures for transportation.
Peat is mixed with manure and compressed to concentrate and exclude the atmosphere, and may then receive a waterproofing coat of soft clay.
135,383-January 28, 1879. J. J. STORER. Improvement in treating offal and manufocturing fertilizers.
Offal and blood are dried in a cylinder by passing the flame of pulverized fuel and other products of combustion through the cylinder directly over or in conand other products of with the material.
185,995-February 18, 1873. J. MCDOUGALL. Improvement in feriilizerz.
Ammonia gases or vapors arising from the destructive distillation of carbonaceons or ammoniacal substances or from gas liquor are caused to be absorbed by an acid phosphate of lime, the latter being made porous, if need be, by an product to render the phosphate again soluble.
186,086-February 18, 18\%s. W. D. CRAVEN. Improvement in preparing bloodfor fertilizers.
Blood is injected or introduced directly upon the beated walls of a vessel or chamber, whereby immediate dehydration is prodnced.
187,969-April 15, 187s. E. C. C. STANFORD. Improvement in deodorizing animat matters for fertilizers, etc.
Solid or liquid matter, as excreta. is deodorized by subjecting the same to the action of granulated charcoal (preferably seaweed charcoal), alone or mixed with earthy matter; the charcoal being recovered and revivified.
198,250-April 29, 1873. F. HILLE. Improvement in the treatmentof sewage.
Sewage is treated with lime, chloride of zinc, and the chloride of magnesium, and the solid and liquid constituents separated by deposition and filtration. The precipitat
140,391-July 1, 187s. J. TURNER. (Reissue: 5845-April 21, 1874.) Improvement in treating offal and manufacturing gas.
The gases are separated from the moisture and carbureted.
140,559-July 1, 187s. B. TANNER. Improvement in the manufacture of superphosphate of time.
A chemical examination is made of a calcic phosphate solution, and if the phosphoric acid and lime or calcium are present in the proportion of 71 parts of phosphoric acid for 28 parts of lime or 20 parts of calcium, it is evaporated to dryness and the heat maintained until the final decomposition is complete. If the lime or calcium is in excess the solution is treated with snlphuric or oxalic acid in a specified manner, or phosphoric acid is added to balance the lime; if phosphoric acid is in excess, lime in proper proportion is added.
141,848-August 19, 1873. A. F. ANDREWS. Improvement in fertilizers.
Tank stuff or animal matter is mixed with abont one-third the quantity of nnslacked lime, either with or without the addition of sodinm chloride or calcium chloride, and subjected to agitation in a mixer, which is externally heated, and reduced to a dry condition.
141,859-August 19, 1879. C. C. COLE. Improvement in drying and disintegrating animal matters.
Blood and animal matter ia mixed with from 5 to 10 per cent of dry quicklime and partially dried, and then from 2 to 5 per cent of sulphuric acid is added and the drying finished.
144,877-November 25, 1873. H. STEVENS. Improvement in the manufacture of fertilizers.
After the rendition of fatty matter from animal matter, the remaining liquor is evaporated to a sirup, and then mixed with the solid animal matter and plaster of paris, forming a friable mass.
146,285-January 6, 1874. B. F. SHAW. Improvement in treating waste liquors of slaughterhouses to produce fertilizers.
The washings, scrubbings, and waste liquors are defecated by cooling to a point at which blood will not coagulate, adding a quantity of blood and thoroughly mixing and boiling for a, few minutes, with or without the prior addition or charcoal or the addition of comich reage
149,088-March 31, 1874. A. HERBERT. Improvement in methods of analyzing soits.
Ten experimental plats of bomogeneous land are planted in like manner, using a fertilizer formed from nine ingredients of plant food, one plat with the the ingredients, whereby the fertilizer required in that soll for perfect plant growth is ascertained.
151,905-June 9, 1864 . G. E. NOYES. Improvement in the manufacture of ferti-
lizers from night soit. lizers from night soil.
Night soil is mixed with hydraulic cement or calcined plaster, and sprinkled with sulphuric acid, to form solid bricks or lumps.
152,389-June 23, 1874. H. A. P. LISSAGARAY. Improvement in fertilizers.
Blood is converted into an imputrescible fertilizer by treatment with an alkaline sulphite or its equivalent, and then adding sulphuric acid in constant and
regulated quantities. The apparatus is also claimed.
154,092-August 11, 1874. H. Y. D. SCOTT. Improvement in the manufacture of fertilizers from sewage.
Process of deodorizing excreta and urinous liquors by separating the solids from the liquids by the use of chareoal, dried earth, sawdust, or like material, and then extracting the phosphoric acid and nitrogen from the liquids by lime or hydrated phosphate of magnesia.

154,093-August 11, 1874. H. I. D. SCOTT. Improvement in treatiny sewage.
Quicklime is added to sewage water, in any of the modes usually practiced, and the precipitate calcined to obtain useful and marketable products.
155,517-September. 29, 1874. E. H. HUCH. Impravement in treating bloocl.
Blood is treated with pulverized unslacked lime, and the gelatinous mass dried. It may be mixed with boneblack and used as a manure, or with flour or other farinaceous substance as an article of food.
158,77q-January 19, 1875. B. ACKERMAN. Impravement in the preparation of
fertilizers.
Excrementary matter and straw or litter is baled in rectangular form, the lines of band compression, when the bales are corded up, forming ventilating grooves.
161,827-April 6, 1875. S. SEITZ. Improvement in fertilizers.
Oyster shells, as a base fertilizer, are scorched and dried, so as to render them friable, without decomposing the nitrogenous matter connected with them, and then ground.
169,099-May 11, 1875. T. MYERSON. Improvement in pracesses of treating blood for the manufacture of manures.
Blood is treated with a salt of alumina-as the sulphate or double sulphate of alumina and ammonia-to retain the ammonia.
165,172-July 6, 1875. C. H. NORTH. Improvement in jertilizers.
The soup obtained from rendering offal, after the water is nearly all evaporated, is treated to a heat of about $300^{\circ} \mathrm{F}$. for about four hours, forming a brittle and soluble fertilizer product without deliquescence.
165,545-July 6, 1875. O. LUGO. Improvement in fertilizers.
Coagulated, granular, pulverulent blood combined with antiseptics, is prepared by breaking it up with agitation, coagulating with heat, and removing the free integration of the clots (though it may be incorporated before) or to the finished product.
172,590-January 25, 1876. L. STOCKBRIDGE. Improvement in pracesses of manu-
facturing fertilizers.
Salts containing nitrogen, potash, and phosphoric acid are compounded-and these clements with lime and magnesia for cotton and tobacco-in the proporplants, and in amounts requisite to produce any desired amount of crop within certain limits.
183,242-October 10, 1876. R. R. ZELL. Improvement in processes and apparatus for manufacturing fertilizers from night zoil.
The night soil is separated into watery and semifluid bodiea, and the ammonia vapor distilled from the watery constituent and incorporated with the semiwith sulphuric acid, for the purpose of fixing the ammonia.
186,204-January 16, 1877. S. L. GOODALE. Improvement in processes of treating fish scrap.
Fish or fish scrap is washed subsequent to its being cooked (preferably after cooking, draining, and once pressing), and before it is finally pressed; whereby gelatine is removed, the yield of oil increased, and the subsequent drying of gelatine is removed,
196,881-November 6, 1877. P. G. L. G. DESIGNOLLE. Improvement in treatment
of mineral phosphates. of mineral phosphates.
Poor mineral phosphates are enriched, carbonate of lime eliminated, and aiso tribasic phosphate of lime transformed into monohasic phosphate in solution by the use of sulphurous acid, either in closed or open vessels. The mono-
basic phosphate of lime so obtained is concentrated to 45° to 50° Banme and basic phosphate of lime so obtained is concentrated to 45° to 50° Baume and
mixed with snfficient plaster of paris to absorb excess of water and solidify the mixed
mass.
206,158-July 16, 1878. H. W1ESINGER AND L. RISSMÜLLER. Improvement in treating rags for obtaining paper stock and fertilizers.
Woolen and half-woolen rags, hair, etc., are subjected to the action of hot lime-
water to disintegrate the animal fiber, and then dried. The nitrogenous powder is then separated from the unchanged cellulose, ior use in the manufacture of fertilizers.
209,445-October 29, 1878. E. P. BAUGH. Impravement in the treatment of offal for fertilizers.
The residuum of fat-rendering tanks is agitated and exposed to beat during agitation, after leaving the main rendering tank and before it is subjected to pressure.
216,816-June 24, 1879. W. ADAMSON. Improvement in methods of treating bones for glue stock.
Bones are first subjected to the action of hydrocarbons, liquid or vapor, to extract fat and oily matter, and then to the usual acid treatment.
221,232-November 4, 1879. J. M. HIRSH. Improvemenl in processes and apparalus for deodorizing and aisinfecting.
The noxious gases are converted into salts by contact with a liquid composed of metallic salts in solution mixed with a solution of organic salts-as the nitrates of iron and the salts of the phenyl, xylol, cresyl, etc., series. The
apparatus is claimed. apparatus is claimed.
228,387-June 1, 1880. W. PLUMER. Process and apparatus for the manufacture of fertilizers.
Night soil is heated to desiccate it and expel its noxious vapors; antiseptic
vapor, as carbolic acid, is mingled with the desiccated vapor, as carbolle acid, is mingled with the desiccated material, and the free fammonia is fixed as crude sulphate of ammonia and mixed with the disinfected desiccated material to complete the fertilizer.
228,955-Junc 15, 1880. B. TERNE. Treatment of sewerage.
A solution for disinfecting and precipitating tank and sewage waters, consisting of water containlng superphosphate of lime and tannic or gallic acid.
299,955-July 13, 1880. J. H. CHAMBERS. Manufactuve of an improved fertilizer from stable manure.
Stable manure is rotted by subjecting it to a moderate heat in a closed chamber with moistening at intervals. The chamber is provided with a steam coil
and a steam inlet pipe.
236,768-January 18, 1881. F. J. BOLTON AND J. A. WANKLYN. Process of
manufacturing artificial manures. manufacturing artificial manures.
Urine is evaporated at about $212^{\circ} \mathrm{F}$., with a small proportion of charcoal, soot, burned bones, or other charred absorbent material, and the solid constit-
uents obtained in a condition suitable for manure

288,183-February 22, 1881. G. T. LEWIS. Manufacture of fertilizers.
Pulverized bone phosphate or other insoluble phosphates arc mixed with coarsely powdered pyrites, and exposed to the action of atmospheric oxygen
and moisture for several months.

238,240—March 1, 1881. J. M. \& J. LIPPINCOTT. Fertilizer.

Slag or scoria from blast Iurnaces for the manufacture of pig iron from iron ores-preferably the nonvitreous or gray slag-is pulverized and used as a base in the manufacture of fertilizers.
241, 468-May 10, 1881. R. WERDERMANN. Manufacture of fertilizers from
blood.
don.
A rich nitrogenous product is produced by adding lime to fresh blood, agitating the mixture, precipitating the lime by settling, and finally drying the coag-

241,868-May 24, 1881. G. A. LIEBIG. Treating phosphates for fertilizers.
A calcined mineral phosphate, produced by mixing phosphates or phosphorites with coal or charcoal and subjecting it ta a great heat, the phosphoric actd formed, though insoluble in water, being available for plant food.
242,777-June 14, 1881. A. J. HUET. Treatment of animal and vegetable substances
for the manufacture of fertilizers, etc. for the manufacture of fertilizers, etc.
A solution of magma of lava resulting from treating lava with acid, alunite calcined with chloride of potassinm, and lime mixed with oxidized oil of tar, to preserve and disinfect and destroy germs.
247,579-September 27, 1881. W. PLUMER. Process of and apparatus for manufaching and desiccating animal and vegetable substances.
The material is subdivided and passed through heated retorts into receptacles, the gases and vapors generated being carried off by a blast of air through a pipe connected with the retorts, but without actual contact with the material
treated, the material being cooled and aerated by another blast of air after treated, the materi
leaving the retorts.
252,029-January 10, 1882. J. F. GIBBONS AND G. A. LIEBIG. Treating phosphates for fertilizers.
A phosphatic fertilizing compound consisting of superphosphates combined With acid salts of alkalis and lime; produced by mixing crude ferruginous or aluminous phosphates with salts of soda, potash, or magnesia, and carbon-
aceous matter, burning or calcining, and then mixing the product with an acid.
258,7s7-May 30, 1882. C. L. FLEISCHMANN. Treatment of prairie soil to obtain usefut products therefrom.
Rich prairie soils are exposed to the heat of combustion and sublimation, and the products treated by purification and lixiviation to extract the alkaline, carbonaceous, and nitrogenous matter.
259,140-June 6, 188\%. F. L. HARRIS. Manufacture of fertilizing material.
Two or more charges of bone, horns, or hoofs are successively boiled in the same water in a closed vessel under pressure, removed and dried, then a suitable quantity of the material thus treated is soaked in the liquor to absorb the gelatine contained therein, and it is finally dried and pulverized.
269,202-June 6, 1882. F. PETRI. Method of and means for treating sewage.
The solid substances are eliminated; the liquid passed through an absorbent filtering and antiseptic material, then again filtered, then acidulated or a chloride is mixed therewith; the acid or chloride is then eliminated or neutralized, and finally the nentralizing agent is eliminated by filtration.
260,165-June 27, 1882. H. COLLET. Treatment of excreta for the production of fertilizing substances.
Solid and liquid constituents of excreta are separated and the solid ingredients collected as a scum by the application of "nitriolic powder;" the latter the sulphate of sesquioxide of iron thus formed is mixed with clay or argillaceous earth.
261,058-July 11, 1882. A. F. POULLAIN-DUMESNIL. Special fertilizer for plants.
A fibrous absorbent material, such as moss, is wetted with an adhesive fluid (as milk) impregnated with a fertilizing substance in the state of an impalpable powder (as the phosphates and nitrogenwus substances), and then dried.
269,322-August 29, 1882. A. F. CROWELL. Manufacture of fertilizers.
Fish and superphosphate-sar in the proportion of 6 of the former to I the oil being separated and the gelatinous, nitrogenous, and phosphatic liquid used as a fertilizing material.
269,487-December 19, 1882. B. TERNE. Utitizing tank waters of slaughterhouses. Tank waters are concentrated, mixed with animal charcoal, and dried.
276,149-April 17, 1883. J. J. KNIGHT. Preparation and production of mineral phosphates.
Mineral phosphates containing alumina and oxides of iron are subjected to the action of strong sulphuric acid of 1.70 specific gravity, equal to 140° Twaddle, or upward, in excess; by means of which the sulphates of alumina and iron proand can be separated out.
279,445-June 12, 1883. C. SCHEIBLER. Obtaining phosphatic fertilizers from basic iron slag.'
Slags obtained in the dephosphorization of iron are powdered, roasted by an oxidizing flame, treated with muriatic acid, the quantity being sufficient only for dissolving caustic lime and magnesia, together with the silicates and the for dissolving caussic lime and magnesia, together withes thereof, while its dilution is such as is attained by adding at least 9 parts of water to 1 part of the acid of commerce of 21° Baume, and the phosphate of lime or magnesia finally precipitated by adding to the liquor, sepphate of lime or magnesia finally precipitated hy adding to the liquor, sepused).
280.320-June 26, 1883. C. J. F. R. DE JANNEL MENARD AND H. J. E. HENNEBUTTE. Manufacture of fertitizers.
Sewage is agitated or mixed with chloride or sulphate of zinc and subsequently with a salt of alumina (preferably impure sulphate), filtered, and the residue dried.
281,635-July 17, 1889. A. H. KOEFOED AND T. B. STILLMAN. Method of treating phosphates of iron and alumina.
Insoluble phosphates are powdered and mixed with powdered dolomite or limestone, the mixture calcined, then pulverized and treated with a mineral limest.

283,426-August 21, 1883. E. A. SCRIBNER. Process of manufacturing artificial fertilizers.
A small percentage of sulphur is mixed with phosphates of iron and alumina
and the mixture roasted. and the mixture roasted.
288,427-August 21, 1883. E. A. SCR1BNER. Process of manufacturing artificial
fertitizers. fertitizers.
Mineral phosphates are ground and roasted, and the vapor of sulphur r sulphurous anbydride is forced through the mineral while roasting.
284,674-September 11, 188s. G. ROCOUR. Process of treating phosphatic slags for
manure, etc.
The phosphate of iron in phosphatic slag is reduced by roasting into a phosphide, and the latter is then converted into a soluble alkaline phosphate by oxidation with a sulphate of sodium or potassium, carbon, and sulphur or iron
pyrites. pyrites.
285, 187 -September 18, 1883. T. G. WALKER. Offal drier.
The offal is forced by a current of steam, and in the presence of a current of air, through a heated coil; the process being continuous.
301,248-July 1, $1 \dot{884 .}$. G. A. LIEBIG AND J. F. GIBBONS. Treating phosphates
of alumina and irro. of alumina and iron.
Mineral phosphates containing iron or alumina are treated with dilute acid of a strength between 32° and 47°, according to the amount of water contained in the phosphorite.
so1,406-July 1, 1884. S. G. THOMAS. Manufacture of alkaline phosphates.
Phosphate of soda or potash is obtained by treating their chlorides in a basic Siemens furnace or Bessemer converter in the presence of oxygen and superheated steam, or other hydrogen-supplying substance, with molten phosphoric
iron and atmospheric oxygen or oxide of iron.
301,407-July 1, 1884. S. G. THOMAS. Manufacture of alkatine phosphates.
Soluble alkaline phosphates are manufactured from phosphoric nonsilicious molten pig iron in a basic-lined Siemens furnace or Bessemer converter, by pouring the molten metal upon alkaline carbonate (covered with an iron casing or plate, or with limestone or oxide of iron to prevent too rapid volatilization of the carbonate before the acid has decomposed it), turning on the blast, and with the blast introducing a further quantity of the carbonate, the alkali rising through the bath, and combining with the nascent phosphoric and silicic acids and forming a slag of phosphate and silicate of soda and potash; running off the slag: lixiviating it; and evaporating or precipitating with milk of lime.
302,266-July 24, 1884. G. A. LIEBIG AND J. F. GIBBONS. Treating phosphates
for fertilizers. for fertilizers.
Mineral phosphates containing iron or alumina are treated with dilute acid of 32° to 47°, and then salts of ammonia or potash. Prefcrably the sulphatcs are added, producing a fertilizer consisting of soluble and avialable phosphate of iron, soluble and available phosphate of alumina, and alum.
503,371-August 12, 1884. F. L. HARRIS. Manufacture of fertilizing material.
Phosphates, mineral and phosphatic guanos, marine and oyster shells, limebearing and other substances are placed in a closed yessel with enriched liquor from animal substances, and heated to 250° to $320^{\circ} \mathrm{F}$., or higher, after which
the material is dried and broken up. $305910-S$ - 1884
05,24-September 16, 1884. T. B. STILLMAN AND A. H. KOEFOED. Method) treating phosphates for fertilizers.
Insoluble phosphates are broken into pieces (not powdered as in No. 281,635), and mixed with dolomite or limestone, also broken into pieces, roasted, pulverized, and treated with a mineral acid
318,826-May 26, 1885. W. G. STRYPE. Process of preparing dried blood.
A solution of sulphate of alumina or alum is added to blood-say 1 part in 50 -and the blood finally dried.
s24,103-August 11, 1885. C. GIBSON. Process of making a fertilizer from tank waters.
Acid sulphate of an alkali, aluminous cake, or sudphate of alumina is added to the tank waters (say in quantity equal to one-fourth of the contained solids), the excess of water evaporated, and a carbonate, oxide, or hydrate of an alkail solids), and the mass cooled and ground.
S4\{,238-May 18, 1886. J. VAN RUYMBEKE. Process of making a fertilizer from tank wastes.
The wastes are evaporated to about 20 per cent of moistnre and then distilled at about 460° F., producing a nonviscid and nondeliquescent product. (No. ${ }_{341,963 .)}$
S4q,417-May 25, 1886. E. A. BECKER. Process of making a fertilizer from tank
waste waste.
Wet or pressed tankage is mixed with sulphuric acid in quantities proportioned to the contained phosphates; then tank water or tank liquor is added, and the mixture dried.
345,625-July 1s, 1886. J. J. DUNNE. Process of making phosphates.
Fertilizers are made from phosphates, natural or manufactured, containing
insoluble phosphate by mixing therewith alkalis or alkaline salts, sulphate of insoluble phosphate by mixing therewith alkalis or alkaline salts, sulphate of
soda, and sulphate of potash, in the proportion of from about one-half to ain equal part of alkaline salt to the quantity of phosphate, and furnacing the mixture at a high temperature in conjunction with carbon.
365,825-December 7, 1886. C. SCHEIBLER. Manufacture of phosphates from slags.
Process No. 279,445 is modified by using acids which are less diluted than with 9 parts of water to I of acid, the slag being first roasted in an oxidizing flame and pulverized, thereby dissolving the main portion of the silica and alkaline-earth phosphates and a part of the oxides of iron and manganese, and
then fractionally precipitating the elements of the solution with successive quantities of milk of lime or magnesia, whereby there are separately obtained the phosphates of iron and manganese, and then the alkaline-earth phosphates, with or without the silica; the phosphorus is separated from the iron and manganese by oxidation, dissolved and precipitated, whereby there is obtained an additional amount of alkaline-earth phosphates and an amount of metallic oxides.
354,98s-December 28, 1886. J. T. JULLIEN. Manufacture of fertilizers.
A combined fertilizer and antiphylloxeric formed by dissolving sulphur in liquid sewage and adding sulphide of carbon.
361,656-April 19, 1887. T. TWYNAM. Process of producing soluble alkaline phosphates.
The fused alkaline slag produced in a basic furnace or converter receives such additional quantity of an alkaline salt, as carbonate of soda, as will form, with

MANUFACTURING INDUSTRIES.

the alkali already present, at least three equivalents of base for each equivalent of phosphoric acid, or trisodic or tripotassic phosphate. Soluble alkaline phosphates are produced by adding to phosphoric pig iron (during its conversion into iron or steel in a basic or neutral lined converter or furnace) trisodic or tripotassic phosphate.
587,104-July 31, 1888. D. E. PAYNTER. Process of drying offal and garbage.
The mass is subjected to the action of heated air and the vapors passed through sulphate of lime before escaping, forming carbonate of lime and sulphate of ammonia, and destroying offensive odors.
s95,532-January 1, 1889. W. J. WILLIAMS. Phosphatic fertilizer.
Nitrogenous matter, as wool waste, hair, blood, tankage, etc., is treated with sulphuric acid, and at the same time calcined phosphate of alumina or iron, or a mixture of the two, is mixed with water, and the two mixtures are then thoroughly incorporated, and the mass dried at a heat not exceeding $181^{\circ} \mathrm{F}$.
404, 348 -May 98, 1889. H. ENDEMANN. Process of making fertilizers.
Tobacco is moistened, crushed, snbjected to the action of mineral acid, washed with water, and the extract added to basic material, such as ground bones. (Product No. 396,274.)
409,280-August 20, 1889. C. C. PECK. Process of making fertilizers.
Tank water is evaporated to a semiliquid condition, mixed with infusorial earth, and dricd.
418,288-October 22,1889 . T. R. HOUSEMAN AND C. B. M. SPROWLES. Process of desiccation.
Garbage, brewer's grain, etc., is desiccated by subjecting to pressure and at the same time heating it by a dry heat throughout its mass.
428,320-March 11, 1890. E. R. HUDGKINS. Process of making phosphatic fertilizers.
Finely pulverized phosphatic material and calcic oxide are combined, as by spreading them in alternate layers, the calcic oxide slacked by the addition of water, and the ingredients mixed.
484,977-August 26, 1890. C. CLIFFORD. Process of preparing fertilizers.
Refuse leather is dampened and placed in a heap to undergo a natural sweating; when the sweating subsides the heap is opened and turned over to expose to the air, again closed up and again sweated, the operation being repeated as long as fermentation lasts; the resulting product is then gronnd.
498,646-October 21, 1890. P. B. ROSE. Manufacture of fertilizers.
An insoluble compound of iron, as ferrous or ferric oxide, is added to "stick" or other albnminoid, either with or without an alkaline earth or its salt, or an alkali or a salt of the same, and the mass evaporated to dryness. A soluble iron salt may be added, and then precipitated by an alkaline earth or an alkali, or
their salts.
439,880-November 4, 1890. J. A. LIGHTHALL. Process of making bags acid-proof. Sufficient dry pulverulent acid-proof material is introduced into fertilizer bags to cover the interior surface, and they are then passed between rollers.
442,490—December 9, 1890. C. G. MOOR. Process of making fertilizer from sewage
sludge.
Sewage sludge, obtained by the use of sulphate of magnesia as a precipitant, is compressed; fed in successive charges to a furnace having a forced draft; a part of the sludge removed from time to time when carbonized (for use with precipitating agent and fiter bed; the remainder calcined; the ash removed manure.
443, 559-December 30, 1890. H. T. YARYAN. Process of making fertilizer from tank water.
Tank water is evaporated to about 25° Baume and then passed through a dialyser, by which such salts as produce deliquescence (the potash and other alkalne salts) are removed, and the material is then evaporated to a dry product.
445,055-January 20, 1891. R. GIEBERMANN. Process of seporating gluten from slaughterhouse washings.
The temperature of the washings is gradually raised to about $200^{\circ} \mathrm{F}$.; an alumina compound is then introduced to precipitate the gluten, and the washalumina compound is then intro

445,255-January 27 1891. W. B. SEAL. Process of making fertilizers.
Raw phosphatic material is subjected to the action of sulphiric acid, and then powdered coal is added while the chemical changes are taking place, with or without the subsequent addition of nitrogenous material.
466,087-February 10, 1891. J. VAN RUYMBEKE. Phosphate and process of mak-
ing the same. ing the same.
An iron and alumina metaphosphate mixed with an iron and alumina snlphate; produced by treating an iron and alumina acid phosphate with sulphuric acid and then heating it at a temperature of from 400° to $800^{\circ} \mathrm{F}$., until the acid phophate contained therein is converted into metaphosphate, usually indicated by the product assuming a gray color.
446,998-February 24, 1891. J. VAN RUYMBEKE. Making phosphatic fertilizers.
Iron and alumina phosphate is pulverized, mixed with muriate of potash or preferably low-grade sulphate of potash, treated with sulphuric acid, and ther phosphate.
45s,500-June 2, 1891. C. GLASER. Process of separating alumina from phos-
phates. phates.
Phosphate of alumina is dissolved out of phosphatic material by a hot solution of a carbonate of an alkali, as sodium carbonate; the phosphate of alumina separated as a precipitate from the solution on cooling; and the solution again used as a solvent for repeating the operation.
458,744-September 1, 1891. E. WATSON. Manufacture of fertilizers.
Tank water, or stick, is converted into a practically dry nondeliqnescent fertilizer by adding thereto a portion of other animal matter practically nondeliquescent, and an alkali, and drying the product.
461,164-October 1s, 1891. J. VAN RUYMBEKE. Process of making fertilizer from stick.
"Stick," a substance prodnced by concentrating tank water, is first treated with sulphates in any usual way, as with basic persulphate of iron, to cure the vicidity and deliquescence of the substance, then dissolved in sulphuric acid, and then there is mixed therewith tribasic phosphate of lime and the mass

471,506-March 22, 1892. J. VAN RUYMBEKE. Process of making nitrogenous fertilizers.
A solution of soluble salt of iron or alumina is formed with slacked lime added in about the proportions of 10 per cent, in weight, of dry slacked lime, and boiled, and the solution is then mixed with stick, preferably hot (in proportions determined by the condition of the stick) and the product dried.
474,419-May 10, 1892. T. M. SMITH.' Process of making fertilizers.
Animal substances are placed within a suitable vessel with a defnite amount of water (sufficient only to reduce the material to a soft and pasty mass while hot), the vessel closed and subjected to heat until the texture of the material has been destroyed; though soft whfle hot it becomes brittle and pulverable when cold without further desiccation.
489,010—January s, 189s. O. T. JOSLIN. Process of making fertilizer from tank water.
The water is evaporated to a sirupy condition, heated to 140° to $200^{\circ} \mathrm{F}$. , when a small percentage of sulphuric acid is added, and then from 5 to 20 per cent of sulphate of magnesium may be added and an absorbent of the supernatant liquid, and the product dried by subjecting it to a temperature of 300° to $400^{\circ} \mathrm{F}$. while in motion, for fifteen minutes to an hour.
494,989-April 4, 1899. L. RISSMÜLLER AND H. VOLLBRECHT. Manufacture of superphosphates from kettle residue.
The kettle residue of glne factories is mixed with warm sulphuric acid of 50° Baume, heated at about $200^{\circ} \mathrm{F}$, and allowed to stand until the nitrogenous substances have entered into solution with the acid, the gypsum has been precipitated, and the fat risen to the surface, when the solution is separated and powdered phosphate is added thereto in sufficient quantity to take up all the sulphnric acid present, thus rendering solnble the phosphoric acid of the added phosphate and yielding a comparatively dry fertilizer product.
494,9LO—April 4. 1899. L. RISSMÜLLER AND H. VOLLBRECHT. Manufacture of superphosphates.
The process of No. 494,939 is applied to offal, bones, and other animal matter, the fat and fat acids being skimmed off and separately collected as fast as they rise to the surface.
495,048-April 11, 189s. O. T. JOSLIN. Process of making fertilizer from tank water.
Tank water is first decomposed by the addition of sulphuric acid, then 5 to 13 per cent of a concentrated solution formed by dissolving waste fuller's earth in per
gnlphuric acid is added, and the product is then dried at a temperature of from 300° to $350^{\circ} \mathrm{F}$.
495,043-April 11, 1899. O. T. JOSLIN. Process of making fertilizer from tank water.
From 5 to 10 per cent of an acid phosphate of calcium is added to tank waters; then from 5 to 13 per cent of a concentrated solution formed by dissolving waste fuller's earth in sulphuric acid; then an absorbent, as pressed, cooked blood, may be added, and the product dried.
496,687-May 2, 1899. P. C. HOFFMANN. Process of treating phosphates.
Florida inland phosphates are pulverized, mixed with a theoretical amount of sulphuric acid, and heat is supplied to the ingredients, independent of the heat of chemical reaction, sufficient to retain the mass (until the free phosphoric acid has had its effect upon the insoluble phosphoric acid) at a temperature above the normal temperature occasioned by the chemical reaction of the
mixture, which is ordinarily about $50^{\circ} \mathrm{C}$. and yet not exceeding the temperamixture, which is ordinarily asout formed, or about $200^{\circ} \mathrm{C}$.
$500,100-J u n e$ \& 0,1893 . MI. A. GOLOSEIEFF. Fertilizer.
The gelatine refuse from tallow manufactories is evaporated to the consistency of 27° to 28° Banme; nnslacked lime is then combined therewith in the proportion of 500 pounds of lime to 1,000 pounds of the partially evaporated staté.
501,097-July 4, 1899. H. B. ARNOLD. Process of disposing of city garbage.
The material is cooked in a closed vessel from 4 to 8 hours, with condensation of the vapors that pass off; the solid matter or tankage is separated from the water or grease; and
densation of the vapors.
506,56s-October 10, 189s. N. DOWLING. Process of and apparatus for treating garbage.
The solid and liqnid matter is disinfected in transit; the solid separated from the liquid, squeezed, pulped; compressed, and dried; conveyed to a furnaceand incinerated; the separated liquid matter being continuonsly agitated and disinfected. The apparatus is claimed.
514,042-February 6, 1894. J. J. SELDNER. Process of converting hair into fertilizers.
Hair or other substance is heated with a weak solution of mineral acid in a closed vessel to a temperature that will produce a pressure and disintegrate the hair; sufficient pulverized alkaline matter is then added to neutralize the free acid; and the mass is dried.
514,04s-February 6, 1894. J. J. SELDNER. Process of making fertilizers.
A mixture of halr or like material and an acid phosphate is subjected to heat in a closed vessel until the material becomes disintegrated and dissolved.
515,708-February 27, 1894. J. GREGORY, Process of making phosphatic fertilizers. Boneblack, which has been previously used as a filtering material for oil, either by itsolf or mixed with bones or offal, is mixed with sulphuric acid, and the mixture boiled to cause the greasy substance to rise and filter through the boneblack, the residue belng separated from the greasy material for fertitizer. 517,662-April $\$, 1894$. N. B. POWTER. Process of making fertilizers.

From 5 to 50 per cent of substantially pure phosphate of alumina containing insoluble phosphoric acid is mixed with slaughterhouse refuse and similar waste, In quantity snfficient to take up all soluble and volatile ingredients.
524,813-August 21, 1894. C. WEIGELT. Process of making fertilizers.
Fish and meat refuse is comminuted and mixed with potassium salts (as potassium chloride or potassium sulphate) and allowed to stand, say from three
to five days, until a lye is formed, which is then drawn off: the fatty marter to five days, until a lye is formed, which is then drawn off; the fatty matter
contained in the remaining mass is extracted; and the material dried and ground.
527,810—October 29, 1894. E. RECORDS. Process of making fertilizers.
The solid parts of tankage are disintegrated, without pulverizing, by the admixture of powdered marl. A mixture of pulverized calcareous marl and
blood, tankage, or offal is dried, and then more blood tankage or ofial is added blood, tankage, or offal is dried, and then more blood, tankage, or offal is added
to the mixture and agaln dried. The ultimate addition of sulphuric acid conto the mixture and again dried. The ultimate addition of sulphuric acid con-
verts tine ammonia into a stable compound.

580,126-December 4, 1894. N. B. POWTER. Process of utilizing garbage and similar waste products.
Garbage is reduced to a condition of sludge by steaming or boillng in the presence of sulphuric acid; the grease is removed, a proper amount of Insoluble alumina phosphate is added; and the mass subjected to simultaneous stirring and evaporation in vacumm until it is converted into a dry, granular mass.
555,076-March 5, 1895. A. R. C. PIEPER. Process of making cilrate soluble phosphates.
Pulverized phosphate of liron or alumina is mixed with a hot pulp, obtained by slacking caustic lime in a soda or potash lye in such proportions that there Will be about two equivalents of oxide of lime for each equivalent of phosphoric acid in the compound. The burnt lime is slacked in from 5 to phos- 10 per cent of an alkali lye. A nitrate, as saltpeter, is preferably added to the final product.
555,204-March 5, 1895. H. M. HOWE AND J. E. STEAD. Process of making tetrabasic phosphates.
In the dephosphorization of iron, phosphoric acid is rendered soluble by adding phosphates to the slag thereby produced, with or without the addition of a base, such as an alkaline earth, oxide of iron, oxide of manganese, or alumina or their equivalent. The product, when finely ground, may he utilized direct as a fertilizer.
54, ,080—July 2, 1895. D. T. DAY. Process of making phosphates solubte in dilute citric acid.
A mixture of phosphate rock containing a suitable percentage of silica, or added silica, and a calcareous base is heated to a temperature at which carbonate of lime gives up its carbonic acid, and the temperature maintained well below partial fusion to secure a maximum of citric-acid-soluble phosphate. A potas sium salt, such as sulphate or muriate, may be added, whereby the temperature can be reduced to between 535° and $650^{\circ} \mathrm{C}$.
546,716-September 24, 1895. W. A. SHEPARD. Method of and apparatus for preparing fertilzers.
Superheated steam is passed through excrement in an air-tight chamber; the ammoniacal and other gases condensed in water; and the dehydrated and cooked solid matter mixed with lime.
$548,542-O c t o b e r$ 22, 1895. J. WODISKA. Process of treating garbage.
The liquid is expressed, the garbage heated to further expel moisture, and it is then subjected to destructive distillation in a retort.
550,024 -November 19, 1895. E. MEYER. Process of disintegrating Thomas slag.
The disintegration of Thomas slag is facilitated by introducing, while in a fluid state, a small quantity of an alkaline disintegrating agent, such as alkaline carbonate, or alkaline silicate, either with or without a reducing powder, such as coke powder or a metallic sulphide.
578,512—March 9, 1897. H. A. HOGEL. Process of and apparatus for making fertilizers.
Garbage is digested with hot water and steam under pressure and reduced to a sludge; filtered by forced filtration while well heated; hot water is forced through the mass; the grease is separated from the rest of the filtered liquids through the mass; the grease is separated from the rest of the filtered liquids; converted into a finely powdered condition.
580,224-April 6, 1897. W. S. RICHARDSON. Method of making fertilizers.
Hair, fleshings, or similar refuse of skin dressers is converted into a fertilizing component by dry distillation, by subjection to a dry heat in a closed oven at a temperature to make available the nitrogenous matter thereof and the fixing of the same as ammoniates, in the resulting product say from and the fixing of the same, as ammoniates, in the resulting product, say from 150° to $160^{\circ} \mathrm{C}$. . reduced to a comminuted state.
588,266-August 17, 1897. G. DE CHALMOT. Treatment of phosphates.
See Group X, Electro-chemistry.
596,008-December 21, 1897. L. RISSMÜLLER. Process of treating garbage.
Garbage is boiled with acid in a digester and reduced to a sludge; the evolved gases are led to a furnace, heated and mixed with producer gas by passing action to remove the grease; and the residue is dried.
602,363-April 12, 1898. W. E. ROWLANDS. Process of making fertilizers,
Waste leather is fermented, mixed with crude phosphate, and the massagitated with the addition of sufficient sulphuric acid to decompose the phosphate.
$608,668-\mathrm{May} 10,1898$. J. B. TAYLOR AND H. V. WALKER. Process of and
apparatus for recovering ammonia and waste products from garbage.
The garbage is divided into sections for successive treatment; one section dried and burned in a thick layer, the products led off, the ammonia separated from the combustible gases, and the larter burned in the presence of the next successive section, for drying the same; the cycle being repeated with further sections successively.
609,797-August 30, 1898. H. DUDEN. Process of making fertilizers.
Concentrated tank water is mixed with albuminoussubstance, as concentrated blood serum and the like, and the mixture (acidified if necessary) simultaneously subjected to the action of steam and electricity-say a current of 75 to 120 voltssubjected it is vigorousiy oxidized. It is finally dried and ground.
611,580-September 27, 1898. L. RISSMÜLLER. Proeess of treating garbage and fertilizers oblaincd therefrom.
A grease-freed fertilizer, having ayailable ammonia, is produced by hoiling garbage and converting it into a uniform fluid mass and then separating the garbage and converting it into a uniform nuid mass and then separating the ties.
619,056-February 7, 1899. B. TERNE. Process of making jertilizers from garbage.
The pressed and dried solid matter obtained from garbage is subjected to destructive distillation, and the phosphated charcoal obtained is mixed with concentrated tank liquors, expressed from the garbage, and the mixture dried. 620,44s-February 28, 1899. W. L. GOLDSMITH. Process of making fertilizers.
Phosphate rock and lignite or bituminous coal are crushed and pulverized together, wherehy they are intimately mixed, and the powder is then treated with sulphuric acid.
629,401-April 4, 1899. F. M. SPENCE. Process of treating sewage for obtaining fertilizers.
A mixture of aluminic sulphate and ferric sulphate is added to sewage and sufficient sulphuric acid to complete the neutralization of the alkalinity of the sewage; the precipitated putrescible and fatty matters are separated from the sewage; the precipitated pressed, dried, and treated with a solvent to dissolve out the fat or iatty
acid; the solid fertilizing portion separated; and the fat or fatty acld separated from the solvent

651,181-August 15, 1899. G. SCHÜLER. Process of making superphosphates.
To produce a double superphosphate, a lye of mineral superphosphate of a specific gravity of at least 1.21 is formed, thereby precipitating gypsum, the precipitate separated from the remaining product, which is a mixture of monosaid product, and the mixture horic acid, comminuted phosphate added to the sad prodact,
634, $123-$ October 3, 1899 . D. CAMERON, F. J. COMMIN, AND A. J. MARTIN.
Proccss of and apparatus for treating sewage.
Sewage is subjected under exclusion of air, of light, and of agitation to the action of anaerobic bacteria until the whole mass of solid contained organic matter becomes liquefied, and the liquid effluent is then subjected to air and light.
646,559-April 3, 1900. L. RISSMULLER. Process of making fertilizers from refuse liquids.
Nitrogenous substances are extracted from nitrogenous refuse liquids (in a heated condition) by adding sulphite residue of the cellulose industry-the water from the sulphite liquor may be more or less evaporated-then filtering and drying the resulting product.
646,716-April 3,1900 . B. TERNE. Process of making fertilizers.
In the manufacture of fertilizers from animal excreta, the urine is collected, the liquid is separated from the solid excrements by pressure, mixed with the collected urine, and allowed to putrefy, when it is distilled to obtain the contained ammonia in the form of its salts, which are then mixed with the solld matter.

GROUP IX.-BLEACHING MATERIALS.
 CHLORINE.

49,597-August 22, 1865. T. MACFARLANE. Process of preparing chlorine, bleaching powder, carbonate of soda, and other products.
See Group II, Carbonate of Soda.
85,370—December 29, 1868. H. DEACON. Improvement in the manufacture of chlorine.
For the continuous production of chlorine a current of hydrochlorlc-acid gas and atmospheric air, heated preferably from 200° to $450^{\circ} \mathrm{C}$. is passed over heated material impregnated or mixed with oxides of copper and manganese, or material
118,211-August 22, 1871. H. DEACON. Improvement in apparatus for producing chlorine.
It is cleansed of dust or deposit of foreign matter by means of powerful blasts of air, reversible at pleasure.
134, 190-December 24, 1872. L. E. AUBERTIN. Improvement in producing chlorine.
A mixture of air and gaseous or liquid hydrochloric acid is passed over sesquioxide of chrome, heated by preference to about $315^{\circ} \mathrm{C}$.
141,333-July 29, 187s. H. DEACON. Improvement in the manufacture of chlorine.
In Deacon's process for the manufacture of chlorine, there is employed a mixture of an inactive but accelerating substance such as sulphate of soda, with an active substance such as sulphate of copper.
165,801-July 20,1875. H. DEACON. Improvement in the manufacture of chlorine. In the manufacture of chlorine by the Deacon process, the impure hydro-chloric-acid gas is submitted to the action of aqueous hydrochloric acid or of chlorides such as sodium chloride, at an elevated temperature, to absorb the sulphuric acid contained in the gas.
165,802-July 20, 1875. H. DEACON. Improvement in the manufacture of chlorine.
In the manufacture of chlorine, substances consisting mainly or essentially of sesquioxide of iron are employed as the porous material. Salts or compounds of magnesia are used in conjunction with salts or compounds of copper or other active chemical agents, and the same may be natural magnesian minerals or products impregnated with salts of copper, etc.
316,195-April 21, 1885. E. SOLVAY. Marufacture of chlorine.
In the manufacture of chlorine, a composition is used consistlag of calcium chloride, silica, alumina, and the residuum remaining after treatment of the composition in a previous operation, the latter being iniusible at the temperatures required to produce reaction.
\$48,348-August \$1, 1886. G. RUMPF. Process of producing chlorine.
Sal-ammoniac vapors are passed over an oxide of manganese at a temperature below the red-hot state. Atmospheric air is then passed over the resulting chloride of manganese producing free chlorine and regenerating the manganese oxide.
357,659-February 15, 1887. D. G. FITZ-GERALD. Obtaining chlorine by electroly8is.
See Group X, Electro-chemistry.
389,781-Scptember 18, 1888. W. WEBSTER, JR. Process of electrolyzing sewage and sea water
See Group X, Electro-chemistry.
s90,895-October 9, 1888. A. R. PECHINEY. Manufacture of chlorine.
In the manufacture of chlorine and hydrochloric acid by heating magnesinm or manganese chlorides in the presence of oxygen or steam with exclusion of products of combustion, the chlorine-yielding material is charged in to chambers which have heen previously internally heated by hot gases, a series of regenerators being used.
391,159—October 16, 1888. J. A. JUST. Process of making chlorine.
Nitric acid, hydrochloric acid, and manganese dioxide are heated in a gener-ator-the nitric acid and manganese dioxide being in equivalent excess of the hydrochloric acid-until all of the chlorine gas is evolved. The residual manganous nitrate liquor is then decomposed by heat, forming manganous dioxide and nitrous vapors, which latter are recovered as nitric acid.
416,088-November 26,1889 . L. MOND AND G. ESCHELLMANN. Process of obtaining chlorine.
An intimate mixture of magnesia and a chloride of a fixed alkali is briquetted and treated at from 400° to $600^{\circ} \mathrm{C}$. With the vapor of hydrochloric acid or of chloride of ammonium, and then with hot dry air or oxygen.
420,837-February 4,1890. E. SOLVAY. Process of making chlorine.
Chlorides are decomposed in the dry state by charging a mixture of a chloride and calcined silicious clay into the shaft of a decomposing apparatus, intro-

MANUFACTURING INDUSTRIES.

ducing gas or combustible dust midway of the shaft and prodncing combustion therein, and then introducing an air current into the bottom of the shaft.
483,868-March 18, 1890. C. HOKNBOSTEL. Production of chlorine gas.
A continuous current of air is forced into and through the chlorine-generating materials in the generating vessel, and conducted, charged with the gas, to the point of application.
427. 467-3fay 6, 1890. R. DORMER. Obtaining chlorine.

An aqueous mixture of sulphuric acid, hydrochloric acid, and manganese dioxide is formed and the chlorine evolved is collected. The aqueous residue is neutralized, and calcinm chloride added in excess, thereby throwing down cajcium sulphate, which is separated, and the remaining solution of manganese chloride and calcium chloride treated with lime to form manganese dioxide.
462,567-November 9_{1} 1891. F. M. LYTE. Process of making alkaline carbonate and chlorine.
See Group X, Electro-chemistry.
463,767-November 24, 1891. P. DE WILDE AND A. REYCHLER. Process of making chlorine.
In the manufacture of chlorine by the alternate passage of hydrochloric-acid gas and heated air through a body of material which disengages chlorine at a red heat, a mixture of sulphate of magnesium and manganite of magnesia is
used formed by calcining equivalent quantities of sulphate of magnesium, used, formed by calcining equivalent quantities of sulphate of magnesium
chloride of magnesium, and chloride of mangancse, all three being hydrated.
495,462-April 11, 1s93. J. A. JUST. Process of making chlorinc.
Hydrochloric acid with a slight excess of double the equivalent of manga-
nese dioxide is decomposed by heat and nitric acid added to decompose the resulting manganous chloride and the residual manganese dioxide. The residual manganons nitrate liquor is then neutralized with manganese protoxide, hydroxide or carhonate, settled, evaporated, calcined, and the gases condensed. 503,409-August 15, 1893. F. M. \& C. H. M. LYTE. Process of producing ohlorine and purifying lead.
See Group X, Electro-chemistry.
510,276-Decenber 5, 1899. F. M. LYTE. Process of electrilytically decomposing fused metallic chlorides.
See Gronp X, Electro-chemistry.
518,445-April 17, 1894. W. DONALD. Process of making chlorin.
Dry and cool hydrochloric acid gas is subjected to a mixture of strong nitric and sulphuric acids at a low temperatnre-about $0^{\circ} \mathrm{C}$.-and the resnlting chlorine and nitrogen-oxide gases are subjected to dilute nitric acid, and finally to strong sulphuric acid.
518,LL6-April 17, 1894. W. DONALD. Process of making chlorin.
As a modification of the process of No. 518,445 , additional hydrochloric-acid gas or hydrochloric-acid gas and air is introduced into the body of resulting chlorine and nitrogen-oxide gases prior to subjecting them to the action of dilute nitric acid.
521,629-June 19, 1894. P. J. WORSLEY, W. WINDUS, AND B. BRACEY. Process of and apparatus for absorbing chlorin gas.
Chlorine gas is dehydrated, whereby it can be handled by pumps and pipes, and then the dry product is pumped into vessels containing the absorbing liquid.
529,150-November 19, 1894. L. MOND. Process of obtaininy chlorin.
Ammonium chloride is vaporized in a retort lined with antimony and containing fused chloride of zinc-preferably by introducing it in small quantities and dropping it into the molten zinc chloride-and the vapors passed through a mass of balls or fragments cormed of magnesia, clay, lime, and potassium chloride heated to 350° C. Hy the prior passage of hot inert gases therethrongh, until the balls have absorbed their charge of chlorine the ammonia given of being collected. A current of inert gas of 500° to $550^{\circ} \mathrm{C}$. is theu passed through the balls and the ammonia and atterwards the hydrochloric acja given of
are collected. Hot dry air of 800° to $1,000^{\circ} \mathrm{C}$. is then passed through, liberating are collected. Hot dry air of 800° to $1,000^{\circ} \mathrm{C}$. is then passed through, liberating
the chlorine previously absorbed. The temperature of the balls is then lowered are chlorine previously absorthed. The temperature of the balls is then lowered with a curent of cold air or inert gas to $350^{\circ} \mathrm{C}$. and the cycle is recommenced.
Air which is only weakly charged with chlorine, near the end of the process, is Air which is only weakly charged with chlorine, near the end of the process, is and enrich a subsequent operation.
537,508-April 16, 1895. H. W. WALLIS. Process of making chorin.
Chlorine is manufactured from aqueous acids by decomposing aqua regia in the presence of sulphuric acid and passing the gaseous products through sulphuric acid.
570,624-November 3, 1896. W. DONALD. Process of making chlorin.
A mixture of an alkaline chloride and manganic oxide-asthe peroxide-with nitric acid and water is heated to produce chlorine, and the residual product evaporated and roasted; the evolved oxides of nitrogen being oxidized and converted into nitric acid, while the residue is dissolved in water, the manganese peroxidized by the blowing in of air, and the caustic alkali separated.
618,575-January s1, 1899. F. M. LYTE. Method of and apparatus for producing chlorin, zine, or other metats from. mixed ores.
See Group X, Electro-chemistry.
623,447-April 18, 1899. A. VOGT AND A. R. SCOTT. Process of obtaining chlorin.
To produce chlorine, hydrochloric acid, snlphuric acid and nitric acid flow in substantially horizontal and continuous streams in the same direction, in contact with each other, subject to suitable heat.

HYPOCHLORITES, MATERIALS.

147 476 (ime. February 17, 1874. M. L. BUSH. Improvement in putting up chloride of
lin
Chloride of lime is packed in a wrapper of impervious noncorrosive fabric, as paper saturated with an oleaginous or resinous solution.
210,278-November 26, 1878. T. SIMON, COMTE DE DLENHEIM-BROCHOCK1. Improvement in the manufacture of bleaching liquids.
Chlorozone, an oxygenated and chlorous decolorizing agent, having for a base a soluble alkali or alkaline earth, is formed by saturating an alkaline solution by a current of hypochlorous-acid gas, produced by the decomposition in the cold of hypochlorites or of chjorates by an acid and a current of air.

212,890-March 4, 1879. T. DE DIENHEIM-BROCHOCKI. Improvement in bleaching compounds.
A solid bleaching compound produced by saturating a solution of sodium protoxide with chlorine gas, and adding to the hypochlorite thus produced 20 to 40 per cent of desiccated carbonate of soda.
$271,906-$ February 6, 1888. A. L. NOLF. Process of and apparahus for oblaining chlorine and sodium.
See Group X, Electro-chemistry.
309,970-December $90,188 \%$. A. McKAY. Bleaching solulion.
It consists of a solution of chloride of lime to which has been added a mixture of fuller's earth and decoction of Iceland or Irish moss.
s25,684-September 8, 1885. G. LUNGE. Applicalion of chloride of lime to bleaching purposes.
The action of chloride of lime is increased and hastened by the use of acetic or formic acid added to or used in conjunction with the chloride of lime.
415,644-November 19, 1889. G. KERNER AND J. MARX. Process of electrolyzing salts of the alkalies.
See Group X, Electro-chemistry.
417,287-December 17, 1889. E. SOLVAY. Process of making bleaching powder.
A mixture of chlorine and carbon dioxide is passed through a dilute solution of chloride of lime with the separation of the carbonic acid; then the liquid chloride of lime is decomposed by the chlorhydric acid produced, and finally solid chloride is formed by mesns of the rich chlorine gas obtained.
442,594; 448,396; 442,594-December 9, 1890. 1. L. ROBERTS. Electrotytic apparatus.
See Group X, Electro-chemistry.
450,109-April 7, 1891. E. A. LE SUEUR. Electrotytic apparalus. See Group X, Electro-chemistry.
480,554-August 9,1892 . W. B. BRITTINGHAM. Bleaching compound.
A bleaching compound consisting of the tungstate of an alkali, as tungstate of soda, combined with a hypochlorite.
L81,407-August 2S, 1892. F. M. LYTE. Production of caustic alkalies and chlorine.
See Group X, Electro-chemistry.
484,990-October 25, 1892. H. BLACKMAN. Electrolytic process and apparatus. See Group X, Electro-chemistry.
491,700-February 14, 1899. E. B. CUTTEN. Method of electrolytically producing soda and chlorine.
See Group X, Electro-chemistry.
501,121-July 11, 1898. C. N. WAITE. Art of manufacturing chlorine or caustic alkali by electrolysis.
See Group X, Electro-chemistry.
529,269—July 17, 1894. G. A. CANNOT. Progess of manufacturing hypochlorous
acid. acid.
See Group X, Electro-chemistry.
541,146-Junc 18, 1895. H. BLACKMAN. Electrolytic process and apparotus. See Group X, Electro-chemistry.
541,598-June 25, 1895. J. D. DARLING. Process of utilising niter-cake or other acid sulfates.
See Group X, Electro-chemistry.
b46,s8s-September 17, 1895. C. HOEPFNER. Anode for electrolylic apparatus. See Group X, Electro-chemistry:
556,098-March 10, 1896. M. H. WILSON. Electrolytic apparatus. See Group X, Electro-chemistry.
b58,240-April 14, 1896. C. N. WAITE. Method of utilizing saline solutions. See Group X, Eléctro-chemistry.
558,241-April 14, 1896. C. N. WAITE. Method of utilizing saline solutions.
See Group X, Electro-chemistry.
659,454-May 5, 1896. C. KELLNER. Process of and means for producing bleaching agents.
See Group X, Electro-chemistry.
560,518-May 19, 1896. J. MEYRUEIS. Trealment of sodium chlorid. See Group X, Electro-chemistry.
665,959-August 18, 1896. E. ANDREOLI. Apparatus for indirect electrolysis. See Group X, Electro-chemistry.
568,229-September 22, 1896. H. BLACKMAN. Electrode. See Group X, Electro-chemistry.
568,290-Seplember 22, 1896. H. BLACKMAN. Electrode for elentrolytic decompositron.
See Group X, Electro-chemistry.
568,291-September 22, 1896, H. BLACKMAN. Electrolytic anode ant apparatus. See Group X, Electro-chemistry.
572,472-Dceember 1, 1896. H. Y. CASTNER. Anode for electrolytic processes. See Group X, Electro-chemistry.
578,457-March 9, 1897. .C. KELLNER. Process of and apparatus for simultaneously producing ammonia, sodium hydroxid, and chlorine.
See Group X, Electro-chemistry.
589,330-May 25, 1897. E. A. LE SUEUR. Proccss of electrolysis. See Group X, Electro-chemistry.
589,519-June 1, 1897. W. SPILKER. Elcolvolysis of watery salt solutions. See Group X, Electro-chemistry.
586, 286—Suly 1s, 1897. L. P. HULIN. Proccss of clectrolyic decomposition of solu-
tions.
See Group X, Electro-chemistry.

591,750-Oclober 12, 1897. W. BEIN. Process of and apparatus for clectrolyzing. See Group X, Electro-chemistry.
606,981-July 5, 1898. W. S. ROMME. Process of and apparatus for decomposing solid substances.
See Group X, Electro-chemistry.
609,745-August 23, 1898. W. G. LUXTON. Diaphragm for electrolgtic purposes. See Group X, Electro-chemistry.
621,908-March 28, 1899. H. H. DOW. Porous cliaphragm for electrolytic cells and meino of prodacing same
See Group X, Electro-chemistry.
687,410-November 21, 1899. G. H. POND. Process of and apparatus for dissociating substances by electrolysis.
See Group X, Electro-chemistry.
652,611-June 26, 1900. J. HARGREAVES. Combined diaphragm and clectrode. See Group X, Electro-chemistry.

HYPOCHLORITES, PROCESSES

63,036-March 19, 1867. T. GRAY. Improvement in the manufacture of bleaching powder.
In the manufacture of bleaching powder, freeacid is neutralized or eliminated by pasping the chlorine gas through a solution of caustic soda or by mixing the alkali with the lime.
81,709-September 1, 1868. A. P. VIOL AND C. F. DUFLO. Improvement inbleaching and dyeing feuthers.
Black, gray, hrown, or otherwise tawny-colored feathers are first bleached either by the action of chlorine in the gaseous form or in solution, or by means of chlorine salts, or by the action of sulphurous acid in a gaseous form or in solution, or by sulphites, or by chromates, bichromates, or oxygen salts and acids, or, in some cases by alkalis, separately, or in succession or even simaltaneously) and then dyed.
100,071-February 22, 1870. E. T. RICE. Improved process of bleaching and cleaning vegetable fibers.
The fibers or fabric are first steeped in a weak acid solution, and then steeped, washed, or scrubbed in a weak alkaline solution or ordinary soapsuds at above 100° and below $212^{\circ} \mathrm{F}$. It is then treated with chlorine or other bleaching agent, followed by an acid solution, and washing in a weak alkaline solntion.
118,210-August 22, 1871. H. DEACON. Improvement in the nanufacture of bleaching powders.
The sections of the apparatus or shelves are arranged in series, each becoming the first of the series in rotation, the freshly illed lime section being always at the gas exit end of the series, so that the strongest chlorine gas acts first on lime that has absorhed the most chlorine, and the most diluted chlorine passes over the freshest lime.
121,595-December 5, 1871. H. DEACON. Improvement in the manufacture of bleaching powders, sulphates, etc.
The apparatus has a series of oppositely inclined shelves with narrow interspaces and a controlled discharge at the hottom; the chemical gas passing upward and acting on the solid material during'its passage downward, over and along the inclined shelves.
126,550-May 7, 1872. F. M. IRONMONGER. Improvement in bleaehing peanuts. They are washed in a weak aqueous solution of sal soda, and then treated with a dilute aqueons solation of chloride of lime and sulphuric acid; then washed and dried.
139,239-May 27,1873 . H. DEACON. Improvement in the nanufacture of bleaching tiquons.
Carhonate of lime-such as lumps of limestone or of chalk, or that ohtained by causticizing solutions of the carhonates of soda and of potash hy means o lime-is used to replace, wholly or in part, the caustic lime usually employed in the manufacture of bleaching liquors. Carhonates of lime are used to absorb chlorine when the same is mixed with carbonic-acid gas, or is otherwise diluted. 145,816-December 23, 1878. J. B. RICKARDS. 'Improvement in bleaching damaged cotton.
Vegetable fibers are first treated in a bath of permanganate of potassium and chloride of lime, and then in a bath of carbonate of potassium and chloride of lime, with or without the addition of glycerine in either bath
154,292-A ugust 18, 1874. J. L. SNEED AND J. S. MOUNT. Improvementin bleaching hemp.
It is soaked frest in hot water and then in a solution of chloride of lime, after which it is dried and hackled.
184,577-November 21, 1876. J. BÉNĖ. (Reissue: 7,850-August 21, 1877.) Improvement in refining and bleaehing hair.
Hair is refined and bleached by treatment in a bath composed of acids and chlorate of potash; the color is then fixed or set by treatment in a bath of warm water moriate of tin, bisulphite of soda, and muriatic acid; and finally the hair is washed in water and ammonia to cleanse and remove all impurities, producing bair of fine texture from coarse hair.
196,258-October 16, 1877. E. SOLVAY. Improvement in manufacture of hypochlorites of lime and magnesia from the silicatcs and aluminates.
The compound silicate resulting from the manufacture of chlorine or hydro chloric acid is treated with chlorine gas. The hypochlorite formed is separated from the silicate and aluminate by lixiviation.
263,965-August 99,1889 . C. TOPPAN. Bleaching fabrics.
Cotton or linen fabrics are boiled in a solution of water and "sinapetroline" No. 2 (patent No. 186,640-Jannary 23, 1877), then treated with a solution of chloride of lime and water, aired, and finally washed in a solution ol hot water and "sinapetroline" No. 2 .
280,094-June 26, 1885. F. SUTER. Process of producing open-work fabrics.
Vegetable fihers are embroidered on a ground of animal fibcr, and the latter is then dissolved in a solution of chloride of lime.
280,141-June 26, 1883. L. A. DELABOVE. Bleaching threads and fabrics.
Fibers or fabrics of flax or hemp are first treated with a solution of calcium prochlorite, and afterwards with a solntion of aluminum sulphate saturated with aluminum hydrate.

298,376-February 12, 1884. J. B. THOMPSON. Process of and apparatus for bleaching.
Vegetable fibers and fabrics are hoiled in a solution of cyanide of potassium or sodium, then rubjected to alternate baths of a solution of chloride of lime and of carbonic-acid gas in a closed vessel, and lastly passed through a solution of triethylrosaline and oxalic acid, with suitable washings.
294,619-March 4, 1884. E. HERMITE. Bleaching of paper pulp or other fibrous or textile materials or fabrics.
See Ǵroup X, Electro-chemistry.
297,S19-April 22, 1884. J. C. VANLOHE. Bleaching raw cotton.
The cotton in a compressed state, as in a hale, is subjected to the action of bleaching diquids, then rinsed, then torn apart or loosened and dried.
503,065-August 5, 1884. J. A. SOUTHMAYD. Process of bleaching vegetable tissues.
The material is first treated with permanganate of potash to destroy the coloring matter; then treated with oxalic acid, sulphite of sodium, and chlorine, ne and discharging agents. As a preparatory step the material may be boiled with potash under pressure.

3ss,875-January 5, 1886. W. MATHER. Process of bleaching.
Cotton yarns and fabrics are first treated with a boiling solution of caustic soda, then steamed in a closed vessel with occasional introductions,oi the soda iquor while subject to the steaming, and then washed-the steps may be re-peated-and then subjected to the action of chlorine liquor, washed, and finally scoured.
939,499-April 6, 1886. E. SOLVAY. Manufacture of bleaching powder.
The chlorine gas is drawn or forced in a downward direction through the lime and the porous or pulverulent beds.
982, 159-May 1, 1888. E. HERMITE. Process of bleaching.
See Group X, Electro-chemistry.
s89,898-September 25,1888. R. M. PERRINE. Process of bleaehing wax.
The combined vapor of bleaching solution of steam and gases, resulting from decomposed chloride of lime, as passed through the melted wax in divided jets, and finally pure steam is passed through the body of wax to cleanse and remove the bleaching solution.
396,551-January 22, 1889. F. E. BROWN. Process of bleaching cotton.
Cotton fabric, spread out wide, is passed through a boiling solution of caustic soda, then passed over perforated steam pipes and subjected to the action of steam, cooled hy passing into a cold solution of caustic soda, boiled in a solution of soda-ash and washed, subjected to the action of chlurine liquor, steamed, scoured, and tinally washed.
415,608-November 19, 1889. I. Q. BRIN. Process of bleaching.
The material is trated with a chlorous bleaching solution, and free oxygen is introduced into the mass, during the action, in regulated quantities.
432,401—July 15, 1890. A.\& B. GRATZ. (Reissue: 11,205-December 1, 1891.) Pracess of naking jute bagging.
A solutiou of sodinm chloride is applied to fabric made from jate butts and it is then storcd away in mass while damp, to allow the bleaching action to take place.
471,454-March 22, 1892. A. E. WOOLF. (Reissue: 11,244-June7, 1892.) Process of and apparatus for bleaching by elcetrotysis.
See Gronp X, Electro-chemistry.
481,414-August 29,1892 . J. A. MYRICK. Process of bleaching.
Cotton-chain warp or like fiber is subjected to the action of a solution of chloride of lime, then to hot water, then to a solution of sulphurous acid, and finally rinsed.
499,184-June 6, 1893. C. J. DELESCLUSE. Process of bleaching cotton.
Cotton is bleached in a bath consisting of a chloride solution to which has been added a viscous acid solution composed, say, of 20 parts of water, by weight, and 1 part of a mixture of grape sugar, 90 per cent, gnd sulphuric acid, 10 per cent.
541,147-June 18, 1895. H. BLACKMAN. Process of and apparatus for bleaching. See Group X, Electro-chemistry.
560,411-May 19, 1896. C. KELLNER. Process of and apparatus for bleaching vegetable fibers.
See Group X, Electro-chemistry.
565,706-A August 11, 1896. B. S. SUMMERS AND C.O. BORING. Electrolytic sepcration of vegetable fibers.
See Group X_{1} Electro-chemistry.
569,680-October 20, 1896. B. S. AND L. L. SUMMERS. Electrolytic process of bleaching and refining.
See Gronp X, Electro-chemistry.
588,084-August 10, 1897. G. H. POND. Process of and apparatus for electro-chemical treatment of straw or other fibrous materials.
See Group X, Electro-chemistry.
588,085-August 10, 1897. G. H. POND. Method of and apparatus jor electro-chemical treatment of fibrous material.
See Group X, Electro-chemistry.
610,265-September 6, 1898. V. C. DRIFFIELD, A. CAREY, AND F. W. WRIGHT. Process of and apparatus for making bleaching powder.
The gas issuing from one compartment is dried to remove the vapor of water evolved in that or preceding compartments, and also cooled hefore it enters a succeeding compartment.
616,139-December 20, 1898. G. H. POND. Method of electrolytically trealing straw or other fibrous moterial.
See Group X, Electro-chemistry.
616,988-Januany 9, 1899. B. S. SUMMERS. Method of refining vegetable fiber. See Group X, Electro-chemistry.
655,239-August 7, 1900. T. JESPERSEN. Process of bleaching by electrolytic chlor in water.
See Group X, Electro-chemistry.

SULPHUR DIOXIDE.

121,564-December 5, 1871. J. WATTEAU. Improvement in bleaching wool.
Wool is bleached by means of a suitable bleaching gas forced tbrongh the wool by the atmospheric pressure prodnced by an exhausting or condensing tan or centrifngal machine.
125,469-April9,1872. P. MARCELIN. Improvement in bleaching and disinfecting A sulpburous-acid solution is used as a bleaching and disinfecting agent.
129,819—July 2s, 1872. E. C. HASERICK. Improvement in blcaching wools, yarns, etc.
Wool and woolen fabrics are bleached by treating in a water bath of a compound of sulphurous acid and an alkali or a snlphite, then rinsint, and then treating in an acid hath to decompose the sulphite and set the sulphurous acid free.
147,887-February 24, 1874. J. B. FREZON. Improvement in treating mixed fabrics previous to dyeing.
Woolen and silk fabric containing vegetable matter or impurities is exposed to a beated acid bath containing a mordant, to simultaneously destroy the vegetable matter and prepare the fabric for dyeing or bleacbing.
187,889-February 27, 1877. W. MAYNARD. Improvement in processes of softening, decolorizing, and cleansing anzmal and vegelable fiber.
The fiber is subjected to the action of hydrated sulphurous acid and a solution of an alkali mixed in neutralizing proportions.
\$11,595-February 8, 1885. I. S. MCDOUGALL. Production of sulphurous acid.
Air is forced inder pressure into a retort containing ignited sulphur-bearing material and in wbich a low temperature is maintained by a cooling jacket, the sulphurous gases being conducted off and passed into and below the surface of an absorbing liquid in a vessel or series of vessels before it escapes.

HYDROGEN DIOXIDE AND OZONE.

87,155--Februøry 23, 1869. W. ELMER. Climozonator.
An ozonized atmosphere for dwellings is produced by means of a tbermoelectric battery operated by the differences in temperature of the warmed and cool air currents.
107,071-September 6, 1870. O. LOEW. Improvement in process of obtaining ozone or ozonized air.
Atmospheric air is passed transversely tbrough a flame, preferably that of a Bunsen burner, and the ozone collected.
109,601-November 29, 1870. C. F. DUNDERDALE. Improvement in apparatus for the manufacture of ozone.
Atmospheric air or oxygen is passed through finely divided streams or currents of electricity to convert the oxygen into ozone.
118,976-September 12, 1871. P. A. ROYCE. Improvement in generating ozone.
It is prodnced from phosphorous acted on by water and air, under hydraulic and atmospheric pressure.
128,227-June 25, 1879. T. A. HOFFMANN: Improvement in the generation of ozone, and in treating liquids with the same.
Atmospberic air is forced into a mixture of potassium permanganate or bypermanganate and sulphuric acid, producing ozone, and then tbrough a washer. It is applied to fermenting and fermented saccharine liquids and the production
thereof.

185,040-December 5, 1876. H. MILSOM. (Reissue: 9,976-December 20, 1881.) Ozone machine.
The process consists in the generation, purification, and emission of ozone by the slow oxidation of phosphorous in a cbamber baving porous eartbenware walls, whereby the separation and retention of the acid fumes and the egress of ozone are effected.

261,270—July 18, 1882. J. STEIN. Prócess of bleaching hair.
Hair is bleached by first saturating it in a mixture of a solution of peroxide of bydrogen and ammonia witb a solution of peroxide of hydrogen and cream of tartar, and then passing it through a solution of blue aniline and alcohol. A subsiance preserving the softness of the hair and preventing it from becoming subsiance preserving and breaking.

278,569-March 6, 1883. C. MARCHAND. Manufacturc of hydrogen peroxide.
In the manufacture of bydrogen peroxide, the acid solution is given a continuons movement of rotation in vertical as well as in horizontal planes in a cooled vessel, while adding the binoxide.
302,800-July 29, 1884. M. TRAUBE. Manufacture of hydrogen dioxicle.
Hydrogen dioxide is produced by bringing a flame of carbonic oxide or other gas in contact with water; as, for example, by spraying water tbrough the flame. 961,929-April 26, 1887. A.\& L. Q. BRIN. Ozone apparatus.
Oxygen or air is passed between layers or masses of granular conducting material connected, respectively, with the poles of an electric generator.
392,742-November 18, 1888. J. E. P. MEYER. Composition for developing ozonized oxygen.
A mixture of barium permanganate, 25 parts, with the acid salts of sulpburic acid, as anhydrous sodium bisulphate, 16 parts, in powdered form, generates ozonized oxygen when mixed with water.
420,394-January 28, 1890. C. F. W. STELZER. Proccss of making azone water.
A small quantity of hydrocbloric acid or bydrochloric acid with a chloride is added to ozone water to make it retain all of its properties.
440,792-November 18, 1890. W. ERWIN. Process of making hydrogen peroxide. A powdered metallic oxide (protoxide or peroxide), as of lead, chromium, or manganese, is suspended in water maintained in gentle agitation or circulation, and under generated gas pressure or of air forced in, and decomposed by such an acid, as hydrofuoric acid, as is ordinarily used in making hydrogen peroxide. An intermediate substance, as flnorspar, may be added, which upon treatment by an acid, as sulphuric acid, will liberate the acid required for the decomposition of the oxide.
450,404-April 14, 1891. J. C. DITTRICH. Preparing ozone water.
A small quantity of a pbosphite or bypophosphite is added to ozone water, before or after charging, to cause it to retain its properties.

509,165-November 21, 1895. N. HELMER. Process of liberating ozone
For the purpose of quickly liberating ozone from pervxide of bydrogen, the latter is added to a solution of an alkali, such as refined carbonate of potash.
511,9s0-December 26,1893. E. FAHRIG. Process of and apparatus for mamufacturing ozone gas.
See Group X, Electro-chemistry.
518,825-January 90,1894 . C. R. POULSEN. Process of and apparatus for making ozone.
Ozone is produced by the action of oxygen, or the oxygen of the air, upon phosphorous moistened with a diluted solution of sulphuric acid and permanganate of potash.
527,326-October 9,1894 . J. T. DONOVAN AND H. L. GARDNER. Process of producing ozone.
See Group X, Electro-cbemistry.
568,888-Juty 7, 1896. W. LOBACH. Electrical production of chemical reactions. See Group X, Electro-chemistry.
577,52s-February 2s, 1897. G. J. ANDERSSON AND J. C. DITTRICH. Process of manufacturing ozone and by-products.
See Group X, Electro-cbemistry.
596,036-January 4, 1898. F. K. IRVING. Process of producing ozone. See Group X, Electro-chemistry.
692,096-August 29, 1899. G. T. BRUCKMANN. Composition of matter. Hydrogen peroxide is charged with carbonic acid to preserve it.

OTHER METALLIC DIOXIDES.

109,025-November 8, 1870. J. LAMBERT, JR. Improvement in removing dyes made from analine, etc., from portions of fabrics.
Aniline dyed fabrics are decolorized, according to design, by the application of powdered metals or soluble cyanides.
22s,468-January 18, 1880. P. T. AUSTEN. Method of preparing an aqueous bleaching solution of soda or potassa.
A bleaching solntion of silicate of sodium or potassium, barium peroxide, and the bydrate of sodium, potassium, or ammonium.
231,106-August 10, 1880. C. M. SARTWELL. Preparing moss for upholstery.
It is treated with a solution of protoxide of calcium, to remove the bark or exterior coating.
g77,054-May 8, 188s. I. OHNSTEIN. Art of treatingjute, butts, and animal hair.
The jute is torn into fine fibers, then the animal hair is macerated in a solution af lime and washed in boiling water, then the several materials are steeped in a solution of potash and dyestuff, dried, mixed, and moistened with castor oil and alcobol, and batted.

482,477-September 18, 1892. C. J. E. DE HAEN. Process of bleaching.
The goods are treated in a batb of peroxide of sodium and magnesium salts, such as magnesium chloride-a salt containing an oxide capable of being precipitated by sodium.
486,188-November 15, 1892. H. Y. CASTNER. Bleaching compound.
A bleaching compound composed of sodium peroxide and one or more neutral salts of the alkaline-earth metals.
650,028-May 28,1900 . H. OPPERMANN. Process of making magnesium superoxid. See Gronp XIX, Oxides.
650,518-May 29, 1900. C. SAVIGNY. Process of making dioxid of barium. See Group XIX, Oxides.

METALLIC PERMANGANATES.

266,660-October 91, 1882. P. THOMAS. Bleaching fiber.
The material is first boiled with caustic soda, then-treated in a batb of potassium permanganate, and lastly in a solution of borax in bydrated sulphurous acid.
475,551-May 24, 1892. C. GIRARD. Process of ungumming and decorticating textile matcrial.
Textile plants are treated with a basic salt of a polyatomic acid, as manganate of potash, to dissolve the gummy substance of the plant; then the fiber is washed; and then passed into a batb of sulphurous acid to remove the gum and oxides, and washed.
534,450-Februđry 19, 1895. J. CLAPHAM, J. PICARD, C. VILLEDIEU, AND W. W. L. LISHMAN. Process of bleaching.

Fibers are treated in a bath containing a sulphonated or soluble oil, such as olein oil; then in a bath containing a manganate or permanganate salt; then in a bath of acidulated water; then in a bath having a bleaching action; then washed: and to make the fiber casy to work up it may be furtber treated in a bath containing olein or soluble soap as an emulsion.

OTHER BLEACHING AGENTS, MATERIALS.

11,786-October 10, 1854. E. N. HORSFORD. Improved mode of removing chlorine from substances and fabrick.
"Antichloride of lime," a neutral sulphite of lime, $\mathrm{CaO}, \mathrm{SO}_{2}$, is employed as a neutralizing agent for chlorine.
110,800-January's, 1871. G. W. SYLVESTER. Improvement in apparatus and processes of cleaning cotion waste.
Catton or woolen waste is cleaned by washing with a bydracarbon, such as kerosene or paraffine oil. The recovered beavy oil is purified from waste by
macerating or filtering with boneblack.
118,668-September 5, 1871. W. ADAMSON. Improvement in apparatus and processes for treating animal and vegetable fibers.
Animal and vegetable fibers and fiber-bearing vegetable substances are treated With hydrocarbon or hydrocarbon vapor, or both, under heat and determined pressure, to cleanse and extract oily, fatty, and resinous matters. The solvent

119,187-September 19, 1871. C. F. A. SIMONIN. Improvement in processes for treating textile fabrics with hydrocarbons.
Textile fabrics are subjected to hydrocarbon vapors to prepare for bleaching or dyeing, or to cleanse and renovate.
208,72s-May 14, 1878. W. E. GEER. Improvement in processes for the manufac-
ture of oakum.
New fiber of flax, hemp, or the llke is saturated in a solution of tar, sal soda, or similar alkali, and water, and the fiber afterwards cleansed of soda by treat ment in a dilute aqueous solution of muriatic or similar acid.
225,154-March 2, 1880. J. W. W. MARTIN. Process and material for fulling and scauring.
The material or article is dampened and then a soap compound in a powdered form is applied by sifting or sprinkling.
244,674-Juiy 19, 1881. J. J. SACHS. Preparing and bleaching jute.
Vegetable fiber, after cutting in to lengths and bleaching, Is treated in a solntion of caustic soda or potash (or other liquid to cause the fiber to contract or curl), then nentralized, and the liquid expressed.
278,409-May 29, 1883. J. G., E. P., \& D. W. DAVIS. Washing compound.
A detergent composed of water, 1 gallon; white rock potash, 1 pound borax; one-quarter of a pound; kerosene oil, 4 ounces; and benzine, one-half ounce
ss8,806-March 30, 1886. C. TOPPAN. Process of scouring wool.
Wool is immersed in a warm solition of expressed oil of mustard seed, petroleum products (paraffine oil and vacuum oil) and alkali.
s50,218-Oclober 5, 1886. C. TOPPAN. Bleaching compound.
A bleaching compound consisting of expressed oil of mustard seed, paraffine, caustic soda, tallow soap, sulphate of soda, and water.
\$54,22s—December 14, 1886. H. R. RANDALL. Treatment of silk fiber.
Silk fiber, raw silk, and cocoons, before removal of tine gnm, are subjected to the action of an aqueous solution of acetic acid (one ounce of acid to a gallon of water) at a temperature below the boiling point; a small proportion of sulphuric acid may be added.
s61,700-April 26, 1887. F. M. IRONMONGER. Process of blcaching edible nuts. They are subjected to a bath of a solutiou of protochloride of tin (" tin salt"" or "tin crystals") dissolved in muriatic acid and diluted 10 parts of water to 1 of salt.
s81,444-April 17, 1888. C. TOPPAN. Scouring composition for fibers and fabrics. It consists of benzine, mustard-seed oil, and an alkali, as caustic soda.
s86,202—July 17, 1888. F. M. IRONMONGER. Bleaching edible nuts.
They are subjected to a bath of a mixture of tartaric and oxalic acids, and then dried.
576,860—February 9, 1897. G. A. L_ANAUX. Process of bleaching rice.
A compound for cleaning and bleaching rice, consisting of ultramarine blueing, soapstone, and petrol oil, is applied to the rice grains, and they are then brushed and polished.

OTHER BLEACHING AGENTS, PROCESSES.

13.9\%8-December 11, 1855. W. M. WELLING. Improvement in the method of bleaching ivory plates.
The plates are sustained on their edges, in a suitable case, and placed in a north and sonth position for exposure to the sun.
15,983-October 28, 1856. J. PHYFE. Process of bleaching ivory.
Ivory is exposed to the rays of the sun on a glass table with a reflector below it.
16,100-November 18, 1856. J. A. ROTH. Mode or process of bleaching vegetable fibers.
Atmospheric air is forced into the bleaching liquor, thereby creating a rapid action of the bleaching agents.
18,204-September 15, 1857. J. A.JILLSON AND H. WHINFIELD. Method of treating various materials or substances in a permanent vacuum for washing, bleaching, and analagous purposes.
The operations are performed in a vacnum either with or without heat.
41,826-March 8, 1864. G. W. BILLINGS. (Reissue: 1,761-September 18, 1864) Improvement in cleaning and separating the fibers of flax, hemp, etc.
The vegetable fiber is subjected to a retting or fermenting operation after the stalk or other woody portions have been removed in whole or part; the fiber is washed in alternate directions for its cleansing while contained in a closed vessel.
85,875-January 12, 1869. D. K. TUTTLE. Improvement in bleaching ivory, bone, etc.
Ivory and bone are bleached by exposure to light in a bath of spirits of turpentine or other liquid.
190,995-May 22, 1877. H. T. YARYAN. Improvement in processes for bleaching beeswax.
It is dissolved in a solvent, such as any of the volatile products of petroleum, and exposed to sunlight in glass vessels or in shallow vessels under glass.
194,799-Seplember 4, 1877. H. T. YARYAN. Improvement in processes of bleaching beeswax.
Any material which will act as a body, such as cotton cloth, is passed through melted wax, and saturated or coated with a thin layer, which is then exposed melted wax, and saturated or coated wion a the wax is discharged, when the to the action of sunlight until the color of the wax is discharged, when the bleached wax is removed, either by heat and pressure,
tile soivent, and then the solvent is removed by heat.
202,078-April 2. 1878. A. VIOL AND C. P. DUFLOT. Improvement in processes for bleaching jeathers.
They are immersed in a resinous bath, such as turpentine, of regulated temperature (89° to $90^{\circ} \mathrm{F}$.), and at the same time exposed to both light and air.
281,780—July 24, 188s. J. MILLER. Method of and apparatus for bleaching ivory.
Ivory is placed in a hermetically-closed, glass-covered vessel and exposed to the action of the rays of the sun, at a low temperature.

303,342-August 12, 1884. C. TOPPAN. Procegs of separating and subdividing reg-
clable fiber clable fiber.
The resinous and glutinous substances are dissolved and removed by boiling vegetable fibers in a solution of "slnapetroline" No. 2 (a product of expressed mustard-seed oil, petroleum products, and alkali: Patent No. 186,640, Jannary 23, 1877).
s04,088-August 26, 1884. J. A. ENGELER. Process of bleaching'cotton fabries.
Cotton fabrics are exposed to vapors of chloroform under pressure, and then dechlorinized by exposure to a mixture of hydrogen, carbonic acid, and sul-
phuric ether. phuric ether.
s07,801-November 11, 1884. A. L. RICE. Modc of separating embroideries.
The goods are ruled on the separating llne with a disintegrating acid, whereby the fabric on the line is partlally destroyed, and further chemical effect is then arrested.
\$35,958-February 9, 1886. H. R. RANDALL. Process of separating the fiber of cocoons.
Cocoons are subjected to the action of a solntion of hydrochloric acid (an ounce of actd to a gallon of water), at about $150^{\circ} \mathrm{F}$. to prepare them for separation of the fibers.
354,222-December 14, 1886. H. R. RANDALL. Treatment of tussah-silk cocoons. "Wild tussah cocoons" or other silk fiber, or vegetable fiber also, are washed, then sprinkled with a saponlfiable oil, then subjected to the action of a heated solution of sodium stannate (or aluminate, plumbate, silicate, or borate of sodlum

387,579-August 7, 1888. N. CONLON. Trealing crude animal hair.

The hair is washed; cooked in a solution of water, quicklime, sal soda, and cooked in a solution of water, sulphuric acid and complete the cleansing: again cooked in a solution of water, sulphuric acid, and black oxide of manganese to ing, and drying in one continuous process.
389,944-Sevtember 25, 1888. J. SMITH AND P. W. NICOLLE. Process of bleaching fiber.
Vegetable material is treated in a oath containing one or more alkaline sulphates, as sulphate of potash, and the solution is then removed, to effect the separation of the gums, resin, and coloring matter from the fibers.
\$96,585-January 15, 1889. A. \& L. Q. BRIN. Method of bleaching fibrous substances.
Sce Group X, Electro-chemistry.
412,080—October 1, 1889. E. J. FISCHER. Process of cleaning animal-hair.
To remove the oily matter from the tubular cavities, hair or wool is given a long-continued soaking in clear water until it becomes soft, then soaked in a saponifiable solution to extract said oily matter, washed in clear water, and dried.
442,997-December 9, 1890. F. G. WISELOGEL. Process of bleaching hair.
It is first thoronghly washed in cold water, thentreated in a bath of hot water to which has been added a small quantity of lime. It is then dried by forcing a strong current of dry, sulphureted air through it.
489,919-January 17, 189s. B. BEYER. Process of treating raw silk.
Silk waste or fabric thereof is subjected to the successive action of oil soap. cold water, and salt steam baths and drying, oft repeated, and then to the action of running water. The manufactured fabric is washed in a bath containing permanganate of potash.
496,072-April 25, 189s. H. THIES AND E. HERZIG. Process of bleaching.
The material is immersed in a solution containing hydrofluoric acid, then washed in a bath containing an alkaline earth compound, the air adhering to the material is removed, and it is then treated with boiling canstic alkaline lye,
which is kept concentrated by a constant discharge of steam.
575,645-January 19, 1897. E. HERMITE. Apparatus for purifying or disinfecting.
Sce Group X, Electro-chemistry.
655,248-October 17, 1899. H. HADFIELD. Process of bleaching.
Fabrics are continuously bleached and washed by passing them through a hot wash, then through a chemicking bath, then subjecting them to the simultaneous action of acetic acid and steam, and then washing.
642,387-January 90,1900 . T. TEMPIED AND G. DUMARTIN. Process of preparing peat for surgical use.
Natural peat is macerated for several days, then beaten and washed in pure water to cleanse thoroughly, then treated with an ammoniacal bath to restore its color, and sterilized.

GROUP X.-CHEMICAL SUBSTANCES PRODUCED BY THE AID OF ELECTRICITY.

INORGANIC PRODUCTS.

211,070-December 17, 1878. E. WESTON. Improvement in manufaclure of metallic nickel.
A malleable ductile electro-deposit of nickel; obtained by the addition of borate of nickel (or other componnds of boron) to a nickel-depositing solntion.
589,161-August 31, 1897. F. CHAPLET. Hard body for rifting chromaled steel.
A new hard componnd-a carbo titanide of silicium-is produced by the reduc tion of an intimate mixture of titanic acid, silicic acid, and carbon in an electric furnace. It is capable of scratching chrome steel and cutting and shaping hard stones.
589,415-Seplember 7, 1897. G. DE CHALMOT. Silicon alloy.
An alloy of silicon with a metallic silicide, a new product, is produced by smelting material containing a metal-such as a metallic oxide-and silicon (silica) with carbonaceous matter in an electric furnace with a direct current, until. the covered with the product. Crystalline silicon is produced bytreating said allos with a solvent of the silicide.

602,975-April 26, 1898. G. DE CHALMOT. Silicid of iron.
New ferrosilicides, containing appproximately 25 per cent of silica or upward and consisting either of $\mathrm{Si}_{2} \mathrm{Fe}_{3}$ or a mixture of $\mathrm{Si}_{2} \mathrm{Fe}_{3}$ and $\mathrm{Si}_{2} \mathrm{Fe}$. The lower grade silicides are molten in a common furnace, readily cast, making exact castings-they take a fine polish and do not tarnish in the air-from white (as silver) to gray in color.
656,955-August 21, 1900. C. B. JACOBS. Alkaline-earth silicid.
A new chemical componnd: the silicide of an alkaline-earth metal, viz, calcium, barium, or strontium silicide, of the formula $R S_{i}$, wherein R represents the alkaline-earth metal. They are white or bluish-white substances of metallic appearance, having a crystalline fracture, oxidizing slowly in the air to silicon oxide and an alkaline earth-metal oxide, and decomposing with water evolving large volumes of hydrogen, together with silica and the alkaline earthmetal hydrate. They are produced by the reduction of an intimately mixed charge of an alkaline earth, silica, and carbon in an electric furnace, as, for example, lime 60 parts, sand 130 parts, and coke 70 parts.

ORGANIC PRODUCTS-CARBIDES.

492,767-February 28, 1899. E. G. ACHESON. (Reissue: 11,479-February 26, 1890̆.) Production of artificial crystalline carbonacoous materials.
A new product: silicide of carbon, Si C (carhorundum), characterized by great hardness, refractability, and infusibility; produced by subjecting materials containing carbon and silica, free or combined, to the action of an electric current. The current is passed through a conducting heating core embedded in the charge.
541,188-June 18, 1895. T. L. WILLSON. Product existing in form of crystalline calcium carbide.
A new product: crystalline calcium carbide existing as masses of aggregated crystals; produced by the reduction of intimately commingled coke and lime in an electric furnace.
555,796-March s, 1896. C. WHITEHEAD. Compound of magnesium, calcium, and carbid.
A new compound: the double carbide of magnesium and calcium; produced by the treatment of intimately commingled carbon and the double oxide of by the treatment of intimately commingled carbon and the double oxide of
calcinm and magnesium in an electric furnace. Calcined dolomite supplies calcinm and mag.
615,816-December 13, 1898. J. A. DEUTHER. Process of treating calcium carbids. Metaliic carbide is crushed and mixed with an inert binding material, such as resin, and formed into tablets, which represent, by decomposition, a definite as resin, and io
657,681-November 21, 1899. T. G. TURNER. Carbid cartridge.
A package, for use in making gas, consisting of a hollow body of fragile material filled with calcium carbide, hermetically sealed.
648,348-April 24, 1900. C. E. YVONNEAU. Method of treating carbid of calcium. Calcium carbide is saturated with oil and then crushed for formation into tablets, cartridges, etc., while so protected from decomposition.
648,349-April 24, 1900. C. E. YVONNEAU. Process of preparing calcium carbid. Calcium carbide is crushed and heated and about 80 parts introduced into a heated mixture of 16 parts of glucose and 4 parts of an oily substance, and molded into shape; it may then be coated with a protective medium impervious to moisture and which will dissolve slowly in water.
648,350-April 24. 1900. C. E. YVONNEAU. Prepared calcium carbid.
A gas-prodncing body formed of calcium carbide crushed in oil, combined with an agglomerating mixture, molded and provided with a protecting coating (No. 648,349).
650,295-May 22, 1900. F. A. J. FITZGERALD. Carborundum article.
A dense coherent recrystallized body of carborundum, the product of the process of No. 650,234 .
650,747-May 29, 1900. J. BILBIE AND H. DRIVET. Process of treating carbid of calcium.
Broken or granulated calcium carbide is treated with an essential oil, such as citronella, mirbane, or eucalyptus, to kill the natural odor of the carbide, then coated with petroleum, and again treated with an essential oil.
656,298-August 191, 1900. C. H. WORSNOP. Composition of matter for making gas. Calcium carbide is immersed in a hot liquid mixture of paraffine wax, grease, (as cocoa butter), and sugar.
659,447-October 9, 1900. M. P. E. LETANG. Preparation of carbid of calcium.
Calcium carbide is given a protectlve coating of glucose, or its equivalent, capable of dissolving or liquifying the lime when produced from the decomposition of the carbide; an inert powder, such as carbonate of lime, is also combined therewith and petroleum, and small particles of, or powdered, carbide are formed into a mass.
For the production of acetylene, see Group XVII, Hydrocarbons.

OTHER ORGANIC PRODUCTS

618,167—January 24, 1899. A. CLASSEN. Sodium salt of iodin compound.
A new product: the sodium salt of an iodine compound containing the iodine in the benzene nuclei of phenolphthalein; a nearly odorless and tasteless dark-blue amorphous powder; soluble in water, glycerine, ano alcohol. It is produced by the electrolysis of an aqueous solution of phenolphthalein and sodium hydrate with potassium iodide.
618,168-January 24, 1899. A. CLASSEN. Iodin derivatives of phenols and bismuth salts thereof.
New products: as a bismuth salt of an iodine compound containing the iodine in the benzene nuclei of phenolphthalein, a nearly odorlessand tasteless reddish brown powder, insoluble in water and acids, and with difficulty soluble in alcohol. They are produced by reacting with agents containing iodine on an alkaline solution of phenolphthalein, with the aid of electrolysis.

PROCESSES.

7,821-December 10,1850. G. MATHIOT. Process of preventing the adhesion of the deposit to the recipient in the electrotype process.
The plate is exposed to the action of a halogen element or compound, as iodine, bromine, or chlorine, and then further exposed to the action of a strong
light for several hours before introducing it into the electrotyping apparatus.

59,910-November 20, 1866. A. T. HAY. Improvement in preventingincrustation of sugar or other boilers.
The formation of scale or incrustation in evaporating pans or kettles is prevented by passing around the pan an electric current.
87,199-February 28, 1869. C. C. PARSONS. Improvement in purifying pyroligneons or acetic acid.
The vapors from the still are passed through carbonaceous or purifying material. The terminals of a galvanic battery are connected respectively with the condensing worm and the water of the condensing tub.
98,110-December 21, 1869. S. RUST, Jr. Improvement in electro-plating with brass and other alloys.
The depositing bath is formed by dissolving the brass or other alloy directly by the electro-process in a solution of potassium cyanide and sulphuret of carbon. The process of electroplating with brass or other alloy is claimed, and articles coated by the process.
118,3s1-April 4, 1871. R. O'NEIL. Improvement in ornamenting the surface of metals by electro-depositions from solutions.
The surface of the metal is painted with a salt or a solution of a salt of the metal to be deposited by means of a pencil in connection with a galvanic battery, the metal operated upon being in connection with the other pole of the battery.
116,579-July 4, 1871. M. G. FARMER. Improvement in nickel.platiag.
The double sulphate of nickel and ammonia is formed by the electrolysus of a solution of sulphate of ammonia, using a nickel anode.
116,658-July 4, 1871. I. ADAMS, JR. Improvement in nickel-plating.
Heat is applied to the solution of sulphate of ammonia-about $150^{\circ} \mathrm{F}$.-in forming the double sulphate of nickel and ammonia by the elcetrolytic process.
180,962 -August 19,1872 . E. E. DE LOBSTEIN. Improvement in plating and coating metals.
The article to be coated is subjected to a weak cold solution of the required coating metal and to the action of a galvanic battery and is subsequently subjected to the heat required to melt the coating.
179,658-July 11, 1876. N. S. KEITH. Improvement in apparatus for removing tin from scraps, etc., by electricity.
Scrap tin plate, separated and extended on an endless chain conveyor, is progressively treated in a heated electrolyzing bath.
229,542-July 6, 18s0. J. L. MARTIN. Process and apparatus for aging liquors.
Liquors are subjected to the combined action of a current of electricity and a catalytic agent acting upon the liquor through the medium of a porous diaphragm or cell.
256,9s0-April 11, 1882. E. D. KENDALL. Process of treating certain derivatives of coat-tar colors.
Nitro-benzene, or a mixture of nitro-benzene and nitro-toluene (e.g., nitrobenzene or the mixture 1 part, sulphuric acid 2 parts, and water 30 parts), is eloctrolyzed in the negative compartment of a cell, with acidulated water in eloctrolyzed in the negative compartment of a cell, with acidulated water in the positive compartment, producing the corresponding amido compounds (analne or toluidine). The negative electrode should be gently agitated. The tolnidine in contact with the electrode in the acidulated water of the positive compartment.

264,928-September 26, 1882. H. R. CASSEL. Process of and apparatus for separating metals.
The cathode of an electrolytic cell is provided with a protective covering of a dense, porous, nonconductive material-such as leather, parchment, or can-vas-which admits the passage of the current and prevents deposition upon the cathode.

271,906-February 6, 1889. A. L. NOLF. Process of and apparatus for obtaining chlorine and sodium.
A concentrated solution of sodium chloride is electrolyzed in a closed tank in the presence of mercury, which covers the bottom and constitutes the negative electrode.
272,187-February 13, 188s. C. E. BALL. Electric gas generatur.
Hydrocarbons or other olefiant liquids are sprayed or injected into or upon an electric are, whereby the liquid is not only volatilized but converted into a fixed gas,
277,977—May 22, 1889. E. BAUER. Processofand composition for the manufacture of substitutes for leather, horn, tortoise shell, etc.
See Group XV, Rubber and Robber Substitutes.
282,964-August 14, 1889. J. L. DELAPLAINE, J. G. HENDRICKSON, AND F. J. CLAMER. Removing tin from tin serap by electricity.
Scrap metal is placed directly in an electric circuit, in an insulated chamber, and the coating metal melted by the heat generated within the mass, by incandescence.
284,862-September 11, 1889. M. H. LACKERSTEEN. Process of treating fats and oils.
Fat acids and glycerine are produced by passing a current of electricity through an emulsion of the fat, or oil and water.
286,208-October 9, 188s. L. LETRANGE. Process of and apparatus for reducing
zinc ores.
Sulphnret and carbonate ores of zinc are simultaneously roasted in the same or communicating chambers and converted into soluble sulphates, which are leached and the solution electrolyzed. Zinc is deposited on metal cathode plates, and sulphuric acid is led off as fast as formed.
291,463-January 1, 1884. C. E. BALL AND C. S. BRADFORD, Jr. Electric gas
A mixed or combined hydrocarbon-hydrogen gas is produced by generating hydrocarbon gas according to No. 272,187, and in like manner generating hydrogen gas in another electric generator, and mingling the gases.
292,119-January 15, 1884. J. K. KESSLER. Process of making white lead.
An acetate of an alkali is electrolyzed, using lead for both anode and cathode, With the formation of acetate of an oxide of lead at the positive pole and a caustic solution of the alkali at the negative pole, the proditcts formed being kept separated in the cell aud subsequently mixed; whereby hydrated oxide of lead
is precipitated and the original solution of the acetate regenerated. Carbonic acid gas is introduced into the solution with the precipitate in suspension, converting the precipitate into white lead.
292,753-January 29, 1884. J. K. KESSLER. Process of making sponge leatl.
A solution of the acetate of an alkali is used as the electrolyte, with lead e_ec-sponge-like mass of lead deposited upon replenished as it is consumed. The to time removed for conversion into white lead and red lead cathode is from time
294,051-February 26, 1884. J. K. KESSLER. Process of making copper salts by the
aid of electricity. Besio acetate of
Basic acetate of copper is produced by first electrolyzing a solution of chloride and then mixing them, whereby copper anode, keeping the products separate, and then mixing them, whereby hydrated suboxide of copper is precipitated; and, second, mixing the hydrated suboxide of copper, washed and dried, with weuth water, and exposing in to the air.
294, 619-March 4, 1884. E. HERMITE. Blenching of paper pulp or other fibrous or lextile materials or fabrics.
Chlorides of soda or potash are decomposed by an electric current under concathodes being used). The metallie chloride, diluted or chloride of lead (lead cathodes being used). The metalie chloride, diluted or acidified, is then elecor paper pulp), and the metal recovered. A rag engihe with suitable electrodes
is used.
296, 557 -April 8, 1884. A. J. ROGERS. Process of and apparatus for reducing metals by electrolysis.
Fused sodium chloride or potassium chloride is fed into a separate electrolytic cell and electrolyzed, and the chlorine and vapor of sodium, or potassium, led off into separate receptacles, that for the latter containing coal oil: the passage which conducts the sodium, or potassium, vapor into the receptacle being supplied with hydrogen or other suitable gas to prevent contact of oxygen with the vapor.
s19,795-June 9, 1885. E. H. \& A. H. COWLES. Process of smelting ores by the
eleclric eurrent. electric current.
Ores or metalliferous compounds are subjected to the action of heat generated by passing an eleotric current through a granular body of conductive but resistant material forming a continuous part of the circuit, and mixed or otherwise in contact with the material to be treated.
322,940—July 28, 1885. T. KEMPF. Manufacture of iodoform, bromoform, and
chloroform.
They are produced by the electrolysis of a solution of the corresponding halogen combinations of the alkalis and alkaline earths in the presence of alcohol, aldehyde, or acetone, with the application of heat, and in the case of iodoform, with the introduction of carbonic acid.
323,514-August 4, 1885. W. MAJERT. Manufacture of methylene-blue by electrol-
ysis. ysis.
Methylene-blue and other homologous colors containing sulphur are produced from paramido derivatives of primary, secondary, and tertiary amines (e. g., paramido-dimethylaniline), and from the hydrazo compounds of the latter, by electrolysis in an acidulated solution and in the presence of such sulphurous substances (e. g., hydrogen sulphide) as, under the action of the electric current, separate out sulphur on the positive pole.
S24, 658-August 18,1885 . E. H. \& A. H. COWLES. Electric process of smelting ore
for the production of alloys, bronzes, and metallic compound. for the proaucion of alloys, bronzes, and metalic compounds.
Pieces of base metal, or ore thereof, are mixed with the charge of process No.
319,795 , to produce an alloy of the metals present 319,795 , to produce an alloy of the metals present.
324,659-August 18, 1885. E. H. \& A. H. COWLES AND C. F. MABERY. Process of electric smelting for obtaining aluminium.
A mixture of aluminium compound, carbon, and an alloying metal is reduced in an electric furnace, and then the alloyed metals are separated by amalgamation or lixiviation.
s26,657-September 22, 1885. T. KEMPF. Process of manufacturing permanganates.
Permanganic-acid salts are obtained, and free metallic hydroxides, by electrolytically treating the solutions of the manganic-acid salts; nsing a double cell with a diaphragm, the negative electrode being suspended in water and the positive electrode in the solution of the manganic-acid salt.
385,499-February ${ }^{2}$, 1886. C.' S. BRADLEY AND F. B. CROCKER. Process of healing and reducing ores by electricity.
An electric current is passed through the conducting walls of a retort, the same being in contact with a mixture of conducting material and material to
be heated, so that electric heat is generated both in the walls of the retort and in the mixture.

3s9,727-April 18, 1886. E. C. ATKINS. Art of manufacturing soap.

A current of electricity passed throngh the ingredients in the mixing vat hastens the chemical reactions and the soap formation.
35S,566-November 30, 1886. M. H. LACKERSTEEN. Process of manufacturing soap and glycerine.
An emulsion of a saturated saline solution-such as sodium chloride-and the melted fats and oils is electrolyzed in a two-eompartment diaphragm tank.
356,640-January 25, 1887. A. S. HICKLEY. Process of manufacturing amalgams by electrolysis.
A metal-producing solution-as sodium chloride-is continuously circulated in a current between an anode of carbon and a cathode of mercury, thereby depositing the reduced metal upon the mercury and forming an amalgam.
s57,659-February 15, 1887. D. G. FITZ-GERALD. Obtaining chlorine by electrolysis.
An anode of peroxide of lead in the form of dense, highly conductive layers, plates, or masses is employed in conjunction with a suitable cathode and an electrolyte capable of evolving chlorine.
382,159-May 1, 1888. E. HERMITE. Process of bleaching.
An electrolyzed solution of chloride of magnesium is used. The bleaching is continuous without regeneration of solution so long as the electric current acts on the solution in presence of coloring matter.
\$89,781-September 18, 1888. W. WEBSTER, JR. Process of electrolyzing sewage and sea water.
For producing ammonia, chlorine, or other products from sewtge, sea water, and other liquids, two bodies of one and the same liquid are subjected to the No. $210-13$
electrolytic action of positive and negative electrodes in the compartments of a porous diaphragmed cell; one of the bodies being repeatedly renewed while the other is retained and the electrolytic action thereon continued.
393,578-November 27, 1888. L. PAGET. Production of zinc chloride, etc.
Zinc chloride is produced as a by-product in a voltaic combination in which electro-motive force is set up. A gas, as chlorine, is first generated by the union of sulphuric actd and bleaching powder: sulphate of lime being produced as a calcium carbonate in suspension; said electrolyte compound of water holding with the electrodes of the voltaic combination (zinc or iron and lead), whereby zinc chloride (or iron chloride) is produced.
\$96,325-January 15, 1889. A. \& L. Q. BRIN. Method of bleaching fibrous sub-
stances.
Fibrous material for use in paper making is treated with a mixture of oxygen and chlorine gases (e. g., 90 per cent oxygen and 10 per cent chlorine) which has been subjected to the action of an electric current.
S98,101--February 19, 1889. W. WEBSTER, JR. Process of purifying sewage by
electricity. electricity.
Sewage and other impure water is passed in contact with electrically excited positive and negative electrodes of iron, resulting in the formation of a focculent precipitate of ferrous hydrated oxide, which effects the precipitation of the solid matter and the purification of the impurities held in solution.
414,985-Novcmber 12, 1889. T. D. BOTTOME. Manufacture of white lead.
Lead anodes are electrolytically dissolved in an alkaline aqueous solution
saturated with free carbon dioxide saturated with free carbon dioxide.
415,644-November 19, 1889. G. KERNER AND J. MARX. Process of clectrolyzing
salts of the allal's. salts of the alkalis.
In the electrolysis of the alkalis, or alkaline and other earths, chemical action is carried on concurrent with electric action, to remove the product resulting from electrolysis before or on reaching the limit at which electrolytic action is arrested,
treated. The undecomposed portion of the salt in the solution being further treated. This is effected by passing into the cell a chemical agent to precipitate the portion of the product formed, or by circulating the electrolyte through an outer precipitating chamber, an enriching cistern, and back into the electrolytic
cell. cell.
417,948-December 24, 1889. J. B. READMAN. Process of obtaining phosphorus.
Materials containing phosphorus are reduced by heat generated within a furnace chamber and directly applied to the material, as in an electric furnace, without introducing oxidizing, reducing, or other gases.
422,500—March 4, 1890. H. Y. CASTNER. Process of purifying aluminium chlo-
ride. ride.
The anhydrous donble chloride compounds of aluminium containing iron are purified and the iron removed by electrolyzing the compounds in a fused condition and in motion.
487,74h-May 15, 1890. T. F. COLIN. Process of obtaining chlorine compounds from natural gas.
The chlorides of marsh gas (chlormethane, dichlormethane, and chloroform) are formed by the mutnal combustion of chlorine and natural gas or methane, mixed in suitable proportions within a chamber or retort. The gases are ignited and the reaction maintained by an electric spark of proper tension, the chamber being maintained at a proper temperature. The hydrogen chloride is
absorbed from the resultant gas and the methyl chlorides liquefied. absorbed from the resultant gas and the methyl chlorides liquefied.
428,552-May 20, 1890. E. A. COLBY. Process of melting, refning, and casting The mass of the substance in a retaining vessel is melted by inductively establishing electric currents in the substance or the receptacle.
480,459-June 17, 1890. T. L. WILLSON. Process of metting or reducing metals by clectricity.
Metals or ores are fused in an electric arc formed between an upper electrode and the metal or ore beneath, and a reducing gas is injected into the crater to protect the incandescent surface of the electrode.
442,661-December 16, 1890. T. D. BOTTOME. Process of desilverizing lead by electrolysis.
Argentiferous lead anodes are used in the electrolysis of a solution of ammonium salts (for example, ammonium nitrate and ammoniate carbonate, each
one-fourth pound in 1 gallon of water) saturated with free carbon dioxide, one-fourth pound in 1 gallon of water) saturated with free carbon diox
whereby lead carbonate precipitates and silver deposits upon the cathodes.
448,541-March 17, 1891. T. PARKER AND A. E. ROBINSON. Process of making iodine by electrolysis.
An acid solution of an iodide, such as iodide of sodium or potassium, is electrolyzed in contact with the positive electrode, and an alkaline solution (caustic)
in contact with the negative electrode, the two solntions being separated by a in contact with the negative electrode, the two solntions being
porous diaphragm. The iodine is then drained off and washed.
452,080-May 12, 1891. H. Y. CASTNER. Process of manufacturing sodium and potassium.
Caustic alkali is maintaived at a temperature of not more than $20^{\circ} \mathrm{C}$. above its melting point and electrolyzed. A gauze or screen is interposed between the
electrodes and a superposed vessel or dome for collecting the separated metal.
459,236-September 8, 1891. C. G. COLLINS. Process of purifying brine.
Brine is subjected to a current of electricity having an electro-motive force not exceeding $2 \frac{1}{\frac{1}{2}}$ volts to decompose the impurities, but below the intensity necessary to decompose the sodium chloride, whereby the impurities are ren-
dered insoluble by decomposition. Simultaneously the impurities are removed by filtration.
459,946-September 22, 1891. D. V. KYTE. Manufacture of white lead.
Lead anodes are electrolytically dissolved in an acid electrolyte to form oxy-gen-bearing salts, the silver, if any, is removed from the electrolytic solution by electro-deposition, the remaining solution is rendered neutral, or nearly so, and
it is then treated with carbon dioxide. it is then treated with carbon dioxide.
460,277-September 29, 1891. J. B. GARDNER. Method of obtaining fluids for primary batteries.
The method of recovering elements employed with galvanic batteries comprises the following steps: Treating a salt-as chromate of lead or other chro-mate-with an acid so as us separate it into two parts, one of which contains in combination with an acid or acid salt in a battery fuid; treating the spent
depolarizing fluid so as to recover the metal employed or the oxide of that metal; and combining the remainder of the spent depolarizing fluid with the unused part of the salt obtained in the first step to recover the original salt employed.
462,567-November 3, 1891. F. M. LYTE. Process of making alkaline carbonate and chlorine.
Sodic or potassic carbonate and chlorine are continuously produced by heating sodic or potassic nitrate with calcic carbonate(in the proportions of two to two and one-fourth), lixiviating out the sodic carbonate and converting the nitrous fumes evolved into aqueous nitric acid, dissolving plumbic oxide in the nitric acid, precipitating plumbic chloride by means of sodic or potassic chloride, fusing the plumbic chloride, and decomposing it electrically to form chlorine and lead for use over again.
462,694-November 10, 1891. A. FOELSING. Process of purifying tannin solutions by electrolysis.
Ooze is clarified and decolored by electrolyzing a tannic solution mixed with oxalic acid and sodium chlorides.
464,097—December 1, 1891. L. GRABAU. Process of obtaining metallic sodium.
Sodinm chloride is combined with another chiloride of the metals of the alkalis-as potassium chloride-and with a chloride or chlorides of the metals of the alkaline earths-as stroutium chloride-in the proportion of one molecule of the latter to three molecules of the chlorides of the metals of the alkalis, forming a trisalt combination the melting point of which is lower than that of sodium chlorife. The trisalt is melted and the sodium separated by electrolysis. potassium may be eliminated therefrom by oxidizing fusion.
466,460-January 5, 1892. T. A. EDISON. Art of electrolytic decomposition.
Substances not readily decomposable at low temperatures-such as chloride of aluminum-are decomposed by subjecting them to the action of an electric current at a high temperature and under pressure. They are confined in a suitable vessel, heated sufficiently to vaporize material in the vessel and produce pressure and raise the temperature above the boiling point, and then electrolyzed.
466,720-January 5, 189\%. S. C. C. CURRIE. Process of obiaining insoluble chlorites by electrolysis.
The metal-as, for example, silver, lead, or mercury-to be converted into a chloride is made the anode in an electrolytic cell containing a neutral metallic chloride solution, such as chloride of zinc, and electrolytically converted into an insoluble chloride.
470,181-March 8, 1899. C. G. COLLINS. Purification of brine.
As an improvement on the process of No. 459,236, oxygen is independently supplied to the brine whereby ozone is formed without decomposing the chloride of sodium. The nascent oxygen generated in the brine combines with the dissolved oxygen, producing a maximum amount of ozone.
471,454-March 22, 1892. A. E. WOOL.F. (Reissue: 11,244-June 7, 1892.) Process of and apparatus jor bleaching by elecirolysis.
Sea water, or a like saline solution, is electrolyzed in the vat containing the material to be bleached, atmospheric air being forced in between the electrodes, thereby generating ozone and chlorine as the bleaching agents.
472,2s0-April 5, 1892. J. H. SCHARLING. Process of decorating glass.
Metal is applied to articles having nonconducting surfaces by repeatedy pouring a solution of metallic salts over the article untilit is completely covered, slowly turning it or moving it during the process, and finally subjecting it to
the action of an electroplating bath.
477,755-June 28, 1892. J. BLAIR. Process of making white pigments.
A charge of sulphuric acid, an alkaline nitrate and water, with metallic lead, forming the anode of an electric circuit, is heated hy injected steam, and the lead corroded. The reduced lead, sulphate, and nitrate, is then washed in a solution of an alkaline hydrate. The process without the electrolytic action is also claimed.
478,048-June 28, 1892. C. G. COLLINS. Process of purifying water.
The process of No. 470,181 is applied to water purification. Free oxygen is independently supplied to water while it is under the decomposing action of an electric current.
479,781-August 2, 1892. C. W. BRUNSON. Process of purifying liquid.
Liquids, including spirituous liquors, and those of an oily nature, are purified by the application or electrolysis at a temperature approximating to its freezing point. The impurities rise to the surface and are removed hy skimming or otherwise.
480,492-Augusl 9, 1892. E. B. CUTTEN. Method of electrolytically producing potassium chlorate.
Magnesium chloride (e. g. I5 to 20 per cent solution) is eloctrolyzed in the presence of potassium chloride and slacked lime, the electrolyte being agitated during electrolysis.
For the production of magnesia and potassium chlorate, a solution of magnesium chloride is electrolyzed in the cathode compartment, and potassium chlohide, magnesium chioride, and slacked porous partition, whereby potassium chlorate is produced at the anode and magnesia at the cathode.
480,493-Augusi 9, 1892. E. B. CUTTEN. Method of electrolytically producing potassium chlorate.
Magnesium chloride is electrolyzed in the presence of potassium chloride and magnesium oxide; the electrolyte should be agitated pending electrolysis.
481,407-August 28, 1892. F. M. LYTE. Production of caustic alkalis and chlorine.
Caustic alkali and chlorine are conjointly and continuously produced by decomposing an alkaline nitrate by heating it with ferric oxide to evolve nitrous fumes, decomposing the residue by boiling with water into caustic alkali and a precipitate of ferric hydrate, converting the nitrous fumes into aqueous nitric acid, dissolving plumbic oxide therein, precipitating plumbic chloride, fusing it, and decomposing it electrolytically into chlorine and lead, and finally converting this (or other) lead into plumbic oxide and the ferric hydrate into ferric oxide for recommencing the cycle.
484,990-Oclober 25, 189\%. H. BLACKMAN. Elcctrolytic process and apparatus.
A centrifugal electrolytic cell is employed, whereby the products resolve themselves into distinct layers, and the process becomes continuous, with a constant inflow of brine and discharge of chlorine and caustic soda, or other material and products, as the case may be. Under the centrifugal action the geparated from the electrolyte and discharged through separate conduits.

486,575-November 22, 1892. T. L. WILLSON. Process of electrically reducing refractory compounds.
A pulverized metallic compound-as alumina-is first saturated with a reducing agent in a liquid condition-as coal tar-and the impregnated compound is then reduced by electric heat.
489,693-January 10, 1899. F. GRUESSNER. Process of regenerating solutions.
Electrolytic solutions used for refining purposes, and which have become charged with arsenic and like impurities, are regenerated by mixing therewith metastannic acid and boiling until the impurities are precipitated.
491,394-February 7, 1899. T. L. WILLSON. Process of electrically reducing aluminum and forming alloys thereof.
Refractory metallic oxides, as alumina, are subjected, in the presence of comminuted carbon as a reducing agent, to the heat of an electric arc passing metal produces an alloy, and the comminuted carbon protects the electrode from oxidation.
191,700-February 14, 1893. E. B. CUTTEN. Method of electrolytically producing soda and chlorine.
The electrolysis of a saline solution takes place in a cell having a closed anode compartment with means for exhausting the atmosphere, whereby the chlorine is withdrawn from the body of the solution, and access of the same to the freed
sodium is prevented, and substantially all of the soda gravitates to the bottom.
491,701-February 14, 1899. E. B. CUTTEN. Method of clectrolytically producing polassium chiorale.
A solution of magnesium chloride, to which potassium chloride is added, is electrolyzed by means of a slowly alternating current, the potassium chlorate being constantly removed and potassium chloride added.
492,009-February 21, 1898. H. GALL AND A. DEVILLARDY DE MONTLAUR.
Manufacture of chiorates of the alkaline metals and metals of the alkaline earths.
An aqueous solution of the chloride corresponding to the required chlorate is electrolyzed in a cell liaving a porons partition and a heating coil, and the contents of the negative compartment is continuously conveyed into the positive compartment where the chlorate is formed.
492,377-February 21, 1893. T. L. WILLSON. Electric reduction of refractory metallic compounds.
Refractory compounds are commingled with subdivided carbon in sufficient proportion to prevent the formation of a bath oi the fused componnd, and reduced by an electric arc maintained close above the material, whereby fluctuations in the resistance of the arc due to the ebullition of a bath are avoided. 493,028-March 7, 1898. W. T. GIBBS AND S. P. FRANCHOT. Process of obtaining chlorates of the alkalis or of the alkaline earth metale by electrolysis.
A solution of chloride of potassium is electrolyzed in a cell having a cathode composed of an oxide (copper oxide) which readily yields up its oxygen in the presence of nascent hydrogen, until abont one-half of the potassium chloride is converted into potassium chlorate, when the solution is drawn off, cooled, and the potassium chlorate allowed to crystallize. The cathode is removed, washed dried, reoxydized at a dull red heat, and replaced. The liquor is regenerated and returned to the cell and the process repeated.
496,109-April 25, 1899. A. B. BROWNE. Process of manufacluring white lead.
A body of metallic lead constitutes the anode in an electrolytic solution of a nitrate of an alkaline base-as nitrate of soda-whereby a lead is precipitated. The solution and product is drawn off, the lead hydrate settled, the solution drawn off therefrom, and the lead hydrate dried in the air or an atmosphere containing carbonic acid gas.
498,769-June 6, 1893. T. CRANEY. Method of electrolyzing salts.
In an apparatus for the manufacture of sodic hydrate a series of covered electrolytic diaphragm cells is arranged on descending levels with inlet and outlet connections between the successive chambers of the series. Fresh solution is supplied to the anode compartment in quantity to maintain the solution in concentration; a limited amonnt of the colution is supplied to the cathode chamber, and the supply is regulated to produce a discharge of the product in a uniform state of concentration.
501,121-July 11, 1895. C. N. WAITE. Arl of manufacturing chlorine or caustic alkali by electrolysis.
Prior to electrolyzing a saline solution, the brine, or so much thereof as is to be used on the anode side of the cell, is treated with an alkaline chloride-as barium chloride-to convert all trace of sulphuric acid into an insoluble precipitate.
501,578-July 18, 1893. H. PFANNE. Method of manufacturing varnish, and apparalus therefor.
Purified linseed oil is thoronghly mixed and agitated with suiphuric acid and Water and subjected to the passage of an electric current for two or three hours; the oxygen produced in the nascent state converts the oil into varnish.
501,732-Juiy 18, 1893. H. ROESKE. Method of and apparatus for purifying water.
The water is filtered through a stratum or hody of comminuted iron which is simultaneously agitated and subjected to the action of an electric current.
501,78s-July 18, 1898. E. HERMITE AND A. DUBOSC. Method of land appa-
atus for. electrolyaing soluions.
In the electrolysis of an alkaline solution a thin sheet of mercury flowing over inclined electrodes forms an amalgam of the metal of the base; which amalgam, received in a trough, is separated from the saline solution by a layer of liquidas sulphuret of carbon-lighter than the amalgam and heavier than the saline solution. The mercury separates from the amalgam by gravity, and the latter discharges into a water tank and gives up its sodium, or base, to form the caustic soda or like product.
502,451-August 1, 1899. H. H. EAMES. Process of desulphurizing metallic ores.
lmpurities and foreign substances, as sulphur and phosphorous, are eliminated from metallic ores or obtained from minerals by subjecting the ore, in a closed vessel, to the action of heat (sufficient to liquify sulphur but insufficient to fuse the ore) and an electric current.

509,429-August 15, 1899. F. M. \& C. H. M. LYTE. Process of producing chlorine and purifying lcad.
A soluble chloride-calcic chloride or magnesic chloride-is decomposed with lead nitrate, forming lead chloride and a nitrate; then, on the one hand, the chlorine and lead and, on the other hand the nitrate is demposed to produce nitric acid, which is used over again for the production of more nitrate of lead
by oxidizing lead (freed from zinc), and dissolving the lead oxide in the nitric acid, precipitating any silver from the nitrate of lead solution to form pure vitrate of lead with which to continue the cycle of operations.
505,846-October $\$$, 1899. P. DEP. RICKETTS. Process of aeparaling metallic nickel. Nickel is separated from other metals, salts of metals, and impurities combined therewith in nickeliferous hodies by purifying and concentrating when necessary, forming the purified mass into plates or shapes, immersing the plates in sulphurle acid, adding thereto sulphates of alkaline bases or other similar reagents in such quantities as not to interfere with the said reaction; thereby forming a bath of such composition as to dissolve the copper and nickel and retain the former in solution, and form with the latter insoluble salts; then causing an electric current to traverse the bath from the nickeliferous body as anode to a suitable cathode placed therein, whereby the copper is deposited upou the cathode; and, finally, in separating the precipitated salts and subjecting them to further treatment.
506,248-October 10, 1893. G. OPPERMANN. Process of and apparatus for purifying water.
It is successlvely electrolyzed, agitated, and heated.
508,804 -November 14, 1893. H. S. BLACKMORE. Process of and apparatusfor dissociating zalts of alkalis by electrotysis.
The electrolytic cell is composed of three compartments, the end compartments, which are charged with water and contain the electrodes, being connected with the middle compartment by siphons. A uniform and constant level
of the bath and of the liquid of the electrode compartments is maintained, and of the bath and of the liquid of the electrode compartments is maintained, and
the saturated portions of the liquid of the electrode compartments are from time the saturated porti
to time drawn off.
510,276-December 5, 1893. F. M. LYTE. Process of elcetrolytically decomposing fused metallic chlorides.
In an apparatus for the electrolysis of fused metallic chlorides, the mouth of a bell chamber is sealed against the escape of ehlorine by dipping into a bath of molten metal corresponding to the base of the chloride treated, and resulting, in
part, from the decomposition of the chloride. part, from the decomposition of the chloride.
510.894-Dccember 12, 1899. H. S. BLACKMORE. Process of and apparatus for dissociating soluble salts by etectrolysis.
The process consists iu providing a bath of the electrolyte and two independent bodies of liquid, establishing a dialytic communication hetween the bath and each of the independent hodies of liquid, maintaining the latter at a higher level than the level of the bath, and passing a current of electricity through the independent bodies of liquid and throlgh the bath. The solutions of the ions
from the independent bodies of liquid are withdrawn while the current is mainfrom the
511,380-December 26, 189s. E. FAHRIG. Process of and apparatus for manufacturing ozone gas.
Oxygen is absorbed from the air by a suitable absorbent, as manganate of soda and lime in a heated retort, and is then liberated hy steam, the temperature of the composition being raised from $1,500^{\circ}$ to $1,800^{\circ} \mathrm{F}$. The steam is then eliminated from the gas by cooling and con
511,450-December 26, 1893. A. A. NOYES AND A. A. CLEMENT. Process for the 51,430-Dectmber 26,109re of para-amido-phenol-sutphonic acid.
A strong sulphuric-acid solution of nitro-henzol is electrolyzed; the product is diluted and filtered; the solid washed and treated with caustic soda, or other alkali, which dissolves out the para-amido-phenol-sulphonic acid as a sodium salt, the sulphonic acid being precipitated by neutralizing with hydrochloric acid.
514.276-February 6, 1894. P. DEP. RICKETTS. Process of electrolytic separation of nickel from copper.
A division of No. 505, 846: the nickeliferous body in this case being first dissolved in any suitable acid, and then, if necessary, concentrated in solution, the acid reaction being maintained, and the separation effected by the subse-
quent addition of the desired reagents in connection with the electric current.
615,768-March 6, 1894. C. VON GRABOWSKI. Process of and apparatus for purifying sulfate lyes.
Sulphate lyes or liquors containing free sulpburic acid, and, in addition to metalic sulphates, containing also arsenic and antimony, are purified by evaporating to a S.g. of 52° Baume and allowing the sulphates to crystalize out. The liquor is then electrolyzed with a current of high strength using lead or copper electrodes, and the arsenic and antimony are deposited.
517,001-March 20, 1894. J. D. DARLING. Mode of producing nitric acid and metals from nitrates.
Nitrate of soda or potash is electrolyzed in a state of fusion in a closed vessel, the nitrogen peroxide being led off and converted into nitric acid, and the metallic base being drawn of the hreaking downof the nitrate and the liberation ited to an extent to prevent the hreaking driven of by prebeating at a high temof oxygen
518,710-April 24, 1894. H. CARMICHAEL. Method of and apparatus for electrochemical decomposition.
The process, applicable to the electrolysis of any available solution as well as sodium chloride, consists in maintaining within the electrolytic cell a zone of undecomposed solution of sodium chioridectrodes, by supplying to such zone hydrate and chlorine at their respective electa to displace the sodium hydrate fresh quantities of sodium chloride solution so as appropriate electrode, and by withdrawing from the cell the sodium toward its appropriate electrode, and by wiundrawloride solution and the withhydrate thus displaced; the supply of sodium chiort such a rate as to maintain drawal of sodium hydrate being made to proceed at such a rate as to the zone of unde
stant in volume.
519,400-May 8, 1894. H. BLUMENBERG, JR. Electrolysis.
An electrolyte containing a haloid salt-bromide or chloride-is electrolyzed, An electrolyte containing a and the liberated gas is transferred from the poing a chlorate or hromate. The liquid electrole is then drawn off, setforming a chlorate or hromate. and returned to the cell.
622,616—Juty 10, 1894 . I. L. ROBERTS. Method of electrolytic decomposition of salts.
The salt crystals are continuously fed into the anode compartment, instead of into the cathode, and maintained in contact with the anode and up to the of into the cathode, and maintained impoverishment of the solution in any part level of th.

623,263-July 17, 1894. G. A. CANNOT. Process of manufacturing hypochlorous acid.
Oxygen and chlorine gases are thoroughly dried and mixed and electric parks are passed through the mixture to convert the gases into chlorine monoxide. The gases are cooled while subjected to the electric sparks, during their passage through an ozonizing tube, and the resultant gaseous products are conveyed into a suitable solvent.
526,147-September 18, 1894. T. A. EDISON. Art of plating one malerial with another.
The body to be plated is supported in an exhausted chamber together with an lectrode (or electrodes) of the material to be deposited, and the material is electrically vaporized in the chamber, the body heing moved to bring different portions of it successively into proximity to the electrode. An alloy deposit is formed by means of electrodes of different conducting material and malntaining an are between them. Metallic foil is made by depositing on a suitable body and subsequently stripping off the deposited metal.
527,926-October 9, 1894. J. T. DONOVAN AND H. L. GARDNER. Process of producing ozone.
Ozone is produced by the electrolysis of a solution of a permanganate of a solid metallic base, such as potassium permanganate, in water.
528,922-October 30, 1894. H. Y. CASTNER. Process of and apparatus for electrolytic decomposition of alkaline salts.
A moving body of mercury, or other liquid metal or alloy, occupies the bottom, and communicating passage, of the compartments of a decomposing cell, separating the solutions therein, and the electric current passes from the electrode and liquid of one compartment into and through the mercury to the liquid and electrode of the other compartment; whereby, while the alkaline metal is heing deposited and amalgamated with the mercury ln one compartment, a like amount of the alkaline metal is being set free in the other compartment, reducing the counter electromotive force.
551,255-December 18, 1894. C. T. J. VAUTIN. Process of and apparatus for the production of caustic alkali.
A fused salt of sodium, or potassium, in an open hearth or a closed chamber, is electrolyzed upon a molten bath of lead, which constitutes the cathode, and with which the sodium alloys. In a second heated chamber connected with the molten cathode by an open conduit, the sodium of the alloy, the same being a part of the cathode in situ, is subjected to steam and converted into a caustic alkali which is drawn off. The feed is continuous and the chlorine is collected.
585,802—March 12, 1895. O. LUGO. Process of purifying water.
It is electrolyzed, using aluminum anodes (which form insoluble aluminum oxyhydrate), and the water flows in a continuous course through the tank containing the electrodes. The coagulated matter is then removed by filtration or otherwise.
636,848-April 2, 1895. H. BLUMENBERG, JR. Electrolysis.
An electrolyte containing a haloid salt-bromide or chloride-is electrolyzed in a cell having a closed positive compartment, and the gas generated, underits own pressure, passes therefrom to a holder. The base product is conveyed to a
tank, the gasfrom the holder passed into said tank, and the product-bromates or chlorates-therein formed.
697,179-April 9, 1895. H. BLUMENBERG, Jr. Electrolysis.
An electrolyte containing a haloid salt-bromide or chloride-is electrolyzed in a cell having a closed positive compartment, and the gas generated, under its own pressure, passes therefrom to a holder. Additional fuid pressure is then applied to said gas; the base product is conveyed to a tank, the gas
the tank, and the product-bromates or chlorates-therein formed.
5s7,40S-April 9, 1895. G. D. BURTON. Art of extracting grease from wool.
.The greasy, fibrous substance is immersed in an electrolyzed solution, as of hichromste of potash, the current causing a dielectric polarization and movement of the fibrous substance; the electrodes may be of lead. For 30 gailons of se used the current to be reduced to 20 amperes as soon as the temperature of the bath rises to ehout $155^{\circ} \mathrm{F}$.
598,998-May 7, 1895. A. B. BROWNE AND E. D. CHAPLIN. Process of manufacturing chromate of lead.
Chrome hydrate, precipitated from a solution of chrome alum, is mixed with an excess of caustic alkali and redissolved, and the resulting solution is mixed with a solution of chloride of sodium, and the joint solution electrolyzed to with a solution of chioride of sodium, and the joint solution elechromate and decompose the alkaline solution and produce a mixture of hichromate and
chromate of potash. The combined chromates are then mixed with a solution chromate of potash. The combined chromates are then mixed with a sotution
of a soluble salt of lead (as the nitrate, acetate, or chloride) to precipitate lead of a soluble salt of lead as the nitrate, acetate, or chilorid.
chromate, which is filtered, washed, refiltered, and dried.
541,187-June 18, 1895. T. L. WILLSON. (Reissue: 11,511-Oct. 2R, 1895.) Calciumcarbide process.
Pulverulent and thoroughly commingled carbon and lime is fed into the interspace between two electric poles hy means of an alternating current of electricity (the action not occurring to the same extent when a direct current is used) and
said poles.
641,146-June 18, 1895. H. BLACKMAN. Electrolytic pracess and apparatus.
The electrolyte is cooled, to prevent excessive heating, hy continually drawing it off from the cell, passing it through a cooler, and returning it to the cell, ing it of from the cell, pame time maintaining it cool in the cell by cooling pipes.
541,147-June 18, 1895. H. BLACKMAN. Process of and apparatus for bleaching. The hypochlorite electrolyte of an electrolyzed bleaching solution of a chloride of an alkali or alkaline earth is heated and employed for bleaching at an elevated temperature, then drawn off, cooled, and again electrolyzed at a low temperature, to again generate the hypochlorite and reconstitute it as a bleaching agent.
641,395-June 18,1895. C. SALZBERGER. Process of and opparatus for disinfecting and purifying water.
The water is mixed with lime paste, then charged with carkon dioxide to form bicarbonate of lime, and then electrolyzed to set free carbonate of lime form bicarbonate of
541,465-June 25, 1895. C. T. J. VAUTIN. Electrolytical process and apparatus.
Alloys of lead, tin, and alkaline metals are produced hy supplying lead and (or) tin intermittently to an electrolytic furnace together with a fused alkaline
salt superposed thereon, discharging intermittently alloys of lead and tin with
volatile metals when formed electrolytically, treating said allops by distillation while still molten, condensing the pnre distilled volatile metals, and returning the nonvolatile metal to the reducing furnace.

541,597-June 25, 1895. J. D. DARLING. Method of and apparatus for manufacturing sulfuric acid and by-products.
A finsed nitrate, as nitrate of soda, is electrolytically decomposed in a clased cell, and the disengaged gases directly conducted to a Glover tower for use in the sulphuric-acid chambers. The basic residunm-mainly sodium monoxide if nitrate of sodinm has been used-is drawn off after each run.
541,598-June 25, 1895. J. D. DARLING. Process of utilizing nitcr cake or other acid sulfates.
A solntion of acid sulphates-niter cake-is electrolyzed in the negative compartment of a donble ccll having a porous diaphragm, the positive compartment being charged with a base-supplying electrolyte-as a saturated solution of sodium chloride-whereby the base is transferred to the sulphate by electrolytio travel, producing a neutral sulphate. The chlorine gas is collected.
542,05\%-July 2, 1895. L. P. HULIN. Electrolytic process and apparatus.
An alloy of an alkali metal or an alkaline earth metal with a heavy metal (or metals) is formed by employing as an electrolyte the fused salts of the metal of one ingredient of the proposed alloy and an anode consisting of a carhon member and a metal member (or members) composed of the other ingredient (or ingredients) of the proposed alloy. The distribution of the positive current throngh the anodes governs the composition of the alloy. With metals difficult to obtain in the metallic state an anode formed of an intimate mixture of an oxide of the metal and carbon can be used. For metals fusible at the tempera ture of the electrolysis a dish-shaped anode-metal container is employed
551,461-December 17, 1895. W. C. CLARKE. Art of producing carbide of calcium.
In an electric furnace baving horizontal electrodes embedded in a mass of pulverized and intimately commingled lime and carbon of such extent that a material portion will remain undecomposed, the current is started and the electrodes are gradually separated, as the material between them is reduced, so as to produce between the electrodes a budy of calcium carbide surrounded by an undecomposed mass of the mixture.
552,890-January 14, 1896. W, C. CLARKE. Manufacture of carbide of calcium.
The furnace wall is bnilt up as the formation of carbide progresses-fresh charges of material being added from time to time-the lower end of the npper electrode being at all times kept near the npper edge of the furnace wall.
552,895-January 14, 1896. T. CRANEY. Process of and apparatus for making carbonates of soda.
In the electrolysis of a sodium chloride solution, the cathode solution, continuously circulating through a series of electrolytic cells, is passed throngh an outer vessel in circuit, where the warm solntion is charged with carbonic-acio gas, then into a cooler to precipitate the increment of carbonate, and then back into the cathode compartments.
55\%,955-January 14, 1896. T. CRANEY. Process of and apparatus for manufacture of sodium bicarbonate.
In the electrolysis of a sodium-chloride solution the cathode solution, continuously circulating through a series of electrolytic cells, is passed in circuit through an outer vessel, wbere it is treated with carbonic-acid gas, and the bicarbonate of soda precipitate deposited. The aqueous solution of bicarbonate of soda is then returned to the cathode compartments and reconverted into monocarbonate by the additional supply of caustic soda.
552,960-January 14, 1896. C. HOEPFNER. Process of producing cuprous oxides.
Cupriferous material is leached with a cupric-chloride solution containing calcium chloride, wherehy a solntion containing cuprous chloride is obtained. The cuprous chloride in a portion of the solution is converted into copric cblo ride by means of an acid-as sulphurous acid in the presence of oxygen-and employed for leacbing a fresh batch of crude material, and the other portion of the solution is freed from metals other than copper by a suitable precipitant and the cuprous chloride therein is converted into cuprous oxide by a suitable reagent, as caustic lime.
558,598-January 28, 1896. M. OTTO AND A. VERLEY. Manufacture of vanilinn.
A solution of iso-engenate of soda is electrolyzed, converting it into vanillate of soda, and the solution is then treated with an acid-oxalic acid or sulphuric acid-to set free the vanillin.
554,718-February 18, 1896. R. McKENZIE. Process of producing lakes or coloring compounds by electralysis.
A solution or mixture of the fundamental bases of coloring matters-such as chromic acid, alizarine or cochineal-in a suitable liquid, is electrolyzed, using an anode of oxidizable metal, or alloys of metals, according to the color desired The lakes or pigments are then separated from the menstrum, dried and powdered.
555,282-February 25, 1896. A. B. BROWNE AND E. D. CHAPLIN. Pracess of manufacturing white lead by electrolysis
A solution of sodinm nitrate is flowed through the anode compartments of a plnrality of electrolytic cells baving lead anodes, whereby a quantity of lead aitrate forms in each of the cells and is held in solution, thus making a mixture of sodium nitrate and lead nitrate. A portion of said mixed nitrates is mixed with sufficient sodium bydrate (from the catbode compartments) in a separate vessel to precipitate lead hydrate, wbich is filtered, carbonsted, and washed A portion of the mixed mitrates of soda and lead is mixed with fresh sodinm nitrate and returned into the electrolyte to maintain a uniform electrica resistance.
557,057-March.24, 1896. E. N. DICKERSON. Process of and apparatus for producing metallic compounds by electricity.
A finely divided mixture of calcic oxide and carbon is fed into an electric urnace and the carbon monoxide produced is utilized to preheat the charge by burning the same with aded air. The furnace comprises an interior cham ber through which the charge is ted, a surrounding heating chamber, and a connecting feed fiue.

557,324-March 31, 1896. G. D. BURTON. Avt of electric dyeing.
The fibrous substance to be dyed is immersed in the dye liquor, and an electric current of forty or more volts and of suficient volume to warm it is passed through the liquor where the substance is intermingled, whereby the fibers are forced apart and exposed to the action of the dye liquor.
557,325-March 31, 1896. G. D. BURTON. Art of and apparatus for electrodyeing. To prevent contamination of the dye liquor by dissolved metals and injury to the color, carbon electrodes are used in the process of No. 557,324

558,240-April 14, 1896. C. N. WAITE. Method of utilizing saline solutions.
A saline solution is electrolyzed, producing chlorine and bydrate; the hydrate solution is digested with wood fiber, the fiber separated from the liquor, the latter evaporated, and the residuum roasted, producing black ash, which is dis solved and enongb quicklime added to causticise the carbonate of soda. This
solntion is then used in the cathode compartment of an electrolytic cell, and solntion is then used in
the operation repeated.
553,241-April 14, 1896. C, N. WAJTE. Method of utilizing saline solutions.
In the practice of the process of No. 558,240 , the hlack asb is lixiviated with a limited amount of water to remove a portion of the carbonate, and the resid uum is then dissolved and treated with quicklime, etc., according to the said process.

558,717-April 21, 1896. H. L. BREVOORT. Process of electrically treating fabrics for waterproofing or other purposes.
The fabric, moistened with water, is placed between and in contact with an anode of an oxidizable metal and a snitable catbode, and a current of electricity passed throngh the moistened fabric, oxidizing the anode and depositing the oxide on or in the fabric.

558,718-April 21, 1896. H. L. BREVOORT. Art of fixing dyes in fabrics.
The natural dye in a suitable solvent is applied to the fabric, the fabric pressed between an anode of an oxidizable metal and a suitable cathode, and a curren of electricity passed therethrongh, oxidizing the anode and combining the oxide with the natnral dye to form a lake.
558,970-April 28, 1896. O. LUGO AND H. T. JACKSON. Method of electrolytic treatment of socp lyes.
Canstic alkali is extracted and recovered from crude glycerine and spent soap lyes or saponification liquors by electrolyzing the liquor in a porous partition cell, using an anode of zinc in contact with the liquor, and a cathode of metal not attacked by caustic alkali. The precipitates formed are filtered, and the filtrate distilled or condensed.

559,454-May 5, 1896. C. KELLNER. Pracess of and means for producing bleaching agents.
The chlorine liberated at the anode, and the alkaline hydrate formed at the catbode, of an electrolytic cell, in the electrolysis of an alkaline chloride solu tion, are combined as a bleaching agent, in a separatc vessel, by spraying the 560,291 - May 19, 1896. E. G. ACHESON. Electrical furnace.

Silicide of carbon is prodnced by interposing between the electrodes of an electric circuit a core of granulated refractory material of comparatively low resistance (coke), forming a conducting path for the electric current, and surrounding this core with the mass to be toated-coprising silicious and carbonproduction of silicide of carbon comprises a carbonaceons material, as an the cite coal, 20 parts; a silicions material, as sand, 29 parts; and a fibrous material, cite coal, 20 parts; asilicions materiat, as sand, 29 parts; and a fibrous
as sawdust, 29 parts; with or without a flux, as common salt, 5 parts.
560,411-May 19, 1896. C. KELLNER. Process of and apparatus for bleaching vegetable fibers.
The material to be bleached is first subjected to the chlorine solution produced by the electrolysis of an alkali metal chloride, whereby the coloring matter in the material is converted into combinations tbat are soluble in water, and into combinations that are insoluble in water, and it is then subjected to the The solutions are then mixed and returned to the electrolytic coll. The apparing matter. The solutions are then mixed and returned to the electrolytic cell. The appathe same bleaching vat and the suspension and movement of the material while nnder treatment.
660,518-May 19, 1896. J. MEYRUEIS. Treatment of sodium chlorid.
For the manufacture of chlorine, white lead, and bicarbonate of soda, an acidulated solution of sodinm chloride is zlectrolyzed in a cell having a porons diaphragm. Chlorine gas is drawn off from the positive compartment. The precipitated therefrom by carbonic-acid gas. The alkaline liquor remaining is again treated with carbonic acid and bicarbonate of soda obtained on evaporation.
562,402-June 23, 1896. W. R. KING AND F. WYATT. Process of forming calcium carbid.
A mound is formed of mixed coke and lime around a vertical core of conducting material-such as a small carbon rod supported between two superposed electrodes-or the core is forced down through the center of the heap. A current is passed nntil a nugget of calcium carbide is formed in the center of the mound, the upper electrode descending freely as the supporting mixture is fused and reduced. The nugget is removed with tongs, a new core inserted, the material thrown mp around it, and the process repeated.
563,288-July 7, 1896. W. LOBACH. Electrical production of chemical reactions.
The substance to be acted upon-a nongaseous substance for reaction with oxygen or otber gas, as oil to be bleacbed-is passed between electrodes by sprinkling or scattering, an electric "silent" discharge being produced between the electrodes. Oxygen, or an oxygen product, is also passed between the electrodes to produce oxygen in the nascent state, with which the substance (oil) is thus brought into intimate contact at the moment of formation, and combination takes place.
563,527-July 7, 1896. T. L. WILLSON. Process of producing calcium compounds. Mingled lime and carbonaceous deoxidizing agent, such as coke, is subjected to the beat of an electric arc in an electric furnace, the carbonaceous matter being in excess of that required to combine with the freed oxygen-say 65 per ing lime with a liquid hydrocarbon and drying it before feeding to the furnace
$563,528-J u l y 7,1896$. T. L. WILLSON. Pracess of manufacturing hydrocarbon gas.
Calcium carbide is produced from a lime and carbon mixture subjected to the beat of an electric arc in an electric furnace, the carbon being in excess of that reqnired to combine with the freed oxygen, and then decomposed with water to generate a bydrocarbon gas (acetylene).
563,55s-July $7,1896$. A. B. BROWNE AND E. D. CHAPLIN. Proccss of manu
facturing white lead.
A solution, electrolytically separable into a solvent of lead and an alkaline hydrate, is electrolyzed in a cell baving two diaphragms and an intermediate compartment between the anode and catbode to separate the electrolyte into a
wolvent of lead and an alkaline hydrate, and the same are maintained separate
on the outer sides of the diaphragms, by preponderance of pressure of the electrolyte in the intermediate compartment, on the inner sides of the diaphragms. Metallic lead is dissolved in the lead solvent in the anode compartment and an oxidizing agent-nitric acid-iscontinuously added thereto to prevent the formaoxidizing agent-nitric acid-is insole lead salts. The anode and cathode solutions are withdrawn and mixed and hydrate of lead formed and carbonated.
568,554-July 7, 1896. A. B. BROWNE AND E. D. CHAPLIN. Process of manufacturing oxids of lead.
Metallic lead, as an anode, is electrically dissolved in an alkaline hydrate formed by the prior electrolytic separation of an alkaline hase into an alkaline hydrate and a neutralizing agent, such as nitric acid. The oxide of lead produced is dissoived in the akaline hydrate to form a plumbate of an alkaline cipitate the desired lead oxide. The remaining solution is again used as the cipitate the esired lead oxe
alkaline base electrolyte.
565,555-July 7, 1896. A. B. BROWNE. Manufacturc of white lead.
A solution, electrolytically separable into a solvent of lead and an alkaline hydrate, is introduced between two pervious diaphragms interposed between the anode and cathode of a cell, and electrolyzed, and the liquid withdrawn from between the diaphragms as it becomes alkaline; to which liquid may be added alkaline hydrate withdrawn from the cathode department. Metallic lead is electrolytically dissolved in the lead solvent. The resulting solution is
withdrawn and mixed with the withdrawn alkaline liquid, forming a hydrate of lead.

564,940-July 28, 1896. G. H. SELLERS. Mcthod of purifying water.

Pieces of iron in direct contact with pieces of another metal (copper, tin, lead) with which the iron can form a galvanic couple, are agitated in water. Air is iorced through the water to form a coagulent and precipitate the iron salts and impurities.
565,S24-August 4, 1896. H. BLUMENBERG, Jr. Etectrotysis.
A chloride solution is caused to flow through the closed positive compartment of an electrolytic cell (a series of cells, into and from the bottom of each), and a separate electrolyte through the negative compartment in an opposite direction, and to the bottom of a separate tank; the chlorine gas from the positive
compartment being also conveyed to the bottom of the same tank, where the compartment being also conveyed to the bottom of the same tank, where the
chlorate is formed. Retort carbon, for an electrode, is saturated with a hydrochlorate is formed. Retort carbon, for an electrode, is saturated with
565,706-August 11, 1896 . B. S. SUMMERS AND C. O. BORING. Electrolytic separation of vegetable fibers.
The gum or cementing material of vegetable fibers (ramie, etc.) is removed by electrolyzing the fibers in a bath containing a fluoride of the alkaline metals (as aodium fluoride) in the positive compartment of an electrolytic cell.
568,258-September 22, 1896. V. J. KUESS. Process of and apparatus for distilling fatty substances.
Fats or resinous substances in liquid condition are distilled by passing therethrough an electric current and simultaneously injecting steam, whereby the through an electric current and simultaneously injecting steam, whereby
steam is decomposed and acts as an electric conductor through the mass.

568,323-September 29, 1896. E. G. ACHESON. Manufacture of graphite.

A carbide is subjected to a temperature sufficiently high to drive off and volatilize the noncarbon constituents and separate the combined carbon as graphite. A mixture of carbon and one or more oxides is converted into a carbide in 569,385-October 1s, 1896. P. DANCKWARDT. Process of and apparatus for producing cyanids.
A molten bath of the chloride of an alkali or alkali-earth metal is formed and electrolyzed while in contact with carbon and nitrogen, which are introduced into the bath, the cyanide formed being continuously removed from the action of the electric current. Coal and ammonia gas may be used to supply the carbon and nitrogen.
569,680-Ociober 20, 1896. B. S. \& L. L. SUMMERS. Electrolytic process of bleaching and tefining.
The material (ramie) is bleached in the positive compartment of an electrolytic cell, in a bath containing a fuoride and a material yielding a hydrate sodium hydrate) bleaching agent. The Hluoride prevents the in
fiber. It may subsequently be electrolyzed in a fuoride bath.
571,084-November 10, 1896. H. ELDRIDGE, D. J. CLARK, AND M. W. WAMBAUGH. Composition of matter for manufacturing calcium carbide.
Calcium sodic carbide is produced by subjecting a mixture of quicklime, 72 parts by measure; carbon, 40 parts; soda, 4 parts; and borax, one-eighth part, and borax is expelled by heat before mixing.
571,591-November 17, 1896. R. LANGHANS. Process of producing coatings composed of earthy oxids.
For the formation of incandescent mantles, basic earth salts are prepared by dissolving hydrated oxides of earth metals in solutions of neutral earth salts, to lorm an electrolyte, and the hydroxides of the earth metals are geparated by an electric current of high density, they being deposited on electric-conductive ioundations. The deposited hydroxides are dipped in an aqueous solution ol an acid capable of converting the bydioxides into salts which are indriso and calcined; or an alkaloid salt is combined with the solution containing basic earth cined; or an alkaloid salt is combined thereby depositing in an intimate union hydroxides of earth metals salts, the alkaloid upon the foundation, which is dried and calcined to destroy the and the alkaloid upon the foundation, which constance and convert the hydroxides oxides.
571,532-November 17, 1896. R. LANGHANS. Process of producing coatings composed of earthy oxids.
Porous coatings of incandescent mantles are formed by electrolyzing a dilute aqueous solution of a metahydroxide of an earth or alkali-earth metal by an electric current ol low density, depositing thereby upon an electro-conduct the doundation, as the cathode, a coating a nded to the solution of a meta-earthy deposit. An organic oase may oe asited along with the earthy hydroxideand is destroyed by the calcining process, leaving a porous coating of earthy oxide. 571,559-November 17, 1896. R. LANGBANS. Electrolytic process of converting hydroxids of carth and earth-alkali metals into indissoluble organic or inorganic salls, etc.
The process of electrolytically transforming into salt the hydroxidc of earth metal deposited upon electro-conductive foundations consists in placing such coated loundation as an anode in an electrolyte: which consists of an aqueous
trolyte to the action of a current on low density. The salt is afterwards reduced to oxide by calcination.
572,519-December 8, 1896. H. ALBERT. Process of manufacturing phosphates of alkalis.
An anode bath of phosphoric acid and a cathode bath of one or moore of the soluble salts of the alkali metals, separated by a porous diaphragm, are electrolyzed, whereby a mono-, di-, or tri- basic phosphate of the alkali employed is produced at the cathode. The alkaline phosphate may be directly converted into ceustic alkali with lime.

572,636-December 8, 1496. J. E. HEWES. Electric furnace.
The carbide and associated half-formed product of an electric furnace is discharged into a closed chamber, the dust drawn off by suction, the material screened, and the cleansed carbide removed. The furnace has an inclined and the other electrode--constituting a trapdoor-is stationary at the foot of the hearth, and stands at an angle thereto. Feed is provided for the material and for the movable electrode.

573,290-December 15, 1896. M. PRIDHAM. Process of purifying and decolorizing saccharine or other liquids.
As a modification of the process of No. 573,289, the ozone is passed through subsequent to electric action

575, 645—January 19, 1897. E. HERMITE. Apparatus for purifying or disinfecting. A disinfecting solution is made by electrolyzing a solution containing chloride of magnesium, or chloride of magnesium and chloride of sodium (sea water or mother liquor from salt works).
575,788-January 26, 1897. T. L. WILLSON. Electric smetting.
Pulverized material to be smelted, as alumina, is fed into the neighborhood of an electric arc of an alternating current of a frequency adapted to set the mass of material into vibration, whereby the arc pulsations draw the material within its influence. A pool of molten material may form the lower electrode and the same may be of a base-alloying metal.
577,s29—Febvuary 16, 1897. N. SLAWIA NOFF. Electric casting of metats.
An electric arc is formed between a rod of the casting metal and the mold, or the fused metal in the mold, and the mold filled from the Iusing of the metal electrode, the arc being continuously regulated.

577,58母-February 23, 1897. G. J. ANDERSSON AND J.C. DITTRICH. Process of. manufacturing ozone and by-products.
Air is first freed from carbon dioxide and dried, then passed through an ozonizing apparatus, forming ozone and nitrous oxides hy the simultaneous oxidizing of the nitrogen, and the nitrous oxides are then separated from the ozone by absorbing them in auitable liquids, as water forming nitric acid, or a solution of caustic alkali forming nitrite or nitrate of the alkali.
577,802-February ${ }^{2} 9,1897$. G. M. WESTMAN. Process of and apparatus for treating arsenic ores.
The ore is melted in a closed electric furnace with a lead bath for the bottom electrode beneath the ore, with which the precious metals alloy, the arsenical vapors being led off'and condensed.
578,457-March 9, 1897. C. KELLNER. Process of and apparatus for simultaneously producing ammonia, sodium hydroxid, and chlorin.
Sodium chloride-or other alkali metal chloride-is electrolytically decomposed in a closed cell having a mercury cathode in the form of a thin layer in continuous motion in a helical direction toward a central point where it flows off. The chlorine product is drawn off and the alkali metal amalgam passes to a closed decomposing vessel and flows over a conductive surface beneath a hot solution of sodium nitrate (or nitrate or other alkali metal) and an electrode, thereby forming ammonia and sodium hydroxide and developing electrical energy which may be utilized. The mercury then passes through a cooler and is returned to the electrolytic cell.
578,685-March 9,1897. E. R. WHITNEY. Process of ancl apparatus for producing calcium carbid.
Mechanically compacted columns of fragmentary charcoal are moved longitudinally toward each other, and constitute the electrodes of an arc furnace, into and through which arc a mixture of pulverized lime and charcoal is fed. A number of separate electric arcs proceeding from charcoal electrodes and crossing each other are used.
579,817-March 23, 1897. E. J. CONSTAM AND A. VON HANSEN. Process of manufacturing percaibonates.
Percarbonates of the alkali metals and ammonium, as new chemical compounds which are readily soluble in water and possess strong oxidizing properties, are produced by electrolyzing a saturated solution of their carbonates at temperatures below zero centigrade.
580,919-April 20, 1897. A. E. WOOLF. Method of and apparatus for disinfecting and deodorizing.
InIected water or sewage (running streams, sources of supply for cities, etc.) is disinfected and deodorized by discharging or injecting thereinto an electrolyzed solution of salt water.
585, 131-May 25, 1897. H. G. STIEBEL, Jk. Apparatus for and method of sterilizing liquids.
The liquid is caused to drop through an atmosphere of ozone produced by a series of disruptive electric discharges, and in the path of such discharges, between the electrodes but out of contact therewith.
583,350-May 25, 1897. E. A. LE SUEUR. Process of clectrolysis.
In the electrolysis of aaline solutions, the solution in the anode compartment is maintained in the chemical condition in which it exists at the commencement by adding hydrochloric acid to combine with the hydrate that leaks or diffuses through the diaphragm.
589,498-June 1, 1897. J. T. MOREHEAD. Manufacture of carbid of calcium.
The furnace wall is built up as the formation of carbide progresses, Iresh charges of material being added from time to time. (Same as No. 552,890.)
586,256-Juty 13, 1897. L. P. HULIN. Process of elcetrolytic decomposition of solutions.
The electrolyte is confined between two permcable electrodes, and the ions are filtered therethrough, whereby an immediate separation of the ions from the electrolyte is effected at the point and instant where and when they are generated.

586,729—July 20, 1897. C. KELLNER. Melhod of and apparatus for effecling electrolysis.
In an apparatus for the electrolytic decomposition of salts of metals capable of combining with mercury, a mercury cathode flows uninterruptedly from a higher to a lower level, and fows alternately and repeatedly out of contact with the salt solution and into contact with a lecomposing agent for the amalgam.
587,138-July 97, 1897. I. L. ROBERTS. Process of and apparatus for manufacturing metallic carbids.
A conducting path of material to be heated to incandescence is estahlished hetween electrodes within a mixture of pulverized ore or oxide (as calcium oxide) and carbon, and as the heat thereof converts the adjacent portions oi the mixture into a conductive body the electrodes are gradually withdrawn and the mixture is gradually moved transversely to the line of the current, whereby successive portions of the mixture are brought inta the heating field, Whereby successive portions of the mixture are brought into the heating field,
and a slab of carbide is formed. The floor of the furnace chamber is a slowly moving horizontal conveyor, and the electrodes, entering at one end of the chamber in the same horizontal plane, are angularly adjustable so that they can take a parallel position.
587,348-August 3,1897 . G. S. STRONG. Elechric furnace.
The electrodes are formed of a mass of material, including a binder, which is agglomerated, formed, and fed forward to the arc by pressure, and expased in the guides to a high temperature before actually entering the furnace. one or mare or all of the materials used in the amelting operation may constitute the gaid mass of material; the electrodes constituting the smelting charge.
587,487-August S, 1897. F. HUR'TER. Apparatus for manufacturing chlorate of polash by eleclrolysis.
The cathode consists of a metallic vessel having a porous protective lining, essentially of cement.
587,509-August 3, 1897. I. L. ROBERTS. Process of and apparalus for making metallic carbids.
A mixture of the metallic compound and carbon is passed heneath a horizontal electric arc and in direct contact therewith in the nonoxidizing atmosphere of a closed chamber. The arc is deflected downward by means of an electro-magnet, and the carbide formed is continuously removed. The material, fed in through a double hopper, is carried by a horizontal endless helt under the arc, and the unchanged material, the carbide heing scraped off, is carried back and again ied onto the belt.
587,880-August 10, 1897. L. P. HULIN. Process of and apparatus for manufacturing metallic peroxids and caustic alkalies.
The higher peroxides of heavy metals, such as lead, antimony, hismuth chromium, and manganese, are formed by alloying said metals with an alkali metal or alkali-earth metal (Iused by an electric current), and subjecting the alloy to the action of heat-a dull red-and atmospheric air to form the desired peroxide in combination with the anhydrous alkaline oxide formed conjointly therewith; continuously withdrawing the peroxide and alkaline oxide from the presence of the alloy under treatment, and decomposing the salt of the metallic acid thus formed to separate the peroxide.
588,012-August 10, 1897. 1. L. ROBERTS. Process of and apparatus for making metallic carbids.
The process and apparatus of No. 587,509 is supplemented by a reflecting dome placed ahove the arc, whereby the reflected heat assists in the formation of the carbide.
588,084-August 10, 1897. G. H. POND. Pracess of and apparatus for electro-chemical treatment of straw or other fibrous materials.
The straw packed in a tank, with an open anode cell at the side thereof, is subjected to the action of a solution of sodium chloride, which is circulated throughout the mass of straw while a current of electricity is passing through the solution. The solution is caused to circulate quickly at the beginning of the
operation and then the speed of circulation is decreased.
688,085-August 10, 1897. G. H. POND. Method of and apparatus for electro-chemical treatment of fibrous material.
Straw or other fiber is packed in an electrolytic tank having removable partitions and containing a chloride of sodium solution, so as to form anode and cathode compartments on opposite sidee of the mass; and, during the electroytic action, the solution is caused to circulate throughout the straw, first irom the cathode aide to disintegrate it, and then from the anode side to bleach it. 588,266-August 17, 1897. G. DE CHALMOT. Treatment of phosphates.
Natural phosphate rock containing silica, alomina, or iron oxide, is fused in an electric furnace-whereby the proportion of soluble phosphoric acid is in-creased-and immediately removed from the furnace and brought into contact or mixed with silica, and then dropped into water while hot, which cracks it so that it is easily pulverized; it is then available as a fertilizer.
588,276-August 17, 1897. C. KELLNER. Electrolytic proccss and apparatus therefor.
In the electrolysis of compounds whose electropositive constituent will comhine with mercury, the mercury is moved continuously out of and back into the field of action of the electric currents to successive points where the amalgam acts as an anode, and is decomposed successively at such points by a decomposing agent in presence of a cathode; the successive electrodes heing connected in series, whereby an independent current of electricity is generated of higher potential than the electrolyzing current.
588,883-August 24, 1897. P. G. SALOM. Process of making litharge or protoxid of lead from lead ore.
Pulverized lead ore-galena-is subjected to the action of nascent hydrogen electrolytically developed, as in the cathode compartment of a cell, producing thereby a spongy mass, which is then heated in the open air, first at a tempera ture below the melting point of lead and afterwards at a higher temperature.
589,528-September 7, 1897. J. BOELSTERLI. Process of and apparatus jor elec-
trolyzing fused salts.
trolyzing fused salts.
A fused alkali-metal salt is electrolyzed and the alkali metal liberated exclugively at the surface of the electrolyte. The cathodes, just dipping below the surface of the electrolyte, and the anodes, each provided with an insulated gas-conducting sheath, depend from supporting rods and have means for vertically and horizontally adjusting the cathodes.
589,692-September 7, 1897. S. BLUM. Composition of matter for manufacturing calcium carbid.
A mixture of air-slaked lime, 22 parts by measure; carbon, 8 parts; plumhago containing jron, 4 parts; and potash, one-half part; is used for the manufacture of calcium carbide in an electric furnace. The fuxing quality of certain of the ingredients hastens the operation.

589,801-September 7, 1897. H. C. WOLTERECK. Process of manufacturing white lead.
A lead anode is dissolved in an alkaline electrolyte consisting of a solution of a salt of an alkali in combination with any acid which will produce a soluble lead aalt and of a bicarbonate of an alkali (4 parts of acetate, nitrate, or other salt of soda, potash, or ammonia, and I part of bicarbonate), causing the formation of a soluble compound of lead, which is transformed into the hydrated carbonate by the simultaneaus generation of free carbonic acid at the anode and by the presence of caustic alkali generated at said cathode, a current of car-bonic-acid gas being passed through the electrolyte to regenerate the spent alkaline bicarbonate.

589,957-September 14, 1897. R. F. S. HEATH. Composition for manufacturing calcium carbids.
A mixture of quicklime, 9 parts; carbon, 4 parts; and sodium or potassium chloride, one-quarter ounce to the pound of mixture is used ior the manufac ture of a carbide of calcium in an electric furnace.

590,514-September 21, 1897. A. H. COWLES. Process of producing metallic carbides.
Same as No. 551,461.
590,548-September 21, 1897. C. KELLNER. Process of producing hydrates or other salts of alkaline metals.
An amalgam is formed by the electrolysis of a solution of a suitable salt with a mercury cathode and simultaneously an equivalent quantity of the alkaline metal of the amalgam is oxidized by making the amalgam the anode of a galvanic cell containing a liquid reagent and a cathode electro-negative to the amalgam and short circuited therewith. The mercury in a narrow compartment forms a partition between the electrolytic and the galvanic cells.
590,67s-September 28, 1897. F. H. SODEN. Process of and apparatus for electrically treating ores.
Ores are purified, preparatory to smelting, hy heating in a closed chamber by contact with unbroken electric resistance conductors embedded in the ore, and hy the resistance of the ore to the current shunted therethrough, and by introducing into the ore at the same time, first, super-heated air, and then a purifying gas, such as hydrogen.
591,355-October 5, 1897. H. MOISSAN. Process of obtaining cast titanium.
Cast metallic titanium combined with carbon is obtained by subjecting an oxide of salt of titanium in presence of carbon to an electric arc produced by a current of from 1,000 to 2,000 amperes and 60 to 70 volts.
591,730-October 12, 1897. W. BEIN. Process of and apparatus for electrolyzing.
The electrolytic cell has a series of vertical partitions which permit the pasaage of the electrolyte above or below them; horizontally disposed electrodes arranged in different vertical planes; a feed pipe for fresh solution; and outlet arranged in different vertical planes; a feed pipe for fresh solution; and outlet permits of the feeding in of fresh solution and withdrawal of the decomposed permits of the feeding in or fresh solution and withdrawal of the decomposed tions, of the layers of decomposed products outside of the infuence of the current. It is applicable to the electrolysis of brine and the production of acids, as nitric acid by electrolyzing saltpeter, sulphuric acid irom sulphates, etc.
594,740-November 30, 1897. H. L. HARTENSTEIN. Process of and apparatus for carbureting calcium.
Limeatone is calcined, and while still hot carbonaceous material-as pulverized coke-is forced into the mass by the aid of a combustible gas under pressure, the mass being simultaneously subjected to the action of an electric current.
The apparatus comprises a calcining chamber above a removable electric iurnace chamber, mounted on a track; mechanism and connections heing provided for forcing gas and with it coke dust into the furnace chamber.
596,704-January 4, 1898. H. L. HARTENSTEIN. Process of and apparatus for utilizing waste products of blast furnaces.
As a modification of the process of No. 596,749 , the gas injected is a reducing gas.
The apparatus comprises a converter having a slag-receiving portion, a mixing portion with tuyers, and an electric-treatment portion having electrodes, by which the several steps of the process are successively performed in the converter.
596,705-January 4, 1898. H. L. HARTENSTEIN. Process of utilizing waste prod-
ucts of blast furnaces.
The pracess of No. 596,749 is applied to solidified slag, which is reduced to a molten state and then treated.
596,749-Janwary 4, 1898. H. L. HARTENSTEIN. Process of utilizing waste products of blast furnaces.
Carbonaceous material is diffused through molten slag in suitable propor-tions-as 1 part coke to 3 parts slag-by blowing it in with gas pressure; the mixture is then agitated to enhance the impregnation, and then subjected to the fusing action of an electric current, producing a carbide of calcium, aluminium, and silicon.
696,986-January 4, 1898. F. K. LRVING. Process of producing ozone.
Ozone is produced by the electrolysis of a metallic salt-as sulphate of copperthe hase of which is reducible, and thereby serves to dispose of the hydrogen by secondary action during electrolysis; the freed ozone being conveyed into a suitable menstruum, as glycerine and distilled water.
696,999-January 11, 1898. J. E. HEW ES. Process of making calcium carbids.
A carbide of calcium mixture is fused in an electric furnace with a flux consisting of manganese oxide and calcium carbonate. Carbon and lime may be introduced into a fused bath containing manganese and calcium and oxygen and a continuous electric current passed therethrough to effect chemical combination.
598,549-February 8, 1898. H. H. WING. Process of manufacturing graphite.
Graphite is produced by passing an electric current through powdered carpart of the carhon into cose-in an electric furnace, whereby the heat converts part of the carhon into graphite, and then separating the urconverted carbon from the graphite. The material is continuously fed into the furnace; and the product is continously withdrawn at the bottom, which is water-jacketed to cool 601,054-March 22, 1898. I. L. ROBERTS. Process of preserving carbids.
The interspaces of the carbide in a vessel are filled with dehydrated wheat chaf, and the vessel is then charged with a gas-as acetylene gas-which will not iorm an explosive mixture with acetylene generated in the vessel, and it is

601, $366-$ March $29,1898$. C. L. WILSON, C. MUMA, J. W. UNGER, H.
SCHNECKLOTH, A. P. BROSIUS, AND J. C. KUCHEL Method of and apparatus for producing calcium carbid.
The furnace pot or chamber is to be lined with granulated calcium carbide. Compressed sticks of pulverized lime and carbon, connected together, are fed into the are of a furnace having the said lining
602,872-April 26, 1898. J. W. RICHARDS AND C. W. ROEPPER. Process of producing chemical compounds by electrolysis.
An alternating current is passed through electrodes of similsr composition immersed in an electrolyte, one or more of whose constituents forms alternately at each electrode, by electrolytic attack thereon, a conpound partislly derived from the consumption of that pole, which is insoluble in either the electrolyte or the products formed at the opposite pole for the time being; as, for example, with electrodes of metallic cadmium, in a 10 per cent solution of sodium hyposulphite, an insoluble sulphide of cadmium is formed, which is disengaged from the metal pole by the mechanical action of the bubbles of hydrogen and falls to the bottom.
602,747-April 19, 1898. C. K. HARDING. Process of smelting phosphorvs.
A phosphoric oxide substantially free from lime is first made from a phosphatic base, and roasted in the presence of carbon until the combustible impurities have been consumed and substantially 2 parts of the oxygen has been
smelted out. The phosphoric oxide remaining is mixed with carbon and subjected to the action of an electric arc developed within the mass of the material, and between a negative electrode and the material, in an atmosphere of bydrogen. A part of the carbon for the reaction is supplied in a fluid form, as gasoline, forced in through a hollow negative electrode.
Phosphatic material, as phosphatic rock, is treated with sulphuric acid to eliminate substantially all of the lime, and then roasted with carbon to eliminate the major part of the sulphur and smelt out a part of the oxygen.
602,87s-April 26, 1898. J. W. RICHARDS AND C. W. ROEPPER. Process of
electrolytically manufacturing metallic sulfids.
The metal or metals whose sulphide is desired-for example, cadmium sul-phide-is employed as an anode in the electrolysis of a solution containing a hyposulphite salt-as sodium hyposulphite-the sulphide sought beiug formed from the anode and precipitated.
602,976-April 26, 1898. G. DE CHALMOT. Process of producing silicids of iron The ferrosilicides of No. 602,975 are produced by subjecting a silicon compound with iron and carbonaceous matter (coke)-the silicon compound being in excess-to the heat of an electric fu
605,380-June 7, 1898. H. S. BLACKMORE. Process of producing aluminum sulfd and reducing same to metallic state.
Aluminum sulphide is produced by exposing aluminum oxide to the action of thio carbonate-of-alkali bases in a heated state. The electrolysis of a molten bath of sodium and potassium sulphides, using carbon anodes, produces thiobath of sodium and potassium sulphides, using carbon anodes, produces inosulphide, is electrolytically decomposed and aluminum deposited.
606,981-July 5, 1898. W. S. ROMME. Process of and apparatus for decomposing solid substances.
Solid substances, as the chlorides of sodium and potassium, are electrolytically decomposed by continuously supplying the mass, placed between electrodes, in a solid, granular state, with such quantity of solven
607,646-July 19, 1898. P. MARINO. Electrolytic bath.
The process of electrolytic production of metals consists in adding to a solution of a salt of the metal to be deposited alkali metal salts of the ssme acid and an alkali-earth-metal salt of another acid in such quantity as to give, by an ancomplete double decomposition, an insoluble precipitate and a mixed solution of different soluble salts of the metal to be deposited, and electrolyzing the mixed solution; an organic acid and an acid such as chlorbydric or sulthe mixed solution; an organic acid and an acid suca as chic the electrolyte, to
phuric acid, capable of attacking the mineral, is added to the
facilitate the decomposition, and maintain a constant density in the bath; the mineral itself is used as the soluble anode. For example, a solution containing mineral equivalent of sulphate of magnesium is mixed with a solutiou containing one equivalent of sulphate of magnesium than one equivalent of chloride of barium, giving an insoluble precipitate of sulphate of barium in a solution of sulphate and of cbloride of magnesium; of sulphate of barium in a solution of sulphation and of ciquid forming an electrolyte for depositing magnes.
607,94s-July 26, 1898. H. MEHNER. Method of producing ammonia.
A mixture of coal and alkali or an alkaline earth-metal csrbonate is heated in an electric furnace while air is caused to pass through the same, and the cyanide vapors produced escape at the zone of the electrodes intoa receiver and are therein condensed upon a body of coal. Steam is then admitted to the receiver, decomposing the condensed cyanide into ammonia and alkali carbonate; the ammonia is led off and the alkalinized coal returned to the electric furnace and the operation continued. The receiver is above the furnace, so that the residue the operation continued. The receiver is above coal and alkali can fall into the furnace on opening a slide door.
609,864-August 30, 1898. M. P. WOOD. Process of and apparatus for producing calcium carbide.
The pulverized mineral and carbon with a suitable binder having heeu formed into cartridges, a number of the cartridges are subjected to the highest heat of a combustion furnace, an electric current being at the same time passed through a combustion furnace, an the cartridges successively until it is melted down, when it is replaced each of the cartridges successives are held in a vertical
with a new one. The cartridges
contact and fusion occurs at the top of the cartridge.
612,009-October 11, 1898. G. B. BALDO. Process of and apparatus for electrolyzing sea water.
Two bodies of sea water are decomposed, in a three-compartment cell, at the anode and cathode, respectively, in presence of a body of fresh water on the anode and cathode, respeche of the cathode to sea water, precipitating magnesium and opposite side of the cathode to ene sea watic soda in the fresh-water compartcalcium hydrates at the catbode and the anode, and subsequently the liquid of ment. Chiorine gas is evolved at tolanic acid is vaporized to one-fourth of the anode compartment containing sulphuric acid distilled, and the vapor collected as hydrochacid.
612,694-October 18, 1898. H. ASCHERMANN. Process of simultaneously producing carbids and metals or alloys.
A mixture of carbon with an oxygen compound and in sulphide of metals A mixture of carbon with an oxygenectically heated. If nonvolatile, the having different affinities for carbotom of the mass; if volatile, its vapors can be uncombined metal sinks to the bottom or collecte example, a mixture of iron pyrites and lime and carbon treated collected. For example, a mixture of iron pyrites and illic iron, with a greatly in an electric furnace gives carrent.

614,987-November 29, 1898. G. D. BURTON. Process of and apparatus for separaling melals and by-products from ores by electricity.
Ore, under exclusion of air, is subjected to electric heat below the fusing point of the metals, to drive off the by-products, as sulphur. A gas containing oxygen is then admitted, csusing combustion, and the ore is subjected to the combined hest of combustion snd electricity at a tempersture above the fusing point of the metals. With ores containing metals of different melting points, the temperature is first raised and maintained, by regulation of the current, above the fusing point of one and below that of the other, for melting out the low fusing metal, and the temperature is then raised to melt the remaining metal. The furnace has a hollow perforated electric-conducting shaft and spiral wings admitting air or gas to the charge.
614,929-November 29, 1898. G. D. BURTON. Process of tanning hides or skins of animals.
The bides sre electrolyzed in a tanning solution; coloring matter is then added to the solution; and it is again electrolyzed.
614,980-November 29, 1898. G. D. BURTON. Process of and apparatus for separating metals from ores by electricity.
The ore is simultaneously subjected to pressure and the passage of a beating electric current, the pressure following the diminishing mass of ore. The furnace has perforated electrode plates, one of them movable, to clamp the ore mass between them; and a chamber below receives the molten metal.
616,199-December 20, 1898. G. H. POND. Method of electrolylically treating straw or other fibrous material.
Straw or like tibrous material for the manufacture of paper pulp is disintegrated in a beated solution formed by electrolyzing a solution of sodium chloride in the presence of calcium bydrate, allowing it to settle and drawing off the solution. After use, the solution is returned to the electrolyzing tank, reenforced with fresh sodium chloride, and the operation repeated.
616,988-January 3, 1899. B. S. SUMMERS. Method of refining vegetable fiber.
The material (ramie) is degummed snd refined by subjecting the fibers to the action of a chemical bath containing a hydrate of an alkali metal, and then to the electro-chemical action of a bath containing a hydrate of an alkali
617,979-January 17, 1899. E. G. ACHESON. Method of manufacturing graphite articles.
Articles containing a greater or less percentsge of grapbite, as brushes for electric motors, crayons, stove polish, crucibles, etc., are produced by forming the articles from a mix ture of csrbon and a metallic salt baving a base capable of being reduced by and combining with carbon, and then subjecting them to a temperature sufficiently bigh to form and then, decompose a carbide, thereby converting the carbon into graphite. The articles to be graph
bedded in the hesting core of fine carbon of an electric furnace.
618,575-January 31,1899 . F. M. LYTE. Method of and apparatus for producing chlorine; zinc, or other metals from mixed ores.
Complex sulphide ores of zinc, usually carrying lead and silver, are ground and calcined at a low red beat to convert the zine sulphide into zinc sulphate; the latter is extracted by lixiviation and converted into zinc chloride by treating with an alkaline chloride snd refrigerating; the zinc chloride is concentrated and rendered anhydrous by heating it in the presence of metallic zinc, assisting the action of the zinc by electrolysis, in order to decompose the water of bydration, subsequently decomposing, first the zinc oxide and then the zinc chloride by electrolysis with a carbon anode and a cathode of fused metallic
zinc for the production of chlorine and zinc; the lead and silver are recovered zinc for tide
620,689-March 7, 1899. T. A. UEHLING. Process of and apparatus for reducing and oxidizing salts.
An electrolytic diaphragm of palladium, or a suitably supported layer or film of palladium, is used. Substances are electrolytically oxidized and reduced by the transferring of hydrogen from one compartment of an electrolytic cell to the other through a diaphrsgm, like palladium, that is nonporous, electrically conducting, and capable of absorbing and transmitt
625,691-April 25, 1899. C. E. ACKER. Process of and apparatus for manufacturing alkali metals.
The fused salt of an alkali metal is electrolyzed with a molten metal cathode (lead) with which the liberated metal will alloy, and a forced circulation is imparted to the molten metal to conduct the alloy as formed to a separate chamber, where it stratifies and then volatilizes-in an inert atmosphere in said chamber-the alkali metal out of contact with the electrolyte; the volatilized chamber-the is then collected. The same body of inert gas circulating through the metamber assists in carrying off the volatilized metal.
623,692-April 25, 1899. C. E. ACKER. Process of and apparatus for manufacturing metallic alloys.
Following the process of No. 623,691, an alloy of the alkali metal with the heavy metal (as lead, tin, zinc, etc.) is made by flowing of the lighter portion from the surface of the metal in the separate chamber after it stratifies, the heavier portion circulating back into the electrolytic compartment.
624,041-May 2, 1899. C. B. JACOBS. Process of manufacturing soluble barium
compounds. barium sulphate and sufficient carbon to extract part only of the oxygen of the sulphate-for example, sulphate 20 parts and carbon 1 part-until sulphur dioxide ceases to escape.
625,918-May 30, 1899. E. BAILEY, G. R. COX AND W. T. HEY. Process of and apparatus for' producing white lead.
An electric arc is formed at the surface of a body of molten lead, and the necessary gases or fumes-commingled steam, carbonic-acid gas, and acetic-acid fumes-are introduced througe lead caught.
626,530-June 6, 1899. C. LUCKOW. Pracess of producing peroxid of lead.
Lead anodes are used in an electrolyte containing from 0.3 to 3 per cent of the sodium, potassium, or ammonium salts of sulphuric acid in mixture with the sodium, potassium, or ammonium salts of cbloric acid; the mixture should the sodiut 99.5 per cent of the sulphuric-acid salt, and about 0.5 per cent of the chloric-acid salt. The process is continuous,
626,391-June 6, 1899. C. LUCKOW. Process of producing neutral chromate of lead.
Neutral chromate of lead is produced by using a lead anode in the electrolysis of an aqueous solution containing from 0.3 to 3 per cent of the sodium, potas-
sium, or ammonium salts of chloric acid in mixture with the sodium, potassium, or ammonium salts of chromic acid. The hath is maintained constant by the addition of water and chromic acid. The mixture should be about 80 per cent of the chloric-acid salt and 20 per cent of the chromic-acid salt.

626,547-June 6, 1899. C. LUCKOW. Process of producing oxid of copper. oxide of copper is produced by using an anode of copper in the electrolysis of an aqueous solution containing from 0.3 per cent to 3 per cent of the sodium, potassium, or ammonium salts of horic acid in mixture with the sodium, potassinm, or ammonium salts of chloric acid. The mixture should be about 95 per cent of the boric-acid salt and 5 per cent of the chloric-acid salt.
626,685-June 6, 1899. G. SCHWAHN. Process of reducing aluminium from its compounds.
An aluminium compound is vaporized and the vapor subjected to the action of a hot carbon-gas deoxidizer in the presence of incandescent carbon for an appreciable length of time-not less than fifteen seconds-air being excluded. The mixed vapor and gas, which may contain fluorine as an admixture, may be passed through a carbon mass made incandescent hy an electric current. 627,000-June 13, 1899. P. IMHOFF. Process of making oxyhalogen salts.
Oxyhalogen salts of the alkali metals are produced by electrolyzing (without a diaphragm) a solution of an alkali-metal chloride in which is suspended a metallic oxide, such as aluminic oxide or boron trioxide, which can act both as a basic and acid radical, thereby forming chlorine and an alkali-metal compound wherein said metallic oxide acts as the acid radical, and causing the chlorine to react upon such compound to form oxyhalogen salts of the alkali metal. The bath is regenerated with the metallic oxide.
627,00\%-June 13, 1899. C. LUCKOW. Process of producing whitc lead by means of electrotysis.
White lead is produced by using lead anodes in the electrolysis of an aqueous solution containing from 0.3 to 3 per cent of sodium, potassium, or ammonium salts of chloric acid in mixture with the sodium, potassium, or ammonium salts of carbenic acid. The hath is maintained constant hy the addition of carbon dioxide and water. The mixture should be about 80 per cent of the chloric-acid salt and 20 per cent of the carbonic-acid salt.
627,063-June 18, 1899. P. IMHOFF. Manufacture of oxyhalogen salts.
Oxyhalogen salts of the alkaline chlorides, or other chlorides, are produced by electrolyzing-without a diaphragm-a neutral or alkaline solution of the chloride to which has heen added an inorganic oxidizing salt of the oxygen acid-such as potassium chromate in the electrolysis of potassium chloridethereby effecting a diminution in the reduction brought about by nascent hydrogen and a diminution of the decomposition of water.
627, 266-June 20, 1899. C. LUCKOW. Process of producing acid chromale of lead.
Acid chromate of lead is produced by using lead anodes in the electrolysis of an aqueous solution containing from 0.3 to 3 per cent of the sodium, potassium, or ammonium salts of chloric acid in mixture with the sodium, potassium, or ammonium salts of chromic acid. The bath is maintained constant by the addition of water and chromic acid. The mixture should be ahout 80 per cent of one of the salts of chloric acid, and about 20 per cent of one of the salts of chromic acid.
627,267—June 20, 1899. C. LUCKOW. Process of producing basic phosphale of copper by means of olectrolysis.
Basic phosphate of copper is produced by using copper anodes in the electrolysis of an aqueous solution containing from three-tenths to 3 per cent of the sodium, potassium, or ammonium salts of chloric acid in mixture with the sodium, potassium, or ammonium salts of phosphoric acid. The bath is maintained constant by the addition of water and phosphoric acid and air. The
mixture should be about 80 per cent of the salts of chloric acid and 20 per cent of one of the salts of phosphoric acid.
688,806-July 11, 1899. W. S. HORRY. Method of producing carbid of calcium.
Electrodes of opposite polarity are arranged in a vertical position and adjacent to each other; the charge fed around the electrodes, and an electric current caused to flow between the electrodes, thereby forming an initial pool of carbide, the charge being kept around the electrodes or such depth as to retain a considerable portion of the heat generated and thereby maintain the pool of carbide in a melted condition until it spreads laterally heyond the field of reduction; the carbide and charge heing shifted vertically with respect to the
bring successive portions of the charge into the field of reduction.
629,995-July 25, 1899. I. L. ROBERTS. Process of reducing metallic compounds and producing metallic carbids.
The mixture of the metallic componnd and carbon is supported upon an incandescent conductor or conductors, which support the charge and fuse the material, the fused metal or carhides passing the conductor. The conductors helow being closed in.
630,612-August 8, 1899. M. Le BLANC AND H. REISENEGGER. Process of producing chromic acid by electrolysis.
A solution of a chromium-oxide salt in an aqueous solution of the corresponding acid-as chromium sulphate in sulphuric acid-is placed in the anode and cathode compartments of a vessel coated with lead, provided with a diaphragm, and having lead electrodes, and electrolyzed. The chromic acid produced and the residual solution are removed from the anode compartment, and the solution previously in the cathode compartment is transferred to the anode compartment. The residual solution from the anode compartment is recharged
with chromium sulphate and replaced in the cathode compartment, and the with chromium sulphate and rep
electrical operation begun again.
650,690-August 8, 1899. H. L. HARTENSTEIN. Process of manufacturing metallic carbids.
As a modification of the process of No. 596,749, finely powdered limestone is, along with the carbonsceous matter, diffused through the molten slag.
651,259-August 15, 1899. F. A. GOOCH. Proccss of reducing aluminium.
A bath is formed by fusing together fluorides of aluminium and of an alkaline metal, as sodium; adding to the bath in suitable quantity carbon disulphide together with alumina, and elec ${ }^{+}$rolyzing with a current of suitably low voltage. 631,468-August 22, 1899. C. KELLNER. Method of and apparatus for producing alkali salts.
A solution of a suitahle substance is electrolyzed in a cell having a mercury cathode forming an amalgam, the amalgam heing then transferred to a second cell, where it is decomposed by means of a suitable solvent while passing therethrough the electrolyzing current and the secondary current produced by metallically connecting the electrodes of the said second cell.

691,899-August 99,1899 . H. C. WOLTERECK. Process of manufacturing white lead or other pigments by electrolysis.
White lead is produced by using lead anodes in the electrolysis of a solution capable of dissolving lead and containing an alkali metal carbonate-as, for example, ammonium nitrate 9 to 12 parts, ammonium bicarbonate 1 part-maintaining the electrolyte at a temperature below $25^{\circ} \mathrm{C}$.; continuously withdrawing the mixed electrolyte and precipitate, and removing the white lead therefrom
by filtration. The filtrate is regenerated with carbon dioxide and returned to by filtration. The filtrate is regenerated with carbon dioxide and returned to
the vat. For metallic pigments or lakes (zinc white, copper greens, etc.), a the vat. For metallic pigments or lakes (zinc white, copper greens, etc.), a
suitahle anode is used and an electrolyte capable of dissolving said anode and containing a reagent suitable to produce the precipitate.
699,278-Seplember 19, 1899. T. PARKER. Process of manufacturing chlorates by electrolysis.
An aqueous solution of an alkali-metal chloride is electrolyzed in a cell without a diaphragm, with a current density of about 20 amperes per square font; the solution being covered with a layer of huoyant nonconducting material, as pumice stone or cork, to scrub the disengaged gases.
634, 271-October 3, 1899. H. PLATER-SYBERG. Process of extracting acetic acid fram alkaline acetates.
For producing the alkaline acetates, wood and mosses, rich in carbohydrates, may be boiled in a highly concentrated alkaline lye, air being injected into the mass, the temperature not going above $130^{\circ} \mathrm{C}$. The process consists in first separating the acetic acid from the alkaline acetate by electrolysis cold in a trough provided with a positive electrode of iron or other equivalent metal, and a porous diaphragm, (the anode may he broken cast iron or iron shavings, and the anode compartment is lined with insulating material; the diaphragm heing formed of two perforated sheet-iron plates, with the interspace packed with amianthus fiber); then in transtorming the ferrous acetate into a ferric acetate hy oxidizing with air; next, in acting under the influence of heat upon this ferric acetate with neutral acetate of potash; and finally in decomposing by heat the biacetate thus obtained into acetic acid and neutral acetate of potash, which serves to decompose fresh quantities of ferric acetate.
636,234-Nonember 7, 1899. E. BAKER. Process of and apparatus for electrolytic
decomposition of saline solutions. decomposition of saline solutions.
A film of mercury fows continuously from a higher to a lower level beneath a column of the saline solution, in the electrolytic cell, thereby forming an amalgam, which, in its outflow, passes out of the cell and'up in a substantially vertical direction until its columan counterbalances the fuid head of the saline solution.
697,410-November 21, 1899. G. H. POND. Process of and upparatus for dissociating substances by electrolysis.
A soluble salt is packed between two vertical electrodes, and a saturated solution of the same salt is continuously fed by capillary attraction to the inner face of each electrode, and the electric current passed through the electrodes, the descending films of saturated solution, and the packed material.
641,552-January 16, 1900. M. RUTHENBURG. Process of agglomerating comminuted ores or concentrates.
Finely comminuted ores or concentrates are partially fused by the passage of an electric current through the mass until the contiguous corners of the particles cohere, producing a coherent body of open porous structure.
642,023-January 28, 1900. G. N. VIS. Process of purifying brine.
Brine is purified hy passing therethrough an electric current not sufficient to decompose the calcium and magnesium salts present, hut suffleient only to produce sodium hydroxide by decomposing part of the sodium chloride, allowing the sodium hydroxide to decompose the calcinm and magnesium salts; and then removing the redissolved portion of calcium hydroxide by means of carbonic acid.
642,081-January 30, 1900. G. D. BURTON. Process of unhairing animal hides or skins.
They are electrolyzed in an unhairing solution, the current entering the solution and passing ont away from the hides, and of sufficient volume to raise the hair and permit circulation through it.
642,990-January 30,1900. F. P. VAN DENBERGH. Process of making sulphuric acid.
Calcium sulphate or gypsum, or other sulphur-bearing material, with or without a flux, is subjected to heat and electrolysis produced by an electric current in an electric furnace and applied directly to the material while in a molten state, and in the presence of an excess
which are subsequently hydrated.
644,050-February 27, 1900. H. BECKMANN. Manufacture of lead peroxid and its application to clectrical storage batterica.
The production of lead peroxide, particularly as a coating for the electrodes of storage batteries, by introdueing metallic lead into a solution of sulphurous acid, or of a salt that in conjunction with an acid will generate sulphur dioxid, and adding a suitable acid, and subjecting the lead as a positive electrode to the action or an electric curren
64, 510-February 27, 1900. E. F. FROST. Process of clectrical reduction.
Chemicals or nonconducting ores are reduced by passing them into an electric arc formed between an electrode and an aqneous electrolyte, as acidulated Water. For carbide of calcium the aqueous electrolyte floats on a substance that has no chemleal affinity for the carbide and is not a solvent of water, as
bisulphide of carbon, beavy oils, or coal tar. bisulphide of carbon, beavy oils, or coal tar.

644,779-March 6, 1900. J. W. RICHARDS 4 ND C. W. ROEPPER. Process of
manufacturing metallic carbonates by clectrolysis.
An anode of the metal whose carbonate is to he formed-for example lead, in the manufacture of white lead of commerce-is used in the electrolysis of a salt of an organic acid-as acetate of sodium-either with or without an oxidizing reagent-such as sodium sulphite-wherehy carbonic acid is generated at the anode, forming therewith a carbonate, while the oxygen evolved from the oxi-
dizing reagent, if used, forms with the anode metal a hydrated oxid, intermin gled with the carbonate.
$645,284-$ March 18, 1900. E. G. ACHESON. Method of electrically treating materials. The working faces of a pair of electrodes are arranged within the slope of a pile of material to be treated; fresh material is continuously supplied to the apex
645,285-March 13, 1900. E. G. ACHESON. Method of manufacturing graphite. Anthracite coal, or other noncoking coal, is beated to a high temperature by passing electricity through the coal and generating the heat electrically
within the same, until it has been progrcssively converted into
coal is made the heating core of an electric furnace. The process is applicable to carbonacecus matter, the pieces or particles of which contain inherent impurities capable of forming carbides, but less in amount than enough to convert the whole of the respective pieces into said carbides, and naturally distributed with substantial uniformity in the piece, and which can be heated to a charring temperature without destroying the relative positious of the carbon and such sssociated impurities.
648,119-Aprit 24, 1900. E. VIELHOMME. Process of manufacturing rich ferrochromium.
Chromite is subjected to the heat of an electric furnace in the presence of a flux and pulverized coke, the temperature being sufficient for the reduction and the volatilization of most of the iron, producing a rich chrome iron.
648,459-May 1,1900. A. J. ROSSI. Process of producing alloys of iron and titanium.
A bath is formed of a molten reducing metal, the heat of the formation of whose oxide is at a given temperature greater than that of titanic acid, as for example aluminum. Iron is added thereto and melted, and titanic acid is supported therein, a temperature being developed in the charge sufficiently high to insure the reaction between the reducing metal and the oxygen of the titanic acid, and the alloying of the titanium with the iron.
$648,463-M a y 1,1900$. R. I. KNAUR, H. W. BUCK, AND C. B. JACOBS. Process of abstracting silicon from siticious materials.
Silicious material is heated to incandescence in an electric furnace and water gas is then forced therethrough, the silicon hydrid being led off as a gas. Aluminum silicate so treated leaves as a residue an aluminous product $\left(\mathrm{Al}_{2} \mathrm{SiO}_{5}\right)$ of value as an abradent.
649,565-May 15, 1900. C. E. ACKER. Process of manufacturing caustic alkali and halogen gas.
A molten salt of an alkali metal is electrolytically decomposed in contact with s molten lead cathode, forming an alloy of lead and the alkali metal, and the molten cathode is caused to circulate in continuous flow past an anode, or series of anodes, out of the furnace compartment and into a second compartmentsteam being forced into the molten body below its surface to effect the circula-tion-and back into the furnace compartment, where it again takes up alkali metal. In the second compartment hydrogen and molten alkali separate from the lead or alloy and are severally removed from circulation. The feed of fresh salt is melted by burning the resulting hydrogen, and heat energy is also conserved by the heat of combination of the alkali metal with the oxygen of injected steam.
650,040-May 22, 1900. E. W. ENGELS. Fire and acid proof material and proccss af making same.
A brick or slab of refractory material is covered with carborundum and then subjected to electric heat sufficient to make an intimate fusion of the coating with the material of the brick.
650,234-May 22, 1900. F. A. J. FITZGERALD. Pracess of making carborundum articles.
Carborundum is compressed in the desired form and then recrystallized by heating in an electric furnace to or about the temperature required for the formation of silicon carbide. An adhesive material, as a glue solution, may be mixed with the carborundum, and if the article is to be an electrical conductor graphite is mixed therewith.
650.556-May 29, 1900. A. HOUGH. Process of manufacturing substances resembling mannile.
An aqueous solution of glucose is electrolyzed in the negative compartment of a double cell having a porous partition, in conjunction with water in the positive compartment, and subsequently evaporated down to obtain the solid positive compartment, and gubsequently
material, having the formula of $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$.
651,167-June 5, 1900. J. E. HEWES. Manufacture of carbid of calcium.
Horizontal and parallel electrodes, capable of being longitudinally adjusted, are used beneath a mass of the raw material, together with an armature-a block of carbon-to start the current. After the formation of product is started by means of the armature, the latter is removed and the circuit completed by means of the armature, the lation material, the electrodes being longitudinally adjusted as required, and the solidified product withdrawn from beneath the mass and required, and the solidined product
away from the ends of the electrodes.
651,396-June 12, 1900. E. A. G. STREET. Production of chromium oxid.
A solution of an alkali metal chromate or bichromate is electrolyzed at a temperature of about $70^{\circ} \mathrm{C}$, using a mercury cathode, resulting in the precipitation of the whole of the chromium as hydroxid.
651,718-June 12, 1900. H. LELEUX. Method of electrically treating ores of nickel, etc.
For the electric smelting of nickel, cobalt, silver, lead, and copper ores without preliminary roasting or fugion, a furaace is used having electrodes of a metal whose heats of combination with the nonmetallic constituents of the ore containing the metal to be liberated are higher than the heats of the said metal to be liberated. The electrodes are in contact with the ore, and the electric current brings the ore to such a temperature as to cause the suitably chosen metal of one of the electrodes to unite, by exothermic reaction, with the metals that are associated with the particular metal to be liberated. Thus, for the smeltare asscciated with the particular mickel ore, the hearth electrode is of cast steel, water cooled below, ang of a nickel ore, the hearth nickel. For argentiferous galena or a complex ore of copper, and faced with nickel. For argentiferous galena or a complex or andogous metals combined with sulphur, arsenic, or antimony, the electrodes are of iron.
652,761-Juty 3, 1900. J. B. ENTZ. Electrolytic production of caustic soda, ets.
The mercury cathede of an electrolytic cell is subjected to the inflnence of a magnetic field to cause it to circulate and transfer the amalgam or deposited substance out of the electrolytic cell and into a depositing compartment:
652,846-Juty 3, 1900. J. HARGREAVES. Process of purifying and strengthening brine jor use in electrotytic cells.
The weakened brine withdrawn from the electrolytic cell is caused to circulate, by means of a steam jet, upward through a mass of impure salt in a sealed vessel, and then back to the cell.
652,877-July 3, 1900. R. C. BAKER. Process of obtaining hardening or toughening compounds for alloying with iron or steel.
The boride of a metal capable of use as a hardening or toughening agent for steel and other metals (ferro-boron, nickel-boron, chromium-boron, or tungstenboron) is obtained simultaneously with calcium carbide by subjecting a mixture of calcium borate, carbon, and a material containing such metal to beat sufficient to effect the reaction, as in an electric furnace. The boride compound is cient to effect the reaction, as in an be run off, with the calcium carbide above it.

653,716-July 17, 1900. J. T. VAN GESTEL. Proccss of walerproofing fabrics.
For the purpose of setting the dye or rendering the fabric waterproof, the fabric is impregnated, in a bath, with a soluble metallic salt capable of yielding an insoluble oxide upon electrolysis, and the wet fabric is then placed between nonoxidizable electrodes and an electric current passed therethrough. In fixing a dye, the metallic salts are mingled with the dye in the goods under the dyed may be treated as for waterproofing. dyed may be treated as for waterproofing.
653,739-July 17, 1900. W. M. JEWELL. Proccss of purifying water.
An insoluble coagulent is continuously formed (ferrous hydrate) by electrolytically decomposing a solution of a suitable salt (sodium chloride), in which is immersed an anode composed of a substance (iron) adapted to combine with which coagulent as formed is introduced into the water to be purified, and the water filtered.
655,239-August 7, 1900. T.JESPERSEN. Process af bleaching by electrolytic chlorin
water.
It consists iu electrolyzing a dilute solution of hydrochloric acid, using an immersed anode and a surface cathode, bleaching in the same tank with the resulting chlorine water and thereby restoring bydrochloric acid to the solution; and again electrolyzing as before, all being simultaneous and continuous.
656,156-August 14, 1900. W. S. BORRY. Method of yroducing carbid of calcium, etc.
The zone of reduction is formed between the ends of vertically depending electrodes, the charge being maintained around and above the electrodes to a depth sufficient to oppose the upward passage of evolved gases, which escape laterally by the path of least resistance. The product mass is automatically lowered, as formed, to bring successive portions of the charge into the zone of reduction.
656,599-August 21, 1900. R. DOOLITTLE. Process of manufacturing carbids.
A mixture of the carbide materials is showered down a closed vertical shaft through a flame formed by gas or oil burners near the top, and then through a zone of increased temperature formed by a number of superimposed electric arcs, the gases being drawn off below the electric furnace.
656,982-August 28, 1900. E. D. KENDALL. Electrolytically treating scrap tin.
An aqueous solution of a nitrate of an alkali metal or nitrate of an alkaline earth metal is electrolyzed, using acrap tin plate as the anode, and the nitrate transformed into a nitrite; sodium or other nitrate is added as required, and finally the strong solution is evaporated and the nitrite salt recovered thereirom,
which may be used for the preparation of fertilizers. The stannic oxide and which maty metalic tin is utilized for the production of sodium stannate or otherwise.
See Group XVIII for other methods and processes for the production of such bodies as are also produced electrolytically.

APPARATUS.

102,478-May 10, 1870. I. ADAMS, JR. Improvement in the etectro-deposition of nicket.
A nickel anode combined with carbon is used to prevent the formation upon the anode of peroxide of nickel.
310,538-January 6, 1885. B. MOEBIUS. Apparatus for the electrolytical separation and depasition of metals.
Adjustable brushes or scrapers are provided with means for moving them along the surface of the electrodes, together with other structursl details specially applicable to the electrolysis of metals.
312,803-February 24, 1885. C. S. BRADLEY. Electrical conducting material.
See Group XV, Rubber and Rubber Substitutes.
312,814-February 24, 1885. H. R. CASSEL. Apparatus for treating metals by means af electrolysis.
It includes an anode cell constructed in part of porous material and in
 trolysis of metals.
319,945-June 9, 1895. E. H. \& A. H. COWLES. Electric smelting furnace.
An elongated horizontal chamber has oppositely located electrodes in conductive relation to the charge but otherwise insulated from one another. The lining is of granular nonheat-conducting materisl of less conductivity than the charge.
335,058-January 26, 1886. A. H. COWLES. Electric furnace and method of
operating the same.
The electrodes are introduced into the charge in proximity to each other, and caused gradually to recede-to obtain a uniform action of the electric currentcontact with both electrodes.
395,059-January 26,1886. E. H. \& A. H. COWLES. Electric furnace for metallurgic operations.
The lining for an electric furnace consists of finely divided charcoal mixed with finely divided refractory material of low conductivity, as lime.
360,144-March 29, 1887. E. H. \& A. H. COWLES. Electric furnace.
An incandescent electric furnace has charge-feeding mechanism automatically Anincandescent electric resistance of the charge. The feed to and discharge from the zone of fusion is through tubular electrodes.
382,188-May 1, 1888. J. OMHOLT. Apparatus for producing metals by means of electralysis.
A reverberatory furnace has half-retorts supported a short distance above its floor, an electrode in each half-retort, and a tube establishing communication between esch half-retort and a chamber below. The bottom edges of the halfretorts being immersed in the molten halogen combinations are thereby sealed, and the light metals collecting on the bottom chamber in a fuid state or as a gas and are collected.
391,034 -October 16, 1888. H. H. EAMES. Dcvice for refining metallic ores.
Retorts have electrodes extending their entire length to electrolyze the charge when heated.
403,752-May 21, 1889. J. C. HOBBS. Method of operating electric furnaces.
The charge of an incandescent electric furnace is enveloped or covered with sawdust, the furnace chamber being lined therewith.

410,976-September 10, 1889. G. KERNER AND J. MARX. Diaphragm for electrolytic apparatus.
It consists of a liquid inclosed between two or more partitions having perfoations of considerable size, too large to act osmotically by themselves. The rations must not he in the same state as the osmotical and endosmotical liquids, and it is constantly or at intervals renewed.
428,578-May 20, 1890. E. A. COLBY. Electric furnace for melting metals.
The material is heated by inductively established electric currents in metal of a refractory mass. (Process No. 428,552.)
428,879-M1ay 20, 1890. E. A. COLBY. Electric induction device
A refractory conducting receptacle constituting a closed secondary circuit is heated by induced currents from a primary circuit. (Process No. 428,552 .)
442,208-December 9, 1890. I. L. ROBERTS. Separating-diaphragm for electrolytic cells.
A nonporous diaphragm of a relatively high electroly tic resistance; preferably composed of a gelatinous substance, as a gelatinized solution ol silicate of soda and water of about 18° Baumé, beld' by supporting walls.
442,204-December 9, 1890. I. L. ROBERTS. Diaphragm for electrolytic cells.
It is formed of asbestos freed from soluble constituents. Asbestos board and asbestos cloth are sewed together within a cloth case, treated with muriatic acid, rolled, kneaded, washed, and pressed.
442,382-December 9, 1890. I. L. ROBERTS. Electrolytic apparatus.
A nonporous diaphragm or partition is used, composed wholly or in part of a body capable of acting as an electrolyte; it permitting such decompositions and recombinations to take place as are essential to the electrolytic action. Preferably a cup, plate or sheet of earthenware is soaked in an aqueous solution of alum, then immersed in an alkali solution, such as caustic soda, until the pores are filled with a gelatinous mass.
442,999-December 9, 1890. I. L. ROBERTS. Apparatus for use in electrolysis.
Two or more electrolytic partitions of nonporous material (No. 442,332) are employed, forming compartmente for the electrodes, with one or more bodies of electrolytic or conducting paste interposed between the partitions.
442,334; 442,396; 442,594-December 9, 1890. I. L. ROBERTS. Electrolytic apparatus
In apparatus for the electrolysis of saline solutions and the manufacture of caustic alkali, encasing jackets for the anodes, or porous partitions, are used formed of anthracite coal or coke in the condition of impalpable powder, which is a barrier to tbe mechanical transfusion of fuid, but permits of the transference of the acid radical to the anode.
450,10S-April 7, 1891. E. A. LE SUEUR. Etectrolytic apparatus.
A vegetable parchment diaphragm is employed in an electrolytic cell, for saline solutions; placed helow the positive electrode whereby it is preserved from contact with the gases formed at said electrode.
455,451-July 7, 1891. E. A. LE SUEUR. Diaphragm for electrolytic cells.
The diaphragm, specially adapted for the electrolysis of alkaline chlorides, consists of a layer, sheet, or film of albumen which has been dried and coagu lated by heat. It may be combined with a sheet of paper or other supporting material.
464,096-December 1, 1891. L. GRABAU. Apparatus for obtaining metals of the alkalis from molten chloride.
A bell-shaped pole-cell is constructed with double walls, with the inclosed chamber open at the top, so that conductivity can take place through the walls thereof.
465,369-December 15, 1891. L. GRABAU. Production of insulating coatings or linings in electrolytic apparatus.
A bell-shaped pole-cell having double walls encompasses one of the electrodes of a fused hath, the pole-cell baving means for causing a cooling agent to circuof a fused hath, the pole-cell baving means for causing a cooling agent to circulate therethrough, whereby the fused mass i
gealed and forms a protective crust thereon.
469,428-February 25, 1892. C. N. WAITE. Diaphragm for electrical cells.
The diaphragm, specially adapted for the electrolysis of highly corrosive liquids, consists of a dense and compact layer, sheet, or film of a metallic albuminate. A sheet of albumen is formed, dried so as not to coagulate the albumen, minate. A sheet of albumen is formed, dried so as not to coagulate the albumen, chloride of tin, or sulphate of alumina, forming an insoluhle albuminate of the metal.
479,117-April 19, 189\%. P. HÉROULT. Electrode for use in electro-metallurgical processes.
It consists of a plurality of carbon strips secured together in a single block and a metal combined therewith and extending substantially the entire length of the electrode. The metal is adapted to lower the electrical resistance of the electrode, and it should be the same as one of the normal constituents of the use-「ul prodncts of the desired operation.
473,899-April 19, 1892. P. L. T. HÉROULT. Electrode.
It is built np ef carbon blocks or slabs fitted together and secured by pins or clamps to a metal plate or plates extending the entire length of the electrode. The metal should be such as can enter into the product.

482,586-September 13, 1892. T. PARKER. Electric furnace.

Relates to details of auxiliary electrodes to heat the charge between fixed electrodes and start the furnace
489,551-January 10, 1893. C. N. WAITE. Etectrical diaphragm.
It consists of a sheet or layer of asbestos or other acid-resisting fibrous material and bicbromatized gelatine. Bichromate oi potash dissolved in a glue solution may be mixed with asbestos fiber and a sheet formed thereof, which is dried and cxposed to sunlight, or treated in a bath of byposulphite of soda.
494,585-April 4, 1899. W. MITCHELL. Means for electrically heating crucibles.
A crucible has opposite sections of electrically conducting material with an intermediate insulating strip, made, for example, by cntting a plumbago crucible on the line of its axis and interposing a strip of asbestos. It is grasped by a holder which establishes electrical connection with its opposite conducting sides.
494,586-April 4,1898. W. MITCHELL. Apparatus for electrically heating crucibles.
A receptacle for crucibles is formed of conducting end sections of electrically bigh resistance, an interposed U-shaped insulating strip, and a filling of pulverized conducting material. An inclosed crucible may be attached to and removable with the said strip.

495,600-April 18, 1899. G. O. RENNERFELT. Electrolytic apparatus
A bell-shaped cathode, having an exterior of nonconducting material, is employed with a snction pipe connected with the interior of the cathode, whereby, in the electrolysis of a fused bath, the metal set free at the cathode can be removed by suction.
50s, 451-August 15, 1893. W. E. CASE. Apparatus for electrolysis of fused salts.
A containing vessel for the electrolysis of fused salts has an inner wall of electrically nonconducting material, and an outer snrrounding envelope therefor and a bottom both of electrically conducting material, with the envelope and is formed of fused or solidified salt.

504,282-August 29, 1893. S. SHAW. Apparatus for melting iron.
It relates to special details, particnlarly of feed mechanism for electrodes for a cupola furnace.

504,308-August 29, 1893. S. SHAW. Apparatus for melting iron or iron ore.
A cupola furnace has a concave base and electrodes introdnced at the lower end of the vertical side walls, said furnace chamber having a central narrowed passage opening into a receiving chamber below, the latter chamber having discharge openings at different elevations, and hinged bottom doors or traps.
504,70s-September 12, 1893. A. BREUER. Electrolytic diaphragm.
A porous diaphragm capable of resisting the action of caustic bodies, formed of a cement that will set at normal temperatures when combined with a suitable liquid in due proportions, and of a porous substance capable of resisting the reaction of an electrolyte, as comminuted pumice stone, combined with and mixed thronghout the body of cement.
507,874-October 24, 1893. F. M. LXTE. Electrode.
A hollow carbon electrode, closed at the bottom, has a core of metal or alloy (to reduce the electrical resistance), which is fusible at or below the working temperature of the finsed bath.
508,084-November 7, 1893. A. BREUER. Diaphragm used in electroiytical processes.
It is formed of a cement adapted to harden or set when combined with water, and of a substance or body soluble or destructible in a liquid which can be removed after the cement has set, leaving the diaphragm porons.

512,60\%-January 9, 1884. C. L. COFFIN. Furnace for heating or working metals. electrically.
It relates to details of an electric forge. A pipe coil in the bed or hearth conducts bot air or gas into the arc.
519,270-January 28, 1894. A. F. W. KREINSEN. Process of and apparatus for melting metals by means of electricity.
Relates to details of a cap or cover for a crucible, which cover carrles a carbon electrode and an electrode of the metal to be melted.
519,602—January 30, 1894. E. THOMSON. Electric furnace.
It consists of carhon bars or slabs, in an electric circnit, packed in powdered carbon in a chamber of nonheat-conducting material, with a receptacle for the material to be beated set in the powdered carbon.
519,661-January 30, 1894. C. T. J. VAUTIN. Etcetrolytic cell.
A mercury electrode is supported by a nonconducting reticnlar mesh or sieve or perforated plate.
518,065-April 10, 1894. C. HOEPFNER. Etectrolytical apparatus.
The diaphragm is constructed of a nitrated organic substance, which may be strengthened with one or more auxiliary diaphragms. Paper, textiles, or the like may be treated with nitric acid or nitrating gases, or a coating of mitrocellulose is applied, or paper-pulp or asbestos.
518,155-April 10, 1894. H. Y. CASTNER. Electrolytic apparatus.
In an electrolytic cell or apparatus where a certain portion of the substance circulates between communicating compartments, as mercury and sodinm of sodium chloride, the cell is periodically rocked to cause the mercury to flow from one compartment to another and back again.
522,614-July 10, 1894. I. L. ROBERTS. Electrolytic diaphragm.
It is composed of an insoluble nonconducting palverized substance mixed with a gelatinizable sillcate. A paste formed of powdered anthracite coal and a solution of silicate of soda or potash is molded into the desired shape, temporarily supported, and gelatinized by electrolytic action.
52s,026-July 17, 1894. C. N. WAITE. Diaphragm for electrolytic cells.
It consists of a film, sheet, or fabric of asbestos or like indestructible material with a layer of sand or like comminuted material overlying it.
529,262-July 17, 1894. G. A. CANNOT. Apparatus for the manufacture of chlorin monoxid.
Apparatus for the carrying out of process No. 523,263.
530,019-November 27, 1894. C. L. COFFIN. Box of furnace for electric heating apparatus.
Relates to structural details of a furnace box or chamber.
530,479-December 4, 1894. G. A.GOODSON. Apparatus for casting molten material. The metal is kept fluid in transmission through a pipe connecting the casting pot and the mold by an electric current sent through the pipe and its metal contents.
5S1,143-Deccmber 18, 1894. J. W. WOODFOLK AND J. C. WHARTON. Appa-
ratus for electric heating, smeting, and separating ratus for etectric heating, smelting, and separating.
Relates to minor details of a furnace having a circulation of acidified water.
538,596-February 5, 1895. H. A. HOUSE. Apparatus for refining metals by electrolysis.
A rotary segmental cathode is partially immersed in the electrolyte, and a scraper removes the film of metal from the cathode above the solution, the segment of the cathode in engagement with the scraper being insulated.
537,009-April 9,1895. G. D. BURTON AND E. E. ANGELL. Mrthod of and appa-
ratus for electric metal-heating. ratus for electric metal-heating.
An electrle forge having electrodes adapted to receive and support a connect ing bar of iron and heat it by its electric resistance.

638,87 1-April 30,1895 . H. G. O'NEILL. Electrically and chemically heated crucible. A mixture of diatomaceous earth and carbonaceous material is used as the heating body of an incandescent electric furnace. The receptacle has a resistance wound around it as an auxiliary heater.
544,15S—August 6, 1895. W. BORCHERS. Vessel for electrolytic separation.
A vessel (constituting the cathode) for the electrolytic treatment of metalsas the formation of lead sodium alloy in the electrolysis of fused chloride of sodium-has numerous superimposed grooves on its interior face and a bottom discharge opening, whereby the material exposed to electrolytic action flows downwardly from one groove to another.
546,398-September 17, 1895. C. HOEPFNER. Anode for electrolytic apparatus.
An anode, with a surface of a compound of silicium and another conductive metal in such proportions (in minimo 10 per cent siliciums) as to be proof against the action of liquids or gases, particularly chlorine. It is made wholly or in part of ferro-silicium; if of carbon, it may be coated or plated with ferro-
silicium.
546,564.-September 17, 1895. D. TOMMASI. Apparatus for extracting, separating, and renning metals by electrolysis.
Polarization is prevented by using \& rotating cathode disk composed of a mixture of carbon and oxide of copper, partially immersed in the electrolyte. The disk is formed of removable segmental sections.
548,16玉-October 15, 1895. J. HARGREAVES AND T. BlRD. Combined diaphragm and electrode.
A permeable electrode, as wire gauze or perforated metal, has directly secured thereto a face of fibrous material and an insoluble binding agent, superposed on which there may be a layer of porous stone-like material, such as cement. 651,014—December 10,1895. J. A. VINCENT. Electric smeltirg furmace.
The material is forced by a positive horizontal feed through a horizontal channel way and between electrodes, forming in part the walls of the channel, into a discharging pit.
552,541-December 31, 1895. J. A. VINCENT AND J. E. HEWES. Electric smetting furnace.
It has a removable electrode bottom to the hearth with an adjustable upper electrode and feeding devices for the material.
556,088-March 10, 1896. M. H. WILSON. Electrotytic apparatus.
To avoid the rapid destruction of electrodes, as by caustic soda and chlorine in the electrolysis of a saline solution, the electrode is formed of a relatively small stream or column of water which serves as a condncting medium throngh which the eIectric current enters or leaves the solution.
556,626-March 17, 1896. A. C. GIRARD AND E. A. G. STREET. Etectric furnace. A heating chamber has a Jongitudinal passsuge extending throngh it, a tubular cylinder for containing the material to be heated, with means for feeding the cylinder through said passage, an electrode projecting into the heating chamber, and connections to establish an arc between the electrode and the saia cylinder.
658,357-April 14, 1896. M. R. CONLEY. Electrical furnace.
A melting pot or vessel made of a carbon composition electrically heated by its resistance has integral arms or opposite sides to which the electrical connections are made.
562,400-June 23, 1896. W. R. KING AND F. WYATT. Electric furnace.
An are furnace with a hollow vertical upper electrode bas a feed tube extending down within the said electrode.
562,403-June 29, 1896. W. R. KING AND F. WYATT. Electric furnace.
Appliances for carrying out the process of No. 563,402 and handling the carbide nugget.
562,404-June 23, 1896. W. R. KING. Electric furnace.
A plurality of upper electrodes, preferably arranged in a ring, each adjustable and all carried by a common adjustable frame, form a plurality of ares with a common hearth electrode. There is a central feed and a deflector to throw the material into the field of the several ares.
$565,95 \$-A u g u s t$ 18, 1896. E. ANDREOLI. Apparatus for indirect electrolysis.
For the indirect electrolysis of solntions the cell has three compartments formed by two porous diaphragms: the middle section to contain the solution to be treated (e.g. sodium bisulphite), and also a series of perforated plates, and the end sections positive and negative electrodes and suitable solutions (e. g. caustic potash and sodimm chloride, respectively').

567,699-September 15, 1896. J. A. VINCENT. Electric smelting furnace.
An upright furnace chamber open at top and bottom has a vertically movable floor, positive down feed for material, and side electrodes with antomatic feed The material is forced down between the electrodes and the smelted prodnct feeds down with the floor.
568,177-September 22, 1896. N. TESLA. Apparatus for producing ozone.
Apparatus for the prodnction of ozone by the action of high-tension electrlcal discharges, involving the combination with a circuit of direct currents, of a controller for making and breaking the same, a motor included in or connected with said circuit so as to increase its self-induction and driving the said controller, a condenser in a circuit around the control.
former throngh the primary of which the condenser discharges.
568,229—September 22, 1896. H. BLACKMAN. Electrode.
An anode for use in electrolytic decomposition, consisting of a dense imper meable mass of combined electroconductive iron oxide and a fiux, as, fo example, the residue from pig-iron furnaces known as "black slag."
568,230-September 22, 1896. H. BLACKMAN. Electrode for electrolytic decomposition.
An anode consisting of a casting of ilmenite, with a small proportion of fluxing material.
568,291-September 22, 1896. H. BLACKMAN. Electrolytic anode and apparatus. An anode for electrolytic decomposition, consisting of electro-conductive oxide of iron in a dense impermeable mass, as, for example, magnetite.
569,122-October 6, 1896. A. A. NAVILLE AND P. A. \& C. E. GUYE. Electrical gas-reaction apparatus.
The apparatus for the treatment of gases comprises a series of independent insulated tubes interposed in line between two electrodes of an electric circuit
with gas conduits communicating with the inside and outside of the aeveral
tubular electrodes. It is applicable to the production of nitric acid by means of moist air circulating in an apparatus with the electrodes made of coal, and the production of acctylene gas by means of bydrogen in such an apparatus.
569,221 -October 15,1896 . R. G. G. MOLDENKE. Apparatus for melting metals.
A regenerative or other crucible furnace bas a sloping platform for the charge and an electric arc at the fuot of the slope to supplement the heating. An elec-tro-magnet deflects the arc onto the charge.
570,133-October 27, 1896. W. DE C. MAY. Apparatus for electrotytic deposition.
The apparatus, for the electrolytic treatment of material in a fine state of subdivision, comprises a series of superimposed pans, the bottom of each extending down into the immediately subjacent one, and each with an overflow for the electrolyte into the next pan of the series. Each pan contains a layer of the material to be treated, and the electrolyte is returned from the bottom to the top pan in continuous flow.
$571,665-$ November 17, 1896. A. C. GIRARD AND E. A. G. STREET, Electric furnace.
An electric furnace has a carbon tube or casing for the material, said tube being interposed, as a common electrode, between one or more electrodes to produce arcs outside of the tube. The hearth is below the tube.

572,912-December 1, 1896. E. F. PRICE. Electric furnace.
It has an inclined electric hearth with means for adjusting the inclination, and a range of perpendicular adjustable electrodes, with the material fed down around them. Casings around the electrodes-there being intervening feed spaces-have flues for escaping gases.
572,472—December 1, 1896. H. Y. CASTNER. Anode for electrolytic processes.
A graphitized carbon electrode; produced by submitting a shaped electrode of gas-retort or like carbon to the intense heat produced by passing an electric current therethrough while it is protected from the air. The disintegration of the carbon in a bath by the combined action of oxygen, chlorine, and water is materially reduced as the carbon approaches the graphitic variety.
579,041-December 15, 1896. M. SCHINDLER. Electric furnace.
Relates to details of a cooled holder for a furnace electrode.
575,826-January 26, 1897. J. A. DEUTHER. Electric furnace.
The upper suspended electrode of an arc furnace is vibrated, and the material is fed onto the bottom electrode and within the are path as the npper electrode swings to and fro.
575,829—January 26, 1897. J. JOYCE AND J. A. DEUTHER. Electric furnace.
The bottom electrode is laterally displaced, at intervals, to expose part of its surface, but not to break the arc, and the material is antomatically fed onto the exposed surface of the electrode.
577,317-February 16, 1897. F. J. PATTEN. Electric furnace.
A plurality of incandescent carbon pencils are successively thrown into circuit in rotation-to give a diffinsion of heat-by means of a liquid commntator; a rotating switch operates in an scidnlated water bath.
577,970-February 16, 1897. F. J. PATTEN. Electric furnace.
The material is passed between electrodes, and the arc is reciprocated transverse to the path of material by a magnetic field, the current of the magnetic field or of the electrodes being alternated.
577,493-F'ebruary 28, 1897. F. J. PATTEN. Electric furnace.
The fnrnace has a central vertical carbon core, and numerons lateral carbon pencils radiating from it, through the charge mixture, to the walls and to independent leads. The current is sent in succession or in groups through the pencils.
578,07g-March 2, 1897. H. BLUMENBERG, JR. Porous diaphragm.
Asbestos, formed into the desired shape, is treated with acid to remove the metallic saits and tonghen it. A binding material is then forced into the pores of the asbestos under high pressnre, and it is then baked at a high temperature, which changes it from a fibrous to crystalline state.
579,324-March 25, 1897. W. S. HADAWAY, JR. Electric furnace.
Relates to details of a muffle electrically heated by incandescent outer packing, with a hydrocarbon gas injected therethrough, which gas is decomposed, and the hydrogen gas burnt in the outer shell of the muffle.
582,721-May 18, 1897. J. A.'DEUTHER. Electrode.
Relates to structural details.
582,92s-May 18, 1897. A. E. HUNT. Electrolytic opparatus.
To protect workmen attending the several pots or vessels connected in series of an electrolytic apparatus, a metal platform is provided for each pot or vessel in electrical connection therewith and maintained at the same electrical potential as the pot.
585,24-May 25, 1897. A. H. COWLES. Electric furnace and method of operating same.
The material is heated by internally generated heat, and a gas, or gas and air, is periodically passed therethrongh in opposite directions.
583,250-May 25, 1897. A. H. COWLES. Electric furnace.
A furnace chamber has gas-pipe connections and valves, and bodies of broken carbon through which the gas passes on entering and leaving the furnace chamber. (See No. 583,249 .)
583,515-June 1, 1897. W. SPILKER. Electrolysis of watery salt solutions.
A membrane, serving as a foundation, is used in the electrolysis of an alkaline cathode solution from an anode solution consisting of a mixture of the chlorides of the alkali metals and calcium holding the corresponding oxyby drate-canstic ime-in soltached to the fonndation membrane on the side of the anode space.
589,618-June 1, 1897. H. ELDRIDGE, G. H. WRIGHT, AND D. J. CLARK. Vacuum electric-are furnace.
The furnace has a cylindrical pot cathode and a hollow cylindrical anode adjustably snpported within an arcing distance; also means for sealing the chamber and other details.
583,936-June 8, 1897. E. F. PRICE. Etectric furnace.
The furnace has an inclined hearth electrode with an adjusting acrew for one end, a range of upper electrodes with a surrounding water-cooled hopper,
585.040-June 22, 1897. C. G. P. DE LAVAL. Method of melting iron by means of electricity.
The melting chamber has a transverse hridge with pole pieces at the bottom of the pockets on each side of the bridge, and outlets for molten metal in the sides ahove the hottoms of the pockets. The path for the current is through the material over the bridge.
585,987-June 29, 1897. C. KELLNER. Electralytical diaphragm.
It is composed of a slab of soap, which may have a reeuforcing hacking. 586,686-July 20, 1897. R. F. S. HEATH. Electric furnace.
It has a stationary upper electrode offset with respect to the axis of the furnace, and a rotary pot electrode, together with structural details.
586,687—July 20, 1897. R. F. S. HEATH. Electric furnace.
Means are provided for rotating vertically and laterally adjustahle carbons around the axis of the furnace, the bearth constituting the other electrode. $586,82 z-J u l y$ 20, 1897. F. J. PATTEN. Electric furnace.
The furnace has electrodes and passages for conveying material through the arcing space between the electrodes, such as a lower carbon-slah electrode and an upper tubular electrode; and means for rotating the arc about the axis of the npper carbon, as, for example, a magnetizable ring surrounding the arcing space with means for creating a rotating magnetic field in said ring.
586,824—July 20, 1897. F. J. PATTEN. Electric furnace.
A homogeneous mass of material of low and uniform conductivity is heated by passing an electric current through the mass and estahlishing around it a rotating magnetic field transverse to the current flow in the mass. The lines of current flow are deflerted by the magnetic field and the rotation of the defected lines of flow widens the body of heated material.
587,182—July 27, 1897. G. DE CHALMOT. Electric furnace.
The hearth is given a horizontal reciprocatory movement to facilitate the feeding of granular material into the arc. The carbon holder, of special construction, has separable lining plates to receive the wear of any contact arc and protect the holder.
588,267-August 17, 1897. G. DE CHALMOT. Electric furnace.
The furnace discharges its overflow product upon a sand-sprinkled revolving cylinder. The overflow wall, formed of the furnace product, is renewed by increasing the heat and partially fusing it down, then supplying additional material and reducing the heat until sufficient has congealed against the wall to build it up.
588,866-August 24, 1897. J. W. KENEVEL. Means for manufacluring carbids.
The furnace employs rotatable electrodes arranged in a horizontal plane (like a pair of rollers) with mechanism for rotating the same, and means for feeding the prepared material between the electrodes.
590,826-September 28, 1897. J. D. DARLING. Porous diaphragm for electrolytic apparatus.
It consists of a support having a granular filling of a vitrified oxide or oxides substantially resistant to combination or fluxing by a fused hydroxide under the conditions of electrolysis. Magnesia or other earthy oxides, as those of calcinm or barium, may be fused in an electric furnace, crushed, and granulated to pass a twenty-mesh sieve
592,802-November 2,1897 . N. MARCHAL. Electric diaphragm.
It consists of a plate cut from limestone, or is formed of equivalent integral natural alkaline-earth carbonate, as of a paste of pulverized limestone and burned magnesia, compressed.
595,712-December 21, 1897. J. E. HEWES. Electric jurnace.
The furnace has an upper suspended electrode, a regulator for the same, and means for imparting thereto a longitudinally reciprocating motion whereby the carbide.
597,476-January 18, 1898. T. L. WILLSON. Electric furnace.
A feed flue delivers material against the side of an upright movable carbon pencil. A removable crucible hearth having an outer flange, has a circuitconnecting clamp of special form engaging with said fange.
597,880-January 25, 1898. W. S. HORRY. Electric furnace.
A hottomless hopper has inclined electrodes supported on the walls of the hopper, and a rotatable receptacle (a spool-like structure) arranged below said hopper with plates removably applied to the periphery of the receptacle (spool) and forming the outer wall of the hearth.
597,945—January 25, 1898. C. S. BRADLEY. Electric furnace.
The furnace is carried by a wheel turning on a horizontal axis, giving a continuonsdownward movement of the charge relative to the electrode, by a movement of rotation. Removable rim sections form the receptacle for the charge, which is continuously fed in on one side of the periphery, and the product removed on the other.
598,S18-February 1, 1898. J. E. HEWES. Electric furnace.
The material is laterally fed from a supply chamber into the field of the electrodes by a reciprocating rammer, the latter being controlled by fuctuations in the current.
601,367-March 99 , 1898. C. L. WILSON, C. MUMA, J. W. UNGER, H. SCHNECKLOTH, A. P. BROSIUS, and J. C. KUCHEL. Electric furnace for' manufacturing calcium carbid.
The furnace has a base electrode and an upper vertically movable electrode having a number of longitudinal flues extending therethrough with a like apertured block of insulating material superposed. The charge, in the form of sticks of compressed lime and carbon, is fed into the flues of the upper electrode, the sticks resting on the base electrode.
602,815-April 19, 1898. G. G. CLARK. Electric furnace.
Relates to details of construction, including a revoluhle pot electrode and a scraper for feeding the material inward toward the are.
608,058-April 26, 1898. H. ELDRIDGE, D. J. CLARK, and S. BLUM. Electrical retort.
Relates to structural details of an apparatus for making hydrogen from water by heat of an are and electrolytic action.
609,745-August 29, 1898. W. G. LUXTON. Diaphragm for clectrolytic purposcs.
It is made of a composition of cement, sand, and a porous material, such as gypsum, lime, coke, etc., mixed with water and allowed to set; the diaphragm
having pores through the substance of the porous material and interstices between the cement and the other constituent particles due to the contraction of the cement in drying or setting.
611,142-September 20, 1898. R. PIGNOTTE, F. LORI, S. REGNOLI, M. BESSO, AND M. PANTALEONI Elcetric furnace.
It relates to the structural details of a furnace involving, with other details, a carbon-bottom electrode having an opening closed with a lever-operated carhon plug, a suspended electrode, feeding mechanism, and a gas-heated chamber for preheating the material.
612,943-Octaber 25, 1898. L. BRESSON. Electric furnace.
A crucible having axial openings for electrodes and carrying a feed hopper can be tilted to discharge its load. Inwardly projecting electrodes are coupled by levers which permit of a parallel vertical movement of their extremities and maintenance of the arc as the charge rises in the crucible.
616,906-January 3, 1899. J. A. DEUTHER. Electric furnace.
Relates to special details, including a fan to supply the material to the are and telescopic wall sections.
618,991-January \$1, 1899. H. BOVY. Electric furnace.
The furnace has an inclined floor formed of a series of carbon block electrodes with intermediate filling of carbon powder. These electrodes are mude incandescent by the flow of the current through to upper electrodes and the charge.
621,908-March 28, 1899. H. H. DOW. Porous diaphragm for electralytic cells and method of producing same.
The diaphragm is composed of two layers; that on the cathode side composed of a chemical substance that will consume halogens by chemical action, and the layer on the anode side composed of a different chemical substance that will not be consumed by free halogen and containing a substance with which any soluble alkali diffusing from the cathode side will readily combine chemically (e. g.; iron hydrate on the anode side and calcium and magnesium hydrates on the cathode side). Two part diaphragms, in cells for the electrolytic production of chlorine, are formed wholly by the action of electrolysis on the cell contents, by electrolyzing a solution containing sodium, magnesium, and calcium chlorides, and introducing into the neighborhood of the anode a soluble iron salt, whereby the hydrates of iron, calcium, and magnesium are precipitated to form in place a coherent porous diaphragm.
625,252-May 16, 1899. H. ELDRIDGE, D. J. CLARK, AND S. BLUM. Electric furnace.
Relates to structural details, including a fume-collecting hood.
628,782—July 11, 1899. . J. J. FAULKNER. Electruc furnace.
It relates to structural details, including a normally stationary electrode and a series of opposing electrodes with specific means for antomatically adjusting each of the latter, including spring-actuated plungers. A tilting hearth is
mounted beneath the electrodes.
629,008-July 18, 1899. O. FRÖLICH. Apparatus for distilling metals or similar substances.
An electric crucible furnace has a tubular electrode and a condensing chamber carried by and ahove the same. The material surrounds the tubular electrode and condensing chamber which receives the distilled metals, the
molten products being tapped off helow. molten products being tapped off helow.
650,28s-August 1, 1899. W. BORCHERS. Method of and apparatus for utilizing waste gases and heat from electric furnaces.
The furnace, or a series of electric furnaces, are incased in a steam generator,
each furnace having a dust filter for the gases generated. each furnace having a dust filter for the gases generated.
680,966-August 15, 1899. L. K. BÖНM. Carbid furnace.
It relates to details of the furnace pot or carhide tank, which has bottom grooves in which fit rihs of a supporting plate, to facilitate the withdrawal of the pol.
656,956-November 14, 1899. F. G. CURTIS. Process of making battery cups.
Clay is mixed with a solution of water and hydrate of potassium and an electric current passed through the mixture, reducing the clay from agranular
state to a powder paste by reason of the hydrogen being set free. It is then state to a powder paste by
molded into cups and baked.
641,276-January 16, 1900. J. D. DARLING. Porous diaphragm for cells employing fuscd electrolyics.
It consists of a suitable support and a filling of Portland cement and a powdered oxide suhstantially resistant to combination or fluxing by the fused electrolyte, as ground-burned magnesite.
641,498-January 16, 1900. J. D. DARLING. Etectrolytic apparatus.
In an electrolytic apparatus using a porous diaphragm with a metallic wall, wall of the diaphragm, by connecting it with the positive destructive electrolytic action.
641,976-January 23, 1900. R. H. LAIRD. Down-draft electrical furnacc.
A water-jacketed furnace stack has a series of spirally arranged, downwardly inclined electrodes.
648,254-February 13, 1900. A. J. PETERSSON. Electric furnace.
The electrodes are at the ends of a Hat hearth and covered by the reduced material so that the heat is developed by the resistance of the reduced material, hearth chamber may be inovable, and an upper chamber has flues within the charge which receive and burn the generated gases.
647,614-April 17, 1900. M. RUTHENBURG. Elcetric furnacc.
A quadrilateral hosh, open at top and bottom, laterally incloses the opposed electrodes; and a crucible directly beneath the bosh has an overfiow outlet at its
top. top.
651,916-Junc 19, 1900 . J. ZIMMERMAN AND I. S. PRENNER. Furnace for pro-
ducing culcium carbid.
The charge, supported hy a strip (stiff paper) that is projected coincident with the feed of the material, is continuously fed into the horizontal arc of an electric
iurnace. Compressing and feed mechanism is provided for the mixed lime and curnace. Compressily and feed mechanism is provided for the mixed lime and
carhon and feed for the traveling flexihle support. carhon and feed for the traveling flexible support.
6:5,611-June 26, 1900. J. HARGREAVES. Cambincd diaphragm and electrode.
A stratihied diaphragm-electrode, dense as to one side and porousus to the other, iv formed by covering wire cloth or perforated plate with a thin layer of clay or equivalent material adapted temporarily to perform a retentive function and

digest of patents Relating to chemical industries.

ultimately to be dissolved or washed away, then applying a coating of Portland cement or like hard or dense material to one face, and covering the latter with asbestos cloth or equivalent soft or porous material.
654, 469-July 24, 1900. H. LELEUX. Electric furnace.
Relates to details of the attachment of the vertical elcetrode to its hanger, the electrode being formed of cores of carbon of high conductivity surrounded by agolomerated cabon or lower conductivity
654,4i67-July 24, 1900. J. MACTEAR. Furnace for heating and treating gaseous mixtures.
The apparatus has a chamber with a removahle cover and bottom, and gas inlet and outlet fues, a catalytic substance contained in the chamber, and retubes. tubes.
655,779-August 14, 1900. W. S. HORRY. Control of electric furnaccs.
An electrically controlled motor actuates the movable member of the furnace, as the movable receptacle, and an electro-mechanical device under the control of the furnace circuit controls the motor to keep the amperes constant, a switch being provided for controlling the motor by hand and for cutting in and out
the said electro-mechanical devices.
655,780-August 14, 1900. W. S. HORRY. Electric furnace.
Relates to mechanism for controlling the movable element in response to predetermined variations in the furnace circuit, and keeping the furnace current
approximately constant.
656,600-August 21, 1900. R. DOOLITTLE. Means for manufacturing carbids.
A smelting furnace for the process of No. 656,599.
656,950-August 28, 1900. W. BORCHERS. Electric furnace.
The furnace has an inclined water-jacketed column for the product below the hearth, a supporting roller for the carbide core, and a chisel for breaking up the
carbide.
657,756-September 11, 1900. W. S. HORRY. Electric furnace.
A carbide furuace having a vertically movable bottom to support the product and charge, and means for clamping and temporarily holding the column of finished product to allow for the removal of the bottom portion thereof and the running up of the furnace bottom; thus permitting a continuous downward feed and delivery

657,911-September 18, 1900. G. D. BURTON. Apparatus for separating metals from ores by electricity.
The reducing chamber has a cylindrical hody of electro-conductive resistance material resting on $\{$ flat electrode which forms the bottom of the chamher and material resting on a flat electrode which forms the bottom of the chamber and
from which it can be lifted to deliver the charge, the other electrode clamping the chamber under a projecting flange.
658,315-September 18,1900. A. H. COWLES. Electric furnace.
The electric furnace chamber is fianked by two fuel chambers and means is provided for causing a reversing flow of gas through hot-blast stoves, the fuel chambers, and the electric furnace.

GROUP XI.-DYESTUFFS AND EXTRACTS.

NATURAL, INORGANIC.

$557,3 z 5$ - March $h 1,1896$. G. D. BURTON. Art of and apparatus for electro-dyeing. See Group X, Electro-chemistry.
557,32L-March 31, 1896. G. D. BURTON. Art of etectric dyeing. See Group X, Electro-chemistry.

NATURAL, ORGANIC.

951-September 27, 18s8. L. KENT. Improvement in the mode of extracting color from dyewood.
The ground wood is leached with steam, the liquor being drawn off into a boiler, the steam therefrom returned into the wood, and the coloring matter dried.
4,192-September 13, 1845. F. PFANNER. Improvement in preparation of dyestuff from spent madder.
Dyestuff or carasene is obtained from spent madder by the chemical action of water, sulphuric acid, and an alkali.
50,495-October 17, 1865. G. H. REED. Improved preparation and manufacture of dyes and colors.
Liquid dyes from vegetable or mineral coloring matters, so mixed and prepared with concentrated mordants as to endure heat and cold and keep without change, and to dye silk or wool at one application.
74,985-February 25, 1868. A. PARAF. Improved process of separating coloring matter from madder and other ptants.
The coloring matter is liberated from the ligneous matter by the solution of the cellulose, as by steeping the madder root in aqneous ammonia in the presence of metallic copper, and the separation of the coloring matter from the
insoluble compounds formed. The sugary matter is first removed by successive washings.
76,107-March 31, 1868. C. SEIDEL. Improved vegetable coloring matter.
An indelible vegetable fluid consisting of the pigment of the cashew nut in a menstrum solvent, as oil of turpentine.
81,998-September 8, 1868. C. E. \& M. E. FOX. Improved dyestuff.
The extract of manzanita, a red coloring matter, obtained by crushing and boiling the roots.
88,182-October 20, 1868. J. LIGHTFOOT. (Reissue: 9,647-September 28, 1869.) Improvement in printing certain textile fabrics and yarns.
The indigo preparation is modified, by employing much less tin, whether as oxide or in the state of salt, in the process of dissolving the indigo; and, in connection with such modified preparation, carbonate of potash, alkaline silicates, or the chemical equivalents of them are used in simultaneously fixing indigo blue or green, or both, in juxtaposition with ordinary madder mordants. 86,047-January 19, 1869. T. WEBER. Improved indigo dye.
A dyeing compound obtained by dissolving the hydrated oxide of tin and common indigo in caustic lye.

86,989-February 16, 1869. A. PARAF. Improved process of extracting the coloring matter of madder.
The coloring matter is extracted from madder root by treatment with water at a high temperature $-150^{\circ} \mathbf{C}$.-and it is then precipitated from the liquid.
93,900-August 17, 1869. A. PARAF. Improved material for dyeing and printing, oblaned fom madaer.
Tinctorine, the coloring matter of madder root, combined with fatty or resinNous matters, and free of pectic acid or its compounds, produced according to No. 86,939.

95,059-Scptember 21, 1869. A. PARAF. Improved extract of madder for dyeing and printing
A compound extract of madder (as tinctorine, No. 93,900), with an alkaline base and a volatile acid, such as the acetate of potash or acetate of lime. which will decompose after printing and permit the alkaline base to develop the color.
97,497-December 7, 1869. J. GEE. Improved process of dycing black.
The fabric is first run throngh a mixture of extract of logwood and sulphate of copper, and is then treated with the sizing material mixed with bichromate of potash. For fabries which have to be sized twice, the logwood and sulphate of copper is mixed with sizing.
99,496-February 1, 1870. G. W. TALBOT. Improvement in dyes for coloring wool. A dye for coloring is produced by combining extracts made from domestic harks, woods, or plants with the foreign dyes, such as fustic, madder, nutgalls, logwood, etc., producing a dye having less stringent power than the domestic extracts alone and more permanence than the foreign dyes.
109,489-November 咆, 1870. S. BORDEN. Improvement in the preparation of garancine.
The coloring matter contained in garancine is eliminated by the combined or separate action of hard soap and chlorate of potash.
110,994-January 17, 1871. A. PARAF. Improvement in material called "Oleizerine," for dyeing and printing.
A new compound of the coloring matter of madder with oily matter, prepared hy treating garancine with petroleum in which paraffine has heen dissolved. A caustic-soda solution is added to cause the coloring matter to separate from the
hydrocarbon solvent, and it is precipitated with an actd. hydrocarbon solvent, and it is precipitated with an acid.
110,995-January 17, 1871. A. PARAF. Improvement in processes of extracting the
The coloring matter of madder is extracted by means of a liquid hydrocarbon.

118,918-April 18, 1871. A. PARAF. Improvement in products from madder.
"Oil-izarine," produced by treating garancine with a hydrocarbon, such as kerosene, and consisting of a solution of the coloring matter of madder within insoluble matter.
117,820-August 1, 1871. F. GRAUPNER. Improvement in compounds for dyeing.
A combination of sulphate of copper, muriatic acid, and zinc. Added to a dye of logwood and catechu, it dyes cotton black.
120,392-October 31,1871. A. PARAF. Improvement in compositions of madder for dyeing.
Alizaride, a compound of the coloring matter of madder with a neutral alkali and with ammonia.
134,694-January 7, 187s. G. MOLT. Improvement in indigo-blue vats for coloring wool and cotton.
Indigo is dissolved in a composition formed by mixing a solution composed of lime and soda ash, with a solution composed of muriate-of-tin crystals and soda ash.
154,876-January 14, 187s. L. G. FELLNER. Improvement in the extract of yucca.
The yucca root is ground, steeped in water, and pressed, and the solution evaporated to dryness in molds, or melted in forms. Yuccatin cleanses skins, hair, and wool without destroying their softness.
139,056-May 20, 1373. F. A. GATTY. Improvement in dyeing madder colors.
Cotton fabrics or yarns are treated with neutral soap or emulsions of fatty acids, or of oils or fats, either saponified or in their natural state, in lieu of dunging.
139,57s-June S, 187s. F. G. GRAUPNER. Improvement in dyeing fabrics.
Oxyduloxyd of iron, or anvil dust, is combined with muriatic acid as a base for dye. It is combined with quercitron and logwood to form a black, slate, or drah dye.
167, 860 -August 31, 1875. J. S. SELLON AND R. PINKNEY. Improvement in dyeing and printing.
A dyeing or printing compound, consisting of the salts or compounds of vanadium and animal dyeing or printing materials, such as cochineal.
169,s77-November 2, 1875. W. H. SEAMAN. Improvement in processes for testing the purity of dye in black silk thread or fabrics.
A fixed quantity of the black silk thread or fabric is treated in a chemical liquid, of which oxalic acid is the base to ascertain the purity of the dye.
175,889-April 11, 1876. W. H. FISH. Improvement in dyes.
An indigo-dye aqueous solution, composed of indigo and zinc dust, together with hisulphite of soda and caustic soda.
179,989-July 18, 1876. G. MOLT. Improvement in blue dyes.
It is composed of indigo, 1 pound; caustic potash, 2 pounds; and water enough to dissolve; beated to boiling point, with $2 \frac{1}{2}$ pounds of oxalere, 5 pounds of liquid ammonia, and 2 pounds of sal ammoniac.
210,280-November 26,1878 . E. \& H. WELLS, A. E. RICHARDSON, AND W. J.
VAN PATTEN. Improvement in refining and packing catechu.
Refined and concentrated catechu, incased in a tight integument, is made by liquefying with water and heat, introducing steam of a high temperature, skimming, straining, and settling, and drawing off, while still liquid, into boxes, preferably of paper.
280,698-October 14, 1879. G. MOLT. Improvement in compound dyes.
An indigo dye, consisting of indigo (XX), 50 pounds; caustic soda, 25 pounds; tin crystals, 5 pounds; and a sirup made by boiling hops, madder, bran, and molasses in water.

240,467-April 19, 1881. G. SCHWARZWALD. Composition for printing textile fabrics.
1t consists of powdered almond shells, water, hydrochloric acid, coloring matter, gelatine, oxidized metal powder, and bichromate of potassa.

272,499-February 20, 188s. H. W. VAUGHAN. Method of preparing dyestuffs for application to fibrous materials.
The coloring matter, with or without a mordant, is ground with an oleaginous constituent, as paraffine oil, and a pulverulent material is then incorporated therewith, to enable the mass to be worked in a finely powdered condition.
276,061-April 17, 1889. A. M. MEINCKE. Dyeing compound.
It consists of corn meal, highly concentrated cudbear, indigotine, acid magenta, wool orange, and imported cudbear.
282,971-August 14, 1889. C. D. EKMAN. Method of obtaining coloring matters. The raw vegetable material is boiled under pressure in a solution containing sulphurous acid and a base or alkali, as soda.
306,434-October 14, 1884. M. E. SAVIGNY. Process of making extracts for dyeing, etc.
Tannic woods or plants colored yellow are crushed and boiled with an oil or fatty body saponified with an alkaline solution or with a soap solution, the clear liquor being drawn off and evaporated.

306,485-October 14, 1884. M. E. SAVIGNY. Dyeing extract.

A soap extract from yellow-colored tannin woods or plants of a yellowishbrown color and brittle texture; the product of process No. 306,434.

308,706-December 2, 1884. M. E. SAVIGNY. Dyeing exiract.
An acid extract produced from so-called "red-colored tannic woods and plants" by disintegration and fermentation or oxidation with acids. A soap extract is secured from the residue, or in conjunction with the fermentation or acid oxidation in one operation.
\$20,526-June 28, 1885. C. E. AVERY. Process of preparing logwood extracl.
Logwood liquors, or extracts of the same, after their extraction from the wood and before they are mingled with the necessary mordants, are oxidized by the formation of hæmatein from hæmatoxylin by the action of oxidants, such as solution of bleaching powder, hypochlorous acid, chloric acid, chlorates or nitrates of the alkalis, and alkaline earths.
338,431-March 23, 1886. A. MORAND. Art of clarifying extracts.
An alkaline solution of caseine is mingled with the acidulous tannin or like extract in sufficient proportions to neutralize the free acid, and the precipitate separated from the clarified extract.
356,368-January 18, 1887. J. A. MATHIEU. Manufacture of dyestuffs.
In the manufacture and purification of lac dyes, the material is treated with turpentine or other solvent; the residuum treated with water and an alkali; of lead; and the precipitate treated with dilute sulphuric acid.
386,988-July 81,1888 . F. E. SCHMÜCKERT. Process of preparing a solution of indigo for dyeing purposes.
A woad-bath for dyeing with indigo is prepared by mixing guano salts with water, adding zine dust and indigo, or other bodies having an affinity for oxygen, and then heating the mixture.

417,492-December 17, 1889. W. W. MACFARLANE. Process of preparing logwood extracts.
Logwood extract is treated with free chlorine, as a gas or in solution, to increase its dyeing power.

437,688-September $\$ 0,1890$. A. AINSWORTH. Indigo solution.
A solution for reducing indigo for dyeing purposes is prepared by saturating a solution of sodium bisulphite with metal filings, separating the liquor, adding sodium sulphide till the formation of precipitate ceases, filtering, and adding caustle soda.
443,026-December 16, 1890. F. C. WEISS. Dye.
The material is steeped in dilute anacardin extract, then pressed as hard as possible, then treated to a hot bath of bichromate of potassium, then washed in cold water, and then subjected to the ordinary indigo-dyeing process.
456,779-July 28, 1891. T. B. OSBORNE. Process of extracting zein.
The nitrogenous remainder, after the manufacture of cornstarch from Indian corn, is treated with a solvent of zein, as alcohol partially diluted with water The solution 18 then evaporated to a sirupy consistency and poured into water. mode of preparing same.
An alkaline nitrite is added to \log wood extract in the presence of water, causing a reaction between the mitrite and the extract, and the product is evaporated to dryness. It is characterized by being a friable solid, soluble in cold and rapidly soluble in hot water.
492,968-February 21, 1898. P. T. AUSTEN. Solid coloring matter from fustic and process of preparing same.
An alkaline nitrite is added to fustic extract in the presence of water, causing a reaction between the nutrite and the extract, and the product is evaporated to dryness. It is characterized by being a friable solid, soluble in hot or cold water.
494,237-March 28, 1898. P. T. AUSTEN. Process of curing logwood chips.
The chips are moistened by sprinkling with an aqueous solution of nitrite of soda, or potash, or other suitable nitrite, well mixed and dried.
508,59\%-November 14, 1898. P. T. AUSTEN. Oblaining friable coloring matter from dyewood cxiracts.
A solid friable extract of logwood, produced by adding ammonium carbonate to a slightly warmed logwood solution, say 7 per cent, allowing the reaction to take place, and evaporating to dryness.
509,703-November 28, 1899. A. TAYLOR. Process of making extracts from the redwood tree.
The bark and wood of the redwood (Sequoia sempervirens) is comminuted, steeped in water and a caustic alkali or a carbonate of an alkali, the alkali neutralized, and the solid matters obtained.

542,408-July 9, 1895. P. T. AUSTEN. Process of making coloring matter from logwood.
A small proportion of borax, say 2 per cent, is dissolved in hot dilute logwood extract, which is then cooled sufficiently to cause a precipitation of coloring matter, which is then geparated and dried.
558,718-April 21, 1896. H. L. BREVOORT. Ari of fixing dyes in fabrics.
See Group X, Electro-chemistry.
610,282-September 6, 1898. W. T. SCHEELE. Process of making coloring extracts. Ketones having their boiling point between 80° and $227^{\circ} \mathrm{C}$., as ethylmethyl, diethyl, dipropyl, butyl, etc., are used as solvents for the extraction of the coloring principle from vegetable substances.
687,707-November 21, 1899. F. E. BUCHER. Process of treating logwood extructs.
Vapors of peroxide of nitrogen, preferably diluted with air, are passed through log wood liquors or extracts containing hæmatoxylin, whereby the hæmatoxylia is converted into hæmatein.
640,061-December 26,1899 . E. S. WILSON. Dye from cottonseed oil.
Cottonseed oil is heated with an alkaline solution, the solution separated from the oil and treated to remove the impurities, and then the coloring matter is precipitated from the solution by an acid.

ARTIFICIAL, INORGANIC.

441-October 28, 1887. H.STEPHENS. (Reissue 8-April21, 1838.) Improved manufacture of coloning matter.
See Group VI, Ferrocyanides.
2,060-Aprif24, 1841. J. D. PRINCE. Improved mode of producing a black color in the operation of dyetng.
Arsenious acid is used in combination with sulphate of iron, as a mordant.
8,068-May 2,184s. H. HIBBARD. Improved mode of preparing and using compounds in dyeing, etc.
Mordants are used in conjunction with \log wood liquor:
No. 1. Sulphate of iron, muriate of soda, and hydrate of lime, 1 pound each.
No. 2. Sulphate of iron, 1 pound; sulphate of copper, muriate of soda, 8 ounces
each. 3. Sulphate of iron, sulphate of copper, 1 pound each; nitrate of potash, muriate of ammonia, 8 ounces each.
No. 4. Sulphate of zinc, 2 pounds; muriate of soda, 4 ounces; and sulphate of iron, sufficient to sadden.
No. 5. Sulphate of iron and of aluminium, 1 pouna each.
No. 6 . Bar or yellow soap, 2 pounds; litharge, 1 pound; and water, 2 quarts, No. 6. Bar or yellow
boiled fifteen minutes.

9,890-July 26,185s. F.G. VETTERCKE. Compound to produce a liquor for coloring kali blue.
Four pounds of prussiate of potash in 3 gallons of boiling water is prepared in a receiver, and 5 pounds of manganese and 4 pounds of common salt in a retort, to which is added a mixture of vitriol and water previously prepared, and the retort connected with the receiver and allowed to stand for six hours, when the retort is heated for six hours. The receiver is then disconnected and sealed up ready for use, the contents of the same constituting the "kali compound."
72,817-December 81, 1867. J. H. DILKS. Improved process of making soluble bluing for use in laundries and bleaching.
A mixture of ferrocyanide of potassium, 100 pounds, and sulphuric acid, 40 pounds, in water, is added to a solution of 10 pounds of iron in 40 pounde of nitric acid, and boiled until a violent action takes place, then washed free from acid, pressed, and dried.
78,756-January 28, 1868. J. REYNOLDS. Preparation of dyes.
Yellow prussiate of potash, dissolved in hot water, is treated with chlorine gas, but not more than will prevent precipitation.
87,270-February 23, 1869. A. LEYKAUF. Improvement in the manufacture of colors.
A violet color is produced by heating a compound of manganese with phosphoric acid and ammonia; the addition of irnn gives a light blue color.

88,291-March 90,1869 . E. HARRSCH. Improvement in the manufacture of colors and pigments.
Colors or dyes are extracted from franklinite ores-their residues or ores containing oxide of zinc, manganese and iron-by treating with dilute sulphuric acid and then precipitating with various reagents.
88,793-April 13, 1869. J. LORY. Improved hair dye.
A compound of nitrate of silver, ammonia liquor, and lac-sulphur in distilled water.
95,040—September 21, 1869. A. PARAF. Improved process of printing colors on textile materials.
The textile material is printed with the coloring material, then a compound of an alkali and volatile acid is applied-as acetate of lime, potash, or sodaand it is then steamed to liherate the alkali.
110,277-December 20, 1870. A. PARAF. Improvement in the manufacture of colors and their application to fabrics.
Colors are applied to fibrous and textile articles by means of coloring matter and a coloring liberating salt of a class possessing certain characteristics, viz.: They are mineral salts; do not contain lime; alkaline or neutral, not acid; do not produce a chemical compound with the coloring matter; the acid of the salt makes an insoluble compound with the base of the mordant; and they liberate the coloring matter from the other vegetable matter.
192,491-June26, 187\%. H. D. DUPEE. Improvement in mordanting textile fabrics.
Coloring matters upon textile fabrics are mordanted by means of gelatine combined with chromic acid, and subjected to the action of steam.
202,82\%-April 2s, 1878. R. HOFFMAN. Improvement in manufacture of ultramarine colors.
The blue or (so-called) white ultramarine, or mixtures of the same, while heated to 120° to 200° C., is exposed to the action of the vapors of ucids derived from the halogen group of elements-as hydrochloric acid-and the soluble salts afterwards washed out. Blue is first converted into violet, and by continuation of the treatment into red ultramarine.

207,098-August 13, 1878. J. ZELTNER. Improvement in manufacture of red ultramarine.
Red ultramarine is produced by the action of nitric acid upon violet ultra-
marine or ultramarine hydrate.
207,856-September 10, 1878. J. ZELTNER. Improvement in manufacture of molet ultramarine.
Violet ultramarine, or ultramarine hydrate, is produced by the reaction upon blue or green ultramarine, or mixture thereof, of an oxidizing reagent, as chlorine, and water.
213,189-March 11, 1879. L. GRAF. Improvement in the manufacture of prussian blue.
A solution of leather scraps in caustic alkali is evaporated to dryness, mixed with iron filings, the mixture fused, the fused mass washed, and the lye treated with acid and persulphate of iron.
240,467-April 19, 1881. G. SCHWARZWALD. Composition for printing textile fabrics.
A composition for imparting a bright silk or satin like appearance to cotton goods, paper, etc., consisting of powdered almond shells, water, hydrochloric acid, coloring matter, gelatine, oxidized metal powder, and bichromate of potassa in specified proportions.
242,080-May 24, 1881. H. W. VAUGHAN. Dyeing fibrous malerial.
A dyestuff and a mordant in conjunction are mechanically incorporated with the fibrons material during the process of manufacture, by the aid of infusorial earth, or other vehicle for the same, and an oleaginous constituent, and the dyestuff and mordant are then chemically combined by heating or steaming the material; or an infusorial earth charged with a mordant is so combined with the material, and it is subsequently immersed in a dye bath to combine chemically with the mordant and make a fast dye.

ARTIFICIAL, ORGANIC.

38,965-July 30, 1861. G. E. C. DELAJRE. Improvement in aniline colors.
Blue and violet of aniline are produced by the reaction of aniline red upon pure aniline at a suitable temperature. A mixture of aniline red and pure mixed with water and hydrochloric acid and boiled, vielding the violet residue. This is successively boiled with hydrochloric acid and washed in boiling water, producing a blue precipitate.
s8,589-May 19, 1863. J. LIGHTFOOT. (Reissue: 4,746; 4,747-February 6, 1872.) Improvement in dyeing and printing texile fabrics and yarns with aniline black.
The use of a salt or salts of amiline is claimed for producing or developing a black in textile fabrics. To prepare the solution 4 onnces of chlorate of potash is dissolved in a gallon of water; 8 ounces of aniline comhined with 8 ounces is dissolved in a gallon of water; 8 ounces of aniline comhined with 8 ounces of hydrochloric acid at 32° Twaddell is added; then I pint of acetic acid and 8 onnces of
$49066-J u n e 7,1864$. A. W. HOFMANN. Improvement in preparing coloring matters for dyeing and printing.
Coloring substances, of a violet-blue, violet, or red-violet tint, are produced by the action of the iodides and bromides of alcohol radicals on rosaniline, heated to $100^{\circ} \mathrm{C}$. in a closed vessel under pressure. There may be taken 1 part of rosaniline, 2 parts of iodide of ethyl, and 2 parts of strong methylated spirit or alcohol.
49,958-September 12, 1865. A.S. L. LEONHARDT. Improved method of preparing aniline colors for dyeing and printing.
The blue and violet colors of commerce obtained from magenta, and insoluble in water, are rendered in a fine state of subdivision by dissolving them in alcohol or aniline or sulphuric acid and allowing the solutions, under hrisk and constant agitation, to drop into cold water, or into cold water containing in constant agitation, to drop in outral salts, caustic, or carbonated alkalies; or, when aniline is used, solution neutral salts, caustic, or carbonated a cold water containing hydrochloric acid; or, when sulphnric acid is nsed, into cold water containing hydrochloric acid; or, when to containing alkali in amount equivalent to acid. The solvent is recovered.
50,355-October 10, 1865. C. CLEMM. Improvement in the manufacture of aniline red.
Aniline red is produced by the reaction of salts of aniline and its homologues with the arseniates of the alkalis, as by fusing at $210^{\circ} \mathrm{C}$. a mixture of arseniate of soda and the sulphate of aniline, equal parts; the latter prepared by mixing sulphuric acid of 66° Baumé and water, equal parts, and stirring in two and onehalf parts of aniline. The sulphate of soda of the dry mass is washed out and half parts of aniline. The sulphate of soda of the ary mass is washed
51,40/-December 5,1865 . J. HOLLIDAY. Improvement in the manufacture of coloring matter.
Cotton-violet dye of commerce, 1 part, is treated with 6 parts of a very weak alkali and the precipitate washed and dried. The color is purified by dissolving I part in 8 parts or more of methyl-alcohol and adding one-half part of acid. I part in 8 parts or more of methyl-a, condering the color each time bluer and clearer.
55,241-March 18, 1866. P. CHEVALIER. Improvement in the manufaclure of coloring matters from aniline.
Coloring matters, red and violet, are produced by transforming commercial aniline into a salt, as arseniate; adding a nitrite; as nitrite of potash, and heat aniline into a salt, as arseniate; ada at which the aniline is raised to the boiling ing the mixture to the temperature atwontil it turns blue in the presence of an point-Which should not be exceeded- The mixture at the boiling point is treated with alkalinized water, which acid. The mixture at the boiling point insoluble. The red is precipitated by a neutral salt, as sodium sulphate.
54,957-May 22, 1866. G. H. REED. Improvement in the manufacture of dyes and colors.
Coloring matters and their mordants, one having an affinity for woolen and one for silk, and neither neutralizing the other, in quantities each suited to the quantity of the other, are boiled together in water with frequent stirring, and quantity of the other, are bolled together in water whorbed all it will take up, dissolved and concentrated until the liquid has alcolol or wood naphtha is added when the proper q
to prevent change.
76,031—Mareh 24,1868 . E. ZINSSMANN. Improved compound of aniline colors.
A soluble compound is produced by treating an aniline color (insoluble in A soluble compound with glue or equivalent material dissolved in acetic acid, glycerine, or water) with g

79,942-July 14, 1868. B. BLOCH. (Reissue: 3,103-September 1, 1868.) Improved aniline dye.
A gray dye, prepared by mixing and boiling aniline oil with arsenic acid in iquid form and about 75° strength. The mixture is purified by boiling with muriatic acid, filtering, washing, drying and then dissolving in alcohol with 20 per cent of sulphuric acid, boiling, and filtering.

82,129-September 15, 1868. J. LAMBERT, Jr. Improved aniline dye.
Saffranine rcd is produced by dissolving I part of violet-harmaline paste in 2 parts of acetic acid, of 8° Baume, and 100 parts of water, heating and adding 1 part of binoxide of lead, boiling, and finally neutralizing with plenty of caustic soda. The saffranine-red solntion is filtered and boiled with a little carbonate of lime to remove any remaining violet.

95,465-October 5, 1869. C. GRAEBE AND C. LIEBERMANN. (Reis8ue: 4,920, 4,321-April 4, 1871.) Improved process of preparing alizarine.
Bibromanthrakinon, or bichloranthrakinon, is first prepared by the action of bromine or chlorine on anthrakinon (oxanthracene), and then converted into alizarine by heating in a solution of canstic potash or soda to 180° to $260^{\circ} \mathrm{C}$. until the mass has a deep blue color; then dissolving in water and filtering the violet solution, from which the alizarine is precipitated by an organic or inorganic acid.
96,248-Oclober 26, 1869. C. LAUTH. Improved cotoring material for dyeing and printing.
Vegetable fibers are mordanted in a concentrated solution of a salt of manganese, and after desiccation the fiber is passed through an alkaline solution to liminate the oxide of manganese. The oxide is transformed into a sesqui or binoxide, by exposure to the atmosphere, or by passing it through chloride of lime. The fibers are washed and placed in an acid solution of aniline and instantaneously dyed black. Animal fibers are mordanted with manganates and permanganates.
97,597-December 7, 1869. J. BRÖNNER AND H. GUTZKOW. (Reis8ue: 4,558September 19, 1871.) Improvement in preparing coloring matters from anthracene. The product obtained from anthracene by oxidation (oxanthracene) is nitrated. The product thus ohtained is treated with a concentrated solution of caustic alkali up to 220° C., dissolved in water, and the coloring matter-aliza-rine-precipitated by an acid.
111,654-February 7, 1871. J. LIGHTFOOT. Improvement in dyeing and printing textile fabrics.
A black dye or color is produced by printing or staining with a salt of aniline mixed with certain oxidizing agents. Crystallized carbonate of soda or sesqui carbonate of ammonia is added to an aqueous solution of tartaric acid, and a solution of chlorate of potash is mixed therewith, producing chlorate of soda or ammonia and cream of tartar (a by-product). For printing, the filtrate is thickened with gum or starch, heated, and aniline and hydrochloric acid mixed therewith. Just before using the color a suitable copper salt, as sulphate of copper or sulphide of copper paste, is added. For dyeing, in lieu of the thickening, acetic acid and sugar is added and less of the copper salt.
197,426-June 4, 1872. W. H. PERKIN. Improvement in the manufacture of coloring matters from anthracene.
Chlorinated or brominated anthracene, 1 part, is treated with sulphuric acid, 5 parts, and the product oxidized by means of any suitable oxidizing agent, as manganese hinoxide. The solution is further treated with caustic alkali.
154,076-December 17, 1872. F. LAMY, JR. Improvement in dyeing fabrics with naphthylamine colors.
Naphthylamine is dissolved in a mixture of nitric or hydrochloric acid and acetic acid, and treated with chloric and chromic acid. After printing the color is fixed by passing into a bath of bichromate of potash with acid, and a puce-garnet shade is developed by passing into chlorime or into ammonia; a violet shade is obtained by passing into a bath of nitrate of iron and agua regia, instead of ammonia or chlorine; and a reddish violet bysubstituting chloride of iron and a salt of copper.
158,586-July 28, 1874. H. CARO, C. GRAEBE, AND C. LIEBERMANN. Improvement in the preparation of coloring matters from anthracene.
Sulphuric acid is substituted for bromine or chlorine in the process of No. 95,465. 154,15s-August 18, 1874. C. RUMPFF, F. BAYER, F. WESKOTT, AND A. SILLER. Improvement in treating anthracene and the manufacture of dyes.
Anthracene, 1 part, is mixed with from 1 to 5 parts of powdered peroxide of manganese and heated in a retort to $200^{\circ} \mathrm{C}$., whereby anthrakinon is produced by a dry and direct process.
182,254-September 12, 1876. R. SIMPSON, A. BROOKE, AND T. ROYLE. Improvement in preparation of alizarine, etc., made from anthracene.
Alizarine and other analogons coloring matter made from anthracene is produced in the form of a dry powder by mixing the coloring matter with a paste of hydrate of lime and water, drying, and passing through a sieve.
186,032-January 9, 187\%. H. CARO. Improvement in obtaining coloring matlers suitable for dyeing and printing.
Alizarine-orange is ohtained by treating dry, powdered alizarine with nitrous fumes or by dissolving it in a solvent, such as concentrated sulphuric acid, and treating the solution with nitrous, hyponitric, or nitric acids. A coloring matter possessing the properties of purpurine is produced by subsequently heating the alizarine-orange solution to about $I 50^{\circ} \mathrm{C}$., until the evolution of gas ceases.
186,485-January 23, 1877. L. LEIGH. Improvement in preparing aniline dyes.
A block or cake composed of soap, gelatine, and an aniline dye, the whole soluble in water.
188,061-March 6, 1877. F. De LALNDE. Improvement in process of obtaining arlificial purpurine from alizarine.
A mixture of alizarine, 10 parts, antimonic acid, 5 to 10 parts, and sulphuric acid, 66° Baume, 80 to 100 parts, is heated to from 392° to 428° F., with constant atirring, until with dilute caustic soda it produces a currant-red color, when water is added, twenty to thirty times the volume of the mass, and it is boiled, cooled, and filtered.
188, 217 -Morch 6, 187\%. J. WOLFF AND R. BETLEY. Improvement in processes of making dyes from naphthaline.
Dyes from naphthaline and" its derivatives, in which one atom of hydrogen therein is substituted by one molecule of benzole, its homologues or their derivatives, are produced by submitting the same to an oxidizing process, and the products to a second oxidizing process, and finally to the action of an alkali.

189,598-April 10, 1877. J. WOLFF AND R. BETLEY. Improvement in production of coloring matters from aniline.
A dye, or series of dyes, of blne shades is produced from aniline, toluidine, or mixtures of the same, either with or withont xylidine, together with nitrobenzole or nitro-toluol, or mixtures of the same, in conjunction with metallic salts, as protochloride of tin. Coloring matters are produced from aniline in conjunction with nitro-benzole by the employment of hydrochloric acid or other suitable hydrogen acids. If coloring matters are produced from arsenic acid, or other metallic oxygen acids, such arsenic acid is employed in such proportions as to saturate one-half to two-thirds of the aniline.
199,158-July 17, 1877. W. J. S. GRAW1TZ. Improvement in dyeing yarns and fabrics in aniline-black.
The process consists in the slow concurrent progressive reaction on the fiber of aniline salts and metallic oxidizing salts or acids withont exposure to the air, and with a subsequent peroxidation by means of chloric or chromic acid. A complex base, containing both an aniline and a metal, and which redissolves in acids, is obtained by precipitating certain metallic salts by means of aniline oil; or, a bath is formed containing the elements of a double salt of aniline and of a metal, as perchloride of iron and hydrochlorate of aniline; or, a bath is formed containing the elements of an aniline salt combined with the metal. All have the property of enabling the aniline to gradually oxidize with the greatest facility, producing hlack or shades bordering on black.
20s,140-April 30,1878. L. GRAF. Improvement in dyestuffs or coloring matter.
A brown dye or coloring matter prepared from leather scraps, as, for example, by digesting same with caustic soda or potash in a closed hoiler under pressure, and precipitating the liquid leather with dilute acid.
204,796-June 11, 1878. H. CARO. Improvement in the production of dyestuffs from methyl-aniline.
"Methylene-blue:" produced from tertiary monamines, particularly from dimethyl-aniline; by, first, producing nitroso-dimethyl-aniline, by treating a cold solution of dimethyl-aniline in concentrated muriatic acid and water with pure nitrite of soda; second, reduction to amido-dimethyl-aniline, with the aid of hydrogen sulphide; third, treatment with an oxidizing agent, as perchloride of iron. The blue coloring matter is separated by saturating with sodium
chloride, and adding an aqueous solution of zinc chloride. It is soluble in water and forms insoluble blue compounds with metallic tannates.
204,797-June 11, 1878. H. CARO. Improvement in methyl-aniline viotet colors.
Coloring matter produced by converting methyl violet (comprising methyl purples, Paris violets, and Hoffraan's violets) into its sulpho-acid compound (which is capable of being employed in the presence of acid or acid mordants), by drying at $110^{\circ} \mathrm{C}$, and treating at that temperature, little by little, with fuming sulphuric acid under constant agitation, until a sample supersaturated with an alkali gives a clear yellowish solution without a percipitate. The thick fiuid mass is dissolved in water and treated with milk of lime, filtered, and treated with a solution of soda forming a salt of soda which is evaporated to dryness For commercial purposes, on account of deliquescence, the salt is transformed into an acid sodium salt.
204,798-June 11, 1878. H. CARO. Improvement in ethyl-rosaniline dyestuffs.
A dyestuff or coloring matter yielding purple or violet shades is produced by the reaction of ethyl iodide on the sulpho-acid of rosanline or fuchsine; as by heating a mixture of the soda-salt of the sulpho-acid of the fuchsine, water alcohol, soda lye, and ethyl iodide. The iodine is recovered as subiodide of copper.
204,799-June 11, 1878. H. CARO. (Reissue: 9,14--April 6, 1880.) Dye stuff or coloring matter.
Sulpho-acid of beta-oxyazo-naphthaline, a red coloring matter: ohtained from the reaction of the diazo compound of the sulpho-acid of naphthylamine and beta-naphthol: is prepared by converting naphthylamine into its diazo compound and causing equal molecules of the same and of naphthol or napbthylic alcohol to react, in an alkalinesolution. Beta-oxyazo-naphthaline, so obtained, is then converted into its sulpho-acids, as by hea
210,054-November 19, 1878. F. Z. ROUSS1N. Improvement in coloring matters obtained by the reaction of the diazoic derivative of sulphanilic acid upon the amines, the amides, and the phenols.
Coloring matters, orange, red, and yellow: produced by the reaction of the diazo derivatives of sulphanilic acid upon the amides, amines, and phenols. The azo derivative of sulphanilic acid is produced by adding dilute sulphinric acid to a mixtur
210,239-November 26, 1878. H. BAUM. (Reissue: 9,986; 9,987-December 27, 1881.) Coloring matter or dye stuff.
Red-scarlet coloring matter (9.986) is produced by the action of the sodium salt of bisulpho-heta-naphtholic acid, insoluble in alcohol, on the diazo derivative of xylidine.
Yellowish-red scarlet coloring matter (9.987) is produced by the action of the sodium salt of bisulpho-heta-naphtholic acid, soluble in alcohol, on the diazo derivative of xylidine.
The two isomeric bisulpho-beta-naphtholic acids are produced by mixing beta-naphthol, 1 part, with sulphuric acid of $1.848 \mathrm{~s} . g ., 3$ parts, and heating for twelve hours at 100° to $110^{\circ} \mathrm{C}$., and the acids separated by digesting the soda salts thereof with alcohol.

211,180-January 7, 1879. A. F. POIRRIER, A. ROSENSTLEHL, AND Z. ROUSSIN Improvement in colors from crude naphthylamine.
A series of colorlng matters, as an intense red (adapted to replace "orseille"), is produced by the action of the sulpho-conjugated diazo derivatives of phtalais produced the phenols and amines. By the action of heat, particularly with the concurrence of water and an alkali or an alkaline salt, new and different coloring matters are obtained.
211,525-January 21, 1879. Z. ROUSSIN AND A. F. POIRRIER. Improvement in colors derived from nitraniline.
New coloring matters are produced by the reaction of the diazo derivatives of nitraniline upon the amines, amides, and phenols.
211,671-January 28, 1879. Z. ROUSSIN AND A. F. POIRRIER. Improvement in colors derived from toluidine and xylidine.
New coloring matters are produced by the reaction of the diazo derivatives of the toluidines and xylidines upon the amines, the amides, and the phenols.
213,568-March 25, 1879. J. P. GRIESS. Improvement in coloring matters.
"Anisol-crimson:" produced by the action of the dlazo-anisol upon an alkaline solution of disulpho-acid of beta-naphthol. A hydrochlorate of anisidine
is prepared from anisidine-the amido compound of anisol-by treatment with nitrous acid combined with an alkaline solution of disulpho-acid of heta-naph thol.
218,564-March 25, 1879. J. P. GRIESS. Improvement in coloring matters.
A red coloring matter produced by the action of the diazo-anisol upon an alkaline solution of the monosulpho-acid of beta-naphthol (using the mono in lieu of the disulpho-Rcid of No. 213,563).
221,114-October 28, 1879. J. H. STEBBINS, JR. Improvement in colors from diazobenzole nilrate and pyrogallol.
"Pyrogallidine:" produced by the reaction of diazo-benzole nitrate on an alkaline solution of pyrogallol. Silk is dyed a yellow brown, and wool, with a alkaline solution of pyrogaliol.

221,115-October 28. 1879. J. H. STEBBINS, JR. Tmprovement in colors from picric acid.
"Picridine:" produced hy the reaction of an aqueous solution of diazo-benzole nitrate and picric acid dissolved in alcohol. Silk is dyed an orange yellow nitrate and picric acid dissolved in alcohol. Silk is dyed an orange yell
without mordants; wool a light yellow when mordanted with tannic acid.

221,116-October 28, 1879. J. H. STEBBINS, Jr. Improvement in coloring matters obtained from diamido-naphthaline and diazo-naphthaline nitrate.
"Naphthaline-brown:" produced by the reaction of diamido-naphthaline on diazo-naphthaline nitrate. Silk unmordanted is dyed a brown; mordanted with acetic acid a deeper brown; with iron chloride an almost black color; and with tin chloride a fine purple.
221,117—October 28, 1879. J. H. STEBBINS, JR. Improvement in coloring maitters obtained from cresol.
"Cresolidine:" produced by the reaction of an aqueous solution of diazobenzole nitrate on an alkaline solution of cresol. Wool is dyed yellow, with or without mordants; silk, mordanted with muriate of tin, dyes orange.
201,118-October 28, 1879. J. H. STEBBINS, JR. Improvement in coloring matters obtained from salieylic acid.
"Salicylidine:" produced by the reaction of an aqueous solution of diazobenzole nitrate on salicylic acid dissolved in alcohol. Silk, unmordanted, is dyed an orange red; mordanted with muriate of tin, it is dyed red; wool is dyed a salmon color with a tannic-acid mordant.
221,119-October 28, 1879. J. H. STEBBINS, JR. Improvement in coloring matters obtained from naphthylamine and diazo-benzole nitrate.
"Naphthylamidine:" produced by the reaction of an alcoholic solution of naphthylamine and an aqueous solution of diazo-henzole nitrate, with the addition of strong hydrochloric acid and gentle heat. In glacial acetic acid it dyes silk-a dark brown, cotton a crimson, and wool a fine red.
221,120—October 28, 1879. J. H. STEBBINS, JR. Improvement in cotoring matters derived from toluol.
"Toluol-orange:" produced by the action of an aqueous 1-per-cent solution of diazo-benzole nitrate on a 10 -per-cent solution of toluylendiamine in strong alcohol. It dyes animal fiher with or without mordants, and for dyeing cotton it forms insoluble compounds with some metallic salts, as oleate of lead or aluminate of zinc.
222,257-December \$, 1879. O. G. DOEBNER. Improvement in green coloring matters.
"Malachite-green:" produced by the reaction of benzo-trichloride, 2 parts, on dimethyl-aniline, 3 parts, in the presence of metallic chlorides, such as zinc chloride, $1 \frac{1}{2}$ parts.
224,927-February 24, 1880. F. KÖHLER. Dyestuff or coloring matter.
A bluish-red coloring matter produced by the action of the sulpho-acid of diazo-azo benzole upon an alkaline solution of a bisulpho-acid of beta-naphthol. 224,928-February 24, 1880. F. KÖHLER. Dyestuff or coloring matter.
A red coloring matter produced hy the action of the sulpho-acid of diazo-azo henzole upon an alkaline solution of beta-uaphthol.
225,108-March 2, 1880. H. CARO. Coloring matler obtained from alpha-naphthol. The sulpho-acid of dipitro-alpha-naphthol: produced by the action of nitric acid upon certain alpha-naphthol-sulphoacids. Alpha-naphthol is dissolved in and heated with sulphuric acid until the mono-sulpho-acids produced in the first stage of the process are changed in to those sulpho-acids which may be acted upon by nitric acid without losing their sulpho groups entirely, and then treated With nitric acid. The yellow coloring matter dyes and prints with other dyestuffs of similar acid properties.
225,908-March 2S, 1880. Z. ROUSSIN. Artificial coloring metter.
Coloring matters, varying from yellow to red, produced hy causing the diazo derivative of naphthionic acid to react upon the amines, the amides, and the phenols. They consist of the sulpho-acids or sulpho-salts of oxy-diazo pairs of aromatic radicals, one being the naphthyl derived from naphthionic acid, and the other from the amine, amide, or phenol employed.
227,470-May 11, 1880. A. BAEYER. Manufacture of artificial indigo.
"Artificial indigo:" prodnced by the action of an alkali and a deoxidizing agent, as glucose, upon ortho-nitro-phenyl-propiolic acid, its homologues and agent, as glucose, upon
substituted compounds.
2.8,\$00-June 1, 1880. A. BAEYER. Manufacture of artificial indigo-blue.

It is developed in or upon flber by impregnating yarn, fiher, or cloth with a mixture of ortho-nitro-phenyl-propiolic acid, an alkali, and a deoxidizing agent mixture of ortho-ntro-phenyl-propiolic acid, an alkali,
as glucose, and then submitting the material to beat.
238,458-Oct. 19, 1880. A. BAEYER. Manufacture of artificial indigo.
The dibrominated compound of ortho-nitro-cinnamic acid: produced by the action of bromine on ortho-nitro-cinnamic acid, at an ordinary or an elevated temperature. It is used in the mannfacture of artificial indigo.
23s,459-Oct. 19, 1880. A. BAEYER, Proccss for producing artificial indigo.
Ortho-nitro-phenyl-oxyacrylic acid: produced by exposing ortho-nitro-cinnamic acid to the action of hypochlorous or hyprobromous acid, and then treating indigo.
2ss,460-October 19, 1880. A. BAEYER. Process for the production of artificial indigo.
Ortho-nitro-phenyl-propiolicacid: produced by treating the dibrominatedcom pound of ortho-nitro-cinnamic acid with alcoholic potash and heat. It is used

288,465-October 19, 1880. H. BAUM. Red coloring matter
Produced by subjecting the diazo compound derived from amidoazo-benzole to the action ot disulpho-beta-napbtholic acid (using the one that is practically insoluble in alcohol).
235,198-December 7, 1880. A. BAEYER. Manufacture of antiflcial indigo.
A dyestuff or coloring matter produced by the action of a reducing or deoxidizing agent, such as ferrous sulphate, upon a new derivative of ortho-nitro-phenyl-propiolic acid, resulting from treating the said acid with sulphuric acid in the cold. It is in a great part soluble in aniline at ordinary temperature, and also in an aqueous solution of sulphuric acid.
235,488-December 14, 1880. A. BAEYER. Manufacture of dycstuff or coloring matter.
A new product, of a dull-blue crystalline appearance: produced by repeated treatment of the artificial indigo of No. 235,193, with a cold and aqueous solution of sulphurous acid, followed by a mineral acid.
240,359-April 19, 1881. A. BAEYER AND H. CARO. Manufacturc of artificial indigo.
A dyestuff, distinguished by the presence of free sulphur, produced by the deoxidizing action of an alkaline xanthate upon an alkaline compound of ortho-nitro-phenyl-propiolic acid.
240,360-April 19,1881. A. BAEYER AND H. CARO. Dyeing fabrics with artificial indigo blue.
Blue dyes are developed in or upon textile fiber, etc., by impregrating the same with a solution of a mixture of ortho-nitro-phenyl-propiolic acid and alkali and a deoxidizing sulpbur compound belonging to the class of sulphocarbonates, such as xanthates of soda, and then submitting the material to a drying or aging process.
240,361-April 19, 1881. A. BAEYER. Manufacture of artiftcial indigo.
A blue dyestuff or coloring matter obtained from the artificial indigo of No. 235,193 , by repeated treatment of the same with a cold and aqueous solution of sulphurous acid, and subsequent precipitation with sodium chloride.
240,941-May s, 1881. A. BAEYER. Manufacture of artificial indigo.
A blue dyestuff or coloring matter produced by exposing isatine-chloride to the action of glacial acetic acid and zinc dust, or other reducing agents.
240,942-May 3,1881 . A. BAEYER AND A. EMMERLING. Manufacture of artificial indigo.
A blue dyestuff or coloring matter produced by the action of a mixture of phosphorus-trichloride and acetyl-chloride with yellow phosphorus on isatine, at from 70° to $80^{\circ} \mathrm{C}$.
241,738-May 17, 1881. Z. H. SKRAUP. Manufacture of artiftcial chinoline.
See Group XVIII, Fine Chemicals.
24\%,707-June 7, 1881. J. H. STEBBINS, JR. Azo color.
A dyestuff or coloring matter produced by the reaction of monosulpho-acid of heta-naphthol on a mixture of diazo-benzole and diazo-naphthaline hydrochlorates. It dyes silk or wool in an acid bath a light scarlet similar to cochineal.
242,855-June 14, 1881. N. C. ARMAND AND J. E. BERTON. Dyeing fabrics with aniline colors.
Aniline colors are rendered soluble in benzines and essences, by combining them with a solvent or intermediary agent, such as a composition of oil or fat, an acid (as acetic acid), ether, and alkalis.
244,757-July 26, 1881. E. LABHARDT. Coloring matter from tetranitro-naphthol. "Heliochrysine." a sodium salt of tetranitro-naphthol: produced by the energetic nitrification of monobromnaphthaline; a yellow coloring matter, prominent by its hrilliancy and fastness, and easy application on silk and wool.
246,221-August 2s, 1881 . J. SCHUNCKE. Azo color.
"Archil red:" produced by the action of the diazo compound of amidoazoxylole upon an alkaline solution of heta-naphthol bisulpho-acid. It dyes wool, xylole upon an alkaline solution of heta-uaphthol bis
silk, and cotton with garnet shades similar to archil.
246, $772-$ August 2s, 1881. H. BAUM. Azo coloring matter.
A red coloring matter or dyestuff produced by the reaction of beta-naphthol monosulphonate of aodium and the diazo compound of amidoazo-benzole sulphonate of sodium. It is freely goluble in water and in dilute mineral acid
It dyes a fiery red on cotton mordanted with alum and in a
A blue coloring matter produced by the reduction of methyl-orange, III, $\mathrm{C}_{44} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{SO}_{3} \mathrm{Na}$, by the action of an excess of sulphohydrate or ammonia from 105° to $110^{\circ} \mathrm{C}$., followed hy oxidation by the action of perchioride or
It dyea silk and wool without a mordant; vegetable fiber with a mordant.
It dyea silk and wool without a mordant; vegetable fiber with a mordant. 248,159
blue
Process consists in dissolving para-nitrohenzaldehyde in alcohol and muriatic Process consists in dissolving pata-nit of the alcohol, mixing the product with acid, adding zinc powder and distilling off the alcohol, minide, and beating to 120° to $140^{\circ} \mathrm{C}$., and finally separating the leuco base.
248,154-October 11, 1881. O. FISCHER. Process of preparing coloring matter
The leuco base of rosaniline is produced by substituting chlorhydrate of miline (or a mixture of aniline with toluidine) for diphenylamine and methyl diphenylamine in the process of No. 248,153 .
248,246-October 11, 1881. O. N. WITT. Coloring mattcr.
A violet dye, a substitute for madder violet, produced by the action of nitrosodimethylaniline on meta-phenylendiamine. It gives dark-violet shades on cotton, wool, and silk.
249,186-November 1, 1881. O. N. WITT. Production of coloring matter.
A dark-red dye formed by the action of nitroso-dimethylaniline on metatoluylenediamine.
249,926-November 22, 1881. J. H. H. O. GÜRKE. Coloring matter.
A bluish scarlet dyestuff or coloring matter produced by the action of the ansoluble in alcohol on the diazo derivative of para-amido-cinnamic acid methylic ether.
250,085-November 22,1881. A. BAEYER. Manufacture of artificial indigo.
Indogenic acid is produced by first producing indogenic ether by treating an ether compound of ortho-nitro-phenylpropiolic acid with a reducing agent, such No. 210-14
ammonium sulphydrate, followed by the action of muriatic acid and a cold and dilute solution of caustic soda, and then converting the indogenic ether into indogenic acid by treatment with caustic alkalis and subsequently with muriatic acid. It is converted into artificial indigo blue by oxidatiou.
250,056-November 22, 1881. A. BAEYER. Manufacture of artifcial indigo.
"Indogen" is produced by the action of beat upon indogenic acid (No. 250,035), either in a dry state or in a solvent. It is rapidly converted into artificial indigo by the access of air.

250,038-November 桷, 1881. H. BAUM. Mfanufacture of crimson coloring matter.
A crimson coloring matter produced by the action of disulpho-beta-naphtholic sodium salt insoluble in alcohol, on the diazo derivative of amido-para-cresolmethylic ether

250,201-Novenber 29, 1881. H. CARO. Sulphonatcd compound of rosaniline.
Trisulpho acid of rosaniline, a red coloring matter: produced by the action of anhydrous sulphuric acid on fuchsine, at from 120° to $170^{\circ} \mathrm{C}$. with constant agitation. It dyes wool in. a boiling dye bath with mineral acids or acid mordants.
250,247-November 29, 1881. J. HOLLIDAY. Manufacture of rosaniline colors
The sulpho-conjugated compound of rosaniline, capable of being used with acids or acid mordants, is produced by the action of fuming sulphuric acid on rosaniline, or its salts, preferably on anhydrous chloride of rosaniline.
251,162-Deccmbcr 20, 1881. H. BAUM. Dyestuff or coloring matter.
A yellow-orange coloring matter produced by the reaction of the disulpho-beta-naphtholic sodium salt, soluhle in alcohol, upon the diazo derivative of aniline.
251,163-December 20, 1881. H. BAUM. Dyestuff or coloring matter.
A deep red scarlet dyestuff or coloring matter produced by the reaction of the disulpho-heta-naphtholic sodium sajt, insoluble in alcohol, on the diazo compound derived from the amido-ethylxylol.
251,16/-December 20, 1881. H. BAUM. Dyestuff or coloring matter.
A claret-red dyestuff or coloring matter, produced by the reaction of a mixture of the two isomeric disulphoneta-naphtholic sodium salts upon the diazo derivative of naphthylamine.
251,499-December 27, 1881. A. BAEYER. Manufacture of artificial indigo.
Ortho-nitro-acetenyl benzene, used in the manufacture of an artificial indigo, is produced by the distillation of ortho-nitro-phenylpropiolic acid with steam.
251,500-December 27, 1881. A. BAEYER. Manufacture of artificial indigo.
Düsatogen, a red crystalline solid, is produced hy mixing ortho-dinitro-acetenylphenyl with concentrated sulphuric acid and treating with fuming aulphuric acid, and precipitating by means of alconol or water. it artifial indigo blue by the action of reducing or deoxidizing agents.
251,501--December 27, 1881. A. BAEYER. Manufacture of soluble derivatives of indigo blue.
An alkaline salt of indigo-white sulphonic acid, convertable into indigo blue upon treatment with acid and oxidizing agents, is produced by the action upon indigo of alkaline pyrosulphates and reducing agents, such as ferrous sulphates and alkalies.
251,671-December 27, 1881. A. BAEYER. Preparation of new material for the manufacture of artificial indigo.
Ortho-dinitro-diacetenylphenyl, a yellow crystalline solid, m. p. 212° C., is produced by forming a copper compound of ortho-nitro-acetenyl benzene by treating an aleoholic solution of the latter with an ammoniacal aolution of cuprous chloride, then treating same with prussiate of potash and canstic potash, washing and drying the precipitate, digesting with chloroform, and dispotish, wash the solyent. It dissolves in concentrated sulphuric acid upon the addition of fuming sulphuric acid, with an intensely red color and with the production of düsatogen.
25s,20\%-January 10, 1882. O. FISCHER. Rosaniline-red coloring matter.
A rosaniline red obtained from paranitrobenzaldehyde and a salt of com mercial aniline oil. Nitroleuco bases are first formed from the said materials in the presence of dehydrating agents, and the rosaniline red is produced either direct from the bases or after transformation into leucoaniline.
252,208-January 10, 1882. O. FISCHER. Preparation of rosaniline-blue coloring matter.
A blue coloring matter produced by first forming nitroleuco bases from paranitro benzaldehyde and diphenylamine in the presence of dehydrating agents, and then forming the aniline blue direct therefrom or after transforming them into amidoleuco hases.
252,Z78-Junc 10, 1882. J. H. STEBBINS, Jr. Purple dyestuff or coloring matter.
A dark-violet coloring matter produced by the action of an acid solution of the soda salt of beta-naphthol-monosulpho acid upon nitroso-dimethyl-aniline hydrochlorate, at from 110° to $121^{\circ} \mathrm{C}$. It dyes wool mordanted with an iron or alum mordant a dark purple color.
852,274-January 10, 1882. J. H. STEBBINS, JR. Manufacture of blue coloring matter.
A coloring matter or dyestuff produced by the action of an alkaline solution of the soda salt of alpha-naphthol-monosulpino acid on para-amido dimethyl aniline hydrochlorate. It dyes wool with a chrome mordant an indigo color with an alum mordant and tannin added to the dye bath it dyes wool a dark blue-green.
252,317-January 17, 1882. T. HOLLIDAY. Producing azo colors upon vegetable fiber.
Process consists in subjecting the fiber to the action of oil followed by an alkali, to oxidize the oil on the fiber; subsequently to the action of a naphthol or phenolic body, and then the azo color is produced upon the fiber by treating with a diazo compound, wherehy the color is fastened upon the fiber in conjunction with the oil.
252,782-January 24, 1882. A. LIEBMANN. Manufacture of the higher homologues of phenol, naphthol, and resorcin.
See Group XVIII, Fine ChemicaIs.
253,449-February 7, 1889. J. H. STEBBINS, JR. Coloring matter or dyestuff.
A blue dyestuff produced by the action of chloride of lime upon an alkaline mixture of dimethyl-para-phenylendiamine hydrochloride and orthocresol. It dyes wool with alum or chrome mordants at about $150^{\circ} \mathrm{F}$. a prussian blue.

25s,444-February 7, 1882. J. H. STEBBINS, Jr. Coloring matter or dyestuff.
A blue dyestuff produced by the action of dimethyl-para-phenylendiamine bydrochloride upon an alizaline solution of orthocresol in presence of an oxidizing agent; the coloring matter is developed with acetic acid. It dyes woo

25S,445--February 7, 1882. J. H. STEBBINS, Jr. Coloring matter or dyestuff.
A blue dyestuff produced by the action of para-amido-dimethyl-aniline hydrochloride upon an alkaline solution of phenol in the presence of chloride of lime. It dyes wool mordanted with alum or chrome mordants at about 180° F. a deep indigo blue.

259,598-February 14, 1882. F. GRAESSLER. Manufacture of yellow coloring matters.
The sulpho-acid of amidoazo-benzole; obtained by producing the amidoazobenzole and then transforming it into the sulpho-acid compound thereof; or by transforming a sulpho-acid compound of aniline-a sulphanilic acid-into the amidoazo-benzole sulpho-acid; or by commencing with a snlpho-acid compound of aniline and transforming this into the corresponding amidoazo-sulpho acid. They afford fast coloring matters.
25s,721-February 14, 1882. H. KOECHLIN. Manufacture of colors or dyestuffs.
Violet coloring matters produced by the aetion of nitroso derivatives of the
tertiary amines on tannin or on principles analogons to tannin, as by heating tertiary amines on tannin, or on principles analogous to tannin, as by heating a solution of nitroso-dimethyl-aniline and gallic acid.
254,064-February 21, 1882. J. H. STEBBINS, JR. Dyestuff or coloring matter.
A blue dyestuff prodnced by the action of diethyl-para-phenylendiamine chloride upon an alkaline solution of the soda salt of alphanaphthol mono-sulpho-acid in presence of an oxidizing agent. Wool is dyed at $150^{\circ} \mathrm{F}$. in a neutral bath without mordants or acids; also with alum or chrome mordants.
254,065-February 21, 1882. J. H. STEBBINS, Jr. Dyestuff or cotoring matter.
A blue dyestuff produced by the action of diethyl-para-phenylendiamine chloride upon an alkaline solution of alpha-naphthol in the presence of an oxidizing agent. The color on wool is developed by an oxidizing agent, as bichromate of potash, into a bright indigo blue.
254,098-February 21, 1882. W. PICKHARDT. Manufacture of chinoline.
See Group XVIII, Fine Chemicals.
254,550-March 7, 1882. T. \& R. HOLLIDAY. Process of dyeing colors or textile fabrics.
Azo colors are produced direct in or upon cotton or other textile fibers by impregnating the same with a solution of naphthol or aaphthols and with a solution of a diazo-azo compound.
255,549-March 21, 188\%. J. H. STEBBINS, Jr. Dyeing blue colors upon textite fabrics.
A blue color is developed within or upon textile fiber, etc., by the reaction in or upon the fiber of nitroso-diethyl-aniline chloride and the soda salt of alpha-nanhthol in the presence of an oxidizing agent.
255,550-March 21, 1882. J. H. STEBBINS, Jr. Manufacture of blue coloring mattor.
A blue dyestuff produced by the action of diethyl-para-phenylendiamine chloride upon an alkaline solution on phenol in the presence of an oxidizing agent. It dyes wool with or without alum or chrome mordants at $150^{\circ} \mathrm{F}$. a deep blue.
256,550-April 11, 1882. E. D. KENDALL. Process of treating certain derivatives of coat-tar colors.
See Group X, Electro-chemistry.
256,375-April 11, 1882. C. RUMPFF. Dyestuff or coloring matter.
The product resulting from the reaction of diazo-azo-tolnol-monosulphonic acid with the sodium salt of the alpha-monosulphonic acid of beta-naphthol.
256,576-April 11, 1882. C. RUMPFF. Manufacture of dyestuff or coloring matter.
The product resulting from the reaction of diazo-alpha-naphthaline-monosulphonic acid with a solution of the sodium salt of the alpha-monosulphonic acid ol beta-naphtbol.
256,s77-April 11, 1882. C. RUMPFF. Manufacture of dyestuff or coloring matter.
Product resulting from the reaction of diazo-beta-naphthaline-monosulphonic acid with the sodinm salt of the alpha-monosulphonic acid of beta-naphthol.
256,378-Aprit 11, 1882. C. RUMPFF. Manufacture of ayestuff or coloring matter.
Product resulting from the reaction of diazoazo-xylol-monosulphonic acid with the sodium salt of the alphe-monosulphonic acid of beta-naphthol.
256,879-April 11, 1882. C. RUMPFF. Manufacture of dyestuff or coloring matter.
A yellow dyestuff resulting from the reaction of the nitro-alpha-monosulphonic acid with carbonate of potash.
256,380-April 11,1882. C. RUMPFF. Manufacture of dyestuff or coloring matter.
A scarlet dyestuff resulting from the reaction of diazoazo-benzole with alphamonosulphonic acid of beta-naphthol.
256,581-April 11, 1882. C. RUMPFF. Manufacture of a new coloring-producing acid.
The alpha-monosulphonic acid of beta-naphthol is produced by treating betanaphthol, 100 kilograms, with commercial sulphuric acid (66 per cent), 200 kilograms, the temperature not exceeding 50° to $60^{\circ} \mathrm{C}$. Also the soda salt of the same, a new product. It gives coloring matters, with diazo compounds, fast sagainst soap and light.
256,400-April 11, 1882. J. H. STEBBINS, JR. Production of naphthyt-sulphate soda
salt. salt.
The soda salt of naphthyl-sulphate: produced by treating beta-naphthol with sulphuric acid at not to exceed $20^{\circ} \mathrm{C}$. It is separated ont by the action of hot alcohol.
256,401-April 11, 1882. J. H. STEBBINS, JR. Dyestuff or coloring matter.
The dyestuff or coloring matter produced by the action of dlazoazo-benzole-monosulpho-acid upon the soda salt of naphthyl-sulphate. It dyes wool, in a bath acidulated with sulphuric acid, a pure scarlet red.
256,596-April 18, 1882. P. REID AND J. EASTWOOD. Ink for dyeing purposes.
It is composed essentially of pyroxyline, a coloring agent, camphor, and a

256,599-April 18, 1882. C. H. RUDOLPH. Production of coloring matter.
A yellow coloring matter obtained from a mixture of acetanilide and hydrochlorate of aniline by heating the same with chloride of zinc or other dehydrating agent. The methylated, ethylated, etc., derivatives are obtained by the action of chloride, bromide, or iodide of methyl, ethyl, etc., on the same or on the base contained therein.
257,248-May 2, 1882. C. RUMPFF. Manufacture of brown dyestuff.
A brown coloring matter formed by the reaction of nitrous acid upon the salts of the alpha-naphthylamine-sulphonic acid in nentral or very slightly acid solution. Distinguished by immense dyeing power.
257,243-May 2, 1882. C. RUMPFF. Manufacture of brown dyestuff.
A brown coloring matter formed by the reaction of nitrous acid upon the salts of the beta-naphthylamine-sulphonic acid in nentral or very slightly acid solution. Distinguished by immense dyeing power.
257,498-Moy 9, 1882. H. KOECHLIN. Manufacture of coloring matter:
The leuco bases and leaco products or reduction products of the bodies obtained by the action of nitroso derivatives upon tannin, or on principles analogous to tannin, the same being obtained by the reaction of said bodies, or
directly as by the heating of a solution of gallate of soda and chlorhydrate of nitro-sodi-methylaniline.
257, 717-May 9, 1889. E. J ACOBSEN. Manufacture of red coloring matter.
The process of manufacturing a red or violet coloring matter consists in heating a mixture of equal parts of chinoline or pyridine and benzotrichloride, and with tannin. It shows an intense yellow fuorescence visible on wool and silk. 257,812-May 9, 1882. A. BAEYER AND V. B. DREWSEN. Preparation of material for manufacture of artifciat indiga.
The process of producing ortho-nitro-cinnamylformic acid consists in treating ortho-nitro-benzoldehyde with pyroracemic (pyruvic) acid in the presence of orydrochloric acid.
257,818-May 9, 1882. A. BAEYER AND V. B. DREWSEN. Preparation of material used in the manufacture of artificial indigo.
Ortho-nitro-cinnamylformic acid-product of No. 257,812-a yellowish-white crystalline solid, characterized by the facility with which its alkaline solutions containing an excess of the base are decomposed with production of artificial indigo.
257,811-May 9, 1882. A. BAEYER AND V. B. DREWSEN. Manufacture of arti-
ficial indigo. fieial indigo.
The process consists in treating ortho-nitro-benzaldehyde with acetone in the presence of a diluted solution of an alkali, such as caustic soda.
257,815-May 9, 1882. A. BAEYER AND V. B. DREWSEN. Artifcial indigo.
The product of No. 257,814: distinguished from vegetable and from the artificial indigo of No. 227,470 by its pure blue color and absence of any coloring matter soluble in alcohol with a red or purple color.
258,550—Mray $29,188 \%$. H. BRUNCK. Manufacture of anthracene blue.
"Anthracene blue:" produced from alizarine orange-No. 186,032-by heating same with glycerine and sulphuric acid at not to exceed $110^{\circ} \mathrm{C}$., and subsequently treating the product with bisulphite of soda. It is not decomposed in aqueous solution by acetic or tartaric acid, or the lime, magnesian, or chromic salts of these organic acids.
258,591-May 23, 1882. H. BRUNCK. The production of blue colors upon textile fabrics.
The fiber or fabric is impregnated with an aqueons solution of the anthracene blue-No. 258,530-and then exposed to heat of from 70° to $100^{\circ} \mathrm{C}$. The material may first be impregnated with a solntion of aceetic acid or tartaric acid, or of the lime, magnesian, or chromic salts of said acids.
259,260—June 6, 1882. A. BAEYER. Process of manufacture of indigo blue.
An ether compound of ortho-nitro-phenylpropiolic acid is first produced, such as its ethylic ether; then the same is converted into indogenic ether, which is converted into indogenic acid by treatment with caustic alkalis, followed by
muriatic acid, and the product finally exposed to an oxidizing action muriatic acid, and the product finally exposed to an oxidizing action.
259,261-June 6, 1882. A. BAEYER. Process of manufacture of indigo blue.
Process the same as No. 259, 260, except the indogenic acid is transformed into indogen by the action of heat, and the indogen is then exposed to an oxidizing
action. action.
259,629-June 13, 1882. A. BAEYER. Manufacture of artificial indigo.
Produced by starting from toluene, successively through benzyl chloride, benzyl cyanide, phenylacetic acid, oxindol, nitroso-oxindol, amido-oxindol, artificial isatine, and isatine-cbloride to artificial indigo. It contains "indicontaining zinc. 260,242-Jume 27, 1882. C. RUMPFF. Manufacture of coloring matter from naphthylamine.'
A brown dyestuff or coloring matter produced by the action of diazoazo-benzol-sulphonate of soda upon naphthylamine in an acid solution. It dyes woo
261,175-July 18, 1882. C. RUMPFF. Manufacture of coloring matter from naphthylamine.
A brown dyestuff or coloring matter produced by the action of diazo-naphthalene-sulphonate of soda upon naphthylamine in an acid solution. It dyes silk and wool in an acidulated bath.
261,518-July 18, 1882. H. KOECHLIN AND O. N. WITT. Manufacture of blue and violet coloring matters.
Prodnced by the reaction upon a phenol of a nitroso amine or phenol or a chloroquinonimide in the presence of a reducing agent, or a paramido body in the presence of an oxidant.
261,600-July 25, 1882. J. H. H. O. GÜRKE. Production of soluble alizarine-blue
oolon. color.
A dark yellow coloring matter produced by the reaction of sulphite of A dark yellow coloring matter produced
ammonia upon commercial "alizarine blue" ($\mathrm{C}_{77} \mathrm{H}_{0} \mathrm{NO} \mathrm{O}_{4}$) at from 30° to $40^{\circ} \mathrm{C}$. 261,766-July 25, 1882. C. RUMPFF. Manufacture of brown dyestuff.
Produced by adding to a solution of amidoazoxylolsulphonate of soda, first, acid solution. It dyes wool and silk a dark reddish brown in an acidulated

261,767—July 25, 1882. C. RUMPFF. Manufacture of brown dyestuff.
Produced by adding to a solution of amidoazotoluolsulphonate of soda, first, muriatic acid, then a solution of sodium nitrite, and then an acid solution of naphthylamine. It dyes wool and silk a dark reddish brown in an acidulated bath.
262,620-August 15, 1882. C. RUMPFF. Manufacture of dyestuff.
A brown dyestuff or coloring matter produced by combining diazoazobenzolsulphonic acid with a solution of naphthylaminsulphonate of soda. It dyes wool and silk a dark reddish brown in an acidulated bath.
262,680-August 15, 1882. F. MANN. Manufacture of rosaniline color.
A red dyestuff or coloring matter produced by treating rosaniline or a snitable salt thereof with carbyl sulphate or ethionic acid. For practical purposes an neld alkali salt of the dyestuff is prepared.
262,695-August 15, 1882. C. RUDOLPH. Manufacture of artificial indigo.
Produced from benzaldehyde by first converting the same into monobenzylidenacetone, then converting the latter into its orthonitro substitution derivative, separating this orthonitro product from isomers by crystallization, filtration, tive, separating this orthonitro prodinct from isomers by crystal
268,341-August 29,1882 . H. KEOCHLIN AND O. N. WITTT. Manufacture of blue cotoring matter's called " indophenols."
Soluble indophenols: produced by the reaction between nitrous derivatives of amines or chloroquinominides, as nitroso-dimethylaniline, and phenols, as amines or chioroquinominides, as nitroso-dimethylaniline, ara phenols, as alpha-naphthol, by heating, withont the presence of alkali or a reducing agent. The indophenol is obtained in the shape of leuco compound, and rendered solnble in alkaline lyes by excess of the phenol, and in water by the addition of derivatives, in the formation of the former or when already formed.
269,420-August 29, 189\%. R. MELDOLA. Manufacture of blue coloring matters.
Produced by the reduction of the diazo colors formed from the varions amido-naphthaline-sulphonic acids in conjunction with dimethylaniline and other tertiary monamines by means of a sulphide, with or withont the addition of tertiary monamines by means of a sulphide, with or withont the addition of
zinc dust, the products being oxidized by means of ferric chloride or other zinc dust, the products being oxidized by means of ferric chloride or other
suitable oxidant. It dyes wool and silk from a neutral or ammoniacal bath, suitable oxidant. It dyes wool and silk rrom a neutral or ammoniacal
269,96/-September 5, 1582. H. ROSE. Manufacture of dyestuff from alizarine-biue.
Produced by mixing an alkaline salt of alizarine blue, as the natrium salt in paste, with an alkaline bisulphite and a mordant, whereby the salt of the paste, with blue dissolves quite easily.
269,965-September 5, 1882. H. ROSE. Manufacture of alizarine-blue color.
A brownish-red coloring compound produced by first combining alizarine blue, $\mathrm{C}_{14} \mathrm{H}_{0} \mathrm{NO}_{4}$, with alkalis, and then treating the alkaline salt thns obtained with the bisulphites of the alkalis.
266,912-October \$1, 1892. J. H. STEBBINS, Jr. Coloring matter or dyestuff.
A green dyestuff produced by the action of benzoyl chloride upon methyldiphenylamine in the presence of zinc chloride, at about $100^{\circ} \mathrm{C}$.
265,11s-November 28, 1889. C. MARTIUS. (Reissue: 10,95s-July 10, 1883.) Proc-
ess of producing a basic coloring matter from xytidine.
Process of producing crystallized cumidine, a base for the manufacture of azo colors: consists in treating hydrochlorate of xylidine with methyl alcohol in a digester to 280° C., converting the crude hydrochlorate of cumidine into a digester to 280° C., converting the crude he separating the nitrate from the mother liquors, washing it, and subsenitrate, separating the nitrate from the mother liquors, wand converting it into the base and subjecting it to fractional distillation between 225° and $245^{\circ} \mathrm{C}$. and crystallization.
268,505-December 5, 1882. C. F. L. LIMPACH. Manufacture of coloring matter.
A bluish-red coloring matter produced by the action of the sulphonic acid of amidoazo-benzole upon an alkaline solution of betanaphthol trisulphonic acid.
$268,506-$ December 5, 1882. C. F. L. LIMPACH. Manufacture of cotoring matter.
A red coloring matter produced by the reaction, with sodium salt, of the
betanaphthol trisulphonic acid upon the diazo compound derived from alphanaphthylamine sulphonic acid.
268,507-December 5, 1883. C. F. L. LIMPACH. Manufacture of coloring matter.
A bluish-red coloring matter produced by the action of the diazo componnd of the amidoazo-benzole upon an alkaline solntion of betanaphthol trisulphonic acid.
268,549-December 5, 1882. C. RUDOLPH. Production of methylquinoline.
Produced by treating ortho-nitro-benzylidenacetone with reducing agents, as tin chloride and muriatic acid, and purifying by distillation in a current of steam. It boils at $240^{\circ} \mathrm{C}$. and is used for the production of azo coloring matters. 269,959-December 19, 188\%. O. WALLACH. Manufacture of cotoring matter.
A brown coloring matter produced by combining diazotized aniline and resorcin dissolving the product in canstic soda, and then combining again with resorcin, dissolving the product wool and silk in reddish-brown shades.
270,911-January 9, 188s. E. HEPP. Manufacture of blue dyestuff or coloring matter.
Produced from nitroso derivatives of tertiary aromatic monamines such as dimethylaniline, by dissolving same in concentrated sulphuric acid and then dimethylaniline, by iossolving to the action of a reducing agent, as a metallic sulphide.
271,636-February 6, 188s. T. HOLLIDAY. Production of azo colors on colton fabries.
They are produced direct by the action of a neutralized bath (e. g. nentralized by carbonate of lime) of the diazo compounds upon fiber previonsly treated with the naphthols or phenols.
274,081 -March 18, 1889. H. BRUNCK. Manufacture of anthracene-bulue.
In the manufacture of anthracene blue, No. 258,530, the time is shortened by the use of a solvent. Alizarine blue is exposed to the action of a solution of the use of a solvent. Alizarine bisulphite of soda or other alkali, an alkaline earth, or a metal, such as zinc, bisulphite of soda or other alkali, an alkaine eartv, or such as alcohol, acetic chromium, or iron, in
275,774-April 10, 188s. H. KOECHLIN AND O. N. WITT. Treatment of indophenols.
"Leuco-indophenol" is produced from indophenol by the reaction of alkaline or acid reducing agents upon the latter. The indophenol is ground to a paste and mainta

276,796-May 1, 188s. O. FISCHER. Preparation of oxyhydro-methyl chinoline. See Group XVIII, Fine Chemicals.
276,885-May 1, 1889. C. RUDOLPH. Manufacture of cinnamic acid.
See Group I, Acids, Other Organic.
276,889-May 1, 1883. C. RUDOLPH. Matcrial for the manufacture of metamethyd indigo.
Ortho-nitro-meta-methyl-benzaldehyde is produced by dissolving tolnylaldehyde in concentrated sulphuric acid, thereafter slowly adding a cold mixture of nitric and concentrated sulphuric acids, pouring into ice water to separate of nitric and concentrated sulphuric acids, pouring into ice water to separate and a dilute carbonate of soda solution.
276,890-May 1, 1889. C. RUDOLPH. Manufacture af metamethyl indigo.
Produced by dissolving ortho-nitro-meta-methyl-benzaldehyde in a double quantity of acetone or ethylaldehyde, and adding a sodinm lye. As contrasted with natural indigo the methyl indigo is easily soluble in alcohol.
277,18 , May $\mathrm{S}, 1889$. J. WOLFF. Production of cotoring matters from diazoamido compounds.
A scarlet coloring matter produced by the reaction of a solution of diazoxylol-amide-benzol sulphonate of ammonia with a solution of sodium betanaphthol disulphonate.
a77,864-May 15, 1889. H. ENDEMANN. Production of sutpho-acid compound of betanaphthol.
A new compound produced by treating betanaphthol with fuming sulphuric acid at 115° to $125^{\circ} \mathrm{C}$. for two hours, when the temperature is reduced to 100° to $110^{\circ} \mathrm{C}$. and more fuming sulphuric acid is added from time to time. It is used in the manufacture of coloring matters.
278,926-June 5, 188s. E. FISCHER. Production of paranitrobenzylidene chloride.
Process consists of treating paranitrotoluol with a current of chlorine gas at a high temperature, rising from 130° to $160^{\circ} \mathrm{C}$. and washing the resulting mass successively with water, a solution of sodium carbonate, and finally with water,
and crystallizing from alcohol. It is used in the manufacture of coloring matters.
280,917-June 26, 1883. L. LIMPACH. Manufacturc of coloring matter.
A betanaphthol trisulpho acid compound which produces brilliant colors when treated with diazo componnds, produced by reacting upon betanaphthol with sulphuric anhydride (or single, olenm) at $160^{\circ} \mathbf{C}$. for five to ten minutes, and neutralizing the acid solution, when the reaction is complete, with canstic soda or a salt thereof, so as to form a salt of the said trisulpho acid.
282,895-August 7, 1889. A. BERNTHSEN. Manufacture of materiats suitable for dycstuffs.
Thiodiphenylamine, a yellowish-white crystalline solid, is prodnced by heating a mixture of diphenylamine and sulphur at from 250° to $300^{\circ} \mathrm{C}$.
282,836-August 7, 188s. A. BERNTHSEN. Manufacture of coloring matter.
A purple dyestuff or coloring matter obtained from thiodiphenylamine (No. 282,835) by converting the same into a nitro compound, then acting thereon with reducing agents, as tin and hydrochloric acid, and oxidizing the product. It dyes cotton previously mordanted with tanin, and becomes fixed on the fiber withont the aid of a mordant.

283,265-August 14, 1583. N. McCALLUM. Composition to be used as a paint or dye.
"Echurine," a yellow dye, consists of nitric acid, picric acid, and flavine, boiled and evaporated to dryness.
283,766-August 28, 1883. E. FISCHER. Manufacture of the nitro-leuco base of rosaniline.
Produced by the reaction of para-nitro-benzylidene chloride dissolved in a medium, such as ligroine, benzine, or alcohol, on aniline, at the temperature of a water bath, followed by distillation of the solvent, extraction of the residue with water, and precipitation of the base by an alkali. It varies in color from yellow to red and melts nnder boiling water to a wax-like mass.
285,335-September 18, 1883. J. WOLFF. Manufacture of cardinal-red coloring matter.
Produced by the reaction of a solution of diazo-naphthalene-amido-benzole sulphonate of ammonia and a cold solution of one equivalent of betanaphthol disnlphonate of sodinm in 10 to 12 parts of its own weight of water. It is distinguished by containing besides the diazo compound of naphthalene, the amido-benzole sulphonate componnd with the beta-naphthol sulphonate.
286,526-October 9, 188s. A. BERNTHSEN. Sulphureted derivative of diphenylamine as a basis for the production of coloring matters.
Thiodiphenylamine produced by heating diphenylamine with sulphur at lrom 250° to $300^{\circ} \mathrm{C}$. The product is purified by distillation.
286,587-October 9, 1889. A. BERNTHSEN. Process of obtaining coloring matter or
dyestuff from thiodiphenylamine.
Thiodiphenylamine is treated with nitric acid, the nitro compound obtained is reduced, and the resulting colorless componnd oxidized. It is a purple coloring matter, dyeing cotton which has been mordanted with tannin, and it becomes fixed on animal fiber without the aid of a mordant.
289,543-December 4, 1883. I. LEVINSTEIN. Manufacture of yetlow coloring matter.
Coloring matter produced by the action of nitric acid upon the mono and disnlpho acids of nitroso-alpha-naphthol, or a mixture of the same.
2s9,613-Deccmber 4, 1859. O. BREDT. Manufacture of red cotoring matter.
Produced by diazotizing naphthylamine sulphonic acid, and then treating it with naphthol. The alpha form of naphthylamine sulphonic acid yields bluishred and the beta form, yellowish-red shades.
290,585-December 18, 188s. E. JACOBSEN. Production of yellow cotoring matter. Produced by heating chinaldine with phthalic anhydride and zinc chloride to from 190° to $210^{\circ} \mathrm{C}$. The melt is boiled out with muriatic acid. As obtained, it is soluble only in spirit. It is made soluble in water by heating with sulphuric acid, monochlorhydrine, or fuming sulphuric acid.
$290,856-$ December 25,1883 . H. CARO AND A. KERN. Manufacture of dyestuff. The process for manufacturing crystallized methyl-violet by the reaction of oxychloride of carbon (phosgene) upon a mixture of dimethylaniline and anhydrous chloride of alumininm and then separating the coloring matter.
$290,891-$ December 25, 188s. A. KERN. Manufacture of dycstuff or coloring matter.
Crystallized methyl-violet, the product of process No. 290,892. It is marked by its uniformity of composition. It dyes textile fiher a bluish-purple shade similar to "methyl-violet 5B."
290,892-December 25, 1883. A. KERN. Manufacture of purple dyestuff.
Process consists in converting dimethyl-aniline into tetra-methyl-diamidohenzophenone; treating the same with reducing or hydrogenizing agents; combining tetra-methyl-diamido-benzhydroll, the hydrogenized product, with dimethyl-aniline; submitting the new product to an oxidizing process; and finally crystallizing the dyestuff from its solution in suitable solvents.
290,893-December 25, 1889. A. KERN. Manufacture of dyestuff or coloring matter.
"Ethyl-purple 6B:" produced by converting diethylaniline into tetraethyl-diamido-henzophenone, treating the same with reducing or hydrogenizing oxidizing, and separating out the dyestuff or coloring matter.
295,825-March 25, 1884. Z. H. SKRAUP. Manufacture of parachinisol.
See Group XVIII, Fine Chemicals, Nitro-substitution compounds.
997,418-Aprit 22, 1884. A. KERN. Manufacture of ethyl-btue coloring matter.
"Victoria blue BB:" produced hy the condensation of alpha-phenyl-naphthylamine with tetra-ethyl-diamido-benzophenone, in the presence of phosphorus oxychloride.
997,414-April 22, 1884. A. KERN. Methyl-blue coloring matter.
"Victoria blue B:'" produced by the condensation of alpha-phenyl-naphthylamine with tetra-methyl-diamido-benzophenone, in the presence of phosphorus oxychloride.
297,415-April 22, 1884. A. KERN. Methyl-blue coloring matter.
"Benzyl-violet B:" produced by the condensation of tetra-methyl-diamidobenzophenone with dibenzyl-aniline, in the presence of phosphorus oxychloride.
997,416-April 29, 1884. A. KERN. Ethyl-blue coloring matter.
"Benzyl-violet BB:" produced by the condensation of tetra-ethyl-diamidobenzophenone with dibenzyl-aniline, in the presence of phosphorus oxychloride.
297,844-April 29, 1884. A. F. POIRRIER AND D. A. ROSENSTIEHL. Sulphoconjugated violets of Paris.
A new product having the free acid neutralized, readily soluble, and with the coloring matter unaltered; produced by treating the crude coloring matter with potash, soda, ammonia, zinc, magnesia, or other suitable base, to transform the excess of acid into soluble sulphate.
297,852-April 29, 1884. Z. ROUSSIN AND D. A. ROSENSTIEHL. Manufacture of yellow and orange coloring matters.
Azo coloring matters, varying from yellow to orange and even red, having the radical of carbonic acid substituted for that of sulphuric acid, are produced by substituting the amido-carboxylated acids, such as amidobenzoic acid, for the corresponding sulpho acids in the manufacture, in the state of free acid They are insoluble iu water, but their alkaline salts are sufficiently soluble.
298,998-May 20, 1884. P. MONNET. Obtaining brown dyes from the aromatic diamines.
Process consists in saturating the material in a hath composed of chlorhydrate of paraphenylene diamine, or paratoluylene diamine, sulphuric acid and water, then wringing, and then treating the material to an oxidizing bath to develop the color.
300,874-June 24, 1834. F. KRÜGER, G. TOBIAS, AND E. KEGEL. Production of coloring matters from dinitro-phenol.
Dinitro-phenol-sulpho acid and its salts are produced by nitrating phenolsulpho acid, or mono-nitro-phenol-sulpho acid, or their salts. The commercial with spirit of ammonia, and evaporated to dryness.
s01,802-July 8, 1884. H. CARO AND A. KERN. Manufacture of yellow coloring matter.
"Auramine:" produced hy fusing a mixture of tetra-methyl-diamido-henzopheone, ammonia hydrochlorate, and zinc chloride, and washing out and crystallizing the product. When dissolved in alcohol and treated first with sodium amalgam, and then with acetic acid and heat, it is decomposed into tetra-methyl-diamido-benzhydrol and ammonia.
s09,170-July 15, 1884. J. H. STEBBINS, JR. Mfanufacture of brown coloring matter.
"Phenan throl brown:" produced by theaction of diazoazobenzole-parasulphoacid upon heta-phenanthrol in alkaline solution. When treated with reducing agents, as tin and hydrochloric acid, it splits up into beta-amido-phenantlorene, aniline, and sulphanilic acid.
809,790-July 29, 1884. A. SPIEGEL. Azo coloring matter.
Produced from ortho-amido-dichlorphenol by diazotizing and then combining with a molecular quantity of beta-naphthol, producing the azo coloring matter dichlorphenol-azo-beta-naphthol, which is then treated with spirits of wine along with a concentrated solution of the bisulphite of an alkali and heat. It is distinguished by solubility in water with a yellow color, and when an alkali is added to the solution, or when hoiled with a nitrite, the bisulphite compound is decomposed and a hluish-violet paste is precipitated.
302,791-July 29, 1984. A. SPIEGEL. Fastening azo colons on yarn or textile fabries.
Azo colors are developed in or upon textile fiber, etc., by impregnating the fiber with the bisulphitc compounds of azo coloring matters formed from diazo compounds, combined with aromatic hydroxylated bodies or phenols, together with salts of alumina, iron, or chromiom, and then exposing to heat, preierahly
steam, or to an alkaline ugent, or a hot solution of a nitrite.

808,935-August 12, 1884. A. SPIEGEL. Azo coloring matter.

The bisulphite compound of dichlorphenol-azo-ethyl-beta-naphthol (soluble in water): produced by treating the scarlet azo coloring matter dichlorphenolin waterl: ethyeta-Daphthol (insoluble in water) with a concentrated solution of the bisulphite of an alkali along with spirits of wine.
s06,546-October 14, 1884. A. SPIEGEL. Manufacture of bisulphite compounds of azo coloring matters.
Azo coloring matters soluble in spirit-i. e., not sulphonic acids-are converted into compounds soluble in watcr by combining such azo coloring matters, in the presence of a solvent, with the bisulphite of an alkali.

306,969-October 21, 1884. A. SPIEGEL. Preparation of pheneto-sulpho-tiazo-betanaphthol with bisulphite compound.
A coloring matter soluble in water is produced from phenetol-sulphon-diazo-beta-naphthol-insoluble in water-by treating same with a concentrated solution of the bisulphite of an alkali, along with spirits of wine.
307,401-October 28, 1884. C. LOWE. Coloring matter derived from aurin.
Process of manufacturing "roso-phenoline,'" a basic red coloring matter, consists in heating aurin with a mixture of ammonia and an organic acid either in aqueous, ethylic, phenylic, or other alcoholic solution, at from 212° to $400^{\circ} \mathrm{F}$.
s08,74S-December 2, 1884. H. CARO AND A. KERN. Manufacture of purple-blue coloring matter.
"Victoria blue 4 R:" produced by the condensation of tetramethyl-diamidohenzophenone with methyl-phenyl-alpha-naphthylamine, in the presence of phosphorus oxychloride.
308,912-December 9, 1884. F. MACHENHAUER. Manufacture of rosaniline derivatives.
Yellow coloring matters produced fron "azuline," of commerce-a blue coloring matter-and the sulphonic acids thereof, by treating the same with nitric or nitrous acids or their salts.
s09,882-December 30,1884 . Z. ROUSSIN AND D. A. ROSENSTIEHL. Manufacture of bromated azo coloring matters.
Ycllow and orange brominized azo coloring matters are produced by introducing bromine directly into the coloring matter after the latter has been formed. They are more readily fixed on vegetable fiber than substances not bromated.
310,128-December 30, 1884. E. ERLENMEYER. Production of rosaniline coloring matters.
Process of manufacturing coloring matters of the rosaniline series of different composition by the oxidation of various combinations or mixtures of methylated amines or anilines or rosanilines with primary, secondary, or tertiary aromatic amines in such a way that the methyls of the former compounds are applied under the influence of oxidizing media-a methan carbon-in order to combine therewith always three aromatic molecules of the latter compounds.
810,155-December 30, 1884. L. VIGNON. Sulpho-alpha-naphthol coloring compound.
Produced by the reaction of a sodium sulpho-alpha-naphthol rendered slightly alkaline by sodium carhonate or ammonia hydrate upon diazo-benzole.
313,118-March 8, 1885. J. H. STEBBINS, JR. Red coloving matter.
Benzole-azo-sulphonate of soda-azo-diethylaniline: produced by treating a solution of amidoazo-benzole-sulphonate of soda with sodium nitrite, and then adding the diazo compound to a solution of diethylaniline in methyl alconol para-amido-diethylaniline. It dyes a brownish red.
s14,998-March s1, 1885. M. HOFFMANN. Coloring matter from beta-naphthol. A red coloring matter, producing on wool and silk a blue shade: produced by mixing the diazo compound of the difficulty soluble alpha-naphthylamine sulphonic acid with an alkaline solution of beta-naphthol gamma disulphonic acid.
314,939-March 31, 1885. M. HOFFMANN. Red coloring matter from gamma disulphonic acid of beta-naphthot.
Produced hy the action of the diazo compound of amidoazobenzole upon an alkaline solution of gamma disulphonic acid of beta-naphthol. It dyes wool, silk, and mordanted cotton a brilliant scarlet.
815,982-April 14, 1885. R. GNEHM. Production of chlorinated derivatives of
benzaldehyde.
Benzaldehyde is treated with iodine and pentachloride of antimony under heat, and the chlorinated substitution products of benzaldehyde are then separated by known methods. They are employed in the manufacture of coloring matters.
316,096-April 21, 1885. O. HOFFMANN. Coloring matter derived from naphthal.
Naphthol-greeu: produced from the reaction of nitroso-naphtho-sulphonic acids or their salts upon iron or its salts, or by the reaction of nitrous acid upon maphthol-sulphonic acids treated with iron or its salts.
816,471-April 28, 1885. C. LOWE. Manufacture of derivatives of aurin.
"Roso-phenoline,' the product of process No. 307,401.
318,484-May 26, 1885. C. LOWE. Manufacture of the derivatives of aurin.
Roso-phenoline sulphonic acid, a conjugated acid red coloring matter: produced by heating aurin at a low temperature with sulphuric acid and heating the product, after removing cxcess of acid, with ammonia in aqueous, ethylic, phenylic, or other alcoholic solution. It combines with alkali to form solid or pasty salts, insoluble in benzole but soluble in alcohol or water.
819,646-June 9, 1885. L. VIGNON. Process of obtaining coloring matter from amidoazo-benzole and homologues.
A solution of chlorhydrate of amidoazo-henzole, hydrochloric acid and water is heated to from 140° to $176^{\circ} \mathrm{F}$., and a solution of sodium sulphide is then added until the reduction is complete, when the liquid is filtered and oxidized.
gid2,i5s-July 14, 1885. R. GNEHM. Production of chlorophthalic acid.
Tetrachlorophthalic acid (or its anhydride): produced by the action of chlorine upon a mixture of anhydrous phthalic acid and antimony pentachloride heated to about $200^{\circ} \mathrm{C}$.
829,940-July 88,1885 . T. KEMPF. Manufacture of iodoform bromoform, and chloroform.
See Group X, Electro-chemistry.
3a3,514-August 4, 1885. W. MAJERT. Manufacture of methylene-blue by etee-
trolysis. trolysis.
Sce Group X, Electro-chemistry.
S24,615-August 18, 1885. L. VIGNON. Manufacture of coloring matter from alphanaphthol and dinitro-naphthol.
The process of producing a yellow coloring matter consists in treating alphanaphthol with sulphuric acid at 66° Baumé; cooling and diluting with ice; adding nitric acid at 40° Baumé; maintaining the temperature under $30^{\circ} \mathrm{C} . ;$ then heating to near $40^{\circ} \mathrm{C}$.; cooling to 12° or $15^{\circ} \mathrm{C}$.; and finally filtering redissolving the precipitate, and precipitating with carbonate of potash in solution.
\$94,680-August 18,1885 . H. ZIEGLER. Coloring matter from phenylhydrazine. A yellow dyestuff or coloring matter produced by the action of bioxytartaric
acid (carboxytartronic acid) upon the sulpho-acid of phenylnydrezin acid (carhoxytartronic acid) upon the sulpho-acid of phenylhydrazine. It is soluble in water; almost insoluble in strong alcohol and glacial acetic acid.
325,887-September 8, 1885. F. FISCHER. Manufacturc of violet dycstufs.
Process consists in treating diethyl-aniline by perchlormethyl-mercaptan. s25,8\%8-September 8, 1885. F. FISOHER. Violet methyl dyestuff.
Product of process No. 325,827 .
Sif,95s-October 6, 1885. A. KERN AND C. L. NÜLLER. Production of blue
dyestuffs.
Trimethyl-triphenyl rosaniline is produced by the raction of oxychloride of carbon (phosgene) upon methyl-diphenylamine, followed by digestion ol the warm mass with zine chloride and carhon oxychloride, separation of the hase from residual matters, and purification.
329,125-October 27, 1885. A. T. BöHME. Proccss of making coloring matter.
Consists in boiling glncosides derived from quercitrin, horse-chestnut, Bra zilian wood, or the like, in water mixed with nitric or hydrochloric acid to precipitate the resin, removing the braziline, or the like, treating with potassium permanganate, filtering, lixiviating the precipitate, and treatling with acia, cooling and neutralizing.
329,632-Norcmber 3, 1885. C. DULSBERG. Colowing matter obtoined from tetrazoditolyl.
Prodnced by the action of tetrazo-ditolyl upon the alpha-vaphthylamine sulpho-acids. It dyes unmordanted cotton alizarine-red.
329.6S9-November 3, 1395. C. DUISBERG. Coloring matter obtained from tetrazoditolyl.
Produced by the action of tetrazo-ditolyl upon the beta-naphthylamine sulpho-acids. It is isomeric to No. 329,632 , dyeing an alizarine red, although a rule yelower.
329,634-November 3, 1885. E. ELSAESSER. Red dyestuff or coloring matter.
Obtained by the reaction of the diazo derivative of the monosulpho acid of beta-naphthylamine, and the monosulpho-acids of alpha-naphthol derived fom nophtnomie achd and sulpho-naphthyladamic acid.
\$29,686-November 3,1885 . F. FISCHER. Production of new violet dyestuffs.
Process consists in treating dimethyl-aniline with perchlor-methylmercaptan, which is the product of the reaction of chlorine upon carbon bisulphide. Its muriate forms bronze-like needle crystals.
399,637-November 3, 1885. F. FISCHER. Violet coloring maller.
Product of process No. 329,636.
si9,638-Novenber 3, 1885. E. FRANK. Yellow coloring matter.
Product of process No. 329,639. Unmordanted cotton is dyed a sulphur yellow in a boiling soap bath.
s29,639, November 3,1885 . E. FRANK. Production of new yellow coloring matler.
Process consists in azotizing benzidine sulphate by means of sodium nitrite, forming tetrazo-diphenyl, and treating it with oxihenzoic acids--salicylic acid-and finally separating and purifying the product.
330,275-November 10, 1885. M. E. WALDSTEIN AND A. MÜLLER. Composition of matter to be used in dyeing.
A composition containing a sulpho compound of the fatty acids, such as sulphoricinoleic acid or sulpholeic acid, aniline or its homologues, and a neutralizing alkali.
3s1,059-November 24, 1885. M. HOFFMANN. Manufocture of beta-nophthol sutphonic acid.
The gamma disulphonic acid of beta-naphthol is produced by first sulphonating the apha-monosulphonic acid of beta-naphthol or beta-naphtol itself, and aromatic diazo componnds.
381,964-December 8, 1885. H. HASSENCAMP. Manufacture of benzylated methyl violet.
The product of No. 331,965, a benzylated methyl violet which has been sulphonated and oxidated. It is principally used for dyeing wool when sulphuric acid is used as a mordant.
331,965-December 8, 1885. H. HASSENCAMP. Manufacture of benzylated acid vioket.
Process consists in reducing the methyl violet of commerce to its lenco base, benzylating the leuco base, transforming into its leuco-sulpho acid, and finally obtaining the sulpho-acid of the dyestuff by oxidation.
392, 350-December 15, 1885. E. OSTERMEYER AND M. DITTMAR. Producing
chloriodine double combinations from pyridine and chinotine bascs.
The process of producing donble combinations of chloriodine with pyridine, chinoline, tetrahydrochinoline or chinoline methylate, from which coloring matters may be obtained: consists in treating these hases with chloroid-hydrochloric acid.
392,528-December 15,1885. M. HOFFMANN. Dyestuff madefrom diazo-naphthaliae.
Produced by the reaction of diazo-naphthaline with the gamma-disulphonic acid of beta-naphthol in alkaline solution. It dyes wool, silk, and other mate-
rials a bluish-red shade, and is characterized by its great tendency to crystallize.
\$32,899—December 22, 1885. H. PRINZ. Manufacture of betc-naphthylamine sulphoacid.
The beta-naphthylamine sulpho-acid obtained by treating the beta-naphthol monosulpho-acid described by Schäfer with ammonia at from 180° to $200^{\circ} \mathrm{C}$., by which a reaction exchange of the hydroxyl group with the amide saltsof highly prace. it is difficultty so
332,830—December 22, 1885. H. PRINZ. Red coloring matter from beta naphthylamine sulpho-acid.
Produced by combining beta-naphthol disulpho acid with the diazo combinations of beta-naphthylamine sulpho-acid (No. 332, s29). Treated with tin concentrated sulphuric acid with a cherry-red color, and when and the disulphoacids of amido beta-naphthol.

939,094-December 29, 1885. H. VOLLBRECHT AND C. MENCSHING. Mantu facture of color-producing acids.
A new naphtholdisulphonic acid, produced hy converting into the diazo compound the naphthylamine sulphonic acid whose sodium salt is not easily Soluble in water, and then treating the diazo compound with sulphuric acid. When created with nitric acid it forms a ycllow dyestuff, and it forms dyestnffs
with diazo compounds. with diazo compounds
888,035-December 22, 1885. H. VOLLBRECHT AND C. MENSCHING. Coloring matter derved from atpha naphthob disulphonic acid
Produced by the reaction of diazo-xylol with the soda salt of alpha-naphthol disulphonic acid (No. 333,034).
899,096-December 29, 1885. H. VOLLBRECHT AND C. MENSCHING. Nitrouaphtholsudphonic acid.
A yellow dyestuff, naphtholmononitromonosulphonic acid: produced by the reaction of a nitro compound of alphanaphtholdisulphonic acid (No. 333, 034)
with carbonate of potash with carbonate of potash.
S93,087-December $2 g, 1885$. H. VOLLBRECH'T AND C. MENSCHING. Manufacture of dycstuff from naphthol.
Prodnced hy the reaction of diazoazohenzol with a solution of the sodium salt of alphanaphthol disulphonic acid (No. 333,034).
93S,038-December 眐, 1885. H. VOLLBRECH'T AND C. MENSCHING. Manufacture of dyestuff from naphthol.
Prodnced by the reaction of diazotolnol with a solution of the sodium salt of alphanaphtholdisulphonic acid (No. 333,034).
393,039-December 22, 1885. H. VOLLBRECHT AND C. MENSCHING. Colorirg matter derived from diozobenzol and alphanaphtholdesulphonic acid.
Produced by the reaction of diazobenzol with a solution of the sodium salt of alpha-naphthol-disulphonic acid (No. 333,034).
393,040-December 22, 1885. H. VOLLBRECH'T AND C. MENSCHING. Alphauaphtholsulphonic acid.
Prodnced by converting into the diazo compound the naphtbylaminesulphonic acid whose sodinm salt is easily soluble in water, and treating the same in boiling water with a small quantity of sulphuric acid. It produces, with diazohenzol, a hright scarlet dye.
S3S,041-December 22, 1885. H. VOLLBRECHT AND C. MENSCHING. Coloring matter derived from diazobenzol and alphanaphthol.
A bright scarlet dye: produced from the reaction of diazobenzol with a solution of the sadium salt of the new naphthol-monosulphonic acid (No. 383,040).
338,042-December 22, 1885. H. VOLLBRECHT AND C. MENSCHING. Coloring matter derived from clphanaphthol and diazotoluol.
Prodnced by the reaction of diazotolnol-sulphonic acid with the sodium salt of the new naphtholmonosulphonic acid (No. 333,040). It dyes scarlet with a hluish shade.
388,649-January 5,1886. C. LOWE. Manufacture of derivatives of aurin.
The process of manufacturing "rosophenolinesulphonic acid," a conjugated acid red coloring matter, consists in heating anrin, 1 part, with sulphuric acid, 5 parts at from 38° to 100° C., separating the excess of sulphuric acid, and heating the product with an aqueous or alcoholic solution of ammonia.
383,861_January 5, 1886. A. KERN. Monufacture of soluble methyl-blue from
rosaniline. rosaniline.
"Methyl-blne S:" produced by the sulphonization of trimethyl triphenyl rosaniline, which results from the action of carbon oxychloride (phosgene) upon methyl diphenylamine.
334, 140-_January 12, 1886. J. A. VAN WINKLE. Compound for softening and
dyeing broom corn. dyeing broom corn.
It consists of water, alum, saltpeter, cider vinegar, and diamond dye (green).
384,257-January 12, 1886. C. A. MARTIUS. Monufaclure of archil-red $\alpha \div 0$ colors. Process consists in the combination of beta-naphthylamine-monosulpho acid (No. 332,829), with para-diazanitro-benzole.
541,991-May 15, 1886. F. BENDER. Producion of yellow azo coloring malter.
Produced by the action of diazotized metanitroabiline or its sulpho-acids upon phenylene diamine. It is hardly soluble in cold water, somewhat more so in hot water, bnt solnble in alcohol, sulphuric and nitric acid.
342,207-May 18, 1886. A. MÜLLER-JACOBS. Coloring compound.
A coloring composition, insoluble in water or alcohol and soluble in benzine and similar solvents, formed by componnding the resinate of a metal or alkaline earth and coloring matter or dye soluble in water or alcohol. The resinate is formed by dissolving and mixing at boiling heat colophony or other resins with caustic alkali, and saturating same with sulphate of zinc, aluminum, or other salt of a metal or alkalne earth, and washing out the precipitate, which bas the property of uniting with any coloring matter solnble in water or alcohol.
342,438-May 25, 1886. C. DUISBERG. Blue coloring malter from nitrophenetol.
Produced by azotizing the diamido-diphenol-diethylester (ether) (diphenetidin) obtained from nitro-phenol-aethylester (ether) (nitrophenetol) by alkaline rednction, and the transformation of the formed hydrazo-diphenol
 diphenol-diaethylester (ether) and hea
348,793-June 15, 1836. O. BLELSCHOWSKI. Dyeing collon fiber.
Cotton or other textile fibers or fabrics are dyed by steeping in a solution of alpha-naphthylamine, and then slowly adding to said solution an oxidizing aqneons solution of potassinm bichromate and sulphuric acid to develop the color on the fiber. Printing is done first with a paste of alpha-naphthylamine, and then with a mucilaginous solution of potassium bichromate.
\$44,075-June $2 \sim$, 1856. F. BENDER. Produclion of yellow coloring matter.
Produced by combining diazotized nitro-amido-benzoic acid with mets-phenylen-diamine, converting the same into a sodium salt and crystallizing.
\$44,971—July 6, 1886. C. A. MARTIUS. Producing mixed azo colors.
Process consists in combining one molecule of a salt of tetrazo-diphenyl or tetrazo-ditolyl with one molecule of an aromatic amido compound, and combining the product with one molecule of a different aromatic amido compound, or of a phenol compound.

345,901-July 20, 1886. M. HOFFMAN AND A. WEINBERG (Reissue: 11,598-April 27, 1897). Naphthol-black color compound.
Produced by diazotizing sodium naphthylamine disulphonatc, then treating with alpha-naphthylamine chlorhydrate, and converting the product into the diazo-azo compound, which latter is allowed to act upon an alkaline solution in an acidulated bath dark-blue shades.
346,022-July 20, 1886. H. BULL AND C. L. MÜLLER. Sulphonated purpte dyestuff from benzyldiphenylaminc.
Produced by the sulphonization of the basic derivative resulting from the condensation of tetramethyldiamidobenzophenone with benzyldiphenylamine. 348,489-August 31, 1886. H. VON PERGER. Production of phenyl-methyl oxy ${ }^{-}$ quincine.
See Group XXIII, Fine Chemicals, Esters.
548,615-September 7, 1886. R. BOBN. Manufacture of yellow caloring-matter or dyestuff from gallic ecid.
"Galloflavine," produced by the oxidizing action of atmospheric air, or oxygen, upor alkaline solutions of gallic acid, at not exceeding $10^{\circ} \mathrm{C}$. It combines with metallic oxides, forming yellow lakes or pigment colors from a greenish to an orange yellow.
s/4,816-September 7, 1836. H. M. BAKER. Resorcin blue eompound.
Produced by making a solution of resorcin in a solution of caustic ammonia, adding cuprous ammonio-carbonate or other ammoniacal copper salt, agitating the mixture by a copper plate dipping or moving therein, immersing metaling, and filtering. It combines with bases to form lakes, and has the formula $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$.
950,229—October 5, 1886. F. BENDER. Yellow coloring matter.
Produced by treating the soda salt of a paranitro toluol sulpho acid with caustic soda lye, reducing the red product of condensation into a hardly soluble amido-sulpho acid, diazotizing the latter, and combining the diazo product with a mixture of phenol and its carbon acids, or only with the one or the other component of said mixture in an alkaline solution. It is fixed on unmordanted cotton with a brilliant yellow shade.
950,250-October 5, 1886. F. BENDER. Red coloring matter.
Produced by treating the soda salt of paranitrotoluol mono-sulpho acid by caustic soda lye, reducing the red product of condensation into a hardly soluble amido-sulpho acid, diazotizing the latter, and combining the diazo product with a mixture of hydrochloric salt of beta-naphthylamine and a sodium salt of beta-naphthylamine sulpho acid, or only with the one or the other component of said mixture. It is fixable on cotton without a mordant, giving a purple-like color.
850,468-October 5, 1886. R. SCHMITT AND C. KOLBE. Manufacture of naptholcarbonic alkaline salts.
See Group XVIII, Fine Chemicals, Esters.
351,056-October 19, 1886. F. KRÖGER. Production of betanaphthol-disulpho acids.
Process consists in introducing betanaphthol, 1 part, into concentrated sulphuric acid, 4 parts, heated to 125° to $135^{\circ} \mathrm{C}$., with temperature maintained at 125° to $145^{\circ} \mathrm{C}$. during four to five hours, when the thus obtained beta-naphthol-disulpho acid is separated by treating its acid or neutral soda or lime salts in aqueous solution with common salt.
352,361-November 9, 1886. C. SCHRAUBE. Production of acetine-blue colors. Produced by mixing induline with or dissolving it in acetine.
353,264-November 23, 1886. C. L. MÜLLER. Manufacture of sulphonated purple dyestuft's from basic rosaniline.
Produced from the basic rosaniline derivative resulting from the condensation of tetraethyl-diamido-benzophenone with methyl-diphenylamine, by sulphonization of the same.
353,265-November 23, 1886. C. L. MÜLLER. Manufaeiure of sulphonated purple dyestuffs from basic rosaniline.
Produced from the basic rosaniline derivative resulting from the condensation of tetracthyl-diamido-benzophenone with benzyl-diphenyl-amine, by sulphoniof tetraethyl-diamid
zation of the same.
353,266-November 2s, 1886. C. L. MÜLLER. Manufacture of sulphonated purple dyestuffs from basic rosaniline.
Produced from the basic rosaniline derivative resulting from the condensation of diethyl-amido-benzoic acid with methyl-diphenyl-amine, by sulphonition of diethyl-ami
zation of the same.
354,714-December 21, 1886. C. LOHMANN. Pracess of dyeing wool azodiphenylblue.
Wool and other animal fibrous materials are boiled in an aqueous solution of azodiphengl blue, extract of logwood, blue vitriol, green vitriol, an alkali bisulphate, and oxalic acid.
s54,746-December 21, 1886. L. SCHAD. Praduction of coloring matter.
A bluish black coloring matter produced by the combination of the disulphoacid of diazo-azo-benzol with para-tolyl-beta-naphthylaminc.
955,935-January 11, 1887. T. HOLLIDAY. Naphthol-dyed fabric.
The product of process No. 355,933 , being the combination of cotton or other fiber with oxide or soap of lead and alpha or beta naphthol, or coloring matter formed with them.
356,672—January 25, 188\%. H. VOLLBRECHT AND C. MENSCHING. Red coloring matter from alpha diazo beta-naphthylamine sulphonic acid.
"Brilliant red:" produced from the reaction of beta-naphthol with alpha diazonaphthylaline monosulphonic acid.
357,273-February 8, 188\%. C. DUISBERG. Blue coloring matter from tetrazodiphenyl.
Produced by the action of tetrazo-diphenol-dimethylester (ether) upon the alpha naphthol alpha monosulpho acid. It dyes cotton not moordanted in a boiling bath containing alkali, and develops with phosphate of soda or carbonate of potssh into a deep blue, fast to mineral acids.
857, 274-February 8, 1887. C. DUISBERG. Red coloring matter for dyeing by the action of tetrazo dyes wilh beta-naphthylamine sulpho acid.
Produced by azotizing the diamido-diphenol-dimethylester (ether) (dianisidin) obtained by alkaline reduction of the nitro-phenol-methylester (ether)
(nitroanisol) and transforming the formed hydrazo-diphenol-dimethylester (ether) (hydrazoanisol) by means of acids, with sodıum nitrite, forming the tetrazo-diphenol-dimethylester (ether) and heating it in an organic acid solution with beta-naphthylamine-monosulpho acid. The aqueous solution dyes dark blue by the action of strong acids. It dyes unmordanted cotton a bluis
red in an alkaline bath containing phosphate of soda or carbonate of potash.

358,865-March 8,1887. C. A. MARTIUS. Production of mixed azo coloring matter. Mixed azo colors are formed by combining the intermediate product formed first by one molecule of tetrazodiphenyl, or tetrazoditolyl, or tetrazodixylyl and one molecule of an amine, amido-sulpho-acid, amido-carbo-acid, phenol phenol-sulpho-acid, or phenol-carbo-acid. The reaction of salts of tetrazodiphenyl or tetrazoditolyl upon amines, phenols, sulpho-acids, or carbo-acids at first causes one molecule of the tetrazo compound to combine with one molecule of the amine, phenol, sulpho-acid or carbo-acid. The first product containing still one free diazo group is able to be combined again with the same or another amine, phenol, sulpho-acid or carbo-acid, forming a new azo color.
359,676~March 15, 1887. A. RÖMER. Manufocture of red coloring matter.
Produced by first converting alpha-naphthalene-diamine (a reduction compound of alpha-dinitro-naphthalene, fusing at $216^{\circ} \mathrm{C}$.) into its tetrazo compound, molecules of naphthionic acid. It dyes unmordanted vegetable fiber a full and bright red.
S60,55S-April 5,1887 . F. BENDER. Production of disulpho-acid of diamidostillene.
Produced by treating the soda salt of para-nitro-toluol-sulphoacid with caustic lye, and reducing the red product of condensation with zinc dust in alkaline solution or with protochloride of tin in an acid solution. It is a yellowish powder, hardly soluble in water or spirit, but dissolves easily in alkaline fuids.
s60,792-April 5, 1887. F. BENDER AND G. SCHULTZ. Obtaining diaza colors by means of diamido-stilbene and amido-ftuorene.
The proccss for producing azo colors, which dye cotton direct from a soap bath, by combining one molecule of the tetrazo compounds of stilbene or fluorene (obtained from diamido-stilbene or diamido-fluorene) with two equal or different molecules of an amine or a phenol, or of a sulphonic or carbonic acid of an amiue or a phenol.
S61,404-April 19, 1887. P. FRIEDLAENDER. Combination of tetrazodiphenyl
chloride with resorcin.
The red azo dyestuff produced by subjecting an alkaline solution of resorcin to the action of tetrazo-diphenyl-chloride or tetrazo-ditolyl-chloride. It is fixable without mordants.
S62,560-May 10, 1887. A. WEINBERG AND H. SEIBERT. Production of a new napthylamine-monosulphonic acid.
A color-producing acid which is a derivative of the new naphthol-monosulphonic acid, obtained by heating sodium alpha-naphthalene-disulphonate with caustic soda to about $200^{\circ} \mathrm{C}$. until dioxynaphthalene is formed, when it is treated with an ammonium salt.
362,592-May 10, 188\%. E. ULLRICH. Trimethylethylthionin-blue colaring matter.
Produced by joint oxidation of para-amido-dimethyl-aniline and ethyl-methyl-aniline in presence of a hyposulphite. It is fixed on fiber by tannin and emetic tartar.
s62,813-May 10, 1887. F. BAYER. Ycllow-red dyestuff from tetrazo-diphenyl.
A yellowish-red coloring matter produced by the action of the tetrazo compound of benzidine upon beta-naphthylamine deltamonosulphonic acid. It dyes unmordanted cotton in an alkaline bath, and is distinguished by being easily soluble in hot water.
S62,885-May 10, 1887. T. HOLLIDAY. Process of dyeing.
Wool or other animal fiber is dyed by impregnating it with metallic mordants and then immersing in a bath containing one or more nitroso compounds of naphthols. The product is also claimed.
36s,502-May 24, 1887. F. BAYER. Manufacture of dyestuffs and coloring matter.
A bluish-red coloring matter produced by the action of the tetrazo compound of toluidine on beta-naphthylamine deltamonosulphonic acid. It dyes cotton a bluish red in a boiling alkaline or soap bath; color not altered by acetic acid.
s64,320-June 7, 1887. E. ULLRICH. Nitrosophenyl-blue dyestuff.
Prepared by the action of paranitroso-phenyltolylamine upon phenols or oxycarbonic acids. The paranitroso-phenyltolylamine is prepared from phe-nyiltolyl-nitrosoamine by treatment with alcoholic hydrochloric acid. It is fixed on the fiber by chrome or iron mordants under addition of acetate of lime. It dyes a greenish-blue shade.
365,409—June 28, 1887. J. ROHNER. Production of new coloring matler.
Brown, reddish-brown, and brownish-violet coloring matters: produced by the action of metaphenylenediamine and metatoluylenediamine upon amidoazobenzole or amidoazo-toluol, or amidoazo-xylol, or amidoazo-anisol. They dye directly unmordanted cotton.
S65,666-June 23, 1887. P. BÖTTIGER. Manufacture of new red dyestuffs or coloring matters.
Process consists in combining the salts of tetrazodiphenyl with alpha or betanaphtly ylamines, and then treating the thus-formed dyestuffs with concentrated sulphuric acid, anhydrous sulphuric acid, or mono chlorhydrine, whereby the mono or disulpho acids of said dyestuffs, or the salts of said acids, are ohtained.
\$65,667-June 28, 1887. P. BÖTTIGER. Combination of the salts of tetrazodiphenyl and the naphthylamincs.
A red dyestuff or coloring matter which results from the sulphonated combination of the salts of tetrazo-diphenyl and the naphthylamines.
366,078-July 5,1887 . C. DUISBERG. Manufacture of dyestuff or coloring matlers. A blue azo coloring matter produced by the action of tetrazo-ditolyl upon the monosulpho-acin of the alpha-waphthol which is obtained by sulphonizing alpha-naphthol, or by the decomposition of the alpha-diazo-naphthylamine
sulpho-acid (diazotized naphthionic acid) by boiling. sulpho-acid (diazotized naphthionic acid) by boiling.
366, 356-July 12, 188\%. E. ULLRICF. Blue coloring matter formed by the action of paranitroso-diphenylamines on phenols or oxycarbonic acids.
A blue coloring matter or dyestuff produced by the action of paranitrosodiphenylamine on phenols or oxycarbonic acid. In dyeing and in printing it is fixed on the fiber by chrome or iron mordants, with the addition of acetate
of lime.

366,357-July 12, 1887, E. ULLRICH, Bluc coloring matter formed from parani-troso-methyldiphenylamine on phenols or axycarbonic acids.
A blue coloring matter or dyestuff prepared hy the action of paranitrosomethyldiphenylamine on phenols or oxycarhonic acid. In dyeing and in printing it is fixed on fiber by chrome or iron mordants, with the addition of
acetate of lime.

366,699-July 12, 1887. E.' ULLRICH. Production of dimethyldiethylthionin-blue
Produced by joint oxidation of paramido-dimethylaniline and diethylaniline in presence of a hyposulphite, or ol paramido-diethylaniline and dimethylaniline in presence of hyposulphite. The coloring matter is fixed on the fiber by
means of tannin and emetic tartar.
366,640—Juty 19, 1887. E. ULLRICH. Production of diethylmethylthionin-blue.
Produced by joint oxidation oI paramido-diethylaniline and monomethyl-
aniline in presence of a hyposulphite.
368,054-August 9, 1887. R. BOHN. Manufacture of soluble naphthazarin.
"Soluble naphthazarií" (dioxynaphthaquinone): produced by digesting a mixture of naphthazarin in a solution of sodium bisulphite in a closed vessel a Irom 50° to $70^{\circ} \mathrm{C}$. For about eight days. It is soluhle in water and characterized by extreme stability in the presence of acids.
363,716-August 23, 1587. E. GREPPIN. Process for the production of blue coloring matter.
Blue coloring matters of unsymmetrical structure, produced by the oxidation of a mixture of paramido-dimethylaniline or the derivatives by the oxidation dimethylaniline, dimethyl-orthotoluidine, methylethyl-orthotoluidine, and paraphenylendiamine or paratolnylendiamine (paradiamidotoluol) in the presence of hydrogen sulphide in acid solution.
S69,764-September 13, 1887. J. ANNAHEIM. Manufacture of bluc coloring matter. Products for the mannfacture of coloring matters are produced by treating a latter, with acondensing agent, and freeing the one of the homologues of the ing matters are obtained by treating such productsof condensation direct Colornitroso combinations of the tertiary aromatic amines or by reducing the ditroso combinations and oxidizing the resulting diamine and the product of condensation.

374,259-December 6, 1887. A. LIEBMANN. Monosulpho-acid of alpha-naphthol. Produced by mixing alpha-naphthol, 1 part, with 4 parts of concentrated sulphuric acid, 170° to $185^{\circ} \mathrm{C}$., and heating for about an hour at $130^{\circ} \mathrm{C}$. The mixture ol sulpho-acids is converted into their harium salts, treated with gaseous hydrochioric acid, and the barium salt crystallized out. The new sulpho acid does not, on nitration, lose its snlpho group; hut yields, with nitric acid, dinitro-sulpho-alpha-naphthol. It forms dyestuffs with diazo compounds.
s75,848-January 3, 1888. A. WEINBERG AND H. SEIBERT. Mamufacture of
dycstuffs. dycstuffs.
A coloring matter produced by the action of tetrazo-ditolyl upon the naphthylamine sulphonic acid of No. 362,560 . It dyes unmordanted cotton a bluish

S75,980-January 3, 1888. P. FRIEDLAENDER AND B. PRIEBS. Production of
orange azo dyestuffs. orange azo dyestuffs.
Produced by adding a solution of metatoluylenediamine sulpho-acid to a solution of tetrazo-ditolylchloride prepared from tolidine sulphate, and afterwards adding a solution of salicylic acid. It has a striking affinity for raw cotton fiber, dyeing without a mordant.
576,992-Jonuary 10, 1888. A. MYLINS. Production of a new red azo color.
Process consists in mixing nitro-aniline with water acidulated with sulphuric acid; diazotizing by adding sodium nitrate; mixing therewith, with agitation, alpha naphthylamine disulphonate of sodinm; filtering, and saturating with sodium carbonate, and drying.
s77,949-January 91, 1888. M. CERESOLE. Production of new red coloring matter. Tetramethyl-rhodamine: produced by the condensation of one molecule of phthalic anhydride or its balogen substitution prodncts, with two molecnles of pink to crimson.

377,950-January 31, 1888. M. CERESOLE. Production of new red coloring matter. Tetraethyl-rhodamine: produced by the condensation of one molecule of phthalic anhydride, or of its balogen substitution products, with two molecules of diethyl-meta-amidophenol, or of its alkyl derivatives. It dyes in pure tints
from pink to crimson. from pink to crimson.
\$79,150-March 6, 1888. R. BOHN. Dyeing animal textile fabrics with naphthazarin.
Chrome lakes of naphthazarin are produced within or upon textile fibers by exposing said fibers to the action of chromium mordants and naphthazarin in dyeing. The shades vary from a black to a delicate gray or slate color.
380,067-March 27, 1888. A. WEINBERG. Production of nevo diamido compounds and of azo colors produced therefrom.
Process consists in combining the ethers of the tetrazo-oxy-diphenyl and of the tetrazo-oxy-phenyl-tolyl with two equal or different molecules of an amine or of a phenol, or of a sulphonic or carbonic acid of an amine or of a phenol.
380,098-March 27, 1888. T. DIEHL. Coloring natter from the sulpho-acids of ethyl or diphenylamine combined with tetrazo-diphenyl or tetrazoditolyl.
Substantive cotton coloring matters, produced by the action of one molecule of tetrazo salt upon two molecules of the sulpho-acids of monoethylaniline or diphenylamine. They may be subsequently combined with phenols, salicylic acids, phenol-sulpho-acids, the sulpho-acids of alpha and beta naphthol, or of alpha and beta naphthylamige.
380,402-April 3, 1888. L. PAUL. Production of disulpho and dicarbo acids of the diamidoazo-benzidines.
It consists in the processes for producing mono and diamidoazo-benzidines, transformation of them into tetrazo componnds, and their combination with aminesand phenols, or thesulpho-acids of thesebodies, and in the colors produced thererrom. Coloring matters are prodnced by the combination of (a) tetrazoits ethers; (c) tetrazo compounds of the ethers of diamido-diphenol; (d) tetrazofluorene, tetrazo-stilbene, or the sulpho-acids of these hodies, with two molecules of aniline, toluidine, xylidine, and cumidine, or their sulpho acids.

380, 408-April 9, 1888. L. PAUL. Production of disulpho and dicarbo acids of the
diamidoazo-benzidines. damidoazo-benziaines.
It consists in tetrazotizing benzidine, tolidine, and diamido-dixylyl, and the combination of the thus obtained tetrazo compounds with one or two molecules of meta or para amido-benzol sulpho-acid, or ortho, meta, or para amido-benzoic acid, or the sulpho-acids of ortho or para toluidine or xylidine in alcoholic solution, and the products thereof.
S80, 927 -Aprii 10, 1888. A. F. POIRRIER AND D. A. ROSENSTIEHL. Producion of tazo colors.
Produced by reducing in an alkaline medium nitro-aromatic amines, particularly metanitraniline, the isomeric nitro-toluidines fusible at $107^{\circ} \mathrm{C}$. and $78^{\circ} \mathrm{C}$. and nitro-xylidine fusible at $123^{\circ} \mathrm{C}$. and combining the polyazo derivatives of these reduction products with the phenols, the oxyphenols, the naphthols, the oxynaphthols, the primary, secondary, and tertiary amines, the diamines, and also the alkyl, sulpho, and carboxyl derivatives of all these bodies.
380,928-April 10, 1888. A. F. POIRRIER AND Z. ROUSSIN. Production of diazoic cotoring matters.
Produced by the reaction of the nitrodiazo henzols, toluols, xylols, ete., with the isomers and homologues of alpha-naphthylamine sulpho, especially the naphihionic acid of Witt.
981,045-April 10, 1888. O. N. WITT. Manufacture of purple-black azo dyestuff. Produced by transforming assymmetrical binitro-aniline (m. p. $180^{\circ} \mathrm{C}$.) into its diazo derivative, and treating same with sodium beta-naphthylamine monosulphate (Brönner's modification) and sodic acetate.
s81,046-April 10, 1888. O. N. WITT. Purple azo dyestuff.
Produced by transforming assymmetrical hinitro-aniline (m. p. $180^{\circ} \mathrm{C}$.) into its diazo derivative, and treating same with sodium beta-naphthylamine disulphonate, such as may be obtained by heating beta-naphthol disulphonate acid (R) with caustic ammonia noder pressure, and sodic acetate.
381,132-April 17, 1888. E. HASSENKAMP. Production of blue-red azo dyestuff by the action of tetrazo-ditolyl salts on beta-naphthyiamine monosulpho acid.
Produced by the action of tetrazo-ditolyl salts of the alkylated derivatives of heta-naphthylamine monosulpho-acid. It dyes unmordanted cottoo bluish red, fast to diluted acids.
381,471-April 17, 1888. E. HASSENKAMP. Process of producing blue-red coloring matter.
It consists in combining salts of the tetrazo compound of paradiamines or their sulphonic or carbonic acids with the alky-naphthylamine sulphooic acids.
382,882-May 15, 1888. C. RUDOLPH. Production of yellow coloring matter.
"Benzoflavine:" produced from henzaldehyde and toluylen or phenyl-diamine by first condensing benzaldehyde with the said diamioes, heating the tetraamines thus formed with bodies capable of separating ammonia, and then oxidizing the products (the hydro-phenylacridines).
384,s15-Tuly 12, 1888. M. HERZBERG. Manufacture of dyestuffs.
Brown dyestuffs are produced by combining the salts of diazo compounds of aniline, toluidine, xylidine, cumidine, and the nitro-derivatives of the same, amidonzo-benzol, amidoazo-toluol, amidoazo-x ylol, alpha and beta naphthylamine, or their sulpho and carbo acids, and tetrazo compounds of beozidine, benzidine-sulpho, toluidine, diamido-stilbene, or their sulphoor carho acids, with Bismarck brown (triamidoazo-benzol or triamidoazo-toluol). Iosoluble colors
are rendered soluble by sulphonation.
384, 316 -June 12, 18s8, M. HERZBERG. Manufacture of dyestuffs.
A brown coloriog matter, produced by the action of diazo compound of naphthylamine suipho-acid on Bismarck brown (triamidoazo-benzol or triamidoazotoluol).
384,342-June 12, 1888. R. G. WILLIAMS. New coloring matter obtained by the action of tetrazo-diamido benzote on phenols.
Produced by the action of tetrazo-diamido benzole (hydrochlorate) or its homologues on resorcin, the phenols, benzoic, the oxybenzoic acids, and alphanaphthol, or their substitution products, on aniline and its homologues, betanaphthol and the naphtaylamines, or their substitution products, and on the products.
384,480—June 12, 1888. E. ULLRICH. Production of blue coloring natter.
Process of producing methylene-blue by subjecting a solution containing paramido-dimethylaniline, hydrochlorate of dimethylaniline, and sodium hyposulphite to the action of an oxidiziog agent, as bichromate, with heat.
986,192-Juiy 17, 1888. S. FOREL. Obtaining oxyazoic coloring matter from tetrazo diphenyl and ditolyl.
Produced by the action of tetrazo-ditolyl on phenol, or of tetrazo-diphenyl and tetrazo-ditolyl on phenol and orthocresylol in alkaline solution. It yields a bright yellow on vegetable fiber in an alkali or soap bath.
386,709-Judy 24. 1889. W. KELBE. Production of coloring substances by the reac-
tion of aromatic hydrazin sulphonic acids mu retenchinon.
A red coloring matter, characterized by great lastness: produced by the condensation of an aromatic hydrazin sulphonic acid with reteochinon.
387,097-Juiy 31, 1888. P. MONNET. Dyeing colors by the simultaneous oxidation of diamines and monamines.
Colors or tints-as blacks, more or less brown or blue-are produced directly upon the materials by the oxidation of a mixture of a salt of a simple diamineas the chlorohydrate of paraphenylene-diamioe-and the salt of a simple monamine, as the chlorohydrate of aniline.
s88,185-August 21, 18s8. C. DUISBERG. Blue azo coloring matter.
Produced by the action of tetrazo-dipheool-diethyl ether upon the alphanaphthyl ajpha-monosulpho acid, which is obtained by sulphonizing alphanaphthol or by the decomposition of the alpha-diazonaphthylamine sulpho-acid by boiling. It dyes unmordanted cotton in a boiling alkaline bath a fast deep blue, more red than the homologous product of No. 357,273.
3s9,127-September 4, 1888. H. WOLFF. Production of new az̃o colors.
Produced by diazotizing nitrodiamidotripheayl-methane or its sulpho-conjuor their sulpho-conjugations.
$390,842-$ October 9,1888 . B. F. CRESSON. Dyeing aniline black:
An aniline-black coloring solution is formed by dissolving and mixing in water, chlorate of potash, sal ammoniac, sulphate of copper, nitrate of iron and

MANUFACTURING INDUSTRIES.

tragacanth gum, and forming another liquor of aniline oil, muriatic acid, tartaric acid and water, and then mixing the liquors.
392,72s-November 13, 1888. E. ELSAESSER. Blue coloring matier obtained from paraphenylen-diamine, etc.
Derived from paraphenylene-diamine and hydrochlorate of amidoazo-benzole or its equivalents (hydrochlorate of phenyl-amidoazo-benzole, amidoazo-ben-zole-monosulpho-acid, or phenyl-amidoazo-benzol-monosulpho acid). It is soluble in cold and hot water.
394,425-December 11, 1888. R. G. WILLIAMS. Action of salts of tetrazo-ditolyl or diphenyl on dihydroxides of toluene or their sulpho-acids.
Red coloring matters, dyeing unmordanted cotton in an alkaline bath: formed by the action of a salt of tetrazo-diphenyl or tetrazo-ditolyl, or the sulpho-acids of a salt of tetrazo-diphenyl or tetrazo-ditolyl on the dihydroxides of toluene, or the sulpho-acids of the same.
394,841 -December 18, 1888. C. DUISBERG. Manufacturing of coloring matters.
A yellow coloring matter produced by the action ol tetrazo compound of benzidine, tolidine or diamidodiphenolether upon cresol carbonic acid.
395,080-December 25, 1888. C. RUDOLPH. Coloring matter.
An amidobenzoflavine dyestuff produced rrom amidoditolylphenylmethan, oy transforming the nitrotetraamidoditolylphenylmethan intopentaamidoditolylphenylmethan, then into hydrotriamidodimethylphenylacridine, and finally into the amidobenzoflavine. Cotton mordanted with tannic acid is dyed a greenish yellow.
995,115-December 25, 1888. F. BENDER. Production of coloring matter.
A fast yellow coloring matter obtained from paranitrotoluol-sulpho-acid by treating the unstable yellow dyestuff of No. 350,229 with chlorinating, brominating, nitrating, or alkylating agents. When treated with soda-lye it is not changed in color to red.
395,300-December 25, 1888. A. WEINBERG. Blue coloring matter from nitroso derivatives upon phenylene-diamines.
A class of blue coloring matters produced by the action of paranitroso derivatives of secondary and tertiary amines upon diphenylmetaphenylendiamine, ditolylmetaphenylendiamine, or dixylylmetaphenylendiamine.
395,474-January 1, 1889. F. BAYER. Manufacture of clyestuff's or coloring matters. Process of producing red azo colors consists in combining betanaphthylaminedeltasulpho acid with the group of tetrazo compounds of paradiamines, such as tetrazodiphenyl, tetrazoditolyl, tetrazodiphenylether, tetrazostilben, or their sulphonic acids.
395,634-January 1, 1889. C. RUDOLPH AND B. PRIEBS. Orange azo dyesluff. Produced from tolidin by diazotation and subsequent heating with cresotin acid and toluylendiaminesulpho-acid. It easily dissolves in bot water, and the solution in concentrated sulphnric acid is violet red.

s96,29s-July 15, 1889. C. RUDOLPH. Tetrazo dyesluff.

Blne-black tetrazo dyestuff produced from the sulpho-acids of the amido cresols by their combination with naphthylamine, the diazotation of the compound thus formed, and its combination with naphtholdisulpho acid.
\$96,29h—January 15, 1889. C. RUDOLPH AND B. PRIEBS. Yellow coloring matter.
Produced by the action of tetrazodiphenyl or ditolyl chloride upon one molecule of beta cresotinic acid and the subsequent treatment of the intermediate cule of beta cresotine alicylate of soda.
396,417—January 2, 1889. S. M. NEVILLE. Dye.
A coloring composition, insoluble in water and alcohol and soluble in benzine, turpentine, and similar solvents: consisting, essentially, of common soap dissolved in water, coloring ma
soap-and sulphate of zinc.
396,587—January 22, 1889. F. BENDER. Production of coloring matter.
Prodaced by the action of caustic alkalis upon paranitrotoluol sulpho acid in presence or water, alcohol, or glycerine wit cotton in tast shades, depending upon the nature of the oxidable agent employed.
396,574-January 22, 1889. A. KERN. Formation of purple coloring matter.
A purple coloring matter, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{HCl}$, obtained from the methylic ether of gallic acid and hydrochloric nitroso-dimethylaniline.
396,692-January 22, 1889. G. GRÜN. Printing of indutinc dyestuffs.
Process consists in mixing the induline paste with the formylethers of glycerine (obtained by heating oxalic acid with glycerine to $110^{\circ} \mathrm{C}$. until the development of carbonic acid begins).
398,990—Mareh 5, 1889, J. WALTER. Process of making a yellow dyc.
Sulphuric acid is added to an aqueous solntion of sodium salt of thioparatoluidine sulphonic acid, the precipitate cooled with ice, a solution of sodium nitrate gradually added, the diazo solution poured into an alkaline solution of salicylic acirl containing enough caustic soda to saturate the acids, and the mixture hoiled and the color precipitated with salt.
401,024-April 9, 1889. E. FRANK. Yellow dye.
Produced by the action of tetrazo-ditolyl upon salicylic acid. It dyes cotton a more reddish yellow than the homologous product (No. 329,638) of benzidine. 401,489-April 16, 1889. T. DIEHL. Crimson dye.

Process consists in first combining one molecule of beta-phenylnaphthylamine monosulpho acid with one molecule of a tetrazo salt. The obtained product is alterwards subjected to the action of phenols, amines, or other sulpho or carbon acids. Unmordanted cotton is dyed direct.
401,633-April 16, 1889. R. BOHN. Alizarine-blue green.
Produced by the successive action of sulphuric anhydride and of alkalis or mineral acids upon alizarine blue.
401,634-April 16, 1889. R. BOHN. Carbazol-yellow.
Produced by the combination of one molecule of tetrazo-carbazol with two molecules of salicylic acid. It dyes cotton without mordants, and dyes animal fiber in a neutral or acidified bath.
401,685-April 16, 1889. R. BOHN. Alizarine-grcen sulpho-acid.
Produced by the action of moderately-strong fuming sulphuric acid at 130° to $135^{\circ} \mathrm{C}$. upon alizarine green. It corresponds in chemical constitution and behavior to a true and staple sulphonated derivative of alizarine green. It dyes chrome-mordanted wool green shades.

402,486-April 50,1889 . R. GNEHM. Red carbon color.
Obtained from succinic acid and diethylmetaamidophenol. It dyes wool, silk, and mordanted cotton a brilliant red with yellow fluorescence.
402,980-May 7, 1889. J. SCHMID. Azo dye.
Azo bodies produced by the combination of alphadiazouaphthaline with metaxmidophenol or its dialkylized derivatives. They possess the same properties as the azo bodies obtained from metaamidophenol.
404,097-May 28, 1889. A. LIEBMANN. Production of yellow coloring matter.
Produced by treating a diazo compound of primuline (polychromineate) with an alkaline solution of beta-naphthol, producing an insoluble compound, which is rendered soluble by treating with bisulphite of soda.
404,193-May 28, 1889. J. HAHN. Process of dissolving aniline colors.
Aniline is directly united with vegetable oil by dissolving aniline in hot water, adding part of the solntion to oil, boiling the mixture, adding the remainder to the boiling oil, and stirring the mixture until the water has evaporated.
404,509-May 28, 1889. J. SCHMID. Blue azo dye.
Obtained by subjecting the dialkylized azonaphthalene-metaamido-phenol to the action of a reducing agent and subsequent treatment with an oxidizing agent.
404,381-May 28, 1889. R. GREVILLE-WILLIAMS. Compound orcine dye.
Prodnced by combining one molecule of tetrazo-diphenyl or tetrazo-ditolyl or their sulpho-acids with first one molecule of naphthylamine, or its known sul-pho-acids; and then combining this intermediate product with one molecule of orcine or sulpho-acids of the same. The colors are faster against light than No. 394,425.
405,988-June 25, 1889. M. ANDRESSEN. Naphthol-disulphonic acid.
A newlalpha-naphthol-disulphonic acid obtained by first forming naphthalenedisulphonic acid by treating naphthalene with sulphuric acid and monochlebydrin, or with fuming sulphuric acid, then treating with nitric acid, reducing the alpha-nitro-naphthalene-disulphonic acid to alpha-amido-naphthalenedisulphonic acid, and separating and converting into the corresponding alpha-naphthol-disulphonic
ditolyl, stilbene, ete.
406,669--Judy 9, 1889. T. SANDMEYER. Red color.
Red to violet colors produced by boiling ortho-toluidine with caustic soda and gradually adding nitro-benzene, reducing with zinc powder, treating with concentrated muriatic acid, boiling, diluting, and filtering, when Glauber's salt is added to precipitate the sulphate, and the paste is mixed with mnriatic acid,
cooled and diazotized, and the prodnct is treated with a solution of soda and naphthionate of sodium, heated, and the color precipitated.
406,670-July 9, 1889. T. SANDMEYER. Yellow color.
Produced by boiling ortho-toluidine with caustic soda and gradually adding nitro-benzene, reducing with powdered zinc, treating with muriatic acid, boiling, diluting, and filtering, when Glauber's salt is added, the product is diazoand the color precipitated. It dyes unmordanted cotton.

406,952-July 16, 1889. W. PFITZINGER. Thioparatoluidine.

A new thioparatoluidine: produced by melting paratoluidine and sulphur to 180° to $220^{\circ} \mathrm{C}$. and then to $255^{\circ} \mathrm{C}$, and purifying the product. It is infusible at $220^{\circ} \mathrm{C}$., nearly insoluble in boiling alcohol and concentrated hydrocholoric acid, and combines with fuming sulphuric acid to form a new sulphonic acid, the soda salt of which dyes unmordanted cotton yellow in an alkaline bath.
407,906-July 30, 1889. B. R. SEIFERT. Proeess of making paraoxybenzoic acid. See Group I, Acids, Other Organic.
409,584-August 20, 1889. C. S. BEDFORD. Compound dye.
A coloring matter consisting of the active principle of [ustic dye wood with a diazo compound, produced by treating an aqueous extract of fustic dyewood With a slightly acid solution of a salt of diazo-benzene, diazo-toluene, diazo-
xylene or diazo-naphthalene, adding the requisite quantity of alkali, and sepaylating or the coloring matter.
409,822-August 27, 1889. J. BRACEWELL. Apiline blach.
Formed of ferrocyanide of soda, chlorate of potash, and aniline salts prepared so as to be Iree of hydrochloric acid; that is to say, with the ferrocyanide in amount sufficient to take up the aniline and the chlorate in quantity not less than 35 per cent of that of the aniline, and thereby prevent the formation of chlorate of aniline in injurious quantity in the color.
410,057-August 27, 1889. R. GREVILLE-WILLIAMS. Process of making orcine dye.
It consists in combining one molecule of any alkalized orcine-as the mono, di, or tri methyl, ethyl, amyl, or acetyl orcines-or one molecule of a sulphoacid of an alkalized orcine with the intermediate product formed by combining one molecule of tetrazo-diphenyl, or one molecule of any of the other tetrazo compounds of dixylyl, stillenc, fluorine of naphthalene or their sulpho acids, with one molecule of one of the sulpho-acids of naphthylamine. They dye unmordanted cotton in an alkaline or soap bath.
410,058-August 27, 1889. R. GREVILLE-WILLIAMS. Process of making orcine dyes.
It consists in combining one molecnle of a compound formed by combining orcine with sodium chloride, with the intermediate product formed by combingfluorene, or naphthalene or their sulpho acids, with one molecule of one of the sulpho-acids of naphthylamine.
410,295-Septenber 3, 1889. R. SCHMITT. Process of making beta-naphthol carbon acid.
Betanaphthol carbon acid of a m. p. $216^{\circ} \mathrm{C}$. is produced by the reaction of carbonic acid upon the alkaline salts of the beta-naphthol under pressure and at 200° to $250^{\circ} \mathrm{C}$.
410,783-September 10, 1889. R. GEIGY. Process of making a violet dye.
Twenty kilos of gallamide is heated with 30 kilos of the chlorhydrate of nitroso-dimethylaniline in a solution of acetic acid.
410,789-Septenber 10, 1889. T. SANDMEYER. Process of making aurin derivatives
Salicylic acid, 2 parts, dissolved in concentrated sulphuric acid, 15 parts, and methyl alcohol, 4 parts, is heated to $70^{\circ} \mathrm{C}$., after which It parts of sodium
tated. It is then washed, saturated with an alkali, and dried. It dissolves in caustic soda with brown, and in ammonia with red color. Oxides of metals 411,149-September 17, 1889. D. E. HUGUENIN. Blue dye.

A compound dye consisting of indigo and indophenol.
412,14s-October 1, 1889. R. GREVILLE-WILLIAMS. Process of making dycs. It cousists in combining one molecule of a tetrazo compound (tetrazo diphenyl and its homologues, tetrazo-naphthalene, tetrazo-stilbene, tetrazo-fuorene, tetrazo-diphenol ether, tetrazo-azo-benzole and its homologues, tetrazo-oxydiphenyl, and the alkylized compounds or the sulpho or carho acids of the sume) with two molecules of an alkylized acid of the orchilla lichens or halogen or sulpho compounds of the same. They dye unmordanted cotton in an aikaline
or soap bath.
412,149-October 1, 1889. R. GREVILLEWILLIAMS. Process of making dyes.
Mixed coloring matters produced by first combining one molecule of a tetrazo compound (No. 412,I48) with one molecule of one of the amines or phenols (the sulpho-acids of the naphthylamines, the naphthols, monoethylaniline, diphenylmine, salicylic acid, and then combining this intermediate product with one molecule of an alkylized acid of the orchilla lichen or halogen or sulpho compound of the same.
412,440-October 8, 1889. A. WEINBERG. AEO coloving mattcr.
Produced by the action of diazo derivatives of compounds obtained from naphthylamine and diazo-sulphonic acids upou alpha or beta naphthylamine. It gives dark-blue shades in an acidulated bath, and differs from naphthol-black-No. 345,901-by the presence of the amide group, and hy its greater
intensity' and resistance to washing and milling.
412,618-October 8, 1889 . A. HERRMANN. (Reissue: 11,077-May 20, 1890.) Coloriny matter.
A blue-green coloring matter, the sulphonic acid of metaoxytetralkyldiamidotriphenyl carbinol, prodnced by dissolving meta-amido-tetralkyldiamidotridecomposing by boiling with water, precipitating with soda or or a nitrite boiling the resulting oxy leuco base with water until it soda or sulphate, and phonating by beating with concentrated or fuming sulphonic acid and aridizin with peroxide of lead or similar agent. It is characterized by acid, and oxidizing the action of alkalis.
412,614-October 8, 1889. A. HERRMANN. (Reissue: 11,078-May 20, 1890.) Coloring matter.
A blue-green coloring matter, the sulphonic acid of meta-amidotetralkyldiamidotriphenyl carhinol, produced by dissolving meta-amidotetralkyldiamidotriphenyl methane in fuming sulphuric acid, heating until a sample gives a clear solution with cold ammonia, converting the productinto the calcium or sodium salt, oxidizing the leuco sulphonic compound thus obtained with peroxide of lead or manganese and dilute sulphuric acid, filtering and evaporating to dryness. 412,615-October \&, 1889. A. HERRMANN. Coloring matter.
A fast green-blue coloring matter obtained from the etherized compounds of metaoxytetralkyldiamidotriphenyl methane or metamethyoxy or metaethyoxy tetralkyldiamidotriplenyl carbinol.
412,978-October 15, 1889. J. ROSENHEK. Production of yellow dyestuffs.
"Thioflavine T," obtained by introducing alcehol radicals into the primary thionated bases from paratoluidine and xylidine, and which as chlorhydrate is soluble in water, alcohol, and diluted acid. It dyes mordanted cotton a bright yellow.
412,979-October 15, 1889. J. ROSENHEK. Production of yellow coloning matter.
Obtained by sulphonating thio bases from paratoluidine and xylidine.
418,048-October 15, 1889. R. GNEEM AND J. SCHMID. Violet coloring mattor.
Monophenylmeta-amidophenolphthaleine, produced by melting two molecules of metaoxydiphenylamine with one molecule of phthalic-acid anhydride in the presence of a condensing agent, as zinc chloride, at 160° to $170^{\circ} \mathbf{G}$.
418,049-October 15, 1889. R. GNEHM AND J. SCHMID. Blue coloring matter.
Pbenylmeta-amidoplenoldichlorphthaleine, produced by the reaction of dichlorophthalic acid on metaoxydiphenylamine in the presence of a condensing agent, as zinc chloride, at 170° to $200^{\circ} \mathrm{C}$.
418,050-October 15, 1889. R. GNEHM AND J. SCHMID. Gray coloring matter.
Phenylmeta-amidopbenoltetrachlorphthaleine, a dark green powder, produced by the reaction of tetrachlorophthalic acid on metaoxydiphenylamine iu the presence of a condensing agent, as zinc chloride, at 180° to $210^{\circ} \mathrm{C}$.
418,562-October 22, 1889. A. SARAUW. Production of azo coloring matter.
The process consists in reacting with a salt of the nitroso derivatives of the tertiary amines, more especially nitroso-dimethyl-aniline, upon a bioxynaphthaline whose boiling point is above $186^{\circ} \mathrm{C}$., in the presence of heat and a suitable solvent. The coloring matter ranges from violet-blue to blue.
418,70/-October 29, 1889. H. D. KENDALL. Brown dye.
A fast-brown coloring matter prodnced by treating diritroso-resorcin (Alsace green) or its homologues with a bydrosulphite.
415,088-November 12, 1889. R. BOHN. Trioxybenzophenone.
Prodnced by the condensation of equal molecules of pyrogallol and benzoic acid. It combines with metallic mordants; gives fast yellow shades with alumina, and brown shades with iron and chrome mordants. M. p. 137° to $138^{\circ} \mathrm{C}$.
415,257-November 19, 1889. M. ULRICH. Process of making dioxynaphthalene monosulpho-acid.
The process consists in melting the beta-naphthol alpha disulpho acid (the so-called " R " salt) or the beta-naphthol beta or gamma disulpho acid (the socalled " G " acid) with caustic alkali at above $200^{\circ} \mathrm{C}$.

415,258-November 19, 1889. M. ULRICH. Azo-blue color.

Produced by the action of tetrazo-diphenol ether upon the dioxynaphthalene monosulpho acid gained by melting beta-naphthol beta or gamma disulpho acid with caustic alkali.
415,359-November 19, 1889. E. ELSAESSER. Process of making paratotuidine sul-pho-acid.
The process of producing yellow dyestuffs from paratoluidine consists in xtracting the soluble parts of crude dithioparatoluidine with alcohol. filtering and converting the residuum into a sulpho-acid by agitating it with fuming
sulphuric acid containing sulphuric anlhydride.

416,055-November 26, 1889. G. DÄNLIKER AND H. A. BERNTHSEN. Monufacture of toluidine blue.
Produced by converting dimethylaniline into nitroso, then into paramidodimethylanihne, submitting this diamine, in mixture with sodium hyposulphite, to an oxidizing agent to transform it into paramido-dimethylanilineoxidizing agent acid, then producing by addition of ortbotoluidine and an oxidizing agent ${ }^{2}$ green indamine ($\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}_{2} \mathrm{O}_{3}$) and finally converting this dizing agent. It is a redder tint with zine chloride in the preseace of an oxialzing agent. It is a redder tint than methylene blue.
1891.) Process of making R. GREVILLE-WILLIAMS. (Reissue: 11,178-July 21, 1si.) Proccss of making azo dyes.
Produced by combining one molecule of a tetrazo compound (tetrazodiphenyl and its homologues, tetrazo-naphthalene, tetrazo-stilbene, tetrazofluorine, tetrazo-diphenolether, tetrazo-benzole and its homologues, tetrazo-oxy diphenyl as well as the alkylized compounds, or the carho or sulpho acids of the same) with one molecule of naphthalene-azo-naphthylamine or its sulpho compounds, and afterwards acting on the intermediate body thins formed with one molecule of one of the naphthylamines or sulpho-acids of the same. The process may be reversed.

417,207-Dccember 10,1889. R. GREVILLE-WILLI 1 MS. (Reissue: 11,179—Judy Q1 $_{1}$ 1891) Process of making azo dyes.

Red suhstantive azo coloring matters produced by combining one molecule of a tetrazo body (No. 416,I45) with one molecule of an amine (the amines and phenols are, first, aniline and its homologues, the naphthylamines, diphenylamine and its homologues; second, the alkylized products of these amines third, sulpho-acids of one and two; fourth, carbolic acid and its bomologues; fifth, resorcin and its homologues; and sixth, sulpho-acids of four and five), then combining a molecule of an azotized amine with the thus produced intermediate product, and afterwards reacting on the resulting secondary intermediate with one molecule of one of the amines or phenols.
417,294-December 17, 1889. M. ULRICH. izo dyc.
Produced by the action of tetrazo-diphenol ether upon the dioxynaphthalene monosulpho-acid obtained by melting "alpha-naphthol alpha-disulpho-acid $S^{\prime \prime}$ with caustic alkali. It dyes unmordanted cotton in a boiling soap bath a
clear greenish blue. clear greenish blue.
417,295-December 17, 1889. M. ULRICH. Azo dye.
Produced by the action of tetrazo-diphenyl salts from benzidine upon the dioxynaphthalenc monosulpho-acid obtained by melting "alpha-naphthol alpha-disulpho acid S '" with caustic alkali. It dyes ummordanted cotton in a soap bath a fast reddish blue.
417,296-December 17, 1889. M. ULRICH. Azo dye.
Produced by the action of orthotetrazoditolyl salts upon the dioxynapthalene mono-sulpho-acid obtained by melting "alpha-naphthol alpha-disulpho-acid S" with caustic alkali. It dyes unmordanted cotton in an alkaline bath a fast, clear blue.

418,153-Dccember 31, 1889. F. BAYER. Process of flxing azo dyes.
Goods of animal or vegetable fibers which have been dyed or printed in the usual way with the substantive cotton coloring matters, are boiled with a solution of a metalic salt, and the metals fixed by the coloring matters in the form of a fixed lac.

418,657-December 31, 1889. G. SCHULTZ. Production of orange and red dyestuffs.
The process consists in heating certain amido compounds, such as cumidine or xylidine, with sulphur, treating the sulphide as formed with sulphuric acid, and combining it with a phenol, naphthol; orcin, resorcin, amido compound, or naphthylamine, or their carbonic or sulphonic acids.
418,916-January 7, 1890. B. HOMOLKA. Blue dye.
A blue-violet coloring matter formed from aniline, bydrochlorides of aniline, and amido-azo-benzole, of the formula $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4}$, and capable of forming stable acetate. The bydrochloride, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{HCl}$, is easily soluble in bot water.
420,164-January 28, 1890. J. MOHLER. Blue dye.
Produced from the hydrochloride of nitroso-dimethylaniline and the crystallized condensation product from tannin with aniline. It is rendered soluble in water by treatment with bisulphite of soda and alcohol.
420,311-January 28, 1890. A. F. POIRRIER. Nitroso dye.
Brown to gray coloring matters: produced by heating in a suitable medium, as water, a salt of a nitroso derivative of secondary or tertiary amines, as by a mineral salt.
420,378-Januavy 28, 1890. O. N. WITT. Blue dye.
Produced by the combination of beta-naphathylamine beta-naphtbionic acid (Broenner's) with one molecule of beta-naphthohydroquinone; distinguished by producing colored lakes with metallic mordants similar to alizarine and allied coloring matters.
420,978-Jomuary 2s, 1890. O. N. WITT. Ammonium salt of beta-naphthohydro-quinone-beta-sulphonic acid.
Produced by submitting amido-beta-naphthol-beta-sulphionic acid to the successive action of oxidizing and reducing agents.
420,874-January 28, 1890. O. N. WITT. Dark-blue dye.
Produced by the combination of one molecule of Dahl's alpharaphthylaminedisulphonic acid with one molecule of beta-naphthohydroquinone-beta-sulphonic acid. It dyes wool dark blue with a chrome mordant and bluish-purple shades with alumina mordants.
4.1,049-February 11, 1890. E. D. KENDAL工. Sulphonating rosaniline.

Process consists in mingling dry bisulphate of soda, or of potashand rosaniline, and heating the same dry until the desired degree of sulphonation is ohtained. Any sulphate wholly or in part composed of a higher sulphate than bisulphate is included.
421,640-February 18, 1890. A. WEINBERG. Blue azo dye.
Process consists in first combining diazo componnds with the oxyethers of alpha-naphthylamine or their sulpho-acids, forming the sulpho-acids of compounds of the general formula $\mathrm{R}_{2}-\mathrm{N}=\mathrm{NC}_{10} \mathrm{H}_{5}(\mathrm{OR}) \mathrm{NH}_{2}$ (where $\mathrm{R}_{1} \mathrm{NH}_{2}$ stands for the aromatic amido compound, R for the alkyl group), and afterwards diazotizing these basic componnds and reacting. with the diazo-azo derivatives upon amines or phenols.

422,018-February 25, 1890. A. HERRMANN. (Reissue: 11,116-October 14, 1890.) Blue-green dye.
Metaoxytetralkyldiamidotriphenylmethan of unsymmetric constitution is derived from metaoxytetralkyldiamidotriphenylmethan, two different tertiary aromatic bases being condensed with metanitrobenzaldehyde. It is converted into the sulphonic acid by treatment with fuming sulphuric acid and the acid oxidated to coloring matter.

429,341-March 11, 1890. A. F. POIRRIER. Green dye.
Produced by condensing with tetramethyldiamidobenzhydrol, in a hydrochloric or sulphuric medium, paratolnidine, alpha-metaxylidine, pseudocnmidine, amidotrimethylbenzol, or mesidine, and subjecting the leuco bases thins formed to oxidation, or oxidation in conjunction with the formation of hydrcxyl, methyl, ethyl, benzyl, and sulpho-conjugated benzyl derivatives of said leuco compounds.
429,550-March 18, 1890. C. DUISBERG. Process of making blue dyes.
The tetrazo compound of benzidine disulphono-disulpho-acid is combined with alpha or beta naphthylamine, or their alkyl derivatives. It dyes cotton in an unmordanted bath and wool in a neutral bath.
429,569-March 18, 1890. P. OTT. Azo dye.
Process consists in obtaining substantive dyestuffs from intermediate products not dyestuffs by combining the tetrazo compounds of diamidoditoluylene oxide with one molecule of an amine, or a phenol or their sulpho or carbo or sulphocaroo acids, and combining the product of the reaction with another molecule of an amine, or a phenol or their sulpho or carbo or sulpho-carbo acids.

424,019-March \$5, 1890. R. NIETZKI. Brown carbon dye.
A yellowish-brown coloring matter of the formula $\mathrm{CnH}_{2} \mathrm{n}-8\left(\mathrm{NO}_{2}\right) \mathrm{N}_{2} \mathrm{CnH}_{2} \mathrm{n}-9$ (OH) (COOH), produced by condensing a nitrodiazo body with an ortho-oxycarbonic acid; characterized by great fastness on chrome and nickel mordants.

485,504-April 15, 1890. R. GNEHM. Red dye
Produced by the action of succinic acid upon dimethyl-mets-amidophenol, heated together with chloride of aine up to $190^{\circ} \mathrm{C}$., the temperature not to exceed 210°. It dyes a brilliant red with yellow fluorescence on wool, silk, and mordanted cotton.

425,525-April 25, 1890. J. SCHMID. Orthonitroparadiamido-diphenyl.
Produced by nitrating a sulphuric acid solution of benzidine sulphate and separating the nitro product. It is available for the production of a series of new coloring matters.
485,885-April 15, 1890. M. KAHN. Process of making azo dyes.
Process of producing violet to blue-black azo dyes for wool consists in combining the diazo compounds of the sulpho-acids of aniline or its specified equiyalents with alpha-naphthylamine, again aco thus obtained and combining therewith phenyl alpha-naphthylamine or a 426,345-Ap7il 22, 1890
A. WEINBERG. Red dye

Produced by combining benzidine with beta-naphthol gamma disulpho-acid (No. 331,059), the reaction taking place only between one equivalent of the tetrazo a fiery red and wool and silk in an acidulated bath bright scarlet shades.
427,564-May 18, 1890. R. GNEHM AND J. SCHMID. Carbonic-acid compound of meta-amidophenol.
Obtained by treating meta-amidophenol in presence of alkalis or alkaline earths with carbonic acid at a high temperature; and used for the production of coloring matters.
427,565-May 18, 1890. R. GNEHM AND J. SCHM1D. Carbonic-acid compound of dimethyl meta-amidophenol.
Obtained by treating dimethyl meta-amidophenolate of soda with compressed dry carbonic anhydride at 120° to $140^{\circ} \mathrm{C}$. It crystallizes in colorless needles, m p. 145° C., under decomposition, and is used for the production of coloring matters.
428,530-May 20, 1890. C. SCHRAUBE. Rosinduline monosulpho-acid.
A red crystaline powder, $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{SO}_{3} \mathrm{H}$, obtained by sulphonation of rosinduline. It is purified by suspending in water, neutralizing with cold dilute caustic alkali, boiling and adding additional caustic alkali, and converting the precipitate by a mineral acid into the pure monosulpho acid.
428,629-May 27, 1890. W. PFITZINGER. Substantive yellow dye.
Process consists in combining the diazo compounds of the thio derivatives, or the sulpho-acids of the thio derivatives, of paratoluidine, metaxylidine, and pseudo cumidine with the thio derivatives of paratoluidine, metaxylidine, and pseudo cnmidine, or their sulpho-acids.
429,850-June 9, 1890. G. KOERNER. Red dye.
Produced by the combination of two molecules of napthionic acid with one molecule of the tetrazo derivative obtained by the action of nitrous acid on orthometa-toluidine. It dyes nnmordanted cotton a bright red.
430,583-Junc 17, 1890. C. L. MÜLLER. Process of preparing disazo dyes.
Certain amidoazo compounds are coupled by twos by means of intermediaries, such as phosgene, and thio phosgene, or carbon bisulphide, in the presence of alkalis and alcohol; the said amidoazo bodies being paramido-benzene-azo bodies of the formula $\mathrm{NH}_{2} . \mathrm{C}_{6} \mathrm{H}_{4}: \mathrm{N}: \mathrm{N} . \mathrm{R}$, in which the second element (the residue of which is denoted by R) is a phenol, phenol-carboxylic acid, or phenolsulphonic acid, or an amido-sulphonic acid of the aromatic series, capable of combining with diazo compounds and forming azo bodies.
430,584—June 17, 1890. C. L. MÜLLER. Red to brown dye.
A pink to orange-brown substantive dycstuff, a diazo derivative of symmetri cal diamido-diphenyl-urea. obtained by coupling together two molecules of paramido-benzenc azo-naphthionic acid by the aid of one molecule of phosgene. 450,585-June 17, 1890. C. L. MÜLLER. Iellow dye.
A yellow substantive dyestuff, a diazo derivative of symmetrical diamidodiphenylurea, obtained by coupling together two molecnles of paramido-benzene
aalicylic acid by the aid of phosgene.
430,975-June 24, 1890. C. SCHRAUBE. Red dye.
Disulpho-acid of rosinduline, of the formula $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{~N}_{3}\left(\mathrm{SO}_{3} \mathrm{H}\right)_{2}$, produced by the action of fuming sulphuric acidor similar body, as monochlorhydrine sulphuric acid, on rosindaline, or upon its monosulpho acid. It dyes animal fiber in an acid'bath a crimson tint.

431,297-July 1, 1890. J. WALTER. Azo color.
The process consists in adding sodium nitrite to a heated aqueous solution of aniline and muriatic acid, pouring the resulting solution into an alkaline solution of salicylic acid, precipitating with acid, and filtering, dissolving the dried product in sulphuric acid, and then slowly adding a mixture of nitric acid and sulphuric acid, pouring into water, and filtering; producing yellow to brown colors.

491,404-July 1, 1890. C. SCHRAUBE. Rosinduline sulpho-acid.
Produced by increasiag the action of fuming sulphuric acid, or similar body, upon the disulpho-acid of rosinduline, No. 430,975 , or upon the mono-sulpho acid, or on rosinduline itself. It dyes animal fiber in the acid bath a bright red color.
431,541—July 1, 1890. T. REISSIG. Blue dye.
Produced by the condensation of alpha-naphthylamine with the mononitroso compound of diethyl-meta-amidophone.
432,989—July 29, 1890. C. DUISBERG. Blue dye.
Produced by the action of the tetrazo compound of the benzidine sulphone disulpho-acid-which is manufactured by the sulphuration of benzidine sulphate danted cotton in an alkaline bath, and wool and silk in a neutral bath, indigo blue.

434,493-August 19, 1890. A. WEINBERG. Blue dye.
A disulphonated tertiary dibenzyl derivative of thionine, produced from the methyl and ethyl benzyl-paraphenylene-diamine-sulphonic acids. It dyes animal fiber in an acid bath a greenish blue.

437,989-October 7, 1890. A. HERRMANN. Greenish-blue dye.
The sulphonic acid of methylated and ethylated meta-amidotetralkyldiamidotriphenyl carbinol, easily soluble in water. The methylated and ethylated leuco bases corresponding to the sulphonated color are ohtained by treatment of meta-amidotetralkyldiamidotriphenyl methane with methyl or ethyl halogens.

438,053-October 7, 1890. H. BOEDEKER. Violet dye.
Produced by the action of sulphuric acid upon ortho or para ditolyl-meta-amido-phenolphthaloine (ditolylrhodamine), which is obtained by the action of fluoresceine-chloride upon ortho or para toluidine.
438,438-October 14, 1890. R. LAUCH AND C. KREKELER. Manufacture of dye-
stuffs. stuffs.
Produced by the combination of the diazo compound of amidosalicylic acid with alpha-naphthylamine, again diazotizing the amidoazo compound obtained and recombining the diazo compound obtained with alpha-naphthol-snlpho-acid. It prints cotton violet and dyes wool blue black in a neutral or weak acid bath, dyeing a blue black with chromium mordants.
40,281 -November 11, 1890. C. RLS. Yellow dye.
Produced by treating the diazo compound of polychromine (sulpho-acid of thieparatoluidine, also called "primuline") with ammonia. It dyes cotton without a mordant and can be diazotized.
440,288-November 11, 1890. J. WALTER. Brown dye.
Produced by combination of metadiamines with two diazo compounds, of which one is diazotized polychromine (the sulpho-acid of thioparatoluidine), and the other, one of the diazo componnds of naphthylamine or amidoazobenzole or amidoazo-toluol sulpho-acid.
440,359-November 11, 1890. C. A. MAYER. Blue dyc.
Derived from nitroso-dimethylaniline and gallonaphthylamide. Violet coloring matters are produced by the action of nitroso derivatives of the tertiary amines on the products of condensation of tannin or catechine with the primary amines. Further products are obtained by reduction with alkaline bisulphites. 440,586-November 11, 1890. R. BOHN. Blue dye.
Produced by the action of nitroso derivatives of tertiary aromatic bases on a symmetrical dihydroxybenzoic acid $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COOOH}$. OH. OH. (1.3.5) which is obtained by melting metadisulpho-benzoic acid with an excess of caustic potash. Its alcoholic solution is most characteristic, being reddish-violet and marked by a striking reddish fluorescence.
40,639-November 18, 1890. R. LAUCH AND M. KAHN. Blue-black azo dye.
Violet to blue-black dyestuffs produced by combining a tetrazo componnd (those of benzidene, toluidine, diamido-diphenol ether, diamido-stilbene, naph-thylene-diamine, their sulphones and their sulphonic acids, with the exception of benzidine and toluidine disulphonic acids) with one or two molecules of alpha-naphthylamine (except the benzidine and toluidine disulphonic acids, which combine with two molecules of alpha-naphthylamine), diazotizing the resulting mono and diamido tetrazo compounds, and combining the new tetrazo compounds with naphthols (dioxynaphthalines) and their sulphonic acids.
440,953-November 18, 1890. W. MAJERT. Blue dyc.
A new dioxynaphthaline, m. p. between 248° aud $25^{\circ} \mathrm{C}$., prepared by melting alpha-naphthyldisulpho-acid or alpha-naphthaline alpha-sulpho-acid with caustic soda or potash, dissolving the molten inass in water, and separating the dioxynaphthaline by means of acid. Mono or bisulpho acids of dioxynaphthaline are obtained by treating the same with concentrated sulphuric acid, fumby sulphuric acid, or sulphuric chlorhydrin. A blue coloring matter is obtained by treating a tetrazo compound, as tetrazo-diphenyl chloride, in the presence of sodium carbonate with the said dioxy-naphthaline, or its mono or bisulpho
acids.

441,940-Dccember 2, 1890. C. DREYFUS. Red dyc.
Produced by combining diazotized dehydro-thio-paratoluidine sulphonic acia with beta-naphthol and then converting the combination into an ammonia sal.
442,369-December 9, 1890. L. GANS. Blue-black dyc.
Produced by the action of amidonaphtholmonosulphonic acid upon tetrazodiphenyl or homologous compounds.
442,680-Dccember 16, 1890. M. HOFFMANN AND A. WEINBERG. Blue dyc.
Produced by the action of the secondary bases of the series of fat bodies, as of the oxazines (dimethyle or diethyle coloring matters belonging to the class forming new bases which are oxidized into greenish-blue coloring matters. 443,402-December 29, 1890. M. V. NENCKI. Gallacetophenonc.
See Group XVIII, Fine Chemicals, Ketones.

445,408-December 25, 1890. C. SCHRAUBE. Iellow-red dye.
Produced by treating rosinduline sulpho-acid (No. 431,404) with dilute sulphuric acid at from 175° to $180^{\circ} \mathrm{C}$. The acid is diluted so as to boil at the desired temperature.
444,229-January 6, 1891. R. M. DONOVAN. Compound for coloring broom corn. Consists of green aniline, hurnt alum, water, and sulphuric acid.
444,588-January 13, 1891. J. MOHLER AND C. A. MAYER. Blue dye.
Produced by sulpho-conjugating the new prodncts resnlting from the action of the primary aromatic amines, at from 100° to $200^{\circ} \mathrm{C}$., on the dyes obtained by the action of the nitroso derivatives of the tertiary aromatic amines on the condensation products of aniline and its homologues
444,679-January 13, 1891. M. ULRICH. Dioxynaphthaline-mono-sulphonic acid.
The dioxynaphthaline-mono-sulphonic acid s, obtained by melting alpha-naphthol-凤lpha-disulphonic 凤cid S (No. 333,03i) with caustic alkali. The acid or its salts gives, with diazobenzene, an azo dyestufi similar in sliade to acid
magenta, and with ortho-tetrazo-ditolyl or tetrazo-diphenyl ethers, direct dyemagenta, and with ortho-tetrazo-ditolyl or
445,684-February s, 1891. F. BENDER. Pink dyc.
Produced by treating dimethyl or diethyl meta-amido-phcnol with formaldehyde in order to produce tetramethyl or tetraethyl diamidodioxydiphenylmethane, treating the latter with dehydrating agents to produce tetramethyl or tetraethyl diamidodiphenylmethane oxide, and oxidizing the latter.
446,009-February 10, 1891. W. PFITZINGER. Yellow dye.
Prodnced by treating the diazo compound of thioparatoluidine sulpho-acid with the sulpho-acid of the same thio derivative of the paratoluidine.

446,892-February 24, 1891. R. E. SCHMIDT. Alizarine derivativc.

"Alizarine cyanine" (pentaoxyanthraquinone) is produced hy oxidizing alizarine hordeaux (tetraoxyanthraquinone) in sulphnric acid solution with oxidizing agents, such as manganese or arsenic acid, boiling, filtering, and washing,
dissolving the precipitate in hot diluted alkali, filtering and precipitating with acid.
446,899—February 24, 1891. R. E. SCHMIDT. Alizarine derivative.
"Alazarine bordeaux", (tetraoxyanthraquinone), is produced by oxidizing alizarine with large quantities of fuming sulphuric acid of a high precentage of
anhydride at a low temperature. It crystallizes from glacial acetic acid or anhydride at a low temperature. It crystallizes from glacial acetic acid or $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{6}$.
447,189-Fcbruary 94, 1891. P. JULIUS. Red dye.
A substantiye red dyestuff, the sodium salt of diamido-diphenylene ketoxime diazo-naphthionic acid, produced from a new ketoxime base resnlting from the action of hydroxylamine or hydroxylamine sulpho-acids upon the diamidodiphenylene ketone.

447,soz-March s, 1891. C. DUISBERG. Violet dyc.

A direct-dycing coloring matter derived from the action of one molecule of tertrazodiphenyldialkyl ether, first, on one molecule of alpha-naphthylamine mono-sulpho acid, and then, on one molecule of alpha-naphthol monosulpho acid.
447,30s-March 3, 1891. C. DUISBERG. Orange dye.
A suhstantive reddish-orange coloring matter of the formula $\mathrm{C}_{29} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{SO}_{6} \mathrm{Na}_{21}$ produced by combining one molecule of tetrazo-diphenyl with one molecule of salicylic acid, and combining the intermediate product with one molecnle of naphthylamine monosulpho-acid.

449,520-March 31, 1891. M. CERESOLE. Benzo-rhodamine.

A red dyestuff resulting from the condensation of one molecule of benzotrichloride with two moleculesof alkylized meta-amidophenol. It dyes in general similarly to the tetramethyl and ethyl rhodamines.
449,551-Mrarch 31, 1891. E. MENTHA. Dihydroxynaphthalene.
"2.3-dihydroxynaphthalene," m.p. 160° to $161^{\circ} \mathrm{C}$., yielding an intensely blue coloration with ferric chloride solution, may be produced by melting dinydroxynapthalene monosulpho acid R with twice its weight of a canstic alkal at 300
to $320^{\circ} \mathrm{C}$., or by treating the said monosulpho acid with a dilute mineral acid. to $320^{\circ} \mathrm{C}$., or by treating the said monosulpho acid with a dilute mineral acid.
It is readily soluble in hot water, alcohol, ether, and fusel oil, slightly solvble It is readily soluble in hot water, alcohol, eth
in cold water, henzene, and petroleum ether.
449,629-March \$1, 1891. J. SCHMID. Black dye.
Derived from monoalkylized derivatives of heta-naphthylamine and a diazo compound of the formnla $\mathrm{C}_{10} \mathrm{H}_{5}\left(\mathrm{SO} \mathrm{Na}_{3} \mathrm{Na}\right)_{2}(a)=\mathrm{N}-\mathrm{N}-\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}=\mathrm{NCl}$ (a). It dyes

450,087-Aprit 7, 1891. H. REISENEGGER. Black dye.

A quinoline compound, soluble in soda lye with violet-red color, produced from amidoflavopurpurine or amidoanthrap
451,502-May 5, 1891. J. MOHLER AND C. A. MAYER. Blue dye.
A sulpho acid derived from tannin, aniline, and nitroso-dimethylaniline: produced by, combining the coloring matter of No. 420,164 with ordinary sulphuric acid (containing 90 to 95 per cent of monohydrated acid, but no and at $80^{\circ} \mathrm{C}$. It comhines with alkalis, forming salts readily soluhle in warm or cold water.
452,197-May 12, 1891. J. SCHMID. Orange-yellow dye.
Produced by combining a diazo compound of salicylic acid, or its homologues, with resorcin. The tin
iron mordants brown.
452,210-May 12, 1891. R. BOHN. Process of dyeing with gallacetophenone.
Gallacetophenone imparts fast colors to animal and vegetahle fiber when combined with metallic oxides or mordants within or upon the fibrous material. 45s,477-June 2, 1891. A. HERRMANN. Blue-green dye.
The sulphonic acid of meta chlortetralkyldiamidotriphenylcarbinol, produced by converting metadiazotetralkyldiamidotriphenylmethanchloride into the corresponding metachlor leuco-base by treatment with copper or cuprous chonic acid thus obtained by means of peroxide of lead.
454,535-June 2s, 1891. A. COBENZL. Gray dye.
Produced by the action of nitroso-diethylaniline hydrochlorate upon the hetanaphtholsulphonic acid of Schäffer. Suited for printing and dyeing woolen fabrics in blue-gray shades.

454,645-June 23, 1891. L. GANS. Amido-naphthol-monosulphonic acid.
Gamma-amido-naphthol-monosulphonic acid, produced by subjecting the beta-naphthylamine-gamma-disnlphonic acid to the astion of a caustic alkali at $210^{\circ} \mathrm{C}$. Azo coloring matters are produced by combining the diazo derivatives of aromatic monamines or diamines with the amido-naphthol-monasulphonic acid.
454,840-June 30,1891 . O. BORGMANN. Orange dye.
Produced by alkalizing the orange-yellow dyestuffs ohtained hy the combination of \mathfrak{a} tetrazodiphenyl or tetrazoditolyl with heta-naphthylamine disulphoacid R and phenol, by treating the same with a halogen alkyl. It withstands the action of alkalis.
455,442-July 7, 1891. J. SCHMID. Betadelta-amidonaphthol.
Ohtained by melting the sodium salt of heta-naphthylamine-delta-monosulpho acid with cavstic alkalis at from 260° to $300^{\circ} \mathrm{C}$. It is soluble in water, more so in henzene, casily soluhle in ether and alcohol, m. p. $200^{\circ} \mathrm{C}$.; nsed for the production of coloring matters.
455,952-July 14, 1891. C. RIS. Brown dyestuff.
Produced by condensation of paranitro-toluol sulpho-acid with paraphenylendiamine or paratoluylendiamine in a solntion of caustic alkalis; soluble in water and alcohol.
456,081-July 14, 1891. M. CERESOLE. Red dyestuff.
A dye base, symmetrical diethyl-rhodamine: produced by the condensation of one molecule of phthalic anhydride with two molecules of monoethylmetaamidophenol.
456,627-July 28, 1891. C. A. MARTIUS. Process of making azo dyes.
An alpha-naphthol disulphonic acid is, first, formed by treating naphthalene phonic acids so formed to alpha-amido naphthalene disnlohonic acid and converting it into the corresponding compound alpha-naphthol disnlphonic acid; and, second, the disulphonic acid so formed is added to a diazo derivative of an amido compound, such as xylidine, cumidine, alpha-naphthylamine, etc. It forms red, brown, violet, or bluish-violet coloring matters.
456,628-July 28, 1891. C. A. MARTIUS. Process of making azo dyes.
An alpha-naphthol disulphonic acid, formed as in No. 456,627, is added to a solution of a tetrazo derivative of an amido compound, such as diamido-stilbene, benzidine, etc., in proportions to form a compound of one molecule of the tetrazo compound combined with one of the alpha-naphthol disulphonic acid; then to this compound there is added a portion of naphthol or naphthol-sulphonic acid, bluish-violet coloring matters.
456,897-July 28, 1891. C. A. MARTIUS. Azo dye.
Process consists in adding to the alpha-naphthol disulphonic acid formed as per No. 456,627 , a tetrazo derivative of diphenitidine in proportions to form a compound of one molecule of tetrazo-diphenitidine with one of the alphanaphthol disulphonic acid, then adding to this compound another portion of the
alpha-naphthol disulphonic acid, and finally precipitating the dyestuff. There alpha-naphthol disulphonic acid, and finally precipitating the dyestuff. There are formed red, brown, violet, blue, and bluish-black coloring matters.
458,281, August 25, 1891. B. HOMOLKA. Induline dye.
A blue coloring matter of the induline series, a zinc chloride double salt, produced by heating a mixtnre of soluhle indnlines together with paraphenylenediamine and hydrochlorate of paraphenyldiamine to 150° to $180^{\circ} \mathrm{C}$., and after filtering precipitating with common salt and zine chloride.
458,288-August 25, 1891. H. KUZ̆EL. (Reissue: 11,2s1-April 5, 1892.) Azo dye.
A brown powder adapted for dyeing wool in greatly differing shades, ranging from bluish red to deep black, depending upon the use of acids and metallic mordants, derived from a new dioxynaphthalene disnlphonic acid (the subject of a companion application) and diazo bodies.
458,284-August 25, 1891. H. KUZ̆EL. Azo dye.
Produced by the action of diazo bodies upon naphthol trisulphonic acidmonamide (which is formed by adding a solution of caustic ammonia to the naphthosulphon disnlphonic acid obtained from napthalene trisnlphonic acid, prepared by sulphonation of napthalene, by nitration and reduction, by treatment of the novel naphthylamine trisulphonic acid with nitrous acid, and subse-
quent boiling with acidulated water). It dyes wool a pronounced bluish-red quent
shade.
458,285-August 25, 1891. H. KUŽEL. Amido-naphthol monosulphonic acid.
Produced by melting the salts of beta-naphthylamine disulphonic acid with caustic alkalis. A crystalline powder of compounds it furnishes, in alkaline alcohol. Combined with diazo or tetra
or acetic solution, azo coloring matters.
458,286-August 25, 1891. H. KUZ̆EL. Amido-axynaphthaline disulphonic acid.
Produced by heating alpha-naphthylamine trisulphonic acid with caustic alkalis, and crystalizing in long pearly needles. it is easily converted by nitrons acid into a diazo compound of and tetrazo compounds, in alkaline or acetic sclutions, to form azo coloring matters.
462,414-November 3, 1891. C. RUDOLPH. Brown dye.
A brown basic dyestuff derived from paradiazoacetanilid chloride, meta-phenylene-diamine, and concentrated muriatic acid; easily soluble in water; especially suited for dyeing jute and leather.
462,415-November 3, 1891. C. RUDOLPH. Blue-blaek azo dye.
Produced by comhining tetrazo diphenyl or ditolyl chloride with one molecnle of amido-oxy-alpha-naphthalene disulpho-acid and with one molecule of alpha or beta naphthalene. It is soluhle in water with a red-violet color and dissolves in concentrated sulphuric acid with a blue color.
462,8.2-November 10, 1891. G. SCHULTZ. Blue aso dye.
Blue direct-dyeing dyestuffs, produced by comhining one molecule of a tetrazo salt, toluidine, or anisidine, with one molecule of alpha-naphthylamine, again diazotizing the compound and combining the product with two molecules of an alpha-naphthol disulpho acid.
463,899-November 24, 1891. A. HERRMANN. Blue dye.
Produced by oxidizing the snlphonic acids of metaoxy, meta-amido, or alkylized meta-amido tetralkyl-diamidotriphenyl carbinols with salts of iron or chromic acid.
464,135-December 1, 1891. M. HOFFMANN. Blue dye.
Produced by mixing solutions of amidonaphthol-disulpho-acid H (formed by heating diamido-naphthalene-alpha-disulpho-acid with diluted mineral acids)
and of the tetrazo derivatives of paradiamines and sufficient alkali to keep the solution alkaline. Its blue aqueous solution is not changed by addition of carbonate of soda, and it dyes unmordanted cotton.
464,588-December 8, 1891. A. WEINBERG. Violet aye.
Tetralkyl disulphobenzyldiamidotriphenylcarbinol: produced by mixing solutions of the substituted diamidodiphenylmethanes with solutions of aromatic monamines and oxidizing substances, to give simultaneons oxidation.
464,566-December 8, 1891. M. HOFFMANN. Violet dye.
"Naphthalene-violet:" prodnced by the action of tetrazonaphthalene betadisulphonic acid upon alpha-naphthylamine having the constitution $\mathrm{C}_{10} \mathrm{H}_{4}$ $\left(\mathrm{SO}_{3} \mathrm{Na}\right)_{2}=\left[\mathrm{N}=\mathrm{N}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{2}(a)\right]_{2}$. It is transformed by nitrous acid into a tetrazo compound which reacts upon phenols or amines, forming fast colors.
464.775-December 8, 1891. R. LAUCH AND C. KREKELER. Blue-green azo dye.
Produced by combining one molecular proportion of the diazo compound of amidonaphthalene azo-salicylic acid with one molecular proportion of dihydroxynaphthalene monosulphonic acid in the presence of sodinm acetate.

465,116-December 15, 1891. C. RUDOLPH. Brown azo dye.
Produced by first combining diazotized toluylenediamine sulpho-acid 1:2:4:6 $\left(\mathrm{CH}_{3}: \mathrm{NH}_{n}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{NH}_{3}\right)$ and two molecules of metaphenylenediamine, and then treating this intermediate compound with diazotized alpha or beta naphthylamine sulpho-acid.
466,202-December 29, 1891. M. ULRICH. Black azo dye.
Produced by combining the diazo compound of sulphanilic acid with alphanaphthylamine, further diazotizing the amidoazo product thus obtained, and cansing the diazo derivative to act upon the sodium salt of the dihydroxynaphthalene monosulphonic acid S of No. 444,679. It dyes unmordanted wool fast bluish black to black, and forms lakes with chrominm salts.
466,826-January 12, 1892. E. HEPP. Blue-red dye.
Trisulpho-acid of "phenyl-rosinduline," $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{3}\left(\mathrm{SO}_{3} \mathrm{H}\right)_{3}$, obtained by treating phenyl-rosinduline with fuming sulphuric acid.
466,841-January 12, 1892. M. ULRICH. Red azo dye.
Produced by combining molecular proportions of toluidine sulphoacid after diazotation, and of the dihydroxynaphthalene monosulphonic acid of No. 444,679. It dyes wool in acid baths bluish-red shades.

466,852-January 12, 1892. E. HEPP. Disulpho-acid of phenyl-rosinduline

Beta-disulpho-acid of phenyl-rosinduline, $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{~N}_{3}\left(\mathrm{SO}_{3} \mathrm{~N}_{2}\right)$, obtained by treating phenyl-rosinduline with concentrated sulphiric acid at $170^{\circ} \mathrm{C}$. Its potassing and sodinm salts dye wool red-bluish shades.

467,162-January 19, 1892: C. DUISBERG. Tetrazo dye.

Produced by combining with one molecular proportion of dianisidine after its diazotation one molecular proportion of beta-naphthol disulpho-acid R, and then one molecular proportion of alpha-naphthol alpha-monosulpho acid (Neville-Winther). It dyes unmordanted cotton in greenish-blue shades.
468,049-February 2, 1892. C. RUDOLPH. Azo dye.
Produced by treating tetrazodiphenyl or ditolyl with one molecule of amidooxyalphanaphthalenedisulpho acid and with one molecule of metaoxydiphenylamine or metaoxytolylphenylamine. It dyes unmordanted cotton blackish violet.
468,142-February 2, 1892. M. ULRICH. Blue-red azo dye.
Produced by acting with the diazo compound of paramido-benzol-sulphonic acid on the dihydrooxynaphthalene-mono-sulpho-acid of No. 444,679. It dyes unmordanted wool in sulphnric acid baths clear red shades; wool mordanted with chromium salts, dull violet.
468,589-February 9, 1892. O. BORGMANN. Red dye.
Produced by combining a diazo componnd of tolidine with betanaphthylamine disulpho acid R, adding to the resulting intermediate body naphthionate of soda, allowing the mixture to stand until the reaction is complete, neutralizing with an alkali, and salting out the dyestuff.
469,329-February 23, 1892. A. WEINBERG. Blue dye.
Produced by forming the hydrochlorate of paranitrosomonomethyltolnidine, from the nitrosomine of monomethyl (or ethyl) orthotoluidine, then redncing with ainc dust, neutralizing, adding sodium thiosulphate and potassium bichromate, treating with monomethylorthotolnidine hydrochlorate, and oxidiaing.
471,638-March 29, 1892. B. HOMOLKA. Process of making rosaniline dyes.
Diamidodiphenylmethan bodies are treated with oxidizing agents in the prosence of hydrochlorates of aromatic amines.
471,659-March 29, 1892. E. VONGERICHTEN. Process of making diamidodiphenylmethan bases.
Hydrochlorates of aromatic amines are cansed to act upon the anhydroformaldehyde compounds of aromatic ammes.
472,121-April 5, 1892. M. HOFFNIANN. (Reissue: 11,267-September 6, 1892.) Manufacture of yellow dyes.
A derivative of the diamido beta-naphthalene disulpho-acid, which is prepared by double nitration and reduction of the naphthalene beta-disulpho-acid, F No. 464,566 , and obtained from the sad diamido acid by combining its tetrazo derivative with phenol or cresol, and treating the product with alkylated halogens. 473,453-April 26, 1892. M. EPTING. Red dye.
Prodnced by sulphonization of triamido-triortho-tolyl carbinol, in the form of its sodinm salt; a green mass having metallic luster, of easy solubility in water, but insoluble in absolute alcohol.
479,487-April 26, 1892. H. KUZEL. Process of making naphthosulfondisulphonic acid.
Produced by nitrating a specified naphthalintrisulphonic acid (German patent No. 38,281), reducing the nitro componnd, converting the naphthylaminetrisulphonic acid thns formed in to the diazo compound, and boiling with acidulated water until the development of nitrogen ceases. The neutral disodium salt crystallizes in colorless needles.
475,616-May 24, 1899. R. SENGER. Induline dye.
Trioleate of induline, an intensely black liquid of the consistency of castor oil at ordinary temperature: produced by mixing one molecnle of induline with three molecules of oleic acid (or stearic or palmitic acid) and heating to 100° to $120^{\circ} \mathrm{C}$. It is insolnble in water, but easily soluble in alcohol and in benzene.

476,385-June 7, 1892. M. ULRICH. (Reissue: 11,808-February 21, 1899.) Violet azo dye.
Produced by combining the diazo componnd of paramido-phenol with the sodinm salt of dihydroxynaphthalene monosnlpho-acid S of No. 444,679 ; soluble in water. It dyes wool in acid baths a clear violet.
476,356-June 7, 1892. M. ULRICH. Black-azo dye.
A coloring matter, dyeing unmordanted wool a greenish-black: produced by combining diazotized beta-naphthylamine monosulpho-acid with alpha-naphthylamine, diazotizing the formed amido-naphthalene azonaphthalene sulphoacid, and coupling the obtained diazo compound with the sodinm salt of the dihydroxynaphthalene monosnlpho-acid S.
476,887-June 7, 1892. M. ULRICH AND R. LAUCH. Blue dye.
A direct-dyeing coloring matter: produced by combining molecular proportions of tetrazo-diphenol-dimethylether and alpha-naphthylamine, diazotizing and combining the resulting tetrazochloride with two molecular proportions of the sodium salt of the dihydroxynaphthalene monosulpho acid S.
476,371-June7, 1892. C. DUTSBERG. Tetrazo blue dye.
A direct-dyeing tetrazo dyestuff: produced by combining one molecular proportion of the tetrazo compound of dianisidine with one molecular proportion of beta-naphtholdisulpho acid R and then with one molecular proportion of alphanaphtholalphamonosulpho acid (Cleve's).
476,898-June 7, 1892. R. LAUCH. Dyestuff.
A coloring matter, dyeing unmordanted cotton in neutral or alkaline baths a greenish-black or dark-gray: produced by combining molecular proportions of tetrazo-diphenyl, salicylic acid, and alphanaphthylamine, sulphonating the
product, diazotizing, and then further combining with one molecular proporproduct, diazotizing, and then further combining with one molecul
tion of the sodium salt of alpha-naphthol-alpha-monosulphonie acid.
476,413-June 7, 1892. F. RUNKEL. Triphenylmethane dye.
Prodnced by combining, in the presence of concentrated sulphuric acid, equimolecular proportions of tetramethyldiamidobenzhydrol and alpha-hydroxynaphthionic acid, removing the uncombined alpha-hydroxynaphthionic of pure blne.
476,418-June 7, 1892. R. E. SCHMIDT. Alizarine derivative.
A coloring matter, dyeing wool mordanted with chromium salts in greenishblue shades: produced by oxidizing the alizarine bordeanx of No. 446,893 with manganese in concentrated*sulphuric-acid solntion, at not exceeding $25^{\circ} \mathrm{C}$., and acid solution.
476,419-June 7, 1892. R. E. SCHMIDT. Alizarine dye.
An alizarine dye, dyeing wool mordanted with alumina salts clear and pure blue shades, with chrominm salts greenish-blue shades: produced by the action in sulphuric-acid solution with manganese at low temperatures.
476,420-June 7, 1892. R. E. SCHMIDT. Alizarine derivative.
An alizarine dyestuff containing nitrogen, dyeing wool mordanted with chromium salts similar to alizarine blue: produced hy treating alizarine bordeanx with ammonia and precipitating the color with acids.
476,491-June 7, 1892. R. E. SCHMIDT. Alizarine dye.
An alizarine dye, giving a clear bluish green on wool mordanted with chromium salts: prodnced by oxidizing anzarine bordeanx in sulphuric-acid solution with manganese, trea
478,005-June 28, 1892. R. GNEHM AND J. SCHMID. Violet dye.
A greenish glittering crystalline powder of an intense metallic luster, dyeing mordanted wool and cotton violet to blne shades: produced by treating a mixture of tetra alkylized diamido-benzo-phenone, sulphuric acid, and pyrogallol with a condensing agent, diluting with water, neutralizing with soda-salt, dissolving in dilute acetic acid, and precipitating with common salt.
479,515-July 26, 1892. R. LAUCH. Olive dye.
A grayish-black powder, dyeing unmordanted cotton olive in alkalinesoap baths: produced by reacting with one molecnle of tetrazo-diphenyl upon one molecule of salicylic acid and one molecule of alpha-napthylamine, treating said prodnct with fuming sulphuric acid, diazotizing, combining the so-formed diazo compound with one molecular proportion of the sodium salt of dihydroxynaphthalene monosulpho acid, and treating the dyestuff thus obtained with fuming sulphuric scid.
480,326-August 9, 1892. M. HOFFMANN. Disazo dye.
Prodnced by introducing one molecule of amido-naphtholdisulpho acid Hinto the solntion of one molecule of a diazo body in presence of a mineral acid; making the solntion alkaline; adding a second molecule of a diazo body; and separating the dyestuff with common salt. It dyes animal fiber an intense and fast greenish blue black.
481,591-August 30, 1892. H. N. F. SCHAEFFER. Proeess of ctyeing with alizarin. The cloth or fiber is first treated with a soluble modification of alizarine, consisting of a soluble salt of boracic acid and alizarine, and then with a mordant.
481,934-September 6, 1892. C. DUISBERG. Red dye and process of making the same
A substantive tetrazo dyestuff produced by combining one molecular proportion of the tetrazo componnd of dianisidine with molecular proportions of alphanaphthylamine alpha-monosulphonic acid (naphthionic acid).
482,106-September 6, 1892. M. ULRICH AND J. BAMMANN. Azo coloring matter.
A blne direct-dyeing coloring matter: produced by combining one molecular proportion of tetrazo-diphenyl chloride with one molecular proportion of alpha naphthylamine; diazotizing the prodnct, and combining the thus obtained hex azo compound with two molecular proportions of the sodium salt of a specitied 1.8 amido-naphthol beta-disnlpho-acid.

489,368-Seplember 27, 1892. D. A. ROSENSTIEHL. Process of making azo colors.
A nitramine is conpled with a phenol amine, or the specified derivative thereof, and the product subjected to the action of a reducing agent in an alkaline medinm.
484,521-October 18, 1892. H. KUZEL. Fellow dyesluff.
Produced by the action of di』zotized diamido sulphones upon oxycarbonic
cids.

DIGEST OF PATENTS RELATING TO CHEMICAL INDUSTRIES.

484,697-October 18, 189\%. R. BOHN. Blue dye.
Produced by combining tetraalkyldiamido-benzophenone with dibydroxynapbthalene by the aid of a condensing agent such as phosphorus oxychloride. It dyes animal or vegetable fiber, with a metallic mordant, greenish to violet
shades of blue. -
488,430-December 20, 1892. R. GNEHM AND J.SCHMID. Basic yetiow dye.
Produced by treatment of a new base-dimethyl-diamido-diortho-tolyl-methane-simultaneously with sulphur and ammonia. It dyes cotton mortinge. inge.
489,625-January 10, 1893. F. BENDER AND M. KÄMMERER. Yellow-red dye.
Bluish-red dyestuffs obtained from dialkylmetaamidophenols (such as the rhodamines of dialkylmeta-amidophenol, ete.) or their corresponding leuco compounds are transformed into coloring matters of a more yellowish-red tint by treating same with an oxidizing agent such as potassium permanganate.
490,408-January 24, 1899. A. HERRMANN. Indigo-blue dye.
An oxidation product of the sulphonic acids of meta substituted tetralkyldi-amido-triphenylcarbinols, produced by oxidizing the sulphonic acids of meta-oxy--meta-amido-, or alkylized meta-amidotetralkyldiamido-triphenyl carbinols
with salts of iron or chromic acid.
491,378-February 7, 1898. J. SCHMID AND J. MOHLER. Violet-blue induline dye.
Produced by melting a mixture of para-phenylene-diamine, hsdrocblorate of para-phenylene-diamine, and alpha-nitro-naph thylamine at from 160° to $190^{\circ} \mathrm{C}$., dissolving the melt in dilute muriatic acid, and precipitating with common salt.
491,410-February 7, 1893. T. DIEHL. Blue-black azo dye.
Derived from the tetrazo compound of para-amido-benzene-azoamido-alpha monosulpho-acid, or naphtbionic acid. 491,42R-February 7, 1893. R. GNEHM AND J. SCHMID. Brown dye.
A soluble dyestuff obtained by converting the insoluble product of meta or para-diazo-benzoic acid with Bismarck brown, with the aid of potash or soda.
499,941-March 14, 1893. H. BOEDEKER. Pink dye.
The alkali salt of a sulphonic acid, of the formula $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SO}_{2}$ alk', derived from fluorescein chloride and mesidine.
493,418-March 14, 1893. B. R. SEIFERT. Dye from alpha axyuvitic acid.
Process consists in combining alpha oxyuvitic acid with diazo componnds by the same manipulations as are nsed in the manufacture of the ortho and para azo coloring matters.
493,562-March 14, 1899. J. SCHMID AND R. PAGANINI. Monosulpho-dioxynophthoic acid.
Produced by heating the sodium salt of di-sulpho-beta-oxynaphthoic acid With caustic alkalis at irom 200° to $20^{\circ} \mathrm{C}$. and precipitating the dissolved melt
with hydrochloric acid or sulphnric acid.
493,56s-March 14, 1893. J. SCHMLD. Blachish-blue aso dye.
Produced by combining one molecular proportion of diazotized dianisidin with one molecular proportion of the sodinm salt of mono-sulpho-dioxy-naphthoic acid, combining the intermediate product with an alkaline solution of one molecular proportion of (1.4) alpha naphthol-alpha-sulphonic acid of Nevile \& Winther, and precipitating with common salt.
493,564-March 14, 1893. J. SCHMID. Gray-black tetrazo dye.
Produced by combining one molecular proportion of tetrazo-diphenyl or ditolyl with two molecular proportions of the sodium salt of mono-sulpho-dioxynaphthoid acid. It dyes cotton direct from gray to violet-black shades by the aid of sulphate of soda or common salt and soap.
498,585—March 14, 1899. R. GNEHM AND J. SCHMID. Red dye.
Produced by combining molecular proportions of diazotized mono-nitro-benzidine, salicylic acid, and alpha-naphthol-alpha-mono-sulpho acid (Nevile\& Winther), and precipitating with common salt. Dark red shades are obtained on wool mordanted with ehromium salts.
494,838-April 4, 1893. F. BENDER. Blue dye.
A greenish blue coloring matter produced by the reaction of dimethyl-meta-amido-cresol (prepared by diazotizing metaamidodimethyl orthotoluidine and decomposing the diazo-compound with water) with salts of paranitroso derivatives of aromatic amines.
496,189-April 25, 189s. R. E. SCHMIDT AND P. TUST. Alizarin dye.
Produced by oxidizing beta nitroanth rapnrpurine in sulphuric acid solution with manganese dioxide, and boiling the intermediate prodnct with water acids, sulphites, or bisulphitcs. It dyes wool mordanted with alumina salt's dull violet, mordanted with chromium salts, greenish-blue shades.
496,392-May 2, 1898. J. BAMMANN AND M. ULRICH. Tetrazo dye.
Produced by combining one molecular proportion of tetrazomono-ethoxydiphenyl chloride with two molecnlar proportions of the 1.8 -amidonaphthol-betadisulpho acid or its salts in alkaline solution. It dyes unmordanted cotton in alkaline soap bath greenish-blue, fast to alkalis.
497,092-May 9, 1899. C. RUDOLPH. Orange azo dye.
Produced by the reaction of diazotized toluylendiamin-sulpho acid with betanaphthylamine. It dyes cotton directly.
497,114-May 9, 189s. J. BRACK. Blue dye.
Produced by heating an amine of the fatty series with a gallo-cyanine; colors varying from violet to greenish blue on chrome mordanted fiber.
498,303—May 90,1893 . E. VON PORTHEIM. Glycine dye.
Produced by combining one molecule of a tetrazo compound of a diamine with one molecule of naphthylglycine, and combining the prodnct with one molecule of a suitable body, as an amine; direct dyeing; geverally soluble in water, and not readily affected by alkalis.
498,404-May 30, 1893. P. OTT. Greenish-blue dye.
Produced by combining in equal molecular proportions diazotized aniline and Clève's alphanaphthylamine beta monosulpho acid, diszotizing the formed benzene azo alpha naphthylamine beta monosulpho acid, and coupling the diazo alpha naphthylamine monosulpho acid (1:8) and paratoluidine.

498,405—May 30, 1893. P. OTT. Disazó dye.
Produced by combining equal molecular proportions of diazotized aniline and Cleve's alphanaphthylamine beta monosnlpho acid beta or delta, rediazotizing the amidoazo product, and coupling the resulting diazo compound with one molecnlar proportion of phenylalphanaphthylamine alpha monosulpho acid, obtainable from alpha naphthylamine-monosulpho acid (1:8) and aniline. It dyes wool, with or without mordants, blue shades with a reddish hue.
498,471-May 30,1893 . H. HASSENCAMP. Triphcnylmethane dye.
Produced by combining equi-molecular proportions of tetra-methyldiamidobenzhydrol and dibenzylanilin disnlpho acid, or salts thereof, and then oxidizing the resulting leuco compound. It dyes wool in a sulphnric-acid bath, easily 498,758-June 6, 1893. J. BAMMANN AND M. ULRICH.

Prodnced by combining mentive dye. with one molecular proportion of $1: 8$-amidoportion of tetrazo ortho ditolyl salt alkaline salt thereof, and with one molecular proportion of dibydroxy, or an thalene.
498,873-June 6, 1899. J. BAMMANN AND M. ULRICH. Blue tetrazo dye.
Produced by combining equi-molecular proportions of a tetrazo orthoditolyl salt with $1: 8$-amidonaphthol beta-disulpho acid and alpha-naphthol alpha mono-sulpho acid; dyeing unmordanted cotton.
498,874-June 6, 1893. J. BAMMANN AND M. ULRICH. Blue tetrazo dye.
Prodnced by combining one molecular proportion of the tetrazo chloride of orthodiphenol ether with two molecular proportions of the $1: 8$-amidonaphthol-beta-disulpho-acid or its salts in alkaline solntion; dyeing unmordanted cotton in alkaline soap bath greenish-blue shades, fast to alkalis.
498,882-IUne 6, 1893. M. HOFFMANN. Naphthylene-diamine disulpho-acid.
1.5-diamidonaphthalene-3.7-disulphonic acid, a light yellow insoluble tetrazo componnd: produced by treating the naphthalene-beta-disulphoacid with nitric acid, and acting on the dinitro compound with redncing agents. It combines with phenols or amines, forming azo coloring matters.
498,982-Iune 6, 1899. C. KREKELER AND P. KRAIS. Red dye.
Produced by combining equal molecular proportions of alpha-naphthol-alphamonosulpho acid ($0 \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}=1.5$), or its alkaline salts, and diazotized amidobenzoic acid.
499,199-June 13, 1899. J. BAMMANN AND M. ULRICH. Blue tetrazo dye.
Produced by combining equi-molecular proportions of a tetrazodidiphenyl salt with 1.8 -amidonaphthol beta disulphoacid and alphanaphthol alphamonosulpho acid, by preference in alkaline solution.
499,216-June 18, 1893. C. DUISBERG. Blue tetrazo dyc.
Produced by combining one molecular proportion of a tetrazo salt of benzidine sulphone disulpho acid with two molecular proportions of monoethylbetanaphthylamine; dyeing unmordanted cotton, wool, or silk reddish blue.
499,243-June 13, 1893. E. MEYER. Blue dye.
Produced by acting with eqnal molecular proportions of tetra-alkyldiamidobeuzhydrol on the prodncts (new blue R) derived from nitrosodialkylanilines and beta naphthol; dyeing blue shades on cotton prepared with tannic acid or the like.
499,927-June 20, 1893. P. MONNET. Anisolin, and process of making it.
A coloring matter, or dyc, having an alcoholic radical substituted for the metal of a rhodamin salt: produced by heating under pressure and above $100^{\circ} \mathrm{C}$., a mixture of an alcobolic haloid salt, a rhodamin salt, and an alcohol-as ethy ide-then diluting, distilling, adding hydrochloric acid, and precipitatic cblorsea salt. It has a strong affinity for fiber, and dyes anmordanted cotton.
500,761-July 4, 1899. A. G. GREEN AND T. A. LAWSON. Red azo dye.
Para-azoxy-ortho-tolnidin is prepared by treating a boiling solution of para-nitro-ortho-toluidin with a cold solution of sodium stannite. Substantive azo coloring matters of various shades of yellow, orange, and red are prodnced by converting para-azoxy-ortho-toluidin into its tetrazo compound, and combining the same with a phenol or amine, or their sulphonic or carboxylic acids, such as the para-sulphonic acid of alpha-naphthol, corresponding to Piria's naphthoic acid.
$500,762 — J u l y$ 4, 1893. A. G. GEORGE AND T. A. LAWSON. Red azo dye.
Produced by treating azoxytolnidin of m. p. $168^{\circ} \mathrm{C}$. with nitrons acid, combining the tetrazo compound thns obtained with one molecule of alpha-naph-thol-para-snlphonic acid and one molecule of beta-naphthol-disulphonic acid R , and precipitating the coloring matter.
500,917—July 4, 1893. I. L1FSCHÜTZ. Violet-red dye.
Produced by treating ortho-ni tro-anthraquinone with concentrated sulphric acid and heating to abont $200^{\circ} \mathrm{C}$., and subsequently treating with a canstic potash solution. It shows a characteristic absorption spectrum.
501,069-Juty 11, 1893. H. HASSENCAMP. Violet dye.
A triphenylmethane dyestuff prodnced by combining equi-molecular proportions of tetramethyldiamidobenzhydrol and ethylbenzylanilin disulpho acid or a salt thereof, oxidizing the resulting leuco componnd, and converting it into the sodium salt. It dyes wool in an acid bath violet with a bluish tinge, fast to lime and ammonia.
501,104-July 11, 1893. F. RUNKEL. Triphenylmethane dye.
Prodnced by combining equi-molecular proportions of tetramethyldiamidobenzhydrol and benzoic acid in the presence of concentrated sulphuric acid, and oxidizing the resulting leuco compound. It gives green shades, fast against fulling.
501,11S-July 11, 1893. M. ULRICH AND R. LAUCH. Blue-black tetraza dyc.
Produced by combining one molecular proportion of tetrazo-ortho-ditolyl salt with one molecular proportion of alphanaphthylamine, further diazotizing the product, and coupling the tetrazo compound thus obtained with two molecular proportions of 1.8 -dihydroxynaphthalene alphamonosulpho acid or an alkaline salt thereof. It dyes ummordanted cotton in a neutral or alkaline soap bath from greenish-blue to bluish-black shades.
501,160-July 11, 1593. W. PFITZINGER. Process of dyeing black.
It consists, first, in dyeing cotton by a coloring matter such as is obtained by combining one molecule of tetrazo diphenyl, or analogous compounds thereof, with two molecules of a mido naphthol monosulpho acid G; second, in diazotizing on the fiber; and, third, combining the resulting diazo compound with phenol.

501,295-July 11, 1893. B. R. SEIFERT. Creosote compound.
See Group XXIII, Fine Chemicals, Alcohols, and Pbenols.
$501,484-J u l y$ 11, 189s. C. MÜLLER. Fiolet dye.
A sulphonated derivative of ortho-alkyl-oxy-para-rosaniline: produced by exposing the alkyl-ethers of meta-hydroxy-phenyl-para-tolylamine, meta-hy-droxy-phenyl-ortho-tolylamine, or meta-hydroxy-phenyl-meta-xylyamine to the action of a condensing agent, such as phosphorus oxychloride or phosgene, in the presence
501,500-July 18, 1899. L. GANS AND M. HOFFMANN. Black dye.
Bluish-black coloring matters derived from tetrazo compounds of paradiamines, such as henzidine or analogons bodies, one molecule of gamma-amidonaphthol-snlpho acid, and one molecule of amidonaphtholdisulpho acid
H . They produce blue to black shades on unmordanted cotton; can be diazoH. They produce blue to black shades on unmordanted cotton; can he and secondary derivatives produced in substance or on the fiber.

502,868-August 1, 1893. R. LAUCH AND C. KREKELER. Black azo dye.

A greenish-black powder with metallic luster: produced by combining one molecnlar proportion of the diazo-compound of amidosalicylic acid with one with chromium salts deep black, and produces the same shade on cotton when printed with chrome mordants.
502,369-August 1 1893. R. LAUCH AND C. KREKELER. Reddish-blue azo dye.
A greenish-black powder with metallic luster: produced by combining equal molecular proportions of beta naptholcarbonic acid (m. p. $216^{\circ} \mathrm{C}$.) and the diazo compound of amidosalicylic acid. It produces reddish-hine shades, fast against onen printed wits.
502,60s-August 1,1898 . R. BOHN. Green-blue alizarin dye.
A dark-colored powder, soluble in alcohol, practically insoluble in ether and benzene, slightly soluble in cold water. Derived by the successive treatment of di-nitro-anthra-quinone, first with fuming and afterwards with concentrated
sulphuric acid. It yields pure green-blue shades with chrome mordanted sheep's wool fiber.

502,765-August 8, 1899. R. E. SCHMIDT. Blue alizarin dye.

A dark-colored paste produced by treating the hexaoxyanthraquinone (alizarinhexacyanin of No. 506,265) with ammonia preferably in the presence of oxygen or atmospheric air. It produces on wool mordanted with alnmina saits
blue shades, and on wool mordanted with chromium salts greenish-blue shades.
502,912-August 8, 1893. A. F. POIRRIER AND D. A. ROSENSTIEHL. Black azo dye.
A secondary diazo of alkalized meta-diamine, produced by combining the diazo derivatives of the mono and disnlphonic acids of aniline, of toluidins, of xylidins, and of isomeric naphthylamine, with naphthylamine, again diazotiztertiary meta-diamine (such as meta-phenylenediamine). It is but slightly soluhle in water, characterized by great coloring power and dyeing wool in deep colors.
503,066-August 8, 1893. H. THOMS. Salicylate of para-toiyldimethylpyrazolon.

See Group XVIII, Fine Chemicals, Ketones.

503,148-August 15, 1893. R. LAUCH. Substantive brown dye.
A grayish-black powder, soluble in ammonia with brown color, produced by combining one molecular proportion of tetrazodiphenylchloride with one molecular proportion of salycilic acid and with one molecular proportion of alpha-
naphthylamine, sulphonating the teirazo compound obtained and coupling one naphthylamine, sulphonating the terrazo compound obtained and coupling one molecular proportion of the diazo derivative of this sulpho product with one neutral or alkaline haths.
503,295-August 15, 1893. R. E. SCHMIDT. Hexaoxyanthraquinone, and process of
making it. making it.
A new hexaoxyanthraquinone, which crystallizes out of nitro-benzene or glacial acetic acid in daris needles of metallic luster: produced by oxidizing with a body containing SO 3 alizarin, quinizarin, anthrachrysone or symmetrical dihydroxybenzoic acid, alizarin bordeaux, purpurin, purpuroxanthin or purpuro bordeaux, which latter product results when purpurin or purpuroxanthan is treated with fuming sulphuric acid. It dyes wool mordanted with alumina, violet, and mordanted with chrominm salts, blue shades.
503,305-August 15, 1899. F. BENDER. Orange dye.
A basic orange coloring matter derived from acridin, which dissolves in water or spirit, and may be produced by eliminating ammonia from certain tetramido derivatives, which can be manufactured by condensing aldehydes (such as formaldehyde or benzaldehyde) with aromatic substituted metadiamins (such as meta-amidodimethylanilin).

506,265-October 10, 189s. R. E. SCHMIITT. Alizarinhexacyanin.

An alizarin dyestuff moderately soluble in alcohol and glacial acetic acid and crystallizing therefrom in dark brilliant crystals, produced by oxidizing alizarin pentacyanin or alizarin bordeaux. It produces violet shades with
aluminum mordants and blue shades with chrome mordants. aluminum mordants and blue shades with chrome mordants.
506,284-October 10, 1893. M. ULRICH AND J. BAMMANN. Blue coloring matter, and process of making same.
A coloring matter giving on unmordanted cotton from blue to greenish-blue shades (fast to the action of alkali and acid), prodnced by the reaction of one molecular proportion of the tetrazo compound of tolidin or dianisidin with two $\mathrm{H}: \mathrm{OH}=\mathrm{I}: 4: 8$) in an allaline solution. It is further diazotizable when fixed on $\mathrm{H}: \mathrm{OH}=\mathrm{I}: 4$
the fiber.
506,918-Octobcr 17, 1893. R. KOTHE, F. REINGRUBER, AND H. HASSENCAMP. Blue coloring matter:
Blue triphenyl-methane dyestnifs, dark powders with bronze luster, produced by combining equi-molecular proportions of tetramethyl (or ethyl) diamidobenzhydrol and alpha naphthylamin sulpho acid $\left(\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}=1: 2\right)$, sulphonatsulpho acid (or its salts).
509,6.3-November \&8, 1893. R. LAUCE. Brown dye.
A dark brown paste, produced by combining one molecular proportion of a diazotized amido hydroxy carbonic acid of the aromatic veries with one molecularproportion of resorcinol or orcinol, and acting on the intermediate body thus obtained with nitrous acid. It dyes unmordanted wool brown, and produces brown shades on fibers mordanted with metallic mordants, either in dyeing or printing.

509,685-November 28, 1893. M. ULRICH AND J. BAMMANN. Brown dye.
A brown substantive coloring matter, which can be diazotized when fixed on the fiber, produced by the action of one molecular proportion of tetrazodiphenyl salt yon one molecular proportion of the amido-naphthol-disulpho acid
$(\mathrm{NH}$ portion of the so-called Bismarck brown (which results from the action of nitrous acid on meta phenylene diamine).
509,989-December 5, 1898. M. MOELLER. Blue azo dye.
Blue azo dyes deriyed from 1:8-amidonaphtholmonosulphonic acid and tetrazoditolyl or tctrazodiphenolether, and which may be prepared by melting with alkali the alphanaphthylaminedisulpho acid mentioned in No. 333,934.
511,592-December 26, 1893. R. KOTHE, M. ULRICH, AND O. DRESSEL. Biue dye.
Bluish-black powder: produced by acting with one molecular proportion of a tetrazo componnd of the paradiamines on two molecular proportions of the sodinm salt of amidonaphtholdisulpho acid (NH_{2} : $\left.\mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: 0 \mathrm{H}=1: 2: 4: 8\right)$ in an alkaline solution. It produces on unmordanted cotton greenish-blue shades, fast against alkalies.
511,65s-December 26, 189s. G. SCHULTZ. Blue dye.
Blue hasic dyes, produced by the joint oxidation of alkalized derivations of para-phenylenediamin containing one free amido group with di-para-tolylmepowder easily soluble in water or alcohol, insoluble in ether.
511,708-December 26, 1899. M. MOELLER. Production of amido naphthol disulphonic acid.
A new amido-naphthol-disulphonic acid (a disulphonic acid of I:8-amido naphthol), soluble in water, vielding no diazo compound when treated with nitrite, turning dark green on the addition of ferric-chloride; produced by converting the alphanaphthylaminedisulphonic acid (of German patent No. 40,571) by furthersulphonation into alphanaphthylaminetrisulphonic acid, and melting the salts of the latter with caustic alkalis in an open or closed vessel.
511,898-January 2, 1894. H. KUŽEL. Naphthol irisulfonic-acid monamid.
The salts of naphtholtrisulphonic-acid monamid, which are soluble in water and precipitated by alcohol and acids, the latter precipitating moss like. They are produced by treating the naphthosulphton-disulphonic acid (described in German patent No. 56,058) with ammonia.
511,901-January 2, 1894. H. LAUBMANN. Tctranitro-anthrachrysone.
A yellow powder produced by suhmitting anthrachrysone to the action of nitric acid; easily soluble in the usual solvents except benzene, ligrone, and chloroform; from its pure glacial acid solution precipitated by chloroform in the form of small crystals, which decompose with detonation at 280° to $300^{\circ} \mathrm{C}$.; forming with potassium, sodium, and ammonium, salts insoluble in alcohol,' detonating on being heated.
512,116-January 2, 1894. R. KIRCHHOFF. Crimson azo dyc.
A red-brown powder produced by combining paradiazobenzene-sulpho acid with ortho anisidin, further diazotizing the amidoazo compound thus obtained, and combining the rediazotized product with beta naphthol alpha monosulpho acid.
512,167-January 2, 1894. T. DIEHL. Blue-black dye.
An amorphons black-brown powder, derived from the diazo compound of para-amido-benzene-azoamido-alphanaphthalin and paraamidonaphtholmonosulphoacid, soluble in water, sparingly soluble inalcohol. The alpha-naphthol-alpha-monosulpho acid or the naphthTonic acid may be substituted for the
para-amidonaphtholmonosulpho acid. para-amidonaphtholmonosulpho acid.
512, 4 99—January 9, 1894. M. ULRICH AND J. BAMMANN. Blue dye.
Blue substantive dyestuffs, easily soluble in water, produced by combining one molecular proportion of a paradiamin, such as dianisidin, with one molecnlar proportion of the alkaline salt of amidonaphtholdisulplio acid $\left(\mathrm{NH}_{2}\right.$:
$\mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=1: 3: 6: 8$), and coupling the so-formed intermediate product $\mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=1: 3: 6: 8$, and coupling the so-formed intermediate product
with one molecular proportion of beta naphthol or alpha naphthol monosulpho with one molecular pr
acid $\left(\mathrm{OH}: \mathrm{SO}_{3} \mathrm{H}=1: 5\right)$.
514,599-Fcbruary 18, 1894. M. HOFFMANN AND C. F. DAIMLER. Diazo darkgreen dye.
A dark-green powder, easily soluble in water with a bluish or greenish color, produced by treating one molecule of the amidonaphtholdisulphonic acid H with a solution of one molecule of a diazo body in presence of free acid, mak-
ing the solution alkaline, and adding one molecule of a tetrazo body; the soluing the solution alkaline, and adding one molecule of a tetrazo body; the solu-
tion which now contains the intermediate product is mixed with the solution tion which now contains the intermediate product is mixed with the solution
of a phenol, or of an amine, and the dyestuff is precipitated with common of a
salt.

515,100-February 20, 1894. A. WEINBERG. Basic yellow dye.

New dyes, as a yellow powder, derived from diazobenzyl-diallylamin and resorcin. HCL. (alk.) $2 \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{2}$, are produced by 515,389-February 27, 1894. A. ISRAEL AND K. PATHE. Gray dye.
A gray powder, soluble in cold water with difficulty, easily soluble in hot water with a grayish-black color: prodnced by combining one molecular proportion of diazotized delydrothiotoluidinsulpho acid with one molecular proportion on alpha naphthylamin, frither diazotizing the intermediate product naphthalene monosulpho acid S , or a salt thereof. On unmordanted cotton it produces from bluish-gray to grayish-black shades, the latter fast against alkali and acid.
515, 381 - February 27, 1894. M. ULRICF, J. BAMMANN, AND M. HERZBERG. Brown dye.
A brown substantive coloring matter produced by treating tetrazo-dipbenyl $\left(\mathrm{NH}_{3}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H} . \mathrm{OH}-\mathrm{I}: 3: 6: 8\right.$, adding to of amidonaphtholdisulpho acid, tion of metaphenylene diamine, and acting on the dyestuff tholecular proporintermediatc product) with one molccular proportion of diazos produced (an lene chloride. When fixed on cotton fiber it can be diazotized and dircetly coupled with any dyestuff component.
515, 807-March 6, 1894. J. J. BRACK. Polyazo dye.
Yellow polyazo coloring matters: produced by combining a molecule of dioxyis the intermediate product resulting from the unpounds, of which one at least acid and a molecule of the tetrazo derivative of a paradiamido base, such, for example, as benzidin, tolidin, and formaldehyde-tolidin.

516,20s-March 13, 1894. M. HOFFMANN AND C. KROHN. Gray azo dye A blackish-gray powder: produced by combining tetrazo bodies with two molecules of amidonaphtholdisulphonic acid H, brought together with nitrite in an acid solution, and the diazo compounds thus obtained are introduced into the solutions of phenols or amines in presence of alkalis. It dyes unmordanted or
516,580-March 1s, 1894. C. RUDOLPH. Brown azo dye.
A blackish powder, dying cotton in an alkaline bath in yellow-brown shades produced by reacting on diazotized toluylendiaminsulpho acid ($\mathrm{CH}_{3}: \mathrm{NH}_{2}$: $\mathrm{SO}_{3} \mathrm{H}: \mathrm{NH}_{2}=1: 2: 4: 6$) with meta-phenylendiamine and separating the dye.
$516,381-$ March 13, 1894. C. RUDOLPH. Azo dye from amidophenolsulfo-acid.

A greenish-black powder, with a slight metallic luster, dyeing unmordanted cotton in \& corinth shade: produced by adding tetrazo-ditolylchlorid to an aqueous solution of a sodium salt of amidophenolsulphouic acid and soda, next adding to the intermediate product a solution of resorcin in soda lye to form an intermediate dyestuff, treating said dyestuff with diazonaphthionic acid in an aqueous emulsion, heating the mass, and precipitating the dyestuff with com-
mon salt. mon salt
516,468-March 13, 1894. J. J. BRACK. Yellow tetrazo dye.
Yellow tetrazo coloring matters, as a compound derived from salicylic acid and the condensation product of formaldehyde with a paradiamin and a hydrochlorate of said paradiamin, which in a dry state is brownish powder readily soluble in water, dyeing unmordanted cotton, in an alkaline bath, are produced by first preparing diamido a base by the condensation of formaldehyde with a paradiamin and a hydrochlorate of said paradiamin, diazotizing, and then mixing the tetrazo derivative with a solution of a carboxylic acid in an alkali.
516,577-March 1s, 1894. E. SCHLEICHER. Basic ycllow dye.
A gold-yellow or orange dye, a diamido-phenyl-acridin, carboxylalkylester, soluble in alcohol and in water, giving red-yellow stajle solutions possessing a $\mathrm{C}_{2} \mathrm{H}_{1} \mathrm{Nellowish}$-green fluorescence, may be produced by submitting a body$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$-to esterification, as by heating with an alcohol, in the presence of hydrochloric acid, sulphuric acid, and the like; said body being obtained by
suitably treating fuorescein with ammonia. suitably treating fuorescein with ammonia.
516,584-March 18, 1894. H. A. BERNTHSEN. Rcd dye.
A dye, dialkyl-rhodamin-凤lkyl-ester, derived from dialkyl-rhodamin; as a base soluhle in benzene, ether, and warm water, and in the commercial form of hydrochloric-acid salt, a bronze-like crystalline powder soluble in water, giving a scarlet-red solution, possessing a greenish-yellow fluorescence. The introduction of the alkyl-group into the symmetrical diakyl-rhodamins can be
effected by the action of alcohols, especially methyl or ethyl, in presence of a effected by the action of alcohols, esp
mineral acid, muriatic or sulphuric.

516,585-March 19, 1894. H. A. BERNTHSEN. Red rhodamin dye.

A dye, a dialkyl-homo-rhodamin-alkyl-ester, readily soluble in water, giving red and strongly fuorescent solutions: produced by preparing a mono-alkyl-ortho-toluidin-sulpho-acid by sulphonation of mono-dilkyl-ortho-toluidin, and converting this sulpho acid into mono-alkyl-meta-amido-cresol hy melting with a caustic alkali, then obtaining therefrom diakyl-homorhodamin by heating with phthalic anhydrid and zinc chloride, and finally alkylating the dialkyl homo

516,588-March 13, 1894. M. CERESOLE. Rhodamin dye.

Coloring matters, produced by heating tetra-alkylated rhodamin to partially dealkylate the same. The dyestuff obtained by partially dealkylating the tetra-ethyl-rhodamin of the phthalic-acid series, in the form of its hydrocloric-acid salt is a dark-colored crystaline powder with a bronze-like sheen, soluble in
water and in alcohol, dyeing more yellowish shades of red than the tetra-ethylwhodamin from which it can be obtained.
516,589—March 13, 1894. M. CERESOLE. Rhodamin dye.
A dyestuff, partially dealkylated tetra-methyl-rhodamin of the succinic-acid series, in the form of its hydrochloric-acid salt, appearing as a dark-colored crysether or henzine.
516,604-March 13, 1894. R. KIRCHHOFF. Black dye.
A biack dyestuff, readily soluble in water, sparingly soluble in alcohol, insoluble in ether: produced by combining one molecular proportion of tetrazoorthoditolyl salt with one molecular proportion of the amido-oxynaphthalendisulphonic acid of No. 458,286, further diazotizing the intermediate product, and coupling the tetrazo compound thus obtained with two molecular proportions
of meta-toluylendiamin. It dyes unmordanted cotton in a saltor alkaline bath of meta-toluylendiamin. It dyes unmordanted cotton in a salt or alkaline bath a deep black.
516,752—March 20, 1894. J. J. BRACK. Diamido base.
Unsymmetric diamido-bases, suitable for the production of substantitive cotton dyes, as the base derived from formaldehyde, tolidin, and orthoamidophenol, a yellow-brown mass forming salts, the aqueous-acid solutions of which have a pronounced green fuorescence, are produced by the reaction under heat of one molecule of formaldehyde on a mixture of one molecule of a paradiamin and one molecule of the hydrochlorate of an aromatic monoamido-compound.
516,75s-March 20, 1894. J. J. BRACK. Diamido base.
Diamido-bases, applicable to the manufacture of substantive cotton dyes, as the base derived from formaldehyde, tolodin, and metaphenylendiamin, which, in a dry state, is a light brown powder, are produced by condensing, with the aid of heat, one molecule of formaldehyde with a mixture of one molecul
paradiamin and one molecule of the chlohydrate of an aromatic diamin.
516,754-March 20, 1894. J. J. BRACK. Diamido base.
Diamido-bases, applicable to the manufacture of substantive cotton dyes, are produced by condensing, with the aid of heat, one molecule of formaldehyde with a mixture of one molecule of dianisidin and one molecule of the basic hydrochlorate of an aromatic diamin. The base derived from hydrochlorate of
metaphenylendiamin is a brown powder, insoluble in water, soluble in hydrometaphenylendiamin is a brown powder, insoluble in
516,755-March 20, 1894. J. J. BRACK. Diamido base.
A diamido-base, applicable to the manufacture of substantive cotton dyes, is produced by the reaction, under heat, of one molecule of formaldehyde on a mixture of one molecule of dianisidin and one molecule of the chiorhydrate of of aniline is a resinous mass, fusing at 75° to $80^{\circ} \mathrm{C}$., and forms salts and a tetrazoderivative soluble in water.
516,756-March 20, 1894. J. J. BRACK. Red tetrazo dye.
Tetrazo coloring matters are produced by combining two molecules of a
unsymmetrical diamido-base resulting from the condensation of one molecule of formaldehyde with one molecule of the hydrochlorate of a monoamidocompound. The tetrazo coloring matter derived from alpha-naphthionic acid and an unsymmetrical diamido-base obtained by the condensation of formaldehyde with tolidin and the hydrochlorate of a monoamido compound, is a redbrown powder, readily soluble in water, dyeing unmordanted cotton a red tint.
516,75\%-Marcli 20, 1894. J. J. BRACK. Blue tetrazo dye.
Tetrazo coloring matters are produced by combining two molecules of a naph-tholsulpho-acid with one molecule of the tetrazo-derivative of the unsymmetrical diamido-base resulting from the condensation of equivalent quantities of formaldehyde, dianisidin, und the hydrochlorate of a monoamido compound, as of aniline or orthoamidophenol. The tetrazo coloring matter derived from an unsymmetrical diamido-base in a dry state is a brown powder possessing a metallic luster, and dyes unmordanted cotton a blue tint.
516,758-March 20, 1894. J. J. BRACK. Blue tetrazo dye.
Tetrazo coloring matters are produced by combining two molecules of alpha-naphthol-alpha-sulpho-acid with one molecule of the tetrazo-derivative of the diamido-base resulting from the condensation of equivalent quantities of formaldehyde, tolidin, and the hydrochlorate of an aromatic diamin. The coloring matter derived from alpha-naphthol-alpha-monosulpho-acid and the diamidobase from the condensation of formaldehyde, tolidin, and the hydrochlorate of
metaphenylenediamin is a brown powder with a metallic luster, soluble in metaphenyicnediamin is a brown powder with a metallic luster,
water, and dyes unmordanted cotton in an alkaline bath a blue tint.
516,759-March 20, 1894. J. J. BRACK. Red tetraza dye.
Tetrazo coloring matters are produced by combining two molecules of a naph-thylamin-sulphonic acid with one molecule of the tetrazo-derivative of the diamido-base resulting from the condensation of equivalent quantities of formaldehyde, a paradiamin and the hydrochlorate of an aromatic diamin. The coloring matter derived from alpha-naphthionic acid and the diamido-base
from the condensation of formaldehyde with tolidin and hydrochlorate of metafrom the condensation of formaldehyde with tolidin and hydrochlorate of
phenylendiamin is a red powder and dyes unmordanted cotton a red tint.
516,760-March 20 , 1894. J. J. BRACK. Blue tetrazo dye.
Tetrazo coloring matters are produced by combining two molecules of alpha-naphthol-sulphonic acid with one molecule of the tetrazo-derivative of the diamido-base resulting from the condensation of equivalent quantities of formaldehyde, dianisidin, and the hydrochlorate of an aromatic diamin. The coloring matter derived from alpha-naphthol-alpha-mono-sulpho acid and the chlorate of an aromatic diamin is a brown powder, dyeing unmordanted cotton chlorate of
a blue tint.

517, Ess3-Aprit S, 1894. A. WEINBERG. Proccss af dyeing by the aid of paramido-
Fast colors are produced on fiber dyed with a diazotizable dyestuff, by treating such dyeings in a first bath with free nitrous acid, and developing the color second bath containing paramidodiphenylamin
518,458-April 17, 1894. K. KREKELER AND P. KRAIS. Blue dye.
A blue coloring matter is produced by the reaction of nitrosodiethylaniline hydrochlorate and gallamic acid in the presence of solvents, as alcohol or acetic chromium salts, from blue to bluish violet.
s18,989-May 1, 1894. H. A. FRASCH. Petroleum sulfo-acid.
Sulpho acids are obtained by sulphouating the aromatic series of hydrocarbons contained in petroleum or the distillates or residuums thereof; leaching the sulphonated product with cold water; subjecting the remainder to the action of hot water; separating the matter solnhle in hot water, adding a base, such as lime, to the hot-water solution; separating the soluble and insoluhle sulpho acid by the addition of a reagent, such as hydrochloric acid. The new sulpho acid is unaffected by concentrated hydrochloric acid, decomposes into sulphur dioxide and a greeuish-black oil at a red heat, is of a greenish-black color when solid, capable of dyeing silk and wool, without mordant, a yellowish color, and its alkaline salts dye wool and silk a bright yellow.
518,990—May 1, 1894. H. A. FRASCH. Petroleum sulfo-acid.
A sulpho acid, whose calcium salt is insoluble in water, is obtained from petroleum, its derivatives or distillates, hy sulphonating the material; removing the free sulphuric acid; separating the soluble and the insoluble and oily matters from the remainder; conle, the addition of carbonate of lime; separating the insoluble salt by, for exampie, the adaion or carbonate or me, separating the insoluble salt, and rendering it soluhle by a suitable reagent, such as carbonate of sodium, caustic soda, or aner precipitating from such solution the sulpho tained in the insoluble salt, and precipitating from such solution the sulpho acid by hydrochloric or equivalent acid. It is of greenish-black color, soluble \& mordant.
518,991-May 1, 1894. H. A. FRASCH. Brown petroleum nitro dye.
A nitro body, in the form of a reddish-brown powder, is produced by nitration of petroleum, or the residuum of the distillation, or refining thereof, with nitrosulphuric acid; washing the resulting product with water, heating with water, settling; removing the solution from the sediment and treating it with a base,
such as lime, and thereby forming a soluble and an insoluble salt; and precipitating from the soluble salt solution the dyestuff by a reagent, such as sodium chloride. It is soluble in water, glycerine, and acetone, capable of dyeing wool or silk, without a mordant, a reddish brown, and its calcium salt is soluble in water.
518,992—May 1, 1894. H. A. FRASCH. Petroleum dye.
A yellow dyestuff, a suipho body of the petroleum series of hydrocarbons, is produced hy subjecting natural mineral oil, the distillates or residuums thereof, to sulphonation; washing the products of sulphonation with water, treating the products soluble in hot water with a base, such as lime; and isolating from the snipho salts thereby obtctined the dyestuff by treatment with an alkali and then with a precipitant, such as sodium chloride. It is soluble in water, glycerine, and acetone, fluorescent in solntion, and dyes wool or silk, without a mordant, in acidulated solution, a canary yellow.
519,036-May 1, 1894. H. A. FRASCH. Brown petroleum dye.
A brown dyestuff is obtained from petroleum, or the distillates or residuums thereof, by nitrating the material, washing with water, dissolving the nitro products in hot water, decanting the solution from the remainder and treating it with a base, such as lime; separating the insoluble salt formed and rendering it soluble by the addition of au alkali, such as sodium carbonate; dissolving it in water and precipitating the dyestuff from the solution by the addition of a reagent, in whose solution the dyestuff is insoluble, such as sodium chioride.

It is soluble in water, acetone, and glycerine, dyes cotton without a mordant, and its calcium salt is insoluble in water.
519,522-May 8, 1894. J. J. BRACK. Polyazo yellow dye.
A polyazo coloring matter is produced hy combining one molecule of diexydiphenylmethane with two molecules of diazo-compounds, one of said compounds constituting the intermediate product resulting from the union of one molecule of sulphanilic acid with one molecule of the tetrazo-derivative of a paradiamin, snch for instance as benzidin. It is a hrown powder soluhle in water, and soluble in sulphuric acid with a reddish-violet coleration, and dyes unmordanted cotton in an alkaline bath yellow.
519,523-May 8, 1894. J. J. BRACK. Polyazo yellowish dye.
Polyazo coloring matters, varying from red to orange, are produced by combining one molecule of dioxydiphenylmethane with two molecules of diazo-compounds, of which compounds one at least is the intermediate product resulting frem the amion of one molecule of naphthionic acid and one molecule of the tetrazo-derivative of a paradiamido hase, such as henzidin, tolidin, tolidin-formaldehyde, dianisidin, or dianisidin-formaldehyde. A brown powder is produced from dioxydiphenylmethane, tetrazoditolyl, and naphthionic acid, which dyes unmordanted cotton a yellowish-red color in an alkaline bath, solnhle in water, and in concentrated snlphoric acid with a blue coloration.
519,971—May 15, 1894. J. SCHMID AND J. BACHELUT. Blue dye.
A blue acid coloring matter is produced by heating mixtures of equal molecnlar proportions of dialkylized aniline, alkylized ortho-toluidin, and meta oxybenzaldehyde in presence of condensing agents, then sulphonating, and finally metallic luster, soluble in water with blue coloration, soluble in alcohol, but metallic luster, soluble in wate
621,095-June 5, 1894. H. A. BERNTHSEN AND P. JULIUS. Substantive blue dye.
A coloring matter which can he derived from tetrazo-ditolyl, the $2.4^{\prime} .2$-amidonaphtholsulphe acid and 1.4 -naphthol-snlpho acid. It is readily soluble in water, giving red-violet solutions; scluble in snlphuric acid, giving a blue selution and on diazotizing on the fiber, assumes a blue color.
dye
A dark powder which can be derived from tetrazo-diphenyl and the $2.4^{\prime} \cdot 2^{\prime}$ -amidonaphthol-snlpho acid. It is readily solnhle in water, giving claret-red solutions; soluble in sulphuric acid, giving a blue solution; and on diazotizing on the fiber, assumes a grayish-green color.
521,985-June 26, 1894. M. MOELLER. Blue dye.
A blue dyestuff derived from 1.8 -amidonaphtholdisulpho acid (No. 511,708) and the tetrazo compound of ortho-tolidin. It is easily soluble in water, nearly insoluble in alcohol, dissolving with indigo-hlue color in strong sulphnric acid. 521,986-June 26, 1894. M. MOELLER. Blue dye.
A blue dyestuff derived from 1.8-amidonaphtholdisnlpho acid and the tetrazo compound of diamidodiphenol ether. It is easily soluble in water, nearly insoluble in alcohol, and soluble in strong sulphuric acid, with imdigo-blue coler.
528,042-June 26, 1894. A. BLANCHON AND A. ALLEGRET. Process of printing indigo.
Textile fabries or yarns are printed with a mixture of refined or crude indige and a solution of a thickening substance in water, then passed through a reducing bath, as of hyposulphite of lime, to reduce the indigo deposited on the fabric or yarn, and the indigo is then reoxidized in the usnal manner.
Б22,897-July 10, 1894. W. HERZBERG AND O. WEBER. Blue dye.
Blue coloring matters are obtained by the condensation of orthoquinones or their sulpho acids with alkyl-para-phenylendiaminsor their sulpho acids, when heated with sulphur and fuming sulphuric acid; capable of forming with metallic mordants, lakes, which dye with fast blue tints; specially suited for dyeing and printing wool and cotton, previensly mordanted with chromium.
523,188-July 17, 1894. R. VIDAL. (Reissue: 11,659-April 5, 1898. Black dye and proeess of making same.
Greenish-black, bluish-black, and black dyestuffs, capable of dyeing without mordants, are prodnced by heating ortho or para-dioxybenzene, such as quinone, hydroquinone, toluquinone, or paracatechin in the presence of sulphur and of ammonia, or substances which will generate ammonia during the reaction. They are soluhle in alkalis and alkaline sulphites.
524,069-August 7, 1894. C. O. MULLER. Blue tetrazo dye.
A new dioxy-naphthalene mono-sulpho acid is produced by melting alpha oxy-naphthoic acid ($\mathrm{OH} . \mathrm{CO} 0 \mathrm{H} . \mathrm{SO}_{3} \mathrm{H} . \mathrm{SO}_{3} \mathrm{H}=1.2 .4 .7$) with caustic alkali at 230° to $290^{\circ} \mathrm{C}$.
Tetrazo coloring matters are produced by the combination of one molecule of the tetrazo derivative of an aromatic para-diamido compound (such as tetrazodiphenyl and its homologues, tetrazo-oxydiphenyl-alkyl ethers, tetrazo-stilbene, and tetrazo-azobenzene and its homologues) with one molecnle of the dioxynaphthalene mono-sulpho acid ($\mathrm{OH} . \mathrm{OH} . \mathrm{SO}_{3} \mathrm{H}=1.7 .4$.) ; and the subsequent combination of the intermediate product with a sulpho derivative of a naphthol compound, such as the mono-sulpho and disnlpho acids of alpha and beta naphthols, of oxy-naphthels, of amide-naphthols, and the sulpho-acids of carboxylic oxy-naphthols.
The coloring matter derived from dianisidin, dioxy-naphthalene mono-sulpho acid, and disulpho acid of beta-naphthalene, dyes unmordanted cotton, in an alkaline bath, a fast greenish blue; and, in a dry state, is a brown powder with a metallic luster, readily soluble in water and concentrated sulphnric acids with a blue coloration.
5\%4,070-August 7, 1894. C. O. MULLER. Blue tetrazo dye.
A new dioxy-naphthoic-mono-sulpho acid is produced by fusing alpha-oxy-naphthoic-disulphe acid (OH.COOH. $\mathrm{SO}_{3} \mathrm{H} \cdot \mathrm{SO}_{3} \mathrm{H}=1.2 .4 .7$) with canstic alkali at 189° to $200^{\circ} \mathrm{C}$.

Coloring matters are produced by substituting this sulpho acid for the dioxynaphthalene mono-sulpho acid of No. 534,069 .
524,220-August 7, 1894. C. SCHRAUBE. Substantive blue dye.
A substantive blue dyestuff is produced by combining the tetrazo-compound of diamido-diphenyl-dicarboxylic acid with 1.1^{\prime}-henzoyl-amido-naphthol-sulpho acid. It is slightly soluhle in cold water, more so in hot water, and imsoluble in ahsolute alcohol, ether, and henzene.
524,221-August 7, 1894. C. SCHRAUBE AND E. ROMIG. Phenylrosindulinsulfoacid.
A monosulpho acid of phenyl-rosindulin-isomeric with No. 428,539-is obtained hy the reaction of ertho-amide-diphenylamin-para-sulpho acid and beta-
hydroxy-naphthoquinone anil. It is almost insoluble in water, yields alkaline hydroxy-naph thoquinone anil. It is almost cold wate and is converted hy sulphonation into a saisulpho acid which is a violet-red dye for animal fiber.
524,2\%2-August 7, 1894. C. SCHRAUBE AND E. ROMIG. Violet-red dye.
A disulpho acid of phenyl-rosindulin is produced by beating together ortho-amido-diphenylamine-para-sulpho acid and heta-hydroxy-naphtholquinoneanil with water and alcohol. and suhsequently introducing the second sulpho groups into the monosulpho acid ohtained hy treatment with concentrated sulphuric acid. It is a violet powder, and, in the form of its alkaline salts, is soluble in water, and dyes animal fiber from an acid bath.
524,235-August 7, 1894. O. BALLY. Blue dye.
A coloring matter-in the dry form a coppery-lustered powder-produced by heating gallic acid and the dialkyl-anilins (diethyl and dimethyl-anilin) in the presence of a condensing reagent, such as phosphorus oxychloride, and afterwards zinc chloride. It is slightly soluhle in cold water, more soluble on boiling gives a violet solution in alcohol, and a reddish-yellow solutionin concentrated sulphuric acid.
524,251-August 7, 1894. P. JULIUS. Soluble safranin azo naphthol.
Saffranin-aze-alpha-naphthol, containing a saffranin proper, and soluhle in water, may be prepared from a solution of saffarin proper and alpha or beta in alkalis solohle in alcohol, and gives in sulphuric acid a blackish yellowbrown solution.

524,252-August \% , 1894. P. JULIUS. Dimethyl safranin azo naphthol.
Dimethyl-saffranin-azo-heta naphthol, soluble in water, may be prepared from a solution of dimethyl-saffranin and alpha or beta naphthol. It gives in sulphuric acid a blackish-green solution.

524,253-August 7, 1894. P. JULIUS. Safarin azo naphthot dye.
Dimethyl-saffranin-azo-alpha naphthol, soluble in water, may be prepared from dimethyl saffranin and alpha or heta naphthol. It gives in sulphuric acid a blackish-yellow solution.
624,254-August 7, 1894. P. JULIUS. Safvanin azo naphthol lakc.
A soluble saffranin-azo-naphthol hody, obtained hy treating a saffiranin-azonaphthol with an acid. A coloring-matter lake resembling indigo in color is obtained by comhining a soluble saffranin-azo-naphthol body with a tannemetallic mordant.
524,256-August 7, 1894. R. KNIETSCH. Bluc dyc.
A blue dyestuff, soluble in water and in alcohol, is produced hy dissolving phenyl-glycocoll in strongly fuming sulphuric acid, then diluting by adding snlphuric acid containing water, then passing a current of air through the solution, and finally isolating the coloring matter formed.
524,261-August 7, 1894. C. L. MULLER. Orange disazo dye.
A diazo dye, which can he derived from meta-phenylene-diamin-disulpho acid and the diazo-compounds from primnlin and anilin snlpho acid, occurring as a brown powder, soluble in water, giving an orange-colored solution, and a hrilliant red solution in soncentrated sulphuric acid.
б24,262-August 7, 1894. C. L. MULLER. Orangc dye.
An orange-yellow dye, produced by first preparing a disulpho acid of mete-phenylene-diamin by treating meta-phenylene-diamin with fuming sulphuric acid (with at least two molecular proportions of free sulphuric anhydride present for one molecular proportion of meta-phenylene-diamin), and then combining this disulphe acid with diazo-primulin. It is a brown powder soluhle in water, giving an orange-yellow solution; same in sulphuric acid.
524,323-August 14, 1894. B. HEYMANN. Blue dye.
Blue coloring matters, dyeing cotton and wool with the aid of mordants: produced by the action of the nitroso compounds of alkylated benzylanilin sulpho acids on beta naphthoquinone sulpho acid (1:2:4) in the presence of sodium thiosulphate.
524,665-August 14, 1894. C. BULOW. Black disazo dye.
Black dyes, the diazo compounds of 1.8 amido-naphthol-monosulpho acid, can be ohtained by the combination of two molecular proportions of a diazo compound with one molecular proportion of the aforesaid sulpho acid. They are soluble in hot water, giving blackish-hlue solntions, which are changed to a pure hlue to violet on the addition of a caustic alkali. The specific black dye ohtained from a diazo compound of sulphanilic acid, aniline, and the aforesaid
sulpho acid yields a green solution in snlphuric acid. sulpho acid yields a green solution in snlphuric acid.
524,677-August 14, 1894. E. ELSAESSER. Blue dye.
A blue coloring matter produced by treating the beta-dinaphthyl-metaphenylendiamin disulphonic acid in a dilute acetic solution with nitroso dimethylaniline. It easily dissolves in water and dyes wool and silk in an acid
bath.
525,656-September 4, 1894. P. JULIUS. Azo dye.
An azo dye which can be derived from meta-dinitro-aniline and dialkyl-metasulphanilic acid, occurring as a crystalline powder readily soluble in hot water giving a scarlet solution, turning red on the addition of hydrochloric acid, and
a hluish-red solntion in concentrated snlphuric acid. a hluish-red solntion in concentrated sulphuric acid.

525,657-September 4, 1894. P. JULIUS. Azo dye.

An azo dye which can be derived from para-nitraniline and diakyl-metasulphanilic acid, occurring as a crystalline powder, soluble in water and alcohol, and gives a red to reddish-yellow solution in concentrated sulphuric acid.
581,148—December 18, 1894. J. BIERER AND C. DE LA HARPE. Blue dye.
Blue coloring matters are produced hy oxidizing the product of condensation of the beta-naphthol sulphonic acid of schaeffer and a gallocyanin dye resulting from the condensation of hydrochlorate of nitrosodialkylaniline, or of hydrochlorate of dialkylamidoazohenzene and gallic acid or its derivatives. It dyes wool mordanted with chrome mordants, in an acid bath, a blue tint, and is
soluble in alkalis with a violet-blue coloration.
581,149-December 18, 1894. J. J. BRACK. Substantive red dye.
A hexazo-coloring matter produced by combining three molecules of a naph-thylaminsulpho-acid with onc molecule of the hexazo-derivative of the triam-ido-hase derived from the condensation of formaldehyde with tolidin: for maldehyde is heated with tolidin in the presence of an excess of hydrochloric acid in dilute aqueons solution. It is a brick-red powder which dyes unmordanted cotton red, readily soluhle in hot water, slightly soluble in alcohol, and soluble in concentrated sulphuric acid with a blue-violet coloration.

681,97s-January 1, 1895 . C. SCHRAUBE AND C. SCHMMDT. Nitrosamin
compound. The aitrosamins of the primary amins are produced by treating certain diazo compounds, such as diazo-nitro aniline, with a caustic alkali. As sodium salts they are soluble in water, with somewhat alkaline reaction, and produce no azo-dye in. the presence of beta-naphtholate of sodium and alkali, but on treat ment with an excess of acid are converted into the corresponding diazo compound which yields coloring matter on combination with beta-naphtholate of sodium. Para-nitro-phenyl-nitrosamin occurs as a yellowish paste or powder.
531,974-Januar!! 1, 1895. C. SCHRAUBE AND C. SCHMIDT. Nitrosamin compount.
A nitrosamin derived from the tetrago-compound of benzidin, both in the free state and as a salt, in the form of a sodium salt occurring as a yellowish pow der; soluble in water, yielding a brownish-violet color when brought on the fiber with sodium beta-naphtholate and subsequently exposed to the air.
631,975-January 1, 1895. C. SCHRAUBE AND C. SCHMIIDT. Nitrosamin com pound.
A nitrosamin derived from the diazo compound of para-dichloraniline, both in the free state and as a salt, as a sodium salt occurring as a yellowish powder readily soluble in water; and yielding an orange color when brought on the
fiber with beta-naphtholate and subsequently exposed to the air. On treatment with a molecular proportion of an acid it assumes the free state.
581,976—January 1, 1895. C. SCHRAUBE AND C. SCHMIDT. Nitrasamin compound.
A nitrosamin derived from diazo-naphthalene; a yellowisk powder and in the form of sodium salt soluble in water; yielding red shades when brought on the fiber together with sodium beta-naphtholate and subsequently exposed to the air. 581,97\%_Jonuary 1, 1895. C. SCHRAUBE AND C. SCHMIDT. Nitrasamin compound.
A nitrosamin, which in the form of sodium salt can be derived from tetrazodianisidin; occurring as a yellowish powder; soluble in watex; and yielding a blue color when brought together with sodium beta-naphtholate on the fiber and subsequently exposed to the air.
532,125-January 8, 1895. A. WEINBERG. Blue disazo dye.
A dark blue or black powder, produced by treating the diazo-derivative of amidonaphtholdisulpho acid H' (Pat. No. 464,I35) with cuprous chloride, and combining the thus obtained perchlornaphtholdisulpho acid with tetrazo bodie in an alkaline solution. It is readily soluble in water with violet-blue color insoluble in alcohol, soluble in concentrated sulphuric acid with greenish-hlue color, and dyes unmordanted cotton a blue shade in alkaline or neutral baths 532,479—January 15, 1895. K. PATHE AND O. DRESSEL. Red dye.
Red substantive dyestuffs produced by the combination of one molecular proportion of diazotized dehydrothio-para-toluidin base with one molecular proportion of the amidonaphtholdisulpho acid ($\mathrm{NH}_{2}: \mathrm{OH}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}=2: 5: 7: \mathrm{I}$) in an alkaline solution. Red shades are produced on unmordanted cotton, fast to thepaction of alkali and acid.
532,484-January 15, 1895. A. F. POIRRIER. Sulfur dye.
Coloring matters dyeing fiber direct in black or blackish shades are produced by heating with sulphur or sulphur compounds the doubly substituted deriva tives of benzene, such as the dihydroxyl derivatives or the diamid derivatives the first class including the dioxynaphthalenes and the naphthoquinones, and the second class embracing the diamins of the benzene and naphthalene series, and the substances capable of producing them. They are very soluble in water, alkaline solutions and alkaline sulphids, insoluble in acid, and changeable on exposure to air.
532,503-January 15, 1895. R. VIDAL AND A. F. POIRRIER. Sulfur dye.
Process of producing coloring matters dyeing nonmordanted fibers: consists in heating with sulphur or a sulphur compound the joint amin and phenol deriva tives, of bodies capable of producing them by reduction.
$533,469-F \operatorname{bruary} 5,-1895$. M. HOFFMANN. Black aza dye.
New black azo dyestuffs are produced by combining the diazo compound of alpha 1 alpha 2 naphthylenediamin-beta-sulpho acid with $\AA_{\text {diazotizable amin, }}$ diazotizing again, combining with gamma-amidonaphthol-sulpho acid and saponifying.
553,508-February 5, 1895. M. ULRICH AND J. BAMMANN. Blue dye.
Blue substantiye dyestuffs: produced by combining one molecular proportion of tetrazotized diamins, as benzidin, tolidin, dianisidin, with one molecular proporion of amidonaphtholdisulpho acid $\left(\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=1: 3: 6: 8\right)$ and one molecular proportion of amidonaphtholmonosulpho acid ($\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=\mathrm{I}: 4: 8$). A dark powder with metallic luster, easily soluble in water with a hlue color,
diazotizable, when fixed on the fiber, and giving with developers, especially diazotizable, when fixed on the fible
533,899-February 5, 1895. C. SCHRAUBE. Red basic dye.
A red basic coloring matter, beta-alkyl-eurhodin, produced by beating toether alpha-maphthylamin hydrochlorate and an azo dye derived from mono-alkyl-para-toltidin, diazo sulphanilic acid, and phenol. It dyes bright scarlet shades on cotton mordanted with tannin and on silk.
534,578-February 19, 1895. R. PAGANINI. Blue disazo dye.
A disazo dyestuff produced by exposing an alkaline solution of alpha-oxy-disulpho-naphthoic acid to the action of a tetrazo derivative, such as the tetrazo derivative of toluidin, and subsequently combining the resulting intermediate product with alpha-naphthol-mono-sulphonate of soda. A dark-brown powder With a bronze luster, soluble in water with a blue-violet, in concentrated sulphuric acid with
red coloration.
534,809-February 26, 1895. J. BIERER. Blue dye.
Sulphonated gallocyanin dyes are produced by beating a dialkylamidoazo benzenesulpho acid, having a sulpho group in the second benzene nucleusthat is, in the benzene nucleus which forms a diamido derivative on the split ling of the amidoazo compound by reduction-with a gallic compound, in a suitable solvent. It is soluble in water, insoluble in alcohol, dissolving in a solution of sodium acetate with blue color, in caustic alkalis with violet-blue color, in ordinary and diluted hydrochloric acid with red color, and in concen trated sulphuric acid with a bluish to violet-red color; dyeing wool and si directly in an acid bath and presenting great affinity for metallic mordants.
555,036-March 5, 1895. A. WEINBERG. Brown dye.
Brown disazo dyestuffs are produced by combining the tetrazo derivatives of paradiamins, such as benzidin, with one molecule of phenyl-gamma-amidoNo. $210-15$
naphtholsulpho acid and one molecule of an oxycarbonic acid, such as salicylic acid. The dyestuff derived from salicylic acid is a dark brown powder, easily soluble in hot water and alcohol, with a brown color; iu concentrated sulphuric acid with a violet shade, and it dyes unmordanted cotton dark brown shades in alksline or neutral baths.
535,087-March 5, 1895. A. WEINBERG. Bluish-red azo dyc.
A red coloring matter produced by bringing together the alkaltne solution of percblornaphtholdisulpho acid with the diazotized dehydrothio compounds such as dehydrothioparatoluidin, dehydrothiometaxylidin, or their sulpho acids. A dark brown powder easily soluhle in cold water and in hot spiri with red color, in concentrated sulphuric acid with violet color; and dyes unmordanted cotton a bright bluish-red shade.
596,431-March 26, 1895. M. KAHN AND F. RUNKEL. Black dye
A substantive black azo dye: produced by combining one molecular propor tion of tetrazotized diamidodiphenylamin sulphoacid, first, with one molecular proportion of amidonsphtholsulpho acid G, in an alkaline solution, rediazotiz ing the resulting intermediate product, and finally combining the so-formed tetrazo compound with two molecular proportions of a meta diamin, such as meta phelyleudiamin or meta toluylendiamin, in an acetic acid solution. A brownish-black powder easily soluble in water, insoluble in alcohol and strong soda lye, soluble in concentrated sulphuric acid, with a bluish-black color.
536,524-March 26, 1895. W. HERZBERG. Amidotriazin.
"Amidotriszins" are formed by the action of aldehydes, of the aromatic or fat series, upon chrysoidins-the coloring matters formed by the action of diazo tized amins or tetrazotized paradiamins or their sulpho or carbo acids on the metadiamins-and the sulpho derivatives of those of the said substances which contain no sulpho or carbonyl groups, produced by the action of sulphonating agents on those. A white crystalline powder, more or less soluble in water insoluble in alcohol, soluble in alkaline liquors, and possessing a strong swee taste. They may be diazotized and combined with phenols, amins, the sulpho and carbo acids of phenols and amins to form azo coloring matters
556,626-April 2, 1895. R. HIRSCH. Blue dye.
Two basic coloring matters, blue and gray violet, are produced by oxidizing amido-dimethylaniline with chromic acid in the presence of one molecule of hydrochloric acid to one molecule of amido-dimethylaniline; the blue coloring matter being easily soluble, the gray violet less soluble in water, but perkectly soluble in acidulated water. The blue dyes cotton a dark blue when mordanted mordanter with tannin, and will work on unmordanted cotton.
596,878-April 2, 1895. R. KIRCHHOFF. Black dye.
A tetrazo dye is produced by reacting with one molecule of tetrazotized para amidobenzene-azo-amido-para-cresolether upon one molecule of salicylic acid, and combining the intermediate product with one molecule of gamma-amido-naphthol-monosulphoacid in alkaline solutiou. It is soluble in cold, more readily in hot water, with dark violet color; in concentrated sulphuric acid, with dark blue color, produces on unmordanted cotton black shades, and after fixa. tion on fiber can be rediazotized and combined with amins and phenols.
586,879-April 2, 1895. R. KIRCHHOFF. Blue-black dye.
A dye produced by reacting with one molecule of tetrazotized para-amido benzene-azo-amido-para-cresolether upon one molecule of alphap-naphthyla-mine-beta monosulphoacid (CIeve's beta acid) and combining the intermediate $^{\text {mon }}$ product with one molecule of gamma-amidonaphtholmonosalpho acid in alkapine solution. It is soluble in cold, more readily in hot water, with a violet-blue color; in concentrated sulphuric acid, with a dark indigo-blue color; and pro duces on unmordanted cotton bluish-black shades, and after fixation on the fiber, can be rediazotized and combined with amins and phenols.
586,880-April $\underset{\sim}{f}$ 1895. R. KIRCHHOFF. Blue dye.
A dye producea by reacting with two molecules of gamma-amido-naphthol monosulpho acid in weakly acid solution upon one molecule of tetrazotized para-amidobenzene-azo-amido-para-cresolether. It is soluble in cold, more read ply in hot water, with violet-hlue color; in concentrated sulphuric acid, with blueblack color; and produces on ummordanted cotton, fast blue shades.
537,511-April 16, 1895. A. WEINBERG. Phenylamidonaphtholsulfa acid.
A new compound, $\mathrm{C}_{10} \mathrm{H}_{5} . \mathrm{SU}_{3} \mathrm{H} . \mathrm{OH} . \mathrm{NH},-\mathrm{C}_{6} \mathrm{H}_{5}$, colorless small needles, forming dyestuffs with diazo or tetrazo compounds, is produced by heating gamma-amido-naphtholsulpho acids with aromatic amins in presence of means of condensation, such as hydrochlorate of aniline.
537,72s-April 16, 1895. J. SCHMID AND K. JEDLICKA. Orange dye.
Orange coloring matters, similar to phosphine, produced by exposing a yellow acridin dyestuff to the action of an alcohol in the presence of a mineral acid According to the degree of alkalization, orange-yellow to red-orange tints are produced, suitable for dyeing leather and cotton mordanted with tannin.
538,183-April 23, 1895. J. SCHMID AND J. MOHLER. Blue dye.
A poly-oxythionin coloring matter produced by condensation of 7 oxy 1.2 naphthoquinone 4. monosulpho acid with thiosulphonic acid of para-amido alkyl-benzylanilin-sulphonate of soda; forming a dark violet powder, which dissolves with a blue-violet coloration in concentrated sulphuric acid, hot water, or in a dilute ammonia solution.
538,215-April 2s, 1895. T. SANDMEYER. Blue dye.
A blue dyestuff, the sodium salt of the symmetrical trisulpho acid of triphenylrosanilin: produced by the condensation of two molecules of monosulpho acid of diphenylamin with one molecule of formaldehyde in acid solution to the disulpho acid of dipheny]dismidodiphenylmethan, and the oxidation of the said derivative in combination with a further molecuie of diphenylaminmonosulpho acid. It dissolves in concentrated sulphuric acid, with a reddishin concentrated alkali-lye and ammonia with a brown shade.
539,699-May 21, 1895. M. MOELLER. Blue dye.
Blue coloring matters are produced by acting with one molecular proportion of a tetrazo compound of a paradiamin on two molecular proportions of the sodium salt of amidonaphtholdisulpho acid ($\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=1: 2: 4: 8$) in an akkaline solution. The destand compound of benzidin is easily soluhle in water dissolping acid and the tetrazo compound of benzidin is easily soluble in water, dissolving cotton, in an alkaline or neutral bath containing common salt or Glauber's salt, a pure blue.
539,793-May 21, 1895. W. HERZBERG AND O. WEBER. Blue dye.
Blue dyes are produced by heating with sulphur and fuming sulpburic acid the condensation products obtained from an alpha ${ }_{1}$-beta a_{1}-amidoanaphthol derivative and a para-nitroso derivative of an alkylated amin. The dye, in case
alphar-beta ald $_{1}$ amidonaphthol-beta a_{3}-monosulpho acid and para-nitroso-dimethylanilin be used, is moderately soluble in cold, more readily in bot water with a violet-blue color, dissolves in concentrated sulphuric acid, with a green color, and yields by reduction a leuco compound readily re
540,412-June 4, 1895. M. ULRICH AND J. BAMMANN. Amidonaphtholdisutpho acid.
An alpha-amido-alpha-naphthol-beta-disulpho acid is produced by melting with caustic alkalis, most practically at from 180° to 190° C., the alpha-naphthy-lamine-trisulpho acid, which is derived from the arphthalenetrisulpho acid obtained at first by Gürke and Rudolph by sulphonating naph thalene or its mono or disulpho acid, prepared first by Koch by nitrating the said naphthalenetrisulpho acid and reducing the alpha-nitronaphthalene-trisulpho acid thus formed. It crystallizes in small, thin, white needles, showing in aqueous solution a weak reddish-violet fluorescence; by combining with the salts of diazobenzene or analagous diazo compounds, red colors with a strong bluish
tinge result, while the tetrazo dyestuffs obtained produce, in general, blue tinge res.
shades
540,564-June 4, 1896. L. WACKER. Blue acid dye.
An acid coloring matter is produced by first heating together amido-phthalic acid and monochlor-acetic acid, preferably in an alkaline solution; next heating the phenyl-glycocol-dicarboxylic acid so obtained in a caustic alkaline melt and treating the resulting leuco compound with oxidizing agents; and finally sulphonating the resulting carhoxylated product by treating with fuming sulphuric acid. It is soluble in water, giving green-hlue solutions; yellow, in allkacompound (free and in combination) yields a blue solution of the alkali salts, and on reduction yis by oxidation.
545; 333-August 27, 1895. H. A. BERNTHSEN AND P. JULIUS. Azo orange dye. A dark reddish-brown powder which can be obtained by the combination of the tetrazo compound of henzidin-disulpho acid with a nitro diamin, such as nitro-meta-phenylene-diamin; soluble in water, precipitated from its aqueous solution by soda solution, and yielding a deep orange precipitate from its aqueous solution on the addition of dilute sulphuric acid; in conceatrated sulpburic acid giving a yellow-red solution.
545,386-August 27, 1895. R. BOHN. Black dye.
Black coloring matter obtained by treating dinitro-naphthalene witb sodium sulphide, yielding fast-black shades on vegetable fiber on dyeing from a bath rendered strongly alkaline with soda. The specific coloring matter obtained as above and subsequently treated with hydrochloric acid is almost insoluble in caustic soda and in concentrated sulphuric acid.
545,397-August 97 , 1895. R. BOHN. Black dye.
Black coloring matter obtained by treating dinitro-naphthalene with sodium sulphide and subsequently with acetic acid; soluble in soda solution giving a violet coloration.
546,604-September 17, 1895. J. THIELE. Amido-tetrazotic acid and process of making same.
A new white crystalline product, soluble in water, and precipitated from its solution by copper salts, is prodnced by treating a solution of diazo-guanidin with sodium acetate, concentrating by evaporation, and crystallizing.
547,173-October 1, 1895. C. A. MAYER AND C. DE LA HARPE. Leuco compound and process of making it.
A leuco body, suitable for printing on textures, is produced by the condensation of a phenol, as resorcin, with a gallocyanin dye obtained by the action of hydroch orate of nitrosodialkylanimin or of hydrochlorate of dialky lamidoazocin, colors textures a blue tint when printed thereon and oxidized on the fiber.
548,344-October 22, 1895. A. ASHWORTH AND J. BURGER. Brown dye.
A coloring matter: produced by adding alpha amido beta naphthol to a solution of tannin in a condensing agent, such as sulphuric acid, and heating the mixture; little solnble in cold water, easier solnble in hot water, soluble in caustic
soda with violet color, changing into brown on agitation and with admixture soda with violet color, changing into brown on agitation and with admixture
of air; soluble in concentrated sulphuric acid with a crimsora red color; producing on chrome mordants brown shades.
548,345-October 22, 1895. A. ASHWORTH AND J. BURGER. Brown dye.
Coloring matters: produced by adding ortho oxy beta nitroso naphthalene to a solution of tannin in a condeusing agent, such as sulphuric acid, and heating the mixture; a dark, nearly black powder slightly soluble in cold water, more solnble in boiling water, soluble in cold dilnte canstic soda with a brown color, in concentrated sulphuric acid with a deep purplish brown coloration; prodncing on chrome mordants brown shades.
548,346-October 22, 1895 . A. ASHWORTH AND J. BURGER. Nitrosonaphthol dye and process of making same.
Nitrosobetanaphthol is treated with bisulphites at a temperature of 40° to $50^{\circ} \mathrm{C}$. The dye consists of grayish to white crystals, easily soluble in water, which solution grows darker on standing. It is decomposed on addition of caustic alkalis, producing green shades with iron mordants and brown shades with chrome mordants
548,416-October 22,1895 . A. ASHWORTH AND J. BURGER. Brown dye.
Coloring matters produced by combining diazo compounds with the condensation produet of alpha-nitroso-beta-naphthol and sodium bisulphite, consisting of a brownish powder easily soluble in water, soluble in caustic soda, carbonate of soda, and in alcohol with yellowish-brown color, dyeing on unmordanted wool from an acid bath brown shades and dyeing and printing with chrome mordants hrown shades.
545,460-October 22, 1895. C. RIS. Brown dye and proccss of making same.
Tctraoxyazobenzenc, a brown coloring matter produced by suojecting the diazo compound of para-amido-phenol or its sulpho acids to the action of pyrogallic acid in an albaline solntion; soluble in alkalis with an intensely brown color, and forming with concentrated sulphuric acid an orange-colored solution. 549,036-October 29, 1895. R. VIDAL. Proccss of trcating sulphur compounds of aromatic serics with sulfites.
Soluble dycstuffs and coloring matters, characterized by solubility in water and in acids, are produced by treating with alkaline sulphites and bisulphites the coloring matters obtained by the action of sulphur upon bodies of the aromatic series, as the substituted amines of the bevzene series.

565,359-February 25, 1896. H. A. BERNTHSEN AND P. JULIUS. Red dye and process of making same.
A red substantive diazo body produced by converting a benzidin salt into a tetrazo compound and combining one molecular proportion of the same with one molecular proportion of salicylic acid and subsequently with one molecular proportion of precitating with commonsalt; readily soluble in hot and cold watergiving and precipitating with commonsat; readiy solublue solution, and with nitrous acid yielding a gray to black diazo compound capable of uniting with betaacid yielaing a gray to black diazo col
355,658-March \&, 1896. R. NIETZKI. Yellow coloring matter.
A yellow dyestuff produced by combining the monosulphonic acids of heta-diazo-naphthalene with salicylic acid; forming a yellow-brown powder, difticultly soluble in cold water, petroleum, and benzene, readily soluble in hot Water; dissolving in concentrated sulphuric acid with a dard olive-yellow shades and producing pure yellow
with chromium mordant.
55b,904-March $\mathrm{S}, 1896$. H. LAUBMANN. Dye from dinitro-anthrachrysone- disulfo acid.
A green dyestuff produced by treating dinitro-anthrachrysone-disulphonic acid with sodium sulphide in alkaline solution; forming a black crystalline powder, soluble in hot water with red-blue color, in dilute alkali with red-violet color, in concentrated sulphuric acid with blue-red color: difficultly soluble in glacial acetic acid with red color; completly absorbed by wool from an acid bath, the colored stuft giving green tints on treatment with chromium fluoride.
556,164-March 10, 1896. C. RIS AND C. SIMON. Gray dyc and process of making same.
A gray coloring matter produced by subjecting the alkyi derivative of beta-amido-alpha - -naphthol-beta a_{3}-sulpho acid to the action of a tetrazo compound, as tetrazodiphenyl or tetrazoditolyl; soluble in water with a bluish-gray color, in concentrated sulphuric acid with a blue culor; and producing on unmordanted
cotton bluish-gray to black shades of considerable fastness.
566,298-March 10, 1896. J. BAMMANN AND M. ULRICH. Blue dye.
Violet-blue to greenish-blue mixed substantive dyestuffs produced by combining equi-molecular proportions of any of the known tetrazo hodies, as tetrazoditolyl, with 1.8 amidonaphtboldisulpho acid and any of the hydroxy derivatives of naphthalene, as dihydroxynaphthalene; dyeing unmordanted cotton violet-blue to greenish-blue shades which can be rediazotized on the fiber and
converted into deeper blue or bluish-blacls shades by means of developers; they converted into deeper blue or bluish-blaeds shades by means of developers; they
form grayish-black powders soluble in water, insoluble in diluted hydrochloric form grayish-black powders soluble in water, insoluble in diluted hydrochloric
or sulphuric acid, but dissolve in concentrated sulphuric acid with blue color.
557,002-March 24, 1896. R. REYHER. Azine dye.
Red azine dyes produced by condensing salts of nitroso derivatives of secondary aromatic amins with phenylmetatoluylendiamin, forming a brown powder With metallic luster, easily soluble in water and alcohol, with a red color: insoluble in soda lye; soluble in concentrated snlpharic acid, with a green color, and
producing on cotton mordanted with tannin brilliant red shades fast to alkali producing
557,435-March 31, 1896. J. SCEMID. Blue dye.
Blue polyazo dyes are obtained by coupling together two molecules of tetrazo bodies derived from benzidine and the analogons bodies-such as tolidin, diamidostilbene, diamidodiphenol ethers, diamidoethoxydiphenyl-with one mole cular proportion of 1.8 amidonaphthol, 3.6 disulphonate of soda, or 1.8 dioxynapter, soluble in water with a blue and in concentrated sulphuric acid with a luster, soluble in water with a blue and in concentrated sulphuric acid with a
green-blue coloration; dyeing unmordanted cotton blue tints of a pure shade. 557,496-March 51, 1896. J. SCHMiD. Blue dye.
Dark violet-blue to blne polyazo dyestnffs are produced by the action of 1.4 naphtholmonosulphonate of soda upon the products of No. 557,435; forming black powders of metalic uster, soluble in water with a violet, in concentrated sulfine bath violet to pure blue shades.
557,487—March 31, 1896. J. SCHM1D. Black trisazo dye.
Black triazo coloring matters are produced by subjecting the diazo dyes of No. 525,626 to further diazotation and combination with amins and phenols, as by phenylenediamin; or metatoluylenediamin or metaamidophenol; or resorcin phenylenediamin; or metatoluylenediamin or metaamidophenol: or resorcin metallic luster, soluble in hot water, with a blue-black coloration and dyeing deep black shades on unmordanted cotton.
$557,488-1$ Harch 31,1896 . J. SCHMID. Blue dye.
Triazo dyestuffs obtained by the combination of 1.8 amidonaphthol, 3.6 disulphonate of soda with the rediazotized intermediate products resulting by the compound of benzidine upon one molecule of metaamidoparacresol ether; easily soluble in water with a dark-blue coloration, in concentrated sulphuric acid with a green-blue coloration; and producing indigo-blue tints on unmordanted cotton, which may be rediazotized and developed on the fiber to blue black with amins and phenols.
557,439—March 31, 1896. J. SCHMID, Polyazo black dye.
A blue-black polyazo dye obtained by the reaction of two molecular proportions of amidonaphtholmonosulpho acid and one molecular proportion of the intermediate product, resulting by the action of two molecular proportions of tetrazo-diphenyl with one molecular proportion of 1.8 amidoox x naphthalene 3.6 disnlpho acid; a black powder with a bronze-like luster, soluble in water with a black violet-in concentrated sulphuric acid with a pure blue coloration; and dyeing unmordanted cotton blue-black shades in an alkaline bath which may be developed on the fiber to a deep black.
557,440-March 31, 1896. J. SCHM1D. Blue-black lisazo dye.
Asymmetrical coloring matters derived from one molecular proportion of naphthalene-diamine-disulpho acid 1.8.3.6, one molecule of paranitrodiazobenzene and one molecule of another diazo body; forming black powders of a bronze luster, easily soluble in water with a dark violet to dark blue coloration, in concentrated sulphuric acid with a dark.green coloration; and producing deep blue-black to black tints of great lastness on wool in an acld bath or on a mordant of a chrome salt.
568,544-April 14, 1896. H. A. BERNTHSEN AND P. JULIUS. Bluc dye.
A substantive coloring matter, a mixed disazo dye: derived from tetrazo-diaalpbanaphtholsulpho acid ($1.4 ; 1.5$), which in the form of sodium solt is soluble
in water, and on treatment with nitrous acid on the fiber yields a more violet diazo compound which combines with beta-naphthol and gives deeper and more violet shades than the original blue.
558,612-April 21, 1896. C. RUDOLPH. Brown azo dye.
A brown azo dyestuff produced by first combining diazotized metatoluylendiamin sulpho-acid with one molecule of beta-naphthylamin, one molecule of a metadiamin and afterwards acting upon the thns formed intermediate product with one molecule of diazo-naphthionic acid; it dyes unmordanted cotton $_$ yellow brown, and forms a deep dark-brown powder soluble in concentrated sulphuric acid to a dirty violet solution, and in water to a yellowish-brown solution.
558,613-April 21, 1896. C. RUDOLPH. Oxyquinolin azo dye.
A red-blue tetrazo dyestuff prodnced by combining dianisidin with the sodium salt of alpha-alpha ${ }_{4}$-amidoöxynaphthalene-beta a_{2}-beta ${ }_{3}$-dsulpho-acid and afterwards combining with this intermediate product an alkaline solution of paraoxyquinolin; a greenish-brown powder of a metallic luster, soluble in water to a blue and in strong sulphuric acid to a pure green-bluc solution, and dyeing unmordanted cotton reddish blue.
558,614-April 21, 1896. C. RUDOLPH. Brown azo dye.
A brown polyazo dyestuff, dyeing mmmordanted cotton: produced by first combining two molecules of Bismarck-brown sulpho-acid with one molecule of with this diamido-beta-naphtaalene-disulpho acid and afterwards combining black-brown powder, dissolving in concentrated sulphoric acid to a violetbrown solution.
559,062-April 28, 1896. R. REYHER. Azill dye and process of making it.
Azin dyes produced by condensing salts of nitrosomonoalkylorthotoluidin with paratoluymetatoluylenediamin and then separating the dye by filtration; forming a brown powder with metallic lustcr; soluble in water and alcobol with a red color, in concentrated sulphuric acid with a green eolor, insoluble in soda-lye; and dyeing cotton mordanted with tannin brilliant red shades, fast to alkali and light.
559,063-April 28, 1896. R. REYHER. Azin dye and process of making it.
Azin dyes produced by condensiug salts of nitrosodialkylanilin with paratolylmetatoluylenediamitu and then separating the dye by iltration; forming a greenish-black powder with metallic luster, soluble in water with a violet-red color, in alcohol with a bluish-red color, in concentrated sulphuric acid with a green color; insolnble in soda-lye, and dyeing cotton mordanted with tannin violet-red shades, fast to alkali and light.
$560,448-$ May 19, 1896. A. WEINBERG. Black azo dyc.
Azo dyes of the general Iormula: Amidonaphtholsulfo-acid I-amidonaphthol-sulpho-acid II-metadiamin paradiamin-metadiamin, are produced by treating the intermediate componnd of the general constitution paradiaminamidonaph-tholsulpho-acid I amidonaphtholsulpho-acid II with nitrons acid and combining the thus prodnced tetrazo compounds with two molecules of a metadiamin; forming a black powder soluble in hot water and in concentrated sulphuric acid with a bluish-black color: insoluble in alcohol, ether, or benzene, and dyeing unmordanted cotton a deep black, fast to alkalis.
560,449-May 19, 1896. A. WEINBERG. Black dye.
Azo dyes produced by treating the intermediate compounds formed from one molecule of a tetrazo body and one molecule of an amidonaphtholsulpho acid with nitrous acid, as by mixing one molecnle of diazotized acetparaphenylenediamin with one molecule of an amidonaphtholsulpho acid, heating with canstic alkalis to remove the acetyl group and treating the diamidoazo body with nitrous acid, and combining the thas produced tetrazoazo compound with one molecule of an amidonaphtholsulpho acid and one molecnle of a metadiamin: forming a black powder soluble in hot water with blnigh-black color, in concentrated sulphuric acid with a dark-blue color, and dyeing unmordanted cotton a deep black.
560,795-May 26, 1896. B. HEYMANN. Blue dye.
Blue coloring matters produced by the action of nitrosomethylbenzylanilin-sulpho-acid with beta-naphthoquinonesulpho-acid (1:2:6 or 1:2:7) in the presence of sodium thiosulphate, or with the nitrosonaphtholsulpho-acid ($1: 2: 6$ or $1: 2: 7$) Which furnishes the corresponding beta-naphthoquinonesulpho-acid by reduction and snbsequent oxidation in the presence of sodinm thiosulphate; a dark powder with metallic lnster, soluble in water with a blue color, in concentrated sulphuric acid with a green color, and dyeing wool and cotton'mordanted with chrominm salts.
560,796-Mfay 26, 1896. M. HOFFMANN. Blackish-blue azo dye.
Azo dyestuffs produced by combining the diazo compound of alpha ${ }_{1}$-alpha a_{2} -amidoacetnaphthalid-beta-sulpho acid with a diazotizable amin, diazotizing again, combining with a hydrox ylated naphthalenesulpho-acid and saponifying the product; a black powder solnble in water with a dark-blue color, in suland cotton a blackish blue.
560,890-May 26, 1896. E. BROEMME. Process of producing lakes.
Dyestuff-lakes are obtaincd, for example, from acid tar dyes, by the prccipitation of solnble dyestuffs by the addition of a soluble strontinm salt to a solution of the dyestuff and sodium carbonate or sodinm snlphate.
561,276-June 2, 1896. A. F. POIRRIER. Sulfureted dye.
Thiocatechins;" coloring matters which dye unmordanted cotton in tints varying from yellow to brown and red brown, are produced by heating to prescribed temperatures- 200° to $300^{\circ} \mathrm{C}$.-with sulphur or sulphur compounds, acetylated paradiamins, and acting on the product with sodium sulphite.
561,277-June 2, 1896. A. F. POIRRIER. Sulfureted dye.
Yellow, brown, and yellowish-brown coloring matters, dyeing vegetable fibers Without mordant, are produced by the action of sulphur upon the substitnted aromatic amins or the acetylated aromatic diamins at between 200° and $250^{\circ} \mathrm{C}$. 561,615-June 9,1896 . F. RUNKEL. Red azo dye.
A red azo coloring-matter produced by combining molecular proportions of the diazotized ethyl paramidobenzoate with the dioxynaphthalene monosulphoacid $\left(\mathrm{OH}: \mathrm{SO}_{3}^{-} \mathrm{H}: \mathrm{OH}=1.4 .8\right)$ of No. 444,679 ; forming a brown powder with acid $\mathrm{OH}^{2} \mathrm{SO}_{3} \mathrm{H}$ 隹 a green luster, soluble in ath wated alphuric acid with a bluish-black color, and producing on wool clear red shades fast against alkalis.
561,694-June 9, 1896. A. BLANK, A. ISRAEL, AND M. HERZBERG. Black azo dye and process of making same.
A substantive black azo dye prodnced by combining one molecular proporA substantive of tetrazotized dianisidin or tolidin, first, with one molecular proportion of
amidonaphthol disulpho-acid $\left(\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=\mathrm{I}: 3: 6: 8\right)$ or an alkaline salt thereof, then, with one molecular proportion of a metadiamin (such as metaphenylenediamin or metatoluylenediamin) and finally coupling the soformed mixed dyestuff with one molecnlar proportion of diazotized acetyl paraphenylenediamin; a black powder soluble in water with a violet-black color, in concentrated sulphuric acid with a bluish-black color.
561,709-June 9, 1896. M. HERZBERG, A. BLANK, AND A. ISRAEL. Black azo dye.
Substantive black azo dyes, produced by combining one molecular proportion of tetrazotized paradiamins (as benzidin), first with one molecular proportion of amidonaphthof disulpho-acid ($\left.\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: 0 \mathrm{H}=1: 3: 6: 8\right)$, or an alkaline salt theref, then with one molecular proportion of a metadiamin, such as metaphenylenediamiu, and finally conpling the so-formed mixed azo dyestuffs with one molecular proportion of diazotized acetylparaphenylenediamin: black powders soluble in water with a black color, in concentrated sulphuric acid with a bluish-black color.
562,200-June 16, 1896. J.,SCHMID AND K. JEDLICKA. Dark-grecn dye.
A new dye is produced by heating the unsymmetric diazo coloring matter of No. 557,440 with water in the presence of a suitable condensing agent; dyeing with more blne or more green shades than the original coloring matter.
563,382-July 7, 1896. F. KRECKE AND I. ROSENBERG. Amidonaphtholdisul-

pho-acid K.

The 1.8.4.6-amidonaphtholdisulpho acid K , produced by sulphonating 1.5naphthalenedisulpho acid with fuming sulphuric acid at temperatures not above that of a water bath, transiorming the so-produced 1.3 .5 -naphthalenetrisulpho acid by nitration and reduction irito the 1.4.6.8-naphthylamintrisulphonic acid, the diazo derivative of which can not be precipitated from its aqneous solutions by common salt, heating this naphthylamintrisulpho-acid With caustic-soda lye, and precipitating it as acid sodium sail irom the alkaine liquid thas obtained, by acidulation with muriatic acid. It is readily solnble in
water and gives azo colors more reddish in shade than those prepared with the water an
H acid.
569,389-July 7, 1896. F. KRECKE AND I. ROSENBERG. Azo dye.
Azo dyestnffs prepared by combining the " K " acid of No. 563,382 with the molecnlar proportign of a diazo body; with diazo benzene there is formed a crystalline bronzy powder easily soluble in water, and dyeing wool a bright red from an acid bath.
569,584-July 7, 1896. F. KRECKE AND I. ROSENBERG. Diazo dye.
Diazo dyestnffs produced by combining one molecnle of acid " K " of No. 663,382 with one molecule of a diazo body in acid solution and acting upon the o-loralline powder of reddish-bronze color, dying wool a dark greenish blue in an acid bath.
563,585-July 7, 1896. F. KRECKE AND I. ROSENBERG. Blue tetrazo dye.
Tetrazo dyestuffs produced by combining one molecnle of a tetrazo body with two molecules of acid " K " of No. 563,382 in alkaline solution; a crystalline yel-low-bronze powder, dyeing unmordanted cotton a bright violet blue of great depth.
663,986-July 7, 1896. F. KRECKE AND I. ROSENBERG. Grcenish-blue tetrazo dye.
Tetrazo dyestuffs produced by combining one molecule of acid " K " of No. 563,382 with one molecule of a tetrazo body, and acting on the so-formed intermediate diazo azo body with an aromatic amin or phenol, or sulpho or carbo acid thereof; forming bronzy crystalline powder, dyeing unmordanted cotton a bright greenish blue.
567,419-September 8, 1896. C. RIS. Brown diazo dye and method of making same. A brown coloring matter, obtained by combining the tetrazo componnd of benzidin with salicylic acid and with alkylated beta ${ }_{1}$-alphat-amido-naphtholbeta ${ }_{3}$-sulpho-acid; a dark brown powder soluble in water, with a dark brown color, in concentrated sulphuric acid with a violet-blue color, and producing fast and intense brown shade on unmordanted cotton.
567,479-September 8, 1896. W. HERZBERG AND H. HEIMANN. Red dye of rosindulin series.
The disoda salt of phenylrosindulin-trisulphonic acid, derived from alphanaphthylamin and orthoamidodiphenylamin-sulphonic acid by joint oxidation, subsequent phenylation and sulphonation by means of fuming sulphuric acid; of the formula $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{SO}_{3} \mathrm{H}$ ($\mathrm{SO}_{3} \mathrm{Na}$) ; producing on wool clear red shades of a bluish tint.
567,567, September 8, 1896. A. HERRMANN. Blue coloring malter.
Fast-blue coloring matter produced by condensing monobenzylanilin or its homolognes, including the sulphonic acids, with metaoxybenzaldehyde; sulphonating the metaoxylenco bases obtained thereby; and then oxidizing the resnlting lence-sulphonic acid with a suitable reagent, such as lead peroxide.
567,615-September 15, 1896. F. RUNKEL. Blue azo dye.
The azo coloring matter produced by combining one molecular proportion of the diazo compound of dimethyl-paraphenylenediamin, $\mathrm{NH}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{~N} .\left(\mathrm{CH}_{3}\right)_{3}$ with one molecular proportion of the sodinm salt of dihydroxynaphthalene sulpho-acid; a dark powder with bronze-lize uster, solabie in alconol and in hot water with a blne color, in
and dyeing wool in acid bath.
568,344-September 29, 1898. A. GANSWINDT. Mordanting textile fabrics.
Cotton or other vegetable textile fibers are mordanted with lactate of zinc and subsequently dyed.
568,549-September 29, 1896. C. RUDOLPH AND E. VOGES. Yellow dye.
A yellow tetrazo dyestnff obtained by the combination of diazotized toluylen-diamin-sulpho-acid ($\left.\mathrm{CH}_{3} \cdot \mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H} \cdot \mathrm{NH}_{2}=1.2 .4 .6\right)$ with nitro-meta-phenylenediamin; a light-brown powder dissolving in water to a yeliow solution, from which a gelatinous precipitate is obtained by the addition of an acid; dyeing unmordanted cotton a pure yellow from an alkaline soap bath.
669,395-October 13, 1896. E. ULLRICH AND M. VON GALLOIS. Process of dye-
ing phenetidin rcd.
A bluish-red color is produced by combining on the fiber orthonitroparaphenetidin with beta-naphthol to an azo compound, and fixing the color by turkeyred oil and a metallic compound, as aluminate of soda.
569,404-October 13, 1896. R. BRASCH. Alizarin dye and method of making same.
Alizarin coloring matters-alpha-amido-flavo and anthra purpurin-dyeing mordanted wool and cotton scarlet-red shades: are produced by heating the
temperature with nitrosulphuric acid, separating the benzoylized alpha-nitroalizarin by pouring it into water, saponifying by means of soda-lye and reducing to the amido compound by means of reducing agents, such as zinc
569,405-Octaber 13,1896 . R. BRASCE. Green alizarin dye and nethod of making same.
Green coloring matters are produced from alpha-amido and alpha-nitro compounds of alizarin by mixing with glycerin and sulphuric acid, gradually product by pouring into water. Easily soluble compounds are obtained by product by pouring into water. Easily soingle the quinoline compounds with concentrated solutions of alkaline bisulphites, such as sodium bisulphite. The alpha-quinolin compound of bisulphites, such as sodium bisulphite. in nearly insoluble in water, difficitly soluble in the ordinary organic solvents, soluble in sulphuric acid, in alkaline-sulphite compounds with a carmine color, and dyes mordanted wool and cotton in green shades.
569,418-October 13, 1896. H. LAUBMANN. Blue dye and method of making same.
Blue coloring matter, produced by treating an acid solution of dinitroan-thrachrysone-disulphonic acid-No. 569,419-with reducing agents, such asiron, zinc, etc., and subsequently boiling with alkalis; a red crystalline powder concentrated sulphuric acid with bluish-red color, taken up by wool in an acid bath, the fibers assuming shades ranging from blue to violet, with metallic mordants.
569,419—October 13, 1896. H. LAUBMANN. Dinitroanthrachrysone-disulphomic acid and method of making same.
Anthrachrysone is sulphonized and the product nitrated. The acid is easily soluble in water and alcohol, ether, benzene, chloroform, and glacial acetic acid, decomposing at above $230^{\circ} \mathrm{C}$., solnble in alkalis with red color, its sodium salta crystallizing from water in gold-yellow leaflets with formula of $\mathrm{C}_{14} \mathrm{H}_{4} \mathrm{O}_{6}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{SO}_{2} \mathrm{Na}\right)_{9} \mathrm{H}_{2} \mathrm{O}$; a vailable as coloring matter and for the production other coloring matters.
571,983-November 24, 1896. C. R1S. Black triazo dye.
A black triazo coloring matter produced by diazotizing a mixed diazo dyestuff obtained from benzidin, an alkylated beta, alpha ${ }_{4}$-amidonaphthol-beta, ${ }_{3}$, sulpho acid and a nonalkylated beta a_{1}-alpha a_{4}-amidonarhthol-beta a_{3}-sulpho acid; and combining the diazo compound thus obtained with resorcin; a black powder soluble in water with bluish-black color, in concentrated sulphuric acid with a grayish-blue color, and dyeing ummordanted cotton in gray to deep-black shades.
572,723-December 8, 1896. C. RUDOLPH. Trisazo dye.
Triazo dyestuffs obtained by first forming intermediate products by combining the paradiamins, as, for instance, benzidin, with a metaämidoöxysulpho acid of the benzene series which contains the OH group and the NH_{2} group in the so-called "meta" position; then combining these intermediate products with metaphenylendiamin or resorcin; and finally causing diazonaphthionic acid to act upon the thus resulting intermediate dyestuffs; a black powder soluble in water with brown to brown-red solntions, in concentrated sulphuric acid with violet to blne solutions, and dying unmordanted cotton from an alkaline bath brown red to corinth.
573,999-Dceember 15,1896. T. SANDMEYER. Red dye.
A red dyestuff produced by condensing benzaldehydeorthosulpho acid with an alkylated meteämido phenol, such as diethylmetaämidophenol, removing one molecnle of water from the thus obtained dihydroxylated tetraethyldiamidotriphenylmethanmonosulpho acid, as by treating with concentrated sulphnric acid, and oxidizing the thus-formed derivative of triphenylmethan oxide; a greenish crystalline powder, easily soluble in alcohol and acetic acid with a blinish-red shade showing a yellowish-red fluorescence, in hydrochloric acid and dilnted sulphuric acid with a yellowish-red shade tnrning to bluish red by addition of water, and producing on wool and silk pure red shades fast against alkalis.
575,228-January 12, 1897. M. VON GALLOIS. Stable diazo compound.
Stable, soluble, nonexplosive, diazo componnds of paranitranilin and dianisidin in the form of a paste or powder, produced by concentrating or evaporating to dryness solntions of paranitranilin and dianisidin at a low temperature, below 45° C., in presence of an excess of a mineral acid and in presence of an
acid mineral salt. The paranitro diazo benzol sulphate is a light-yellow powder. 575,904-January 26, 1897. C. RIS. Black azo dye.
Black azo colors prodnced by combining the tetrazo compound of a paradiamin, such as paradiamidoditolylamin, with beta ${ }_{1}$-alpha ${ }_{4}$-amidonaphtholbetassulpho acid and with a metadiamin; a black powder, soluble in water with a blnish-black color, in concentrated sulphuric acid with blue color, dyeing
unmordanted cotton, or mixed goods, deepblnish-black shades of great fastuess.
576,29:2-February 9, 1897. C. O. MULLER. Rhodamin dye.
Insymmetrical dimethyldiethyl rhodamin dyestuff: produced by the condensation of one molecule of a dialky lamidooxybenzoylbenzoic acid derived from one molecule of anhydrous phthalicacid and one molecne of dialkylmetamidophenol, with one molecule of an alkyl derivative of metaamidophenol; constiand dissolving ju concentrated sulphuric acid and in hydrochloric asid with ycllow coloration which turns red on adding water.

576,22S—February 2, 1897. C. O. MULLER. Rhodamin dye.

Rhodamin dyes, consisting of an alkylester of the unsymmetrical coloring matter of No. 576,222 , produced by boiling same with alcohol and hydrochloric acid; a green powder with metallic luster, dyeing cotton, silk, and wool a blue red.
576,511-February 2, 1897. G. STEINIKE AND F. SCHMIDT. Blue trisazo dye. Mixed triazo coloring matters produced by combining one molecule of dioxynaphthalenemonosulphonic acid S, of No. 444,679 , with one molecule of a diazo componnd and coupling the monoszo coloring matter thus formed with one molecnle of a tetrazo compound, and then coupling the resulting intermediate product with a further molecule of a phenol, naphthol, or their carbonic color, soluble in sulphiric acid with blue color, and dyeing cotton blue tints. 578,093-March 2, 1807. A. COBENZL. Blue dye.

A blue basic dyestuff, obtained by heating diethylsaffranin, obtained from diethylpara, henylenediaminand anilin, with paraphenylenediamin under pressure and in presence of an indifferent solvent.
578,432-1 March 9, 1897. M. ULRICH AND J. BAMMANN. Davk-blue azo dye.
Dark-blue substantive dyestufis produced by combining one molecular proportion of a tetrazotized diamin with one molecular propertion of amidonaphthol-
disulpho acid ($\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=2: 3: 6: 8$) and one molecular proportion of amidonaphtholmonosulpho acid ($\left.\mathrm{NH}_{2}: \mathrm{SO}_{3} \mathrm{H}: \mathrm{OH}=1: 4: 8\right)$ or alkaline salts thereof: a dark powder soluble in water with a bluish-black color; diazotizable when lixed on the fiber.
578,578-March 9, 1897. C. O. MULLER. Rhadamin dye.
Rhodamin dyes produced by the condensation of one molecule of the dialkylamidoöx ybenzoyl-benzoic acid, obtained by the action of one molecule of anhycule of a metacmidophenel as metaämidocresol ($\mathrm{CH}_{3}: \mathrm{NH}_{2}: \mathrm{OH}=1: 2: 4$) and the subsequent conversion of the product of condensation into salt by heating it with an acid. The unsymmetrical dimethyl-methyl-rhodamin dye derived rom dimethylamidoöxybenzoylbenzoic acid and metaämidocresol dyes with tamnin and tartar emetic mordanted cotton viyidly red tints.
578,580-March 9, 1897. F. PETERSEN. Substantive cotton dye.
Substantive cotton dyestuffs produced by combining one molecule of the tetrazo derivative of the Griess benzidinsulpho acids with two moleculcs of gammaämidonaphtholsulpho-acid, diazotizing the dyestuff thus obtainad, and amido compounds, as an aromatic metadiamin; a black powder, dyeing cotton an intense blue black.
579,773-March 30,1897 . C. RUDOLPH. Red-blue disazo dye.
Red-blue diazo dyestuffs produced by combining tetrazo-ditolyl, or tetrazodiphenyl, with one molecule of alpha 1 -alpha 4 -amidoöxynaphthalene-beta q^{-} beta ${ }_{3}$-disulpho acid in an alkaline solution, and then combining the interme-
diate compound thus obtained with one molecule of 2.3 -dioxynaphthalene; a dark blackish-brown powder with a feeble metallic luster, dyeing unmordanted cotton pure red blue.
580,186-April 6, 1897. A. HERRMANN. Blue dye.
The monosulphonic acid of tetraälkylmonobenzyltriamidodiphenyl-orthotolylearbinol, a copper-colored powder of metallic luster: produced by condensing tetraälkyldiamidobenzhydrol with monobenzyl-orthotoluidin monosulphonic acid, and then oxidizing the thus-obtained sulphonic acid of tetraalkylbenzyl-
triamidodiphenyl-orthotolylmethan. It dyes wool and silk an even and fast blue in an acid bath.
580,187-April 6, 1897. A. HERRMANN. Fast blue dye.
The monosulphonic acid of pentaälkyltriamidodiphenyl-orthotolylcarbinol, a copper-red powder of metallic luster: produced by condensing tetraalkyldiamidobenzhydrol with monoalkyl-orthotoluidin aulphonic acid, and then oxidizing the thus-obtained sulphonic acid of pentaalkyltriamidodiphenyl-orthotolylmethane. It dyes wool and silk an even and fast blue in an acid bath
580,188-April 6, 1897. A. HERRMANN. Blue acid dye.
The disulphonic acid of monobenzyl-tetraälkyltriamidodiphenyl-orthotolylcarbinol, a copper-red powder of metallic luster: produced by condensing tetraälkyldiamidobenzhydrol with monobenzyl-orthotoluidin disulphonic acid, and then oxidizing the thus-obtained sulphonic acid of monobenzyltetraälkyl-triamidodiphenyl-orthotolylmethane.
582,85s-May 18, 1897. A. FEER. Stable diazo compound.
Compounds for dyeing and printing: produced by combining one molecule of a sulpho acid of an aromatic hydrocarbon, as a disulpho-acid of naphthalene, with one molecule of the diazo derivative of an aromatic amido compound, as of paranitranilin. The disnlphomaphthalate of paranitrodiazobenzene is a yellow erystallized stable salt which can be preserved in a dry state. Fabrics, etc., are dyed and printed by first padding with an alkaline solution of beta-naphthol and then applying a solution of the salt.
582,958-May 18, 1897. F. SCHMIDT AND O. ERNST. Trisazo dyc.
A bluish black triazo dyestuff: produced by combining one molecule of diazonaphthalenesulphonic acid with one molecule of dioxynaphthalenemonosnlphonic acid 1.8.4, subjecting the monoazo dyestuff thus formed to the action of one molecule of tetrazotized benzidin until an intermediary product is obtained; and lastly, treating this intermediary product with metaphenyldiamin; a grayish-brown powder, soluble in water with a blue-violet color, in concentrated sulphurie acid with a blue color; the direct-dyeing color of 4 per cent on
unmordanted cotton being bluish blank.
582,959-May 18, 1897, F. SCHMIDT AND O. ERNST. Trisazo dye.
The intermediary product of No. 582,958 is treated with naphthylamin (instead of metaphenylendiamin), producing a violet-brown powder of metallic luster, but dyeing bluish black.
583,267-May 25, 1897. J. SCHMID AND H. WEIL. Blue-green dye.
Coloring matters are produced from benzaldehyde disulpho acids ($\mathrm{COH}: \mathrm{SO}_{3}$ $\mathrm{H}: \mathrm{SO}_{3} \mathrm{H}=1: 2: 5$ and $1: 2: 4$) and nonsulphonated benzylanilin derivatives, by first forming leuco compounds by the condensation of one molecule of benzaldehyde disulpho acid with two molecules of anilin derivatives, cne of which at least is one of the following nonsulphonated benzylanilin derivatives: henzylethylanilin, benzylmethylanilia, dibenzylanilin, monobenzylorthotoluidin, or their products of substitution, which contain a methyl, or nitro group, or chlorin in the radical of benzyl; and subsequently treating these leuco compounds by means of oxidizing agents, as peroxids or chromic acid; dyeing animal fiber in
an acid bath a blue-green to green-blue tint, fast against alkalis and dilute an aci
acids.
585,439-May 25, 1897. W. HERZBERG AND O. HANSMANN. , Black azo dye.
A dark-brown powder of metallic luster, obtained by rediazotizing the compomnd produced by the action of diazotized picramic acid on alpha, naphthyl amin-beta ${ }_{\text {a }}$ monosnlphonic acid, and by combining the diazo compound thus obtained with beta-naphthol. It produces on wool blackish-violet tints, which by treatment with chrominm selts are converted into fast, deep black shades. 589,634-June 1, 1897. J. SCHMID AND K. JEDLICKA. Black trisazo dye.

Black triazo dyestuffs: produced by combining one molecule of the tetrazo derivative of a paradiamido base of the series of diphenyl with one molecule of a monoazo coloring matter derived from one molecule of an amidonaphtholdisulphonic acid and one molecule of an aromatic diazoaldehyde, and one molecule of an aromatic amido compound, such, for example, as metatoluylenediamin, metaphenylenediamin, naphthylamins, naphthylamin-sulphonicacids, amidonaphthols, and amidonaphthol-sulphonic acids; a dark powder of a lightbronze luster, soluble in water with violet-black to bluc-black coloration and
dyeing cotton violet black to green black.
588,685-June 1, 1897. J. SCEMID AND K. JEDLICKA. Bluc trisazo dye.
Blue triazo dyestuffs: produced by combining one molecule of the tetrazo derivative of a paradiamido base of the series of diphenyl with one molecule of a monoazo coloring matter derived from one molecule of an amidonaphthol
disulphonic acid and one molecule of a diazo-benzoic-acid
molecule of a naphtholic componnd, such as naphthols, amidonaphthols, oxynaphthols, and their snlphonic acids; a powder of bronze luster, soluble in water with a dark-blue to green coloration, and dyeing unmordanted cotton
dark-blue to greenish-blue fast tints.
684, 119-June 8, 1897. C. O. MULLER. Rhodamin dye.
The alkyl ether of the unsymmetrical dimethyl-methylrbodamin derived
from dimethylamidoöxybenzoyl-benzoic acid and metaimidoparacresol, constituting, in the form of its hydrochloric salt, fine green crystals, soluble in water and alcohol with a red tint, in concentrated sulphuric acid with a yellow tint, and dyeing cotton, silk, and wool in red tints.
584,981-June 22, 1897. M. BONIGER. Blue dyc.
Blue coloring matter: produced by combining one molecule of the tetrazo compound of dianisidin in an alkalinesoda solution with one molecule of l. nasphthol 3.6.8 trisulphonic acid and combining the intermediate product thus lormed with one molecule of beta-naphthol; a brouze powder soluble in water with a pure blue shade; in strong sulphoric acid with a greenish-blue; water with a pure blue shade; in strong sulphoric acid with a g greing unmordanted cotton in a boiling-salt or Glauber-salt hath.
585,104-June 22, 1897. K. JEDLICKA. Green triazo dye.
Greea triazo dyestuffs: produced by combining one molecule of the tetrazo derivative of a paradiamido base of the series of diphenyl with one molecule of a monoazo coloring matter derived from one molecule of an amidonaplitholdisulphonic acid and one molecule of a diazobenzoic-acid compound and one molecule of a phenolic componnd, as phenol, cresol, resorcin, and cresotinic meid; a bronze powder soluble in water with a green coloration, and dyeing anmordanted cotton in fast dark-green to yellowish-green tints.
585,934-July 6, 1897. C. De LA HARPE. Blue dyc.
Blue coloring matter: produced from the leuco hody obtained by the condensation of resorcin with a grollocyanin dye (No. 547,I73) by sulphonating the said body with sulphuric acid, then subjecting an alkaline solution of the sulpho
derivative to contact with the air, precipitating the product of oxidation with sufficient acid to neutralize the alkali employed, and finally forming the product of oxidation into an alkaline salt; dyes nonmordanted wool and chromed wool and mordanted vegetable fibers.
587,757-August 10, 1897. I. ROSENBERG AND F. KRECKE. Naphthylenediaminsulfo acid, and process of making it.
A new naphthylenediamin, characterized by containing two amido groups in A new or 1.3 position, producible by heating 1.3 .6 naphthol or naphthylamin-
meta -3 , disulpho-acid with an excess of ammonia in an autoclave at temperatures of
160° to 190° C., forming easily soluble alkali salts, and combining with diazo and tetrazo compounds to form valuable cotton dyes.
588,180-August 17, 1897. I. ROSENBERG. Bluish-scarlet dye.
Azo dyestuffs produced by combining molecular proportions of diazotized monamins with produced naphthylenediaming molecular proportions of diazotized paratoluidin monosulpho acid with 1.3 .6 -naphthylenediamin-mono-sulpho acid; a brownish-red bronzy powder soluble in hot water, in concentrated sulphuric acid with violet coloration, dyeing unmordanted cotton a bright bluish scarlet.
588,181-August 17, 1897. I. ROSENBERG. Reddish-violet dye.
Tetrazo dyestuffs: produced by combining molecular proportions of tetrazotized diamins, employed in the manulacture of tetrazo dyestuffs, with bimolecular proportions of 1.3 naphthylenediamin-sulpho-acids; black bronzy powders, soluble in hot water, dyeing unmordanted cotton bright reddish violet.
588, 182-August 17, 1897. I. ROSENBERG. Mixed substantive dye.
Produced by combining molecular proportions of any of the tetrazo bodies usually employed for the manufacture of substantive dyestuffs with molecular proportions of an amin or phenol or a sulpho or carbo acid thereof, and reacting with the so-contained intermediate bodies on molecular proportions of a 1.3 naphthylenediamin mono or di sulpho acid (No. 587,757).
588,189-August 17, 1897. I. ROSENBERG. Brown substantive dye.
Substantive dyestuffs: produced by combining the rediazotized primary or mixed tetrazo dyestuffs, characterized by containing a 1.3 naphthy lenediamin sulpho-acid as component part, with an amin.
588,588-August 17, 1897. V. G. BLOEDE. Process of dyeing anilin-black.
The fiber or fabric is impregnated with anilin, its homologues, or analogues, or a salt of these combined with a suitable oxidizer, and then subjected to the fumes or vapors of a mineral acid capable of liberating the oxidizer.
588,997-August 17, 1897. A. COBENZL. Gray dye.
A gray dyestuff produced by condensing alkylsaffranin with formaldehy de in a strong mineral-acid solution; a black powder easily soluble in water, difficultly soluble in alcohol, insoluble in ether, benzene, ligroin, etc., and soluble in concentrated sulphuric acid with a green color.
589,766-September 7, 1897. J. VILLE. Red dye.
Red coloring matters formed by heating aromatic bydrazins, as phenylhydrazin, with rosolic acid in the presence of alcohol, the vapors evolved being condensed, and the proportions varied in accordance with the depth of color desired.
590,088-September 14, 1897. C. BULOW. Black disazo dye.
Black diazo dyes derived from the oxynaphthylamin-sulpho-acid ($\mathrm{NH}_{2} \mathrm{OH}$. $\mathrm{SO}_{3} \mathrm{H}-1.8 .4$) by combining one molecular proportion of this acid with two molecular proportions of one and the same diazo compound or one molecular proportion each of two different diazo compounds, as
acid and diazo compound of alpha-naphthylamin.
591,509—October 5, 1897. J. VILLE. Red dye.
Red coloring matters produced by heating a fatty hydrazin with rosolic acid; soluble in alcohol and acetic acid, forming red solutions, and in hydrochloric and sulphrric acid forming yellowish solutions.

591,616-October 12, 1897. M. BÖNIGER. Trisazo dye.

Substantive triazo coloring matters produced by combining one molecnle of the tetrazo compound of a paradiamin, such as benzidin, with one molecale of paraxylidin, rediazotizing the intermediate products and combining the thus produced tetrazo compounds with two molecules of amidonaphthol-disuaphonic acid H; being powders of slaty to purplish-brown color; soluble in water and methylic alcohol, dyeing unmordanted cotton from a bath containing common salt in intense blue shades ranging between indigo and dark-greenish bine, producing when diazotized on the tiber by combination with beta-naphthol
a deep black, with metaphenylene-diamin a greenish-black, and with resorcin a deep black,
a dark green.

592,608-October 26, 1897. B. HEYMANN AND R. REYHER. Red azin dye.
Azin dyes produced by oxidizing first one molecular proportion of the hydrochlorate of paraimidomonoalkyl-orthotoluidin with one molecular proportion of monoalkyl-ortho-toluidin, and secondly oxidizing the resulting indamin compound with any primary amin of the aromatic series; brown powder, soluble in water with a splendid red color, same in alcohol, in concentrated sulphuric acid with 凤 green color; producing clear fast red shades on mordanted and unmordanted cotton.
593,347—November 9, 1897. F. BENDER. Violet disazo dye.
Diazo dyes derived from 2 amido 5 naphthol 7 sulpho-acid-No. 52I,095-and forming dark powders of metallic luster, soluble in water with a red to violet color, dying cotton without mordant, yielding red to violet shades, and the
solution in concentrated sulphuric acid having a greenish to bluish shade.
593,790—November 16, 1897. M. ULRICH AND J. BAMMANN. Blue-black disazo dye.
A wool-dycing diazo coloring matter produced by combining one molecular proportion of paradiazobenzene-sulpho acid with one molecular proportion of alpha $_{1,}$ amido o-alpha, naphthol-alpha ${ }_{2}$ sulpho acid, or salts thereof, in a weakly with one molecular proportion of alpha-diazonaphthatene in alkaline solution. 594,105-November 2S, 1897. K. R. VIDAL. Sulfur dye.
Coloring ratters are produced by reacting with sulphur upon specified derivatives of benzenc (resorcin, metaamidophenol, sulphaminol, chrysoidin), the substances being heated together in the presence of an alkaline sulphide; dyeing cotton fibers a black or brown black.
594,106-November 25, 1897. H. R. VIDAL. Mixed sulphur dye.
A coloring matter produced by heating paraphenylenediamin and hydroquinone in equal parts in presence oI sulphur; constituted in part by a body part by a body solnble in alkalis and dyeing vegetable fibers dull blue.
594, 107-November 29, 1897. H. R. VIDAL. Thiazin dye.
Paradioxy thiazin is prodnced by heating with sulphur a mixture of paramidophenol and hydroquinone; paramidoöxythiazin by heatiug sulphur, paramidophenol, paraphenylenediamin, and bydroquinone.
594,123-November 2s, 1897. C. H. RUDOLPH AND J. HERBABNY. Blue-red tetrazo dye.
Bluish-red tetrazo dye: produced by combining tetrazo-dichlordiphenỳl, derived from diorthochlorbenzidin, with two molecules of beta-naphthylamin-beta-disulpho-acid, the so-called "amido R acid;" dyeing cotton without mordants a fast and brilliant bluish red.
594,996 - Deccmber 7, 1897. M. KAHN AND F. RUNKEL. Black azo dye.
Black azo dye produced by combining equimolecular proportions of tetrazotized, paradiamidodiphenylaminsulphonic acid with alphanaphthylaminbetasulphonic acid 1.6 or I. 7 , coupling the intermediate product thus obtained with one molecular proportion of amidonaphtholsulphonic acid G, rediazotizing the diazo compound thus obtained and finally combining with two molecular proportions of a metadiamin, such as metaphenylenediamin or metatoluylenediamin; a brownish-black powder, soluble in hot water, with a violet-black color, yielding an unmordanted cotton deep bluish-black shades, fast to alkalis, acide, and light.
595,021-December 7, 1897. M. KAHN AND F. RUNKEL. Black azo dye.
A substantive black dyestuff produced by combining one molecular proportion of tetrazotized paradiamidodiphenylaminsulphonic acid with two molecular proportions of amidonaphtholmonosulphonic acid G in an alkaline solution, rediazotizing the diazo dyestuff thus obtained and further combining the so-
formed tetrazo compound thereof with two molecular proportions of a metadiformed tetrazo compound thereor with two molecular proportion
595,349-December 14, 1897. R. E. SCHMIDT. Anthrarufin dye.
A blue-alizarin dyestuff, the disulpho-acid of paradiamidoanthrarufn, produced by treating paradinitroanthrarufin-disulpho acid with reducing agents such as stannous chloride and hydrochioric acid; dyeing unmordanted wool in shades.
595,350-December 14, 1897. R. E. SCHMIDT. Blue dye from chrysazin.
A blue alizarin dyestuff, a disulpho acid of the paradiamidochrysazin: produced by sulphonating chrysazin and then subjecting the thus obtained disulpho acid of chrysazin to agents of nitration, and hnaly reducing the disulpho acid of dinitrochrysazin th the disulpho acid of diamidochrysazin; a dark-violet and yielding on chrome-mordanted fibers greenish-blue shades.

596,333-December 28, 1897. C. O. MULLER. Rhodol dye.

Dyestuffs of the phthalein series are produced by condensing the dialkyl amidooxyenverted into derivatives soluble in water by treating them with an may be conver andan acid. The dyestuff formed by the hydrochloride of an alkyl ether of dimethyl rhodol dyes wool, silk, and tannin-mordanted cotton in yellow-red tints.
596,559-January 4, 1898. A. WEINBERG. Brown sutpureted dye.
A brown coloring matter produced by heating one part of dinitrocresol with soluble in water in presence of sulphides or strong alkalis; dyeing unmordanted cotton brown.
597,983-January 25, 1898. M. H. ISLER. Black substantive cotton dyestuff.
Black coloring matter produced by energetically treating the anthraquinone derivatives such as dinitroanthraquinones, the corresponding amidoanthraquinones, , the intermediate reduction compounds, alizarin, anthrapurpurin, flavo-sulpho-acids, with alkaline suiphides or polysulphides until a water-soluble product results, free from nnchanged initial material; giving greenish to violetblue solutions.
598,118-Fcbruary 1, 1899. H. SCHMID. Process of discharging red.
Paranitranilin red is discharged by printing thereon a discharging color containing a tin salt and acetin, a new product, having a dissolving action upon
the red, and then allowing the discharge to act in the usual manner by steaming.
599,405-February 2\%, 1898. R. E. SCHMIDT. Blue-black alizarin dye.
Alizarin dyestuffs produced by first condensing purpurin with a primary amin, as anilin, which process may be carried out under the addition of condensing.
agents, such as horic acid, and, secondly, treating the intermediate condensation product thus obtained with sulphonating agents, such as concentrated sulphuric acid.
699,426-February22,1898. R. E.SCHMIDT. Green dye derived from anthraquinone. Anthraquinone dyestuffs, being monosulpho acids of condensation products obtainable from one molecule of quinizarin and two molecules of certain primary aromatic amins, as paratoluidin: produced by treating the said condensation products with agents of sulphonation, such as sulpharic monohydrate, containing
quantity of
water, introducing the reaction mixtore into cold water and precipitating the dyestuff; dyeing wool in acid baths fast green shades.
599,427-February 22, 1898. R. E. SCHMJDT. Green dye derived from quinizarin. Anthraquinone dyestuffs, being disulpho acids of the condensation products, as per No. 599,426 , are ohtained by sulphoneting with weakly fuming sulphuric prior patent.
599,532—February 2શ, 1898. C. RIS. Black trisazo dye.
A black triazo color produced by combining the tetrazo compound of paraphenylenediaminazobet a_{1} alpha ${ }_{4}$ amidonaphthol beta ${ }_{3}$ sulpho-acid first, in acid $^{\text {sold }}$ solution with one molecule of a metadiamin (such as metaphenylenediamin),
and then in alkaline solution with one molecule of beta alpha4 amidonapthol and then in alkaline solution with one molecule of beta ${ }^{\text {alpha }}$ amid
heta a_{3} sulpho-acid; dyeing unmordanted cotton in deep black shades.
601,038-March 22, 1898. M. BÓNIGER. Blue-black mired trisazo dye.
Mixed triazo coloring matters produced by combining in an alkaline solution one molecule of the simple azo color obtained in acid solution from diazotized beta alpha $_{4}$ amidonaphthol beta beta $_{3}$ disulphonic acid and alphathis intermediate product with one molecule of an amidonaphtholsulphonic acid.
601,06s-March 22, 1898. C. RIS. Benzidin-orange.
An orange coloring matter produced by condensing a paradiamin, such as benzidin, with paranitrotoluolsulpho acid in a solution of a caustic alkali; a sulphuric acid with a red-violet color.
601,363-March 29, 1898. H. R. VIDAL. Thiazin dye.
Coloring matters derived from thiazin compounds: produced by reaction of sulphur on one or more para suhstitution products of thiazin derivatives, or molecules to tetraphenetrithiazin products, one or more of said thiazin derivatives having amidogen in the para position in one nucleus and one of specified hydrogen-containing groups in the para position in the other nucleas, and the resulting tetraphenetrithiazins having one of the hydrogen-contrining groups in the para position in each of the nuclei at the ends of the chain of four nuclei.
601,964-March 29, 1898. H. R. VIDAL. Process of obtaining dyes from sulfanilic acid.
An amidophenol is heated with parasulphanilic acid, yielding a blue coloring matter, dyeing cotton directly in an alkaline bath.
601,565-March 29, 1898. H. R. V1DAL. Black dye.
Black coloring matters: produced hy heating the condensation products of parasulphanilic acid and paramidophenol in presence of sulphur, the mass being dissolved in a solution of caustic soda and
unmordanted cotton in shades of very deep black.

601,859-April 5, 1898. C. RUDOLPH, Blue azo dye.

Blue tetrazo dyestuff: produced by comhining tetrazo diphenyl or ditolyl first with one molecule of amidoöxy-alpha-naphthalene-disulpho-acid in an alkaline solution, and then with one molecule of dioxynaphthalene 2.6 dissolved in alkali; a black-violet powder with a metallic luster, soluble in water with a blueviolet and in sulphuric acid with a greenish-blue color.

602,540-April 19, 1898. M. KAHN. Violel dye.

Tetrazo dyestuff: produced by combining one molecule of tetrazotized dianisidin with one molecule of 2.3 .6 naphtholdisulpho acid, and further coupling the intermediate product thus obtained with one molecule of paraxylidin; a brownish-hlack powder with a hronze-like luster, soluble in water with a
browish-violet color, in concentrated sulphuric acid with a blue color, dyeing browish-violet color, in concentrate
unmordanted cotton violet shades.
602,54/-April 19, 1898. P. OTT AND T. KROEBER. Blue azin dye.
Azin dyestuffs: produced by condensing sulpho acids of symmetrically disubstituted 1.3 naphthylenediamins having the sulpho group in position 8 with certain disubstituted amidoazo-benzene sulpho acids; dissolving in water yielding blue rolutions, in concentrated sulphuric acid with a green color; dyeing unmordanted wool in acid baths fast blue shades.
602,657-April 19, 1898. E. KÖNIG. Bassic red disazo dye.
Scarlet-red dyestuff ohtained from diazotized meta-trimethyl ammonium phenyl-azo-metertoluidin and beta-naphthol; a brown-red powder, soluble in Water with a hlue-red color, and dyeing tanned and untanned cotton, as well as half wool, scarlet red in an acid solution.
602,638-April 19, 1898. E. KÖNIG. Basic yellow disazo dye.
Yellow dyestuff obtained from diazotized meta-trimethyl ammonium phenyl-azo-meta-toluidin and 1 phenyl 3 methyl 5 pyrazolon; an orange-yellow pow-
der, soluble in water, alcohol, ether, and benzene; dyeing tanned and untanned der, soluble in water, alcohol, ether, and benzene; dyeing tanned and untanned
cotton, as well as half wool, in an acid bath, yellow. cotton, as well as hali wool, in an acid bath, yellow.

602,699-April 19, 1898. E. KÖNIG. Coppery-brown dye.

Brown dyestuff obtained from diazotized mets-trimethyl ammonium phenyl-azo-meta-toluidin and chrysoidin; a black-green powder, soluble in water, with a reddish-yellowish-brown color, and dyeing tanned and untanned cotton, as
well as half wool, a coppery brov'n well as hall wool, a coppery brown
602,640-April 19, 1898. E. KÖNIG. Red-violet basic disazo dye.
Reddish-violet dyestuff obtained from diazotized meta-trimethyl ammonium soluble in water with a cherry-red color and beta-naphthol; a brown powder ton, as well as balf wool, a reddish violet in ay acid bath and untanned cot-
602,641-April 19, 1898. E. KÖNIG. (Rcissue: 11,714-January 11, 1899.) Basic
disazo dye.
Brown diazo and polyazo dyestuffs: produced hy diazotizing the amidoazo dyestuffs from diazotized aromatic amido-ammoninm bases and primary alphyl-
dyestuffs; yielding, when chrysoidin is used, a blackish-brown powder, easily soluble in water with a hrown color, in concentrated sulphuric acid with an olive-green color, and d
brown in an acid bath.
602,855-April 26,1898. K. KREKELER AND A. BLANK. Blue-bíack trisazo dye
Triazo dyestuffs: produced by first combining in an alkaline solution one molecule of a tetrazotized paradiamin, such as benzidin, tolidin, dianisidin, with one molecule of amidonaphtholsulpho acid G; secondly, rediazotizing the resulting intermediate product; and, finally, coupling the intermediate prodnct with two molecules of alpha ${ }_{1}$, alpha ${ }_{4}$, dioxynaphthalene alpha ${ }_{2}$, monosulpho acid; dark powders dissolving in water with a blue color, dyeing unmordanted cotton blue shades which change into blackish blue with chromium and copper salts.
602,856-April 26, 1898. K. KREKELER AND A. ISRAEL. Black trisazo dye.
Triazo dyestuffs: produced by first combining one molecule of a tetrazotized paradiamin, such as benzidin, tolidin, or dianisidin, with one molecule of a betamonosulpho acid of alpha-naphthylamin, such as 1.6 and 1.7 ; secondly, diazotizing the resulting intermediate product: and, finally, combining the tetrazo compound thus produced with two molecules of 1.8 dioxynaphthalene, 4 sulpho acid; dyeing unmordanted cotton blue, changing to black when treated with solntions of chromium and copper salts.
602,857-April 26, 1898. K. KREKELER, A. ISRAEL, AND A. BLANK. Black trisazo dye.
Triazo dyestuffs: produced by combining one molecule of a tetrazotized paradiamin, such as henzidin, tolidin, or dianisidin, with one molecule of a betazotizing the resulting intermediate product; thirdly coupling the tetrazo compound thus obtained with one molecule of 1.8 dioxynaphthalene, 4 monosulpho acid; and, finally, combining the body thus produced, which contains still one free diazo group, with a metadiamin of the benzene series, such as metaphenylenediamin; dark powders soluble in water with violet-gray to violetblack color and yielding violet-black shades on unmordanted cotton, changing to fast black with solutions of chromium and copper salts.
602,858-April 26, 1898. K. KREKELER AND E. MARTZ. Brown trisazo dye.
Triazo dyestuffs: produced by combining the diazo derivatives of certain diazo compounds (such as the combination of one molecule of tetrazhent molecule of salicylic acid and one molecule of Cleve's naphthylaminwilpho acid) with one molecule of an orthoöxycarbonic acid of the benzene series sulpho acid) with powders soluble in water, dyeing unmordanted cotton yellowish brown to brown, becoming fast and more reddish brown on treatment with solutions of chromium and copper salts, and dyeing wool in acid baths similar shades.

603,008-April 26, 1898. M. KAHN. Violet azo dye.

Coloring matter: produced by combining in acid solution one molecule of a tetrazodiphenyl salt and two molecales of 1.8 amidonaphthol and 4 monosulpho acid; a hlack powder of a bronze-like luster soluble in water with a violet color and dyeing unmordanted cotton violet shades which change to fast

609,009-April 26, 1898. M. KAHN AND F. RUNKEL. Bluish-red dye.
Tetrazo coloring matter: produced by combining one molecule of the tetrazo derivative of a certain diamidodiphenylaminsulpho acid with two molecnles of metaphenylenediamin; dark-brown powder soluhle in water yielding a red solution, yielding on unmordanted cotton intense bluish-red shades which
change to fast brown on treatment with a solution of diazotized paranitranilin. and sodium acetate.
603,018-April 26, 1898. P. OTT AND T. KROEBER. Blue azin dye.
Azin dyestuffs: produced by condensing sulpho acids of symmetrically-disubstituted 1.3 naphthylenediamins, such as 8 mono, 6.8 disulpho-acid with the sul-pho-acids of paranitroso derivatives of secondary and tertiary aromatic amins; dark pqwders dissolving in water
in acid baths bright blue shades.

609,016-April 26, 1898. A. STEINER. Triphenylmethane-blue dye.
Violet to blue dyestuffs: produced hy first combining the alkylated derivatives of phenyl-beta-naphthylamin with tetraälkylated diamido-benzophenone, next adding phosphorus oxychloride and keeping an elevated temperature, and finally sulphonating the so-obtained compounds; dissolving easily in concentrated sulphuric acid with a red-brown shade, and in water and in ethyl alcohol with a violet shade.
608,090-April 26, 1898. K. KREKELER AND E. MARTZ. Brown trisazo dye.
Triazo dyestuffs: produced hy combining one molecule of the diazo derivatives outlined in No. 602,858 with one molecule of a metadiamin of the benzene series, such as metaphenylenediamin, metatoluylenediamin or a sulpho-acid thereof; dyeing cotton from reddish-hrown to dark-hrown shades which, when treated with solutions of chromium and copper salts, become more yellowish brown and fast.
603,095-April 26, 1898. G.STEINIKE AND F. SCHMJDT. Black disazo wool dye. Black diazo dyestuffs: produced by the action of one molecule of a diazotized naphthylaminsulphonic acid and one molecule of a diazotized amin of the benzene or naphthalenc series upon one molecule of dioxynaphthalenemonosulwith a violet color, and dyeing wool in an acid bath.
603,500-May 3, 1898. H. R. VIDAL. Process of making carboxylated products of triphenylmethane.
Mono and di carhoxylated products are derived from phenolic and amidated compounds of triphenylmethane by heating a mixture of phenol and the compound of triphenylmethane in presence of condensing agents, such as oxalic and sulphuric acid. They constitute light-yellow products in an acid state, and as salts they are a bright scarlet red.
609,645-May 10, 1898. K. KREKELER AND E. MARTZ. Green trisazo dye.
Triazo dyestufts: produced by combining the diazo derivatives of the diazo compounds of the general formula

$$
\mathrm{P}<\begin{aligned}
& \mathrm{N}=\mathbf{N}-\mathrm{R} \\
& \mathrm{~N}=\mathbf{N}-\mathrm{C}
\end{aligned}
$$

in which P represents a radical of the benzidin series, such as diphenyl, ditolyl, diphenol ether, or the like; R, the radical of an orthooxycarbonic acid of the ben"Cleve"s" alpha-naphthylamin-heta-sulphonic seric acid; and C, the radical of "Cleve's" apha-naphthylamin-beta-sulphonic acid (1.6 or 1.7), with one molesoluble in water with green color, dyeing unmordanted cottongreen shades.

603,646-May 10, 1898. K. KREKELER, E. MARTZ, AND A. ISRAEL. Gray
trisazo dye.
Triazo dyestuffs: produced by combining the diazo derivatives of the diazo compounds of the general formula $R-N=N-P-N=N-C$ (as per No. 603,645) with one molecule of 1.4 or 1.5 naphtholmonosulpho-acid; forming dark powders
dyeing unmordanted cotton greenish-gray shades.
603,647—May 10, 1898. K. KREKELER, E. MARTZ, AND A. ISRAEL. Green trisazo dye
Triazo dyestuffs. produced by combining the diazo derivatives of the diazo compounds of the general formula $R-N=N-P-N=N-C$ (as per $N o .603,645$) with one molecule of a 1.8 diox ynaphthalene mono ordi sulpho acid; forming black powders dyeing unmordanted cotton green shades.
609,648-May 10, 1898 . K. KREKELER, E. MARTZ, AND A. ISRAEL. Brown irisazo dye.
Triazo dyestuffs: formed by combining the diazo derivatlves of the diazo com pounds of the general formula $\mathrm{R}-\mathrm{N}=\mathrm{N}-\mathrm{P}-\mathrm{N}=\mathrm{N}-\mathrm{C}$ (as per No. 603,645) with one molecule of alpha-naphthylamin or of a monosulpho acid thereof: dyeing unmordanted cotton dark-brown shades, and wool similar shades in acid baths.
603,659-May 10, 1898. R. E. SCHMIDT. Dark-green alizarin derivative.
Alizarin dyestuff: obtainable by sulphonation of the condensation products from one molecule of alizarin pentacyanin and two molecules of a primary aromatic amin, as paratoluidin; forming dark powders, dyeing unmordanted and chrome-mordanted wool green shades, yielding on chrome-mordanted cotton
fast green shades.
$605,755-$ May 10, 1898. R. DEMUTH. Brown sulphur dye.
Coloring matter: produced by subjecting cresols and sulphur in a strong alkaline solution to a heat above $20^{\circ} \mathrm{C}$.; forming, in the case of its alkaline salts, a black mass, soluble in water, with a greenish-black or blueish-black color, dyeing cotton a fast brown.
605,103-Junc 7, 1898. M. KAHN AND K. HEIDENRE1CH. Black disazo dye and process of making same.
Diazo dyestuffs: produced by first combining one molecule of the diazo derivative of amidodiphenylaminsulpho-acid, having the formula $\mathrm{C}_{6} \mathrm{H}_{5}$. NH. $\mathrm{C}_{6} \mathrm{H}_{4}$. $\mathrm{NH}_{2}(1), \mathrm{SO}_{9} \mathrm{H}$ (3), with one molecule of alphanaphthylamin; secondiy, diazotizing the resulting amidoazo compound; and finally, coupling the diazoazo compound thus obtained with an alpha-naphthol-alpha-monosulpho-acid, such as 1.4 naphtholsulpho-acid, 1.5 naphtholsulpho-acid; forming dark powders, solvle in water, with a bluish-black color, dyeing wool in acid bath fast black shades.
605,119-June 7, 1898. O. NASTVOGEL. Diphenylnaphthylmeihane dye.
A diphenylnaphthylmethane dye: produced by first condensing tetraälkyldiamidobenzhydrol with certain alpha-naphthylaminsulpho acids; secondly, diazotizing the resulting leuco compound; thirdly, transforming the diazo group of the body thas obtained into the sulphinic group; and finally, changing the so-produced leuco sulphinic-sulphonic acid into the corresponding dyestuff, sulphonic acid, by means of oxidizing agents; forming a brown powder, dyeing wool in acid bath greenish-blue shades fast to alkalis.

605,568-June 14, 1898. R. E. SCAMIDT. Anthraquinone dye.
Paradiamidoanthrarufin-monosulpho acid: produced by sulphonating paradiamidoanthrarufin, by means of fuming sulphuric acid with the addition of boric acid; forming a blackish powder ayelng unmordanted wool fast greenishblue shades fades.
605,921-Junt 21, 1898. R. E. SCHMIDT AND P. TUST. Blue anthraquinone dye.
Paradiamidochrysazin-monosulpho acid: produced by sulphonating paradiamidochrysazin by means of luming sulphuric acid with the addition of boric acid; a blackish powder, dyeing unmordanted wool in acid baths blue
fast to light, yielding on chrome mordanted wool greenish-blue shades.

606,181-June 28, 1898. J. BAMMANN. Blue tetrazo dye and process of making same.
Tetrazo dyestuffs: produced by combining one molecule of a tetrazotized paradiamin with two molecules of 1.8 amidonaphthol 4.6 disulpho-acid; form ing dark powders soluble in water with from reddish-blue to blue color,' dyeing unmordanted cotton fast violet-blue to blue shades.
606,193—June 28,1898 . R. DEMUTH. Yellow-brown cotton dye.
A yellowish-brown cotton dye: produced by subjecting dinitrotoluenesulphoacid $\left(\mathrm{CH}_{8} \mathrm{NO}_{2} \mathrm{NO}_{9} \mathrm{SO}_{8} \mathrm{H}_{1: 2: 4: 6)}\right.$, or salts thereor, to the action of an alkaline-sulphid-carrying compound at elevated temperatures, up to $250^{\circ} \mathrm{C}$.
606,212-June 28, 1898. B. HEYMANN. Blue dye and process of making same.
Dyestuff produced by the reaction of paraämidodimethylanilinthiosulpho acid and nitroso 2.7 oxynaphthoxyacetic acid; dyeing chrome-mordanted wool fast bright-blue shades.
606,264-June 28, 1898. J. BAMMANN. Dark-blue tetrazo dye and process of making same.
Tetrazo dyestuffs: produced by combining one molecule of tetrazotized paradiamin, such as benzidin, tolidin, or dianisidin, with one molecule of the 1.8 amidonaphthol 4.6 disulpho-acid' (German patent No. 80,741); and further combining the resulting intermediate product with one molecule of amidonaph tholmonosulpho-acid G; being soluble in water, rediazotizable in solution or on fiber, and dyeing unmordanted cotton from blackish-blue to blue shades.
606,295-June 28, 1898. P. OTT AND T. KROEBER. Blue azin dye and process of making same.
Azin dyestuffs: produced by acting with oxidizing agents such as bichromate of sodium on a mixture of equimolecular proportions of paraämidodiphenylaminorthosulpho acid and of a sulpho acid of a symmetrically-disubstitnted 1.3 naphthylene diamin; forming a dark powder dycing wool brilliant-blue fast shades.
606,L37-June 25, 1898. F. BENDER. Amidonaphtholdisulpho acid and process of making same.
Acid "B," 1.8 amidonaphthol 3.5 disulpho-acid; produced by sulphonating 1.8 amidonaphthol 3 monosulpho acid; soluble in hot water, with difficnlty in cold water; the diazo compound being soluble in water with an intensely yellow color; the acid, when boiled with dilute sulphonic acid at $140^{\circ} \mathrm{C}$, yielding 1.8 amidonaphthol 3 sulpho-acid, and when heated with dilute caustic-soda lye up to $230^{\circ} \mathrm{C}$., yielding 1.8 dioxynaphthaline 3.5 (4.6) disulpho acid, and adapted to form an acid sodium salt.

606,488-Junc 28, 1898. F. BENDER. Blue-black dye.
Diazo dyes derived irom one molecular proportion of acid "B," No. 606,437, and two molecular proportions of a diazo compound, such as diazo-henzene, soluble in water with a greenish to reddish-blue color, and dyeing wool in an acid bath in grcenish to bluish-black shades.
606,489-June 28, 1898. F. BENDER. Grecn disazo dye.
A coloring matter, dyoing unmordanted cotton in green shades; prepared by sulphonating 1.8 amidonaphthol 3 monosulpho-acid (acid "B," No. 606,437), benzidin-azo-salicylic acid, or analogous compounds.
607,408-July 12, 1898. E. ELSA ESSER. Blue dye for wool.
Bluc dyestuff for wool: produced by oxidizing a mixture of beta-dinsphthyl-metaphenylenediamin-disulphonic acid and dimethylparaphenylencdiaminthiosulphonic ncid in an aqueons solution, and then boiling the oxidized prodnct with soda; a dark-bronze shining powder, readily soluble in water, with difficulty in alcohol.
608,024-July 26, 1898. M. BONIGER. Brown azo dye.
Substantive hrown polyazo coloring matters: produced by combining, first, one molecule of the azo color beta ${ }_{1}$ zzo alpha ${ }_{4}$ naphthol beta ${ }_{2}$ betais disulphonic acid metaphenylen or metatolnylen diamin with one molecule of a diazo compound and combining the disazo color thus cotained with one molecule of the intermediate product obtained by combination of one molecule of tetrazodiphenyl or tetrazo-ditolyl with one molecule of salicylic acid; dyeing unmordanted cotton in yellow-brown to blue-brown tints.
606,288-August \&, 1898. K. THUN. Green alizarin dye.
Alizarin dyestuffs: produced by sulphonating the condensation products obtainable from one molecule of alizarin bordeaux and two molecules of a primary aromatic amin, as paratoluidin; forming dark powders, dyeing unmordanted and chrome-mordanted wool green shades and yielding on chromemordanted cotton green shades fast to light.
608,35/4-Au'qust 2, 1898. H. R. VIDAL. Process of making violct dyes.
Violet coloring matters are produced by heating parasulphanilic acid with diamins, one to four, of benzene and naphthalene.
608,855-August 2, 1898. H. R. VIDAL. Brown-black sulfur dye.
Coloring matters: produced by heating with sulphur a condensation product of the amidobenzene sulphonic acids with a derivative of phenol or a diamin, such as the condensation product of the parasulphanilic acid and orthoamidocotton a brown black.
608,999-Augusi 16, 1898. J. BAMMANN AND M. ULRICH. Bluc-black azo dye.
A coloring matter: produced by combining equimolecuar proportions of a tetrazo-diphenyl salt with 1.8 amido-naphthol-beta-disulpho acid and alphanaphthylamin; soluble in water and alcohol with reddish-violet color, in ammonia with bright, reddish violet, dyeing unmordanted cotton in an alkaline bath violet-black shades, changing to black on treatment with nitrous acid and an alkaline solution of beta-Daphthol.
609,327-August 16, 1898. R. BOHN. Blue-black dye and process of making same.
A violct-blue to blue-black dyestuff: produced by submitting a dinitronaphthalene to the action of a reducing agent-such as sodium sulphide, grape sugar, sodium stannate, zinc dust, or the like-in alkaline solutions of the sulphites or the bisulphites of the alkalies or the alkaline carths.
609,352-August 16, 1898. P. JULIUS. Blue dye.
A blue coloring matter: produced by condensing the nitrosodiethylmetaämidophenol with alpha-naphthylaminmonosulpho acid, yielding fast indigo-like shades.
609,598-August 23, 1898. H. R. VIDAL. Red dye and process of making same.
Coloring matters: produced by heating hydrazins with a carboxylated carbinol compound, such as dicarboxylated trioxyphenylcarbinol, forming a vivid redblue mass, soluble in alkalis, directly dyeing animal and mordanted cotton fibers.
609, 599 -August 23,1898 . H. R. VIDAL. Process of oblaining triphenylmethane derivatives.
Tricarboxylated derivatives of phenolic or aminated compounds of triphenylmethane are produced by heating said compou agent, such as oxalic and sulphuric acid. (Sec No. 603,300.) They form orange-colored masses, soluble in alkalis and concentrated acids, little soluble in water.
609,997-August 30, 1898. J. SCHMID AND H. REY. Red-violet phthalein dye.
In the manufacture of dyestuffs of the phthalein series, equal molecular parts of phthalic anhydrid and metaoxyphenylorthotolylamin are melted until the moiten mass thickens, and then the product of condensation is extracted. One molecule of this product is condensed with one molecule of a meta-substituted phenol, such as resorcinol, monoethylmetaämidocresol, dimethylmetaämido phenol, etc., and the monoorthotoly phlkaline salt. It dyes wool and silk in into a sulpho acid, and then
609,998-Auguzt 30 , 1898. J. SCHMID AND H. REY. Sulfonated monobenzylphthalein dye.
The alkaline sulphonate of a monobenzylated-phthalein dye is produced by condensing one molecule of the product, resulting from the condensation of equivalent quantities of phthalic anhydrid and of a benzylalkylmetaämidophenol, with one molecule of a meta-substituted phenol: thon converting the salt. It dyes textile fibers in fery-red tints.
610,945-September 6, 1898. B. DEICKE. Red-acid dye and process of making it.
Azo dyestuffs: produced by diazotizing amidobenzylamin and its alkyl derivatives, the salts of which are expressed by the general formula NH_{2}. $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{CH}_{2}$ $\mathrm{NR}_{3} x$ (in which R represents hydrogen or an alkyl and x an acid radical), and combining with a primary aromatic amin, then rediazotizing and combining With an aromatic amin, phenol (pyrazolon), amido or oxyazo dyestuff; soluble beth.
610,349—September 6, 1898. O. ERNST. Viotei azo dye and process of making il.
A monoazo dyestuff: produced by combining diazotized 1.8.4 amidonaphtholmonosulphonic acid with alpha-naphthylamin; a green-black powder of metallio chromates or chromic acid a fast brown color.

610, 867 -September 6. 1898. A. PHILIPS. Basic diazo dye.
Basic diazo dyestuffs of the general formula, alphyl N_{2} alphyl N_{2} alphyl, OHNR NL_{3}., (in which alphyl means an aromatic radical and R an alkyl): produced by diazotizing amidoazo compounds and'allowing them to act upon phenol-ammonium bases; the product obtained by diazotizing amidoazo-benzene and treating it with 2.7 naphtholtrimethyl-ammonium being a red powder, dyeing wool and cotton cherry red in an acid bath.
610,541-September 13, 1898. G. KALISCHER. Black dye and process of making same.
A black coloring matter produced by heating oxydinitrodiphenylamin with sulphides of alkalis and sulphur in aqueous solution; soluble in water with a blue-black color and dyeing unmordanted cotton directly in an alkaline bath a deep blue-black.
611,111—September 20, 1898. E. ELSAESSER. Brown dye and process of making it.
A brown diazo dyestuff: produced by combining the sodinm-bisulphite rompound of nitroso-beta-naphthol in an acetic-acid solution with a tetrazo componnd, such as tetrazo-diphenyl and tetrazo-ditolyl, and then combining the intermediate prodnct thus formed with an alkaline solution of betay amido alpha, naphthol beta ${ }_{3}$ sulphonic acid; dyeing unmordanted cotton in a neutral or alkaline bath dark brown.
611,112-September 20,1898. E. ELSAESSER. Blue-black dye and process of making same.
A direct-dyeing blue-black cotton dyestuff produced by the action of sodium sulphide upon alpha a_{1} alpha $_{4}$ dinitronaphthalene alpha $_{2}$ monosulphonic acid.
611,597-October 4, 1898. J. BAMMANN. Green-blue tetrazo dye.
Tetrazo dyestuffs produced by combining one molecule of a tetrazotized paradiamin of the benzidin series (such as benzidin, tolidin, dianisidin) with one molecule of 1.8 amidonaph thol 4.6 disulpho acid and coupling the intermediate product with one molecule of any of the known azo dyestuff components, such as 1.8 amidonaphthol 3.6 disulpho acid, 1.4 naphtholsulpho acid, alphanaphthylamin, or the like; dark powders, soluble in water, rediazotizable
in solution or on the fiber, dyeing unmordanted cotton from violet to blue and in solution or on the
greenish-blue shades.
611,610-October 4, 1898. R. DEMUTH. Brown cotton dye.
A reddish-brown cotton dye produced by subjecting 1 naphthol 4.8 disulpho acid to the action of an alkaline-sulphide carrying compound at temperatures of 260° to $270^{\circ} \mathrm{C}$.

611,611-October 4, 1898. R. DEMUTH. Indigo-blue cotton dye.
An indigo-blue cotton dye produced by subjecting 1.8 amidonaphthol to the action of an alkaine sulphide and sulphur at 240° C., repeatedly extracting the is wholly dissolved out, and finally isolating from the joint filtrates the dye by precipitation with a metallic chloride, such as zinc chloride; dyeing anm precipitation win alkaline bath, andin bath containing suitable reducing agents, fast indigo-blue shades.
611,628-October 4, 1898. H. HASSENCAMP. Violet dye and process of making same.
A triphenylmethane dyestuff produced by combining in equimolecular proportions tetramethyldiamidobenzhydrol and methylbenzylannlindisulpho acid, oxidizing the resulting leuco componnd and converting the oxidation product shades.
611,663-October 4, 1898. M. ULRICH. Orange dye and process of making same.
Orange dyestuffs, dyeing unmordanted cotton: produced by combining one molecule of a diazotized paraamidazzo sulpho acid of the benzene series-such as amidoazo-benzene sulpho acid, amidoazo-toluene sulpho acid, or the likewith one molecule of a nitrometadiamin of the benzene series, such as nitrometaphenylenediamin; fast to acids, alkalis, and light.
611,664-October 4, 1898. M. ULRICH. Blue dye and process of making same.
Monoazo dyestuffs produced by combining one molecule of a diazotized periamidonaphtholsulpho acid, such as 1.8 amidonaphthol 3.6 disulpho acid, with one molecule of a monosubstituted 1.8 naphthylaminsulpho acid of the general such as phenyl; dyeing unmordanted wool in acid bath from reddish blue to fast blue shades.
615,118-October 25, 1898. J. J. BRACK. Rhodol derivative and process of making same.
Dyestuffs of the phthalein series produced by condensing an alkyl ether of a dialkylrhodol with formic aldehyde; a brilliant greenish powder, dyeing tan-nin-mordanted cotton a yellowish red, and on printing with potassium ferrocyanide and zinc oxide it yields a lake of the same color, not changed by steaming.
615,578-November 1, 1898. C. DE LA HARPE AND C. VAUCHER. Blue dye from gallocyanin and process of making same.
A coloring matter: produced by treating the gallocyanin dye of No. 518,458 with sulphurons acid in a free state or as a sulphite or bisulphite; dyeing and printing bluer tints than the original gallocyanin.
615,688-November 1, 1898. K. ELBEL AND I. ROSENBERG. Primary disazo blue-black dye.
A primary diazo coloring matter, dyeing wool a blue black: produced by combining the 1.8.4.6 amidonaphtholdisulpho-acid (K) with one molecule of alphadiazonaphthalene in presence of free mineral acid and then acting upon the so-formed monoazo color with one molecule of diazo-benzene in an acid combination liquid.
613,659-November 1, 1898. K. ELBEL AND 1. ROSENBERG. Primary, aisazo blue-black dye.
A primsury diazo coloring matter: produced by combining the 1.8.4.6 amido-naphtholdisnlpho-acid (K) with one molecule of paranitrodiazobenzene in presence of free mineral acid and then acting upon the so-formed monoazo color with one molecule of diazo-benzene in an acid combination liquid; dyeing wool from an acid bath blue to deep blue-black shades.
615, 640 -November 1, 1898. I. ROSENBERG AND K. ELBEL. Greenish-blue poly-
$\alpha=0$ dye. azo dye.
A polyazo dyestuff produced by combining one molecule of alpha-diazonaphthalene with one molecule of 1.8.4.6 amidonaphtholdisulpho-acid (K) in presence of free mineral acid to a monoazo color, acting upon same in presence presence of free mineral acid to a monoazo color, acting upon same in presence
of free acetic acid with one molecule of tetrazo-diphenyl and uniting the of tree acetic acid with one molecule of tetrazo-diphenyl and uniting the presence of alkuli; dyeing unmordanted cotton a deep greenish blue.

618,641-November 1, 1898. I. ROSENBERG AND F. KRECKE. Greenish-blue mixed disazo dye.
A dyestuff obtained by combining the intermediate product from one molecule of tetrazo-diphenyl and one molecule of 1.8.4.6 amidonaphtholdisulpho acid (K) with one molecule of 2.8 .6 amidonaphtholsulpho-ecid (G), effected in alkaline solution, characterized by giving with concentrated sulphuric acid a cornflower-colored solution; dyeing unmordanted cotton greenish-blue to greenish-black shades.
613,642-November 1, 1898. I. ROSENBERG. Deep-blue dye and process of making same.
A mixed substantive dyestuff produced by combining the tetrazo compound of benzidin first with one molecular proportior of 1.8.4.6 amidonaphtholdisul-pho-acid (K) to form an intermediate product which i ther pu int reaction with one molecular proportion o 1.3° naphthylenediaminsulphe acid dyeing
unmordanted cotton deep-blue ingo-like shade fron: a weakly alkaline or unmordan

615,648-Novcmber 1, 1898. I. ROSENBERG AND B. HELMERT. Orange-brown polyazo dye.
Polyazo dyestuffs produced by combining monoazo colors containing the 1.3.6 naphthalenediaminsulpho acid (No, 587,757), as component part with the intermediate products obtained from one molccule of one of the usually employed paradiamins and one molecule of an oxycarbonic acid; dyeing unmordanted cotton a fast orange-brown shade
mixed goods from a neutral bath.
613,644-November 1, 1898. I. ROSENBERG AND B. HELMERT. Reddish-brown polyazo dye.
A polyazo dyestuff produced according to No. 613,643 , using the diazo componnd of alpha-naphthylamin; dying unmordanted cotton reddish-brown shades from alkaline,or salt baths; dycing wool same shades from a nentral bath; and especially suited for dyeing mixed goods.
618,645-November 1, 1898. I. ROSENBERG. Black polyazo dye.
A polyazo dyestuff produced by reducing in alkaline solution the nitrogroup of the monoazo color obtained from one molecule of paranitrodiazo-benzene and one molecule of 1.8.4.6 amidonaphtholdisulpho acid (K) in acid solution, combining the reduced product with one molecule of tetrazo-diphenyl to form an intermediate body and acting upon this with one molecule of 1.3 .6 naphthalenediaminsulpho acid; a black powder soluble in water with black, in concenwhich can be rediazotized and combined with developers.
618,646-November 1, 1898. I. ROSENBERG AND F. KRECKE. Substantive disazo dye.
A mixed substantive diazo dyestuff produced by combining the tetrazo compound of tolidine, first with one molecular proportion of 2.5 .6 amidonaphthol-sulpho-acid (G) and then reacting on the same with one molecular proportion of 1.3 .6 naphthylenediaminsulpho-acid; dyeing unmordanted cotton bluish-violat yielding, for instance, with beta-naphthol indigo-blue shades fast to light and yielding,
613,911-November 8, 1898. C. RIS. Yellow dye and procese of making same.
An orange-yellow powder, dyeing unmordanted cotton, wool, and silk in fast greenish-yellow shades, and produced by condensation of paradinitrodibenzyland then further oxidizing the product.
618,920-November $s, 1898$. H. GUTZKOW. Grcen-blue soluble dye and process of making same.
Greenish-blue dyestnffs solnble in water, produced by causing the diazo compounds of asymmetric dialkylsaffranin to act upon naphthylamin.
618,926-November 8, 1898. C. HOFFMANN. Red rhodamin dye and process of making same.
Rhodamindialkylamids, red dyestuffs, are produced by treating rhodaminc with oxychloride of phosphorons and then with dialkylamins.
614,391-November 15, 1898. A. ISRAEL AND R. KOTHE. Disazo dye and process of making same.
Diazo dyestuffs: ohtainable from acidyl 1.4 naphtylenediamins, Cleve's alphanaphtylaminebetamonosulpho acid and naphtolsulphonic acids; forming dark powders, dyeing unmordanted cotton from reddish blue to grayish-blue shades, which can be further diazotized on fiber and coupled with amins or phenols.
614,538-November 22, 1898. R. DEMUTH. Indigo-blue dye and process of making
it. it.
Dyes giving blue shades on unmordanted cotton in alkaline baths, or in baths containing suitable reducing agents: produced by subjecting sulpho-acid compounds of 1.8 amidonaphthol, such as their free acids, or salts thereof, to the action of an alkaline sulphide-carrying compound at elevated temperatures, repeatedly extracting the resulting melt when cold with small quantities of hot water until the blue dye is wholly dissolved out, and finslly isolating the dye by precipitation with metallic salts, as zinc chloride.
615,472-December 6, 1898. E. BOURCART. Green dye and process of making same.
A green dyestuff produced by treating the sulphonic acids of alkylated metaoxydiamidotriphenylmethane or their homologues at a low temperature with concentrated nitric acid, and then oxidizing the leuco compounds thus obtained; dyeing wool and silk green in an acid bath.
615,485-December 6,1898 . C. HOFFMANN. Grcen dye and process of making same
Green to blue-green dyestuffs: produced by condensing metaälkyl-oxysulphonic acids with tetraalkyl-paradismidobenzhydrols, sulphonating with fuming sulphuric acid, and then oxidizing the leucosulphonic acids thus obtained with peroxide of lead.
615,497-December 6, 1898. C. RIS AND C. SIMON. Black trisazo dyc and process of moking same.
A black triazo color produced by combining the tetrazo compound of paraphenylenediaminazo beta a_{1} alpha a_{4} amidonaphthol beta ${ }_{3}$ sulpho acid first in acid solution with a metadiamin, and then with resorcin; dyeing unmordanted cot-
ton, wool, and silk decp-black shades. ton, wool, and silk decp-black shades.
615,791-December 1s, 1898. H. BOEDEKER. Process of making sulfonic acids of asymmetric rhodamins.
Asymmetric rhodamin dyestuffs are obtained by first substituting in the fluorescein chloride one chlorine atom by the rest of a primary or secondary
base of the fat or aromatic series, and then acting on the intermediate product tbus obtained with another primary or secondary base of the fat or aromatic series, nd transforming the dyestuff thus ohtained into the sulphonic acid hy treatment with concentrated sulphuric acid. Wool is dyed a bright red in an
acid bath. acid bath.
616,12S-December 20, 1898. I. LEVINSTEIN AND C. MENSCHING. Process of making alphylamidonaphthol-sulfonic acids.
They are produced by heating heta alpha $_{4}$ dioxynaphthalene-heta ${ }_{3}$ sulpbonic qcid with aromatic amins in the presence of means of condensation, such as the hydrochlorides of the aromatic amins, as anilin and anilin hydrochloride at irom 120° to $160^{\circ} \mathrm{C}$. Dyestuffs are obtained hy treatment with diazo or tetrazo hodies.

616,622-December 27, 1898. C. DE LA HARPE. Blue dye from gallocyanin and process of making same.
A leuco hody suitahle for dyeing and printing on textile iahrics: produced by boiling the prodnct of condensation of resorciuol and a gallocyanin dye, with an aqueous solution of an alkali while out of contact with the air; forming a
greenish-black powder which colors fihers when applied and oxidized thereon greenish-black powder which colors fibers when applied and oxidized thereon,
in redder-hlue tints than the said product of condensation. in redder-hlue tints than the said product of condensation.
617, 34,0 -January 10,1899 . P. JULIUS AND G. E. IAARIER. Phosphin dye and
process of making same. process of making same.
Phosphins and their alkyl substitution products (suhstitution in the amido group) are obtained hy condensing paraämidohenzaldehyde, or its substitution prodncts, with the alphyl derivatives of the metatoluylenediamin; the dyestuff obtained hy condensing dimethyl-paraz̈midobenzaldchyde with phenylmetatolnylenediamin, dissolving in hot water with a reddish-yellow color, becoming light yellow by the addition of dilute mineral acids.
617,544-January 10, 1899. F. SCHOLL. Yellow basic disazo dye and process of
making same. making same.
Azo dyestuffs: prodnced by diazotizing amidoazo dyestuffs ohtrined from diazotized aromatic amidoammonium bases and primary alphylamins and then acting with the same upon' aceto-acetanilid; forming orange-yellow powders, dyeing cotton, as well as wool and half-wool, light yellow in an acid bath.
617,627-January 10, 1899. O. BALLY. Process of making green dyes.
A green mordant-dyeing coloring matter is produced by melting together brom-fluoresceins and concentrated sulphuric acid and then adding boracic acid.
617,628-January 10, 1899. H. A. BERNTHSEN AND G. J. JAUBERT. Blue dye and process of making same.
A hlue mordant-dyeing dyestuff is produced by treating an oxynaphthindophenolthiosulpbonic substance with a concentrated mineral acid.
617,551-January 10, 1899. L. GIFFORD, ADMINISTRATOR OF K. HEUMANN,
DECEASED. Blue dye and process of making same.
Dyestuff: produced hy melting ethyl-phenyl-glycocol with alkali, and subsequently oxidizing, as by an air blast. It dyes hoth from the vat and in the form or sulpho acid greenish shades of blue
617,652-January 10, 1899. L. GIFFORD, ADMINISTRATOR OF K. HEUMANN, DECEASED. Process of making indigo coloring matters.
In the manufacture of indigo coloring matters frum glycocol derivatives, quicklime is added to the caustic alkaline melt, in which the glycocol derivatives are treated, giving a higher yield of the lenco compound.
617,686-January 10, 1899. M. H. LSLER. Blue dye and process of making same. Blue coloring matters: produced by treating dinitro-anthraquinones with iuming sulphuric acid containing about 30 to 40 per cent SO_{3} and horacic acid in presence of sulphur at 120° to $130^{\circ} \mathrm{C}$. Lor two to two and a half hours.
617,70S-January 10, 1899. W. HERZBERG AND H. HETMANN. Blue sqfranin dye.
A blue saffranin dye: prepared from nentral blue by first treating the latter with sulphites and subsequently reacting on the snlpho acid thus formed witb dimethylparaphenylenediamin, and forming a dark-brown powder and producing on mordanted cotton blue shades.
617,969-January 17, 1899. H. KIRCHHOFF. Red dye.
A dye: prodnced by combining one molecnle of diazotized metaämidopara-cresol-ether with one molecule of a salt of naphtholsulphamidosulphonic acid; dyeing wool clear red shades of bluish tint.
617,981-January 17, 1899. O. BALLY. Anthraquinone derivative and process of making same.
Coloring matters: produced by condensing the sulphnric acid esters of a polyoxyanthraquinone sulpho acid, wbich can he obtained hy the treatment of a nitro-anthraquinone or reduction product thereol, with fuming sulphuric acid and a reducing agent, such as sulphur, with a pbenolic body (including the bydroxycarhoxylic and sulphonic acids); dyeing unmordanted wool violet
to hlue shades which become greenish-hlue to hlue on treatment with chrome.
618,000-Jantary 17, 1899. O. BALLY. Yellow dye and process of making same.
Yellow mordant-dyeing coloring matters: produced by oxidizing an aromatie hydroxycarboxylic acid in sulphuric-acid solution, as hy the action of a persulphate.
618,152—January 24, 1899. H. R. VIDAL. Black sulphur dye.
Black dyestuffs are produced by cansing sulpbur to react upon a trisubstitnted derivative of benzene, such as diamidophenol.
618,688-January $\$ 1$, 1899. E. KÖNIG AND F. SCHOLL. Aromatic amidoammonium and process of making same.
Aromatic amido-ammoninm bases (valuable for the production of azo dyestuffs), of the general Cormula (aromatic radical) $\mathrm{N}_{2} \mathrm{~N}(\mathrm{alcyl})_{3} x$ in the form of their salts (x representing chlorine or the equivalent radical of an acid), are
produced hy reducing aromatic nitro-ammonium oases with metals, such as produced hy reducing aromatic nitro-amm
zinc or iron, in an acid or nentral solution.
618,96s-February 7, 1899. R. TAGGESELL. Blue-black azo dye and process of making same.
Azo dyestuffs: produced hy combining one molecule of the diazo derivative of a monosnlpho-acid of the benzene series-sulphanilic acid, metanilic acid, or toluidin-monosulpho-acid-with one molecule of alpbanaphthylamin, rediazo-
tizing the intermediate prodnct, and combining it with amidonaphtholdisnlphotizing the intermediate prodnct, and combining it with or its equivalent; dyeing wool in an acid bath bluish-black shades of acid (H) or its
great fastness.

619,114-February 7, 1899. O. BALLY. Green-black dye and process of making
same. same.
Coloring matters: produced by heating I. 5 -dinitro-naphthalene with sulphuric acid to obtain the well-known naphthazarin intermediate product, and adding to the sulphuric-acid solution of this body a phenolic body; giving with cold andlin a color within the range of violet to blue.
619,115-February 7, 1899. O. BALLY. Bluish dye and process of making same.
A coloring matter obtained hy heating 1.5 -dinitro-naphthalene with sulphuric acid to obtain the naphthazarin intermediate product, and adding glpha-naphthol to the sulphuric-acid solution of this body, giving a bluishgreen color in anílin.
619,181-February 7, 1899. M. H. ISLER. Product from dinitro-naphthalene and process of making same.
New hodies: produced hy submitting 1.8 or 1.5 dinitro-naphthalene to the action of weak fuming sulphuric acid containing not more than 23 per cent SO_{3}; by treatment with fiming sulphuric acid, or by heating with caustic soda, it yields a brown dyestur suited for dyeing wool; with dilute caustic soda and a
little zinc dust a red color. little zine dust a red color.
619,194-Fcbruary 7, 1899. I. LEVINSTEIN AND R. HERZ. Naphthylene-diaminsulphonic ocid and process of making same.
Alpha a_{1} alpha a_{2} naphthylenediamin beta sulphonic acid is produced by reducing the azo coloring matters ohtained by the combination of diazo bodies, with alpha a_{1} naphthylamin beta sulphonic acid. It forms a sodium salt soluble in water and oxydizes in a neutral or an alkaline solution by the oxygen of the air to a yellowish erystalline suhstance, the aqueous solntion of waich shows a greenish-yellow fluorescence like that of flnorescein.
619,50s-Frebruary 14, 1899. C. RIS. Black trisazo dye and proccss of making same. Black colors: produced by diazotation of the intermediary compounds from one molecule of a paradiamiu and one molecule of beta ${ }_{1}$ alpha ${ }_{4}$ amidonaphthol beta a_{3} sulpho-acid, and then combination of the formed tetrazo body with one
molecule of a derivative of a metadiamin and one molecule of a metadiamin: molecule of a derivative of a metadiamin and one
dyeing nomordanted cotton in deep hlack shades.
619,518-February 14, 1899. M. ULRICH. I'ellow dye and process of making same. Tetrazo dyestuffs: produced hy combining one molecule of a tetrazoderivative of diamidodibenzyldisulpho acid with two molccules of a nitrometadiamin of the benzene series, such as nitro
cotton bright fast yellow shades.
619,577-February 14, 1899. P. JULIUS AND A. TKATSCH. Process of making yellow phosphin dye.
Alkalated para-amido-benzaldehyde and an alphyl-meta-toluylene-diamin are heated together In alcoholic solution and in the presence of ferric cbloride.

619,574-February 14, 1899. M. H. ISLER. Xanthopurpurin.

A sulpho-acid of xantho-purpurin obtained by diazotizing and suhsequently heating 1.3 diamido-antbra-quinone in fuming sulphuric acid solution; dyeing nnmordanted wool dull yellow shades.
619,889-February 21, 1899. L. GIFFORD, ADMINISTRATOR OF KARL HEUMANN, DECEASED. Dimethyl indigo and process of making it.
A blue dyestuff of the formnla $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: produced by melting ortbo-tolylglycocol with akalin and then oxidizing, as by an air blast; giving greener shades on wool than the ordinary indigo sulpho acids when dyed from its solnble sulpho acids.
619,488-February 21, 1899. L. GIFFORD, ADMINISTRATOR OF KARL HEUMANN, DECEASED. Blue dye and process of making same.
Coloring matters of the indigo series: produced by heating ethyl-para-tolylglycocol with a caustic alkali, and oxidizing the leuco compound so produced. When sulphonated it is solnble in water and dyes directly.
620,968-February 28, 1899. J. SCHMID. Blue tetrazo dye and process of making same.
Blne coloring matters: prodnced hy combining the intermediate prodnct obtained from one molecule of a naphthacetoldisulpho acid and one molecule of the tetrazo derivative of a paradiamin of the series of diphenyl with one molecule of a naphtbolic componnd, as naphtholsulpho-acids, naphthols, and oxynaphthols; dyeing unmordanted cotton pure reddish to greenish-blue tints. 620,369-February 28, 1899. J. SCHMID. Blue tetrazo dye and process of making same.
Blue suhstantive coloring matters: obtained by first combining molecular proportions of a naphthacetoldisulpho-acid and the tetrazo derivative of a paradiamin of the series of dipbenyl, and then combining one molecile of
intermediate product with one molecnle of an amidonaphtbolsulpho acid.
620,428-February 28, 1899. R. DEMUTH. Blue cotton dye.
Blne substantive cotton dyes: produced by subjecting sulpho-acids of 1.8 chloronaphthol to the action of an alkaline sulphide and sulphur at elevated temperatures (to 240° C.), repeatedly extracting the resulting melt when cold
with small quantities of hot water, until the hlue dye is dissolved ont, and with small quantities of hot water, until the hine dye is dissolved ont, and
finally isolating the dye from the joint filtrates by precipitation with zine chloride.
620,44-February 28, 1899. L. GIFFORD, ADMINISTRATOR OF K. HEUMANN, DECEASED. Blue glycocol dye.
Coloring matters of the indigo series: produced by heating ethyl-ortho-tolylglycocol with caustie alkali, and oxidizing the lenco compound so prodnced; unsulphonated, the bnes are greener on cotton than ordinary indigo; when sulphonated, it is solnble in water and dyes directly.
620,562-March 7, 1899. R. BLANK. Amido malonic ester and process of making same.
Amidomalonic acid esters baving the formula $\mathrm{A}-\mathrm{NH}-\mathrm{CH}=\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, where A-Nic acid ester root, are produced by allowing aromatic amins to react upon lonic acid ester root, are produced hy malonic acid esters. They lend themselves to the formation of indoxylic compounds, readily converted into compounds of the indigo series.
620,574-March 7, 1899. K. ELBER AND J. OPPERMANN. Black trisazo dye.
Triazo dyestufs: produced by diazotizing the intermediate products formed by" combination of tetrazotized diamidodiphenylamincarhonic acid with one molecnlar proportion of an amin suitable lor iurther diazotization as amido-
naphtholsulpho acid G, and combining the so-obtained unsymmetrical tetrazo componnd with meta-diamins of the benzene series, as meta-toluylendiamin; dyeing dark blue to black shades on unmordanted cotton or mixed goods from neutral or weakly alkaline baths.

621,393-March 21, 1899. H. R. VIDAL. Triphenylmethane dye and process of making same.
Violet and blue coloring matters: produeed by condensation of tetralyl hydrols with aromatie hydrazins at from 60° to $80^{\circ} \mathrm{C}$., the aetion being prolonged until the leueo base, appearing in the first phase, becomes transiormed into coloring
matter. matter.
621,652-March 21, 1899. L. GXFFORD, ADMINISTRATOR OF K. HEUMANN,
DECEASED. Blue dye.
Blue dyestuff, derived from ortho-tolyl-glyeocol by heating tolyl-glyeoeol and eaustic alkali at elevated temperatures, up to $340^{\circ} \mathrm{C}$. dyeing wool from a boiling aeid bath, yielding redder shades than indigo-earmine.
621,679—March 21, 1899. M. H. ISLER. Oxyanthraquinone sulfo aeid and process of making same.
Sulpho-aeid of oxy-anthra-quinone: produeed by diazotizing amido-anthraquinone in fuming sulphurie aeid and subsequently heating. The sulpho-aeid of anthra-rufin, obtained by diazotizing and subsequently heating 1.5 -diamido-anthra-quinone in fuming sulphurie acid solution, dyes unmordanted wool yellow shades, and is an initial material for the production of dyestufts
629,189-March 28, 1899. L. GIFFORD, ADMINISTRATOR OF K. HEUMANN,
DECEASED. Blue coloring matter and process of manufacturing same.
Blue dyestuff produced by melting a phenyl-glyeocol body with alkali, and subsequently oxidizing, as by a blast of air; in its sulphonated form it is soluble in water.
6at, $299-A p r i l$ 4, 1899. H. R. VIDAL. Black dye and process of making same.
Coloring matters, varying from brown blaek to deep black, are produeed by beating a nitro-cellulose substance, as gun eotton, with sulphur and sodium sulphide; soluble in th
622,961-April 11, 1899. I. LEVINSTEIN AND C. MENSCHING. Brown tetrazo dye and process of making same.
Direet cotton dyes are produeed by aeting with one moleeular proportion of a tretrazo eompound of a paradiamin on one molecular proportion of an orthooxycarbonie acid of the benzene series, combining the intermediate produet with one moleeular proportion of a rediazotizable primary aromatie monamin salicylicaeid and aniline), to form a mixed tretrazo eoloring matter; rediazotizing salicylic aeid and aniline, to form a mixed tretrazo eoloring matter; rediazotizing this mixed tretrazo coloring matter; and eombining the resulting diazo eom-623,069-April 11, 1899. R. BOHN. Yellow dye and process of making same.
A yellow eoloring matter produeed by treating benzoin with an aromatie oxy-earbonie acid, as gallie acid, in the presence of sulphurie aeid; giving a cherry-red to yellowish-red eolor with caustic soda solution, and with sulphurie acid a red to yellow eolor with a brown to green fluoreseenee.
623,219-April 18, 1899. R. E. SCHM1DT. Chrysazin dye and proeess of making same.
An anthraquinone dyestuff, being an aeid salt of a disulpho acid of paradihydroxylaminehrysazin, is produeed by redueing one molecule of dinitrochrysazin disulpho acid with such quantities of redueing agents as eorrespond to eight atoms of hydrogen, thereby transforming the nitro groups into hydroxylamin groups; in the form of its aeid ammonium salt, soluble in water with a violet color, dyeing wool in aeid baths blue shades; and bluish-green on chromium mordants.
623,220-April 18, 1899. R. E. SCHMIDT. Anthrarufin dye and proeess of making same.
An anthraquinone dyestuff, being an acid salt of paradihydroxylamin anthrarufin, is produeed by redueing one molecule of dinitro anthrarufindisulpho acid with sueh quantities of redueing agents as correspond to eight atoms of hydrogen, for which purpose stannous ehloride with muriatie aeid may be used; dye-
ing wool in acid baths reddish-blue shades; bluish-green on chromium moring wo
623,346-April 18, 1899. H. WEIL. Green wool-dye and process of making same.
Coloring matters are produced from paranitrobenzaldehyde-orthosulphonie aeid by first forming a disulpho-leueo compound of the general formula $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)-\left(\mathrm{SO}_{3} \mathrm{Na}\right)-\mathrm{C}$. H . R . R^{\prime} wherein R designates alkylbenzylaniline and $\mathrm{R}^{\text {monosulphonated alkylbenzylaniline, and then treating this disulpho-leueo }}$ shade.
623,638-April 25,1899 . K. TEUN. Gray-black anthraquinone dye and proecss of making same.
Nitro compounds of the anthraquinone series are produced by mixing a eoncentrated sulphurie aeid solution of sulphonie aeids of eertain bodies, like purpurin-dianilid, with borie acid, adding nitrie acid to this mixture and stirring for an hour at from 10° to 20° C., and then pouring into water and separating the precipitated dyestuff; yielding on ehrome-mordanted wool from gray to black fast shades.
624,256-May 2, 1899. K. SCH1RMACHER. Red-brown monoazo dye and process of making same.
Monoazo dyestuffs produeed by combining diazotized picramie aeid with alkylated amidonaphtholsulphonic acids, such as $2: 5: 7$ ethylamidonaphthol, 2:5:7 methylamidonaphtholsulphonie aeids; dyeing wool in red-browu shades, which become deep blaek on subsequent treatment with chromates.

624,877-May 9, 1899. J. SCHMID AND H. REY. Red Sulfo-acid dye.

Red sulpho-aeid dyes, produeed by eondensing one moleeule of a benzaldehyde compound with two moleeules of a monobenzylated metamidophenol, heating the produet of eondensation with a reagent, as concentrated sulphuric
acid, whereby dehydration, sulphonation, and partial oxidation are effected, acid, whereby dehydration, sulphonation, and partial oxidation are effected,
and finally completing the oxidation with an agent sueh as ferrie ehloride at a and finally completing the oxidation with an agent suct
moderate heat; dyeing wool and silk in fast red tints.
625,174-May 16, 1899. I. LEVINSTEIN AND H. PFEIFFER. Substantive rea tetrazo dye and process of making same.
Tetrazo eoloring matters produeed by chlorinating diaeetbenzidin melting at $317^{\circ} \mathrm{C}$., saponifying the product, tetrazotizing the dichlorbenzidin thus formed, and combining the resulting tetrazodichlorbenzidin with a naphthylamin suland combining the resulting tetrazodichlorbight-red to bluish-red shades fast to phonic acid; d
625,268-May 16, 1899. R. KNIETSCH AND P. SEIDEL. Process of making indigo-
red red.
A phenylglyeocol body is melted with caustic alkali in the presence of a limited quantity of alr, and the isatinic body so obtained is then aeted upon with an indoxyl body.

625,536-May 23, 1899. J. J. BRACK. Rhodol derivative.
A dyestuff of the phthalein series obtained by condensing the methyl ether of dimethylrhodol with formic aldehyde; a vermilion powder; dyeing tanninmordanted cotton a yellowish red, and on printing with ferrocyanide of potassium and zine oxide yielding a lake of same color.
625,637—May 23, 1899. H. A. BERNTHSEN. Oxynaphlindophenolthiosulfonic acid and process of making same.
An oxy-naphtindophenol-thio-sulphonie body produeed by the oxidation of a mixture of unsymmetrieal dialkyl-para-phenylene-diamin-thio-sulphonie acid and 1.2-amido-naphthol-sulpho-aeid; especially suited for printing on cotton goods with a chromium mordant.
625,641-Hay 25,1899 . H. CARO. Rhodamin dye and process of making same.
An alkylated rhodamin dye is produced by treating chloral hydrate with alkylated-meta-amido-phenol, without the addition of heat. This eondensation produet is then acted upon with one moleeular proportion of a dialkylated-meta-amido-phenol, the same as used in the production of the product of eondensation, by grinding them together and gradually heating from 40° to $70^{\circ} \mathrm{C}$. in twelve hours, when the resulting leaco base is oxidized into its blue coloring matter and then converted into its red rhodamin dye.
625,717-May 23, 1899. M. BOEHLER. Process of dyeing dark blue.
Dyeings produced with the dyestuffs "immedial blaeks" (No. 610,541), and which are derived by heating oxydinitrodiphenylamin with sodium sulphide and sulphur, are treated with hydrogen dioxide, and the shades changed to a dark blue.
626,231-June 6, 1899. B. HEYMANN. Process of making indigo.
Diaeetyl-indoxyl is saponified with eaustie alkaline lyes, the product oxidized, and the indigo separated by filtration.
626,897-June 13, 1899. F. FUCHS AND H. GUSSMANN. Black sulphur dye and process of making same.
Blaek direet-dyeing eotton dyestuffs produeed by heating dinitranilin 1.2.4 with sulphur and alkaline sulphides at elevated temperatures; dyeing unmordanted cotton even in the cold.
626,91s-June 13, 1899. E. KÖNIG. Brown-yellow azo dye and process of making same.
Bazie azo dyestuffs soluble in water produced by diazotizing aromatic amidoammonium bases, as amidophenyltrimethylammonium, and treating the resulting eompound with substances adapted to unite with diazo bodies to form yellow.
yesorcinol; dyeing eotton and leather mordanted with tannin brown-
626,955-June 15, 1899. F. SCHOLL AND A. HESS. Disazo dye and process of making same.
Diazo dyestuffs produced by diazotizing amidobenzylpyridinchloride and combining it first with a primary aromatie amin, as metatoluidin, then further mordanted eotton or mixed goods with a bluish-red color.
627,679-June 27. 1899. M. BÖNIGER AND J. LAGUTT. Green trisazo dye and process of making same.
Green triazo dyestuffs produeed by eombining in an alkaline solution one molecule of a tetrazotized paradiamin with one moleeule of the monoazo dye resulting from the eombination in an acid solution of one molecule of diazodiehlorbenzene with one moleeule 1.8 amidonaphthol 3.6 disulphonie aeid, and then eoupling the intermediate produet thus obtained in an alkaline solution with one moleeule of a phenolic compound of the benzene series; dyeing unmordanted eotton green shades.
627,690-June 27, 1899. J. HERBABNY. Yellow wool-dye and process of making same.
Yellow dyestuff produeed by first forming para-nitro-phenyl-pyrazoloneearboxylie acid by the aetion of one moleeule of para-nitro-phenyl-hydrazin
upon one molecule of oxalo-acetic ether, and then combining it with one moleupon one moleeule of oxalo-aeetic ether, and then combining it with one mole-
eule of diazo-sulphanilic acid; dyeing wool in greenish-yellow tints fast to eule of diazo-sulphanilic acid; dyeing wool in greenish-yellow tints fast to milling.
627,783-June 27, 1899. K. SCHIRMACHER. Black azo dye and process of making same.
Monoazo dyestuff produced by treating diazotized picramic aeid with naphtholsulphonie aeids eontaining amido groups, such as $1: 8: 3: 6$-amidonaphtholdisulphonic aeid "H;" dyeing wool in an acid bath in blue-black shades, whieh beeome deep green on treatment with bichromate.

6R7,896-June 27, 1899. R. BOHN. Blue dye.

Blue eoloring matter obtained by treating with sulphurie acid the leueo eompound of blue naphthazarin, intermediate product, which latter is produced by ing the form of its leuco compound. This new dye can be applied direetly or in
628,025-July 4, 1899. C. OELSCHLAEGEL. Blue-black wool-dye and process of
making same. making same.
A diazo dyestuff produeed by diazotizing the para-amidophenyl-beta-naphthylaminsulpho aeid (derived from para-nitro chlorbenzene-ortho-sulpho acid), eombining the diazo compound produced with one molecular proportion of alpha-naphthylamin, rediazotizing the amidoazo compound thus obtained, and combining the diazoazo eompound with a naphtholmonosulpho acid.
698,233-July 4, 1899. C. SLMON. Green trisazo dye and process of making same. Green eoloring matters produeed by eombining one moleeule of the monoazo eolor obtained from diazotized orthoehloro-paranitranilin and alpha monoazo amidonaphthol-betan-beta a_{2}-disulpho with one moleeule of a tetrazo eompound, as tetrazodiphenyl, and one molecule of a phenol compound, as salicylic acid;
dyeing unmordanted cotton in green shades.
628,248-July 4, 1899. A. HERRMANN. Grecn acid dye.
Green aeid dyestuffs of the diphenylnaphthylmethane series; produeed by treating the monosulphonie acids of tetralkyldiamidodiphenylnaphthylmethanes with fuming sulphurie acid and oxidizing the leueopolysulphonie acids to dyestuffs; dyeing wool and silk in an acid bath an even green.
628,607-July 11, 1899. B. PRIEBS AND O. KALTWASSER. Black dye.
Black dye produeed by heating the sodium salt of oxynitrodiphenylaminSulphonie aeid with sulphur and alkali sulphides; dyeing unmordanted cotton in alkalme bath last and intense black shades.
688,608-Jully 21,1899 . B. PRIEBS AND O. KAITWASSER. Black dye.
Black dye produced by heating the sodium salt of dinitroöxydiphenylamin-
carbonic acid with sulphur and alkali sulphides.

628,609-July 11, 1899. B. PRIEBS AND O. KALTWASSER. Bluish-black dye
Bluish-black dye produced by heating the sodium salt of oxydinitrodiphenylaminsulphonic acid with sulphur and alkali sulphides.
628,721-July 11, 1899. C.'O. MULLER. Blue-black dye and process of making same. Coloring matters produced by coupling the tetrazo derivative of parapheny1enediamin on the one hand with an orthocarboxylised phenol of the benzene series, and on the other hand with the 1.8.4 dioxynaphthalenesulphonic acid; dyeing chromed wool in blue-black tints.
628,814-July 11, 1899. P. JULIUS. Brown azo dye.
Brown monoazo dyestuff obtained by the combination of diazo compounds of from an acid hath in deep-hrown shades darkened brown on treatment with chromates.

Coloring matters produced by subjecting benzene-azo-cresol, obtained from meta or ortho cresol, to the action of sulphur in the presence of soda; dyeing in the dyeing hath a black color from the outset.
69,666-July 25,1899 C. DE LA HARPE AND C. VAUCHER. Gallocyaninleuco derivalive and process of making same.
A leuco-gallocyanin produced by treating a gallocyanin, in a suitable medium, with a reducing agent, as zine dust; it contains no sulphur, is more ready soluble in water, and gives in printing more intense and bluer, tints than the original gallocyanin.
699,748-July 25, 1899. I. LEVINSTEIN AND R. HERZ. Blue-black diazo color and process of making same.
A new product, alpha a_{1} alpha ${ }_{2}$ naphthylenediamin beta ${ }_{3}$ (heta ${ }_{4}$) sulphonic acid, readily soluble in soda solution and almost insoluble in water or dilute acid. The new coloring matters are produced hy combining Cleve's acid with a suitahle diazo hody, reducing, and treating with an acetylating agent, diazo-
tizing, and combining with a rediazotizahle aromatic amin, rediazotizing, comtizing, and com bining with a redinzotizahle aromatic amin, rediazo
630,199-Augnst 1, 1899. C. DREHER. Lactic-acid dye.
Basic artificial dyestuffs are dissolved in lactic acid, forming new dyeing substances.
630,224-August 1, 1899. A. HERRMANN. Green dye and process of making same.
Green dyestuffs of the diphenylnaphthylmethane series produced by combin-
ing tetralkyldiamidohenzbydrols with naphthalenedisulphonic acids in presence of condensing agents to leucodisupphonic a
650,952-August 15, 1899. H. R. VIDAL. Substantive sulfur dye and process of making same.
A dibydroxylated azo body, such as those resulting from the copulation of one or two molecules of diazo henzene with resorcin, is heated with sulphur in the presence of an alkaline sulphide; dyeing unmordanted cotton in dark des.
681,089-August 15, 1899. C. O. MULLER. Red dye and process af making same.
Coloring matters produced by coupling one molecule of the diazo derivative of para-amido-benzeneazosalicylic acid with one molecule of a sulphonic acid of a naphtholic compound; dyeing chromed wool in red tints.
681,605-Augusi 22, 1899. O. BALLY. Green dye and process of making same.
Green coloring matters of the anthracene eeries produced by heating at a
high temperature the halogen derivatives of No. 631,606 with primary aromatic high temperature the halogen derivatives of No. 631,606 with primary aromatic amins.
651,606-August 22, 1899. O. BALLY. Halogen derivative of anthraquinone and
process of making same. process of making same.
Halogen derivatives of alphylated diamidoanthraquinones are obtained by treating them with hromine or chlorine in the presence of a solvent; they are soluble in henzene and are converted into green coloring matters on heating with aniline.
651,607-August 22, 1899. O. BALLI. Dibrom anthraquinone derivalive and process of making same.
A dibrom-1.5-diamido-anthraquinone is produced by treating 1.5-diamidoanthraquinone in a solvent, such as glacial acetic acid, at ordinary temperature with hromine; valuable for the production of coloring matters of the anthracene series.
631,608-August 22, 1899. O. BALLY. Anlhraquinone derivative and process of making same.
Tri-brom-1.5-diamido-anthraquinone is obtained by energetically treating 1.5 -diamido-anthraquinone with hromine, at a high temperature, in a solvent;

691,610-August 22, 1899. H. A. BERNTHSEN AND P. JULIUS. Orange dye and process of making same.
Substantive orange coloring matter obtained hy the combination or the tetrazo compound of a diamido base-benzidin or tolidin-with meta-phenylene-diamin-disulpho acid and then with nitro-meta-phenylene-diamin ornitro-meta-
toluylene-diamin; when treated with nitro-diazo-benzene after dyeing on toluylene-diamin; when treated with nitro-diazo-henzene.
cotton goods it is slightly changed in color to brown orange.
681,611-August 蚆 $1899 . ~ H . ~ A . ~ B E R N T H S E N ~ A N D ~ P . ~ J U L I U S . ~ D i s a z o ~ o r a n g e ~_{\text {. }}$ dye and process of making same.
Orange coloring matter obtained by the combination of a tetrazo compound of henzidin, first, with amido-R acid-that is, heta-naphthylamin-3.3'-disulpho acid-or with amido-F acıd-that is, beta-naphthylamin-3.2 -disulpho acid-and then combining the resulting intermediate compound with a nitro-metadiamin.
691,619-August 22,1899. R. BOHN. Black dye and process of making same.
Black coloring matters produced by reacting with naphthazarin upon an aromatic amin, with or without the use of a condensing agent; dyeing chromemordanted wool.
651,614-Augusl 22, 1899. K. BOHN. Naphthazarin intermediale dye and process of making same.
A coloring matter produced by subjecting the naphthazarin intermediate product, obtained in the manufacture of naphthazarin hy heating I.5-dinitroaaphthalene with fuming sulphuric acid to the action of a reducing agent. It can be used directly or in the form of its bisulphite compound, dyeing greener than naphthazarin.

632,170-August 29, 1899. R. BOHN. Blue dye and process of making same.
Blue coloring matter produced from the coloring matters of No. 609,327 (Which are ohtained from I.8-dinitro-naphthalene by the reducing action of an alkaline hisulphite on the one hand and of sodium sulphide, grape sugar, etc., without the addition of sulphur; dyeing cotton a blue shade directly in a cold
bath.

692,621-September 5, 1899. O. BALLY. Bramanated dye.

Coloring matters obtained from tri-brominated-amido-anthraquinone, of No. 63I,608, by heating same with an aromatic amin, with or without the addition of a diluent or solvent. The sulphonated compounds are soluhle, and dye unmordanted and chrome-mordanted wooi blue to green-blue shades.
693,245-September 19, 1899. L. P. MARCHLEWSKI. Process of making dycs.
The flocculent precipitate of cotton-seed oil is converted into a dye by oxidizing the same with air in the presence of free alkali.
653,883-September 26, 1899. C. O. MULLER. Yellow basic dye.
Yellow hasic coloring matter produced from the hy-product obtained in heating together phthalic anhydride and a mono-alkylated meta-amido-phenol by submitting said by-product to esterification, as by treatment with sulphuric acid
699,950—September 26, 1899. R. BOHN. Green-blue dye and process of making same. A coloring matter obtained hy oxidizing the naphthazarin intermediate product (ohtained in the manufacture of naphthazarin hy beating 1.5-dinitro-naphthalene with fuming sulphuric acid). It dyes on chrome-mordants fast shades
greener than those obtained from naphthazarin.
694,009—Oclober 3, 1899. I. LEVINSTEIN AND R. HERZ. Blue-black tetrazo dye and process of making same.
Deep black tetrazo coloring matters produced from the alpha ${ }_{1}$ alpha ${ }_{2}$ naphthylenediamin beta ${ }_{1}$ sulphonic acid hy diazotizing the same, combining the resulting sulphonic acid with beta ${ }_{1}$ naphithol beta ${ }_{2}$ heta ${ }_{3}$ disulphonic acid, rediazotizing the thus-produced hluish-violet amidoazo-coloring matter, and finally combining the resulting diazo compound with aromatic dyestuff components, as heta naphthol; dycing animal and chrome mordanted fibers dark-blue to hlue-hlack shades.
655,168-October 17, 1899. R. KIRCHHOFF AND E. HAUSSMANN. Black sulfur
dye. dye.
Black dye obtained by heating equimolecular proportions of dinitroöxydiphenylamin and para-amidophenol with sulphur and alkali sulphides; dyeing unmordanted cotton in an alkaline bath intense aud fast black shades.
655,169—October 17, 1899. R. KIRCHHOFF AND E. HAUSSMANN. Black sulfur
dye. dye.
Black dye produced hy heating equimolecular proportions of dinitroöxydiphenylamin and meta-phenylenediamin with sulphur and alkali sulphides;
656,065-October 11, 1899. C. RIS. Stilbene azo dye.
Coloring matters derived from stilbene by the reaction of two molecules of paranitrotoluenesulpho-acid and one molecule of a para compound containing
at least one amido group, with caustic-alkali lye; dyeing unmordanted cotton at least one amido group, with caustic-alkali lye; dyeing unmordanted cotton in gold-yellow to orange shades.
656,066-October 51, 1899. C. Ris. Black cotton dye.
Black dyestuff obtained by melting a paraämidophenol compound, such as paraämidophenol paraämidocresol $\mathrm{CHH}_{3}: \mathrm{OH}: \mathrm{NH}_{2}=1: 2: 5$), with acetyl compounds and sulphur at from 200° to $300^{\circ} \mathrm{C}$.
657,183-November 14, 1899. H. TERRISSE AND G. DARIER. Yellow basic dye.
A new yellow basic coloring matter, ohtained from diamido-toluyl-alcohol, beta-naphthylamin, and beta-naphthylamin-hydrochlorate, which is soluble
in water and gives a dark-hrown-colored diazo compound on treatment with in water and gives a dark-hrown-colored diazo compound on treatment with
nitrous acid, and which is precipitated from its aqueous solution by common nitrous acid, and which is precipitated from its aqueous solution by common
salt, and yields a yellow solution in alcohol possessing a green fuorescence.
688,127-November 28, 1899. G. KOERNER. Black azo dye.
Coloring matters derived from amido-naphthol-monosulpho-acid (1.8.4; 1.8.5.) and a tetrazo residue containing one or more hasic groups attached to the part of the amido-naphthol-sulpho-acid residue which contains the amido group, and a tetrazo residue containing one or more hydroxyl groups attached to the
part of the amido-naphthol-sulpho-acid residue which contaius the hydroxyl; part of the amido-naphthol-suordo-acid cotton black shades.
698,576-December 5, 1899. C. DE LA HARPE AND C. VAUCHER. Oxazin dye. Coloring matter derived from the oxazin dye resulting from the action of hydrochlorate of nitrosodimethylanilin or of hydrochlorate of dimethylamidoazo-
benzene upon gallamic acid, hy heating the said oxazin dye with sulphurous benzene upon gallamic acid, hy heating the said oxazin dye with sulphurous
acid in a free state or as a sulphite or hisulphite in a closed vessel at 90° to 100° C.; dyeing hluer tints than the original oxazin dye.

659,040-December 12, 1899. J. HERBABNY. Green-blue tetrazo dye.
A greenish-hlue tetrazo substantive dyestuff obtained by the combination of the tetraämido disazo compound derived from a toluylenediaminsulpho-acid and para-nitrodiazobenzene with amidonaphthol-disulpho-acid H .
639,041-December 12, 1899. J. HERBABNY. Black tetrazo dye.
A hlack suhstantive coloring matter ohtained by combining the tetraämido diazo-dyestuff derived from a metadiamin of the benzene series and para-nitro diazo-dyestuff derived from a metadiamintholsulpho-acid G.
639,042-December 12, 1899. J. HERBABNY. Clarel-red tetrazo dye.
Direct claret-red coloring matters resulting from the action of a tetrazotized paradiamin, as tetrazoditolyl, upon amido pyrazolone carhonic acid.
699,806-December 26, 1899. W. H. CLAUS, A. REE, AND L. MARCHLEWSKI. Black sulfur dye.
Dinitroörthohydroxydiphenylamin is heated with sulphur and an alkaline sulphide, producing a black coloring matter dyeing cotton fiher direct.
639,976-Dccember 26, 1899. A. HERRMANN. Green dye.
A dyestuff obtained by condensing tetralkyldiamidobenzhydrol with 2.6 naphthalenedisulphonic acid, and oxidizing the resulting leuco compound.
659,977-December 26, 1899. A. HERRMANN. Green dye.
A dyestuff ohtained hy condensing tetralkyldiamidohenzhydrol with 2.7 naphthalenedisulphonic acid, and oxidizing the resulting leuco compound.

640,010-December 26, 1899. C. O. MÜLLER. Blue-black dye.
A dyestuff which contains the tetrazo derivative of paraphenylene-diamin, coupled on the one band with an orthocarboxylized phenol of the benzene series, as salicylic acid, and on the other hand with the 1.8.3.6 dioxynaphthal-
enedisulphonic acid.
640,559-January 2, 1900. O. HANSMANN. Brown sulfur dye.
A brown dye produced by heating with sulphur and sulphides of alkalis the condensation product obtained by the action of paranitrochlorobenzene-ortbo-monosulphonic acid upon meta-toluylenediamin; dyeing unmordanted cotton dark-brown shades, which are turned to bronze by treatment with a mixture of copper sulphate and potassium bichromate
640,986-January 9, 1900. O. BALLY. Green dye.
Green coloring matter obtained by condensing chlor-substituted diamidoanthraquinone (obtained by treating diamido-anthraqninone with chlorine in the presence of a diluent such as glacial acetic acid) with an aromatic amin and sulphonating the product.
640,989-January 9, 1900. M. BONIGER. Bluish-red azo dye.
Azo dyes derived from one molecule of a diazotized aromatic amido compound and one molecule of an 1.8 alphylsulphamidonaphthodisulphonic acid.

641,184—January 9, 1900. H. BOEDEKER. Rhadamin dye.
A dyestuff resulting from the simultaneons action of phosphor-oxychloride and monomethylanilin or other aromatic secondary or tertiary base (as monoethylamin, dimethyl- and diethyl-anilin, chinolin, monethyl-orthotoluidin or dibenzylanilin) npon symmetric diethylrhodamin; dyeing cotton a fiery pink.

641,587-January 16, 1900. A. G. GREEN AND A. MEYENBERG. Process of making black sulfur dye.
A para-diamin together with a base of the benzene series are jointly oxidized in the presence of thiosulphuric acid in aqueous solution, producing a direct dyeing coloring matter, containing sulphur noder the influence of the thiosulphuric acid.
641,588-January 16, 1900. A. G. GREEN. Black sulfur dye.
Coloring-matter produced by conjoint oxidation of paraphenylene diamin with an amin of the benzene series containing a free para position to the amido group, such as anilin, orthotoluidin, or paraxylidin, in presence of thiosnlphuric acid; dyeing unmordanted cotton a deep black from a bath containing sodinm sulphide.
641,589-January 16, 1900. A. G. GREEN AND A. MEYENBERG. Black sulfur dye.
Coloring matter prodnced by conjoint oxidation of paratolylenediamin $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)\left(\mathrm{NH}_{2}\right)_{2}(1: 2: 5)$ with an amin of the benzene series containing a
free para position to the amido group, in presence of thiosulphuric acid free para position to the amido group, in presence of thiosulphnric acid.
651,953-January 23, 1900. A.G. GREEN AND A. MEYENBERG. Process of making fast brown dyes.
A polyamin of the benzene series (containing at least two amido groups in para or ortho position to each other) is oxidized in the presence of thiosulphuric acid in aqneous solution.
641.954-January 23, 1900. A. G. GREEN AND A. MEYENBERG. Fast brown dye.
A fast brown coloring matter produced by the oxidation of paratolylenediamin $\mathrm{C}_{6} \mathrm{H}_{8}\left(\mathrm{CH}_{3}\right)\left(\mathrm{NH}_{2}\right)_{2}(1: 2: 5)$ in the presence of thiosulphuric acid in aqueons solntion; dyeing unmordanted cotton from an alkaline sulpbide batb.
642,256-January 30, 1900. B. PRIEBS AND O. KALTWASSER. Blue sulfur dye.
Blue dye produced by treating with bot alcohol the sulphur dyes derived by means of sulphur and alkali sulphides from dinitro-oxydiphenylaman derivatives, then removing the alcoho by fitration and drying the residue; dyeing
642, 893-February 6, 1900. H. BOEDEKER AND C. HOFFMANN. Alkylated rhodamin sulfonic acid.
The sulphonic acids of alkyl derivatives of the metaamidophenol phthaleins (the tetraalkylated rhodamins excepted) are obtained by treating the metaamidophenolphtbaliens with fuming sulphuric acid at a low temperature, so that they are transformed into sulphonic acids and are easily soluble in alkalis and suitable for dyeing purposes. They are completely absorbed by wool in an and suitable for dyeing purposes. They are completely absorbed by wool in an a vivid fluorescence.
643,265-February 13,1900. C. E. GASSMANN. Solution of phthalein in phenol.
For use in printing or dyeing fabrics a phthalein, as a rhodamin and especially a dialkyl rhodamin, is dissolved in a volatile phenol, as cresylic acid.
643,538-February 13, 1900. A. STEINER. Blue dye from gallocyanin.
A blue coloring matter obtained by substituting a bydrogen atom in one of the hydroxylic groups of the gallocyanin or its derivatives by an acid radical, especially an alphylsulphon radical XSO_{2}, where X stands for a benzene, toluene, or xylene group. This esterification can be performed by treating the gallo
645,371-February 13, 1900. J. J. BRACK. Red rhodamin dye.
Dyestuff obtained by condensing one molecule oi formic aldehyde with two molecules of the alkyl cther of the unsymmetrical dimethyl-methylrhodamin of No. 584,119, and which is derived from dimethylamidoöxybenzoylbenzoic a cid and metä̈midoparacresol ($\mathrm{CH}_{3}: \mathrm{NH}_{2}: \mathrm{OH}=1: 2: 4$); dyeing tannin-mordanted cotton in fiery-red tints bluer than those obtained from the said ether.
645,451-February 18, 1900. O. BALLY. Nitroamidoanthraquinone sulfo-acid.
Coloring matters obtained by treating diamido-anthraquinone sulpho-acids with nitric acid; dyeing chrome-mordanted wool blue-violet to brown-violet shades.
645,502-February 13, 1900. A. H.S. HOLT. Process of manufacturing indigoleuco compounds.
Indigo-lenco compounds prodnced by melting together a polyhydroxy compound of the fatty series, such as glycerine, with an anthranilic-acid body and an alkali; as, for example, potassium salt of anthranilic acid and potassium glycerate.
643,569-February 13, 1900. F. ULLMANN. Yellow acridinium dye.
A dye derived from the acridin series, obtained as a methyl-snlphuric salt by treating an acridin dyestuff as amidotolunaphthacridin, with dimethyl sulphate; dyeing tannin-mordanted cotton orange-yellow shades.

644,233-February 27, 1900. P. JULIUS. Black disazo dye.
Disazo coloring matters derived from ortho-nitro-ortho-amido-phenol-sulphoacid, and which on snitable reduction with ammonium sulphide in ammoniacal solution exhibit a step-by-step reduction, reproducing the nitro-amido-phenol-sulpho-acid.
644,254-February 27, 1900. P. JULIUS. Black dye.
A coloring matter derived from ortho-nitro-ortho-amido-phenol-sulpho-acid and having alpha-naphthylamin as both middle and end component.
644,295-February 27, 1900. P. JULIUS. Black disazo dye.
Disazo coloring matter derived from ortho-nitro-para-amido-phenol-ortho-sulpho-acid and having Cleve'salpha-naphthylamin-sulpho-acid as middie component, and alpha-naphthol-alpba-sulpho-acid (1.4-1.5) as end component.
644,236-February 27, 1900. P. JULIUS. Black disazo dye.
Disazo coloring matter derived from para-nitro-ortho-amido-phenol-ortho-sulpho-acid and having alpha-naphthylamin as middle component, and alpha-naphthol-alpha-sulpho-acid (1.4 or 1.5) as end component.
644,237-February 27, 1900. P. JULIUS. Black dye.
Coloring matter derived from ortho-nitro-artho-amido-phenol-snlpho-acid, alpha-naphthylamin, and beta-naphthol.

644,258-February 2r, 1900. P. JULIUS. Disazo dye from chloramidophenol.
Disazo coloring matter obtained from para-chloro-ortho-amido-phenol and having Cleve's alpha-naphthylamin-sulpho-acid as middle component, and alpha-naphthylamin as end component.
644,259-February 27, 1900. P. JULIUS. Black disazo dye.
Disazo coloring matter obtained from ortho-chlor-ortho-amido-phenol-para-sulpho-acid and having alpha-naphthylamin as middle component, and beta-naphtbol-3.6-disulpho-acid (R salt) as end component.

644,240-February'27, 1900. H. A. BERNTHSEN AND P. JULIUS. Black disazo aye.
Disazo coloring matter obtained from ortho-amido-para-nitro-phenol, alphanaphthylamin, and 1.8-dioxynaphthalene-4-sulpho-acid; dyeing wool from an acid bath blue-black shades, turning to green-black on treatment with
chromates. chromates.
644,291-February 27, 1900. J. HERBABNY. Black trisazo dye.
Polyazo coloring matters obtained by the combination of one molecule of a paradiamin first with one molecule of a monoazo coloring matter from 2:8-amido-naphthol-sulphonic acid and tolnylene-diamin-sulphonic acid, then with one molecule of an amido-naphthol-snlphonic acid; dyeing cotton without mordants.
644,292-February 27, 1900. J. HERBABNY. Black polyazo dye.
Polyazo dyestuffs obtained by the combination of one molecular proportion of a paradiamin with two molecular proportions of a monoazo dye as obtaiped by combining diazotized $2: 8$-amido-naphthol-sulphonic acid and toluylene-diamin-sulphonic acid; dyeing cotton without mordants.
644, 3,24 ,February 27, 1900. P. JULIUS AND W. REESS. Process of making ycllow
basic dyes. basic dyes.
Diamido-tolnyl alcohol is treated with beta-naphthol and an oxidizing agent, such as ferric chloride.
644,326-February 27, 1900. R. KNIETSCH AND H. S. A. HOLT. Process of making indigo products.
An aromatic gly cocoll-carboxy-di-alkyl-ester is heated to above $200^{\circ} \mathrm{C}$., and so converted into a piperazine derivative, which intermediate product is then melted with a fixed canstic alkali and lime.
644,333-February 27, 1900. C. SCHRAUBE. Yellow dye.
Dyestuffs oobtained by the treatment of phenanthrene quinone either with peri-hydroxy-ortho-diamido-naphthalene and subseqnent treatment with sulphuric acid or with sulpho-acids of peri-hydroxy-ortho-diamido-naphthalene; dyeing fast yellow shades on wool and silk.
64t, 384 -February 27, 1900. C. SCHRAUBE AND E. SCHLEICHER. Black trisazo dye.
Black triazo dye, obtained from oxy-naphthylamin-sulpho acid ($\mathrm{NH}_{2} . \mathrm{OH}$. $\mathrm{SO}_{3} \mathrm{H}$-1.8.4), by combining one molecular proportion of the same with one molecular proportion of diazo-sulphanilic acid in acid solution, and one molecular proportion of diazo-azo-benzene in alkaline solution.
644,462—February 27, 1900. C. RIS. Disazo dye from stilbene.
Diazo coloring matters derived from stilbene by diazotizing the product of condensation of two molecules of paranitrotolnene-sulpho acid with one molecule of paraphenylenediamin, and combining the diazo compound with a suitable compound to form an azo dye; dyeing ummordanted cotton orange to brown shades.
644,959-March 6, 1900. J. ABEL. Green-black dye.
Coloring matter obtained by treating ortho-hydroxy-dinitro-diphenyl-amin-sulpho-acid with sodium sulphide and sulphur; dyeing unmordanted cotton green-black shades not altered by treatment with chromates and copper salts. 645,798-March 20, 1900. C. RIS. Black sulfur dye.
Black coloring matters obtained by melting a parä̈midophenol together with an oxyazo componnd, as oxyazobenzene, and with sulphur, to which mixture glycerine may be added, at about $200^{\circ} \mathrm{C}$. and then dissolving the mass in an
alkali and evaporating to dryness; dyeing nnmordanted cotton bluish-black alkali and evaporating to dryness; dyeing nnmordanted cotton bluish-black shades which are fixed by oxidation into fast deep black.
645,781-March 20, 1900. H. A. BERNTHSEN. Bluish-red dye and process of making same.
A coloring matter of the rhodamin series produced by treating the mono-ben-zylatcd-di-alkylated rhodamin (obtained by condensation of molecular proportions of dimethyl or diethyl-para-amido-ortho-oxy-benzoyl-benzoic acid with benzyl-meta-amido-phenol) with fuming sulphuric acid; dyenggwool from an acid bath.
646,711-April 3, 1900. O. SOHST. Black azo dye and process of making same.
Monoazo-dyestuffs, produced by combining diazotized picramic acid with acetylamidonaphtholsulphonic acids; dyeing wool black and developing to dark olive green on treatment with chrome.

646,794-April s, 1900. H. A. BERNTHSEN. Acid vhodamin dye and process of making same.
An acid dye of the rhodamin series is produced by treating a rhodamin imid with fuming sulphuric acid; it dyes animal fiber from a bath suitable for acid dyes, red shades.
646,795-April S, 1900. R. BOHN. Naphthazarin sulfo-acid and process of making
same.
A sulpho-acid of naphthezarin is produced by treating a sulphonated leuco compound of the naphthazarin intermediate product with hydrochloric acid in aqueous solution; dyeing unmordanted wool from an acid bath brown-red shades, which turn black on treatment with a bichromate.
646,796-April S, 1900. R. BOHN. Grecn dye and process of making same.
Green coloring matter of the naphthalene series, produced by heating a sulphonated leuco compound of the naphthazarin intermediate product with wool from an acid bath.
646,841-April \$3, 1900. R. KNIETSCH, A. H. S. HOLT AND E. OBERREIT. Process of making aromatic isatin compounds.
An isatin body of the aromatic series is produced by the direct energetic oxidation (as by a mangavic oxidizer) of the corresponding indoxyl compound.

646,873-Aprit 3, 1900. A. F. POIRRIER. Process of making sulfur dyes.

Sulphureted coloring matters are produced by treating a simple aromatic substance, as phenol, with sulphur chloride, then heating to a suitable temperature, adding a complex aromatic substance as paraphenylenediamin, increasing ture, adding acomplex aromatic substance as paraphenylenediamin, increasing suitable period, and finally melting in sodium sulphide and drying.
647,236-April 10, 1900. K. SCHIRMACHER. Brown dye and process of making same.
Brown dyestuffs produced by the action of diazotized nitro and sulphonic derivatives of ortho-amidophenol acid-such as $1: 2: 3: 5$ and $1: 2: 5: 3$ nitroamidophenolsulphonic acids, picramic acid, or amidophenolsulphonic acid-upon phenopsulphonic acids, picramic arid, or amidophenolsulphonic acid-
metaphenylenediamin or meta-toluylenediamin or their sulphonic acids.
647,260-Aprit 10, 1900. A. HAUSDORFER AND F. REINGRUBER. Blue diphenylnaphthylmethane dye.
Diphenylnaphthylmethane dyestuffs produced by first acting with fuming sulphuric acid on basic dyestuffs of the general formula $\mathrm{HO} . \mathrm{C}$. $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NR}_{2}\right)_{2} \mathrm{C}_{10}$ ${ }_{H_{6}} \mathrm{SH}_{1} \mathrm{H}^{\prime}$ (R meaning an alkyl radical such as methyl, ethyl, etc., $\mathrm{R}^{\prime} \mathrm{m}^{\prime}$ meaning an alkyl radical such as methyl, ethyl, phenyl, paratolyl, etc.) and secondly isolating the dyestuff sulphonic acids thus produced in the form of their alkaline salts: they dye wool in acid baths blue shades.
647,279-April 10, 1900. T. SANDMEYER. Process of making isatin.
Chloralhydrate and aniline are caused to react in the presence of chlorhydrate of hydroxylamin; the thus-obtained isonitrosoethenyldiphenylamidin is condensed by means of concentrated sulphuric acid to alpha-isatinan
the latter is decomposed by diluted mineral acids to anilin and isatin.
647,280-April 10, 1900. T. SANDMEYER. Process of producing indigo.
Indigo pure and mixed with indigo-red is produced by forming a solution of alpha-isatin-anilid (No. 647,281), and reducing the same by means of ammonium sulphide.
647,281-April 10, 1900. T. SANDMEYER. Alpho-isatin anilid.
Alpha-anilid of isatin is obtained by producing a reaction of basic carbonate of lead upon thiocarbanilid in the presence of an alkalicyanid, treating the thus-obtained hydrocyancarbodiphenylimid with a solution of yellow ammoforming dark needles melting at $126^{\circ} \mathrm{C}$.
647,970-April 10, 1900. R. BOHN. Green dye
Green coloring matters obtained by treating the naphthazarin intermediate product with an aromatic amin; readily sulphonated to soluble sulpho acids.
647,498-April 17, 1900. E. HÖLKEN. Process of mordenting.
Goods dyed black by sulphur substantive dyes are immersed in a warmed bath containing zinc sulphate, chromate of potash, and chromic acid; then the temperature of the bath is raised to the boiling point, and finally the excess of zinc
ehloride is washed out; white combinations being formed with the sulphur by the metallic salts which do not discolor the wool.
647,834-April 17, 1900. W. HERZBERG AND O. SCHARFENBERG. Greenbluedye.
A green-blue dye of the triphenylmethane series, being a salt of the monosulpho acid, produced by subjecting orthotoluidin to condensation with tetraethyldiamidobenzhydrol in the presence of strong sulphuric acid (instead of diluted acid), diazotizing the leuco base thus produced and transforming the oxyleuco product by sulphonation and oxidation.
647,846-April 17, 1900. R. KIRCHHOFF AND E. HAUSSMANN. Block sulfur dye.
A black dye produced by melting with sulphur and sulphides of alkali metals A black dye produced by melting with sulphur and sulphide dinitrophenol; directly dyeing uamordanted cotton deep-hlack shades.
647,847-Aprili7, 1900. R. KIRCHHOFF AND E. HAUSSMANN. Blacksulfur dye. A black dye produced by melting together with sulphur and sulphides of alkali metals an equimolecular mixture of picramic acid and dinitroóxydiphealkalimetals an equimolecular mixture from a bath containing common salt nylamin; dyeing deeplack shades.
648,271-April 24, 1900. H. LAUBMANN. Oxyanthrequinone disulfonic acid and process of moking same.
New pentaoxyanthraquinonedisulphonic acids produced by treating the tetraoxyanthraquinonedisulphonic acids dissolved in strong sulphuric acid, with the calculated quantity of an oxidizing agent for the introduction of a With the calculated quantity of an oxid bath, red, the dye yielding, on subsehydroxyl group; dyeing wool, in an acid bath, red, the dis.
648,391-April 24, 1900. O. BALLY'. Blue anthraquinone dye.
Coloring matter obtained by treating a halogen derivative of alphylidoColoring matter obtained ${ }^{\text {anthraquinone (as No. } 631,606 \text {) with sulphuric acid and boracic acid and }}$ anthraquinone (as No. 631,606) with sulphuric acol blue shades and chromesubsequently sulphonating; dyeing
mordanted wool green-blue shades.
648,332-April 24, 1900. O. BALLY. Volet anthraquinone dye.
Coloring matter obtained by treating halogen derivatives of diamido anthra-
quinone (Nos 63I 607-8) with boracic acid and sulphuric acid and subsequently qulphonating; giving violet-blue shades on chrome-mordanted wool.

648,597—May 1, 1900. A. F. POIRRIER. Process of making sulfur dyes.
Substantive coloring matters produced hy the reaction of sulphur and sodium sulphide on a mixture of paramidophenol and alphanaphthol; dyeing cotton clear black in an alkaline bath
648,629—May 1, 1900. A. ISRAEL AND R. KOTHE. Blue trisazo dye.
Triazo dyestuffs produced by first combining a diazo derivative of mono-acidyl-para-phenylendiamin with one molecule of Cleve's alphanaphthylaminbetasulphonic acid (1.6 or 1.7); then rediazotizing; combining the diazo compound thus obtained with a second molecule of one of Cleve's acids; again diazotizing; coupling the diazo product with a naphtholmono or disulphonic neid; and finally treating the resulting triazo dyestuff with caustic alkalis to split off the acidyl group; dying unmordanted cotton reddish-blue to grayish-
blue shades, which can be further diazotized on the fiber.

648,753-May 1, 1900. P. JULIUS. Blue-black sulfur dyc.
A blue-black coloring matter, directly dycing unmordanted cotton, obtained from dinitro-di-para-hydroxy-diphenyl-meta - phenyleadiamin-di-carboxylic acid by treating same with sulphur and sodium sulphide.
648,754-May 1, 1900. P. JULIUS. Grcen-black sulfur dye.
A green-hlack coloring matter, dyeing unmordanted cotton, obtained from dinitro-dipara-hydroxy-diphenyl-meta-phenylendiamin-disulpho acid by treating same with sulphur and sodium sulphide.
648,755-May 1, 1900. P. JULIUS. Btack sulfur dye.
A deep-black dyestuff, dyeing unmordanted cotton, produced from dinitro-di-para-hydroxy-diphenyl-meta-phenylendiamin by treating same with sulphur and sodium sulphide.
649,218-May 8, 1900. C. SCHLEUSSNER. Process of making black naphthazarin sulfur dye.
A dyestuff produced from the uaphthazarin intermediate product by treating ame with sulphides of alkali metals; dyeing cotton directly in blue shades, becoming black when subsequently treated with sulphate of copper.
649,714-May 15, 1900. J. BAMMANN AND W. VORSTER. Dinaphthylamin sulfo derivative and process of making same.
A new beta-dioxydinaphthylamin disulphonic acid produced by first dissolving a mixture of beta ${ }_{1}$-amido-alpha ${ }_{6}$-naphthol-beta ${ }_{4}$-monosulphonic acid and water in caustic alkaline lye, heating tbis solution with a sodium-bisulphite capable of combining with one and also with two molecules of diazo compounds.

649,716-May 15, 1900. H. BOEDEKER. Sulfonated dichlordiethylrhodamin and process of making same.
A blue-red dyeing rhodamin dyestuff, obtained from dichlordiethyl-rhodamin by treating same with monoethylamin and anhydrous sulphuric acid.
649,727-May 15, 1900. B. HOMOLKA. Blue basic dye and process of making same.
Blue basic saffranin dyestuffs, soluble in water, produced by allowing one molecule of beta-naphthol to act upon two molecules of a diazotized asymmetric dialkyl-saffranin.
649,728-May 15, 1900. B. HOMOLKA. Blue basic dye and process of making same. Blue basic dyestufis, soluble in water, produced by combining one molecule of beta-naphtol with two molecules of a diazotized saffranin.
650,292-May 22, 1900. J. ABEL AND F. KALKOW. Brown sulfur dye.
A brown dyestuff, directly dyeing cotton, produced by treating para-hydroxy-tri-nitro-diphenylamin-meta-sulpho acid with sulphur and sodium sulphide.
650,思9—May 22, 1900. J. ABEL AND F. KALKOW. Block sulfur dye.
A black coloring matter, with a green cast, directly dyeing cotton, produced by heating with sulphur and an alkaline sulphide certain diphenylamin derivtives, which can be obtained by heating one molecular proportion of para-hydroxy-ortho-para-dinitro-diphenylamin body with one molecular proportion
of meta-dinitro-chlorbenzene.
650,826-Moy 22, 1900. P. JULIUS AND F. REUBOLD. Brown-black sulfur dye.
A brown-black coloring matter, directly dyoing unmordanted cotton, obtained A brown-blact dinitro-ortho-para-dihydroxy-diphenyl-meta-phenylendiamin by treating from dinitro-ortho-para-dinydroxy-diphe
same with sulphur and sodiam sulphide.
650,527-May 22, 1900. P. JULIUS AND F. REUBOLD. Black sulfur dye.
A deep-black coloring matter, directly dyeing unmordanted cotton, obtained
A deep-black coloring matter, from dinitro-ami
sodium sulphide.
650,756-May 29, 1900. M. H. ISLER. Mordent-dyeing red color and process of making same.
A mordant-dyeing coloring matter produced from the soluble sulphoacid-like coloring matter which can be obtained from a dinitro-anthraquinone by heating with sulphur, boracic acid, and fuming sulphuric acid, as per No. 6I7,686, by heating same with concentrated sulphuric acid until it is converted into a comparativ
650,757-May 29, 1900. P. JULIUS. Azo dye for lakes,
A mono-azo coloring matter obtained by diazotizing 2 -naphthyl-amin- 1 -sulpho acid and combining the diazo compound with beta-naphthol. In the form of its calcium, barinm, lead, and alumina salts it is practically insoluble in boiling water.

PROCESSES.

702-April 21, 1898. F. FASSARD. Improved process of dyeing woot.
An acid solution of the ferro-cyanide or ferro-sesquicyanide of potassium or sodium is used in conjunction with an acid solution of one of the salts of the sodium is used in cone sesquioxide, or protoxide of iron, which yields a blue precipitate by the interchange of their elements.
70s-April 21, 1838. P. MAGENNIS. Improvement in the art of dyeing.
The coloring matter and mordants are applied in a concentrated state to the The coloriog matier anial to be dyed, which is then immediately passed between dry cloth or other material rollers, whereby the coloring matter is forced into the material.
746-May 25, 1838. H. HIBBARD. Improvement in the process of coloring hats, furs, etc.
furs, etc. iron, and a fixed alkali is added to the dye.

58,591-October 9, 1866. A. C. BRUSH AND G. C. WHITE. Improvement in dyeing hat bodies.
The dye or coloring matter is applied to the hat bodies after the sizing bas been commenced and before it is completed.
109,341-November 15, 1870. A. PARAF. Improvement in the manufacture and application of cotors for printing and dyeing.
Colors for printing and dyeing are mixed with soap and so applied.
120,393-October 91, 1871. A. PARAF. Tmprovement in dyeing and printing madder colors.
The madder color is applied to the article in solution with a neutral salt of a fixed alkali and with ammonia; and, second, the coloring matter is precipitated in the article by the mordant adapted to the peculiar color required and the consequent liheration of the ammonia.
147,010-Fcbruary 8, 1874. A. KELLER. Improvement in processes of dyeing cotton. Cotton is dyed a fast Turkey red, the process involving a series of ten or more steps with a great variety of materials, soda compounds, cows' dung, alum, steps with a great variety of mater
madder, blood, fish oil, tin salts, etc.
147,887-February 24, 1874. J. B. FREZON. Improvement in treating mixed fabrics previouts to dyeing.
Woolen and silken fabrics containing vegetable matter or impurities are exposed to a heated acid batb containing a mordant, to simultaneously destroy the vegetable matter and prepare for dyeing or bleaching.
150,487—May 5, 1874. G. MOLT. Tmprovement in dyeing with indigo.
An extract or decoction of hops is added to the indigo solution, to prevent precipitation of the indigo and keep the fabric soft.
169, $221-M a y ~ 18,1875 . ~ J . ~ B . ~ С . ~ H . ~ P E T I T D I D I E R . ~ I m p r o v e m e n t ~ i n ~ p r o c e s s e s ~ o f ~$ dyeing silk fabrics.
The dye solution is in alcohol or similar solvent combined with a fatty and resinous mordant, and the dyed fabric is subsequently passed through a bath of benzine to dissolve the said fatty and resinous mordant.
170,626-November 30, 1875. J. HARLEY. Improvement in dyeing and printing
textile fabrics. textile fabrics.
A fabric is dyed in madder and garancine styles in combination with aniline purples and violets, by first fixing the latter upon the cloth with mordants, and then passing the cloth througb the dye bath, whereby it is then dyed up in madder and indigo styles. A fabric having an aniline purple in combination
with one or more madder colors is claimed; also the combination of aniline with one or more madder colors is claimed; also the combination of aniline
greens and purples npon cloth with mordants suitable for dyeing up in madder colors.
174,891-March 21, 1876. S. BARLOW. Improvement in processes of manufacturing ornamental textile fabrics.
A figured fabric is produced by weaving the portions to be stained or printed of vegetable fibers and the portions to be left unstained or unprinted of animal fibers, then printing with aniline-black, suitable for developing in cotton fabrics, and cleansing.
180,628-August 1, 1876. W. PARSONS. Improvement in processes of ornamenting hosiery and other knit fabrics.
Hosiery and other knit goods are ornamented by dyeing the ornamentation thereon.
194,392-August 21, 1877. J. WILLIAMS. Improvement in dyeing and coloring feathers, laces, and other fabrics.
The material is immersed in a bath consisting of gasoline or naphtha and a mineral pigment ground in oil.
202,910-April 9S, 1878. J. WILKINS. Improvement in treatment of waste from the separation of animal from vegetable fibers.
The vegetable waste from the separation of animal from vegetable fiber (obtained by treating mixed rags with dilute acid) is converted into dextrine by heating the said material with sulphuric acid, nentralizing with chalk, decanting the solution, decolorizing, if necessary, and evaporating.
225,019-December 30,1879 . H. W. VAUGHAN. Improvement in methods of coloring fibrous material.
A dry powder, as infusorial earth, or other suitable vehicle, charged with coloring matter and with an oleaginous constituent, is mechanically incorporated into the fiber in the manufacture of the yarn.
$230,75 s-$ August 3,1880 . C. P. CULLMANN AND C. A. LORENZ. Fabrication of onyx from agate.
One side of the stone is immersed in a bath of dilute nitric acid and iron, and the other side in a bath of potassium carbonate and water; the stones are then dried and burned to fix the color.
235,170-December 7, 1880. G. M. \& A. L. RICE. Art of separating vegetable fibers from animal fibers.
Chemical disintegrating agents are rendered temporarily inactive during distribution by being absorbed with a suitable comminuted or finely granulated substance, and distributed in a dry or mealy condition througb the mixed me mass is then subjected to heat.
241,661-May 17, 1881. T. \& R. HOLLIDAY. Dyeing colors on cotton or textile fabrics.
Azo colors are developed in or upon textile fiber, etc., by impregnating the same with a solution of a phenol or phenols, and with a solution of a diazo compound of an aromatic amine or phenol.
242,081-May ${ }^{\text {2 } 4, ~ 1881 . ~ H . ~ W . ~ V A U G H A N . ~ P r o c e s s ~ o f ~ d y e i n g . ~}$
Dyes of coloring matters in flbrous material which has been superficially colored by impregnation with a dry powder charged with color and an oleaginous constituent (No. 223,019), are fixed by steaming.
253,250-February î, 1832. A. SANSONE. Application of coloring matter to fabrics. Spotted or stippled effects are produced by scattering npon the mordanted wet fabric a dry insoluble granulous or powdered substance, such as sand, coated or covered with an aniline or other suitable color substance.
262,791-August 15, 1882. M. LANDENBERGER, Jr. Manufacturc of dyed fabrics.
In the manufacture of mixed cotton and wool fabrics, the cotton is dyed in the yarn with a dye not affected by the dye for the wool, and after weaving, the fabric is dyed with the wool dye.

266,825-October 11, 1882. A. M. JACOBS. Preparing fabrics for dyeing turkey red. Preparatory to dyeing turkey red or alizarine the fabric is treated in a solution of ammonium-aluminum tartrate, whereby the oiling and aluming of the fabric are done in one operation
279,498-February 20,1889 . H. W. VAUGHAN. Method of applying dyestuffs to flbrous materials.
The fiber is sprayed with oleaginous matter, and the coloring matter, combined with a pulverulent vehicle and a mordont, is blown upon the fiber.
289,500-August 21, 1889. J. C. MAGUIRE. Dyeing and fnishing plush fabrics.
A paste or cementing substance is applied to the nap or face side of the fabric in connection with the dye or color; it is then steamed, and the fabric dried, and finally washed to remove the paste or gum from the nap.
s01,Sh4-July 1, 1884. A. N. DUBOIS. Process of dyeing horse-hair and bristles.
They are immersed in a boiling bath of water containing saits of lead and salts of soda, boiled for one and a half hours, then wasbed in cold water, and subsequently in tepid water containing sodium carbonate.
s01,475-July 8, 1884. J. BRACEWELL. Process of printing indigo colors.
The fabric is saturated with a solution of grape sugar or glucose and dried, and the saccharine crystals over the surface are then broken down, as by passing it through a steam box for a very short time, when the prepared fabric is printed with a mixture of alkali and indigo.
305,057-September 16, 1884. C. ALBERT CONTI DE BARBARAN. Process of dyeing hair.
Human bair or the hair or fur of animals is treated first with an ammoniacal solution of nickel and then with pyrogallic acid.
$328,465-$ October $20,1885 . \mathrm{M}$. CONRAD. Process of printing textile fabrics.
Knit or woven fabrics are first printed with a color prepared with laevulinic acid, oil emulsion, acetic acid, and starch, and a solution of dry tannic acid in tragacanth water, and the fabric is afterwards submitted to the action of steam. ss1,777-December 8, 1885. A. N. DUBOIS. Dyeing aniline black.
The fabric is prepared for dyeing by soaking in a bath of soluble castor oil, then for about three hours in a bath composed of water, aniline oil, hydrochloric acid, nitrate of iron, and bichromate of potash, after which it is finfshed in a bath of soap.
\$41,409—May 4, 1886. H. F. DIETZ. Dyeing hat bodies.
Hat bodies are dyed while upon the cone or former.
354,229—December 14, 1886. H. R. RANDALL. Treatment of silk fiber.
The process consists in treating silk fiber, waste and raw silk and cocoons, berore removing ger, or a watery solution of acetic acid in water, 1 to acid.
355,939-January 11, 188\%. T. HOLLIDAY. Process of napththol dyeing.
The fiber is passed through a solution of a salt of lead to which an alkali bas been added, and then through a soap solution, when the fiber, having on it oxide of lead or lead soap, is impregnated with alpha or beta naphthol, or coloring matter formed with them.
355,934-January 11, 188\%. T. HOLLIDAY. Dyeing textile animal fibers.
Animal fibers are dyed with the product of oxidation of alpha-naphthol by chromic acid, by acting on the alpha-naphthol with chromic acid in the presence of the fiber.
s57, $281-$ February 8, 1887. E. HOLLIDAY AND E. RAU. Dyeing with basic aniline. The material is dyed in a bath composed of the fatty salts of the basic coaltar colors in a solution of benzine, or other suitable hydrocarbon or like solvent; the surplns color is removed by washing in benzine, and the color is then fixed in Ω steam box.
362,885-May 10, 1887. T. HOLLIDAY. Proccss of dyeing.
Wool or other animal fiber is impregnated with metallic mordants and immersed in a hath containing one or more nitroso compounds of naphthols.
368,880-August 23, 1887. T. H. DOST. Dyeing brush stock.
Vegetable fiber for brushes is dyed in bulk in extract of logwood or other dye producing a black color, then dried, and finally subjected to the fumes of sulphar to fasten the color and also make it lighter.
374,320-December 6, 1887. E. RAU. Process of dyeing.
A bath is formed by dissolving the color in water, treating with canstic soda and oleic acid, and then adding oil. The fabric is passed through the dye batb, the surplus color is pressed out, it is dried and steamed, and then washed with bydrocarbons to remove the oil and leave the color only in the fabric.
379,150—March 6,'1888. R. BOHN. Dyeing cmimaltextile fabrics with naphthazarin.
Chrome lakes of naptbazarin are produced within or upon textile fibers by cxposing said fibers to the action of chromium mordants and naphthazarin in
dyeing.
385,426-July 3, 1888. J. C. PENNINGTON. Dyeing.
Silks, wools, and mixed fabrics are dyed with anitine colors by impregnating them with a solution of the alkaloidal hases of such colors in ether or other equivalent liquids, and afterwards submitting them to the action of steam containing suitable acid to reconstitute the coler and to volatilize the residual solvent
386,247-July 17, 1888. T. HOLLIDAY. Proccss of dycing.
Cotton or other vegetable fiber is dyed by the formation thereon of the colored products of the combination of the nitroso compounds of alpha or beta naphthol with metalic mordants.
388,703-August 28, 1888. P. P. F. MICHEA. Treating plants containing indican. In the manufacture of indigo ammonia is introduced into the indigo liquor and atmospheric and ozonized air, with agitation to increase the yield.
ss0,842-Octobcr 9, 1888. B. F. CRESSON. Dyeing aniline-black.
An aniline-black coloring solution is formed by dissolving and mixing together Water, chlorate potasb, sal-ammoniac, sulphate of copper, nitrate of iron, and tragacanth gum, then forming another liquor of aniline-oil, muriatic acid, tartaric acid, and water, and finally mixing the two liquors.
394,446-December 11, 1888 . V. G. BLOEDE. Process of tinting fabrics. Yarn and fabrics are tinted with insoluble coloring matter by subdividing the
itself to tbe individual fibers thereof, then suspending the color in an aqueous batb, which may contain a gummy or viscous matter, and passing the yarn or 994,447-December 11, 1888. V. G. BLOEDE. Process of dyeing.
The fabric is first impregnated with, or there is applied thereto, a mixture of soluble fatty matter, such as potash soap, and colorlng matter, which may be insoluble by treating the fabric with chloride of calcium or is then rendered compound.
994,448-Dccember 11, 1888. V: G. BLOEDE. Tinting or finishing cotton fabrics.
The Interstices of the fabric are filled with starch and coloring matter exposed surface of the threads by scraping paste is then removed from the

409,820-August 27, 1889. J. BRACEWELL. Pigment-resist.

The process consists in printing the resist compounded of a pigment color and blotching over the same the steam aniline-black color, and lastly developing and fixing the aniline-black and plgment-resist colors by steam under pressure.
419,S31-January 14, 1890. S. HODGSON. Process of scouring and dyeing.
In dyeing, scouring, or washing, the staple is intermittently fed to the operating impulses.
499,1s1-June S, 1890. J. J. HART. Process of printing calico.
The fabric containing the lake or fixed color is passed tbrough a bath of a necessary to effect the chemical reaction betw a temperature below the point the developing reagent (preferably cold), and then the fabric is exposed to heat to effect the chemical reaction between the lake and fixed color and developing reagent.
43s,790-August 5, 1890. T. INGHAM. Process of dyeing.
Fabrics of mixed regetable and animal fibers are snbmitted to a bath of the required coloring matter or solution without any mordant, then dried, and the throngh a solution that will fix the colors upon both the vegetable and animal fibers at one and the same time.
499,953-November 4, 1890. R. HOLLIDAY. Process of producing azo colors on cotton or other vegetable fiber.
The fiber is first subjected to a mixture composed of oil, a phenolic body, and an alkali, dried, and then subjected to an azo compound.
440,414-November 11, 1890. F. ZEMAN. Process of dyeing.
Method of dyeing silk consists in first washing the same, subjecting to a dyeing bath, drying, steaming, subjecting to vaporized acetic acid for setting the colo, then subectiog to a beated bath or sncate of soda, and washing.
449,104-March 31, 1891. V. G. BLOEDE. Process of coloring and finishing fabrics. Starched fabrics or yarn are treated with a solution of canstic lime or other equivalent componnd which has the property of rendering the starch insoluble. 457,488-August 11, 1891. A. FISCHESSER AND J. POKORNY. Proce8s of dyeing.
In the direct production of insoluble azo coloring matters upon fabrics, either by dyeing or printing, the fabric is alternately impregnated or coated with point of which is $216^{\circ} \mathrm{C}$.
472,267-April 5, 1892. E. MICHAËLIS AND C. HENNING. Process of dyeing.
Textile material is immersed in a hath consisting of an acid solution formed by treating zinc with sodium bisulphite mixed with caustic soda and indigo, and then immersed in oxygenated water to oxidize the indigo, to which a percentage of ammonia may be added.
484,080-October 11, 1892. E. ZILLESSEN. Process of dyeing.
Silk goods are dyed in contrasting colors, by treating part of the threads to be woven with a mordant before weaving, then weaving in combination with silk not so prepared, to form the desired pattern, and finailly dyeing in the piece the fabric thus formed.
491,67s-February 14, 1893. W. BROWNING. Process of printing colors with ani-line-black.
A mordant formed by an astringent solution and a metallic salt is first applied to the material, second, the material is padded with an aniline mixture suitcoloring matter, which will enter into chemical combination with such morcoloring matter, which will enter into chesinted upon the material in any desired design; and, finally, the material so mordanted, padded, and printed, is steamed or aged to develop and fix the colors.
493,286-March 14, 1893. C. F. X. NOROY. Proccss of dyeing black.
The goods (of animal or vegetable fiber or skins) are first submitted to a bath composed of water, logwood, and a copper salt, and then immersed in a fixing bath composed of water, metallic sulpaates, bichromate or potasb, and nentradtion of soda potash or ammonia.
499,649-June 13,1898. V. G. BLOEDE. Process of dyeing and printing.
The goods are first immersed in a solution composed of a dye and mordant suitable to fix it and a free acid which will hold them both in solution, and the saturated goods are then subjected to the action of a bath of alkaline vapor
499,689-June 13, 1893. W. T. WHITEHEAD. Aniline-black resist.
The pattern is printed upon the cloth in a resist containing a zinc compound drits essential or active element, with or withont a color; it is then suitably blotching, slop-padding, or dyeing.
499,691-June 13, 189s. W. T. WHITEHEAD. Aniline-black discharge.
The cloth is first treated with a solution of aniline black, dried sufficiently to keep the color from running, and the pattern is then printed in a discharge containing zinc as its essential or active element (with or without a color), before oxidation of the aniline-black color, thereby producing the pattern on an oxidation of the ani
aniline-black ground.
499,692-June 13, 1898. W. T. WHITEHEAD. Aniline-black resist.
The pattern is first printed upon the cloth in a resist containing zinc as its
is treated with a solution of aniline black by blotching, slop-padding, or dyeing producing the patteri on an aniline-black ground.
$500,558-J u l y$ 4, 1893. J. BRACEWELL. Printing aniline-black.
The fabric or fiber is first padded or covered with an aniline-black mixture; it is then printed with a color mixture consisting of an aniline-black discharge, a coal-tar color, and an alumina hydrate as mordant for the color, and then steamed or aged to such a degree that the analine black and the color pattern are simultaneously developed and fixed. The said color mixture is claimed, the insoluble salts of which have an affinity for both color and cotton fiber, Whereby heat and moisture will canse the mixture to discharge the aniline black on the fiber and deposit the insoluble double salt of the alumina and color. 501,160-July 11, 1893. W. PFITZINGER. Process of dyeing black.
Cotton is first dyed by a coloring matter, such as is obtained by the combination of one molecule of tetrazo diphenyl, or analogous compounds thereof, with two molecules of amido naphthol monosulpho acid G; second, the dyestuff on the fiber which contains one or two free amido groups is diazotized; and third, the resulting diazo compound is combined with phenol.
506,966-October 17, 189s. C. BASWITZ. Method of removing copper from textile
parchments (fabrics). parchments (fabrics).

- Copper is removed from textile fabrics and the same réndered uninflammable by dipping them in a solution of vegetable parchment in ammoniacal oxide of copper, then evaporating the ammonia, and finally treating with a mixture of sulphate of ammonia and acetate of alumina to remove the copper.
5:9,498-November 20, 1894. F. V. KALLAB. Dyeing anilinc-black.
Aniline black is produced on wool, hair, and other animal substances or mixed textile fabrics by first oxidizing the goods, second padding or printing with a mixture suitable for producing steam-aniline black on cotton, and finally developing the black by steaming.
529,499-November 20, 1894. F. V. KALLAB. Producing figures on aniline-black.
White or colored figures are produced on aniline black on fabrics of wool, hair, or other animal substances or mixed fabrics containing such substances, by subjecting the goods to such feeble oxidation that the white of the wool is but little affected, then padding or printing with mixtures suitable for producing steam-aniline black on cotton and for prodncing discharging white or colors, and finally steaming to develop the black and fix the diseharge colors.
542,0:2-Juty 2, 1895. E. LAUBER AND L. CABERTI. Process of dyeing.
Fabrics are first treated with beta naphthol and antimonious oxide in alkaline solution, and subsequently treated with diazo compounds.
545,420-August 97, 1895. F. BAMFORD. Process of dyeing pile fabrics.
The pile fabric is embossed to lay flat portions of the pile; then a mordant, resist, or dye is applied to the erect portions of the pile, and, after steaming and washing, the pirtis raised. Two or more colors are produced by applying a dye to the erect portions of
pile, dyeing the piece.
557,39/-March 51, 1896. G. D. BURTON. Art of electric dyeing.
See Group X, Electro-chemistry.
558,718-April 21, 1896. H. L. BREVOORT. Art ff faing dyes in fabrics.
See Group X, Eleetro-chemistry.
559,163-April 28, 1896. E. CABIATI. Proccss of dyeing with indigo.
A fine network in aniline black is printed on the fabric before or after treatment in the indigo bath, to economize indigo.
569,392 -October 13, 1896. F. STORCK. Process of producing azo colors on flber.
The fiber to be dyed or printed is impregnated with a sodium salt of phenol and subsequently submitted to the action of mixtures of diazo componads of aromatic bases with cupric chloride.
570,115-October 27, 1896. V. G. BLOEDE. Process of vapor-dyeing.
Fibers or fabrics are subjected to the action of the vapors of volatile coloring matters or color-producing compounds.
570,117-October 27, 1896. V. G. BLOEDE. Process of dyeing aniline-black.
The fiber is first saturated with a salt, of aniline or its homologues (combined in the usual manner with chlorates or metallic salts), then dried, and then, without previous aging, it is brought in contact with an oxidizer, applied in such quatil the color developed has become insoluble.
574, 101 -January 5, 1897. C. \& P. DUPOULLY. Process of crinkling silk.
Silk thread or fabric is subjected to the action of an acid of a density suffcient to contract the silk fibers.
577,295-February 16, 1897. W. J. S. GRAWITZ. Process of dycing.
Vegetable fibers, prepared wool, or silk are dyed or printed by first treating the fibers with a mixture of a salt of aniline and a soluble cyanate, such as sulpho-cyanate of barium, capable of forming the sulpho-cyanate of aniline by double decomposition, and then developing the color by oxidizing the chlorate in presence of a salt of vanadium.
580,931-April 6, 1897-J. WEIDMANN. Process of dyeing silk.
Unmanufactured silk in the condition of sonple is subjected to a bath of bichloride of tin of from 20° to 30° Banme for an hour, more or less, then washed, then for an added weight of 50 to 300 per cent passed one to five times through the tin bath, then subjected to a solution of phosphate of soda, again washed, passed back and forth in a bath of silicate of soda, again subjected to the tin bath for an hour, and then dyed black, after grounding if desired.
5S6,865-July 20, 1897. E. VON PORTHETM. Process of dyeing black.
The dyestnff is formed on the fiber by mordanting the same first with betanapthol sodium and then applying thereto a diazo combination of an amidochrysoidin base-formed by diazotizing a base of an amidochrysoidin-adding to the diazotized liquor acetic-starch paste, oxalic acid, and acetate of sodinm. 588,209—August 17, 1897. A. WEINBERG. Process of developing azo colors.
Dyeings produced by means of those direct-dyeing cotton dyestuffs which contain iree primary amido groups are developed by treating the goods in a bath containing diazo compounds. The process appears to be an inversion of the well-known method of diazotizing amidized direct-dyeing coloring matters upon the fiber.
588,987-1 ugust 17, 1897. V. G. BLOEDE. Process of dyeing.
The fiber or fabric is first treated with a composition of aniline, its homologues or analogues, and then subjected to the action of an oxidizer in gaseous form.
592.029-October 19, 1597. H. N. F. SCHAEFFER. (Reissue: 11,647-February 1, 1898.) Process of dyeing mixed goods.

Mixed goods composed of wool and cotton are first dyed with a black dye which dyes the wool only and which is unaffected by aniline-black: the cotton is then dyed by padding the goods with an aniline-black liquor, and the black developed in the cotton after it has been padded.
599,192-November 9, 1897. V. G. BLOEDE. Process of dyeing.
Colors are developed or modified by diazotization by subjecting the fiber or fabric treated with such colors or color-producing compounds to the action of mitrous acid in gaseous form.
595,894—December 21, 1897. H. SEYBERTH AND M. VON GALLOIS. Process of producing diazonaphthalene on fiber.
Process of producing diazonaphthalene for the production of a claret-red color on the fiber consists in applying to the fiber a pasty aqueous solution of pulverized alpha-naphthylamin sulphate, and then diazotizing the same.
601,420-March 29, 1898. H. ZUBLIN AND A.ZINGG. Process of discharge printing.
In the art of producing white and color discharge of finished dyed paranitranilin red and similar azo coloring matters, produced directly upon the fiber, tbe coloring matters are reduced by means of an alkaline solntion and of glucose in the presence of a body of the bydroxyl group, as glycerine.
606,776-July 5, 1898. S. F. CARTER. Process of producing white effects on fabrics. The fabric is first subjected to the action of a sulphocarbonate of cellulose, such as viscose, the design is then printed upon the fabric with a suitable pigment, as tungstate of barium, and it is then subjected to heat to decompose the viscose. The design may be first printed with a mixture of viscose and tungstate of soda, and the fabric then heated and afterwards passed throngh a bath
of barium chloride to form upon the fabric tungstate of barium in the form of the design.
606,777-July 5, 1898. S. F CARTER. Process of producing white cffects on fabrics. The design is printed upon the fabric with tungstate of barium and albumen, or like binding agent, and then heated to coagnlate the albumen, thereby binding the pigment to the iabric.
612,274-October 11,1898 . J. T. REID AND H. THORP. Dyeing textile fibers, yarns, and fabrics.
Vegetable fibers are dyed " khaki" shades by passing the material through a bath of olein-oil, drying, impregnating with a mixed solution of alizarin-blue S (or like product of anthracene), chrominm and iron salts, then drying, steaming and developing the color by treatment with ad alkali.
614,287-November 15, 1898. H. N. F. SCHAEFFER. Process of printing on mixed goods.
Printed effects are produced on mixed woven goods of animal and vegetable fibers, by dycing with a substantive color or colors, rendering the substantive color fast on the vegetable fiber by a substantially colorless compound metallic mordant (as salts of zinc, magnesia, and alumina), and a fixing agent not sufficiently alkaline to affect the animal fiber, and printing in design on both fibers a discharge reagent which reacts on both the animal and vegetable substantive color and produces a colored design on both of said fibers. $^{\text {ta }}$
615,292-December 6, 1898. H. ALT AND E. CULMANN. Process of dyeing with quinonorim colors.
Process of producing and at the same time fixing nitrosophenols on textile fiber consists in impregnating the goods with a mixture consisting of a phenol, a suitable acid or acid salt, and a mordant adapted for the fixation of nitrosophenols, and subsequently passing the fabric through a hot nitrite solntion.
617,772-January 17, 1899. F. RETTIG. Process of making colored designs on woven

fabrics.

Embroidery-like woven material having a raised and colored portion is produced by weaving such fabric with a raised design on its face, protecting the back by applying a resist thereto, applying a color on the other side, fixing said color. A color may be incorporated with the resist.
620,579-March 7, 1899. J. W. FRIES. Process of dycing.
The dyeing compound consists of starch and canstic soda in semifnid condition, acetic acid, a substance such as acetate of lime capable of precipitating the basic dyes, and a basic dye, the whole forming a viscons material capable of producing insoluble precipitates of the dyes upon the fabric and stiffening of 623,697-April 95,1899 . M. BECKE AND A. BEIL. Proces's of dyeing unions.
The wool and cotton in half-woolen goods is simultaneously subjected in one acidulated bath to the action of basic polyazo dyestuffs and saffraninazo dycstuffis.
625,198-May 16, 1899. A. PHILIPS AND M. VON GALLOIS. Process of dyeing on fiber.
Azo colors, insoluble in water, are produced on the fiber. from violet-black to black, by grounding the goods with naphthol and combining therewith the tetrazo compounds of diamidodimethylcarbazol by way of printing or dyeing. 630,507-August 8, 1899. F. I. HORROCKS. Process of dyeing.

Products made of vegetable fibers are impregnated with a solution of a salt of copper and iron, and the same is precipitated upon the fibers in the form of oxides by a suitable reagent, as a solntion oi a suitable salt of an alkali metal. Figures or patterns are produced by removing the excess of solution to a greater extent from some portions of the fabrig than from others prior to precipitation. 691,806-August 29, 1899. J. T. REID AND H. THORP. Process of dyeing khaki.
The fibrous material is impregnated with a mixed solution of alizarin-blue S, chromium and iron salts, dried, stcamed, and the color developed by treatment with an alkali. (The preparatory steps of No. 612,274 are omitted.)
682,509-September 5, 1899. A. PHILIPS. Process of dyeing.
Brown to brown-black colors are produced on the fiber by treating the naph-thol-grounded fabric with the tetrazo solutions of the diamidocarbazols
698,488-September 19, 1899. F. ERBAN. Process of dyeing.
To dye with alizarin the fiber is first treated with a soluble modification of alizarin-a solution of the coloring matter mixed with an alkaline mediumthen the alizarin color is tixed on the fiber by drying, the fiber is treated with a mordant, and finally steamed.
634,824-October 10, 1899. P. JULIUS AND R. LAIBLIN. Dyeing wool fast black. The wool is dyed from an acid bath with the secondary diazo dyes from ortho-amido-phenol-para-sulpho-acid (those having alphanaphthylamin as mid-
dle component and a naphthol or dioxynaphthalene or sulpho-acids thereof as end components), and the dyeings treated with a chrome salt.
646,879-March 27, 1900. G. TAGLIANI. Process of dyeing fabrics.
To deepen the shade of color npon one side of fabrics of vegetable fiber a concentrated alkaline solution-as a concentrated caustic solution containing metallic salts-is applied only to the side that is to take the deeper color, then the fabric is dyed, and finally subjected to the washing action of an acid.
647,268-April 10, 1900. F. JUST. Process of dyeing.
Colors developed by chromium componnds are produced on wool fiber by dyeing the fiber with an azo dyestnff, oxidizing with chromic acid, and subjecting the dyestnff simultaneously to the action of a reducing agent, such as lactic acid, tartaric acid, etc.
6L9,2\%7-May 8, 1900. E. ULLRICH. Process of dyeing quinonimid dyes.
The tannin-antimony compounds of the quinonimid dyestuffs are produced from their components on the fiber by printing or padaing the fiber wit a color containing a nitroso compeund of aromatic bases, a phenol-like sody as betapassing the fiber through an antimony bath, and washing and soaping.

649,228—May 8, 1900. E. ULLRICH. Process of fixing quinonimid dyes.
The chromium compounds of the quinonimid dyestuffs are produced on the fiber from their components by printing or padding the fiber with a color containing a nitroso compound of aromatic bases, a phenol-like body (snch as beta-
naphthol), an acid, a thickening agent, and a suitable metallic salt to fix the napathol t an acid, a thickening agent, and a suitable
dy estuff, then drying, steaming, washing, and soaping.
649,486-May 15, 1900. R. E. SCHMIDT. Process of dyeing.
Unmordanted wool is dyed with water-soluble amidoöxyanthraquinone sulphonic acids by means of an acid bath, which at the same time contains a sulphurous-acid compound as a reducing agent.
650,752—May 29, 1900. W. ELBERS. Gray cloth and process of dyeing same.
A gray-indigo coloring matter is produced on the fiber by printing with a paste of finely divided indigo, a suitable thickening and a quantity of oil on the fiber, and steaming, then freeing from thickening by wasbing and treating with malt, drying, and again steaming.

MORDANTS.

8,085-April 15, 1851. C. A. BROQUETTE. Improvement in material for transferring colors in calico printing.
Extract of fibrine is nsed to form a mastic to thicken and retain on fibers archil color and such other colors as are incorporated with the mastic. The process is described of preparing and purifying the extract of caseine for nse as a mordant.
19,915-December 11, 1855. R. PRINCE AND A. LOVIS. Improvement in processes
for calico printing. for calico printing.
A compound of silicates of soda or potash with neutral or alkaline salts is used, in lien of dung, in dunging operations with carbonate of soda and neutral salts.
34,840-April 1, 1862. N. LLOYD AND J. G. DALE. Improvement in dyeing and printing with aniline colors.
Tannin and tartarized or other soluble salt of antimony capable oi dilntion with water, or a soluble salt of lead, mercury, or chromium, are nsed to fix colors derived from aniline or analogous substances on textile fabrics.
38,686-May 26, 1863. G. H. LEWIS. Improvement in printing and ornamenting india rubber.
Printing or engraved matter is impressed or transierred npon vulcanizable india rubber or allied gums, and then fixed by vulcanizing, as by pressure between beated metal plates.
41,066-January 5, 1864. R. H. GRATIX. Improvement in aycing and printing with aniline colors.
A componnd of tannin with the aniline color, formed either before or during the process of printing or dyeing, is nsed in combination with salts of tin or other suitable mordant.
46,200-January 31, 1865. T. CROSSLY. Improvement in the dyeing, printing, and manufacture of waterproof flocked cloth.
Before dyeing or printing, the cloth is submitted to a steam heat of 105° to $143^{\circ} \mathrm{C}$., then to a bath of muriate of tin of 4° to 12° Twaddle, then to a neutralizing bath of aqua ammonia and salsoda, then to a solution of sulphuric acid and chloride of lime to oxidize the tin deposit, and afterwards to a dilute solntion of sulphuric acid to remove the lime. The cloth then dyes and prints in uniform slades.
54, 203-April 24, 1866. E. F. PRENTISS. Improved mordant.
A triple sulphate of iron, 746 parts; copper, 254 parts; and zine, 110 parts. It is nsed for black and any desired shades of mulberry.
60,546-December 18, 1566. A. PARAF. Improvement in dyeing and printing textile fabrics und yarns.
Chromic acid is developed in dyeing and printing by the application to the fabric of an insoluble salt of chromium and the subsequent action of a moist atmosphere, or by aging or steaming.
68,084-March 19, 1867. A. PARAF. Improvcment in dyeing and printing tertile fabrics, and in compounds therefor.
The arsenite of glyccrine, for fixing aniline colors; also the combination of the same with coal-tar colors and acetate of alumina, magnesia, or other metallic oxide.
69,121-Scptember 24, 1867. A. PARAF. Improved mode of producimg black in dyeing and printing.
Asphaltum is nsed and the black coloring matter precipitated in the article to be dyed or printed by means of albumen.
94,581-September 7, 1869. F. S. DUMONT. Improved compound to be used as a
mordant in dyeiug and printing.
A mordant made from the serum of blood, produced by adding arsenic acid, borax, sulphate of zinc, and essence oí terebinthine.
99,105-January 25, 1870. A. PARAF. Improved method of fixing prigmonts to flbrous and tcxtile materials.
The coloring matters are fixed by means of albuminous material, as lactarine, and a salt of lime, such as the saccharate of lime or the suchrate of lime.

106,479-August 16, 1870. F. GRAUPNER. Improvencent in composition to be used in dyeing.
A coloring composition, of the naturo of a mordant, consisting of a solution of sulphate of soda, sulphuric acid, and oxalic actd in water, to which is added a mixture of muriatic acid and nitric acid saturated with tin and then dilnted with water.
128,502-June 25, 1872. E. A. D. GUICHARD. Improvement in processes of printing fabrics.
The colors are mixed with a compound of oil varnish, essence of turpentine, white or yellow wax, and resin and printed direct, without previous preparation of the fabric.

148,449-October 7, 187s. G. A. HAGEMANN. Improvement in mordants for dyeing.
Calcined and pulverized acetate of soda and sulphate of alumina are mixed in due proportions ready to be dissolved for the production of the mordant
acetate of alumina.

144,952-November 25, 1873. R. O. BURGESS AND S. LA RHETT. Improvenent in mordants for dyeing.
A componid of sodium chloride and binoxalate of potash.
152,908-July 14, 1874. A. GENDER AND W. THILMANY. Improvement in treating textilc fabrics to prevent mildew and decay.
Textile labrics are treated with sulphate of copper and chloride of barium, the salts forming a union with the fabric.
177,987-May $\$ 0,1876$. F. J. BIRD. Impror'ment in mordants.
A composition of gallnuts, tannin, alum, tin, and soda, as a mordant for woolen and cotton or other union goods.
186,620—January 23, 187\%. J. RAU. Improvement in processes for dyeing silks.
Silks and half silks are dyed, without water or steara, by first soaking in a bath of benzine with aniline dissolved therein, and aiterwards in a bath of pure benzine.
192,492-June $26,157 \%$. H. D. DUPEE. Improvement in printect textile fabrics. A textile Iabric has coloring matters fixed thereon by means of gelatine combined with chromic acid.
195,826-October 2, 1877. J. KOKESCH. Improvement in treatment of seal skins. The skins are first sheared to the proper length of hair, then subjected to a process of fulling, then mordanted, and flnally immersed a number of times in a dye, brushing after each immersion. The mordant consists of quicklime, beech ashes, sumac, and water; and the dye of gallnuts, green copperas, copper scales, litharge, sal ammoniac, verdigris, catechu, rotten stone, cinnabar, and water.

204,130-May 28, 1878. S. CABOT, JR. Improvement in compositions to be used as mordants and dye stuffs.
It consists of gallic acid, sodic or potassic hyposulphite, hydrosodic or hydropotassic sulphate, and nutgalls, ground and mixed.
241.398-May 10, 1881. S. MELLOR. Mordant.

It consists essentially of stibio-fluorine sults, or any combination of fluorine and antimony by themselves, or in conjunction with any other metal of metalloid.
248,141-June 21, 1881. J. J. LELOIR. Dycing mixed fabrics.
A mordant for mixed fabrics composed of water, muriatic acid, and sulphuric or nitric acid, with zinc or tin, together with bichromate of potash and a sulphate of iron or of copper.
248,978-June 28,1681. A. M. JACOBS. Tarkey-red mordant.
Process of preparing a mordant consists in uniting 220 parts of oil or fat and 50 parts of sulphuric acid, the mixture being stirred for three hours until 37° to $56^{\circ} \mathrm{C}$. is reached and then settled for twelve hours, then a watery solution of crystallized soda is added and settled for twenty-four hours, when the nentralized oil is drawn off and 26 parts of aqua ammonia is added.
245,635-August 16, 1881. A. M. JACOBS. Process of manufacturing oleaginous mordants.
To produce an oxyoleic alkali mordant, for turkey-red dyeing, vegetable and animal oils, fats or oleic acid are treated with sulphuric acid, then donble the quantity of cold water added, whereby sulpholeic acid is formed which is settled, separated, and boiled with three to six times the quantity of distilled water until the fatty acids and the sulphnric acid have separated and the former floats on the watery fluid; it is then poured off and the fatty acid is epeatedly boiled with iresh water, separated from the solid parts and mixed wath cold water, and alkali added to nentralize or make slightly alkaline.
245.701-August 16, 1881. J. BURTON. Thickener for mordonts and colors.

Glucose is added to either the mordant or color, or both.

254,713-March 7, 1882. T. SIMPSON. Chroming fabrics.

The fabric is passed throngh a chroming solution, then heated withont drying, and then passed, belore drying, through a water bath.
255,54s-March 28, 1882. T. SIMPSON. Process of and apparetus for aging fabrics. The suspended fabrics, properly prepared, are subjected to the action of currents of moist air directed downward.
263,040-August 22, 1882. T. H. GIBSON. Mordant.
A combination of acetate of lead and stannate of soda each one part and alum two parts.
263,366-August 29, 1882. C. TOPPAN. Process of finishing colorect or printed textile fabrics.
The goods are passed into or through a solution of warm water and sineThe goods are passed into or through a solntion of warm water and sine-
petroline No. 2 (No. 186,640), with or withont starch, and then calendered upon petroline
270,868-January 16, 1883. F. B. WILKINS. Finishing woven cotton fabrics.
Ginghams and other cotton fabmes are wrapped in heavy woolen blankets and subjected to the action of steam under pressure, to render them pliable and improve the texture.
287,112-October 23, 1889. A. N. DUBOIS. Mordant for aniline-black.
A compound of water, hydrochloric acid, sulphate of soda, and bichromate of potash.

290,294-December 18, 1889. C. N. WAITE. Mordant.
A mixture of lactic acid, 4 parts, with oxalic acid, I part. It is specially intended for animal fibers.
\$09,016-December 9,1834 . G. WITZ. Process of pattern dyeing.
To produce figures of the same color as the ground, but of a different shade, the fabric, of vegetable fiber, is dipped in a solution ol potassiom bichromate, and dried, then printed with a solution of starch at about $50^{\circ} \mathrm{C}$., in which is dissolved oxalic acid (whereby the cellulose is converted into oxycellulose) and dried, and then washed and dyed.
S20,820-June 23, 18R5. R. SILBERBERG. Process of dyeing.
Cotton fabric is first immersed in boiling water, then in a solution of oxalate of chromimm and as solution of caustic soda, and then washed and dyed with an aniline dye in the usual manner.
320,821-June 2s, 1885. R. SILBERBERG. Mordont.
A mordant for aniline dyes consisting of a mixture of a solution of oxalate of chromium and a solntion of caustic soda.
320,963-June 30, 1885. O. PRINZ. Mordant.
Process of producing soluble antimony compounds consists in decomposing sugar or equivalent carbon hydrates by alkaline bodies, with or withont the assistance of oxidizing agents such as a current of air and metallic oxides, either or both, acidulating the solution, and then treating the same with an antimony compound.
S28,464,-October 20,1885 . M. CONRAD. Mordant.
A compound of laevulinic acid (beta-acetyl-propionic acid), oil emnlsion, a thickening-such as starch and acetic acid-apd a solution of tannic acid.
399,778-April 19, 1886. C. HUGGENBERG. Process of treating silk fiber.
Silk threads are subjected to the action of a solution of a suitable tin salt, and then to a solution of thngstate of soda.
341,294-Muy 4, 1886. C. N. WAITE. Mordont.
An antimonjons oxide dissolved in lactic acid, wholly or partially neutralized by an alkali, for use on cotton fabries.
347,\$15-August 17, 1886. Y. G. BLOEDE. Process of improning the finish and dura-
bility of fabrics for window shedes, etc.
Fabrics sized with starch, or a mixture of starch, clay, and pigments, are impregnated, after sizing and coioring, with a solution of waxy or resinons matter in a volatile hydrocarbon.
352,236-November 9, 1386. B. FINKELSTEIN. Process of mordanting.
Vegetable fibers and fabrics impregnated or printed with tannin are mordanted with antimony by treating same with antimony oxalate suspended in water.
371,498-October 11, 1887. L. GRAISSOT, Dressing silk.
The effect of shrinkage is produced on fabrics containing silk by subjecting them to the action ol a bath of chloride of zinc and drying in a tepid chamber. They may be then subjected to the action of a solution of carbonate of potash nd finall boiled with soap.
392,659-November 13, 1888. C. T. BAZIN. Mordont for dyeing.
For indigo dyeing a preliminary bath is used consisting of carbonaceous material, as 25 pounds oi lampblack or charcoal suspended in a saccharine sirup, as 2 gallons of molasses.
398,564-Februeny 26, 1889. W. J. WILLIAMS. Mordant.
Fibers and fabrics are subjected to the action ol trisodium phospbate to fix colors and prevent rust and crocking.
409,819-August 97, 1839. J. BRACEWELL. Aniline-block discharge.
The cloth is treated with the solution of the aniline-black color, dried to a moist state by steam or atmospheric heat above $32^{\circ} \mathrm{C}$., the drying completed at a temperature below $32^{\circ} \mathrm{C}$., and an alkaline discharge printed in patterns before the oxidation of the aniline color.
418,15马-December 31, 1839. F. BAYER. Process of flxing azo dyes.
Goods of animal or vegetable fiber, dyed or printed in the nsual way with the substantive cotton coloring matters, are fixed by boiling with a solution of a metallic salt.
421,847-Februery 18, 1890. C. WACHENDORFF. Mordant.
Chromium fluoride is used as a fixing agent in dyeing and printing fabrics and fibers.
487,295-September 30,1890 . E. O. FANKHAUSER. IIordant.
A mixture of castor oil, sulphuric acid, soda lye, ammonia, white soap, and extract of sumac, as a mordant for cotton or mixed yarns or fabrics.
499,687-June 19, 1893. W. T. WHITEHEAD. Resist-mordent.
The pattern or figure is printed in a resist-mordant containing a zinc compound as the essential or active element, with or withont a color, and thereafter the cloth is dyed a plain color, thereby producing a pattern contrasting with the ground.
512,264—January 9, 1894. O. P. AMEND. Process of mordanting fabrics.
The fiber is first treated with a cold solntion of free chromic acid in the presence of another nonoxidizing acid (such as acetic or hydrochloric acid), and the prepared fiber is then treated with a solution containing one or more reducing agents, such as sodium sulphite, when the fiber is ready for the color.
580,202-December 4, 1894. R. H. PICKLES. Mordont.
A mordant consisting of a solution of a salt of aluminum derived from sugar hydrated lime and a sulphate of alumina, the sugar and the metal being combined in almost equal proportions, and having the formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \mathrm{Al} \mathrm{l}_{2}(\mathrm{OH})_{\mathrm{G}}$.
process of preparing a metallic sucrate (of aluminum, iron, or chromium) conProcess of preparing a metalic sucrate (of aluminum, iron, or chromium) consists in adding a salphate or the metal o a solution olkacrate of analine eartl metal, and earth metal, thereby precipitating a snlphate
549,257-November 5, 1895. C. RIS-KUMMER. Process of treating raw silk.
Raw silk having an insoluble sericin coating; produced by treating the raw silk with an aldehyde of the fatty series, such as formaldehyde, either ingaseons form or in solution.
$568,344-$ September 29,1896 . A. GANSWINDT. Mordanting textile fobrics.
Cotton or other vegetable textile fibers are mordanted with lactate of zinc and subscquently dyed.

MANUFACTURING INDUSTRIES.

589,298-May 25, 1897. V. G. BLOEDE. Process of dyeing.
The yarn or fabric is treated with a starch containing a salt or salts, the base of which possesses the power of rendering the starch insoluble when the acid of combination is withdrawn (salts of lime, barium, iron, lead, etc.), then treating with an alkali or otherwise to extract part or all of the acid of combination and make the starch insoluble.
589,725-June 1, 1897. A. BIERMANN. Process of weighting silks.
The matcrial is first treated in a stannic-chloride bath of 25° to 30° Baumé, the superfluous chloride of tin being removed: then with a soluble phosphate such as sodium phosphate dissolved in a warm bath and again washed; then treated in a warm bath of aluminum sulphate; then passed through a warm bath containing a solution (3° to 5° Baume) of' a silicate, such as sodium silicate, and finally washed and dried.
586,750—July 20, 1897. J. WEISS. Printing and mercerizing cotton.
Crêpe-like patterns or effects are produced on vegetable fibers or fabrics by impregnating the same with a caustic-alkali solution and then printing with a neutralizing substance, such as acetic acid, with or without dyestuffs, before the caustic alkali has commenced to act.
596,464-December 28, 1897. C. TUBBE. Process of mercerizing.
Vegetable tissues are padded with a mixture of alkaline lyes and collodial agents (such as British gum, sodium aluminate, etc.), then subjected to pressure, then rolled up to exclude the air, and lastly washed.
597,107-January 11, 1898. C. DREHLER. Process of mordanting.
A mordant of antimony oxide combined with acid lactate of calcium, produced by forming a bath of antimony oxide and acid calcium lactate, with which fibers treated with tannin substances are mordanted.
697,401-January 18, 1898. C. DREHER. Process of mordanting wool.
Wool and other animal fibers are treated in a lye comprising lactic acid, bichromate of potash, and sulphuric acid, in about the proportions of 2.65 kilos
lactic acid, 1.35 kilos hichromate of potash, and 0.9 kilo sulphuric acid, yielding a complete reduction of the potassium bichromate.
600,826-March 15, 1898. R. THOMAS AND E. PREVOST. Process of mercerizing under tension.
Vegetable fiber is stretched, then subjected to the action of a mercerizing fluid until it assumes a parchment-like appearance, next subjected to a greater tension while under the action of the mercerizing fluid until a peculiar silky luster appears, and maintained under tension while washing or otherwise removing the mercerizing fluid.
600,827-March 16, 1898. R. THOMAS AND E. PREVOST. Process of mercerizing under tension.
The fiber is subjected to the action of a mercerizing fluid withont tension, and then during the mercerizing action, after the fiber is wetted and before the removal or neutralization of the fluid, the material is subjected to a stretching action sufficient to produce a silky luster and prevent shrinkage. Vegetable fibers mixed with animal fibers are mercerized at a low temperature, about zero centigrade, in like manner, the fluid being of such a degree of dilution as to be without mercerizing effect on vegetable fiber at ordinary temperature and without deleterious action upon the animal fiber.
601,673-April 5, 1898. F. J. OAKES. Process of mordanting.
Fiber or fabric is first subjected to a solution of tannic acid and afterwards to a bichromate or chromic-acid bath, thus fitting it for dyeing with any desired color.
608,251-August 2, 1898. H. SEIDEL. Mordant from sulfte-cellulose lyes.
lt consists of a solution of a salt of a metal of the alkalis or alkaline earths, with or without a mineral acid, and a sulpho-derivative of lignin- or sulphitecellulose lye which contains said derivative can be added, either decolored and freed from calcium compounds or otherwise.
609,181-August 16, 1898. G. WENDLER. Mordant.
A composition of commercial sulphuric acid, 60 parts; calcined alkaline sulphate, such as sodium sulphate, 100 parts; and boracic acid, 15 parts.
615,045-November 29; 1898. E. PREVOST. Process of mercerizing.
Vegetable fibers and fabrics are mercerized, and during the process simultaneously subjected to tension and compression.
621,477—March 21, 1899. J. SCHNEIDER. Process of mercerizing.
The material is first treated with benzine to dissolve the oily matters, then with a strong (30 per cent) alkaline solution, then stretched, and washed while stretched.
629,780-August 1, 1899. P. DOSNE. Process of mercerizing.
Moiré effects are produced on striped fabrics of vegetable fiber by printing the fabric with a resist in stripes, distorting or pulling the fabric alternately from right to left and left to right during the resist printing, and then mercerizing the fabric.
643,923-February 20, 1900. E. UNGNAD. Proeess of treating fibers, etc., to imitate
Vegetable fibers and fabrics after they have heen soaked in an alkaline solution of silk are subjected to the action of carbonic acid, which combines with the alkali of the silk solution, forming an alkaline carbonate, and deposits the sik on the fiber.
646,760-April s, 1900. A. F. POIRRIER. Process of mordanting.
Colors obtained from substantive sulphur coloring matters are fixed by subjecting the dyed material to the action of a bath of chloride of copper, with or without bichromate of potash.

GROUP XII.-TANNING.

natural.

886-July 19, 1898. A. A. HAYES. Improvement in the process for extracting tannin from bark.
Bark in water is treated with a solution of alkaline salts of either ammonia, potash, soda, or lithia, with strong agitation, the quantity being sufficient to neutralize four-fifths of the acid naturally contained in the bark
4,007-April 22, 1845. G. C. CLOSE AND E. FIELD. Improvement in separating tannin and coloring matter in quercitron bark.
A decoction of quercitron hark is partially evaporated, the coloring matter settled, and the astringent liquor drawn off and used for tanning or evaporated to an extract.

12,139-January 2, 1855. O. RICH. Improvement in processes for extracting tannin from leather.
Leather, washed and chopped into small pieces, is digested in a caustic alkali of ammonia, potash, or soda to extract the tanniln, then subjected to pressure and the liquor acidulated with sulphuric, muriatic, or acetic acid, and used for tanning. The scraps are washed, digested in dilute acid to remove coloring
matter, the acid neutralized, and are then converted into glue and manure.
34,873-April 8, 1862. J. BRAINERD AND W. H. BURRIDGE. (Reissue: 2,593March 19, 1867.) Improved process of extracting the strength of bark for tanning and other purposes.
The material is introduced, in successive charges, into the bottom of a leaching column and the exhausted material is discharged at the top, the water or liquid being introduced at the top and filtering downward: applicable also to filter material.
41,782-March 1, 1864. S. W. PINGREE. (Reissue: 1,9\&2-March 28, 1865.) Improvement in extracting tan bark.
The bark is first swelled with water or weak tan liquor and heated with steam, and afterwards steeped with cold water or weak tan liquor.
64,321-April 30, 1867. B. IRVING. Improved process of concentrating the extract of bark for tanning and other purposes.
The bark solution is concentrated by continuous distillation in vacuo, using a flat worm or evaporating tables.
64,929-April 30, 1867. B. IRVING. Improved process for obtaining the extract of bask for tanining and other purposes.
The bark fiber is disintegrated by means of heated pressure rollers and water baths, acting alternately, in a continuous operation, in lieu of grinding.
68,395-September 3, 1867. A. APPLEBY. Improved mode of preparing tan bark for use.
Bark is prepared for transportation by first steaming it to make it pliable, and then flattening it and removing the ross by running it through a planing machine.
75,608-Mareh 17, 1868. G. WARREN. Improvement in extrating tannin from bark.
The hark is subjected to the successive steps of steaming, soaking, and pressing between rolls, the series of steps being repeated several times, and the pressings kept separate from each other.
81,687-September 1, 1868. G. BOSSIERE, Improvement in decolorizing tannin-
liquid. liquid.
Tannin juices are decolorized by the addition of a glue made from reiuse clippings or scraps, or by all-gelatinc glues dissolved in from fifteen to twenty parts of water. Acetate of lead dissolved in acidulated water and also kaolin decolorize colored tannin.
82,121-September 15, 1868. T. W. JOHNSON. Improvement in extracling tan bark. The bark is softened in chips, passed through rollers into a saturating tank where it is \in xposed to the action of beaters, then elevated and passed through a series of leaches and repeatedly washed.

96,945-November 2, 1869. J. PICKLES. Improved solid or dry extraet of bark for tanning, etc.
Dry or powdered tamin extract, the product resulting from concentrating the liquid extract and reducing it to a dry state.
96,365-November 2, 1869. B. C. TILGHMAN. Improvement in making tanming and dyeing extracts.
The vegetable material, bark, roots, wood, etc., is digested with a solution of sulphurous acid, in water, with or without the addition of sulphites, as of lime, and either in closed vessels with high temperatures and pressure or in open vessels with temperature not exceeding $100^{\circ} \mathrm{C}$.

117,455-July 25, 1871. N. C. PLATT. Improvement in processes of separating tannin from solutions.
Tannic acid is obtained by treating a bark infusion or solution with a solution of common seit or other saline crystalline substance.
174,110-February 29,1876 . E. BRADLEY. Improvenuent in bleaching extract of
hemlock bark.
Hemlock-bark liquor is bleached by bringing same in intimate contact with sulphurous acid, as by foreing it up through the liquor.
178,919-June 20, 1876. J. FOLEY. Improvement in processes for treating tannin juices.
Tannin juices, aqueous solutious of tannin, and concentrated tannin extracts are bleached and prevented from souring by incorporating therewith sulphites, bisulphites, and double sulphites of sodium, calcium, potassium, aluminum, and ammonium, in the form of solid salts or as solutions.
189,965-October 3, 1876. J. SHERMAN, JR. Improvement in preparing tan bark for transportation.
The bark is dried, ground, and compressed sufficiently to crush the cells, and
also to form it into bricks.
184,638-November 21, 1876. R. LOERCHER. Improvement in preparing tan bark isportation.
A block of compressed ground tan bark costed with a solution of tan bark.
198,448-July 24, 1877. J. FOLIVY. Improvement in tanning solutions. Ground bark is leached with water having bisulphite of lime in solution.
198,478-Deccmber 25, 1877. I. WELLS. Improvement in extracts for tanning leather. May-wced (Athemis cotula) is cut up, ground, and pressed; then steamed and again pressed: the mass is then subjected to air suction, treated with diluted sulphuric acid, and the mass removed from the liquid, which latter is subjected to air exposure to remove trace of acid, and the three liquid products are then
mingled.
\$30,598-July 27, 1880. E. BRADLEY, Purifying cxtracts of bark.
The leached extract is condensed by evaporation to about 10° Baume, rapidly cooled, and then flowed through a series of tanks overflowing into one another, wherein the matter set free by the action of cooling is precipitated.
231,489-August 24, 1880. J. HOLTZ. Obtaining tannic acid,
See Group I, Acids, Tannic.

285,923-Deccmber 28, 1880. H. L. WILCOX. Tanning extract.
A solid block of the "tannin plant"'-the Polygonum amphibium-consisting of extract from 2,000 pounds of the same plant. ground plant and a concentrated
258,578-May $\$ 0,1882$. P. GONDOLO. Process of manufacturing tannin extracts.
The vegetable matter is macerated in a slightly a cidulated bath, a coagulant or absorbent, such as blood, is added, then an alkali or an alkaline salt and a further quan coloring matter and alkaline salts is filly the coagulant or absorbphuric acid.
258,574—May \$0, 1882. P. GONDOLO. Process of and apparatus for the manufacture of tanuin extracts.
The tannin material is first macerated in a bath containing a salt of sulphurousacid; sulphuric acid is then added to the resulting solution, and it is clarified with blood or other coagulant.
283,881-August 28, 1883. P. GONDOLO. Process of clarifying tannin extracts.
Blood, or albumen, is added to the tannin extract at a temperature below that at Which it coagulates; the coagulant is diffused througb the extract at such temperature, and then the temperature of the mixture is raised and the coloring matter and salts are caught by and prccipitated with the coagulant.
254,758-September 11, 1889. B. HOLBROOK. Preparing tan bark.
The dry bark is crushed and then passed between rolls under heavy pressure,
reducing it to thin fakes. reducing it to thin fakes.
so2, $105-J u l y$ 15, 1884. E. L. P. \& G. C. COËZ. Process of making tanning ex-
tracts.
Tana
bundred liters of juice, then introducing alumina in the acid, I gram to every hundred liters of juice, then introducing alumina in the proportion of about 250 grams per bundred liters of juice and per degree of intensity, with violent quadrupled.
s13,17Y-March S, 1885. T. F. COLIN. Manufacture of tanning extract.
Bark liquor is evaporated by passing carhonic-acid and sulpburous-acid gases and steam throngh the liquor in a vacuum pan, then shatting off the steam, and turning it on only at intervals when the liquor becomes too thick to permit the
gases to pass freely through it. gases to pass ireely through it.
351,540-October 26, 1886. E. TAVERNIER. Process of extracting tannin from
wood. wood.
The beavier and lighter portions of a tannin extract are separated by centrifugal action.
\$57,129-February 1, 1887. A. MORAND. Manufacture of tannin extract from wood.
The wood is cut into thin slices across the grain, broken into granules by a pueumatic blast in a conduit, and leached by percolation. Weaker solutions at uccessive bigber temperatures are used as the wood becomes spent.
s65,087—June 2i, 1887. A. MORAND. Process of and apparatus for clarifying extracts.
Crude tannin extracts have mingled therewith a purifying agent or color absorbent, as caseine, and heated, and tben pumped, with the substance in suspension, tbrough a dense filtering fabric.
s76,545-January 10, 1888. H. M. RAU. Manufacture of tannin extracts.
Tannin liquors are clarified and decolorized by treating with hydrosulphurous acid-which may be produced by the addition of zinc dust and a concentrated 404,440-June 4, 1889. L. SAARBACH. Process of purifying tannic extracts.
The extract, heated to about $60^{\circ} \mathrm{C}$. is mixed with acetate of leaa without the addition of any acid- 125 grams per 100 liters of juice and per degree of density-the precipitate separated, and the solution then treated witb acids,
preferably oxalic acid, 10 grams per 100 liters per degree Baume, thereby obtaining a further precipitate.
409,876-August 27, 1889. E. F. SMITH. Process of leaching tan bark.
Ground bark is delivered into a tank of fluid and intermixed, the intermixed bark and fluid conveyed into and tbrough a steam. box, and thence to the top of the leach.
462,694-November 10, 1891. A. FOELSING. Process of purifying tannin solutions by electrolysis.
See Group X, Electro-chemistry.
480,376-August 9, 1892. W. C. TIFFANX. Process of making tannin extracts.
Canaigre root, Rumex hymenosepalum torr, is comminuted or macerated, subjected to a bath of water at $60^{\circ} \mathrm{C}$. or less, and the extract evaporated.
485,141—September 27, 1892. G. DELVAUX. Process of purifying tannic extracts.
Tannic extracts are decolored and clarified by the addition of a compound of strontium, as 6 kilograms of crystalline hydrate of strontium to 1,000 liters of tanning liquor marking above 2.5° Baumé.
495,768-April 18, 1893. P. T. AUSTEN. Process of making solid extract of sumac, hemlock, and other tanning agents,
A brittle solid extract of sumac, produced by adding an alkaline nitrite to a
iquid extract of sumacs, heated to about 50° C.-say 5 per cent of sodium liquid extract of sumscs, heated to about 50° C.-say 5 per cent oi sodium 510,152-December 5, 1893. O. C. HAGEMANN. Process of separating tannin from other bodies.
Tannin is separated from other bodies by the use ou amyl alcobol as a solvent, the tannin being subsequently separated from the solvent by the addition of benzine or an equivalent body.
517,626-April s, 1894. B. REINUS. Process of purifying tannic acid.
A solution of tannic acid is treated with acetate of lead to precipitate the impurities, the precipitate separated by filtration, the filtered solution again treated with acetate of lead in excess to precipitate tannate of lead, and then
the tannate of lead is subjected to the action of oxalic acid which forms an the tannate of lead is subjected to the action of oxalic acid which forms an
insoluble compound with lead, and the pure and concentrated tannic acid is insoluble co
581,752—January 1, 1895. H. SCHWEITZER. Process of extracting tannin.
Raw material containing tennin is treated with acetate of amyl, and the tannin then precipitated from the solvent by the action of benzine or other organic solvent.

571,685-November 17, 1896. J. S. ADRIANCE. Process of decolorizing tannin
extract. cxtract.
A solution of basic acetate of lead-acetate of lead, litharge, and water-is added to liquid extracts to precipitate the coloring matter and the clear liquid is drawn off after settling, and evaporated.
578,894-March 9, 1897. M. HÖNIG. Making tannin extracts.
Tannin is extracted from sulphite cellulose lyes by neutralizing with lime, clarifying, concentrating to from 15° to 16° Baumé, converting the lime into an insoluble compound by means of sulphuric acid, eliminating from the lye the free volatile acids by heat, filtering, and concentrating the filtrate to from 28°
to 30° Baumé. to 30° Baumé.
601,170-March 22, 1898. H. M. RAU. Process of extracting tannic acid.
Tannic acid, with other ingredients, is extracted from sumac leaves by acetone at low temperatures, that is, below the boiling point of acetone; then the acetone solution is evaporated, the extract secured in a dry mass, and the pure tannic acld extracted therefrom by water.
614,929-November 29, 1898. G. D. BURTON. Process of tanning hides or skins of
animals.
See Group X, Electro-chemistry.
616,882-January 3, 1899. J. BLAIR. Process of making tannin extracts.
Leaves of coniferous trees are steamed in a weak solution of potassium permanganate and an alkali, the resulting solution is clarified by a weak acidulated solution precipitating the resinous matters, and then evaporated.
626,100-M1ay S0, 1899. P. G. SANFORD. Method of making tanning extracts.
To clarify, blachch, or decolorize tanning liquids, albuminous matter is subjected to the action of alkaline fuoride and dialyzed; the tanning liquid is then subjected to the action of this product and dialyzed, and the albumen finally
coagulated. coagulated.
642,081-January 90,1900 . G. D. BURTON. Process of unhairing animal hides or skins.
See Group X, Electro-chemistry.

ARTIFICIAL, INORGANIC.

219,637-September 16, 1879. C. S. GORNAN. Improvement in the manufacture of chromates of potash and socta.
Chrome ore mixed with lime and carbonate of potash is calcined, the charge cooled and a further quantity added, say from 10 to 20 per cent of carbonate of
potash, or its equivalent alkaline carbonate, and the mass rebeated at from 4250° potash, or
234,145-November 9, 1880. H. PEMBERTON. Manufacture of bichromates.
Carbonic acid gas is passed into a calcined mixture of chrome ore, bases, and salts to couvert the insoluble compounds of chromic acid into soluble chromates.
279,4s1-June 12, 1888. E. P. POTTER AND W. H. HIGGIN. 'Manufacture of
bichromate of soda.
A mixture of sulphate of soda, chrome ore, and lime, in proper proportions, is furnaced, lixiviated, and the monochromate of soda solution formed treated with hydrochloric acid in exactly sufficient quantity to change the chromate into a bichromate. The sodic sulphate present is separated by precipitaling with calcic or baric chloride, the solution evaporated to a pasty mass, the sodic chiginal erystals removed and washed, adding the resulting lintle abor to the oi boiling water. The monochromete of soda solution may be treated with of boiling water. The monochromste of soda solution may be treated with suddition of chloride of calcium, strontium, or barium. The removed sodic addition of chloride of calcium, strontium, or barium. The removed soace and the product used for the decomposition of the chrome ore in place of sodium sulphate.
s07,994-November 11, 1884. W. SIMON. Mfanufacture of bichromatc of soda.
A solution of neutral chromate of soda is evaporated to dryness, decomposed in this con bichromate of soda is then mechanically separated from the anhydrous lye product in a centrifugal machine.
329,138-October 27, 1885. W. J. CHRYSTAL. Manufacture of chromates and bichromates.
Chromates and bichromates of potasb and ammonia are produced from the chromate or bichromate of soda by decomposition with the sulphate of potash or the sulphate of ammonia, respectively.
342,578-May 25,1886. W. J. CHRYSTAL. Manufacture of bichromate of soda.
Chrome ore is furnaced with lime and a soda salt, tbe mass lixiviated with an acid solution of a soda salt and washed with water, and the solution and washings treated with an acid to convert the neutral or monochromate into
bichromate of soda. The solution is then concentrated to 150° to $180^{\circ} \mathrm{Twaddle}$ to eliminate the sulphate of soda, which is separated, and the concentration continued and the pure bichromate obtained.
S49,646-May 25, 1886. W. SIMON. Manufacture of bichromate of potash.
Bichromate of sodium is decomposed by chloride of potassium, or chromate of sodium by chloride of potassium and hydrochloric acid.
S42,647-Mfay 25, 1886. W. SIMON. Process of manufacturing ammonium bichromate.
Sodium bicbromate is converted into ammonium-sodium chromate by the
addition of ammonia to a solution of the same, and this salt is decompored into addition of ammonia to a solution of the same, and this ssalt is decomposed into sodium chloride and ammonium bichromate by the addition of hydrochloric acid.
s66,056-July 5, 1887. W. SIMON. Process of making potassium bichromate. Bichromate of sodium is decomposed by sulpbate of potassium.
442,109-December 9, 1890. W. J. A. DONALD. Process of making chromates.
The insoluble residue resulting from the ordinary manufacture of chromates is calcined, pulverized, and mixed with cbrome ore, lime, and an aqueous solution of the salt to be produced, oxidized in a furnace, and lixiviated to extract the soluble chromates, and tbe residue aggin used as before.
469,841-November 24, 1891. J. MASSIGNON AND E. WATEL. Manufacture of chromates and bichromates.
A mixture of pulverized chrome mineral with carbonate of lime and chloride mineral oxidized at a low temperature. This oxidated mixture can serve for
tbe manufacture of cbromates and bichromates, and of chromic and chlorochromic acids. To make chromate of lead the chloride of calcium is first washed out and subsequently the chromate of lime, which latter is precipitated by a lead salt

527,569—October 16, 1894. E. A. STARKE. Process of making ammonium bichromate.
See Group XIV, Explosiyes, Nitro-substitution Compounds.
539,029—May 14, 1895. M. W. BEYLIKGY. Process of making alkaline bichromates. A double chromate of lime and the alkali formed by calcining a mixture of chrome ore, lime, and an oxygenated compound of the alkali metal, is lixiviated and the liquor passed througb a filter saturated with an insoluble fatty acid, such as oleic acid, to remove the lime and leave the alkalne bicarbonate solution. The lime is removed from the filter by dilute hydrochloric acid.
574,591-January 5, 1897. G. H. CLAMER. Process of making bichromates.
To make alkaline chromates, powdered chrome ore and an alkaline nitrate are fused together, cooled and powdered, then mixed with a caustic alkali and sufficient alkali nitrate to complete the oxidation of the ore, the caustic alkali and alkali nitrate being first fused together, and the powdered ore and nitrate gradually added to the fused mass with stirring.
599.197-February 15, 1898. S. P. SADTLER. Process of making chromatcs.

Bichromates or chromates are regenerated from waste liquors-as those of primary batteries-by neutralizing the free acid with milk of lime and oxidizing with bleaching powder. The solution may then be filtered, concentrated, and crystallized.
620,935-March 14, 1899. H. J. KREBS. Method of recovering chromates from tan liquor.
The dissolved impurities are first precipitated, as by caustic lime, and remoyed, and the chromic acid is then precipitated as a chromate of lead or barium. The dissolved lime may be precipitated as a sulphate, oxalate, or carbonate prior to filtration or decantation.

GROUP XIII-PAINTS, COLORS, AND VARNISHES.

PIGMENTS.

2,910-January 16, 184s. R. A. TILGHMAN. Improvement in making chromic yellow.
Carbonate of lead is mixed or ground in a solution of chromate or bichromate of potassa, or other soluble chromate or bichromate, the solution being in excess.
6,s27-April 17, 1849. T. SCHWARTZ. Improvement in the manufacture of paris green.

A hot saturated solution is formed of white arsenic, and sodium carbonate, and blue vitriol is dissolved therein, the compound solution being then cooled with constant stirring in a shallow vat, and reduced to a homogeneons arsenite of copper. Strong vinegar is then added and the liquor cooled to $37^{\circ} \mathrm{C}$., water being added to keep the sulphate of soda in solution, After successive settings and stirrings the product is collected and dried. The vitriol may be dissolved with the arsenic instead of the soda.

62,097-February 12,1867. P. H. VANDER WEYDE. Improvement in the manufocture of white lead.
See Group VII, Wood Distillation.
75,861-March 24, 1868. W. W. CHIPMAN. Intprovement in the manufacture of whiting and paris-white.
Limestone is burned, slacked, and recarbonized with carbonic-acid gas.
87,270-February 29, 1569. A. LEYKAUF. Inproncment in the manufacture of colors.
Sce Group XI, Dyestuffs, Artificial, Inorganic.
88,291-March 30, 1869. E. HARRSCH. Improvement in the monufacture of colors and pigments.
See Group XI, Dyestuffs, Artificial, Inorganic.
90,359-May 25, 1869. E. HARRSCH. Improvement in the manufacture of colors.
Ores of zinc arc dissolved in nitric, nitro-mnriatic, or muriatic acids, and the solution mixed with solnble salts of baryta, or carbonate of baryta, or the same of strontia, or lime, or equivalents. Colors are then precipitated with various reagents.
93,817-August 17, 1869. L. D. GALE AND I. M. CATTMAN. Inprovement in the manufacture of sugar of lead and acetic acid.
See Group VII, Wood Distillation.
138,685-May 6, 1873. F. OSGOOD. Improvement in treating zine dross and skimmings for the manyfacture of pigments.
Oxide of zinc or other pigments are produced from galvanizing dross or skimmings, by roasting at a nonfluxing heat, mixing with coal and subjecting to heat with a blast of air.
292,119-January 15, 1884. J. K. KESSLER. Process of making white lead. See Gronp X, Electro-chemistry.
29,758-Jantuary 29, 1884. J. K. KESSLER. Process of making sponge-lead. Scc Gromp X, Electro-chemistry.
305,859-September 16, 1884. C. E. HORE. Process of making chrome red. Chrome red is produced by boiling a mixture of sublimed lead, 500 pounds, a solution oi 90 pounds of bichromate of potash, and an alkali, such as soda ash, 38 pounds. A ceeper red is produced by doubling the quantity of bichromate and alkali.
305,990-September 16, 1884. C. E. HORE. Process of making lemon chrome. Lemon chrome is produced by mixing sublimed lead with an acid, such as nitric acid, then adding bichromate or a neutral ehromate of potash.
\$05, 991 -September 16, 1884. C. E. HORE. Process of making chrone yellow. Sublimed lead is mixed with a solution of bichromate of potash, boiled. and the insoluble coloring matter separated from the soluble products.
414 935 -November 12, 1889. T. D. BOTTOME. Manufacture of white lean See Group X, Electro-chemistry.

491,026-July 1, 1890. M. ALsBERG. Process of manufacturing red lead.
Lead nitrate is incorporated into the oxide or carbonate of lead and the mixture heated sufficiently high to drive off any contained water and then decompose the lead nitrate and produce minium.
442,661-December 16, 1890. T. D. BOTTOME. Process of desilverizing lead by electrolysis.
See Group X, Electro-chemistry.
451,487-May 5, 1891. J. C. JESSUP. Process of making paris green.
A solution of sulphate of copper is frst prepared by subjecting copper residue, or other crude material containing copper, to the action of sulpauric acid, and the proper quantities of arsenite of soda and acetic acid are then introduced directly into the solution.
457,028-August 4, 1891. F. W. IHNE. Process of making chrome yellow.
Pulverized galena is dissolved with nitric acid, the sulphur removed, and a solution of bichromate of potassa, neutral chromate of potassa or chromate of soda added, whereby chrome yellow is precipitated and a saltpeter-lye is formed, which is drawn off and condensed to form nitrate of potassium or saltpeter.
459,946-September 22, 1891. D. V. KYTE. Manufacture of white lead.
See Group X, Electro-chemistry.
477,799—June 28,189\%. J. BLAIR. Process of making white pigments.
See Group X, Electro-chemistry.
496,109-April 25, 1993. A. B. BROWNE. Process of manufacturing white lead. See Group X, Electro-cbemistry.
509,489-August 15, 1838. F. M. \& C. H. M. LYTE. Process of producing chlorine and purifying lead.
See Group X, Electro-chemistry.
524,470-August 14, 1894. F. L. SLOCUM. Process of making green oxid of chromium.
A powdered chromate is moistened with hydrochloric acid and then 10 per cent of powdered carbon is mixed therewith and the mass again wet with hydrochloric acid and brought to a paste (an explosive mixture results if mixed dry), subjected to heat without air, and then further moistened with hydrochloric acid. The resultant chloride and any remaining chromate is dissolved out with boiling water.

598,998-May 7, 1895. A. B. BROWNE AND E. D. CHAPLIN. Process of manujacturing chromate of lead.
See Group X, Electro-chemistry.
554,718-February 18, 1896. R. McKENZIE. Process of producing lakes or coloring compounds by electrolysis.
See Group X, Electro-chemistry.
555,292-February 25, 1896. A. B. BROWNE AND E. D. CHAPLIN. Process of manufacturing white lead by electrolysis.
See Group X, Electro-chemistry.
ह60,518-May 19, 1896. J. METRUEIS. Treatment of sodium chloride.
See Group X, Electro-chemistry.
563, $559-J u l y$ 7, 1896. A. B. BROWNE AND E. D. CHAPLIN. Process of manufacturing white lead.
See Group X, Electro-chemistry.
569,554-July 7, 1896. A. B. BROWNE AND E. D. CHAPLIN. Process of manufacturing oxids of lead.
See Group X, Electro-chemistry.
$569,555-J u l y 7,1896$. A. B. BROWNE. Manufacture of white lecad. See Group X, Electro-chemistry.
588,883-August 24, 1897. P. G. SALOM. Process of making litharge or protoxid of lead from lead ore.
See Group X, Electro-chemistry.
589,801-September 7, 1897. H. C. WOLTERECK. Process of manufacturing white lead.
See Group X, Electro-chemistry.
602,872-April 26, 1898. J. W. RICHARDS AND C. W. ROEPPER. Process of producing chemical compounds by electrolysis.
See Group X, Electro-chemistry.
602,879-April 26, 1898. J. W. RICHARDS AND C. W. ROEPPER. Process of electrolytically manuffacturing metallic sulfids.
Sec Group X, Electro-chemistry.
625,918-MCy 90,1899 . E. BAILEY, G. R. COX, AND W. T. HEY. Process of and apparatus for producing white lead. See Group X, Electro-chemistry.
626,3s1-June 6, 1899. C. LUCKOW. Process of producing neutral chromate of lead. See Group X, Electro-chemistry.
627,002-June 18, 1899. C. LUCKOW. Process of prodicing white lead by means of electrolysis.
See Group X, Electro-chemistry.
627,266-June 20, 1899. C. LUCKOW. Process of producing acid chromate of lead. Sec Group X, Electro-chemistry.
6\$1,939-August 29, 1899. H. C. WOLTERECK. Process of manufacturing white lead or other piyments by electrolysis. See Group X, Electro-chemistry.
644,779-hforch 6, 1900. J. W. RICHARDS AND C. W. ROEPPER. Process of manufacturing metallic carbonates by clectrolysis. See Group X, Electro-chemistry.
651,506-June 12, 1900. E. A. G. STREET. Production of chromium axid. Sce Group X, Electro-chemistry.

PAINTS.

1,676-July 10, 1840 F. G. SPILSBURY, M. F. C. D. CORBAUX, AND A. S. BYRNE. Improvement in the mode of applying distemper colors having albumen or gelatine for their vehicle, so as to render the same more durable, and preserving
the same when not wanted for immadiate use. e same when not wanted for immediate use.
Soluble vehicles, as gelatine or albumen, are used for paints, which vchicles, by an after application of chemical agents, as alum, are rendered insoluble in water. Soluble salts of zinc, manganese, and lead are combined with gelatine to preserve it. Pigments may he prepared with resinous matters or wax dissolved in an alkaline lye or solution of borax. Vegetable products, as flour, may form the base mixed with pigments, the paint to be fixed after application with a solution of silicate of potassa or of soda.
2,252-September 11, 1841. J. RAND. Improvement in preserving points and other fuids,
They are contined in closed metallic vessels constructed to collapse with slight pressure and force out the material.
10,714-April 20, 1896. A. KISSEL. Hardening resins.
See Group XV, Rubber and Rubher Substitutes.
197,433-November 20, 187\%. J. F. WALTER, JR. Improvement in putting up calcimining materials.
The liquid material, in a bottle, is placed within and surrounded by the pulverized pigment or hody material.

200,228-February 19, 1878. G. I. STEVENS. Improvement in distemper paints.
The hase, glue, and coloring pigment are ground together with as little water as possible, compressed into a cake, and dried; ready for use by the addition of
water.

221,832-Norember 18, 1879. W. H. P. WEBB. Improvement in paint for filling the seams of vessels.
24,788-July 26, 1851. L. BECKERS. Trating caoutchoue with hydrocarbon oils. See Group XY, Rubber and Rubber Substitutes.
A compound consisting of a quick-drying liquid-gum vehicle composed of resin and naphtha, combined with an earthy base, as red oxide of iron, and a hydraulic cement.
250,502-November 29, 1881. H. R. TOYE. Process of propuing cotors for orncmenting fabrics.
Colors in the form of powders, for ornamenting fabrics, are produced by forming a pasty mixture of pulverized starch, powdered tale, and acid, adding colors to form the tint desired, drying by a moderate heat, and sifting or pulverzing.
391,927-October 90,1858 . J. A. TITZEL. Rubber compound or mixturc. See Group XV, Rubber and Rubber Substitutes.

VARN1SHES.

146,387-January 1s, 1874. P. FINDLEY. Improvement in the preparation and treadment of india-rubber varnish.
See Group XV, Rubber and Rubber Substitutes.
501,578-July 18, 189s. H. PFANNE. Method of manufacturing varnish and apparatus therefor.
See Group X, Electro-chemistry.

GROUP XIV-EXPLOSIVES.

GUNPOWDER, INCLUDING BLASTING POWDER.

669-April 2, 1838. R. I. L. WITTY. Improvement in the manufacture of gunpowder.
Bituminous coal is used in the place of charcoal, with sulphur and niter.
8,734-February 17, 1852. E. CALLOW. Improvement in explosive compounds.
The compound consists of 5 parts of chlorate or ox ymuriate of potash, 2 parts of orpiment or red sulphuret of arsenic, and 1 part of ferrocyanuret or prussiate of potash.
10,260-November 22, 185s. W. SILVER, JR. Improvement in blasting powder.
Unglazed powder, composed of charcoal, niter, and sulphur, is treated with potassium chlorate, as hy moistening the granulated powder with a saturated solution and drying.
15,257-July 1, 1856. W. SILVER, Jr. Improvement in blasting poweler.
The explosive compound consists of rags or paper saturated and coated with a mixture of gunpowder, potassium chlorate, and powdered calcined cork.
15,551-August 19, 1856. L. BUCHEOLTZ. Improved blasting compound.
A composition of saltpeter, 45 to 80 parts; charcoal, 20 to 10 parts; lycopodium, 20 to 5 parts; and white sugar, 15 to 5 parts.
16,580-February 10, 1857. E. B. DOBSON. Improved gunpowdcr.
Anthracite coal or coke, to prepare it for use in the manufacture of gunpowder, is ground to fine dust and exposed to the air, in a dry place, for twelve months. 17,291-Moy 12, 1857. A. MURTINEDDU. Improved blasting powder.
A composition of sulphur, 100 parts; saltpeter, 100 parts; sawdust. 50 parts; horse dung, 50 parts; and sodium chloride, 10 parts. Molasses, 4 parts, is added as a binder.
17,S21-May 19, 1857. L. DU PONT. Improvement in gunpowder.
Sodium nitrate is used in the manufacture of gunpowder, which is glazed to prevent deliquescence, by rolling it in a harrel with black lead.
26,602-December 27, 1859. V. L. MAXWELL. Improvement in the manufacture of gunpowder.
Alcohol is employed, in the place of water, as the vehicle for uniting the particles.
s2,016-April 9, 1861. W. R. THOMAS AND M. EMANUEL, JR. Improventent in compositions for blasting powder.
A composition of sodium nitrate, $3^{\frac{1}{2}}$ pounds; flower of sulphur, $1_{\frac{1}{4}}^{1}$ pounds; ground bark, $4 \frac{1}{5}$ pounds; and water, 3 quarts. The composition is well dried.
\$3,069-August 20, 1861. J. H. BROWN. Improvement in preparation of gramu-
lated gunpowder to server lated gunpowder to serve as charges for firearms.
A charge is made hy combining and pressing grains of gunpowder with an adhesive solution into a solid form.
54,23s-January 28, 1862. T. K. ANDERSON. Improved composition for fuse or slow-match for igniting powder under watcr.
A compound consisting of niter, 8 parts; charcoal, 10 parts; sulphur, 2 parts; and sodium chloride, I part.
S4,654-March 11, 1862. W. R. THOMAS AND M. EMANUEL, JR. Improved
blasting powde:.
Potassium chlorate (2 pounds) is added to the composition of No. 32,016.
s4, \%N4-March 18, 186\%. R. O. DOREMUS AND B. L. BUDD. Improvement in
treating guapowder to form artridges treating gunpowder to form cartridges.
Grunulated gunpowder is compressed dry into solid shapes suitable for use as cartridges in molds. A cartridge of powder in strata of different degrees of combnstibility is formed by introducing the powder into the mold in successive portions, and successively applying a diminished amount of pressure.
36,590-October 7, 1862. H. BIEBUYCK. Improved blasting powder.
Barium nitrate is employed in the manufacture of blasting powder, with or without potassium nitrate.
s7,117-Derember 9, 1862. W. R. THOMAS AND M. EMANUEL, JR. Improred
composition for blasting powder. composition for blasting powder.
A composition of sodium nitrate, suiphur, potassinm chlorate, starch, and ground bark, or other absorbent carbonaceous material.
57,296-Januay 6, 186s. H. LEIBERT. Improved composition for gunpowder.
A mixture of prussiate of potash, 2 pounds; chlorate of potash. 1 pound; sodium nitrate or its equivalent, 10 pounds; sawdust or charcoal, 4 pounds; sulphate of soda, 1 pound; and sulphur, 4 pounds.
40,070-September 22, 186s. G. B. WIESTLING. Improved gun and blasting
powder. powder.
A composition of charcoal, sulphur, sodium nitrate, and potassium chlorate, either with or without potassium nitrate.
41,576-February 9, 1864. E. HARRfSON. Improred composition for yunponder, etc.
A mixture of ordinary gunpowder, $12 \frac{1}{2}$ parts, and amorphous phosphorus, 1 part.
41,578-February 0, 1864. E. HARRISON. Improved explosive composition.
A compound of potassium chlorate, charcoal, prussiate of potash, and flour starch, with or without cyanuret of zinc.
4, 057-March 오, 1864. H. HOCHSTÄTTER. Improved gunpowder, mining powder, etc.
A composition of charcoal, potassium chlorate, half-calcined sca grass, stone coal, and sawdust, or certain named substitutes, is formed in boiling water and dried; or mixtures of wheat flour and potassium chlorate, and stone coal and charcoal, are made in mortars, intermixed in water, pressed into blocks, rubhed through a sieve and dried.
42,056-Morch 22, 1864. C. M. WETHERILL. Improvement in gunpowder, etc.
A mixture of a suitable oxygen compound of chlorine with carbonaceous material is to be used in the proportion of 8 to 16 parts by weight of the former to 6 parts of the latter, to form either carbonic oxide or carbonic acid or a mixture of the said gases. Dextrine or other gum is to be added to form a grained powder. Peroxide of manganese facilitates the liberation of oxygen from the chlorates, and oil of vitriol is designed to act on the chlorine compound, by appropriate means, to effect the explosion of the powder in shells as on striking an object.
42,S69-May 24, 1864. M. NOWAK. Improved blasting compound.
A composition of manganese binoxide, 23 grams (or carbon 15 grams instead); potassium chlorate, 62 grams; potassium nitrate, 31 grams; and potassium ferrocyanide, 15 grams; applied to any vegetable material, as paper, cotton
waste, or sawdust.
42,918-May 24, 1864. F. A. JAECKEL. Improved blasting powder.
It consists of potassium nitrate, sodium nitrate, sulphur, charcoal, mineral coal, and potassio-tartrate of soda.
45,021-June 7, 1864. H. HALVORSON. Tmproved explosive compound.
An organic sulphide and a cyanide or ferrocyanide is combined with an organic deflagrating ammoniacal salt and a chloric or perchloric salts of potassa and ammonia.
44,269-September 15, 1864. H. E. DRAYSON. Improvement in the manufacture of gunpowder.
The saltpeter is treated to the direct and quick action of a heavy volume of steam until it is dissolved, when the sulphur and charcoal are added and thoroughly mixed, when it is ready for the incorporating mill. The mill cake, after manipulation in the incorporating mill, is passed through sieves hefore it becomes dry, set, or hard, and then dried and glazed.
46,275-Febrwary 7, 1865. W. G. BATES AND C. S. SMITH, EXECUTORS OF J. S.
SMITH, DECEASED. Improvement in drying and glazing gunpowder.
Heat is applied to the drum or cylinder during the process of glazing to glaze and dry at one operation.
48,303-June 20,1865. F. G. MURRAY. Improvement in the manufacture of gunpowder.
A compound of potassium chlorate, 45 parts; saltpeter, 15 parts; ground baris, 30 parts; charcoal, 8 parts; and lamphlack, 2 parts; mixed in boiling water, evaporated, and dried.
50,101-September 26, 1865. L. DU PONT. Improvement in plates for pressing ounpowder.
The plates are made of hard or indurated rubber.
$50,313-$ October $\mathrm{S}, 1865$. J. GALE, JR. Improved mode of kceping gunpoweder.
Gumpowder is mixed with a fine, dry, inexplosive powder, finer than the grains of the gunpowder. It is separated from the gunpowder, for use, by sifting or winnowing.
50,56s-October 24, 1865. L. DU PONT. Improrement in presses for pressing gunpowder.
Powder dust is compressed into cakes hy horizontally applied pressure.

55,795-June 19, 1866. L. H. G. EHRHARDT. Improved gunpowder.
A safety powder formed of mineral carbon, mixed with cutch, tanuin. or gambier, to be mixed with a mixtare of potassium chlorate and nitrate for use, in the proportion of five parts of the cutch mixture to three parts of the potassium mixture.

58,567 -October 9, 1866. F. S. ALLEN. Improvement in the manufacture of gunpowder.
Paper or other fibrous material is saturated with an explosive compound, as a mixture of manganese binoxide, potassium chlorate, potassium nitrate, and mixture of manganese binoxide, potassium chlorate, potassium nitrate, and the liquid wholly or partially.

58,656-October 9, 1866. H. S. LUCAS. Improved blasting cartridge.
A cartridge of solidly compressed gunpowder, with a central perforation extending partially or wholly through, for interior ignition.
61,659-January 29, 1867. W. \& E. FEHLEISEN. Improved blasting powder.
It is composed of sawdust or other finely divided cellulose material, 9 parts; potassium nitrate, 45 parts; charcoal or carbon, 3 parts; and postassium ferrocyanide, 1 part.
61,957—February 12, 1867. C. SE1DEL. Improved chemical composition for blasting rocks.
A powder and fluid to be combined when used; the powder consisting of sulphuret of antimony, 1 part, and potassium chlorate, 2 parts; the fluid of phosphorus, 1 part, dissolved in bisulphuret of carbon, 4 parts. It is exploded by friction or a fuse.

66,378-July 2, 1867. G. A. NEUMEYER. Improved powder for firearms and for blasting.
Blasting powder is made of saltpeter, flower of sulphur and charcoal (from freshly cut wood), gunpowder of saltpeter, flower of sulphur and brown coal The mixing is made with the addition of water, and the mass is subsequently dried.

70,359—October 29, 1867. A. T. RAND. Improved compound for blasting powder: It consists of sodium nitrate, 60 parts, and charcoal, 40 parts.
71,004-November 19, 1867. E. E. HENDRTCK. Improved method of drying gunpowder.
Gunpowder is dried by exposing it in vacuo.
78,786—January 28, 1868. L. H. G. EHRHARDT. Improvement in gunpowder. A finely pulverized mixture of potassium chlorate, 1 part; potassium "nitrate, 2 to 4 parts; aud mineral coal, 3 to 5 parts.
76,13s-March 31, 1868. E. H. ASHCROFT. Improved compound for use in safes and powder magazines.
Bicarbouate of soda, carbonates of ammonia, or other volatile salts, with or without a liquid acid, are placer in the inner compartments of safes and around the chambers of powder magazines, to develop incombustible gases, in case of undue heating.
79,010-June 16, 1868. F. M. RUSCHHAUPT. Improved explosive powder.
A mixture of chlorate of potassa, say 75 parts, and naphthalene 25 parts.
79,209-June 23, 1868. W. H. JACKSON. Improvement in the manufacture of gun powder.
A solution of potassium nitrate, or equivalent thereof, is mixed with a soluble vegetable extract, as of logwood or other soluble vegetable matter, and evaporated to dryness, with or without the addition of sulphur or pulverized charcoal.
80,004-July 14, 1868. P. A. OLIVER. Improved powder for blasting and other purposes.
A powder made from peat, instead of charcoal, with saltpeter, sulphur, and chlorate of potash.
81,670-August 25, 1868. G. A. NEUMEYER. Improvement in the manufacture of gunpowder and blasting pozoder.
A mixture of saltpeter, flowers of sulphur, and brown coal, or brown coal and charcoal, is made in the dry state, then ground in water for one and a half to two and a half hours, and grained and dried.
81,894-September 8, 1868. J. HAFENEGGER. Improvement in explosive compounds.
The powder may consist of mixtures of potassium chlorate, sulphur, and light charcoal; or potassium chlorate, white sugar, and potassium ferrocyanide: or potassium chlorate, powdered charcoal, sulphur or sugar, and potassium ferrocyanide; or potassium chlorate, sugar, charcoal, and sulphur. A self-igniting fluid therefor consists of 1 to: 2 parts of phosphorus dissolved in 2 parts of bisulphuret of carbon, its effeet being more or less instantancous according to the degree of saturation.
85,482-December 29, 1868. W. SCHMTTZ. Improvement in explosive cartridges.
A waterproof cartridge of special construction charged with a mixture of amorphous phosphorus, 1 part; potassium ehlorate, 2 parts; gum arabic, 3 parts: and water, 1 part; which assumes a solidified form. The compound may be used for percussion caps.
85,576-January 5,1869. L. H. G. EHRHARDT. Improvement in the manufacture of gunpowder.
A finely pulverized mixture of potassium chlorate with a vegetable extract, such as cutch, gambier, logwood, or of tannin.
86,980-February 16, 1869. E. GOMEZ. Improved explosive compound.
A solution of sugar of lead is added to a solution of prussiate of potash, and the ferrocyanide deposited; also Ω nitrate of iron is prepared with 2 pounds of nitric acid and 1 pound of iron in I gallon of water. The substunces are mixed in the proportion of 1 pound of nitrate of iron to 3 pounds of ferrocyanide of potassium and the precipitate washed and dried and mixed with equal proportions of potassium chlorate.
87,382-March 2, 1869. P. H. VANDER. WEYDE. Improved application of Grahamite in the manufacture of gunpowder and lampblack.
Grahamite is used as an ingredient in the manufacture of gunpowder; also for the production of lampblack, chlorine gas being introduced into the furnace. 88,171—March 23, 1869. W. H. JACKSON. Improved powder for blasting and other purposes.
Vegetable fiber, as tan bark, saturated with a niter salt or a chlorine salt in water, is combined with gunpowder or other explosive compounds.

97,566-December 19, 1869. T. TAYLOR. Improved explosive compound for use in firearms, blasting, etc.
A mixture of potassium chlorate and the yellow prussiate of potash with paraffine, say, in equal parts of the potash compounds with one thirty-second part by weight of paraffine.
97,567-December 7, 1869. T. TAYLOR. Improved gunpowder.
Paraffine is mixed with ordinary gunpowder in all proportions.
110,355-December 20,1870 . J. HAFENEGGER. Improvement in explosive compounds.
Fatty or oily substances, as Venice turpentine, are mixed with explosive compounds to prevent spontaneous explosion.
111,642-February 7, 1871. J. HAFENEGGER. Improvement in explosive compounds.
A mineral oxide, as an oxide of lead or manganese, and oily, fatty, or resinous substances are mixed with explosive compounds.
118,040-August 15, 1871. A. MOLFINO. Improvement in gunpowders.
It is composed of potassium chlorate, 772 parts; wheat starch, 228 parts, and charcoal, 150 parts.
130,862-November 14, 18\%1. C. W. CURTIS. Improvement in the manufacture of gunpowder.
The grains of "pellet" powder, for heavy ordnance, are split into halves, and afterwards stoved and glazed, thereby presenting one rough face.
122,245-December 26, 1871. E. GOMEZ. Improvement in explosive compounds.
Acetate of lead is mixed with prussiate of potash and the ferrocyanide deposit in a dry state is mixed with chlorate of potash; mucilage or other adhesive material may be added.
180,12s-August $6,187 \%$. C. F. FUCHS AND A. CLEMENT. Improvement in gun and blasting powders.
A compound of potassium chlorate and ground tortoise or turtle shell, in addition to saltpeter, sulphur, and charcoal.
133,582-December $\mathrm{S}, 187$. L. \& E. DU PONT. Improvement in the namufacture of gunpowder.
Dampened powder is compressed in sheets between ribbed plates, to form indented lincs, by which the cake is broken into uniform shapes or sizes.
145,149-December 2, 1873. F. BURNEY. (Reissue: 5,773-February 24, 1874.) Improvement in the manufacture of gunpowder.
Gunpowder is molded into pebbles or grains of large size by pressure between plates having cellular surfaces.
148,536-March 10, 1874. B. WEINER. Inprovement in the manufacture of gunpowder.
Gunpowder, after mixture of the ngredients, in a dry state, is subjected to a sufficiently high temperature to liquefy the sulphur and agglutinate the mass.
150,543-May 5, 1874. J. H. DOLDE. Improvement in explosive compounds.
A mixture of. prussiate of potash, white sugar, lime or soapstone, chlorate of potash, and tannin.
160,053-February 23, 1875. E. GREENE. Improvement in the manufacture of gunpowder.
The saltpeter or sodium nitrate is dissolved in hot water, and the other ingredients mixed with the heated solution, the heat being maintained during the mixing operation in a complete or partial vacuum.
161,325-March 30, 1875. R. CAHUC. (Reissue: 6,601-August 17, 1875.) Improvement in explosive compounds.
A mining powder, incombustible at low temperature and nonexplosive except when under pressure, produced by heating potassium nitrate, carbon, and sulphur, in the presence of sawdust or tanning bark and a solution of sulphate of fron, till a homogeneous liquid mass is produced, then cooling and drying.
172,5/7-January 18, 1876. C. FELHOEN. Improvement in explosive compounds.
It consists of sodium nitrate, 36 parts; potassium carbonate, 3 parts; potassium nitrate, crude, 24 parts, and refined, 9 parts; sulphur, 15 parts; and charcoal, 13 parts; combined in a dry powder with granulation.
177,818-May 23, 1876. J. H. DOLDE. Improvement in explosive compounds.
A sporting powder consisting of potassium chlorate, 9 ounces; gall, 3 ounces; aud yellow prussiate of potash, one-half ounce.
177,819-M1ay 23, 1876. J. H. DOLDE. Improvement in blasting powder.
A compound of silica, potassium nitrate, potassium ehlorate, sodium nitrate, water, sawdust, sugar, and tannin.
182,421-September 19, 1876. L. DE SOULAGES AND R. CAHUC. Improvement in explosive compositions.
Same as No. 161,325.
184,020-November 7, 1876. J. P. R. POCH. Improvement in explosive compounds. A blasting compound of spent tan, wood sawdust, sodium nitrate, barium nitrate, charcoal, sulphur, and saltpeter.
186,211-January 16, 1877. A. E. MILTIMORE AND C. A. L. TOTTEN. Improvement in compensating powder.
The grains are made up of concentric layers of different explosive substances of varying force and expansive intensity.
188,124-March 6, 1877. J. GOETZ. Improvement in explosive compounds.
A dry gas-producing or explosive base is nixed with glucase, uncrystallizable sugar, or sirupy solution to prevent premature or accldental discharge.
199,723-January 29, 1878. T. T. S. LAIDLEY. Inpprovement in powder for cannons.
Gunpowder is formed in cubical grains with rounded angles and perforated centrally through two opposite sides.
200,272-February 12, 1878. S. J. FOWLER. Improvement in explosive compounds.
It consists of the combination of nitrate of ammonia and sulphate of soda with an explosive.
201,520-March 19, 1878. W. GRAHAM AND E. WARD. Improvement in blasting powder.
A mixture of yellow prussiate of potash, potassium chlorate, white sugar, and

210,19^-November 26, 1878. P. M. GALLAHER, W. LLOYD, AND G. S. WALKER. Inprovement in blasting powder.
A combination of nitrate of soda or potash, sulphur, charcoal, ground bark, and sulphate of iron and sulphate of copper.
212,726-Fcbruary 25,1879. W. MILLER. Improvement in explosive compounds. A blasting powder composed of complementary mixtures of sodium nitrate, 35 parts; potassium nitrate, crude, 25 parts, and refined, I0 parts; and starch, 2 parts; constituting one mixture; and potassium bichromate, 3 parts; sulphur, 13 parts; and charcoal, 12 parts, constituting the other mixture.
218,762-A ugust 19, 1879. A. MONNIER. (Reissue: 9,17s-April 97, 1880.) Explosive compound.
Coal tar or other tarry matter is mixed with explosive componnds containing potassium chlorate to cushion and segregate the particles of chlorate. The potassium chlorate and other soluble ingredients are dissolved in water, the insoluble ingredients which absorb the soluble substances are added, the dissolved salts crystallized by evaporation and agitation, the mass ground, and the coal tar added with heating and kneading.
220,304-October 7, 1879. J. PATTISON. Improvement in explosive compounds.
An oleaginous four or meal is combined with an explosive componnd having for its base chlorate of potash to prevent premature and spontaneous explosion. 280,534-October 14, 1879. O. B. HARDY. Improvement in blasting powder.
It is composed of crude nitrate of soda, 75 pounds; sulphur, 20 ponnds; char coal, 20 pounds; common salt, 10 pounds; sugar, 5 pounds; and paraffine, 3 pounds.
22, 169-December き, 1879. E. J. WILLIAMS. Improvement in explosive compounds.
It consists of potassium chlorate, 3 pounds; prussiate of potash, I ponnd; bichromate of potash, 2 onnces; putgalls, 5 onnces; cannel coal, 2 ounces; starch, 6 ounces; and crude coal oil, 5 ounces.
241,163-May 10, 1881. T. P. SLEEPER. Blasting powder.
It consists of potassium chlorate, 8 parts; sugar, 7 parts; and charcoal, I part. 268,518-December 5, 1882. C. F. MOHRIG. Explosive compound.
It consists of potassium chlorate, 50 to 70 parts ; sugar, 12 to 15 parts ; charcoal, 5 parts ; black oxide of manganese, 5 parts; metallic zine, 10 to 20 parts; water and wax, 10 parts.
273,209-February 97 , 1883. N. WIARD. Manufacture of gunpowder
It is formed in perforated pellets or grains with tapering perforations, the exterior surface being of greater density than its interior surface.
281,565—July 17, 1883. M. E. SANLAVILLE AND R. LALIGANT. Manufacture of explosive compounds.
A composition consisting of carbonaceous matter, alkaline chlorate and nitrate, alkaline bisulphate, and glycerine.
289,756-December 4, 1889. S. R. DIVINE. Explosive compound.
It consists of a solid ingredient, as potassinm cblorate, about 7 parts, and a liquid ingredient, as the heavy oil of coal tar (dead oil), I part; mechanically united.
289,760-December 4, 188s. S. R. DIVINE. Explosive compound.
It consists of potassium chlorate, abont $8 \frac{1}{3}$ parts and turpentine, I part; mechanically mixed.
289,762-December 4, 1883. S. R. DIVINE. Explosive compound.
From I to 3 per cent of sulphur is combined with the moist mass of No. 289,756 (potassium chlorate and dead oil).
289.765-December 4, 1883. S. R. DIVINE. Composition for preparing explosive compounds.
A fluid mixture constituting the liquid ingredient of an explosive consists of the liquid ingredient of the explosive-as dead oil-and a volatile fluid, such as bisulphide of carbon having finely divided snlphur dissolved in the volatile fluid.
312,010-February 10, 1885. R. S. PENNIMAN. Protected nitrate of ammonia for use in explosive compounds.
Granulated or finely divided nitrate of ammonia is protected against deliquescence by a coating of petroleum or its soft and viscons prodncts.
314,824-Karch 31, 1885. A. GACON. Blasting powder.
A mixture of nitrate of potash (or soda), 69 parts; flowers of sulphur, 19 parts; ashes, 12 parts; and tannin, 2 parts; all by weight.
320,588-June 2S, 1885. R. S. PENNIMAN. Explosive compound.
A high explosive consisting of nitrate of ammonia coated with petroleum or its soft products-No. 312,010 -combined with potassinm chlorate asa detonator 383,15\$-December 29, 1885. R. S. PENNIMAN. Explosive componnd.

It is composed of protected grains of nitrate of ammonia-No. 312,010-and grains of potassium chlorate mixed with a dry powdered material-as carbonate of magnesia-to prevent the latter from caking.
\$52,611-November 16, 1886. E. DU PONT. Explosive compound.
It consists of a nitrate and sulphur combined with charcoal retaining its fibrous structure (baked wood).
362,899-May 10, 1887. T. NORDENFELT AND V. A. MEURLING. Manufacture of gunpowder.
Sulphur is incorporated with carbonaceous matter, by dissolving the sulphur in bisulphide of carbon, impregnating the carbonaceous matter with the solu tion, and evaporating the bisulphide. It is then impregnated with saltpeter or equivalent salt in solution, and the solvent evaporated. Cotton or other vegeequivalent salt in solution, and the fiber is treated with hydrochloric acid (gaseous or liquid) to obtain carbonaceous matter.
36s,887-May 31, 1887. E. DU PONT. Explosive compound.
A compound of a nitrate, sulphur, charcoal retaining its fibrous structure, and a carbohydrate, as sugar.
s70,025-September 1s, 1887. K. J. SUNDSTRÖM. Blasting powder.
A mixture of sodium nitrate, say 370 parts; wood tar, 70 parts; resin, 38 parts A mixture of sodium nitrate, say moistening the nitrate with a solution of and sulphur, 50 parts; produced by moist wing wing the coated nitrate a solution of the wood tar and resin, and then mixing with the coated

374,740-December 13, 1887. L. G. HEUSSCHEN. Explosive compound.
It consists of coal oil and glycerine, togetber with potassium or sodium nitrate, sulphate of iron and sulphuric acid, carbonaceous matter and sulphur.
576,849-January 24, 1888. C. E. BICHEL. Manufacture of explosives.
Sulphur and a hydrocarbon are distilled in the presence of one another, and potassium nitrate, or equivalent oxygen-bearing substance, is added to the resultant body.
381,507-April 17, 1888. C. J. OLDS. Gunpowder.
It consists of carbonized peas, combined with saltpeter, sulphur, and charcoal from willow or other trees.
393,694-November 27, 1888. A. FAVIER. Explosive and method of making same.
An explosive consisting of a highly compressed intermixture of a nitrate and a hydrocarbon, produced by mixing a pulverized nitrate, as ammonium nitrate, and a waterproof hydrocarbon fusible at a low temperature, and agglomerating the mixture under high pressure.
397,095-Jonuary 29, 1889. R. SJOBERG. Blasting compound.
It consists of ammonium oxalate, a nonnitrated hydrocarbon, as naphthalene, and potassium chlorate, with or without a liquid nonvolatile hydrocarbon, as astral oil.
418,635-Deccmber 31, 1889. A. F. WOODS. Gunpowder.
A mixtnre of potassium chlorate, 4 parts; yellow prussiate of potash, I part; and \mathfrak{n} carbohydrate, such as sugar, 1 part.
448,361-March 17, 1891. R. S. PENNIMAN. Process of manufacturing nitrate of ammonia.
Protected nitrate of ammonia is produced by mixing the protecting medium With tbe nitrate while in a melted condition, cooling, and graining by agitation. Nitric acid is mixed with ammoniacal liquor, settled, and concentrated by evaporating the main portion of the water, dehydrated, and then mixed,
while in its initially melted condition, with the grain-protecting medium. while in its initially melted condition, with the grain-protecting medium.
474.529-May 10, 1892. F. ROLLER. Manufacture of explosives.

A compound consisting of nitrate grains coated with colophony, with or without a solid, fatty substance, such as spermaceti, and an oil in which the colophony is dissolved, such as cottonseed oil.
483,125—September 27, 1892. F. AUCHMAN. Blasting-powder.
It consists of malt germs or cooms, ammonium nitrate, and potassium chlorate.
512,042-January 2, 1894. H. MAXIM. Process of making chlorate blastingpowder.
Potassium chlorate and sodium, or potassium nitrate, are combined in a state of fusion and reduced to a fine state of division prior to the admixture of combustible elements. The oxygen-bearing salt is first fused and the potassium chlorate then added.
548,723—July 16, 1895. F. G. A. BROBERG. Blasting-powder.
A free running powder consisting of particles of nitrate of soda coated with a mixture of resin and sulphur; produced by adding dry pulverized nitrate of soda to melted sulphur and resin and agitating the mixture.
546,552-September' 17, 1895. B. C. PETTINGELL. Blasting-powder.
Process of manufacture consistsin first immersing the powdered carbon singly and alone in an aqueous solution of niter, and afterwards adding and mechanically mixing the other ingredients, as sulphur and woodpulp.
565,598-August 11, 1896. M. BIELEFELDT. Safety explosive.
Formed of from 90 to 92 parts of ammonium nitrate, 5 parts of resin, and from 3 to 5 parts of a chromium compound, such as chromons hydroxid.
599,568-Yovember 16, 1897. H. R. VON DAHMEN. Blasting powder.
It is composed of ammonium nitrate, phenanthrene, and potassium bichromate; produces a low explosion temperature.
598,096-February 1, 1898. T. IEVLEY. Explosive.
A compound consisting of potassium chlorate; a metallic oxid or oxides, as sesquioxid of iron and oxid of manganese; petroleum, and turpentine; with or without a moderator, such as an oil of the fatty-acid series, as oil of almonds.
608,316--August 2, 1898. G. BENEKE. Explosive and method of moking same.
A compound of ammoninm nitrate, resin, and an alkaline carbonate, with or withont an oxidizing material such as alkaline chromate; prodnced by incorporating the alkaline carbonate (and the oxidizing material) with the resin when the latter is in a liquid state, cooling and pulverizing, and then incorporating with the ammoninm nitrate.
647,606-April 17, 1900. R. S. PENNIMAN AND J. C.SCHRADER. Resinous dope and method of moking same.
Vulcanized resin, adapted for use in explosive-componnd dopes, produced by mixing resin and sulphur, highly heating for vulcanizing the resin, then cool ing, breaking np, and pulverizing.
650,225-May 92, 1900. M. BIELEFELDT. Explosive.
A compressed mixture of sodium nitrate, potassium nitrate, sulphur, coal tar, and potassium bichromate, the proportion of sodium nitrate being greater than the aggregate of the other ingredients.
655,8s解-Augusi 14, 1900. J. ROSS AND W. D. CAIRNEY. Blasting powder.
A mixture of potassinm chlorate, 75 per cent; black oxide of manganese, 6 per cent; charcoal, 6 per cent; wax, 9 per cent; and vaseline, 4 per cent. Process of manufacture consists in granulating the potassium chlorate, mixing therewith the granulated charcoal and black oxide of manganese, then mixing in the
wax, and heating until moist with the melted wax, then adding the vaseline wax, and heating until moist with the melted
to fill all crevices and supplement the coating.
656,048-August 14, 1900. J. ROSS AND W. D. CAJRNEY. Explosive and process of making same.
A mixture of potassium chlorate, 87 per cent; charcoal, 3 per cent; wax, 7 per cent; and vaseline, 3 per cent; the process being the same as No. 655,832 .
656,678-August 28, 1900. J. A. STRANSKY. Smokeless powder.
A componnd of potassium chlorate, 20 ounces; sugar, 16 ounces; alum, I dram; sulphur, I dram; and alcohol.

NITROGLYCERINE.

50,617-Octobcr 24, 1865. A, NOBEL. (Reissues: Div. A, 3, 577-April 18, 1869; 4,815; March 19, 1872; 5,621, October 21, 1873; 5,798, March 17, 1874. Div. B, 3,378-Aprit 18. 1869; 4,816, March 19, 1872; 5.620, October 21, 1879; 5,800, March 17, 1874 . Div. C, S, S79-April 1s, 1869; 4,817, March 19, 1872. Div. D, S, 380 -April 13, 1869; 4,818, March 19, 1872.) Improved substitute for gunpowder.
Nitroglycerine is exploded, throughout its entire mass, by confining same and subjecting it to excessive pressure, or to an impulse of explosion, as by means of an auxiliary explosive, an electric spark or heat, or other means.
It is placed either within or around an exploding charge or igniter.
It is placed either within or around an exploding charge or igniter. poured together into a mixing tube and discharged into water maintained at a low temperature.
57,175-August 14, 1866. A. NOBEL. (Reis8ues: A 2,597-April 2, 1867, product; B2,558-April 2, 1867, process; B, Div. 1, 3,981-April 19, 1869, process; 'B, Diu. 2 $3,482-$ April 19, 1869, apparatus.) Improved explosive compound.
Nitrine or crystallizing nitroglycerine, produced by the admixture of glycerine, sulphuric acid, and nitric acid, free, or nearly free, from hyponitric reid.
60,57S-Desember 18, 1866. T. P. SHAFFNER. Improvement in methods of blasting with nitroleum.
The nitroglycerine may be mixed with sand, for blasting; or the charge is poured into the hole, tamped with water, and fired with a tamping charge near the top; or the water tamping may be omitted and the firing canister suspended near the top of the hole, with the blasting charge in the bottom, and space between, there being sand tamping above the former.
76, 499—April 7, 1868. G. M. MOWBRAY. Improvement in the manufacture of nitroglycerine.
Compressed air, dried and cooled, is introdnced during the process of manufacture, to preserve a low temperature, and convert any hyponitrous acid produced.
85,906-January 19, 1869. S. CHESTER AND O. BÜRSTENBINDER. Improred method of preparing nitroglycerine.
The ingredients are mixed under an atmosphere which will not support combustion, as carbonic-acid gas. The mixture is cooled by the ebullition of cool compressed carbonic-acid gas through it and caused to rotate by means of jets of escaping gas.
86,701-February 9, 1869. T. P. SHAFFNER. Improvement in preserving nitroglycerine, etc.
Water is placed in a vessel containing nitroglycerine for transportation or storage.
93,756-Augusi 17, 1869. T. P. SHAFFNER. Improvement in the manufacturc of nitro-glycerine.
A cold water jacketed tank is used, having eurved agitating arms.
98,425-December 28, 1869. T. P. SHAFFNER. Improvement in the manufacture of nitro-glycerine.
It is washed and agitated by forcing water and air into it by means of a perforated pipe at the bottom of a tank.
98,426-December 28, 1869. T. P. SHAFFNER. Improved process of preserving nitroleum and other explosive liquids.
Sponge, or like elastic porous substance, is used to hold nitroglycerine in suspension for storage or transportation. It is released by immersing charged susponge in warm water-say $60^{\circ} \mathrm{F}$.
112,848-March 21, 1871. E. A. L. ROBERTS. Improvement in the manufacture of nitro-glycerine.
The amount of sulphuric acid in the acid bath is gradually increased simultaneously with the pouring in of the glycerine. The proportionate amount of sulphuric acid used in the first instance is reduced.
112,849-Mareh 21, 1871. E. A. L. ROBERTS. Improvement in the manufacture of nitro-glycerine.
The glycerine is introduced in a bath of mixed acids in which a rapid circulation of the fluid contents of the bath is maintained.
121,898-December 12, 1871. E. A. L. ROBERTS. Inprovement in the manufacture of nitro-glycerine.
The acids and glycerine are mixed in a water-cooled tube so construeted as to produce the tumbling or cascading of the liquids within.
187, 440 -April 1, 187s. A. HAMAR. Impovement in the manufacture of nitroglycerine.
The acid and glycerine flow throngh a trough and discharge upon a coolingcoil, into a solution of sodium chloride.
164,260-June 8, 1875. P. CASTELLANOS. Imyrovement in the manufaeture of nitro-sulphuric acid for manufacturing nitro-glycerine.
See Group I, Mixed Acids.
164,261-June 8, 1875. P. CASTELLANOS. Improvement in recovering acids from residuum of nitro-glycerine manufacture.
Sec Group I, Mixed Acids.
226,867-April 27, 18s0. F. MANN. Process of manufaeturing nitro-glycerine.
Nitroglycerine is separated from its acid mother liquor by freezing the mixed acids and nitroglycerine and then separating the crystalized nitroglycerine by a centrifugal machine.
240,516-April 26, 1881. L. HINCKLEY. Method of handling nitro-glycerine.
Nitroglycerine is confined in closed vessels, tubes, cartridges, or shells under pressure, to render it nonexplosive by ordinary shocks or jars. It can be thus fired from a gun with ordinary gunpowder.
241,941 -May 24,1881 . G. S. DEAN. Method of preparing nitro-glycerinc compounds.
Nitroglycerine is mixed with a pulverulent nitro-componnd and water (say 2 to 3 per cent of water) to increase the safety in handling and transportation. 262,769-August 15, 1882. W. N. HILL. Process of and apparatus for the production of nifro-glycerine.
Glycerine is mixed with a portion only of the acid, the reaction taking place with agitation byair or otherwise, then the partially converted mixtnre is passed into another and larger vessel, und the neccissary quantity of acid added to into another and larger
complete the conversion.

419,070-October 15, 1889. E. LIEBERT. Manufacture of exptosives.
Isoamyl nitrate is added to nitroglycerine, or a mixture of glycerine with isoamyl nitrate or isoamyl alcohol is mitrated, to lower the freezing point and make the nitroglycerine less sensitive to shocks.
432,386-Juty 15, 1890. S. D. SMOLIANINOFF. Explosive compound.
A mixture of nitroglycerine and an alcohol, as methyl alcohol, with or without an absorbent and a fulminate.
449,687-April 7, 1891. H. S. MAXIM. Process of and apparathes for making explosives.
The glycerine and the nitrating agent are separately atomized and then intermingled as spray, and the mixture quenched with water. Also claims for the apparatus.

457,002-August 4, 1891. E. K. MITTING. Process of making nitro-glycerine.
A charge of glycerine is nitrated, the spent acid drawn off and the product treated anew with a fresh charge of nitrating acid in excess, and finally the nitrate a second charge of glycerine, repeating the operation in the same nitrate a second
nitrating vessel.

482,972-September 19, 1892. J. LAWRENCE. Process of recovering nitro-glycerine from waste acids.
The glycerine is nitrated and the nitroglycerine separated from the waste acids, then sulphuric acid may be added to the waste acids, and they are cooled to a temperature below the freezing point of nitroglycerine and above the freezing point of the acids, and the remaining nitroglycerine recovered.

CELLULOSE NITRATES AND OTHER ORGANIC NITRATES.

4,874-December 5, 1846. C. F. SCHÖNBEIN. Improvement in preparation of cotton-wool and other substances as substitutes for gunpowder.
Vegetable fibrous substances are treated with a mixture of nitric acid and sulphuric acid, or with pure nitric acid of greatest specific gravity. The explosive cotton may be impregnated with potassium nitrate or other chemical substitutes.

48,166-June 14, 1864. W. LENK. Improved gun-eotton.
Gun-cotton is produced by a process involving a speeific series of steps, including, among others, the immersion of the gun-cotton in a solution of waterglass.
47,316-April 18, 1865. J. P. McLEAN. Improvement in the manufacture of guncotton and lint.
The fibers of the Asclepias syriaca, or milkweed, are used, either as fiber or in the form of yarn or fabric made thereof.
50,082-September 19, 1865. J. J. REVY. Impronement in the manufacture of guncotton.
The process calls for a specified series of steps, the acid mixture being formed of monhydrated nitric acid of a specific gravity not under 1.52 and monohydrated snlphuric acid of a specific gravity not under 1.84. It is spun into a lightly twisted yarn. The cotton yarn is boiled in a weak solution of water glass. The yarn is wound into the form of cartridges, or spun into ropes, woven into cloth, and then made up into cartridges.
60,083-September 19, 1865. J. J. REVY. Improvement in the manufacture of gun cotton.
The cotton is prepared by washing in an alkaline solution. In treating with acid, small and regular quantities are dipped in a considerable quantity of acid, fresh acid being added after each dipping to compensate for that removed. The acid is removed from the exterior of the fiber by saturating with water and treating in a centrifngal machine, and from the interior of the fiber by placing the fiber on perforated shelves and percolating water therethrough. Water glass is applied by means of a centrifugal machine, the solution being applied cool.
59,888-November 20,1866 . F. A. ABEL. Improvement in the manufacture of guncotton.
Gun-cotton is reduced to a pulp and consolidated, with or without pressure, into solid forms, with or without the admixtnre of binding materials. Soluble and insolnble gun-cotton may be combined, pulp mixed with fibrous cotton, and the compressed forms coated with soluble gun-cotton, or shellac.
60,5\%1-December 18, 1866. T. P. SHAFFNER. Improvement in the manufacture of gun-cotton.
Saturation and washing are performed under pressure, to compel the fluids to thoroughly permeate the fiber.
93,757-August 17, 1869. T. P. SHAFFNER. Improved method of blasting with gunpowder and other cxplosive substances.
Non or partially explosive materials are interposed between the fibers of guncotton, grains of powder, or nitrated or explosive materials to spread the action of the gases.
124,510-March 12, 187\%. R. PUNSHON. Improvement in explosive compounds from gun-eotton.
Sugar is mixed with gun-cotton; as by dissolving sugar equal to one-third of the weight of the cotton in a minimum quantity of boiling water, thoroughly mixing finely cut gun-cotton therewith, and drying.
128,450-June 25, 1872. J. B. MUSCHAMP. Improvement in cxplosive substances and processes of manufacturing the same.
Comminuted cellnlose woody fiber, purified of sap and mineral salts by treatment in strong caustic soda under pressure and washed, is treated with the acid bath, washed, and steeped in an alkaline solution, washed, and dricd; the firs dip producing the strongest explosivc. A second quantity of fiber is treated in the same bath (second dip) to produce a weaker explosive; and a third for a still weaker explosive. To retard the rapidity of explosion it is steeped in a solution of starch.

189,798-Junc 10, 1873. T. P. SHAFFNER. Improvement in explosive compounds. Gun-cotton, or other nitrated fibrous substance, is combined with nitrated water, or liquids, or paraffine, or bceswax, or any oleaginous or resinous matter.
141,654-August 12, 1873. S. J. MACKIE. Improvement in the manufacture of gun-cotton.
Gun-cotton is crushed to destroy its capillary structure and reduce it to an impalpable mass, and then granulated. It is dried in vacuo.

digest of patents relating to chemical industries.

149,865-October 21, 1873. H. T. ANTHONY. Improvement in preparing soluble
cotton for the manufacture of collodion. collon for the manufacture of collodion.
After the ordinary acid treatment and washing, soluble cotton is subjected to volatilized alkali, as ammonia, to remove traces of acid.
210,611-December 10, 1878. J. W. HYATT. Improvement in apparatus and processcs for the manufacture of nitro-cellulose.
Soluble fiber is made from paper by successive steps of "disintegration" into minute flakes; "conversion" in an acid bath (with centrifugal and centripetal swirls); "desiccation", by drying in a centrifugal machine; and "ablution." Claims are made for the apparatus.
2s0,216-July 20, 1880. J. A. ARRAULT, J. AND C. SCHMERBER. Process for manufactiring nitro-derivatives from cellulose, eic.
Nitro-derivatives are produced by treating the cellulose, starch, glucose, etc., with the fumes of nitric acid or nitric acid in a gaseous state
2s8,916-March 15, 1881. F. C. KEIL. Explosive compound.
It is composed of nitroglucose (dextro-glucose made from starch) dissolved in a volatile solvent, such as alcohol, and mixed with potassium nitrate, potassium chiorate, and prepared vegetable fiber.
242,89s-June 14, 1881. G. S. DEAN. Process of making nütro-dextrine.
Vcgetable fiber is treated with dilute sulphuric acid, whereby its structure is destroyed and dextrination commenced, and alterwards it is nitrated with concentrated nitro-sulphuric acid.
244,575-July 19, 1881, C. A. FAURE AND G. TRENCH. Explosive blasting material.
It consists of intimately mixed carbonaceous and oxidizing materials in granular form, with finely divided nitrocellulose distributed around the granules.

249,490-November 15, 1851. C. W. VOLNEY. Enplosive compound.

A mixture of monochlordinitrin or chlorpropenyldinitrate, and a nitrate of potassium, sodium, barium, or other suitable alkaline metal, in equivalent quantities to effect a mutual decomposition, with or without chlorates of the said metals, vegetable fiber, or charcoal.
251,145-December 20,1881 . G. VON PLANITZ. Explosive compound.
A base tor explosives formed by the combination of nitric acid and resin, pronuced by spreading pulverized resin on a bath of nitric acid and water beated 252,600—January 24, 1882. C. DITTMAR. Explosive compound.
"Chlornitrosaccharose," or nitro-sugar, produced by dissolving sucrose in chlorbydrin and then converting it into a nitro compound.
gr4,395-March 20, 188s. J. W. HYATT AND F. V. POOL. Manufacture of pyroxyline.
The fiber is treated with acid; the residual acid is then freed from matter in suspension by use of barium sulphate or otherwise, and the spent acid is analyzed and its strength restored according to the original formula.
276,8ss-May 1, 188s. A. J. LANFREY. Manufacture of explosive compounds.
An explosive compound consisting of nitrocellulose made from straw and oxidating substances, such as nitroglycerine, niter, or mixture of niter and carhonaceous matter. The straw is disintegrated, triturated, washed, treated the paper converted into nitrocellulose.
299,857—June §, 1884. E. SCHERING. Preparation of collodion.
Pure collodion cotton (free from acid) is dissolved in ether and alcohol, and distilled after filtration, to an extent to permit of the mass being cast into forms. It is nonexplosive.
304,361-September 2, 1884. J. SCHULHOF. Explosive preparation made from gun-cotton.
Gun-cotton is impregnated with Iat, compressed, and coated with collodion. \$06,519-October 14, 1884. F. V. POOL. Manujacture of•soluble nitro-cellulose.
The strength of the spent acids is restored in bulk by introducing the proper quantity of a nitrate.
309,787-December 23, 1884. E. JUDSON. Explosive compound.
A mixture of nitrocellulose or other equivalent detonating or fulminating compound with a dope prepared by pulverizing, drying, and mixing sodium nitrate, 70 parts; and anthracite coal, 10 parts; and mixing same in a melted nitrate, ${ }^{2}$ parts; and anthracite coal, 10 parts; and mixing same in a melted cooling the dope until the grains cease to adhere.
s15, 957 -April 7, 1885. M. VON FÖRSTER. Coating gun-cotton.
Pure gun-cotton is compressed and then treated with a solvent, as ethylic acetate, which will dissolve part of the gun-cotton, and on drying leave a hard film or coating of gun-cotton.
s39,872-January 5, 1886. M. F. LINDSLEY. Explosize compound.
A mixture of nitrocellulose, 50 pounds; saltpeter, 38 pounds; charcoal, 5 pounds; potassium chlorate, 3 pounds; starch, 2 pounds; and potassium carbonate, 2 pounds.
386,882-February 23, 1886. F. V. POOL. Art of manufacturing nitro-cellulose.
In the manufacture of nitrocellulose a spent bath is restored and purified by introducing a suitable quantity of sulphuric acid and a nitrate, according to the requirements as shown by an analysis, and effecting the crystallization and removal of the resulting by-product.
340,276-April 20, 1886. M. BIELEFELDT. Explosivc compound.
It consists of nitrocellulose, with or withont nitroglycerine, with nitrate of ammonia in water of ammonia.
S41,155-May 4, 1886. M. F. LINDSLEY. Process of making explosive compounds: A mixture of wood fiber, charcoal, bituminous coal, and starch is formed into fine powder and then into grains, treated with acids, the free acid removed, and the grains then treated in a solution of potassium carbonate and saltpeter. S4s,850-June 15, 1886. F. V. POOL. Art of making nütro-celtulose.
Spent acids are restored and purified by adding a suitable quantity of a nitrate, which is decomposed, the liberated nitric acid strengthening the bath. while the Which is decomposed, the liberated nitric acid strengthening the whith suric acid present, an insoluble compound which acts as base forms, with sulphuric acid present, an insoluble compound which acts as a settling age
afterwards.

350,497-October 12, 1886. G. M. MOWBRAY. Manufacture of pyroxyline.
The spent actd is restored in strength and bulk without precipitation and analysis by fortifying and adding to the drained spent acid of a previous nitra tion a mixture of concentrated sulphuric and nitric acds.
\$50,498-October 18, 1886. G. M. MOWBRAY. Manufacture of pyroxyline.
The use of steeled cast-iron pots is claimed for holding the mixed acids, and 'Bessemer process steel' for tanks; also structural details of apparatus.
359,思9——4arch 15, 1887. E. SCHULTZE. Gunpowder.
A composition of a nitro-hydrocarburet (such as nitro-colophony, tar, turpentine, or turpentine-oil), pyroxyline, and nitrates or sults furnishing oxygen in barium nitrate, 60 to 80 parts; and potassium nitrate, 8 to 10 parts. 60 to 80 parts;
96s,197-Mty 17, 1887. R. BERNSTEIN. Granular nit.0-cellulose,
Prepared from the pulverized nuts, fruits, or shells of nuts of the Phytelephas macrocarpa, or "vegetable ivory" and kindred plants, and forming smooth

366,281-July 19, 1887. C. W. VOLNEY. Explosive compound.
A solution of nitro-starch in nitrogly cerine; also the same with oxidants, as
chlorates and nitrates.
371,376-Oetober 11, 1887. H. SCHÖNEWEG. Explosive.
Consisting in mitrated carburets of hydrogen and nitrated cellulose with an oxalate or oxalic acid.
417,577-December 17, 1889. J. F. A. MUMM. Explosive compound.
A mixture of potassium chlorate, 1 pound; antimony, 8 ounces; charcoal, 1 ounce; flowers of sulphur, 2 ounces; glycerine, 1 ounce: collodion, 1 ounce; sul. phuric acid, 4 drops; nitric acid, 2 drops; alcohol, 3 ounces; and water, 2 to 3
ounces.
420,445-February 4, 1890. J. R. FRANCE. Soluble nitro-cellulose and process of manufacturc.
Soluble nitrocellulose composed of pure mechanically comminuted cotton fiber nitrated, produced by mechanically reducing cotton to a uniform and homogeneous dust-like condition and then treating with a bath of nitric and sulphuric acids, in the proportions, say, of nitric acid, 42° Baumé, 8 parts, and sulphuric acid, 66° Baumé, 12 parts.
420,446-February 4, 1890. J. R. FRANCE. Insoluble nitrocellulose and preparing the same.
Insoluble nitrocellulose consisting of pure mechanically comminuted cotton nitrated, produced by mechanically reducing cotton to a uniform bomogeneous dust-like condition, treating it in a bath of nitric and sulphuric acids in the usual proportions and strength, at about 75° F., Ior about fifteen minutes, and pressing out the superabundant acids, and washing.
420,477-February 4, 1890. J. R. FRANCE. Cotton-fber dust and preparing the same.
Mechanically comminuted cotton-fiber dust for the manufacture of nitrocellulose, produced by forming the cotton into a card or lap and cutting or otherwise reducing the fibers in their natural state to cotton dust by mechanical means.
480,215-June 17, 1890. H. S. MAXIM. Recovering solvents from explosives.
In the manufacture of explosive material, the dissolved material is exposed in receptacles in a drying chamber and a constant circulation of air or gas maintained through the drying chamber and a communicating condensing chamber, the air or gas being heated before entering the drying chamber.
494,287-August 12, 1890. G. M. MOWBRAY. Process of manufacturing nitrocellulose.
A continuous web of cellulose paper is moved through an acid bath, compressed, then through a wasbing fluid, dried, and a solvent is tnen distributed upon the continuously moving web, and it is formed into a roll to diffuse the solvent.
443,105—December 28, 1890. G. M. MOWBRAY. Method of preparing nitrocellulose. Cellulose naterial, whether fibrous, felted, or textile, is impregnated by crystallizing a salt, preferably sodic mitrate, in the interstices of the material; the phuric and nitric acids, and then removed, washed, and dried.
454, 281-June 16, 1891. H. S. MAXIM. Method of making gun-cotton.
Charges of cotton are treated in a given order in each of a series of acid vats, the excess of acid expressed from the cotton and returned to the vat from which it was taken, and as the acid in said vats becomes spent the weakest acid of the changed in accordance with the relative strength of the acid in the several vats. 455,245-June \$0, 1891. H. DE CHARDONNET. Manufacture of pyroxyline.
Process consists in the successive steps of nitration, centrifugal extraction of spent acids, washing of the pyroxyline, and neutralization of the wash water by pyroxyline by the centrifugal action, and reuse of the wate with successive quantities of pyroxyline.
465,280-Dccember 15, 1891. H. MAXIM. Method of making ntitrocellulose.
Pyroxyline of a high grade is produced by immersing the cellulose for a short time in a bath of strong-acids mixture, then conveying said cellulose with contained acids (amounting to, say, six or more times the weight of cellulose) to a second bath containing many times the weight of the celliulose of a weaker acid time.
474,778-May 10, 1892. H. MAXIMr. Process of making nitrocellulose.
Cellulose is first converted into a lower nitro compound, such as dinitrocellulose, in a preliminary bath of suitable acids, the excess of acid removed by mechanical means and washing, then dried, and then immersed in a atronger bath of acids suitable to convert it into trinitrocellulose, or pyroxyline. The adhering strong acids are washed therefrom into the first bath by passing the weaker acids mixture through it and back into the bath.
479,988-August 2, 1899. H. MAXIM. Method of restoring nitrating acids.
A quantity of dry nitrate is added to the weakened mixture, the acid sulphate allowed to crystallize, the liquor is removed from the crystals by a centrifugal machine, and the crystals further washed by a portion of the weakened mixture.

457,050-November 29, 1892. J. V. SKOGLUND. Explosive powder.

It consists of dried grains of nitrated cellulose gelatinized by means of a solvent containing a fat or fatty acid, with or without saltpeter.
514,850-February 1s, 1894. R. C. SCHÜPPHAUS. Nitro compound and process of making same.
A pyroxyline composition baving urea incorporated therewith, to seeure stability.
516,295-Mareh 18, 1894. H. M. CHAPMAN. Explosive.
The combination with a nitro-explosive as an agglomerating agent of formie ether.
516,924-Mareh 20, 1894. F. G. DU PONT. Process of drying nitrocellulose.
Wet nitrocellulose is placed in a hydrocarbon oil, as kerosene, and the oil vaporized, thereby removing the water from the fiber.
526,752-Oetober 2, 1894. R. C. SCHÜ PPHAUS. Proeess of nitrating cellulose.
The weakened acid bath is restored by adding sulphurie anhydrid and nitrie acid; with oil of vitriol in eertain cases.
541,899-July 2, 1895. B. THIEME. Proeess of making nitropentaerythrit.
Nitropentaerythrit, suitable for use as a smokeless explosive, is produced by treating pentaerythrit, whieh is produeed by the condensation of acetyldehyde and formaldehyde in the presence of lime, with eoncentrated nitrie and sulphurie aeids.
544,924-August 20, 1895. H. MAXIM. High explosive.
An intimate meehanical mixture, in a fine state of division, of an explosive colloid of gun-eotton and nitroglyeerine and wet fibrous gun-cotton; the latter may hold in suspension in its porcs a solution of an oxygen bearing salt, such as nitrate of ammonia.
640,160-December 26, 1899. C. F. HENGST. Explosive compound.
Esparto grass is meehanieally disintegrated, macerated in a sulphurie-acid and nitric-acid bath, the liquor expressed and the pulp washed boiled in an aqueous solution of potassium bicarbonate, the produet colored with hydroehloride of triamidoazobenzene, washed and strained, dricd, ground with atarch,
eharcoal, and potassium nitrate, dried, sifted, molded, and the grains waterprooied.
647,120-April 10, 1900. A.LUCK AND C. F. CROSS. Process of inereasing stability of nitrocellulose.
The nitrocellulose is freed from the nitrating acid, treated with a solution of acetone and metallie salts and alcobol, and washed in suceessive washes to remove the acetone.
667,759-February 12, 1901. D. BACHRACH. Nitrocellulose or similar substanee and proeess of making same.
A nitrocellulose containing a sulphate, as sulphate of lime, constituting 30 per cent or more by weight of the solid constituents of the compound, forming a noneombustible cellulose, may be formed by adding to the other constituents thereof earboaste of lime and sulphuric aeid in proper proportions.

DYNAMITES.

78,917-May 26, 1868. A. NOBEL. (Reissues: 5,619-Oetober 21, 1879; 5,799-March 17, 1874; and 10,267-January 9, 1888.) Explosive compound.
A combination of nitroglyeerine with infusorial eartb.
98,752-August 17, 1869. T. P. SHA FFNER. Improved explosive compound for usc in firearms, blasting, etc.
Nitroglyeerine is mixed with granulated plaster of paris.
98,753-August 17, 1869. T. P. SHAFFNER. Improved explosive eompound.
A mixture of nitroglyeerine with comminuted sponge or other vegetable fiber, with or without the admixture of plaster of paris.
85,754-August 17, 1869. T. P. SHAFFNER. Improved explosive compound.
Nitroglyeerine is mixed with metallic powder, sueh as red lead, with or without an admixture of plaster of paris or any alkaline substance.
98,982-December 28, 1869. J. HORSLEY. Improved nitro-glyeerine eompound for blasting.
From 20 to 25 per eent of nitroglycerine is incorporated with a powdered mixture of Aleppo or other foreign gallnuts and potassium ehlorate; or with galls, ehareoal, and potassium chlorate; or galls, cream of tartar, and potassium chlorate; or galls, hard sugar, and potassinm chlorate.
98,487—December 28, 1869. T. P. SCHAFFNER. Improved explosivc compound. Gun cotton is treated with nitroglycerine.
98,854-January 18, 1870. C. DITTMAR. Improvement in explosive eompounds. "Duslin," consisting of cellulose, nitrocellulose, nitro-stareh, nitro-mannite, and nitroglycerine, mixed in different combinations, aceording to the and nitroglyeeri
99,069-January 25, 1870. C. DITTMAR. Inproved explosive agent, ealled "xyloglodine."
It consists of glycerine-stareh, or glycerine-cellulose, or glycerine-mannite, or glycerine-benzole, or analogous substances, treated with a mixture of nitrie with cellulose or oth. It is a milky reddish or white fluid and may be mixed with eellulose or other porous substanees.
120.776-November 7, 1871. E. A. L. ROBERTS. Improvement in explosive com-
pounds. pounds.
Asbestos is combined with nitroglycerine, or other explosives, with or without infusorial earth or silica.
$188,841-$ May 1s, 1878 . T. S. BEACH. Improvement in explosive compounds.
A compound formed of an alkaline nitrate, nitroglycerine or cquivalent nitro-substitution produet, wood-fiber or other material eontsining eellulose, and paraffine or equivalent wax-like material.
159,468-June S, 187s. E. JUDSON. Improvement in explosive compounds, or giant povider.
A mixture of nitroglycerine with infusorial earth, sodium nitrate, resin and sulphur, or their equivalents.
189,746-June 10, 187s. T. VARNEY. Improvement in explosive compounds.
Dynamite is granulated while it is freezing or when frozen, and can then be
uscd in its irozen state.

141,455-August 5, 1875. A. NOBEL. Improvement in explosive compounds.
A mixture of sodium nitrate and resin, or their equivalents, with or without sulpbur, with nitroglycerine.
141,585-Augusl 5, 1873. J. H. NORRBIN AND J. OHLSSON. Improvement in explosive compounds.
Nitrate or nitrite of ammonia is combined with a fulminate, as nitroglyeerine.
146,580-January 20, 1874. W. N. HILL. Improvement in blasting compounds or dynamiles.
A mixture of nitroglycerine and a silicious powder, prepared by precipitation from solutions of the silicates.
150,488-May 5, 1874. G. M. MOWBRAY. Improvement in blasting powders.
A mixture of nitroglycerine with finely divided mica.
15s,086-July 14, 1874. C. L. KALMBACH. Improvement in explosive eompounds or dynamiles.
A mixture of a coarsely-ground larinaceous substance, such as corn meal, and nitroglycerine. Nitroglyeerine is packed for shipment in nonmetallie vessels, holding, with the nitroglycerine, an equal amount in bulk of atmospheric air; When not in transit it is stored in perpendieular or flaring-sided nonmetallic open vessels, covered only with a film of water.
157,054-November 17, 1874. J. W. WILLARD. Improvement in explosive compounds.
It is composed of earbonate of magnesia, nitrate of potash, eblorate of potash, sugar, and nitroglyeerine.
164,269-June S, 1875. P. CASTELLANOS. Improvement in explosive compounds.
It eonsists of nitroglyeerine, nitrobenzole, or benzine (to reduce the point of congelation), fibrous material, and pulverized earth.
164,264-June 8, 1875. P. CASTELLANOS. Improvemenl in explosive compounds.
It eonsists of nitroglycerine, potassium, or sodium nitrate, picrate, sulphur, earbon, and a salt insoluble and ineombustible in nitroglyeerine, such as the carbon, and a salt insoluble and ineombustible in nitrogly
167,50s-September 7, 1875. H. COURTEILLE. (Reissue: 7,06s-April 18, 1876.) Improvement in blasting powder.
A safety blasting powder containing the elements of common gunpowder and also the uneombined elements ol nitroglycerine; produced by treating the components of ordinary gunpowder in the presence of oleaginous or tarry matters, peat, and metallie sulp bates.
178,961-February 22, 1876. W. F. JOHNSTON. Improvement in explosive mixtares.
An explosive containing salts which eontain nitric acid and ammonia (as a mixture oí sodium nitrate and ammonium sulphate), that by their deeomposition at the time ol the explosion will produce nitrate of ammonia; as a compound of salts containing nitric acid and ammonia, and a small pereentage of gunpowder, nitroglycerine, or other common explosive, to produce a primary combustion.
175,785-April 4, 1876. A. NOBEL. Improvement in gelatinated explosive compounds.
Gelatinated nltroglyeerine, produced by dissolving in nitroglycerine a substance capable ol gelatinating it, auch as mitrated cotton. ye process is 175,929-April 11, 1876. J. COAD. Inprovement in blasting compounds.
A mixture of nitroglycerine and deeayed wood.
177,988-May 50, 1876. C. G. BJORKMAN. Improvement in explosive compounds. A mixture of potassium nitrate, 20 parts; potassium chlorate, 20 parts; cellulosa, 10 parts; pea-meal, 10 parts; sawdust, 10 parts; and nitroline, 30 parts.
189,764-October 91, 1876. E. JUDSON. (Reissue: 7,481-January 50, 1877.) Improvement in explosive compositions.
A powder consisting of partieles or grains of a gas-producing material, rendered nonabsorbent by a coating of varnish or cement, as by mixing and resin, and asphalt, the powder then being rendered explosive by the admixture or ineorporation of nitroglyeerine.
184,762-November 28, 1876. C. DE LACY. Improvement in explosive compositions.
It eonsists of pyroxyline, sawdust, potassium nitrate and chlorate, and nitroleum. (Nitrolenm is obtained by adding stearic oil mixed with honey, or eoarse glycerine, to a mixture oi nitric and sulphurie aeids; the oleic mixture being removed, washed, and impregnated with soda.)
190,954-May 22, 1877. O. BÜRSTENBINDER. Improvement in explosive compounds.
Vegetable substances are inspissated with glyeocole or chondrin and saltpeter, then soaked in nitroglycerine, and granulated and dried.
203,482-May 7, 1878. E. MONAKAY. Improvement in explosive compounds.
An explosive eompound eontaining nitroglycerine and a liquid hydroearbon, diluent, such as kerosene oil.
227,601-May 11, 1880. R. W. WARREN. Explosive compound.
It is composed of gunpowder mixed with a powder made of nitroglycerine, nitroeellulose, and trinitracellulose, formed by first redueing nitrocellulose and nitroglycerine to a coagulated mass, then adding trinitroeellulose until a dry powder is produced, and finally combining therewith gunpowder.
254,489-November 16, 1880. C. A. MORSE. Explosive compound.
Nitroglyeerine and a resinous or equivalent substance in a solid, granulated, or pulverized mass; produced by dissolving nitroglyeerine and resin in a common solvent, as methyl alcohol, and then evaporating the solvent. The mass may be stirred during distillation to break down the mass and discharge it in a pulverized form.
235,871-December 28, 1880. W. HEICK. Explosive compound.
It is composed of honey and glycerine treated with nitrie and sulphuric acid and then mixed with chlorate of potash, prepared sawdust, and prepared ehalk.
236,714-January 18, 1881. C. A. MORSE. Manufacture of explosive compounds.
A compound composed of nitroglyeerine, resinous substance, and oxidizing agents, as niter, produced as in No. 234,489, with the addition of the oxidizing agents to the solution.

248,789-Jiune 14, 1881. J. M. LEWIS. E.xplosive compound.
"Forcite," a plastic gelatindzed nitroglycerine compound, comprising an inexplasive gelatinizing material, such as cellulose (unnitrated), and an oxidizing salt, as niter, combined with nitroglycerine.
249,701-November ī, 1881. T. YARNEY. Explosive compound.
An absorbent for nitrogycerine is prepared by mingling with the fine particles of the powder a small proportion of a fusible, soluble, or paste-producing material, and causing the same to melt, dissolve, or become paste while in the mixture, so that each particle of such material becomes an adbesive nucleous to which the surrounding particles attach themselves, and are beld in aggregations when bardened by coollng, drying, or crystallizing.
2ine, 250-January 10, 1882. W. R. QUINAN. Blasting-powder.
A high explosive composed of nitroglycerine, nitrocellulose, and potassium chlorate (or nitrate).
260,786-July 11, 1882. W. R. QUINAN. Explosive powder.
A low explosive, consisting of an untriturated nitrate-such as sodium nitrate-in the form of small masses or grains of determinate size, sulphur, pulporous grains of determinate size, the unpulverized ingredients remaining as separate grains, and a small proportion of nitroglyceringe which forms a coating in contact with said small grains, whereby the surfaces of the ingredients are so limited in extent to retain the small proportion of nitroglycerine susceptible to detonation by the ordinary blasting-cap.
285,516 -November 1s, 1889 . H. D. VAN CAMPEN. Explosive compound.
It consists of tan-bark, dextrine, cryolite, potassium nitrate, and nitroglycerine.
289,759-December 4, 188s. S. R. DIVINE. Explosive compound.
It consists of a solid ingredient-potassium chlorate, 5 parts-and a liquid ingredient, consisting of a mixture of dead-oil and nitroglycerine (in the proportion of 2 to 1) 1 part, mechanically mixed.
500,281-June 10, 1884. W. R. QUINAN. Explosive compound.
A low-explosive powder composed of a small proportion of nitroglycerine, carbonaceous material, pulverized or in nonporous grains, and an explosive salt in the form or nonporous untriturated grains or crystals, the unpulverized ingredients remaining as separate grains in the mixture.
s07,958-November 11, 1884. J. H. ROBERTSON. Dynamite.
A compound of an anhydrous salt and nitroglycerine, produced by expelling the water of crystallization from the salt, reducing it to a powder, and mixing with it nitroglycerine. whereby the latter takes the place of the water of crystallization and a granular compound is produced.
307,989-November 11, 1884. J. H. ROBERTSON. Explosive compound.
Anhydrous sodium sulphate is combined with nitroglycerine.
s12,010-February 10, 1885. R. S. PENNIMAN. Protected nitrate of ammonia for use in explosive compounds.
Nitrate of ammonia in a finely divided or granulated condition is protected against deliquescence by a coating of petroleum or its soft and viscous educts or products.
923,088-July 28, 1885. R. W. WARREN. Dynamite.
A compound of nitroglycerine, sodium nitrate, and ground peat, with or without calcic bydrate.
395,149-December 29, 1885. R.S. PENNIMAN AND J. C. SCHRADER. Dynamite. An explosive compound containing finely comminuted solid matter charged with nitroglycerine and protected grains of ammonium nitrate, the protecting
coating being petroleum or its soft educts, as cosmoline, for which nitroglycerine coating being p.
33s,150-December 29, 1885. R. S. PENNIMAN AND J. C. SCHRADER. Dynamite. An explosive compound composed of composite absorbent grains charged with nitroglycerine, and jacketed grains of an explosive salt.
sss,151-December 29, 1885. R. S. PENNIMAN AND J. C. SCHRADER. Gelatinated explosive.
Composed of gelatinated nitroglycerine and grains of protected nitrate of ammonia.
3ss,944-December 29, 1885. J. C. SCHRADER. Explosive compound.
Porous-grained dope, embodying in each grain a cellular mass of sulphur and combustible or noncombustible matter (such as vegetable or woody fiber, coal, asbestus, furnace slag, or nitrates), produced, for example, by mixing Wood pulp and finely ground sulphur, beating the mass
softened to an adnesive condition, cooling and graining.
sss,345-December 29, 1885. J. C. SCHRADER. Process of making explosive compounds.
A dry-grained, free-running, bigh-explosive powder is produced by mixing with combustible ingredients, as wood pulp, powdered sulphur sufficient to adbesively control the mass when melted, heating, cooling, and graining into porous grains, and charging with the liquid explosive not greater than their capacity to receive and retain by capillary attraction.
393,346-December 29, 1885. J. C. SCHRA DER. Dynanite.
A dry-grained explosive containing nitroglycerine housed and retained within hard. cellular grains, composed in whole or in part of a cellular mass of sulphur and fibrous vegetable matter capable of resisting the softening influence of the liquid explosive.
3s3,347-December 29, 1885. J. C. SCHRADER. Dynamite.
An explosive compound containing nitroglycerine housed and retained within hard cellular grains composed in part of particles of solid carbonaceous matter beld by a porous structure of suphur; formed, say, by heating a mixture of pulverized bituminous coal, sulphur, and sodium nitrate until the sulphur melts, cooling and grainıng.
388.348-December 29, 1885. J. C. SCHRADER. Dynamite and process of making the same.
A low-grade, dry-grained, free-running powder composed of absorbent grains A low-grade, ary-grained, free-r ry combustible uncharged grains.
3s5,006-January 26, 1886. C. W. A. ZADEK. Explosive compound.
A mixture of resinate of calcium or magnesium with trinitro-glycerine.

347, 424-August 17, 1886. M. EISSLER. Dynamite.
It comprises coated nonabsorbent granules of nitrate salts, nitrocellulose, and nitroglyccrine, first chemically amalgamated, and rye flour as a binding agent.
354,345-December 14, 1886. T. PRICE. Composition for neutralizing fumes of explosives.
It cousists of carbonate of ammonia, urate of ammonia, lime, and sulphate of iron, in equal proportions.
s72,380-November 1, 188\%. S. D. SMOLIANINOFF. Dynamite.
A combination of asbestos, potassium nitrate and potassium chloride, and nitroglycerine.
382,229-May 1, 1888. J. W. GRAYDON. Explosive chargc.
It consists of a number of rounded pellets, each made of a small portion of explosive inclosed in a flexible envelope impervious to nitroglycerine.
389,420-Moy 22, 1888. C. W. VOLNEY. Explosive compound.
A mixture of charcoal and an oxidant, as sodium nitrate, combined with tarch, and forming an ahsorbent granular powder, with nitroglycerine absorbed by the powder, the granules retaining their granular form.
397,285-February 5, 1859. G. E. F. GRÜNE. Preparing dynamite.
Kieselguhr (infusorial earth) is pressed into the form of cartridges, carbonized by heating to a red heat, either with or without the admixture of vegetable or animal carbon, and saturated with nitroglycerine. Water will not expel the nitroglycerine.
398,559—February 26, 1889. J. WAFFEN. Dynamite.
It consists of sodium nitrate, 22.5 parts; decayed wood, 36 parts; picric acid, 0.25 part; sulphur, 1 part ;and carbonate of soda, 0.25 part; combined with 40 per cent of nitroglycerine prepared with collodion.
420,626-February 4, 1890. E. JUDSON. Dynamíte.
A protected powder consisting of a base of nitrate or equivalent gas-producing material, with the grains coated with a paste of harley meal combined with nitroglycerine.
427,679—May 18, 1890. P. GERMAIN. Dynamite.
Spongy cellular vegetable tissue, as pith, is compressed and used as an absorbent for nitroglycerine or other liquid explosive; it may be cut into small pieces. 497,499—September 30, 1890. D. MINDELEFF. Explosive compound.
A combination of nitro-glycerine, an alcohol, as methyl alcohol, and a soluble explosive, as pyroxyline.
488,816-October 21, 1890. C. O. LUNDHOLM AND J. SAYERS. Manujacture of explosives.
Cellulose nitro derivatives are mixed and incorporated with nitroglycerine by suspending or diffusing the ingredients in a liquid that is a nonsolvent, sucb as water, agitating them together in the liquid, and then separating the liquid.
440,921 -November 18, 1890. D. MINDELEFF. Explosive.
A compound consisting of ethyl nitrate, methyl nitrate pyroxyline, nitroglycerine, and a nonsensitizing mixture, as nitro-benzene and methyl alcohol. 449,085-December 16, 1890. W. D. BORLAND. Dynamite.
Nitroglycerine and carbonized or charred cork.
466,900-January 12, 1892. L. BROWN. Absorbent of nitro-glycerine.
A mixture of sodium nitrate, wood pulp, glue, and magnesia.
478,366-July 5, 1892. S. ROGERS. Explosive compound.
A mixture of ammonium picrate, 4 parts; ammonium nitrate, 6 parts; and nitroglycerine, 6 parts.
478,844-July 12, 1892. L. BROWN. Nitro-glycerine blasting-powder.
A grading and coating mixture, consisting of sodium nitrate, 73 parts; wooo pulp, 1 part; sulphur, 12 parts; resin, 11 parts; and paraffine, 3 parts; all by weight.
506,784-October 17, 1899. A. KRANZ. Dynamitc.
A composition of nitroglycerine, camphor, and gun-cotton dissolved in acetone and sulphnric ether, combined with a composition of linseed oil and oil of turpentine treated with nitrate of ammonia and sulphuric ether.
517,996—March 27, 1894. W. Y. ROCHESTER AND J. MCARTHUR. Dynamite and process of making same.
A composition of nitroglycerine, whiting, coal, slacked lime $e_{\text {p }}$ pulverized copperas, sodium vitrate, gum camphor, alcohol, carbonate of ammonia, and water, in specified proportions. It produces no obnoxions gascs.
524,776-August 21, 1894. G. J. BUECHERT. Explosive compound.
A compound consisting of a protectively coated salt of ammonia, as the sulphate or chloride, and sodium nitrate, with wood pulp and nitroglycerine.
525,188-August 28, 1894. H. A. CALLAHAN. Dynamite.
A mixture of nitroglycerine and acetate of lime, with or without pulverized coke.
525,996-September 11, 1894. B. C. JETTINGELL. Explosive compound.
Composed of nitroglycerine combined with nitrated coal dust as an absorbent base.
542,724—July 16, 1895. F. G. A. BROBERG. High explosive.
It consists essentially of nitroglycerine, nitronaphthalenes, wood-pulp, and sodium nitrate, with or without snlphur or nitro-cellulose.
612,707-October 18, 1898. R. CROWE. Composition for preventing fumes in mining powders.
A mixture of unbolted wheat flour, 50 per cent; common salt, 25 per cent; A bicarbonate of soda, 25 per cent: the salt and soda to be finely ground; to be used contignous to but not mixed with the high explosive.
625,980-May 23, 1899. E. S. CLARK. Tamping plug and process of and apparatus for making same.
A new article of mannfacture, a tamping plug, designed to neutralize the deleterious fumes of explosives and lessen the beat of the explosion, consists of a perforated cylinder of solid bydrated salt, as mono-carbonate of soda with a small amount of ferric oxide and mono-sulphate of soda, formed by pressing the salt into molds, flling the interstices with a hot saturated solution, cooling of the discharge of the block.

644,403-February 27, 1900. E. CALLENBERG. Explosive.
It is composed of turpentine oil, 4 parts; collodion cotton, 1 part; and nitroglycerine, 30 parts; lieated together to form a gelatine, and mixed with 27 parts of Epsome saltes, and 1 part of soda.

647,607-April 17, 1900. R. S. PENNIMAN AND J. C. SCHRADER. High-explosive compound.
A mixture of nitroglycerine and a dope containing vulcanized resin-No. 647,606-(homogeneously united resin and sulphur in a pulverized condition).
648,220-April 24, 1900. H. E. STÜRCKE. Explosive.
An explosive consisting of an explosive organic nitro compound, as nitroglycerine, an oxygen-consuming absorbent material, ammonium nitrate, and an additional oxidizing material, as sodiuna nitrate, the oxidizing materials being combined in such proportions that the ammoniun nitrate will furnish from 5 to 20 per cent of the available oxygen.
649,852-May 15, 1900. A. LUCK. Explosive.
An explosive containing an explosive organic nitrate, as nitroglycerine and a nonexplosive ester of cellulose, as acetate of cellulose.

SMOKELESS POWDER.

88,789-June 2, 1869. J. F. E. SCHULTZE. Improved gunpowder.
Wood grains, formed by punching or cutting vencers, are successively treated to remove acids and easily soluble material, the proteine, albumen, etc., and bleached; then treated with nitric and sulphuric acid mixture, drained, and washed; and finally saturated with a salt or salts containing oxysen and nitrogen, as potassium nitrate with or without barium nitrate. The dust produced is made into a paste, formed into sheets, and then punched or cut into grains and dried, and powder produced therefrom.
89,910-May 11, 1869. O. H. BANDISCH. Improved explosive compound.
Schultze gunpowder, No. 38,789, is treated to bath of pure alcohol and ether (one of alcohol to five of ether), dried at 21° to $27^{\circ} \mathrm{C}$., and then compressed.
145,403-December 9, 187s. C. DITTMAR. Improvement in explasive compounds.
Vegetable fiber is prepared with a solution of sugar, or mannite, or amylum, The fiber is reduced to a pulp, compressed in a sheet or oxther compact form and then reduced to a granulated or powdered condition and treated with acid to render it explosive.

145,403-Decemher 9, 1873. C. DITTMAR. (Reissues: 5,759-February 10, 1874; 6,645-September 14, 1875.) Improvement in explosive compounds.
Vegetahle fiber is converted into a pulp, desiccated and reduced to powder, grains or compact forms, and then treated with nitric or nitric and sulphuric acids. The acid bath may be preceded by a soaking in a starchy or saccharine solution and followed by an alkaline solution. Potassium nitrate or chlorate or nitroglycerine may he added.
179,688-July 11, 1876. C. DITTMAR. Improvement in explosive compounds.
An explosive compound having its grains parchmented, whereby they are smooth and nonadhesive, produced by forming grains of vegetahle fiber, parchmenting bath.
187, 155-February 6, 1877. S. J. MACKIE, C. A. FAURE, AND G. FRENCH. Improvement in explosive compounds.
It consists of a mixture of nitro cellulose, sky 25 parts, reduced to an impalpable powder, nitrate of baryta $18 \frac{1}{2}$ parts, and nitrate of potassium $6 \frac{1}{4}$ parts.
267,108-November 7, 1882. W. F. REID AND D. JOHNSON. Hardening explosive granulated powders containing nitro-cellulose, etc.
The granulated powder is moistened with a spirit, which is then evaporated. s76,000—January s, 1888. D. JOHNSON. Process of prcparing explasives.
Dinitro cellulose is incorporated with barium and potassium nitrates and carbon, the mixture treated with a solution of camphor in a volatile liquid not a solvent of dinitro cellulose-such as iight petroleum or benzoline-the solvent temperature high enough to change the mechanical state of the dinitro cellu lose, and finally the camphor expelled.
409,549-August 20, 1889. F. A. ABEL AND J. DEWAR. Nitro-gelatine explosive.
Blasting gelatine or compounds thereof is pressed through holes and formed into wires, cut into lengths, and packed in cartridge cases.
411,127-September 17, 1889. H. MAXIM. Method of producing high explosives.
Gun-cotton or nitro cellulose is dissolved in a suitable solvent, such as acetone or ethylic acetate, the solution added to nitroglycerine, and the solvent evaporated from the mixture.
42S,250-March 11, 1890. S. H. EMMENS. Explosive.
It consists of paper or paper stock converted into a nitro compound and impregnated with ammonia and picric acid.
425,618-April 15, 1890. F. A. ABEL AND J. DEWAR. Gelatinous explosive.
A gelatínous explosive consisting of nitroglycerine and nitro cellulose to which-tannin is added (from 10 to 20 per cent).
499,516-June S, 1890. R. VON FREEDEN. Manufaciure of gunpowder.
Nitro cellnlose, or a compound thereof with other substances, is gelatinized and granulated by adding a solvent of the nitro cellulose, kneading until it has become plastic and thoroughly gelatinized, and then introducing a liqnid or rapor chemically indifferent to the constituents of the mass, as water or steam, and stirring until complete granulation.
480,212-June 17, 1890. H. S. MAXIM. Manufacture of cxplosives.
Gun-cotton is reduced to a pulp, washed and dried, confined in a receiver and the air exhausted therefrom, when the vapor of acetone or its cquivalent is admitted to the receiver, and the dissolved gun-cotton is then expclled by
454,049-Augusi 19, 1890. H. S. MAXIM. Explosive compound.
It consists essentially of gun-cotton or pyroxyline mixed with nitroglycerine and an oil such as castor oil; produced by mixing and agitating the same with a proportion of a solvent, such as acetone, insufficient to entirely dissolve the gun-cotton, and subjecting the prodnct in a partial vacunm to the action of vaporized acetone, and then to pressure.

456,898-September 23, 1890. H. S. MAXIM. Manufacture of explosives.
Gun-cotton is reduced to pulp, dried, and subjected in a receiver to the action of a vaporized solvent, as acetone, until it is partially dissolved, when it is compressed hy a high pressure- 20 to 40 tons per square inch-and the sheet cut into pieces or grains.
456,508-July 21, 1891. A. NOBEL. Celluloid explosive and process of making the same.
Hard, horny grains, containing nitro cellulose and nitroglycerine, solid at ordinary temperatures; produced by uniting nitro cellulose and nitroglycerine by means of a volatile solvent, as acetone, camphor, or the like-say in the proportions of equal parts of nitro cellulose and nitroglycerine plus camphorremoving the volaties.
489,684-January 10, 1893. C. E. MUNROE. Explosive powder and process of making same.
It consists wholly of cellulose nitrate of high nitration in a colloidized and indurated condition; produced by first extracting from gun-cotton the lower products of nitration, then mixing and incorporating with it a liquid colloidizing agent capable of converting at ordinary temperaures the higher cellulose nitrates into viscous form, as nitro-benzene, then forming the material into strips or grains, and finally indurating it by the action of heated liquids or vapors, as water or steam, or both.
505,58s-August 22, 1899. F. G. \& P. S. DU PONT. Process of making smokeless explosives.
Nitro cellulose is suspended in a liquid, such as water, which is not a solvent of the same, and in which may be dissolved a suitable salt, granulated by agitating therewith in proper proportions a suitable solvent, as nitro-benzole, not miscible in the suspending liquid, with or without the injection of steam; the grains being hardened and rounded by rotation, and further solidified by rotation in an atmosphere of steam.
503,585-August 22, 1893. F. G. \& P. S. DU PONT. Process of making smokeless
powder. powder.
As a modification of process No. 503,583 , the grains are solidified by subjecting them to a heat ranging from 49° to $82^{\circ} \mathrm{C}$., to remove the water contained in the grains, but not high enough to vaporize the solvent, and then to a heat sufficient to vaporize the solvent for removal of the excess of solvent.
508,587-August 22, 1893. F. G. DU PONT. Process of making smokeless explosive.
Process No. 503,583 is modified by forming an emulsion of the solvent, nitrobenzole, with water in proper proportions, and then adding it to the nitrocellulose suspended in water.
507,279-Oclober 24, 1898. M. E. LEONARD. Smokeless powder.
Composed of nitroglycerine, gun-cotton, lycopodiuma, and a neutralizer of free acid, such as urea crystals or dinitrobenzol, with or without an oil, as cottonseed oil.
513,757-January 30, 1894. E. A. STARKE. Smokeless powder.
A combination of an ammonium chromate, potassium picrate, and ammonium picrate.
519,702-May 15, 1894. F. G. DU PONT. Manufacture of smokeless powder.
A volatile oil, and preferably a hydrocarhon oil, as benzine, is mixed with the solvent emulsion of processes No. 503,587 and 503,583. The excess of solvent and the oil is removed from the grains by distillation, after hardening.
522,987-July 17, 1894. F. G. DU PONT. Smokeless explosive.
Nitro cellulose is suspended in an oil, as hydro-carbon oil; granulated by agitating therewith in suitable proportions a solvent which, though soluble in the suspending oil, has a solvent action on the nitro cellulose, as acetone; the grains hardened hy rotation; the excess of solvent removed; and finally the oil
removed from the grains. removed from the grains.
541,909-July 2, 1895. G. N. WHISTLER AND H. C. ASPINWALL. Smokeless powder.
A mixture of nitroglycerine, gun-cotton, a nitrate such as barium nitrate, petrolatum, and urea crystals
641,910-July 2, 1895. G. N. WHISTLER AND H. C. ASPINWALL. Smokeless gunpowder.
Composed of nitroglycerine, trinitrocellulose, a nitrate and a neutralizer of free acid, such as urea crystals, the proportion of nitrate to the trinitrocellulose being about 45 to 100 , so that the combustion of the gun cotton shall be substan-
tially similar to that of the nitroglycerine. tially similar to that of the nitroglycerine.
541,911-July 2, 1895. G. N. WHISTLER AND H. C. ASPINWALL. Smokeless powder.
A compound of nitroglycerine, gun-cotton, a nitrate as barium nitrate, a resin and urea crystals. The fossilized or mineral gum kauri is claimed as a deterrent in
542,812-July 16, 1895. J. Y. SKOGLUND. Method of making smokeless powder.
The drying of grains of powder containing nitrated cellulose is insured by combining with the solvent, water and a vehicle such as alcohol, and dissolving the nitrated cellulose in the liquid, rendering the material porous by the pres-
ence of the water as the solvent evaporates.
544,517-August 13, 1895. W. C. PEYTON. Process and apparatus for making
gunpowder. gunpowder.
The plastic mass is forced through a die and formed into a tube, split, and spread intoa flat sheet; passed between grooved rollers and formed into strips whereby the strips are cut into grains. 650,472-November 26, 1895. J. B. BERN of making nitrocellulose powders.
Two or more nitrocelluloses of known nitration strength are mixed in such proportions as to give a product of desired nitration strength, an oxidizing agent and camphor are added, the mass is colloided with a solvent capable of
dissolving the highest form of nitrocellulose present, and it is made into regular forms of uniform least dimension.
559,919-January 14, 1896. H. MAXIM. Cellular explosive charge.
An amorphous explosive charge having a multiplicity of interior cells, formed
by rolling a sheet of the colloid material, having regular cells or depressions, by rolling a sheet of the colloid material, having regular cells or depressions, charge exteriorly coated with celluloid or varnish difficult of powder, and the spect to the interior of the mass.

559,638-May 5, 1896. M. VON FÖRSTER. Process of making smokeless powder. Flakes having a corrugated or wayy surrace are produced by forming a paste of incompletely-gelatinized nitrocellulose into thin bands, cutting these bands 568,90刃-Oclober 6, 1896. F.A. HALSEY. Smokeless powder.
A compound of strontium nitrate, ammonium picrate, potassium bichromate, and potassium permanganate.
570,705-November S, 1896. F. A. HALSEY. Smokeless powder.
A compound of an ammonium picrate, potassinm bichromate, and potassium permanganate.
j̃5,765-January 26, 1897. G. G. ANDRĖ. Manufacture of gunpowder.
A compound of dinitro and trinitro cellulose is granulated or reduced to pellets in a wet state, and then subjected to the action of a solvent capable of dissolving the dinitrocellulose only, whereby the trinitrocellulose particles are
coated with and cemented together by the dissolved dinitrocellulose, and the coated with and cemented together by the dissolved dinitrocellulose, and the
granules are then hardened by removal of the solvent.
576,53 ²-February 9, 1897. G. G. ANDRĖ. Manufacture of gunpowder.
A base consists of 2 parts of trinitrocellulose and 1 part of dinitrocellulose; the same is combined with nitroglycerine, forming a tough, leathery, and
translucent explosive. tramslucent explosive
583,489-June 1, 1897. H. KOLF. Process of making smokcless powder.
A carbobydrate is nitrated, then treated with an alkaline sulphide, then saturated with an alkaline nitrate, then a nitro prodnct as nitro-molasses (or nitro-sugar or nitro-glycerine) is mixed therewith and the compound is converted into a gelatinous body by means of a suitable solvent.
586,586-July 20, 1897. J. B. BERNADOU. Smokeless powder and process of making same.
An ether-alcohol colloid of nitrocellulose of substantially nniform nitration,
n 12.45 per cent nitrogen and corresponding to the formula C or 12.45 per cent nitrogen and corresponding to the formula $\mathrm{C}_{3 n} \mathrm{H}_{38}\left(\mathrm{NO}_{2}\right)_{12} \mathrm{O}_{25}$, with which nitrates of metallic bases and insoluble nitrocellulose, cither or
both, may be incorporated. It may be iu form of strips or grains. It is insolnboth, may be incorporated. It may be in form of strips or grains. It is insoln-
ble in ethyl alleohol alone, soluble iu 3 parts ethyl alcohol and i part ethylic ble in ethyl alcohol alone, soluble in 3 parts ethyl alcohol and 1 part ethylic
ether, and is produced by immersing cellulose in a mixture of nitric and sulether, and is produced by immersing cellulose in a mixture of nitric and sul-
phuric acids and heating to between 42° and $46^{\circ} \mathrm{C}$., freeing the product from phuric acids and heating to between 42° and $46^{\circ} \mathrm{C}$, freeing the product from
excess of acid by washing and pulping in water below $71^{\circ} \mathrm{C}$., dehydrating and washing in excess of alcohol, and then colloiding in a mixture of ethylic alco-
hol and ethylic ether. hol and ethylic ether.
590,981-September 21, 1897. F.G. DU PONT. (Reissue: 11,651-February 15, 1898.)
Process of and apparatus for making smokeless powder.
Process of and apparatus for making smokeless powder.
Wet gun cotton is compressed until of equal porosity throughout, when the Water is displaced with alcohol by percolation under pressure, the gnn-cotton is compressed until only the alcohol desired to combine with a colloidizing sol-
vent remains, which solvent, such as ether, is then mixed with the alcobolized vent remain
gun-cotton.
593,48-October 26, :897. C. W. VOLNEY. Process of making gunpowder.
Grains containing trinitrocellnlose are given a surface coating of dinitrocellulose by reducing the trinitrocellulose upon such surface to dinitrocellulose by reducing agents, as by the sulphites or hyposulphites of potassium, sodium, or
ammonium. ammonim.
596,324-Dccember 28, 1897. F. A. HALSEY. Smokeless powder.
A compound consisting of an alkaline-metal chromate, an alkaline earth metal nitrate, ammonium picrate, an alkaline-metal permanganate, and an alkalm-metal
597,565-January 18, 1898. C. QUINAN. Process qf making gun cotton.
An essentially ash-free hydrocellulose is produced by steeping fiber in a bath of heated mineral acid capable of dissolving the mineral matter, washing out the mineral matter with a weak acid bath, and finally heating the same to
complete the conversion. It is then pulverized and nitrated. complete the conversion. It is then palverized and nitrated.
599,589-February 22, 1898. J. E. BLOMĖN. Process of making explosives.
Process consists in dissolving nitro, and nitrohydroxyl, hydrocarbon deriva-
tives, preferably nitronaphthalene, with a volatile organic solvent, such as tives, preferably nitronaphthalene, with a volatile organic solvent, such as amyl acetate; then adding to the composite solvent thus obtained cellulose
nitrates and an oxidizing agent; and finally drying and granulating the nitrates an
compound.
617,766-January 17, 1899. G. M. PETERS. Explosive and process of making same. A powder composed of pulverized nitrated wood-pulp, 20 per cent; saltpeter, 60 per cent; charcoal, 12 per cent; and brimstone, 8 per cent; produced by sepa-
rately reducing the ingredients to powder, nitrating, washing, and drying the rately reducing the ingredients to powder, nitrating, washing, and drying the
cellulose dust, mixing the dust of the four ingredients, thoroughly incorporating the mass until it is worked into a single substance, and granulating.
622,777-April 11, 1899. F. H. McGAHIE. Powder-grain.
A multiperforated powder grain, designed to have powder partitions of equal thicknesses; as a central perforation and a surrounding concentric row of seg-mental-shaped pertorations.
625,365-May 23, 1899. E. A. G. STREET. Process of making explosives.
Pitch or tar, with or without an azo or nitro derivative, is dissolved in oil, while heating the latter, and chlorate powder added while maintaining the solution fluid by heat.
625,682-May 23, 1899. F. W. JONES. Pracess of making explosives.
In the manufacture of a gelatinized smokeless powder of a nitrocellulose base the grains are swelled to regulate rate of combustion by acting on them with an aqueous solution of a nitrocellulose solvent, as a ketone; the same is saturated with any ingredients
dissolve out of the powder.
625,684-May 33, 1899. J. KARSTAIRS. Explosive and method of making same.
A compound, $\mathrm{CH}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$, consisting of a crystalline body soluble in water, sp. gr. I.8, produced by slowly nitrating a mixture of urea and alcohol. It is com-625,685-May 23, 1889. J. KARSTAIRS. Explosive.
The combination of a ohlorate with the crystalline body $\mathrm{CH}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$ (No. 625,684), the latter having a protective coating.
625,908-May 50,1899 . E. A. G. STREET. Explosive and method of making same.
A componnd of a chlorate powder mixed with a solution of a nitric ether, as
nitroglycerine, an analogons combustible substance wherein the former is solunitroglycerine, an analogous combustible substance wherein the former is solu-
ble, as nitronaphthaline, and an oil derived from organic substance, as castor
oil; produced by forming at an elevated temperature a solution of the nitroglycerine, nitronaphthaline, and castor oil, and adding thereto the chlorate powder. 627,436-June 20, 1899. A. MOFFATT. Process of making nitro-explosives.
Nitrate of starch is produced by drying until practically free from moisture,
cooling, nitrating in a bath at or below $4^{\circ} \mathrm{C}$, diluting the mixture with water cooling, nitrating in a bath at or below $4^{\circ} \mathrm{C}$., diluting the mixture with water Sufficlent to lower its sp. gr. to below 1.30, washing, nentralizing, and drying,
whereby the product consists of unruptured granules, and its stability is insured.
633,611-Semtember 20, 1899, F. G. \& F. I. DU PONT. Process of making ex-
plosives. pors.
Alcolnol is mixed with nitrocellulose (displacing the water of wet cotton by
percolation), and a solution of nitroglycerine in cther is then mixed with the percolation), and a solution of nitroglycerine in cther is then mixed with the aicoholized nitrocellulose.
640,213-January 2, 1900 . H. MAXIM AND R. C. SCHUPPHAUS. Process of
making smokeless powder.
Pyroxyline preferably of varying degrees of nitration, pulped or reduced to a
fine state of division, is treated with a solvent, and before it is completely freed fine state of division, is treated with a solvent, and before it is completely freed
from the solvent it is treated with a size, and then granulated and dried from the solvent it is treated with a size, and then granulated and dried.
648,147-April 则, 1900. F. 1. DU PONT. Process of making gun-cotton.
Acid is removed from gun-cotton by applying pressure, and then, while under pressure, replacing the acid with water by percolation, which, in turn, may be
replaced with an alkaline fluid by percolation.
652,455-June 26, 1900. J. B. BERNADOU. Process of making smokeless powder. A colloid powder is formed by subjecting soluble nitrocellulose and a colloiding agent, as ether, in a closed vessel to a temperature equal to or helow that of freezing water, mechanically agitating or kneading the cooled mixture,
and then forming it into shapes and drying. and then forming it into shapes and drying.
652,505-June 26, 1900. J. B. BERNADOU. Smokeless powder.
An ether colloid of ether-alcohol-soluble nitrocellnlose of high nitration; produced by immersing ether-alcohol-soluble nitrocellulose in ethyl ether and
exposing to a temperature of $0^{\circ} \mathrm{C}$, or lower. exposing to a temperature of $0^{\circ} \mathrm{C}$, or lower.
654,471-July 34, 1900. H. S. MAXIM. Powder-grain.
A nitro-compound explosive block or tablet (in part of a slow-burning and in part of a quick-burning character), has concentric annular depressions in each face, with tapered cavities in the walls, the cavities on opposite sides breaking
joint.

NITRO-SUBSTITUTION COMPOUNDS.

76,173-March 31, 1868. G. DESIGNOBLE AND J. CASTHELAZ. Improvement in explosive-powders.
The use of picrate or carbazotate of potassa, as well as the salts formed from picric or carbazotic acid, the derivatives from such acid, and the acid itself, is claimed in the mannfacture of powder; as 55 parts of carbazotate or potassa
with 45 parts of azotate of potassa, For the greatest effect
96,248-October 26, 1869. W. MILLS. Improved explosive compound.
The use of carbolic acid and aloes in explosive compounds; and an explosive formed of carbolic acid, nitric acid, potassa, and aloes.
112,163-February 28,1871 . W. MILLS. Improvement in explosive compounds.
"Oxidized carbolic acid," a wax-like prodnct, produced by treating carbolic or cresylic acid with nitric acid, asone or combined with metal or metallic or treated with niter. Combined with alcohol, spirits, or ether, and metal or treated with niter. Combined with alcohol
124,397-March 5, 1872. C. W. VOLNEY. Improvement in explosive compounds.
A mixture of nitroglycerine and nitrotolnol or nitrobenzole, as by dissolving 3 parts of nitrotoluol in 7 parts of nitroglycerine.
178,277-June 6, 1876. A. DIECKERHOFF. Improvement in explosive compounds.
It is composed of sawdust which has been saturated with a solution of picric
acid and potassium nitrate dissolved in boiling water and then desiccated, mixed with potassinm nitrate, sodium nitrate, and sulphur. It is granulated while damp or formed into sticks.
215,199-May 6, 1879. A. DIECKERHOFF. Improvement in explosive compounds. It consists of gunpowder, or the essential elements thereof-the charcoal not
being essential-mixed with a small proportion (not over 15 per cent) of a prebeing essential-mixed with a small proportion (not over 15 per cent) of a precipitated alkaline picrate or picrates.
216,949—July 1, 1879. C. FELHOEN. Improvement in blastiny powder.
A composition of niter, sulphur, and charcoal, in the usual proportions of gunpowder, mixed with nitro-naphthaline; 10 per cent or more shonld be used.
282,381-September 21, 1830. M. TSCHIRNER. Explosive compound.
It consists of picric acid and potassium chlorate, say in the proportion of 57
parts of the former to 43 of the latter. They are incorporated with the aid of 5 per cent of resin dissolved in a volatile solvent.
248,452-June 28, 1881. S. R. DIVINE. Explosive compound.
It consists of a solid ingredient, such as potassium chlorate, 3 to $4 \frac{1}{5}$ parts, and a liquid ingredient, snch as nitro-benzole, 1 part, mechanically united.
263,824-September 5, 1882. E. TURPIN. Explosive compound.
A compound of peroxide of nitrogen or hyponitric anhydride with sulphuret of carbon, or its equivalent. If slowly ignited it prodnces an intense light, without explosion, and the fiame instantly melts platinum.
289,755-December 4, 1883. S. R. DIVINE. Process of preparing explosize compounds.
An explosive composed of two ingredients, one a solid-such as potassium chlorate-and the other a liquid-such as nitro-benzole-is prepared by saturating the powdered potassinm chlorate with a mixture of the nitro-benzole and a volatile fuid, such as carbon bisulphide, and then allowing the volatile fluid to evaporate; the proportions being such as to give the proper proportion of nitro-benzole for the mass.
289,757-December 4, 1883. S. R. DIVINE. Explosive compound.
From 1 to 3 per cent of sulphur is combined with the moist mass of No. 243,432 (potassium chlorate and nitro-benzene).
289,758-December 4, 1883. S. R. DIVINE. Explosive compound.
It is composed of a solid ingredient- 4 or 5 parts-such as potassium chlorate, and a liquid ingredient-1 part-consisting or a mixture of nitro-benzole and dead-oil, the latter being mixed in about equal proportions.

289,763-December 4, 1889. S. R. DIVINE. Explosive compound.
From I to 3 per cent of sulphur is combined with the moist mass of No. 289,758 (potassium chlorate with nitro-benzole and dead-oil).
374,921-December 20, 1887. G. ANTHEUNIS. Blasting powder.
It consists of mahogany sawdust, 8 per cent; potassium nitrate, 50 per cent; Sodium nitrate, 16 per cent; charcoal, 1.5 per cent; sublimated sulphur, 18 per cent; potassium ferrocyanide, 3 per cent; and ammonium picrate, 3.5 per cent. (Potassium nitrate is omitted in the claim.)
375,651-December 27, 1887. C. ROTH. Explosive.
The combination of a chlornitro-hydrocarburet of the aromatic series, as chlornitro-benzol, with an oxidant, such as ammonium nitrate.
376,145-January 10, 1888. S. H. EMMENS. Explosive derived from phenol.
A crystalline acid compound is produced by the action of heated concentrated or fuming nitric acid, of sp. gr. 1.52 or higher, upon picric acid in excess, and by dissolving 2 parts of the same in I part of concentrated nitric acid. 408, $\mathrm{Z}_{49-\text { Moy 21, 1889. J. A. HALBMAYR. Manufacturing explosives. }}$
In the manufacture of explosives from tar oils the oils are introduced in a state of division below the surface of a body of nitrating acid, as by a perforated pipe, and cold air under pressure is introduced at the same point, to cool the

417,429-December 17, 1889. W. E. LIARDÊT. Manufacture of explosives

In the mannfacture of explosives containing picric acid and potassium nitrate, orits equivalents, the picric acid is mixed with boiling-hot glycerine, potassium nitrate is added and the mixture cooled, ground wood is then added to the cooled mass, bowners of sulphur.
421,662-February 18, 1890. B. BRONCS. Explosive compound.
It is composed of a double salt combination of sodium picrate with other picrates (No. 42I,753), potassium nitrate, saccharine matter, a gummy or resinous substance, and soot, with or without nitrated naphthaline.
421,753-February 18, 1890. B. BRONCS, H. ORTH, ADM'R. Explosive compound.
A douhle picrate consisting of sodium picrate combined with barium or lead picrate.
422,514-March 4, 1890. S. H. EMMENS. Manufacture of explosives.
A suitahle hydrocarbon substitution derivative, as trinitrophenol, is fused; a suitable alkaline nitrate, as sodium nitrate, is added thereto; and the heat gently raised until actual liquefaction of the mixture is attained, when it is allowed to cool.
422,515-March 4, 1890. S, H. EMMENS. Manufacture of explosives.
The crystalline acid of No. 376,145 is heated with an allied nitro-hydrocarbon, as dinitrobenzene, which reduces the fusing point of the acid; a pulverized oxidant is then mixed therewith, and the mixture is cooled.
435,142—September 2, 1890. C. LAMM. Manufacturing explosive charges.
Pulverized partially-fusible explosive material is introduced, into molds surrounded by a heating chamber, then a heating medium is passed through said chamber to melt the contents of the molds, then cold water is passed through said chamber to solidify the explosive material, and finally the charges or cartridges are ejected.
455,217-June 30, 1891. C. LAMM. Explosive compeund.
Composed of a nitrate salt, as ammonium nitrate, and dinitro-henzene or dinitro-benzol.
478,819-July 12, 1892. A. C. RAND. Explosive compound.
It consists of an oxidant, as chlorate of potash, in a powdered form, and manganese peroxide in the form of coarse grains mixed with the oxidant, say equal parts, and a fluid hydrocarbon, as nitro benzol, say 15 per cent by weight, incorporated therewith.
488,594-December 27, 1892. J. F. ALEXANDER. Explosive.
A powder composed of naphthaline or a suitahle solid hydrocarbon, sulphur, a potassium salt or salts, and ammonium picrate, with or without ammonium sulphate.
492,089-February 21, 1893. B. LEPSIUS. Preparing explosive compounds.
A mixture of picric acid and an enveloping explosive agent, such as tri-nitrotoluol, is heatca, in a mold, to a point above the fusing point of the latter ingredient and helow that of the former-to avoid fusing the crystals of the acid-and then cooled, thus cementing the crystals together.
495,178-Aprit 11, 1893. J. E. BLOMÉN. Method of making blasting compounds.
Picric acid and a hydrocarbon, as naphthalene, are separately dissolved in alcohol, the solutions mixed, and the resulting picrated hydrocarbon dissolved in nitroglycerine.
506,031-October 3, 1893. J. E. BLOMEN. Manufacture of blasting compounds. A hydrocarbon is first treated with nitric acid; the product is then treated with a mixture of nitric and sulphuric acids, and this second product is then treated with strong nitric acid, and finally incorporated with an oxidizing agent.

506,032—Octobcr 3, 1893. J. E. BLOMÉN. Blasting compound.

The granules of an oxidizing agent have a coating composed 0_{2} a mixture of a hydrocarbon and dinitro-phenol.
521,020-June 5, 1894. W. EVELYN-LIARDETT. Enplosive and process of making same.
A mixture of tar, picric acid, sawdust, the chloride and the perchlorate of an alkali metal; produced by heating the tar to $120^{\circ} \mathrm{C}$., adding the picric acid, gradually adding the sawdust, heating the mixture to about $100^{\circ} \mathrm{C}$., cooling and passing through a sieve, adding to the sifted product a suitable mixture of the perchlorate and chloride of an alkali metal, at the same time heating the mass until it assumes a black color, cooling and granulating.
527,563-Octobcr 16, 1894. E. A. STARKE. Process of making ammonium bichromate.
A solution of ammonium picrate and a solution of potassium bichromate are mixed, through which crystals of potassium plerate form, which are removed, leaving an ammonium bichromate solution that is evaporated to dryness. An explosive compound is formed by mixing the solutions in proper proportions, ammonium picrate being in excoss, and evaporating the resultant mixture of ammonium picrate, ammonium hichromate, and potassium picrate to dryness.

530,068-November 27,1894 . J. E. BLOMĖN. High-power explosives.
A mixture of nitro-naphthalenes, an oxidizing agent, a mixture of nitrophenols, sulphur, and charcoal.
540,141-May 28,1895 . F. G. A. BROBERG. Explosive compound.
A composition of nitro-resin, say, 6 to 10 per cent; nitro-naphthalenes, 5 to 10 per cent: sulphur, 14 or 15 per cent; and an oxidizing agent, sush as sodium nitrate, 70 per cent.
540,647-June 11, 1895. S. R. DIVINE. Explosive compound.
It is composed of nitrate of lead and a nitrated hydrocarbon of the benzol series, which is of itself nonexplosive, such as dinitro-benzol; 1 part of the latter is melted and 4 parts of the former is mixed therewith.
567,536-September 8, 1896. E. DICKSON. Gunpowder.
It consists of a granulated mixture of barium nitrate, four, potassium ferrocyanide, picric acid, ammonia, potassium chlorate, and lampblack, coated with refined petroleum which has been treated with nitric acid, sulphuric acid, and ammonia.
577,351-February 16, 1897. H. BOYD. Explosive.
A mixture of potassium nitrate, sulphur, barium nitrate, picric acid, wooddust, and a fume absorbent, such as dry pulverized bog ore or other hydrated oxide of iron; characterized by firing without a detonator and absorbing the noxious gases.
594,268-Nevember 23, 189\%. F. MÜLLER, S. OBERLÄNDER, V. H. FUCHS, AND S. GOMPERZ. Blasting powder and process of making same.
A compound composed of picrate combined with sulphur, nitrate of potassium, and a carrier, such as nitrated cellulose, with or without a substance yielding frce oxygen, such as pyrolusite. The process consists in mixing sulphur and carbolic acid; also mixing nitrate of potassium and nitric acid, and then combining the two mixtures and neutralizing with an alkali.
598,064-January 25, 1898. W. P. FERGUSON. Blasting compound.
In a granular blasting compound in which the oxidizing agent is coated with a film containing a nitrophenol and a hydrocarbon, lampblack is intermixed with the elements of the film.
598,618-February 8, 1898. E. A. G. STREET. Explosive and method of making same.
The combustible agent, such as nitro or azo derivative, or combination thereof, is mixed with an oil at an elevated temperature which is not a solvent thereof at ordinary temperature in such proportion that on cooling it assumes a pasty or solid consistence, and the chlorate powder is mixed therewith, the fluidity being maintained during maxilation. The combustihle element is composed of a solution in oil of a less soluble combustible body, such as picric acid, com-
bined with a more soluble body of the same class.
622, 800-April 11, 1899. G. M. HATHAWAY. Detonating compound.
It is composed of the ingredients of gunpowder with nitronaphthalene, nitrophenol, sodium nitrate, and potassium chlorate, combined in such proportions as to form a detonating compound of low grade.
622,990-April 11, 1899. H. BOYD. Blasting powder.
A fumeless explosive, consisting of sodium nitrate, sulphur, picrate of ammonia, and potassiom bichromate, with or without commercial lime, cottonseed oil, and peat dust, one or all of them.
625,499-May 23, 1899. F. A. HALSEY. Gunpowder.
It consists of picrate of ammonia, 47 per cent; potassium bichromate, 23 per
cent, and barium nitrate, 30 per cent. cent, and barium nitrate, 30 per cent.
649,919-May 22, 1900. S. CLARK. Explosive compound.
A mixture of sodium nitrate, 19 parts; antimony, $2 \frac{1}{2}$ parts; sulphur, 3 parts; charcoal or coke, $3 \frac{2}{2}$ parts; picric acid, one-third part; nitric acid, one-third
part, and a reducer, such as resin, one-half part. part, and a reducer, such as resin, one-half part.

FULMINATES, PRIMING COMPOSITIONS, AND FUSES.

August 21, 1854. S. GUTHRIE. Improvement in the manufacture of percussion powder.
Grains of powder are coated with shellac and before they are dry they are rolled in leaf metal, or any of the metallic powders, with bisulphuret of tin or with a waterproof varnish.
18,016-August 18, 1857. M. KLING. Improvement in percussion powder.
A mixture of antimony, 1 ounce; and potassium chlorate, I ounce, with equal proportions of glue dissolved in boiling water, and oxalic acid dissolved in

18,199-September $15,1857$. E. GOMEZ AND W. MILLS. Improvement in safety-
fuse compositions.
A mixture of equal parts of potassium chlorate and ferrocyanide of lead. It is mixed with alcohol and applied as a paint to a strip of paper, and protected by a winding of tape of fibrous material.
35,477-June 9, 186\%. F. M. RUSCHHAUPT AND J. SCHULTE. Improved percussion powder.
Tannin or pyrogallic acid, or analogous substances, are mixed in chemical proportions with potassium chlorate, a varnish being added as a binder.
38,484-May 5, 1863. L. SHORT. Improved composition for flling shells.
A mixture of saltpeter, 7 pounds; asphaltum, 6 pounds; antimony, 2 pounds:
sulphur, 7 pounds; and naphtha, 2 gallons, is allowed to stand and settle and the sediment is pressed into shells, forming combustible misslles to be used with explosive projectiles. The liquid combined with vegetable fiber is also packer in explosive shells.
38,994-June 23, 1863. I. P. TICE. Improvement in concussion fuse for shell.
An admixture of fulminates with cotton, gun cotton, wool, sawdust, or othe: soft material, prevents premature ignition, or the fulminate chamber is linec and the other hurning slower and wire used, one sensitive and easily ignitec plug is of special construction.
41,259-January 12, 1864. H. HOCHSTÄTTER. Improvcd composition for percus-
sion caps, etc. sion caps, etc.
Chloride of lead, I2 parts, is combined with potassium nitrate, 8 parts, and

47,677-May 9, 1865. J. S. BICKFORD. Improved fuse for blasting, etc.
A central strand or core of gun-cotton is used in a fuse as a substitute for gunpowder.
48,460—June 27, 1865. H. B. STOCKWELL. Improved fulminating compound.
A mixture of fulminating mercury, 4 parts; saltpeter, 3 parts; black sulphuret
of antimony, 2 parts; and French chalk, I part.
49,474-August 15, 1865. H. HOLDEN. Improved torpedo.
A sheet of absorbent paper saturated wholly or in part with a solution of fulminate of silver or of mercury.
56,167-July 10, 1866. G. BOLDT. Improved fulminating composition.
Fifteen parts of fulminating silver-formed by dissolving 1 part of mercury, in weight, in 10 parts of nitric acid, then boiling with 12 parts of alcohol, cooling and drying-is mixed with $1 \frac{1}{3}$ parts of sulphur-tin-formed by melting together 2 parts of sulphur and 3 parts of tin-and 3 parts of flour and mpart of powdered charcoal, with a little gum water.
67,714-August 15, 1867. H. BUCHNER AND F. EBERTZ. Improved fulminating powder for needle-guns.
A mixture of potassium chloride, sulphur, charcoal, saltpeter, potassium chlorate, antimony, and gum, in about equal proportions.
69,206-September 24, 1867. J. GOLDMARK. Improved fulminating compound. The sulphocyanite of a metal or other base, as the sulphocyanite of lead, is used in combination with potassium chlorate, either with or without other substances.
81,086-August 11, 1868. C. H. F. THIEME. Improved priming for needte-guns. A composition having hyposulphite of any metal as a base, as a mixture of hyposulphite of silver or lead, 1 part; sulphureted antimony, 4 parts; potassium chloride, IO parts; sulphur, 3 parts; And white sugar one-fourth part.
81,057-August 11, 186s. B. BURTON. Improvement in the manufacture of waterproof percussion caps, etc.
Shellac or other gum resin, mixed with alcohol or other readily evaporahle solvent, is used in the compounding of fulminating matter.
93,113-July 27, 1869. G. M. MOWBRAY. Improved method of exploding nitroglycerine.
An electrical fuse is composed of a priming composition, inclosing circuit wires at their point of interruption, in combination with an intermediate priming charge of fulminate of mercury, all inclosed in a cylinder.
96,465-November 2, 1869. G. M. MOWBRAY. Improved compound for priming electric fuses.
A mixture of phosphorus, sulphur, silver, mercury, and potassium chlorate; so as to form a mixture of subphosphide of silver with subsulphide of silver and potassium chloride, to which is added sulphide of mercury.
97,84s-December 14, 1869. R. WHITE. Improvement in metallic cartridges.
The fulminate powder is mixed with india rubber or similar elastic substance The structure of the cup is claimed.
108,931-June 7, 1870. W. H. ROGERS. Improved fuse composition.
A composition of powdered charcoal, 20 parts; powdered glass, 10 parts; potassium chlorate, 10 parts; and dissolved india rubber, 30 parts; with sufficient bisulphide of carbon to impart a tough and waxy character.
188,241-June 25, 1872. G. M. MOWBRAY. Improvement in compounds for priming electric fuses.
A mixture of mercuric sulphide, amorphous or crystalline-preferably the crystalline- 3 parts, and potassium chlorate, 1 part.
199,192-May 20, 1873. E. A. L. ROBERTS. Improvement in treating exptosive compoundo to render them safe for blasting and othcr purposes.
Explosives, such as fulminates, are combined with water or other liquid, or with a hygrometric salt, so as to form a paste. Moist compounds are exploded by igniting near them orin contact a fulminating or detonating material. Moist or wet compounds are combined in the same charge with dry powder capable of being exploded by a spark or with percussion powder.
152,790—July 7, 1574. C. A. \& I. S. BROWNE. (Reissue: 6,664—July 27, 1875.) Improvement in explosive compounds.
An electrically explosive compound, consisting of pulverized fulminate of mercury intermixed with particles of metal, as antimony, with or without antimonic sulphide or other ingredients.
157,866-December 15, 1874. I. M. MILBANK. Improvement in explosive compounds.
A fulminating compound of potassium chlorate, 80 parts; charcoal, 35 parts; and red phosphorus, 4롤 parts.
157,857 -December 15, 1874. I. M. MILBANK. Improvement in explosive compounds.
A fulminating compound of potassium chlorate, 20 parts; prussiate of potash, 10 parts; and red phosphorus, 1 part.
161,430-March 30, 1875. G. M. MOWBRAY. Improvement in priming: for electric fuses.
A composition of metallic antimony and fulminate of mercury, as a priming for electric fuses.
161,451-March 30, 1875. G. M. NOWBRAY. Improvement in primings for electric fuses, etc.
A composition of bismuth and fulminate of mercury.
161,4s2-March 30, 1875. G. M. MOWBRAY. Improvement in primings for electric blastings, etc.
A composition of cadmium and fulminate of mercury; being a mixture of the A comple-salt mercuric fulminate of cadmium, with an amalgam of mercury and cadmium.
170,066- November 16, 1875. H. J. DETWILLER. Improvement in explosive compounds.
A detonating compound consisting of ground bark or sawdust, 5 parts; potas sium chlorate, 10 parts; and red phosphorus, 1 part. (Especially adapted for railroad-torpedoes.)
179,067-June 20, 1876. J. D. \& W. C. SCHOOLEY. Improvement in detonating compounds.
A mixture of potassium chlorate, 3 parts; sulphur, 1 part; and broken glass, 1 part. (For railroad torpedoes.)

184,04s-November 7, 1876. W. A. LEONARD. Improvement in continuous fuse. Formed of xylonite, coated with a match composition. (To be used from an air-tight case.)
217,634-July 16, 1879. E. S. HUNT. Improvement in pyrotechnic cartridges.
A star having a drop of fulminate secured to its base by shellac dissolved in alcohol. The structure of the cartridge is claimed.
228,935-June 15, 1880. J. A. ROBINSON AND R. H. DIMOCK. Deflagratin!t compound.
Amorphous phosphorus combined with plumbic plumbate and potassium chlorate, produced byimixing, the amorphous phosphorus with sufficient hot water to render the whole mixture of a fuid consistency, adding plumbic plumbate in small quantities with stirring till effervescence ceases, and then adding potassium chlorate in quantity equal to that of the amorphous phosphorus, and thoroughly mixing.
238,406-Octobcr 19, 1880. C. A. FAURE AND G. TRENCH. Detonator'.
A detonating compound of fulminate of mercury, 6 parts, and gun cotton and potassium chlorate, each 1 part.
261,247—July 18, 1882. J. F. A. MUMM. Compound for railway-signal torpedoes.
A compound composed of potassium chlorate, gum tragacanth, alcohol, antimony, sulphur auratum antimonii, or golden sulphuret, sublimed sulphur, and French chalk, in the form of pellets or calkes, with packages of gravel interspersed.
269,769-Dccember 26, 1882. A. WOEBER. Fulminatc.
A mixture of potassium chlorate, 1 pound; washed flowers of sulphur, one-half pound; amorphous phosphorus, 2 ounces; and 12 fluid ounces of dissolved gum tragacanth.
309,441-December 16, 1884. J. C. DE CASTRO. Explosive compound.
Bran or other suitable form of cellulose-7 parts-is mixed with tersulphide of antimony, or natural sulphide of antimony- 1 part--to which is added a saturated solution of potassium chlorate, and the whole formed into pellets or grains.
418,558-December 31, 1889. P. BUTLER. Gunpowder.
A mixture of fulminate of mercury, pulverized soapstone, and a suitable binding material, as black gunpowder.
L89,761-Jonuary 10, 1899. S. RODGERS. Delonating compound.
It consists of potassium picrate, 43 per cent; potassium chlorate, 43 per cent; extract of logwood, 12 per cent; and a gallotannic ink, 2 per cent.
529,334-November 18, 1894. H. MAXIM. Fulminaling compound.
A pliable, yielding, or elastic explosive, consisting of a fulminate with its particles aggiutinated by a dissolved organic nitro compound, as pyroxyline, with or without nitroglycerine, or a deterring agent to lessen its sensitiveness to detonation.
634,716-October 10, 1899. G. P. BICKFORD-SMITH. Composition for detonators. A composition of sodium tungstate, 4 parts; precipitated copper, 2 parts; strontium nitrate, 4 parts; antimony sulphide, 96 parts; precipitated silver, 108 parts; potassium chlorate, 192 parts; and electrotype plumbago, 20 parts.

PYROTECHNIC COMPOSITIONS

39,746-September 1, 186s. J. P. PERRY. Improved composition for explosive shells. A liquid shell-mixture formed of powdered sulphur, alcohol, and turpentine, used alone or with cotton or other fibrous matter. (The shell has a separate hursting charge.)
41,577-February 9, 1864. E. HARRISON. Improved inflammable composition for jilling projectiles.
A mixture of gunpowder, amorphous phosphorus, and bisulphide of carbon; forming a thick paste or solid mass.
42,458-April 26, 1864. A. BERNEY. Improvement in destroying forts, etc., by means of inflammoble liquids.
An inflammable liquid is to be projected by a hose and pump, the jet being ignited at the nozzle.
47,385-April 18,1865. C. W. ROESLING. Improved powder for lighting cigars, etc.
A mixture of potash, 40 parts; burned alum, 30 parts; powdered charcoal, 20 parts; and rye four, 10 parts, is heated in a closed cylinder to a red heat, then cooled and maintained dry. It ignites by simply breathing on it.
48,187-June 1s, 1866. H. W. LIBBEY. Improved incendiary compound.
Powdered potassium nitrate, $1 \frac{1}{b}$ ounces, and spirits of turpentine, 1 ounce, are added to a mixture of nitric acid, 2 ounces; barium sulphate, one-fourth ounce; and sulphuric ether, $\frac{1}{2}$ ounces. After standing, the oily substance is treated with alcohol; and hydrocarbon oil, 1 ounce, and tar, one-half ounce
and combustible fihrous material is saturated with the compound.
65,764-June 11, 1867. C. NELSON. Improved toy torpedo and explosive compound. The explosive composition consists of amorphous phosphorus, one-third; potassium chlorate, one-third; sulphur, one-sixth; and pulverized chalk, onesixth.
144,050-October 28, 187s. A. LAMARRE. Improvement in pyrotechnic signals.
Linseed-glue, produced by reducing linseed oil to one-half its volume, by evaporation or burning, is mixed with the chlorates and other chemicals.
s09,918-December 50,1884 . J. HERZOG. Colored-fire compound.
Sawdust dyed to the color the fire will produce is mixed with the chemical ingredients.
323,662-August 4, 1885. C. GERHARD. Composition for bengal lights.
A mixture of strontium nitrate and chlorate, potassium chlorate, powdered glass, and flour, with an alcoholic solution of a resinous substance, such as shellac or resin, or a mixture of the two.
36s,224-May 17, 1887. C. GERHARD. Composition for bengal lights.
A mixture of strontium nitrate or chlorate, 24 pounds, and shellac, 7 pounds, melted, mixed, and cooled, is pulverized, added to a solution of glue and gum, and 4 pounds of potassium chlorate is added' to the paste thus formed.
384,927-June 19, 1838. H. G. PIFFARD. Photogenic powder.
It consists of magnesium powder intimately mixed with "wood powder" (Dittmar, No. 145,403), or similar nitro-lignin equivalent.

407,951-July 23, 1889. A. HEMSLEY. Componnd for producing flash-tight.
It consists of powdered or granulated metallic magnesium, one or more nitrates, and amorphous phosphorus.
411,714-September24, 1889. A. DEL GRANDE. Preparing pyrotechnic compounds.
Picric acid is dissolved in hot water and magnesinm carbonate added to form a solution of magnesium picrate; then potassium nitrate is dissolved in water and the two solutions mingled, producing a precipitate of potassinm picrate $\left(\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3} \mathrm{OK}\right)$, which is reduced to a granular condition and dried.

415,479-November 19, 1889. J. G. STUTTZ. Colored fire.
A mixture of potassium chlorate, gum-shellac, gum-camphor (pulverized) brass filings, and magnesia, with or without strontium nitrate.
420,642-February 4, 1890. H. O. FRANK. Solidifying colored fire.
Pyrotechnic powders are converted into solid form by adding a small quantity of alcohol to the powdered ingredients and mixing the whole in a water bath at about $93^{\circ} \mathrm{C}$., and while still warm pressing the pasty mass into molds coated with vaseline, and cooling.
449,530-March S1, 1891. C. GERHARD. Bengal-light compound.
It conststs of copal, ether, alcohol, strontium nitrate, and potassium chlorate, with or without a shellac solution or varnish.
475,897-May 31, 1892. C. SCHMIDT. Fireworks.
A composition for making star fireworks, consisting of steel chips, charcoal, lead nitrate, shellac, and spirits.
476,264-June 7, 1899. E. HACKH. Magnesium-light composition.
Fibrous material, as long carded unspun wool, is impregnated with vegetable oil, 2 parts; benzine, 2 parts and Venice turpentine 1 part, and sprinkled with magnesium powder.
523,614-Juty 24, 1894. J. AGOSTINi. Pyrotechnic compound.
A composition produced by mixing powdered magnesium and charcoal with tarch, rendering the mixture adhesive, coating iron filings with a substance impervions to moisture, and adding them to the mixture.
588,515-October 30,1894 . A. HEMSLEY. Flash-light compound.
A mixture of alnminum, a nitrate or nitrates of the metals or alkaline earths, and amorphous phosphorus.
5S4,557-February 19, 1895. C. GERH ARD. Pyrotechnic compound.
A mixture produced by dissolving camphor in alcohol, mixing lampblack therewith, adding gum tragacanth and glue, and mixing into these ingredients magnesium, starch, and iron.
585,495-March 12, 1895. J. GRAHAM. Pyrotechnic compound.
A mixture of powdered zinc, 320 grains; powdered selenium, 80 grains; in one gallon of carbon disulphide.
590,2s1-September 21, 1897. E. LEUSMANN. Pyrotcchaic compound.
A compound for Bengal lights, consisting of an alcoholic solution of shellac, a nitrate or a metal of the alkaine earths, puiverized aluminum, sulphur, an alkaline chlorate-as potassium chlorate-and a binding agent.
594,594-November 90, 1897. J. A. BOSTWICK. Flash-light composition.
A sheet of collodion has combined therewith powdered flash-light material to produce an actinic light of brief duration and large area. A layer of powder may be applied between two collodion films.
639,671-Septcmber 26, 1899. Z. VALDEZ. Toy torpedo.
A ball of clay has a coating of gum-shellac; a coating composed of gumarabic, 4 parts; phosphorus, 4 parts; and potassinm chlorate, 5 parts; and an outer coating of shellac.

MATCH COMPOSITIONS.

1,418-November 16, 1839. J. H. STEVENS. Improvement in the composition of matter for friction-matches.
A combination of litharge and the red oxide of lead, or either of them separately, with carbonate of lead, phosphorus, and a glutinous or viscid material such as gum-arabic, or with black oxide of manganese, phosphorus, and the glutinous material.
1,414-November 16, 1839. J. H. STEVENS. Improved friction-mateh for retaining fire, entitled "Stevens' fusee cigar-light."
The match splint is saturated with a solution of saltpeter, dried, and the phosphoric composition is then applied to the cnd, without the intervention of brimstone.

2,402-December 23, 1841. N. T. WINANS, T. \& T. HYATT. Improvement in the composition of matter for the manufacture of friction-matches.
Phosphorus, alone or in connection with other inflammables is combined with glue or gum rendered damp-prool by being chemically nnited with shellac. 2,403-December 23, 1841. N. T. WINANS, T. \& T. HYATT. Improvement in the composition of matter for the manufacture of friction-matchcs.
Shellac, 3 parts, and borax, three-fourths of a part-or like alkali-is dissolved in water, und three-fourths of a part of phosphorus is combined therewith.
2,494-March 18, 1842. S. BLAISDELL. Improvement in ignitible compounds for: friction-matches.
The matches are dipped into a compound of sulphur and phosphorus formed into a paste with glue.

2,685-May 20, 1842. G. W. CARLETON. Improvement in friction-matches.
A paste formed of phosphorus, gum-arabic, or glue, and a fulminating compound compased of subcarbonate of potassa, 2 parts; nitrate of potassa, 3 parts and sulphur, 1 part.
s,77s-Octobers, 184. E. SMITH. Improvement in friction-matches.
Pulverized dried vegetable material, as bark, or nutgalls, is mixed with phosphorus, in place of mineral or earthy substances.
40,259-October 18, 1869. J. W. HJERPE. Improvement in the manufacture of fric-tion-matches.
A safety match composition (not using phosphorus or other dangerous substunce), igniting only on a prepared rubber composition, consisting preferably of potassium chlorate, 4 pounds; potassinm chromate, 4 pounds; specular iron or colcothar, 2 pounds; and gum, 2 pounds. Rubber compound therefor, sul-
phuret of antimony, 20 pounds; potassium chromate, 2 pounds; red iron oxide or colcothar, 6 pounds: protosulphate of iron, 3 pounds; and gum, 3 pounds. Combined, the composition is friction lighting.

47,s11-April 18, 1865. S. KRACKOWIZER. Improvement in the manufacture of friction-matches.
A metallic coating of sulphide of lead is formed around the phosphoric mass, by impregaating the friction mass with hyperoxide of lead and nitrate of oxide of lead, and exposing the tipped and moist matches to a stream of hydrothionic acid gas.
50,843-November 7, 1865. H. REIMAN. Improvement in friction-matches for lighting cigars, etc.
Pasteboard or other stock for friction-matches is treated with a solution of potassinm chlorate and niter.
58,454-March 27, 1866. L. LANSZWEERT. Improved match-compound.
A mixture of potassium chlorate, 35 parts; hyposulphate of lead, 15 parts; glass or silex, 4 parts; bichromate of potash, 10 parts; and gum or cement, 4 parts. The matches ignite only on a prepared surface containing black antimony and phosphorus.

66,101-June 25,1867 . L. O. P. MEYER. Improvement in the manufacture of safetymatehes.
A match mixture of potassium chlorate, gelatine, and quartz or pumice stone, in relatlve proportions, for example, of 56 per cent, 20 per cent, and 24 per cent. The igniting surface may be formed of the red or the yellow prussiate of potash, mixed with a binder and with powdered glass or aluminous earth (though it is mixed with a binder and with powder to H jerpe's igniting surface).

69,891-Oclober 15, 1867. E. ANDREWS. Improvement in the manufacture of matches.
Match splints are umited in the form of a card by arranging them side by side and dipping the nonigniting ends in gIue.

95,780-October 12, 1869. W. H. ROGERS. Improvement in friction-matches.
An infiammable coating is applied to a friction match below the ignitible end. The conting may be of potassium chlorate, 8 parts; powdered charcoal, 2 parts; and dissolved rubber, 5 parts.
125,874-April 16, 1872. F. ZAISS. Impronement in parlor-matches.
Phosphuret or phosphide of sulphur, white Russian glue, and white dextrine or purified starch, with or withont coloring material, is used to produce white or colored matches; and benzoin, cascarilla, or cinnamon to give a perfume while burning.
128,626-July 2, 1872. J. HOWE. Improvement in matches for lighting cigars, etc.
A mixture of 1 pound each of benzoin, myrrh, and cascarilla bark; one-fourth ounce each of nutmeg, oil of cloves, and oil of musk; and 2 pounds each of charcoal and potassium nitrate; formed into a paste with a mucilage.
186,953-March 18, 187s. J. F. BABCOCK, W. A. LEONARD, AND E. B. CRANE. Improvement in match compositions.
A fuse-strip is formed of pyroxyline, pure or mixed. It is molded with serrations and with friction-match composition on the whole or a part of its surface. 149,304-April 7, 1874. L. O. P. MEYER. Improvenent in the manufacture of safety-matches.
In the manufacture of safety matches-Nos. 66,101 and 111,075-the paste is prepared with acetates of iron or of alcohol.
150,208-April 98, 1874. C. B. STEPHENS. Improvement in matehes or avvows for usc with toy pistols or toy guns.
A projectile for toy pistols consisting of an explosive coating on a body of wood or other material not easily ignited, as a parlor match made with the omission of coal-wax or like material from the detonating componnd and splint.
153,004-July 14, 1874. J. J. MACHADO. Improvement in the manufacture of fric-tion-matches.
A match dipped to some length into a slow-burning composition, not liable to be extinguished by a draft of air, and having a head of rapidly combustible composition, igniting only on a chemacal-affinity surface. The heads are
waterproofed by dipping into a solution of alcohol and tannic acid.
158,181-July 21, 1874. G. C. J. SCHNEIDER. Improvement in compositions for safcty blazing fusees, etc.
A mixture of glue and starch in water, to which is added powdered glass, potassium chlorate, pumice stone, sulphuret of golden antimony, saltpeter, eascarilla bark, and lampblack.
153,451-Juty 28, 1874. L. O. P. MEYER. Improvement in surface compounds for igniting safety-matches.
A componnd of india rubber, or allied gum, sulphur, and gray sulphuret of antimony; in the proportion, for example, of 2,1 , and 23 parts, respectively.
156,328-October:27,1874. W. S. BEECHER. Improvement in ammunition-matches for toy pistols.
The ends of splints have coatings of detonating material and silicate of soda. Either may be hrst applied.
157,87s-December 15, 1874. G. C. J. SCHNEIDER. Improvement in safety-match compositions.
A mixture of brick dust, potassium chlorate, golden suiphuret of antimony, flowers of sulphur, starch, and water.
169,539-November 2,1875 . E. HAANEL. Improvement in safety-matches.
A match composition of potassinm chlorate, 1.6 part; sulphide of antimons, 0.3 part; sesquioxide of iron, 0.35 part; binoxide of manganese, 0.35 part; potavsium chromate, 0.05 part; and powdered glass, 0.05 part; formed into a paste with phosphorus, 1 part; sulphide of antimony, 0.02 part; and powdered glass, 0.25 part; formed into a puint with the gelatine mucilage.
1;7,001-May 2, 18\%6. J. RADFORD. Improvement in compositions for lighting eigars.
A mixture of pulverized chareoal, wheat flour, potassium chlorate, and diluted vinegar or acetic acid.

177,184-May 9, 1876. W. J. LITTLEFIELD. Improvement in compositions for cigar-lighters.
A compound of lime, charcoal, cascarilla bark, gum, and water.

196,062-October 9, 187\%. H. R. WHITEMAN. Improvement in cigar-lighters. A disk provided with a pin or peg and having an inflammable body and a fulminate, the inflammable body consisting of a mixture of charcoal, niter, sulphur, gum-arabic, and flour.

2s0,226-July 20, 1880. C. F. BONHACK. Friction-match.

A mixture of niter, Venetian turpentine, phosphorus, glue, powdered glass, and crocas metallorum or other coloring matter.
230,775-August S, 1880 . G. HAYES. Compound for preparing the wicks or
matches of minerg' squibs. squibs.
A mixture of oil, one-half pint; sulphur, 32 ounces; camphor, 8 ounces; and red lead, 2 ounces; boiled and thoroughly mixed.
241,780-May 24, 1881. W. W. BATCHELDER. Continuous match.
An igniting pencil, one-half formed of an igniting composition rich in oxygenas a mixturc of potassium chlorate and binoxide of lead-and the other half of inert material, with a core of an ignitible composition, as phosphorus, the latter being separated from the igniting composition by a septum. It is ignited by friction.
242,497-June 7, 1881. D. BLUMENKRON. Manufacture of matches.
A match compound consisting of red oxide of lead, phosphorus, sulphuret of antimony, and a gumamy vehicle.
A match having a stem of cotton strands saturated and coated with a translucent inflammable water and air proof solution, and a head waterproofed with
an alcohol lac varnish. an alcohol lac varnish.
251,391-December q7, 1881. L. WAGNER. Manufacture of friction-matches. $_{\text {. }}$
A match composition of hyposulphite of lead, peroxide of lead, potassium chlorate, crude or gray sulpbide of antimony, pulverized charcoal, pulverized glass, saltpeter, sulphur, dextrine, suitable gelatinous binding substances, and water.
275,617-April 10, 188s. H. ENDEMANN. Manufacture of matches.
A stick, strip, or sheet of paper, pasteboard, or wood, saturated with oleic acid and having a suitable lighting composition held by a basic binding material, such as protoxide of lead, either incorporated with the igniting composition or first applied to the stick.
284,651-September 11, 1883. J. H. MITCHELL. Manufaeture of friction-matches. An impalpable dry powder, such as pumice stone or chalk, is injected upon the freshly dipped heads to form a nonadhesive surface.
soz,717—July 29, 1884. W. B. ELTONHEAD. Match.
A fusee having a head of an ignitable compound combined with a powder made by grinding up discarded crucibles, cupels, and scorifiers.
\$95,065-January 26, 1886. F. W. FARNHAM. Match.
The head is composed of two separate compounds, one a safety composition, and the other, or tip, an ordinary, frictionally ignitible composition.

340,747-April 27, 1886. C. WEIBACH. Pyrotechnic match.

A stick baving its head coated with a friction-igniting compound and the portion of the body adjoining the head coated with a pyrotechnic compound, or a series of compounds to produce lights of different colors.
418,202—December \$1, 1889. J. LUTZ. Inflammable composition for matches.
A solution of sodium chlorate, ammonium sulphate, and a carbohydrate. Matches light by frictional contact on a surface prepared with amorphous phosphorus and washed black trisulphide of antimony.
436,877—September 2s, 1890. W. M. NIX. Match.
A double-headed watcrproof matcb having the splint previously soaked in a bath of sodium phosphate, so that it will not carbonize, and heads composed of glue or other gelatinous binder, paraffine, potassium chlorate, peroxide of lead, sulphide of antimony, and potassium bichromate.
485,103-October 25, 1892. J. KLEIN. Matèh-heading composition.
A compound of dextrine, water, phosphorus, mininm, lampblack, and nitric acid.
562,426-June 23,1896. C. R. A. G. SCHWIENING. Match.
A componnd of potassium chlorate, red phosphorus, and calcium plumbate, igniting on any frictional surface.
579,919—March 30 , 1897. H. ALLDAY. Match-striking composition.
A composition of phosphorus, gritty matter, and gum; thus available for both safety and friction matches.
592,297-October 26, 1897. L. ARONSON. Mateh and composition for same.
A fusee consisting of a stem and a friction igniting head, with a waterproof, persistently combustible compound, not ignitible by friction, enveloping the head and portion of the stem adjacent thereto. The compound consists essenof antimony, dextrine, charcoal, and one or more resinous gums.
594,13s-November 2s, 1897. G. FIRSCHING. Manufacture of matches.
In the manufacture of headless safety-matches the end or ends of the matchsplints (both ends may be made ignitible), they having been assembled into bundles, are dipped into a solution consisting of sodium chlorate, gum arabic, a sulphate of a metal proper (as of copper or iron), and water; then thoroughly dried; and then dipper, to a greater depth, in a hydrocal
tion, as of rosin, turpentine, oleic acid, and linseed oil.
594,677-November SO, 1897. A. CHATELAN. Composition for lighting cigars.
A combustible composition of peroxide of manganese, potassium permaganate, potassium chlorate (with or without powdered coke and cinnamon bark), and an outer frictional-igniting head is applied to the end of a cigar or cigarette. A waterproof cap may be added.
60s,666-May 10, 1898. A. TACHAUER AND L. BRALY. Composition for making matches.
A mixture of an adhesive substance and plumbates of calcium and strontium, metallic aluminum, and monosulphide of calcium, in suitable proportions, with or without powdered glass, hyposulphite of lead, sodium chloride, and potassium chlorate at defined temperature and proportion.
613,021-October 25, 1898. Y. SCHWARTZ. Flash-light composition.
A mixture of a light material, as a quickly combustible magnesium mixture, is combined with a cementing medium, such as a solution of pyroxyline in ether and alcohol, and made into the form of a foil.

No. 210-- 17

614,350-November 15, 1898. H. SEVENE AND E. D. CAHEN. Match composition. Sesquisulpbide of phosphorus js the essential ingredient, it being mixed with oxidizing bodies, inert matter, and glue.
622,109-March 28, 1899. E. G. BOHY. Match
The match-paste contains a hypophosphite, as hypophosphite of caicium, in addition to the usual materials.
625,299-Moy 16, 1899. G. HACKEL. Match-paste composition.
It conslsts of potash, gum-arabic, amorphous phosphorus, potassinm chlorate, a mineral coloring matter, hyposulphite of lead, and water, in specified propor-
tlons.

627,393-June 20, 1899. W. G. CORDES. Match composition.
A mixture of potassium chlorate, ground glass, whiting, plaster of paris, glue, and water, and amorphons red phosphorns, in specified proportions.
653,S49-Juty 10, 1900. W. P. JONES AND H. M. BATES. Match.
A nonpoisonous composition, comprising potassinm chlorate, sulphide of antimony, a metallic thiosulphate, oxide of manganese, potassium bichromate, an inert substance, red prussiate of potash, and adhesive material.
655,864—August 14, 1900. B. HETMANN. Self-lighting cigar.
The ends of the independent leaves, before being rolled into form, are saturated with a composition including potassinm chiorate, lampblack, pentasul-
phide of antimony, charcoal, and gelatine.

GROUP XV.-PLASTICS.

PYROXYLIN PLASTICS.

65,267-May 28, 1867. W. H. PIERSON. Improved plastic compound made from vegetable Albers.
A plastic is formed of cotton, hemp, flax, grass, wood, starch, sugar, or other equivalent vegetable matter acted upon by acids (nitric or a mixture of nitric and sulphuric acids) to soften or render soluble or partly soluble said vegetable matter in other solvents than said acids, the vegetable matter not being necessarily dissolved, but softened or pulpified; and articles of manufacture formed therefrom. The plastic, wet with equal parts of alcohol and ether, is applied to cotton batting, or any equivalent fiber, or spread on any mold or surface. Fabrics are waterproofed therewith. The plastic with its solvents is combined with methls and various metallic, silicions, or argillaceous substances in the pulverulent state. The plastic is mixed with drying oils for waterproofing and transparencies. Fur, plush, or other short fiber is attached by means of the plastic to give a fur-like surface. A compound for painting and coloring is formed by admixture of plastic and solvents with paints, oils, dyestuffs, etc.
77,304-Aprit 88, 1868. J. A. McCLELLAND. (Reissues: $9,777, \dot{3}, 778$-Decembcr 28, 1869.) Improved material for dental plates and for other purposes.
Sheets of collodion and its compounds with resinous substances are comminuted and formed into massive forms by treating with ether and alcohol or other solvent, molding, pressing, and drying.
79,261-June 23, 1868. C. A. SEELY. Improvement in 8 olidifled collodion.
Nitro-glucose is combined with collodion to increase the flexibility and, toughness.
88,228-March 98, 1869. L. R. STREETER. Improved method of venecring articles with pyroxyline.
Plastic pyroxylin or xyloidin is veneered to a base, dental plates or gums, with or without cement, by compression, and with heat, if need be.
88,260—March 2s, 1869. L. R.STREETER.' Improved composition for dental plates. Soluble pyroxylin, or xyloidin, or gun-cotton combined with substances that will give the necessary quantities, is used for dental plates, e. g., a componnd formed of pyroxylin, 240 parts; wax, 50 parts; zinc white, 30 parts; and coloring matter.
89,258-April 20, 1869. L. R.STREETER. Improved dental plate.
Dental plates and gums formed of pyroxylin, rednced to a dough and forced or pressed into molds, brought under pressure, and the solvent evaporated.
89,254-April 20, 1869. L. R. STREETER. Improved process of treating pyroxte, pyroxyline, and the like substance, for forming useful and ormamental articles.
Pyroxylin and its compounds are treated with suitable nonsolvents, as alcocol, sulphide of carbon, or naphtha, with or without a cementive agent, and rendered distensible, compressible, and impressible.
89, 582-May 4, 1869. J. W. HYATT, JR., AND D. BLAKE. Improved compound of ivory dust and other materials.
Ivory dust or other pulverized material is agglutinized by combining collodion therewith and subjecting the composition to pressure during the evaporation of the volatile elements by means of heat.
90,766-June 1, 1869. J. A. McCLELLAND. Improved machine for treating collodion and its compounds.
Collodion and its compounds are mixed in a vacuum.
91,341-June 15, 1869. J. W. HYATT, JR., AND I. S. HYATT. Improved method of making solid collodion.
Pyroxylin, with or without an admixture of ivory dust or other material, is dissolved in a small quantity of solvent, under great pressure, forming a hard and solid product.
91,377-June 15, 1869. D. SPILL. Improvement in compounds containingxyloidine.
Compounds are produced of xyloidine in conjunction with oils, camphor, paraffine, and gutta-percha; one or more of the ingredients, as camphor, is dis solved in the oil, the solution forming a nonvolatile solvent for xyloidine, which becomes a part of the resulting compound.
96,138-October 26, 1869. J. A. MCCLELLAND. Improved mode of producing useful articles from collodion and its compounds.
A sheet of collodion and resinous matter is heated until soft and plastic, and then the article is stamped out between dies.
97,454-November 50,1869 . D. SPILL. Improvement in dissalving xyloidine for use in the arts.
Solvents are employed which are not necessarily in themselves solvents of xyloidine, but become so by the addition of otber bodies or compounds. Eight specified of wine, hydrocarbons having a b. p. 105° to $205^{\circ} \mathrm{C}$., castor oil, bisulphide of carbon, and aldehyde.

101,175-Mareh 22, 1870. D. SPILL. Improvement in the manufacture of xyloidine and its compound.
Cotton or other vegetable fiber or lignine is reduced to a finely divided state; mixed with the aid of mechanical means in a vessel having revolving arms or beating bars, with a suitable quantity of acid; the acid straitied from the fiber; the product pressed to remove excess of acid, and the pressed mass then opened out, Washed, drained, and dried. The xyloidine is bleached directly after the removal of the acids and before removing it from the vat by means of any bleaching solution, making use of alternate stirrings and rest. It is dyed after draining and before pressing, by any fiber-dyeing process, either hefore or after the solntion of the same in suitable solvents. For spreading upon fabrics 1 part of xyloidine is dissolved in from 5 to 12 parts of solvent, strained through a fine sieve under pressure, and spread on the fabric or surface in a semifluid condition. To reduce it to a nearly dry condition the strained solution or paste is treated in a closed mixing vessel connected with an exhaust apparatus, the vessel being heated to about $100^{\circ} \mathrm{C}$. The solvent vepors that pass off are condensed for re-use.

105,209-May 17, 1870. J. LEWTHWAITE. Improvennent in coating fabrics with parkesine.
Parkesine or xylonite in a plastic state is spread upon the surface of the fabric and immediately subjected to pressure, which is continued for several days, When the material is to be pliant or supple. If the surface is required to be polished it is subjected to the action of rotating brushes after the parkesine has

105, $358-$ July 12, 1870. J. W. HYATT, JR., AND 1. S. HYATT. (Reis8ues: 5,925Junc 23, 1874; 10,546-December 23, 1884.) Treating and molding pyroxyline. Finely comminuted camphor gum is mixed with pyroxylin pulp and rendered a solvent by the application of heavy pressure in a heated mold.
105,82s-July 26, 1870. J. A. MCCLELLAND. Improved process for coating objects with collodion and its compounds.
Collodion is molded upon the article to be coated, so as to obtain the coating at one operation.
114,248-April 25.1871 . R. H. WINSBOROUGH. Improvement in the preparation and application of pyroxyline for dental plates.
Pyroxylin for dental purposes is bleached by the application of chlorine to render it highly translucent. The camphor of dental plates formed by the introduction of camphorated pyroxylin into plaster or porous moulds is expelled by artificial beat or evaporation, or extracted by chemical means.
127,656-June 4, 1872. V. SMITH. Improvcment in compounds for dental purposes. A dental plate made of gun-cotton, prepared gum shellac, gum camphor, with a compound formed of oxide of zine, Chinese vermilion, and oxide of tin and gold, together with sulphuric ether and alcohol.
183,299-November 19, 1872. I. S. \& J. W. HYATT. Improvement in process and apparatas for manufacturing pyroxyline.
A mixture of pyroxylin and camphor gum is dried by compressing it into cakes and subjecting them to pressure in a pile with interposed layers of absorb ent material. Pyroxylin is transformed by means of camphor gum by subject ing the material to pressure in the upper part of a cylinder, kept sufficiently cool to prevent the melting of the solvent during the compression and expulsion of the air, while the lower portion is heated sufficiently high to melt the solvent and transform the pyroxylin, which is forced through the same and out of a
189,969-December 17, 187\%. L. DEITZ AND B. P. WAYNE. Improvement in the manufacture of pyroxyline and articles therefrom.
Pyroxylin made from ramie, Bochmeria nivea.
143,77\&-October 21, 1873. J. A. McCLELLAND. Improvement in collodion compounds.
The converted material is dried by the alternate application of pressure and exposure to the atmosphere. Absorbent pads of felt cloth or other material, exposure to the atmosphere. Absorbent pads of felt cloth or other
with paper interposed, are used while the material is under pressure.
148,865-October 21, 1878. H. T. ANTHONY. Improvement in preparing soluble cotton for the manufacture of collodion.
Soluble cotton is subjected to the action of volatilized alkali, preferably ammonia, after the ordinary acid treatment and washing, to remove traces of acid.
150,7R2—May 12, 1874. D. D. SMITH. Improvement in artificial coral for jewelry.
A mixture of gun cotton, 24 parts; gum copal, 5 parts; alcohol, 10 parts; perchloride of tin, one-twentieth part; gum-shellac, 1 part; ether 20 parts; perchloride of gold, one-fortieth part; magnesinm oxide, 1 part; protochloride of tin, one-twentieth part; and oxide of mercury, 1 part.
152,232-June 29, 187\%. I. S. \& J. W. HYATT. Improvement in apparatus and processes for molding cclluloids and the compounds of pyroxyline.
Celluloid is molded in a closed vessel supplied with steam, in a porous or suitable mold. A safety valve regulates the pressure and temperature.
159,196-July 21, 187\%. R. FINLEY HUNT. Improvement in molding celluloids for dentists and others.
Celluloid is softened and molded with dry heat.
156,358-October 27, 1874. I. S. \& J. W. HYATT. Improvement in manufacturing solidified collodion.
Pyroxylin is mixed with a latent solvent which becomes active only upon the application of heat, e. g., pyroxylin mixed with 1 part of camphor and 8 parts of alcohol.
156,95s-October 27, 1874. J. W. \& I. S. HYATT. Improvement in the manufacturc of celluloid.
A solvent of camphor, such as alcobol, is added to the mixture of pyroxylin and camphor previous to mastication, heat, and pressure, using, say, 100 parts of dry pyroxylin and 25 to 40 parts of gum camphor, with 20 to 40 per cent of alcohol after the aforesaid ingredients are mixed and the aqueous moisture has been expelled.
165,234-July 6, 1875. J. W. \& I. S. HYATT. Improvement in grinding-whecls. A grinding wheel made of emery or similar particles united by celluloid, or pyroxylin, or their components.
179,995-February 1, 1876. F. GREENING. Improvement in the manufacture of soluble gun-cotton and products therefrom.
A mixture of hydrochloric acid with sulphurio acid and nitric acid is used for the conversion of cotton; as sulphuric acid, 250 parts; bydrochloric acid, 35 parts; and nitric acid, 50 parts. Semitransparent products are obtained by the
addition of finely divided and levigated silica, or powdered glass or sulphate of lime; insulating zompounds by the use of crcosote with soluble gun cotton and certain gums.

179,865-February 22, 1876. C. REAGLES. Improvenent in compositions for dental plates, etc.
A compound of pyroxylin, 40 parts, by weight; compound ethylated camphor 25 parts; flexible lae, 15 parts; caoutchoue shavings, 5 parts; and cera alba, 5 parts; with Canada balsam and pigments.

184,481-November 21,1876. P.SWEENEY. Improvement in lubricating compounds.
A lubricant consisting of plumbago and collodion, with paper pulp or equivalent fibrous material.
200,989-March 5, 1878. R. H. \& A. A. SANBORN AND C. O. KANOUSE. Improvemcnl in collars and cuffs.
A fabric for collars and cuffs having outer sheets or layers of celluloid and an interlining of textile or fibrous material.
204,227-May 28, 1878. J. W. HYATT. Improvement in apparatus for coverins. cores and forming tubes of celluloid and other plastic materials.
The composition is fed in equal quantities to all sides of a core, which core is withdrawn from the composition, leaving the tubular coating.

209,570-November 5, 1878. J. W. HYATT. Improvement in varnishes.
The solid extract of logwood dissolved in either alcohol or methylic spirit, or hoth, is combined with a resill soluble in alcoholic or methylic spirit or pyroxyline, and the tincture of the muriate of iron to produce an ebony rarnish.

216,474-June 10, 1879. V. TR1BOUILLET AND A. DE BESAUCELE. Impravement in processes of manufacturing solid collodion.
Dried cellulose is treated with acids in closed glazed vessels followed by pressing, washing, and drying; and the pyroxyle so prepared is treated with pressing, washing, and drying; and the pyroxyle so prepared is treated with or other materials.

:317,232-July

Pyroxylin is reduced to a liquid by solvents without heat or pressure-as oy dissolving it in a solution of camphor gum in sulphuric ether and then introducing spirits of turpentine-and then cast in porous molds. The product is treated with alcohol to render it plastic, compressed in any desired form, and hardened by immersion in olive oil.
220,502-October 14, 1879 . J. S. SPENCER. Improvement in frames for optical instruments made of celluloid and other fibrous plastic compositions.
Frames for optical instruments are made from fibrous plastic composition by cutting the frames from the material when in sheets and forming them upon a mandrel. They are removed from the mandrel by introduction of heat into the mandrel.
221,070-October 28, 1879. J. W. HYATT. Improvement in processes of manufacturing, polishing, and scasoning sheets of celluloid and other plastic material.
Sheets of celluloid are subjected to pressure between a polished surface and a layer of absorbent material, to both dry and polish.
232,087-September 7, 1880. J. W. HYATT. Manufacture of celluloid.
Veneers of celluloid or other plastic material are applied to moldings and uneven surfaces by attaching a strip of the material so as to span the face of the article, then inserting the two in an elastic tube and contracting the tube by means of a vacuum pump or by external pressure.

239,558-October 19, 1880. J. \& C. SCHMERBER. Process of treating pyroxyline in the manufacture of plastic compounds.
In the manufacture of plastic compounds from pyroxylin, danger of ignition is avoided by treating the nitro-derivative of cellulose, dextrine, or glucose while wet with a solvent, mixing gums, balsams, or pigments and reducing the
product to a semi-liquid form by heat, grinding and mixing the semi-liquid product to a semi-liquid form by heat, grinding and mixing
238,851-November 2, 1880. N. HART AND R. A. BACON. Decorating celluloid.
Celluloid surfaces are decorated and the color united with the celluloid, by the use of aniline colors dissolved in carbolic acid and alcohol.
234,675-November 23, 1880. C. M. JACOB. Composition for coating surfaces.
A composition of collodion, creosote from Norway-beech tar, boiled linseed oil, black oxide of manganese, and resin, as a protective coating for materials or for ornamentation. Pigments or mineral colors or bronze or other metal powders may be combined therewith.
2s7, R79-February 1, 1881. S. J. HOGGSON AND G. C. PETTIS. Method of producing and treating pyroxyline and the manufacture of articles thercfrom.
The fiber is prepared in a sheet form, and treated to the acid batb; the pyroxylin sheet is then applied to the surface to be covered and subjected to a pyroxylin solvent until converted into a gelatinous condition, when it can be rolled, or reëmbossed and finished.
289,429-March 29, 1881. L, S. BEALS. Treating pyroxylinc.
A compound of mirbane, oil of lavender, benzole, and alcohol is employed as a solvent for pyroxylin, and olibanum frazkincense is added, with or without paraftine or vegetable wax, to render it plastic without shrinking or warping.
299,424-March 29, 1881. L. S. BEALs. Preparing pyroxyline.
Soluble pyroxyline is rendered permanently plastic under heat by mixing therewith paraffine dissolved in mirbane and the essential oil of lavender.
289,425-March 29, 1881. L. S. BEALS. Preparing pyroxyline.
Pyroxylin is treated with vegetable wax, either with or without the addition of paraffine, and preferably by means of a solvent formed of mirbane, oil of lavender, benzole, and alcohol.
289,791-April 5, 1881. J. W. HYATT. Process of and apparaius for molding celluloid, hard rubber, bonsilate, and analogous plastic materials.
Molds or dies containing the material are immersed in liquid in a suitable vessel and heat and pressure applied to the liquid.
241,005-May 3, 1881. N. HART AND R. A. BACON. Decorating celluloid.
Surfaces composed wholly or in part of compounds of pyroxylin are decorated by applying colors mixed with a solvent of pyroxylin; as aniline colors, dissolved in alcohol and ether, with or without carbolic acid.

244,916-July 26, 1881. O. MONROE. Process of trcating pyroxyline scraps, A homogeneous pyroxylin compound is produced from scrap by treating it with a solvent, with or without the addition of a coloring agent, and then subjecting it to the action of a machine which mixes it and compresses it by forcing it through an outlet or nozzle.
245,952-August 2s, 1881. S. J. HOGGSON AND G. C. PETTIS. Manufacturc of plastic compounds from pyroxyline.
Pyroxylin, after washing, is treated in a bath containing in solution hydrochlorate of ammonia, muriate of ammonia, or any of the ammoniacal salts, whereby it is rehydrogenized and rendered less explosive. Sulphate of alumina or any of the "octohedron" or isomorphous salts are combined with pyroxylin: alum being a natural base, working hot or cold or in any proportions, with or without the addition of gums, resins, balsams, oils, pigments, dyes, or coloring ingredients. Flour of steatite is added, acting as a lubricant, when the material is to be pressed in molds or dies.
246,891-Scptcmber 18, 1881. C. S. LOCKWOOD. Treatment of pyroxylime.
Chloral is used as a solvent of camphor in a pyroxylin compound containing camphor, say from 5 to 20 parts of chloral to 100 parts of camphor; it lowers the liquifying temperature.
247,784-September 27, 1881. C. O. KANOUSE. Manufacture of plastic composition from soluble fiber.
Soluble fiber is mixed and dissolved in a volatile solvent in a heated state in an open vessel, the evaporation accelerating the solvent action.
248,413-October 18,1881. I.W. DRUMMOND. Compound of celluloid and huminous material.
A solid luminous compound formed of celluloid and luminous or phosphorescent material, as sulphide of calcium.
249,600-November 15, 1881. J. B. EDSON. Drying apparatus for treating pyroxyline, etc.
Pyroxylin and similar substances are dried by the use of cold intensely dry air, maintained slightly above the freezing point, introduced through the material while in a finely divided condition, and thence discharged from the receiver.
251,410-December 27, 1881. W. B. CARPENTER. Waterproofing paper with celluloid and other materials.
A paper made of asbestos and plastic material such as celluloid, lignoid, coroline, shellac, resin, or gums. The paper may be put through a vapor bath of alcohol, when the substance used, as celluloid, is capable of being dissolved in alcohol, or through turpentine vapor when resin or gums are used, and then through heated rols to thoroughly integrate the material
253,480-February 21, 1882. W. B. CARPENTER. Waterproof paper.
A paper made of paper-pulp and a plastic waterproof material, such as celluthrough a weak alcoholic bath and then through heated rolls (see No. 251,410). 254,280-Febrıary 28, 1882. F. W. COTTRELL. Manufacture of material to form artificial ivory.
Fiber is rendered soluble in alcohol by immersion in a saturated solution of nitrous acid in sulphuric acid for a very short period, then slightly pressed and allowed to stand twenty minutes to an hour to complete its conversion. It is then washed, neutralized with a saline solution, afterwards adding strong solutions of alum, carbonate of soda, and silicate of soda.
254, 751-March 7, 1882. L. WHITE AND K. WHITCOMB. Apparatus for detcrmining the nitration of cellular fiber.
It is determined by the deflection of a galvanometer, using a cathode and anode on opposite sides of a mixing vessel, the deflection being compared with that of a standard quality.
256,597-April 18, 1882. P. REID AND J. EASTWOOD. Manufacture of pyroryline jor use in topical printing.
An ink or color for topical printing, or "calico printing," composed of disAn ink or color for topical printing
solved pyroxylin and a coloring agent.
262,077-August 1, 1882. W. MCCAINE. Pyroxyline compound.
The essential oil of cassia or cinnamon is used in the manufacture of compounds of pyroxylin; combined with alcohol alone or in conjunction with hydrocarbons, say in the proportion of I part to 8 of alcohol, it forms a latent solvent.
264,987-September 26, 1882. E. WESTON. Plastic compound from soluble cellulose. Nonfibrous or amorphous cellulose; produced by reconverting or reoxidizing celluloid in a bath of ammonium sulphide, protochloride of iron, or equivalent reducing agents.
265,937-October 3, 1882. H. PARKES. Manufacture of nitro-cellulose.
Nitrocellulose is dyed prior to dissolving or softening and treatment with solvent. Tetrachloride of carbon, together with camphor, is employed as a solvent. Tetrachioride or carbon,
solvent, or a solvent composed of bisulphide of carbon together with camphor, solvent, or a solvent composed of
or sulphurous acid and camphor.
269,310-December 19, 1882. J. H. STEVENS. Manufacture of compounds of $p y$ roxyline or nitro-cellulose.
In the manufacture of compounds of pyroxylin a new group of active liquid solvents or converting agents is used, comprising oil of spearmint, nitrate of methyl, butyric ether, valeric ether, benzoic ether, formic ether properly dehydrated, salicylate of metbyl, formate of amyl, acetate of amyl, butyrate of amyl, valerianate of amyl, sebacylic ether, oxalic ether, amylic ether (amylic oxide), valerianate of amyl, sebaci of cassia, oil of cherry, laurel, heavy cinnam
oxidized wood alcohol, oil of
oil of melissa (balm), oil of birch tar (rectifed), and oil of pennyroyal.
269,341-December 19, 1882. J. H. STEVENS. Manufacture of compounds of pyroxyline or mitro-cellulose.
In the manufacture of compounds of pyroxylin certain specified oils are used as latent liquid solvents, viz, oil of caraway seed, oil of hyssop, oil of sage, oil of tansy, oil of cloves, or oil of wintergreen, or mixtures of them
269,342—December 19, 1882. J. H. STEVENS. Manufacturc of componds of pyroxyline or nitro-ccluulose.
In the manufacture of pyroxylin compounds dinitro-benzine or coumarine are used as latent solid solvents.
269,345-December 19, 1882. J. H. STEVENS. Manufacture of compounds of pyroxyline or nitro-cellulose.
In the manufacture of pyroxylin compounds certain new menstrua are used in conjunction with camphor, viz, acetone, acetate of ethyl, acetate of methyl, fusel-oil (amyluc alcohol), oil of chamomile, oil of fennel-seed, oil of palmarosa, and oil of worm-seed, or mixtures of any of them.

969,344-Decenber 19, 1882. J. H. STEVENS. Manufacture of compounds of pyroxyline or nitro-cellulose.
In the manufacture of pyroxylin compounds fusel oil is employed as a solvent or menstruum in conjunction with the oils of hyssop, sage, tansy, wormwood, fennel seed, cloves, cinnamon, anise, sassafras, chamomile, wintergreen, cara way seed, or of dill, or with acetal, nitrate of amyl, or nitrite of amyl, or mixtures of any of them.
269,345-Dccember 19, 1882. J. H. STEVENS. Manufacturc of compounds of pyroxy line or nitro-cellulose
In the manufacture of pyroxylin compounds certain menstrua or mixtures of the same are cmployed in conjunction with alcohol (ethylic or methylic), viz, acctal, nitrate of amyl, nitrite of amyl, oils of chamomile, valerian, golden-rod, sassafras, anise, cinnamon, cumin, cynæ ether, dill, elecampane, fennel seed, wine (hegvy), wormseed, myrtle, laurel, marjoram, peppermint, rue, cinnamon leaves, palmarosa, rosemary, and erigeron.
271,493-Jantary 30, 1883. J. A. McCLELLAND. Pyroxyline fabric.
A fabric composed of a sheet or sheets of pyroxylin compound with threads, filaments, or fibers embedded therein and all extending in the same direction.
2y1,494-January 30, 1883. J. A. McCLELLAND. Process of veneering or covering articles with pyroxyline compounds, ctc.
A shect or shects of the plastic material is applied to the article and it is inclosed or surrounded by mobile or yielding material, such as sand or putty, and subjected to pressure.
275,215-sipril S, 1883. I. S. HYATT. Process of manufacturing sheets of celluloid and other plastic material.
A sheet of polished celluloid having a backing is produced by placing the sheet on a polished surface, laying upon the same a backing moistened or sat urated with a solvent of pyroxylin, placing upon the backing absorbent material, and subjecting the whole to pressure.
276,143-April 24, 1883. W. McCAINE. Process of treating pyroxyline compounds. A pyroxylin compound containing a latent solvent is reduced to a powder, then thoroughly dried, and when dry subjected to heat and pressure, whereby a dry product is obtained free from air cells.
230,745-Juty $s, 188 s$. J. W. HYATT. Press or mold for coating articles with cet luloud, etc.
The article is placed between sheets of celluloid and the whole hetween diaphragms or sheets of flexible material, when fluid pressure is applied to the upper or lower sides of the diaphragms, the fluid being first hot and then cold 253, n25-1ugust 14, 1883. J. B. EDSON. Manufacture of artificial vvory.
Artificial ivory is formed by compressing a number of sheets of zylonite formed of material of different densities or different characteristics of compo sition, into one entire mass, and then making sections across the several layers.
286,212-October 9, 188s. D. \& D. McCAINE. Process of treating pyroxyline, etc.
Pyroxylin is dissolved in a suitable solvent, and it is then treated with benzine or equivalent light mineral oil and resin, producing a homogeneous prod uct, free from air bubbles.
2S9, 239 -Novenber 27,1885 . J. B. EDSON. Apparatus for polishing sheets of zylonite, etc.
The surface is slightly dissolved by any of the well-known solvents, and then the sheet is subjected to pressure, with the slightly dissolved surface in contact with a highly polished surface, such os glass.
239,240—November 77, 1888. J. B. EDSON, Forming and finishing surfaces coated with zylonite.
A sheet of fabric coated on one or both sides with thin sheets of zylonite through the medium of an interposed solvent; produced by passing a thin sheet of zylonite and a sheet of the material to be coated between rolls and introducing a solvent between the two sheets to slightly dissolve the surface of the zylonite, whereby the sheets are immediately compressed.
289,241-November 27, 1883. J.B. EDSON. Patent leather and a substitute therefor.
A base-forming material, having attached to one of its surfaces a thin sheet of zylonite having a highly polished surface. It is prepared by partially dissolving one surface of the zylonite and uniting it to the base, and then partiany dis solving the exterior surface of the sheet of zylonite and
tially dissolved surface next to a bighly polished surface
289,588-November 27, 188s. J. B. EDSON. Treating material with zylonite to resemble pebble, goat, French colj, and alligator leather.
A thin sheet of zylonite of a proper color is applied to a sheet of leather, such as are technically called "splits." by partially dissolving one surface of the zylonite by a suitable solvent and applying the partially dissolved surface to the hase, then applying pressure for a period of time sulficient to imitate the kind of
leather to be produced and to expel the surplus solvent and air. Then partially leather to be produced and to expel the surpis sonite and compressing it against a highly polished surface.
294,557-March 4, 1884. W. V. WILson. Manufacture of material for electricinsulation.
Two hundred parts of wood or vegetable tar is combined with about 100 parts of nitrocellulose - the nitration of which has not been carried beyond the point which will effect its greatest solubility-the latter being softened by one or more of its solvents.
294,661-March 4, 1884. G. M. MOWBRAY. Plastic compound from pyroxyline and mica.
Mica is combined with soluble pyroxylin.
296,967-April 15, 1884. J. W. HYATT. Art of manufacturing celluloid and other compounds of pyroxyline.
Aqueous particles are removed from pyroxylin pulp hy displacement, under pressure, with an unobjectionable liquid, as alcohol, which may be utilized. as a solvent.
296,968-April 15, 1884. J. W. HYATT, W. H. WOOD, AND J. H. STEVENS.
Process of and apparatus for effecting the desiccation of pyroxyline pulp.
A pile is formed of layers of pyroxylin and bibulous material, as blotting paper, and subjected to great pressure, the pyroxylin being subjected then to purther pressure between dry sheets.
296,969-Aprit 15, 1884, J. W. HYATT, J. H. STEVENS, W. H. WOOD, AND J. EVERDING. Manufacture of pyroxyline material.
Pyroxylin material is impregnated with liquid solvents by forming it into cakes or plates, placing them in a suitable vessel where they are held apart, introducing
the liquid solvent, and agitating or rotating the vessel, whereby the solvent repeatedly passes over the surface of the cakes or plates.
296,970-April 15, 1884. J. W. HYATT, J. H. STEVENS, AND W. H. WOOD. anufacture of celluloid and other compounds of vyroxyline.
Pyroxylin is formed into cakes and dried, and the cakes then softened with the required amount of liquid solvent by being formed into a pile with the sol yent between the cakes, the material being afterwards mixed or masticated in heated rolls.

297,770-April 29, 1884. J. B. EDSON. Finishing and glossing the surfaces of fobrics having a coating of some pyroxylune compound.
The zylonite sheet is passed through a fluid acting as a solvent of the zylonite which upon evaporation leaves a glossy surface. By passing the sheet or coated fabric around a roller in the solvent, one side only is exposed to the action of the solvent.
297,935-April 29, 1884. J. W. HYATT. Process of desiccating pyroxyline in comminuted form.
Nitrocellulose is ground in water and then agitated in contact with an absorbent, as bags of porous absorbent material in a closed revolving vessel.
299,857-June 9, 1884. E. SCHERING. Preparation of cotlodion.
An elastic and transparent composition for the preparation of collodion, becoming hard on drying, neither explosive on concussion nor spontaneously combustible; formed by dissolving pure collodion cotton in ether and alcohol and then Ireeing from its solvents, by
s00,158-June 10, 1884. J. H. STEVENS. Manufacture of material to imitate ivory from pyroxyline compounds.
Strips are cut of one or more thin pieces of material of varied color, treated with a solvent and compacted on edge intoa calke, welded together by heatand pressure, and the block then reduced to sheets.
s07,082-October 21, 1884. J. B. EDSON. Manufacture of artificial ivory from zyionite, etc.
Two or more sheets of soluble pyroxylin having inert matters, and colored or otherwise, are rolled into scroll form, or assembled in block form, and forced or otherwise, are rolled into scroll form, or assembled in block form, and yorced through a nozzle or die, so that the several layers sham partially preserve their parallelism; or the scrolls
309,851-December 30, 1884. J. B. EDSON. Manufacture of artificial ivory.
Imitation grain-ivory produced by combining two or more lajers of a pyroxylin base pigmentized in slightly varying proportions; as one group of layers of transparent horn-colored pyroxylin with 7is per cent of oxide of zinc and one with 15 per cent of oxide of zinc and one-quarter of I per cent of yellow coloring matter.

311,203-January 27, 1885. I. V. REAGLES. Composition of matter for waterproofing.
A compound of wood alcohol, I gallon; castor-oil, I pound; gum camphor, 1 pound; pyroxylin, 1 pound; and gum shellac, one-fourth of a pound.
$320,884-J u n e$ 認, 1885 . G. M. MOWBRAY. Plastic-compound resembling ivory.
A pyroxylin product composed of a series of sheets of pyroxylin and neutral matter of uniform composition, with one or both surfaces of the superposed sheets colored or tinted, and the sections united together by heat and pressure or solvents and pressure.
329,098-October 27, 1885. J. H. STEVENS AND W. H. WOOD. Utilizing cettuloid etc., in the production of enameled goods or vencering.
A sheet of seasoned pyroxylin material is attached to a backing and at the same time given a high polish by subjecting them to pressure accompanied by a high degree of heat, the exposed surface of the pyroxylin being in contact with a polished surface.
529,313-October 27, 1885. J. G. JARVIS. Manujacture of pyroxyline compounds.
Gum dammar, gum guaiacum, and gum mestic, separately or in mixtures of two or more of them, are used as solvents of pyroxylin with or without pigments or other coloring matters, hixed or volatile oils.
331,241-November 24, 1885. J. W. HYATT. Mcthod of combining pyroxylinc and its solvents in the manufacture of solid compounds.
Pyroxylin is reduced to a finely divided dry condition, as soluble paper to shreds, then moistened with vinous alcohol or its equivalent, when the powdered camphor is added and the mixture subjected to masticating rolls, or to heat and pressure.
ss1,342-Novcmber 24, 1885. J. W. HYATT. Method of combining pyroxyline and its solvents in the manufacture of solid compounds.
The solvent is sprayed against a moving stream of pyroxylin pulp, the sprayed pulp falling into a closed receptacle and resting until the solvent is sprayed pulp raling into when it is masticated.
331,713-December. 1, 1885. J. W. HYATT. Compounding pyroxyline with its solvents in the manufacture of solid compounds.
Pyroxylin is formed into flock or pulp, and into thin sheets or films, and the solvent then applied to the sheets by spraying or dipping; the sheets are then massed in a closed receptacle and the conversion finally completed by means of masticating rolls or heat and pressure.
342 208-May 18, 1886. J. G. JARVIS. Manufacture of zylonite and other pyrosytine compounds and articles made therefrom.
A seasoned, pulverized, and comminuted pyroxylin compound is treated with a solution of camphor, the solvent of which is not a solvent of pyroxylin such as coal tar naphtha-and the solvent of camphor is then eliminated from the mass. The mass may then be subjected to the action of heated alcoholic vapor.
\$46,376-July 27, 1886. M. C. LEFFERTS. Process of printing upon or decorating the surface of celluloid.
The design is printed or applied in ink or color and the surface is then subjected to the action of heat and pressure while in contact with a polished surface; to prevent.displacement it may be confined in a mold or die.
348,222-August 31, 1886. M. C. LEFFERTS and J. W. HYATT. Printing on pyroxyline compornds.
The pyroxylin compound is subjected to heat and pressure while in contact with the engraved plates; the ink may contain or consist of a solvent of pyroxyline and a pigment.
s49,658.-September 21, 1886. G. M. MOWBRAY. Process of and apparatus for washing, decoloring, and draining pyroxyline.
Pyroxylin is decolorized by the action of oxalic acid and hydrochloric acid; it is then subjected to washing by the flow of water through the mass from one side or end of a tank with overflow at the other.
349,659-September 21, 1886. G. M. MOWBRAY. Method of drying pyroxyline. Pyroxylin is desiccated by means of warmed air (not to exceed $38^{\circ} \mathrm{C}$.) which has been previously deprived of its moisture by chilling and passing over lime, either or both.
360,811-April 5, 1887. J. A. McCLELLLAND. Method of treating and ornamenting pyroxyline compounds.
The surface of celluloid containing a pigment is treated, in proper design, with an acid that will dissolve the pigment. The grain of ivory is imitated by coating the surface with a resist, removing parts of the resist according to the graining, or design, and then applying the pigment solvent. Coloring matter may be afterwards applied, with or without a new resist.

366,291-July 12, 1887. J. A. McCLELLAND. Plastic compound.
A non volatile gum or resin is used as a solvent for pyroxylin, as kauri gum, with or withont pigments, or fixed or volatile oils.

372,100-October 25, 1887. O. P. AMEND. Compound for pyroxyline or nitrocellulose.
Chloride of amyl in conjunction with camphor is used as a solvent for pyroxylin.
383,272-Moy 22, 1888. A. BENSINGER. Process of ornamenting celluloid surfaces.
The design, printed on paper with a suitable ink, is transferred to the celluloid surface, the latter being moistened with a solvent oi the same and of the ink, under pressure.
408,544-August 6, 1889. F. GREENING. Substitute for ivory, etc.
A base is prepared by treating fibrous or cellulose substances, such as cotton combings, rags, paper, etc., with a mixture of ruming nitric acid and suphuric acid, in the proportion of 30 per cent of the former and 70 per cent of the latter, then washing, and submitting the product to a bath of sodium chloride and ammonia alnm, and then dissolving the base in a solvent composed of a distillation of acetate of lead, 2 parts, and anhydrous lime, 1 part, mixed with fusel oil; $2^{\frac{1}{3}}$ gallons of the distillate to $1 \frac{1}{2}$ gallons of fusel oil.

409,545-August 20, 1889. C. F. BRADY. Process of printing pyroxyline compounds.
Pyroxylin compounds are imprinted with indelible colors by applying the coloring matter to the sheets by pressure and subsequently subjecting them to the direct action of steam in a chamber.

417,727-December 24, 1889. J.G.JARVIS. Process of ornamenting articles having a pyroxyline base.
The design is embossed upon the plastic material, then it is stained or colored, and inally the article is submitted to heat and pressure to smooth the embossed snrface.

418,186-December 24, 1889. С. H. KOYL, Reflector or mirror.
A sheet of transparent celluloid silvered on the back.
418,2s7-December 91 , 1889. R. C. SCHUPPHAUS AND M. T. WHITE. Process of manufacturing pyroxytine.
The body of cellulose is confined in a perforated cage while being treated in a nitrating solution to secure it against disintegration or disarrangement.
421,367-February 11, 1890. W. H. WOOD AND G. C. GILLMORE. (Reissuc: 11,774-April 15, 1890.) Process of embossing sheets of celluloid.
The material is embossed between a die and a "force" composed of celluloid or like material, with heat sufficient to cause them both to flow, the pressure being continued until the material to be embossed is forced into the die, and the die, "force," and material to be embossed retained in contact until cooled.
428,654-May 27, 1890. E. N. TODD. Process of manufacturing thin sheets of nitro-cellulose, etc
Glass plates are vertically suspended in a tank of a solution of collodion or pyroxyline, and aiter standing until all bubbles have escaped, the solution is drawn off slowly from the bottom of the tank, causing a film of solution to adhere to the plates, which, after drying, is removed as a thin, uniform transparent sheet.
458, 157-August 25,1891 . F. ECKSTEIN. Composition of matter for use as a substitute for glass
A composition consisting of collodion-wool, a nonresinous oil, as castor oil, and a balsam or solt resin, with or without magnesinm chloride to lessen inflammability.
460,086-September 22, 1891. W. HARVEY. Artiflcialhornandmethod of producing the same.
Artificial horn, produced by coloring sheets of plastic material, as celluloid or pyroxylin, in layers or strata, cutting the sheets into conical figures or forms nesting or laminating and uniting them, and then rolling and turning off the projecting edges of the series of nested and united cones to constitute a solid laminated mass or rod.
465,784-December 22, 1891. W. SCHMIDT. Process of polishing sheets of pyroxyline material.
A sheet of pyroxylin material is subjected to the action of vapor of alcohol and then pressed between polished surfaces.
470,451-DIarch 8, 1892. A. SEHER. Manufacture of compounds of pyroxyline.
As direct solvents of pyroxylin or nitrocellulose, there is used propion, buty ron, valeron, capron, methyl-ethyl-ketone (acetyl-ethyl), methyl-propyl-ketone methyl-butyl-ketone, methyl-valeral, ethyl-butyl-ketone, and methyl-amylketone, singly or any mixtures thereof.
444,814-May 17, 1892. A. A. C. DE COËTLOGON. Process of preparing celluloid and similar materiats for printing.
Celluloid having a surface adapted to be printed upon and absorb the ink; produced by forming on the surface a multltude of minute grains or pores, as by a sand jet, then washing the surface, then varnishing, applying an impalpable powder-as sulphate of magnesia and sulphatc of baryta-and then pro ducing a calender tinish.

490,195-January 17, 1899. B. B. GOLDSMITH. Process of producing nitro-celluose or celluloid surjaces.
Wood or other absorbent material is first given a coat or coats of varnish containing pyroxylin or pyroxylin compound, then layers of varnish containing resin, with or without a finisbing coat of varnish containing pyroxylin.
508,124-November 7, 1899. H. D. TURGARD. Process of denitration of nitro-cellulose and its compounds.
Nitrocellulose and its compounds are denitrated by immersing the material in a solution of bydro-sulphate of ammonia and a metalic sulphide, as sulphide of silver.

551,158-December 18, 1894. H. DE CHARDONNET. Process of manufacturing artificial silk.
Hydrated pyroxylin-differing from ordinary pyroxylin by containing at least 25 per cent of water and of greater solubility-is produced hy treating pyroxylin while still moist with hydrated ether; which hydrated pyroxylin is dissolved to form collodion and spun into threads by discharging through nozzles; certain substances may be added to increase the fluidity. The spun collodion is denitrated by immersion in a hath formed hy mixing calcium monosulphide, sulphate of ammonia and water, and removing the precipitate; the bath may be regenerated by adding sulphuric acid, and then calcium monosulphide and separating the precipitate.
546,360-September 17, 1895. J. H. STEVENS AND E. D. HARRISON. Production of imitation onyx from pyroxylin compounds.
A rod or sheet of pyroxylin composition in imitation of onyx, consisting of two or more light tints, with streaks of a darker color breaking through or interspersed with the lighter tints; produced by forming the light-tinted parts in solidified strata, cutting through these strata across the edges, inserting coloring matter or pyroxylin of a different color between the cut parts, and then solidifying the whole into blocks or masses.
559,392-May 5, 1896. F. LEHNER. Process of making artifcial silk.
Two solutions are formed; first of silk waste digested with caustic alkali, or a solution of copper or a copper salt in ammonia, precipitated from such solution and finally aissolved in concentrated acetic acid; and, second, of a substance containing cellulose macerated with a solution of copper or a copper salt in ammonia, nitrated, and then partially denitrated; which two solutions are mixed and caused to pass through a congealing solution, as of oil of turpentine or other hydrocarbon, to form a thread. The thread is laid in a solution containing soluhle glass, wherehy it is rendered incomhustible.
569,626-June 23, 1896. F. LEHNER. Art of preparing artificial silk.
Cellulose is gradually introduced into a nitrating bath and the temperature of the bath progressively raised as the cellulose is added, wherehy a homogeneous mixture of tri and tetra nitrocellulose is obtained. The whole mixture is then maintained at the final temperature for several hours; the nitrating tiquid separated by centrifugal action; the acid-moist resultant mass immersed in sulphuric acid: a vulcanized drying-oil then added; the mixture finally disin sulphuric acid: a vulcanized drying-oil then added; the mixture finally dissolved in a suitable solvent, such as acetone, an alcohol, or alcohol ether; then
the thread is drawn and the same immersed in warm water, then dipped in a solution of ammonium or other alkali hydrosulphide and a neutral magnesinm salt at 40° C. (keeping the same therein until the rainbow colors of cellulose are visible under the microscope in polarized light), and finally washed, dried, and finished.

562,792-June 23, 1896. F. LEHNER. Process of and apparatus for making artificial silk.
A ground solution is passed into a bath free from oxygen-as of a hydrocarbon, such as oil of turpentine-and the thread drawn from the bath. The ground solution consists of resin, linseed oil, nitrocellulose, and an inorganic salt to render the thread incombustible.
56s,214-June 50, 1896. H. M. TURK. Composition of matter for manufacturing artificial silk.
It consists of nitrocellulose, 96 parts; gelatin or isinglass, 2 parts; and albnmin, 2 parts; dissolved in 1,600 parts of glacial acetic acid.
587,097-July 27, 1897. A. L. KENNEDY. Composition of matter and articietrcated therewith.
A coating solution for the surface of leather and other similar materials, consisting of 1 gallon of amylacetate, 12 ounces of nitrocellulose, 10 onnces of lanolin, and 3 ounces of corn oil, mixed and combined with aniline or other coloring matter.
590,842-September 28, 1897. A. L. KENNEDY. 1Vaterproof cloth and process of making same.
A fahric having its face portions composed of natural fibers and its inner portions composed of threads or strands impregnated with a salt of cellulose, whereby ordinary unglazed or uncoated and nappy faces are presented, prowhereby ordinary unglazed or uncoated and mappy aces are prelved soluble duced by entwining ordinary threads along withecting it to a solvent of the salt salt of cellulose to rorm a fabric, and then subject cause dissolved salt to impregnate the ordinary threads.
$600,884-$ Maren 15, 1898 . J. H. STEVENS AND M. C. LEFFERTS. Process of manufacturing pproxylin sheets.
A nonoxidizing solution of a pyroxylin compound is caused to flow in the form of a moving continuous, fluid sheet, as onto a revolving drum, the thickness of of moving, continuous, fuid seet, as the surplus solution, and the volatile ingredients are then evaporated.
601,987-April 5, 1898. F. G. ANNISON. Enameled paper and componnd used to enamel same.
An enameled paper adapted to receive and retain printing and lithographic impressions, the enamel consisting of a nitrocellulose compound containing oil impressigment, the latter being larger than or in excess of the nitrocellnlose.
602,159-April 12, 1898. E. D. HARRISON AND C. H. THURBER. Method of producing pyroxyline imitations of mosaic.
Pyroxylin compounds are formed into sticks or rods; coated with a dyeing cubstance; arranged side by side; welded into a block; and sheets are then cut substance;
602,797-April 19,1898. F. G. ANNISON. Art of coating fabrics or permeable materials with nitrocellulose compounds and product produced thereby.
A flexible permeahle base is first impregnated to the desired depth with a liquid solution of the compound, dried, and then one or more coats of a heavier solution of the compound are applied, each dried in turn; the

609,001-April 26,1898 . W. H. WOOD AND J. H. STEVENS. Waterproof fobric.
A waterproof fabric having two or more successive coatings of a flexible pyroxylin compound, the under coating heing more flexible than the upper coat or coatings, as, for example, the inner stratum being richer in oil than the coater stratum.
603,526-Moy 9, 1898. J. R. FRANCE. Method of manufocturing pyroxylin com-
pounds in imitation of marble.
Pyroxylin compounds of different colors are produced; formed into fragments; dipped into a dye dissolved in a solvent of pyroxylin, and the dipped fragments calendered together to form sheeting; which may be compressed into fragments calen
608,7\%6-August 9, 1898. J. H. STEVENS. Pyroxylin compound.
A composition of pyroxylin, and a lead salt of a volatile monatomic fatty acid, as lead acctate, capable of transparent effects.
608,787-August 9, 1898. J. H. STEVENS. Pyroxylin compound
A composition of pyroxylin and lactamid, capable of transparent effects.
609,475-August 2s. 1898. J. H. STEVENS. Pyroxylin compound.
A composition consisting of pyroxylin and a salt of camphoric acid, as sodium camphorate.
610,566-September 13, 1898. J. H. STEVENS. Pyroxylin compound.
A composition consisting of pyroxylin and a manganese salt of the volatile monatomic series of fatty acids, as acetate of manganese.
610,615-September 13, 1898. J. H. STEVENS. Pyroxytin compound.
A composition of pyroxylin and a lactophosphate, as lactophosphate of calcinm.
610,95s-September 20, 1898. J. H. STEVENS. Pyroxylin compound.
A composition of pyroxylin and a salt of hypophosphorons acid, as sodium hypophosphite; capahle of transparent effects.
612,066-October 11, 1898. J. H. STEVENS. Waterproof fabric.
A fabric coated or impregnated with a pyroxylin componnd containing a nondrying oil, as castor oil, and a salt containing a halogen element, as zinc chloride.
612,067-October 11, 1898. J. H. STEVENS. JFotcrproof fabric.
A fahric waterproofed by a pyroxylin compond which contains pyroxylin, castor oil, and a salt which contains an aromatic acid, as salicylate of soda.
612,551-October 18, 1898. J. H. STEVENS. Pyroxylin compound.
A composition of pyroxylin and a lithium salt of a volatile monatomic fatty acid, as lithium acetate; capahle of transparent effcets.
612,55s-October 18, 1898. J. H. STEVENS. Waterproof fabric.
A fabric coated or impregnated with a pyroxylin componnd consisting in part of castor oil and a salt or compound containing the phenoylic radical $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$, as sulphocarhonate of soda.
618,400-November 1, 1898. J. H. STEVENS. Pyroxylin compound.
A composition of pyroxylin and a salt of succinic acid having an inorganic hase, as potassium succinate.
614,514-November 22, 1898. J. H. STEVENS. Pyroxylin compound.
A composition of pyroxylin and an inorganic salt of a balogen acid derived from the volatile members of the monatomic series of fatty acids, as an inorganic salt of chloracetic acid.
615,919-Dccember 6, 1898. J. H. STEVENS. JVaterproof fabric.
A fabric waterproofed by a pyroxylin compound which contains pyroxylin, onl, camphor, and naphthol.
615,446-Dccember 6, 1898. B. B. GOLDSMITH. Finishing fibrous or absorbent surfaces.
A coator coats of an aqneons solution of casein or casein compound is first applied, and then one or more coats of pyroxylin varnish, with or without finishing coats of gloss varnish.
617,450-January 10, 1899. J. H. STEVENS. Iyroxylin composition.
A composition containing pyroxylin and a urea salt of an acid of the aromatic series containing carboxyl (COOH), as urea benzoate; capable of transparent effects.
619,097-February 7, 1899. J. R. FRANCE. Pyroxylin imitation of mosaic and method of monufacturing same.
A pyroxylin imitation of mosaic, produced by forming pieces of pyroxylin compounds of different colors, form, and size, dipping them in a dye dissolved in a solvent of pyroxylin, pressing the dipped pieces into cakes, and cntting sheets therefrom.
621,882—March 21, 1899. J. H. STEVENS. Pyroxyline compound.
A composition containing pyroxylin and a salt of an acid of the aromatic series containing carboxyl (COOH), said salt having an inorganic base, as series containing carboxy benzoate, capable of transparent effects.
621,434-March 21, 1899. J. H. STEVENS. Transparent pyroxylin plastic composition.
A solid transparent composition consisting of pyroxylin, camphor, and a preserving potassium salt of a volatile monatomic patty acid, as potassium acetate, the sald salt not exceeding 3 per cent by weight of the pyroxylin.
622,290-April 4, 1899. J. H. STEVENS. Transparent pyroxylin plastic composition.
A solid transparent composition consisting of pyroxylin, camphor, and a preserving sodium salt of a volatile monatomic fatty acid, as sodium acetate, the said salt not exceeding 3 per cent by weight of the pyroxylin; the best effects being attainable with about 1 per cent.
622,291-April4, 1899. J. H. STEVENS. Transparent pyroxylin plastic composition.
A transparent solid composition consisting of pyroxylin, campbor, and a preserving calcium salt of a volatile monatomic fatty acid belonging to the group whicb consists of calcinm propionate and calcium butyrate; the said salt never morc than 3 per cent and for proper proportions should not exceed 1 per cent.
622,292-April 4, 1899. J. H. STEVENS. Transparent pyroxylin composition of matter.
Barinm butyrate is mixed with pyroxylin, not to exceed 5 per cent.

622,293-April/4, 1899. J. H. STEV ENS. Transparent pyroxylin plastic composilion. It consists of pyroxylin, camphor, a liquid solvent, and an inorganic salt of lactic acid, as the lactates ol potassium, strontium, calcinm, sodium, and barinm, the salt not to exceed 5 per cent of the pyroxylin; preferably about 1 per cent. 622,294-April 4, 1899. J. H.STEVENS. Transparent pyroxylin plastic camposition. A solid transparent composition consisting of pyroxylin, camphor, and a preserving zinc salt of a volatile monatomic fatty acid, as zinc formate, zinc 622,72\%-April 11, 1899. J. H. STEVENS. Flexible skin or fabric.
A fabric waterproofed by a pyroxylin compound which contains pyroxylin, castor oil, beta-naphthol, and amyl acetate.
625,318-May 29,1899 . L. L. BETHISY. Uninflammable nitrocellulose product
It is composed of nitrocellulose with a binder rendere uncombustible by the presence of zinc chloride, as alcohal, essential oil, vaseline ail, acetic ether, zinc chloride, and white gelatine.
626,782-June 19, 1899. J. H. STEVENS. Pyroxylin composition.
A composition of pyroxylin and strontinm butyrate; capable of transparent
effects. effects.

651,964-June 12, 1900. I. KITSEE. Compound useful as a substitute for rubber.

A composition consisting of a glue compound-as employed for printers' ralls-and cellulond.
657,595-September 11, 1900. C. G. HAGEMANN AND F. O. C. ZIMMERMANN.
A product consisting essentially of gelatinized nitrocellulose and a hydrate or hydroxid of a metal, as snlphate of alumina, prodnced by molecularly combining with a solution nitrocellulase; a concentrated solution of a hydrate or hydroxid of a metal; reacting with a concentrated solution of caustic soda; re-
moving the cellulase solvent and soluble constituents: drying, and gelatinizing moving the cellulase solvent and soluble constituents: drying, and gelatinizin
the compound with a solvent of nitrocellulose holding camphor in solution.
662,961-December 4, 1900. A. N. PETIT. Solvent material for treating surfaces of celluloid.
A mixture of a solyent of cellnloid and a fatty acid or like material, as amyl acetate and oleic acid.
663,7s9-December 11, 1900. J. DUQUESNOY. Process of making artificial-silk
thread.
Nitrocellulose is dissolved in a solvent composed of equal parts of acetone, acetic acid, and amyl alcohol, and expressed from a capillary orifice.
665,975-January 15, 1901. A. PETIT. Composition of matter far manufacturing artificial silk threads.
The compositian consists of 100 pounds of dry nitrocellulose, 7 pounds of india-rubber solution, and 5 pounds of stannous chloride, mixed with sufficient solvent to bring it to the required consistency.

VISCOSE.

520,770-June 5, 1894. C. F. CROSS, E. J. BEVAN, AND C. BEADLE. Plastic compound of cellulase.
A soluble plastic compound derived Irom cellmlose, canstic alkali, and carbon di-sulphide as by treating cellulase, saturated with a strong solution of caustic soda, in a chamber with carbon di-sulphide.
530,826-December 11, 1894. C. F. CROSS AND E. J. BEVAN. Manufacture of cellulose acetate.
The intermediate product manufactured by mixing cellulose hydrate with zinc acetate solution and drying and dehydrating, is treated with acetyl chloride, the crude product of the reactian washed, pressed, and dried, and then treated with chloroform, whereby a solution of cellulose acctate is ab-
tained free from cellulose and the solvent finally evaporated.
571,5s0-November 17, 1896. R. LANGHANS. Method of and composition for making ariffcial silk.
A noninflammable silk, produced from cellulase and other analogous carbohydrates by purifying the material, subjecting it to the action of phosphosulphuric, sulphuric, and phosphoric acids until a viscid syrup is obtained, increasing the stability of the syrup by ureatment with an ethyl ester, drawing it into a filament, removing the acid, and hardening.
604,206-May 17, 1898. C. F. CROSS, E. J. BEVAN, AND C. BEADLE. Modiffcation of cellulose and method of preparing same.
A structureless insoluble modified cellulose, obtained by first treating cellulose with caustic alkali and carbon di-sulphide (No. 520,770), and then decomposing the soluble mass thus abtained, as, For example, by exposire to heat above $100^{\circ} \mathrm{C}$. or by exposure to steam at the same temperature.
617,009-January s, 1899. M. FREMERY AND J. URBAN. Process of manujacturing artificial silk.
Cellulose is dissolved, withaut decomposing the same, in a cupro-ammonium salt solution and caused to flow in a thread or fiber-like stream into a bath containing a precipitant of cellulose, such as an acetic-acid salution, whereby the
cellulose is precipitated from its salution in a thread or fiber-like form. The cellulose is precipitated from its salution in $\{$ thread or fiber-like form. The thread is wound within the bath as precipitated, then unwound and wound
outside the bath, and simultaneously subjected to the action of a drying agent. 625,08s-May 16, 1899. J. F. HOYNE. Pracess of manufacturing fiberless thread.
Cellulose is dissolved in a basic solution of zinc nitrate, chloride, or ather zinc salts, filtered, and pressed throngh small holes into methylated spirits-thereby caagulating the cellulose-when the threads are strained nearly to breaking and dried under strain.
634,571-October 10, 1899. J. C. CHORLEY. Method of praducing cellulase films for photographic or ather purposes.
Films of any desired length are produced by a continuous operation by supplying viscose in a regulated and evenly distribnted quantity or film, heating the gradually moving film, and simultaneously subjecting it to a current of air traveling in the opposite direction, and subjecting the film to the action of boillng brine
film form.
646,044-March 27, 1900. E. THOMAS, J. BONAVITA, AND M. OLIVlER. Manufacture of viscose.
To alkali cellnlose there is added 25 to 30 per cent of sodium sulphite, and about 30 per cent af zinc oxide, calculated on the cellulose contained in the
alkali cellulose, and the mixture is then treated with carbon disulphide; the product being free from the objections of color and odor heretofore attaching to viscose.
646,551-March 27, 1900. E. BRONNERT. Production af cellulose solution for manufacturing threads.
Clean cellulose is treated with a concentrated caustic alkali lye, washed with much water, treated for two to four hours with a weak bleaching liquor, snbmitted to centrifugal action, and finally dissolved while wet in an ammoniacal solution of cupric oxide.
646,381-March 27, 1900. E. BRONNERT. Production of cellulose solutions for manufacturing threads.
Cellulose in a finely divided state is treated for about one hour with a cold, concentrated solution of caustic alkali, then the product is mixed with a pawdered copper salt-such as copper sulphate-in proportion equivalent to the dissalved in strong ammonia solution.
646,799-April 3,1900 . E. BRONNERT. Process of producing solutions of cellulose. Cellulose, freed from fat and bleached, is treated with concentrated causticalkali solution, as in the mercerizing process, at a low temperature, then submitted to centrifugal action and washed, then treated with an axidizing agent, directly in concentrated zinc-chloride solution.
648,415-May 1, 1900. W. H. KRUG. Substitate for horn and process of manufacturing same.
A vegetable tissue, as pith, is subjected to the action of an alkali solution, washed and gronnd, the nongelatinized fibers removed by washing, and the resultant mass drained and dried.
650,715-May 29, 1900. M. FREMERY AND J. URBAN. Process of manufacturing cellulose products.
Cellulose products, as threads and films, are subjected cor a short time to the action of water at an elevated temperature of from 60° to $100^{\circ} \mathrm{C}$, and then lried at a comparatively low temperature not exceeding $40^{\circ} \mathrm{C}$., to impart a glossy appearance and a comparatively great strength.
665,975-January 15, 1901. A. PETIT. Composition of matter for manufacturing artificial silk threads.
It consists of about 100 pounds of dry nitracellulose, 7 pounds of india-rubber solution, and 5 pounds of stannous chloride, mixed with a sufficiency of solvent to bring it to the required consistency.

RUBBER AND RUBBER SUBSTITUTES.

240-June 17, 1837. C. GOODYEAR. Impravement in the process of divesting caoutchouc, gum-elastic, or india-rubber of its adhesive properties, and also of bleaching the same, and thereby adapting it to various useful purposes.
The adhesiveness of the surface of caoutchouc is destroyed by the application of an acid solntion of the metals, as, for example, a nitrate of copper or a nitrate of bismuth. Canutchoue paste is bleached by incorparating therewith lime, preferably quicklime.
1,090-February 24, 1839. N. HAYWARD (ASSIGNOR TO C. GOODYEAR). Improvement in the mode of preparing caoutchouc with sulphur for the manufacture of various articles.
Sulphor is combined with caautchanc, either in solution, as in ail of turpentine, or in substance, causing the gum to dry more perfectly and to improve the whole substance.
3,685-June 15, 1844. C. GOODYEAR. (Reissues: 156 and 157-December 25, 1849; 1,084-November 20, 1860.) Improvement in process for manufacture of indiaruboer.
India rubber, combined with ar in the presence of sulphur, is cured by subjecting it to a high degree of artificial heat, say, from 212° to $350^{\circ} \mathrm{F}$., or approaching $270^{\circ} \mathrm{F}$. ; or a carbonate or other salt or oxide af lead is added, as india rubber 25 parts by weight, sulphur 5 parts, and white lead 7 parts. Layers of cotton
batting may be interposed between thase of the gum. batting may be interposed between thase of the gum.
4,005-April 22, 1845. N. GOODYEAR. Impraved method of manufacturing indiarubber cloth and sheẹi india rubber.
The gum is impregnated with grit, iron or other metal filings, ar other hard substances.
5,592-May 23,1848. R. A. BROOMAN. Applications of the substance called guttaand purposes and the modes or processcs of preparing, combining, and applying the same.
Gntta-percha, is freed of foreign matter by soaking in water and squeezing
between rolls then kneaded in a machine when it may be mixed with between rolls, then kneaded in a machine. When it may be mixed with caoutchauc or sulphur or both, and pigments. If caoutchoue is added, a degree of beat not less than $150^{\circ} \mathrm{F}$. is necessary to effect the amalgamation. Pulverized chalk or ather soft powder may be added, or gronnd emery, sand, or other hard substance. It is emplaycd in manufacture by malding, stamping, or is nsed for enveloping. It is reduced to a pawder and employed in the making af casts, material becomes ductile and fills all parts of surface being he
S,075-May 6, 1851. N. GOODYEAR. (Reissues: May 18, 1858-556-557.) Improvement in the manufacture of india rubber.
A combination of india rulber, sulphur, and magnesia, ar lime, or a carbonate, or a sulphate of magnesia, or of lime, with or without shellac for making a ha,
10,714-April 20, 1886. A. KISSEL. Hardening rcsins.
Resins or resinous products are hardened by partially or wholly nertralizing
the cantained acid or acids with caustic lime or other caustic alkaline earth. the cantained acid or acids with caustic lime or other caustic alkaline earth.
11,096-June 15, 1854. THOMAS, EARL OF DUNDONALD. Improvement in
compositions for coaling telegraph wires and for other purposcs.
15 A compound of bitumen, asphaltum, or mineral pitch, 75 parts: india rubber, 15 parts, and 10 parts of a mixture formed by dissalving gum shellac (1 part) and resin (4 or 5 parts) in oil of petroleum, dead-oil, or naphtha, with steam
heat.
15,067-June 10, 1856. A. G. DAY. (Reissues: 756 and 757-July 12, 1859.) Improvement in clcansing caoutchouc.
Alkali or its equivalent is used for separating park, sticks, etc., from crude alkaline liquor by means of un exliausting. The caoutchouc is charged with alkaline liquor by means of an exhausting apparatus.

21,122-August 10, 1858. A. G. DAY. (Reis8ues: 620-November 9,$1858 ; 5,230,5,281$, and ह.,232-January 14, 1879.) Improvemenl in hard rubber.
A mixture of 2 parts by weight of india rubber or other vulcanizable gum, and 1 part of sulphur, vulcanized at a temperature commencing at about $275^{\circ} \mathrm{F}$. and carried to 300° or upward.
25,110-August 16, 1859. C. GOODYEAR. Porous india-rubber cloth.
A wovell or equivalent fabric having a thin porous coating of india rubber or allied gum.
25,199-August 2S, 1859. C. GOODYEAR. Porous napped india-rubber fabric.
A fabric composed of cloth and india rubber rendered pervious to air, by having fibers incorporated therewith, and impervious to water, with a face of focke, clippings, or shavings of woolen or other fibers.
26,698-January 9,1860 . J. MURPHY. Improvencnt in treating waste and inferior
gums.
The process consists in: First, the manufacture of hard stock of vulcanizable gum by blending it with sulphur and vulcanizing; second, the reauction of the bard stock to powder; third, the formation of a compound of the ground stock and raw gum by blending; and, fourth, the vulcanization of this compound.
27,7\%-April 10, 1860, J. M. BATCHELDER. Improvement in insulation of submarine telegraph wircs.
A telegraph wire or other conductor of electricity insulated with a compound substance composed of pulverized silex, glass, or other nonconducting material mixed with india rubber and sulphur and subsequently vulcanized.
27,887-April 10, 1860. C. F. E. SIMON. Improvement in restoring waste vulcanized rubber.
Ground or cut waste of vulcanized india rubber is mixed with chloride of lime (100 parts of rubber waste and 2 parts of chloride of lime) and exposed to a heat of 900° to $1,200^{\circ} \mathrm{F}$., with stirring, till the volitilization of the sulphur is complete.
29,717-August 21, 1860. A. C. RICHARDS. Improvenlent in devulcanizing waste uboer.
Rubber waste is ground to powder and treated with steam in a closed vessel at a temperature of over $600^{\circ} \mathrm{F}$
30,181-September 25, 1860. DU B. D. PARMELEE. Improvement in restoring waste vulcanized nubber.
Waste rubber is powdered and then combined with india rubber which has been modified by heat, so as to obtain it either in a semiliquid or melted condition or in a liquid or vaporous condition
91,240-January 29, 1861. R. F. H. HAVEMANN. Improvement in compositions of caoutchouc.
A substitute for ivory and bone produced by the admixture of oxide of zine with chlorine-treated rubber or its chlorine-treated allied gums, in the proportion, say, of one part of zinc oxide to two parts of gum.
31,241-January 29, 1861. R. F. H. HAVEMANN. Improvement in compositions of caoutchouc.
A substitute for wood, ivory, and bone produced by the admixture with chlo-rine-treated rubber or its chlorine-treated allied gums, of one-eighth of a dram of aqua-ammonia, one-eighth of a dram of powdered carbonate of ammonia, and half a pound of lime, per pound of gum, with pressure and heat.
39,094-August 20, 1851. C. IfcBURNEY. Improvement in utilizing waste vulcanized rubber.
Comminuted waste rubber is treated with an oil having no solvent action upon the gum, such as resin oil, castor oil, etc.
34,309-February 4, 1862. T. J. MAYALL. Improvement in restoring waste rubber.
Vegetable tar or pine oil is combined or incorporated with waste vulcanized rubber.
40,407 -October 27, 1863. C. H. \& D. E. HAYWARD. Improvement in treating waste rubber.
Waste rags of fibrous material and rubber are boiled in an acid or alkali to destroy the tenacity of the fibers of the rags, so that the rubber may be reground destroy the tenacity of the fibers of the rags, so
40,491-November S, 1869. T.J. MACKALL. Improvement in restoring wasterubber.
Rubber waste is reduced to a fine condition and then subjected to the direct action of the flames of gas or inflammable liquids.

46,610-February 28, 1865. E. L. S] MPSON. Improvement in the process of manufacturing india rubber, gutta-percha, etc.
A concentrated preparation of sulphur and linseed or other vegetable oil is employed in the manufacture of india rubber, to produce a product free from the disagrecable odor and deleterious effects of vulcanized rubber.
46,750-March 7, 1865. S. C. BISHOP. Inproved composition for insulating telegraph wires..
A mixture of gutta-percha or india rubber, 4 parts; paraffine, 1 part; wheat flour, 2 parts; and resin, 1 part; or in lieu of this gutta-percha or india rubber, 6 parts; paraffine, 2 parts; white oxide of zinc, 1 part; catechu, 1 part; and gelatine or glue, 2 parts; mixed in solution or by beated rolls.
51,931-December 5, 1865. F. MARQUARD. (Reissue: 2,180-February 20, 1866.) Improvement in the manufacture of white rubber.
After bleaching with chlorine gas the rubber or like gum is washed with hot water. It is then subjected to distillation. The product after straining, pressWater. It is then subjected to distillation. The product arter straining, press-
ing, and drying, is redissolved in a small quantity of chloroform mixed with ing, and drying, is redissolved in a smans quantit of cholds.

51,992-December 5, 1865. E. MARQUARD. (Reissue: 2,179-February 20, 1866.) Improvement in the manufacture of white rubber.
Rubber dissolved in chloroform (or other solvent) is bleached by treatment with caustic ammonia gas or chloride of ammonia. It is then washed, with hot water, subjected to distillation, and redissolved as in No. 51,331, and combined with phosphate of lime or a carbonate of ziac by means of pressure in hot molds.
54, $\mathbf{2 8 5}$-May 8,1866 , C. L. FRINK. (Reiseues: 4,942-June 11, 1879; 6,014-August 11, 1874.) Improvement in vulcanzed rubber compounds for packings and other purposes.
A vulcanized rubber compound formed of rubber, 10 parts; plumbago, 20 parts; A vonate of lead or litharge, 6 parts; sulphur, 4 parts, and brass or other metal filings, 6 parts.

54,554-May 8,1866. N.JENKINS. (Rci88ue: 3,579-August 3, 1869.) Improvement in the manufacture of elastic packing.
An elastic packing, composed of at least four-tenths of finely pulperized refractory earthy material, such as French chalk, mingled with rubber, prerefractory earthy material such as French
pared for valcanizing and then vulcanized.
58,615-October 9, 1866. A. G. DAY. (Reissues: 6,707-October 19, 1875, produet; 6,708-October 19, 1875, process.) Improvement in artificial caoutchouc.
Vegetable and mineral oils are combined with gum-resins or other resinous bodies, and sulphur at a temperature sufficient to produce vulcanization; the temperature increased. It may he mixed with india rubber or gutta-percha.
62,055-January 26, 1867. W. MULLEE. Improvement in proccss of preparing india rubber.
Thin sheets of rubber are suspended in a bath of melted sulphur heated to 220° to $230^{\circ} \mathrm{F}$., then removed, the crystals of sulphur formed thereon removed, and a pile of the sheets are then kneaded, worked, and vulcanized.
83,081-October 13, 1868. S. C. BISHOP. Improved compound for insulating telegraph and electric wires.
It consists of $2 \frac{1}{4}$ pounds of asphaltum, one-quarter pound of gutta-percha, onequarter pound of crude resin, half a gallon of spirits of turpentine, with about 1 gill of boiled linseed oil and 2 ounces of umber.
94,691-September 7, 1869. S. MOULTON. Improved printers' inking roller from rubber sponge.
To obtain a substance of a mossy nature, vulcanized india rubber is pulverized and subjected to a second vulcanization.
97,880-November 17, 1869. E. CHESTERMAN. Improvement in the manufacture of rubber sponge.
Artificial sponge is made by incorporating into a homogeneous mass, on hot rolls, specified ingredients-salt, salts of soda, alum, or other deliquescent or soluble solid not affected by moderate heat, either with or without such liquids as molasses, etc.-and afterwards expanding, revulcanizing, and setting. It is expanded by treatment in a hot water, steam, or other bath. Color is imparted by the use of golden sulphuret of antimony incorporated with the compound.
1s7,509-April 1, 1879. W. A. TORREY. Improvement in v'ulcanized rubber compounds.
Mica is combined with rubber prior to vulcanization.
140,281-June 24, 187s. D. M. LAMB. Improvement in the production of waterproof gum.
Waterproof gum made from the inspissated juice of plants of the asclepias or milkweed family, or any of the analogous plants possessing like properties.
140,282-June 24, 1878. D. M. LAMB. Improvement in the prodution of waterproof gums.
A waterproof gum is extracted from plants of the asclepias or milkweed family, by subjecting the plants to fermentation, and inspissating the resulting liquid by evaporation.
140,283-June 24, 187s. D. M. LAMB. Improvemenl in preparing waterproof gums from fiaxseed, etc.
A vulcanizable gum is produced from flaxseed or other seeds possessing similar properties-as rape and cottonseed-by maceration, straining, and subsequent inspissation.
142,908-September 16, 187s. C. L. FRINK. Improvement in rubber compounds for the manufacture of packings, etc.
A mixture of india rubber or other vulcanizable gum with sulphur and other solid materials, such as various earths, oxides, metal filings, and the like, forming a nonvulcanized but vulcanizable compound; that is, vulcanized in the place to be packed.
146,158-January 6, 1874. S. W. ANDREWS AND L. GODFREY. Improvement in compositions of rubber for use in separating cockles from grain.
A vulcanized composition of 8 ounces of linseed oil and 2 ounces of chalk; 8 pounds of zinc white; and 4 pounds of rubber gum, with sufficient sulphur. It is vulcanized at $260^{\circ} \mathrm{F}$, for not to exceed 3 hours and then subjected to a heat of about $212^{\circ} \mathrm{F}$. for two hours, more or less.
146,387-January 18, 1874. P. FiNLEY. Improvement in the preparation and treatment of india-rubber varnish.
Dehydrated or baked india rubber, produced by heating sliced or comminuted india-rubber at a temperature of from 138° to $100^{\circ} \mathrm{C}$. for seven to ten hours. It is combined with sulphur and benzine or other solvent of india rubber to form a varnish.
153,447-July 98,1874 . L. O. P. DFEYER. Improvement in processes of producing vulcanized soft india-rubber goods.
Paraffin is used in covering the plastic compound with sheets or forms of metal preparatory to vulcanization.
153,448-July 28, 1874. L. O. P. MEYER. Improvement in soft vulcanized india rubber with glossy surface.
Soit vulcanized rubber having a glossy surface: produced by process No. $153,447$.
153,449-July 28, 1874. L. O. P. MEYER. Improvement in processes for the production of hard rubber or vulcanite with cloth surface or surfaces.
A thin coat of soft vulcanizable india rubber is applied between the cloth and the hard componnd and then vulcanized.
168,129-September 28, 1875. M. W. BEYLIKGY. Improvement in extracting rubber from waste.
Rubher solutions are solidified through the agency of a current of air circulating over the suriace of the solution, through a condenser to deposit the volatile solvent, then through a beater and back to the solution vessel.
179,576-July 4, 1876. W. D. LATHAM. Improvement in cement.
A cement composed of 1 ounce of crude gutta-percha, 5 grains of india rubber, and 1 pound of chloroform.

180,484-August 1, 1876. G. MAGNUS. Improvement in compositions for billiard balls and procceses of manufacturing the same.
A mixture of india rubber, sulphur, sulphate of baryta-the latter in quantity at least 50 per cent of the rubber-and coloring matter; the composition is subjected, in molds, to a slowly increasing heat for ten hours or more.

210,405-December 3, 1878. A. G. DAY. Improvement in the combination of vegctable oils and grahamite for the manufacture of vilcanized compounds.
A kerite product, formed by the combination of grahamite or its equivalent with another resinons body, and with vegetable oil and sulphur: as by mixing cottonseed oil, liquid coal tar, and grahamite with \& small quantity of oxide of zinc, heating to about $330^{\circ} \mathrm{F}$., cooling to $200^{\circ} \mathrm{F}$., and adding linseed oil, and then raising the temperature slightly and adding the sulphur.
210,406-December S, 1878. A. G. DAY. Improvement in compounds for the nanujacture of kerite.
Clay or other equivalent earth is mixed as an absorbent witb tbe oils, resinous bodies, and sulphur in the mannfacture of kerite.
210,407-December 3, 1878. A. G. DAY. Improvement in compounds of india rubber and kerile.
A vulcanized product consisting of the combination of crude kerite with natural india rubber.
210, 408-December s, 1878. A. G. DAY. Improvement in the monnfacture of kerite from gums and oils.
A vulcanized compound composed of vegetable or mineral oils, a resinous body or bodies, and sulphur; as cottonseed oil, linseed oil, coal tar, and sulphur, and preferably wax with or without paraffin or ozocerite.
210,409-December 3, 1878. A. G. DAY. Improvement in the mannufncture of kerite. Tbe process of making a vulcanized product by combining crude kerite or artificial caoutchouc with natural india rubber.
210,410-December 3, 1878. A. G. DAY. Improvement in preparing vegetable oils for the manufocture of kerite.
Vegetable oils are subjccted to the action of sulphur at a higb temperature, as $520^{\circ} \mathrm{F}$.
210,411-December 3, 187s. A. G. DAY. Improvement in the manxfacture of artificial caoutchoue or kerite.
The process of making a vulcanized compound by combining cottonseed oil, coal tar (or pitch or bitumen), linseed oil, and sulphur, with or withont vegetable or animal wax, ozocerite, and oxide of iron.
211,340-January 14, 1879. J. MURPHY. Improvement in qulennized india-rubber valves.
Composed of vulcanized rubber and gutta-percha, in the proportions of 2 parts of tbe former to 1 part of the latter, with or without the addition of metallic earths and oxides; it will resist the action of oils.
216,15s-Jitne 3, 1879. D. F. CONNELL AND E. FAGAN. Impronement in hard rubber compounds.
Strips or sbreds of metal foil are incorporated with caoutchone prior to vulcanization.

218,842-August 26, 1879. J. W. WATTLES. Invprovements in trcating vulcdnizcd india rubber or caoutchouc.
Vulcanized rubber is treated in a bath of acetic acid, or it is otherwise applied to increase its strength and elastic force.
219,033-Augnst 26, 1879. J. STEPP. Improvement in the modes of covering wooden and other articles with india rubber.
Gum is first applied in solution, then the article is covered with a valcanizable compound and the article subjected to liquid pressure during the process of vulcanization.

286,017-March 30, 1880. C. V. BEACH. India rubber and other gum compounds for surfacing cloth, and for other purposes.
Rubber and other gum compounds are deoderized by combining therewith gum benzoin, say 5 per cent or benzoic acid alone.
226,057-March 80,1880 . H. GERNER. Praccss of the treatmeut of india rubber, ctc.
The process consists in washing india rubber and like gums in warm water in which is dissolved some soda, then cutting into small particles, then freezing, then grinding in a frigid mill, agajn washing in cold water, then subjecting to the action of solvents in a closed vesscl and mixing with desired substances and completing the manufacture.

226,058-March 80,1880 . H. GERNER. Manufacture of goods from caoutchouc, ctc. The process consists in first mixing dissolved camphor and sulphur, then evaporating the moisture of the camphor solvent and mixing with caoutchoue and vulcanizing. The rubber compound consists of equal parts of dissolved camphor, sulphur, and caoutchouc.

296,070-March \$0,1880. L. M. HEYER. Treating waste vulcanized caoutchouc.
Rubber waste, fifter the removal of the sulphur by the direct action of heat, is subjected to the action of boiling water or steam until sufficiently fluid to strain, and then strained.
229,038-Junc 22, 1880. H. GERNER. Manufacture of vulcanized india-rubber. compounds.
Camphor is mixed with sulphur-as by melting them together, cooling, and grinding-and incorporated with india rubber, with or without the addition of glycerine, and the mass vulcanized.
22:99,794-July 13, 1880. A. B. ALLEN, Manufacture of substitutes for harcl rubber. Hard wood and articles made therefrom are treated with resin oil at a slow heat, and afterwards coatcd with a solution of gutta-percha vulcanized on the wood.

229,817-July 13, 1880. H. GERNER. Mantufacture of vuleanized india-rubber products.
A mixture of india rubber, camphor, and flour made from the sced of agricultural germs for the purpose of vulcanization.

232,974-October 5, 1880. A. B. \& C. JENKINs. Vulcantzed plastic compound.
Diatomaceous silica or insuferial earth is mixed witb india rubber and guttapercha, or either, and sulphur, and vulcanized.
233.296-October 12, 1880. E. M. STEVENS. Enomeled rubber cloth.

The surface consists of substantially equal parts of boiled linseed oil, plastic rubber, and suitable body or coloring mutter, combined together by heat before applying to the cloth, and hot calendered after application.

293,600—October 26, 1880. J. H. CHEEVER. Process of reclaiming rubber from old and waste vulcanized rubber and utilizing the same in manufacturing robber goods. Old vulcanized rubber is boiled with raw petroleum and the resulting product then mixed with new rubber and sulphur and exposed to vulcanizing temperature.
236,240-January 4, 1881. G. M. MOWBRAY. Method of treating caoutchouc.
Caoutchouc is treated with naphthaline to preserve the properties of elasticity, durability, etc., and the naphthalized caoutchouc mixed with elements not sol uble in naphthaline for the formation of articles. The naphthaline is removed by spontaneous evaporation.
236,709-January 18, 1881. P. KROPP. Composition for treating rubber clolh, etc.
A composition for covering the rubber surface of cloth before printing, consisting of linseed oil boiled to a tough paste, with a small proportion of oxide of manganese, and of gum copal added, and then coloring matter equal in weight to the mass.
236,778-January 18, 1881. H. A. CLARK. Process of desulphurizing and devulcanizing waslevulcanized india rubber.
Vulcanized india rubber waste is first moistened with water and the water evaporated, and then moistened with turpentine, camphene or equivalent substance and the turpentine evaporated by heating.
236,779-January 18, 1881. H. A. CLARK. Process of desulphuriwing and devulcanizing waste vuleanized india rubber.
Vulcanized india rubber is treated to the vapors of turpentine or camphene, after it bas been boiled in water, to reduce the whole to a cohesive condition.
237,249-Febrqary 1, 1881. H. A. CLARK. Treatment of vulcanized india rubber and gutta-percha.
Waste vulcanized india rubber is treated with a vegetable oil, such as palm oil, and with a resinous matter.
243,788-July 5, 1881. T. J. MAYALL. Compound substance for electric insulotors.
It consists of I pound of rubber, one-quarter of a pound to 2 pounds of graphite,
and one-half pound to 2 pounds of sulphide or sulphuret of antimony, commingled and cured by beat.
244,788-July 26, 1881. L. BECKERS. Treating caoutchoue with hydrocarbun oils. A waterprool compound consisting of, sar, 1 part of caoutchouc to 4 parts of hydrocarbon oil of a boiling temperature of about 250° to $300^{\circ} \mathrm{C}$.
245,328-August 9, 1881. J. H. TUTTLE. Process of making shect packing of rubber, paper, etc.
Sheet packing provided with a metallic facing; formed by attacbment to the face of any suitable fabrie by means of rubber cement, or other adhesive material, metal filings or grindings, and subjecting the sbeet to pressure. Sulpbur may be added to the cement and the sheets vulcanized.
247,884-October 4, 1881. T. J. MAYALL. Manufacture of hard rubber.
The sulphides or sulphurets of antimony are mixed with rubber (without the addition of free sulphur) and cured by heat.
247,835-October 4, 1881. T. J. MAYALL. Rubber vencer.
A compound of rubber and stlphide (or sulphuret) of antimony, colored and cured by heat.
247,S40-October 4, 1S81. T. J. MAYALL. Hard rubber compound called "artificial horr."
A compound of rubber and sulphide (or sulphuret) of antimony and graphite, hardened by heat.
249,889-November 22, 1851. A. B. \& W. P. BROWN. Composition for coating metals.
Composed of india rubber, gutta-percha, gum dammar, and wax, dissolved in benzole.
249,970-Novenber 22, 1881. N. C. MITCHELL. Recovering rubber from rubber waste.
In the boiling of rubber waste in strong sulphuric or muriatic acid, steam is injected into the acid, whereby the steam penetrates the mass and carries the acid with it.
250,943-Dccember 13, 1581. N. C. MITCHELL. Recovering rubber from rubber waste.
Rubber waste is first subjeeted to the action of hydrocarbon vapors to soften or disintegrate the mass, and then to the action of strong and highly heated sulor disintegrate the mass,
phic or muriatic acid.
252,216-January 10, 1S82. H.W. HENDRICKS. Elastic compound for truss-pads.
It consists of glue, honey, sugar, gutta-percha, glycerine, bornx, alum, black lead, sulphur, and saltpeter, in certain specified proportions.
254,205-Februavy 22, 1882. G. A. FOWLER. Temporary stopping for teeth.
A composition of wax, 4 parts; oxide of zine, 15 parts; gutta-percha, 8 parts;
and chalk or whiting, 6 parts. and chank or whiting, 6 parts.
254,462-March 7, 1882. J. D. CHEEVER. Waterproof and plastic composition. Waste rubber is rendered plastic by treatment with vaseline and sulphur,
and mixed with short jute fiber or powdered bark, either or both and mixed with short jute fiber or powdered bark, either or both.
254,463-March 7, 1882. J. D. CHEEVER. Waterproof ancl plastic compound.
To a compound of disintegrated fibrous material, earthy materials, sulphur, and vaseline there is added siccative oil treated with chloride of sulphur, the use of vaseline being claimed with any of the products derived from the siccative or drying oils. Also the products derived from the siccative or drying oils in combination with the plastic products obtained by heating waste vulcanized rubber with vaseline, for cementing pigments and fibers.
254,465-March 7, 1882. J. D. CHEEVER. Waterproof and plastic compound.
A product of the siccative oils, vaseline, and "pickum gum," produced by
treating a solution formed of, say 160 pounds of linsed oil 20 pounds of vaseline and 40 pounds of pickum gum, dissolved with heat, with 9 pounds of protoehloride of sulphur and 9 pounds of bisulphide of carbon, and granulating protocoollng, and washing, A compound of the same is formed with powdered cork, tan bark, short hbers, and coloring matter.
256,470-April 18, 1882. G. S. EVANS. Plastic composition and vulcanite.
A plastic material suitable for waterproofing or vulcanization is formed from gums, such as gum kauri or gum manila, by mixing such gum with palm oil
and then beating the mixture to about $400^{\circ} \mathrm{F}$. The material is vulcanized by treating with chlorite of aluminum and heating.
258,021-May 16, 1882. C. CONNOR. Rubber compound.
It consists of a vulcanized mixture of india rubber, 1 pound; soda, 2 pounds; lime, 4 ounces; camphor, 8 drams; and sulphur, 1 ounce and 10 drams. It will stand a bigh degree of heat
260,441-July 4, 1862. C. E. W. WOODWARD. Process of trcating india rubber.
The surface of india rubber is subjected for a limited time to the action of concentrated sulphuric acid and immediately washed to prepare it for adbesion
to other objects. to other objects.
\$62,079-August 1, 188\%. C. J. MンDERMOTT. Restoring rubber waste.
Rubber waste or scrap is boiled in a solution of acid, bichronate of potash, and manganese, by means of live steam injected into the mass.
263,021-August 22, 1882. H. A. CLARK. Treatment of india mbber and guttapercha.
Restored or devulcanized india rubber or gutta-percha with water is subjected to heat sufficient to evaporate tbe oils or spirits.
264,81-September 19, 1882. W. O. CALLENDER. Composilion of matter for insulating telegraph wires and for other purposes.
It consists of 40 to 30 parts of bitumen and 20 to 60 parts of elastikon, or a residual product of vegetable oils, with sulphur or other vulcanizing agents.
265,184-September 26, 1882. J. C. TITZEL. Process of treating vulcaniscal india rubber.
Vulcanized india rubber is dissolved in turpentine and linseed oil; then sulphuric acid is added until the pigment or filling is all dissolved, when the mass is washed. A caustic potash solution is tben added to saponify the oil, and the rubber is precipitated from the soapy mass.
276,916-May 1, 188s. W. SMITH. Insulating electrical conductors and a new compound suitable to be used for this ant other purposes.
A mixture of gutta-percha and ground coal.
277,977-May 22, 1883. E. BAUER. Process of and composition for the manufacture of substitutes for leather, horn, tortoise shell, ete.
It is composed of gelatine or glue, $2 \frac{1}{n}$ to 5 parts; glycerine, 3 parts to one-half part, fat or oil, 3 parts to one-bali part: and caoutcbouc, one-half to 1 part; when dried it is treated with tannic acid, the tanning process being accelerated by
electric currents.

281,769-July 24, 1885. A. W. KENT. Separating foreign substances fromin indiarubber waste.
Ground or subdivided india-rubber waste is agitated in water within a sieve that supports the rubber, which allows the heavier substances to subside and the loose fibers to wash away.
$284,760-$ September 11, 188s. H. A. ROBINSON. Metallised rubber compound.
A compound consisting of 10 parts of finely divided metal and 1 part of vulcanizable gum rendered plastic by a suitable solvent.
285,980-October 2, 1883. W. E. DOUD. Rubber cement for the manufactarc of memorandum blocks and tablets.
It is composed of 1 part of pure rubber, 6 pounds of bisulphuret of carbon, and 1 pound of ultramarine.
286, 44 -October 9,1889 . M. HUGHES. Plastic composition for tailors' eutting-
boards, and for other purposes. boards, and for other parposes.
A mixture of sawdust, 10 parts: rubber or gutta-percha, 5 parts; flour, 4 to 5 parts; and linseed oil or soap-boilers' waste, with or without the addition of a bituminous substance.
288,013-November 6, 1883. J. L. CHADWICK. Method of reclaiming india rubber and fiber from scraps of india-rubber cloth.
The scraps are first subjected to the action of muriatic acid to destroy the cotton fibers and release the wool from the rubber, leaving tbe wool intact; and then subjected to a beating and picking action to detach the wool from the rubber.
290,909-December 25, 1883. N. C. MITCHELL. Rubber compound.
Partıcles of leather are incorporated with the rubber compound previous to vulcanization.
992,891-February 5, 1884. A. O. BOURN. Process of treating fibrous rubber wastc.
Rubber waste containing cotton fiber is subjected to the action of a sulphuricacid solution of sufficient strength to operate as a solvent of the fiber-3 or 4 per cent solution-and permit its removal witb the solvent.
295,615-March 25, 1884. A. O. BOURN. Process of treating fibrous rubber waste for the recovery of the rubber or caoutchoue therefrom.
Waste contaning cotton fiber is treated with nitric or muriatic acid in solutions of sufficient strength to convert the fiber into soluble matter and permit its removal with the solution.
s00,720-June 17, 18s4. N. C. MITCHELL. Recovering rubber from waste.
Rubber waste is boiled in sulphuric or muriatic acid of a strength sufficient to eliminate and destroy the fibrous matcrial including woolen fiber.

S05,184-September 16, 1884. J. J. HAUG. Substitute for caoutchouc.
Skins and glycerine are boiled under pressure, then there is mixed with the mass glycerine and chromate or bichromate of potash or other suitable salt acted upon by light, with or without the addition of ground cork, oxgall, and color.
S08,189-November 18, 1884. J. J. MONTGOMERY. Devulcanising and restoring vulcanized rubber.
Finely cut particles of the rubber are heated in a closed vessel witb hydrocarbon oils obtained from petroleum to above $350^{\circ} \mathrm{F}$. until it is reduced to a be extracted.
S08,209-November 18, 1894. J. J. C. SMITH. Manufacture of rubber compositions. A rubber compound, consisting of mineral wax or paraffin combined with resin, sulphur, and rubber: formed by first melting together resin, onc-fourth to one-balf pound, and ozocerite, or similar material, 1 poun
same with 4 pounds of caoutchouc and 1 pound of sulphur.
\$11,185-January 20,1885 . C. J. MCDERMOTT. Recuvering rubber from rubbor
waste. waste.
Fibcr is eliminated from rubber scrap by boiling the scrap in dilute acid-say sulphuric acid of 12° Baumé-and afterwards washing the rubber; or a solution of sulphuric acid, salt, and manganese is used.
312,803-February 24, 1885. C. S. BRADLEY. Electrical conducting material.
It consists of gas-retort carbon or other carbon which has grit, and guttapercha or india rubber vulcanized; may be vulcanized with bromine. The material is monous.
315,685-April 14, 1885. H. KELLOGG. Etectrical insulator.
A mixture of 4 pounds of asphaltum, 4 ounces caontchouc of oil, 1 ounce of asbestos, and 4 ounces india red; the asbestos and india red, either or both,
may be omitted. may be omitted.
318,233-May 19, 1885 . J. L. GLARK. Manufacture and preparation of matevials to be employed for insulating.
A compound of oxidized oil and asphalt, pitch, or bitumen, with a small quantity of bydrocarbon oil or hydrocarbon spirit, with or without india rubber or gutta-percha, black wax or other elements to cheapen the mixture.
319,079-Junc 2, 1885. J. W. ELLIS. Composition of matter for the preservation of
paper or vegetable tibing used for the insulation of telegraph wires.
A mixture of asphaltum, 40 parts; resin, 14 parts; petroleum or dead oil, 6 parts; vulcanized rubber, 3 parts, and sulphur, 1 part.
320,921-June 30, 1885. R. S. FERGUSON, W. SCHUMACHER, AND W. TUBMAN. Compound jor insulating electric wires.
A mixture of pine pitch, 300 pounds; hard or soft rubber, $1 \frac{1}{2}$ pounds; and liquid asbestos, 1 gallon, to which is added beeswax or tallow or linseed oil until of the proper consistency to render the compound hard and yet flexible when cool.
S21,410-June 30, 1885. F. WILHÖFT. Vulcanized soft rubber and process of making same.
Vulcanized soft rubber in which all the sulphur is chemically combined with the rubber: produced by mixing it with $3 \bar{e}$ or less per cent of sulpbur and subjecting it to a heat of $330^{\circ} \mathrm{F}$. or over.
391,548-July 7, 1885. J. J. VARLEY. Plastic composition.
Articles made of a plastic composition-of the class containing resins, guma, etc.-are subjected to heat, gradually applied, whereby they are rendered tough, bard, and heat resisting.
392,802-July 21, 1885. A. G. DAY. Process of making the compound termed
In the manufacture of kerite (see No. 210,411) in place of sulphur, sulphide of antimony, or other suitable sulphide is added, either alone or united with a
greater or less proportion of sulphur, to enable the chemical beat to be controlled by the sulphide and to prevent oxidation of the hnished product.
328,804-July 21, 1885. A. G. DAY. Process of manufacturing crude kerite
compounds. compounds.
In the manufacture of kerite according to Nos. 210,411 or 322,802 , a vegetable astringent-such as tannin or tannic acid, extract of gambia, extract of pine, spruce, or oak bark, extract of nut galls or sumac-is added either before or after,
or with the sulphur or sulphide; it imparts a more fibrous character to the or with
product.
S27,286-September 29, 1885. S. LOEWENTHAL. Manufacture of ornamental watl covering, leather ctoth, etc.
A mixture of 100 pounds of African flake, 10 pounds of rubber, 100 pounds of rubber substitute, 10 pounds of ozocerite, 100 pounds of infusoria, and 100 pounds of wood pulp or ground cork, with $2 \frac{1}{a}$ per cent of sulphuric acid and 5 per cent of muriatic acid, is spread on a fabric printed with a pattern or design, with or without embossing, and dried.
355,495—February 2, 1886. J. B. WILLIAMS. Composition of matter for insulating material.
It consists of gutta-percha, india-rubber, colophony, gum dammar, and asphalt, all in solution, and ankydrous paraffin oil with or without powdered silica.
386,018-Fcbruary 9, 1886. W. J. RIGNEY AND J. WOLFF. Composition for insulating electric wires.
An outer coating of balata, or of a mixture containing balata-obtained from the milky juice of the Sapota muelleri, and resembling india-rubber-is employed in connection with an inner coat of adhesive material, as tuna-a substance resembling gutta-percha-or tar:
3s7,466-March 9, 1886. R. P. WALLIS. Flexible lead pencil.
An clastic composition formed of graphite and caoutchouc.
\$39,787-April 13, 1886. E. D. KENDALL. Composition of matter for electric insulation.
A compound of wax tailings of petroleum refining, 32 parts; chicle, 16 to 32 parts; sulphur, 4 to 8 parts; and oil, I to 2 parts.
346,224—July 27,1886 . T. C. ROCHE. Composition for holding photographic paper on its suppports; etc.
A mixture of rubber, pitch, and a solvent, as benzole; also a mixture of rubber, beeswax, and a solvent; the mixtures being combined or used alone.
343,591-June 15, 1886. O. LUGO. Vulcanite and process of producing the same.
A vulcanized mixture of hair or horny material, sulphur, and india rubber.
\$49,885-September 28, 1886. G. W. HOLLEY. Manufacture of paint.
A paint consisting of a given quantity of mineral oxides, earths, or other pigments, combined with from one-tenth to one-balf its weight of pulverized sulphur and linseed oil: formed by mixing the sulphur with the pigments, then gradually adding with constand stirring about one-third of its weight of inseed oil previously beated to 80° C. and at tbe same time gradually raising the tem-
perature to 120° or $125^{\circ} \mathrm{C}$.; then cooling slowly under constant stirring, and perature to 120°
lastly grinding.
350,459-October 5, 1886. A. KISSEL. Substitute for india rubber, caoutchouc, etc.
A compound of the hardened resin and balsams of the coniferae and oil and sulphur; formed by hardening the resin and balsams by means of caustic lime or other caustic alkaline earth; dissolving the hardened resin or balsam in oil; adding to the solution a second solution composed of sulphur and oil; adding sulpbur to the mixed solutions; and heating the mass.

358,082-February 22, 1887. A. W. SPERRY. Composition of matter as a substitute for hard rubber, etc.
It is composed of ivory dust or like material, forming 50 per cent of the compound; a starch mixture consisting of starch, tanmin, and an alkali, asalum; a binder mixture consisting of a resinous gum dissolved in alkali, as caustic soda, and milk, glue, shellac, and alcohol.
359,825-Ma'ch 22, 1887. C. M THOMPSON. Insulating material.
A compound of dead-oil of pitch I part, and desulphurized old rubber, commonly known as "shoddy," 7 parts: pitch and desulphurized rubber are mixed with cold rollers, then steam is introduced and it is rolled into thin sheets and thoroughly dried.
359907 -March 22, 1887. C. M. THOMPSON. Process of curing india rubber. a compound consisting of india rubber and lampblack, produced by subjecting india rubber to the action of hot rollers, adding from 5 to 20 per cent of lampblack, and thea continuing the action of the rollers.
36 1.97-June 21, 1887. H. W. LIBBEY. Rubber-covered elastic compound.
I consists of particles of sponge and india rubber; rubber is reduced by heat and particles of sponge are distributed in the mass and mingled therewith.
368,174-August 9, 1887. H. VOGLEY. Composition for cementing rubber.
A composition formed by mixing and dissolving $2 \frac{1}{2}$ ounces of pure rubber gum, 3 ounces of pulverized gum gamboge, and II ounces of dry white lead, in 1 gallou of benzine; and subsequently adding a mixture of 2 ounces of pulverized sulphur and $2 \frac{1}{0}$ ounces of sulphuric ether, with or without one-half ounce of alum and one-fourth pound of burnt brown sugar.
375,405-December 27, 1887. F. WILHÖFT. Method of manufacturing nonblooming vulcanized soft rubber.
Rubber is mixed with a sulphur preparation in which this body is in a last-ingly-amorphons condition by the addition of a greasy, fatty, resinous, or turpentine body, and vulcauized. The said sulphur preparation is formed by fusing I pound of sulphur, say, with one-fourth of a pound of Canada balsam.
375,486-Deccmber 27, 1867. S. M. ALLEN. Recovering and utilizing waste rubber.
Disintegrated rubber waste is treated in a mixture of nonvolatile oil, asphalt, resin, and sulphur, and heated until the mass is devulcanized, and the fiber converted into gelatine.
378,395-February 21, 1888. S. HEIMANN. Process of treating peat.
A vulcanized mixture of dry pulverized peat, caoutchoue and sulphur, with or without plaster of paris.
380,993-April 10, 1888. G. W. COOPER. Compound oil dressing for rubber belts. To a mixture of 8 pounds of crude rubber, one-half gallon oil of turpentine, 1 pound oil of lemon-grass, I pound of citronelle, and 6 ounces gum arabic, there is added 8 gallons of light pressed fish oil, and cooked for eight hours; after cooling there is added the condensed product of 4 gallons of linseed oil boiled down to $2 \frac{1}{2}$ gallons, and the composition is cooked for six hours.
s89,098-May 22, 1888. D. BROOKS, JR. Covering for electric wires and cables.
Electric wires are first covered with a fibrous tape saturated with an insulating compound, then with a plastic rubber preparation with interlying cauvas wrappings and powdered sulphur, and then subjected to heat to vulcanize the rubber.
\$83,137—May22, 1888. W. B. McGARVEY. Composition for converting india rubber or its compounds into hardened rubber.
A mixture of oxide of iron and petroleum or rocky oil is incorporated with pure rabber or any of its compounds, and the mass fused and subjected to pressure.
591,927—October 90 , 1888. J. A. TITZEL. Rubber compound or mixture.
Composed of gilsonite aspbaltum, 90 pounds; vulcanized rubber (scrap or waste), 130 pounds; manganated linseed oil, $3 \frac{1}{2}$ to 7 gallons; spirits of turpentine, 9 gallous; deodorized petroleum naphtha, 9 gallons; and powdered sulphur, 10 to 15 pounds; for use as a paint, baking-japan, or coating.
s93,898-December 4, 1888. W. KIEL. Vulcanized plastic compound.
A yulcanized compound of pumice stone, india rubber, and sulphur, with or without oil or beeswax, the pumice stone being from one to five times the Without oil or beeswax, the
Weight of the crude rubber.

395,987-January 8, 1889. N. C. MITCHELL. Process of recovering rubber from waste.
Rubber waste is immersed in a reclaiming solution containing for each 100 pounds of waste about 15 to 25 pounds of hydrochloric acid, or its specified substitute, in excess of the quantity requisite to combine with the decomposable mineral compounds, and heated in a close vessel under pressure to about $240^{\circ} \mathrm{F}$.
396,774-January 29, 1889. A. SOMMER. Paint-oil.
A solution in hydrocarbons of the sulpho-chlorinated marine-animal oils.
1,01,269-April 9, 1889. F. GREENING. Process of production of material as substitute for india-rubber, etc.
Fibrous material is steeped or saturated with a mixture of sulphuric acid and nitrate of potash- 3 parts of the former to 2 parts of the latter by weigbt-
washed, and then subjected to a bath of liquid carbonic acid or carbonic-acid gas and dried. The converted fiber is then treated with a suitable solvent, as a distillate composed of a mixture of methylated alcohol, resin, or colophony, gum benzoin or benjamin, castor oil, and light hydrocarbon.

411,171-September 17, 1889. C. A. A. H. SIEBERT. Substitute for gutta-percha. A mixture of 1 part of asphaltum, one-fourth to 1 part of balsam of sulphur, and up to onc-half part of an easily-melting solid hydrocarbou, such as paraffin.
412,264-October 8, 1889. W. KIEL. I'ucanized plastic compound.
Wood is used as a constituent part of a vulcanizable compound.
412,265-October 3, 1889. W. KIEL. Process of manufacturing vulcanized plastic compound.
Wood is soaken in oil and subsequently combined by vulcanizing with sulphur and crude rubber.

412,866-October 8, 1889. W. KIEL. Process of manufacturing vulcanized plastic compounds.
Wood and sulphur are vulcanized and the product commingled with sulphur and crude rubber and vulcanized.

412,267-October 8, 1889. W. KIEL. Process of manufacturing vulcanized plastic compounds.
Wood is mixed with crude rubber dissolved by any solvent, and the product combined with sulphur oil, and beeswax, with or without crude rubber, and vulcanized.
412,268-October 8,1889 . W. KIEL. Process of manufacturing vulcanized plastic compounds.
A mixture of wood, sulphur, oil, and crude rubber is vulcanized to a hard state, the product pulverized and combined with sulphur, oil, and crude rubber, ready for vulcanization.
412,269-October 8, 1889. W. KIEL. Process of manufacturing vulcanized plastic compounds.
A mixture of wood, sulphur, and oil, or other commingling vulcanizable substance, is vulcanized and the product subsequently combined with crude rubber by vulcanization.
418,04-December 24, 1889. N. C. MITCHELL. Art of restoring rubber.
Rubber stock is subjected to the action of live steam in a close vessel; air is drawn through the mass to remove surplus moisture, and finally the rubber is rolled while in a moist condition, until dry.
478,208-December 31, 1889. A. E. MEUNUEZ. Insulating and waterproofing composition.
A composition consisting of shoemaker's wax, gutta-percha with or without india-rubber, a suitable solvent, such as chloroform, bisulphuret of carbon, and japan; to which may be added a hardening wax, such as beeswax or paraffin wax.
419,697-January 21,1890 . N. C. MITCHELL. Process of reclaiming rubber from waste rubber goods.
First, the stock is ground; second, particles of iron are eliminated by magnetic attraction; third, the fiber is separated from the rubber; fourth, it is Washed with water to remove soluble matter; fifth, it is sifted to separate raw sand and other fine particles; sixth, the mass is acted on with a stream of water to float off the rubber from the heavier foreign substances; and finally, it is devulcanized and sheeted.
420,648-February 4, 1890. J. B. WILLIAMS. Insulating compound.
A compound of india-rubber, say 40 parts; paraffine, preferably that obtained from ozocerite or mineral wax, 15 parts; a resinous body, as shellac, 40 parts; and sulphur, 5 parts; with or without silica or bituminous matter, produced by dissolving the india-rubber in a volatile solvent, dissolving the paraffine in the india-rubber solution, distilling therefrom the volatile solvent, and then incorporating therewith the remaining ingredients.
420,820-February 4, 1890. N. C. MITCHELL. Process of restoring rubber.
Rubber, after reduction to small pieces, is mixed with heavy oil and sulphide of calcium, then subjected to the action of steam until devulcanization is completed, when air is drawn through the mass before its removal from the devulcanizer.
423,071-March 11, 1890. N. C. MITCEELLL. Production of restored or devulcanized rubber.
The rubber is devulcanized by the action of live steam, then while the rubber is yet moist it is rolled until reduced to a powder, and then dried, at the same time agitating it to preserve the powdery condition.
428,544-May 20, 1890. E. ANDREWS. Composition of matter for use in the mechanic arts.
Finely ground or comminuted leatheroid or parchmentized paper mixed with rubber in proportions varying from 40 to 90 per cent of the former to 60 to 10 per cent of the latter, and vulcanized.
430,958-June 2\%, 1890. W. KIEL. Vulcanized piastic compound.
A hard vulcanized plastic compound, consisting of crude rubber, sulphur, and mineral oil, as kerosene; the sulphur being in proportion of not less than approximately 80 per cent of the rubber by weight.
450,959-June 24, 1890. W. KIEL. Process of manufacturing vulcanized plastic compounds.
A mixture of sulphur and rubber, with or without oil-the sulphur being in the proportion of not less than about 80 per cent of the rubber by weight-is vulcanized with an initial temperature of not less than about $300^{\circ} \mathrm{F}$. and for stated periods of time.
491,104-July 1, 1890. J. H. CHEEVER. Protective covering for electric cables.
A compound of II parts of rubber, 9 parts of plumbago, 9 parts of asbestos, and 2 parts of sulphur; it is vulcanized after application to a conductor.
493,898-August 5, 1890. J. FOTTRELL. Insulating material.
A mixture of india-rubber and aluminium oleate, say in equal parts by weight. It is susceptible of vulcanization.
$498,315-O c t o b e r$ 14, 1890. O. A. ENHOLM. Composition for cells or retaining vessels.
A composition of asbestos, mineral wax, and gutta-percha (No. 438,311 with the omission of the hardening medium, shellac).
498,595-October 14, 1890. W. H. ALLEN AND C. LOVELL. Rubber compound. A plastic compound composed of rubber, sulphur, and lithargite (pulverized calcined magnesic silicate).
452,439-May 19, 1891. R. A. LOEWENTHAL. Production of reclaimed rubber.
The fiber is decomposed and eliminated from the rubber waste, which is then partially dried and reduced to a fine powder before devulcanization.
452, 760-May 19, 1891. F. SALATHE. Composition of matter for insutating pur-
poses. poses.
A composition consisting of the hydrocarbon product of. No. 452,764, with sulphur, with or without the addition of india-rubber, gutta-percha, or oxi-
452,765-May 19, 1891. F. SALATHE். Composition of matter for insulating pur-
poses. poses.
A composition of gutta-percha, gum shellac, and a new hydrocarbon product, a resinoid hydrocarbon of the $\mathrm{C}_{10} \mathrm{H}_{16}$ series.

454,442-June 16, 1891. N. C. MITCHELL. Production of waste rubber goods. The devulcanized rubber is impregnated with moisture and kept wet during
the rolling or pressing process.

454,189-June 29, 1891. G. W. MELVILLE. Composition of matter.
A vulcanized mixture of fine Para rubber, 60 per centum; flowers of sulphur 6 per centum; oxide of antimony, 14 per centum; and magnesia, 20 per centum, It will resist a high heat, and withstand the action of salt-water, grease, or oil. 454,548-June 28, 1891. A. W. SPERRY. Compound for the manufacture of insu-
lators, packings, etc.
A compound of 8 pounds of mineral wool, $1 . \frac{1}{2}$ póunds of rubber and linsecd oil comhined, and 3 pounds of oxide of zinc.
458,551-August 25, 1891. J. L. MARMAUD. Insulating compound.
'To a mixture of 1 part of calcined lixiviated infusorial earth, a third of 1 part of pulverized talc or soapstone, one thirty-secoud part each of lamphlack, pulverized sulphur and litharge, one-sixteenth part of pulverized resin, und one sixty-fourth part of silicate of soda in solution, there is added 22 parts of rubber dissolved in benzine or naphtha, one-fifth part of bisulphide of carbon, and one-fifth part of fir balsam.
460,765-October 6, 1891. E. THOMSON. Composition for insulating material.
A mixture of asbestos, rubber, and soapstone, say 15 to 25 per cent of rubher and 5 to 15 per cent of soapstone, molded in a heated state with great pressure. 467,520-January 26, 1892. D. H. PIFFARD. Cmposition of matter for insulating purposes.
A mixture of \bar{y} parts of rubher, 24 parts of resin, and 26 parts of plaster of paris; the rubher and resin are first mixed and heated until the readily volatilizable parts are driven off.
468,627-February 9, 1892. A. I. RATH. Manufacture of india rubber.
A composition consisting of india rubber mixed with finely-reduced silk fiber. 490,500-January 24, 1898. J. M. RAYMOND. Proccss of treating vulcanized rubber to render it adhesive.
Vulcanized rubher first soaked in benzine or a substance having an analagous action to open the pores, then immersed in a solntion of potassium permanganate to secure superficial desulphurization, and again treated with benzine. In certain cases, to give tenacity, before the last-named operation, it may be given a bath of acetic acid or pyroligenous acid.
495.757-April 18, 1893. D. RIGOLE. Process of and apparatus for the extraction of gutta-percha from the leaves and twigs of the gutta-percha tree.
The condensed vapors of a solvent are passed through a mass of the leaves and twigs, thereby dissolving the gum; the solvent with gum in solution is conveyed away, and heated to vaporize the solvent and the vapors condensed for reuse.
$508,560-$ November 14, 189s. P.C. BEIERSDORF. Process of treating gutta-percha
or balata. or balata.
To obtain gutta-percha or balata of uniform qualities, a certain quantity is deprived of the whole of its resinous contents hy subjecting it to the action of a solvent of said contents, and then there is mixed with the so-deprived quantity a proper quantity of gutta-percha or balata, which is richer in resinous matter than the quality desired.
510,888-December 19, 1899. J. BURBRIDGE. Procsss of producinq variegated rubber.
Variegated sheets are formed by twisting strips of consolidated layers of different colored compounds, making up the twisted strips into rings or cylinders, and cutting shavings or sheets before or after vulcanization.
518,046-April 10, 1894. J. M. RAYMOND. Composition of matter for vulcanizing rubber.
It consists of henzene, or its derivatives, 30 to 50 parts in weight; camphor, 2 to 5 parts; and chloride of sulphur, 1 to 2 parts; with or withont oleic acid, 1 to 2 parts.
518,817—April 24, 1894. R. HUTCHISON. Gutta-percha or rubber compound.
A composition consisting of gutta-percha or rubber or mixtures thereof and wool cholesterine.
520,196-May 22, 1894. J. THOMSON. Method of manufacturing hard rubber articles.
The crude compound is subjected to combined heat and pressure in a mold until the plastic compound assumes the form of the mold cavity, when the pressure is wholly or partially removed, allowing the material to expand while subjected to heat hut not pressure, and then cooling under these conditions.
522,312-July 3, 1894. A. A. BLANDY. Pracess of and composition for manufacturing substitutes for india rubber, etc.
A composition consisting of a drying oil, as linseed oil, a solvent for the same, such as carbon bisulphide, sulphur chloride, asphalt, rubher, and sulphur, with or without a metallic oxide, such as lime. It is formed by mixing together the drying oil, solvent, and sulphur chloride, gently heating the mixture, then and sulphur, and finally vulcanizing.
525,086-August 28, 1894. J. PATTIGLER. Elastic or plastic composition.
A composition consisting of vegetable or mineral oil, caoutchouc, zink white, soluble glass, minium, and ashestos.
528,264-October 30,1894 . H. TRAUN. Process of vulcanizing hard rubber artictes. Pulverized metallic aluminum, or an alloy of alnminum, with tin, cadmium, or nickel is added to the soft rubher hefore vulcanization. It increases the heat-conducting power of the rubber and secures uniform vulcanization.
649,730—November 27, 1894. W. GRISCOM, JR. Hard, vulcanized compound. $^{\text {B }}$
It is composed of candle tar as a vulcanizable adhesive element, sulphur, petroleum residuum, and finely divided solid matter.
538,147-April 29, 1895. C. BARUS. Process of manufacturing vulcanized rubber. Rubber, at any stage of vulcanization, is impregnated with carbon disulphide (with or without sulphur) and the mass subjected to the action of heat (which never exceeds $200^{\circ} \mathrm{C}$.) in a hermetically closed vessel until it is melted down to a homogeneous mass.

544,934-August 20, 1895. ․ E. SERULLAS. Process of extracling and purifying gulta-percha.
The parts of the tree are treated with an alkali or its carbonates; the residue then treated with dilute sulphuric acid; next the residue is spread out into sheets, and the sheets treated first with a stream of ammoniacol copper liquid, and afterwards with a current of carbonic-acid gas or hydrogen gas.

547,120—October 1, 1895. S. HEIMANN. Insulating compound.
To a mixture of equal quantities of pulverized ashestos and glass there is added 10 to 15 per cent of rubher (the mixture rolled into sheets and dissolved in henzine), 5 per cent of castor oil and 20 per cent each of resin oil and mirhane oil, and then 10 to 15 per cent of celluloid dissolved in amyloxide-acetic. In coating a wire it is first given a coat of a mixture of water glass and pulverized glass.
549,855-November 12, 1895. R. N. PRATT AND H. W. JOHNS. Composition of malter for compressed or molded articles.
It consists of asbestos and rubber, or other cementing insulating substance, and an insulating natural lubricant, as soapstone.
651,230-December 10, 1895. R. N. PRATT. Composition of matter for insulating риүрове.
A composition consisting of dense hard ruhber, laminated mica, and fibrons asbestos, produced by dissolving rubber and sulphur in naphtha, incorporating therewith mica and asbestos fibers, molding and vulcanizing.
569,579-July 7, 1896. C. W. JEFFERSON. Flexible mica insulating sheet.
The sheei consists of layers of mica scales and adhesive gutta-percha tissue, with or without fibrous layers, as of paper.
563,716-July 7, 1896. C. W. JEFFERSON. Electrical insulating sheet.
A sheet formed of layers of ashestos and mica, or paper, asbestos, mica and paper, with adhesive gutta-percha tissue between any and every two of said layers.
545,759-January 26, 1897. H. E. SÉRULLAS AND F. E. HOURANT. Process
of cxtracting and purifyiug gutta-percha.
The leaves or other parts of gutta-percha plants are pulverized, the powder dissolved in a lyydrocarbon solvent, and the three principal constituents of gutta percha, viz-gutta-hydrocarhon, fuavil, and alban-then precipitated by the addition of acetone.
580,199-April 6, 1897. W. MORISON. Composition of matter for manufacturing y cases, etc.
A composition of asphaltum with or withont a small quantity of gntta percha, as much asbestos as can he absorhed, and a little sulphur; compounded hy melting the asphaltum and adding the gutta-percha, then intimately mixing therewith the asbestos, spreading out the mass on a hot surface and working, heating, and pounding, to drive out moisture and foreign substances; dusting with sulphur and again heating, pounding, and working; the mass heing kept hot throughout the process; and finally forming into shape.
681,319-April 27, 1897. P. W. WIERDSMA AND J. KUIPERS. Substitute for vulcanite, hard woods, etc., and process of manfacturing same.
The refuse remaining after the manufacture of potato flour is mixed with water, passed throngh a sieve, washed, bleached, and dried, with or without the addition of waterproofing material, ground into a powder, sifted, and molded dry by great pressure.
584,959-June 22, 1897. C. V. PETRALUS. Rubber compound.
A ruhber componnd having in admixture with caontchouc and sulphur, finelypowdered native lead sulphide or galena, with or without lead oxide.
598,550-Februavy 8, 1898. B. G. WORK. Process of treating rubber.
For the manipulation of raw vulcanizable india rubber in the formation of covered articles in hollow shapes, tubes, etc., the ruhber is given a condition of temporary inherent abnormal rigidity by freezing it.
599,694-March 1, 1898. F. FENTON. Process of producing artificial gutta-percha. Tar or other pyroligneous snbstance is mixed with an oxidizable vegetable oil either in the raw state or more or less oxidized, and the product placed in a bath of diluted nitric acid to form a magma or base, which is then roasted.
601,091-March 22, 1898. P. L. CLARK. Process of devulcanizing rubber.
It is saturated with a solvent of ruhber and sulphur adapted to vaporize at a temperature below the melting or disorganizing point of rubher (such as gasoline) and maintained in such saturated condition by the pressure of vapor of such solvent while heating it in such vapor, to a temperature adequate to main tain the pressure therein, but lower than the melting or disorganizing point of ruhher, until devulcanization is effected.
601,828-April 5, 1898. O. B. DODGE. Leather ana rubber substitute.
A compact sheet consisting of chemical wood fibers nniformly mixed with and enveloped in a firmly adherent mass of cured rubber and pulverized material; produced by drying chemical wood pulp, separating the fibers into a flocculent mass; mixing the flocculent mass with a mass of rubher cement and a pulverized material, as chalk, lamphlack, and sulphur; forming into sbape; and subjecting to a degree of heat which is less than that nsually employed for vulcanization, preferably about 95° to $105^{\circ} \mathrm{C}$.

615,863-December 13, 1898. W. K. LEONARD. Process of producing rubber substitutes and compssitions of matter therefor.
A composition consisting of 76 per cent of corn oil, 21 per cent of sulphur, and 3 per cent of paraffin wax, formed by subjecting the mass to heat until the oil is vulcanized or the process of vulcanization hegins, about $310^{\circ} \mathrm{F}$., then shutting off the heat and allowing the process of vulcanization to continue until complete and the mass cools.

615,864--December 13, 1898. W. L. LEONARD. Process of producing rubber substitutes and compositions of matter therefor.
A rubher substitute consisting of a mixture of corn oil, say 64 per cent, and castor oil, 13 per cent, combined with a mixture of chloride of sulphur, naphtha, of sulphur, 0.5 per cent of naphtha, and 1.5 per cent of oxide of magnesia; perof sulphur, 0.5 per ce
centages by weight.

618,166-January 24, 1899. T. CLARKE. Composition of matter for producing enamel for refixing dentat plates of artificial teeth.
It consists of $1 \frac{1}{2}$ parts of dental ruhber dissolved in machine oil and scented with attar of roses; 5 parts of yellow gum shellac; 3 parts of plaster of paris col ored with carmine; and one-twentieth part of pure Condy's fluid.
619,615-February 14, 1899. C. RATH. Composition of matter.
It consists of 76 parts of pure india rubber, 17 parts of bran of almonds, and 7 parts of calcined chalk, combined by kneading while the rubher is in a soft, plastic state; for rubber implements for therapeutic treatment, it combines hardness with elasticity, has a smooth, glossy surface, is moderately porous, and readily ahsorbs a lubricant.

621,060-March 14, 1899. E. GARNIER. Manufacture of rubber or other gums.
Alum treated with a spiritous solution of a gum, as a solution of gum tragacanth in benzol, is incorporated with rubber and the usual vulcanization dispensed with.
626,092-May 90,1899 . J. C. PETMECKY. Rubber compound.
A viscous compound, for repairing pneumatic tires, etc., consisting of a mixture of pure rubber dissolved in a quick-drying solvent, as bisulphide of carbon, ground and slightly vulcanized rubber, and cotton fiber cut to one-eighth to one-sixteenth of an inch in length.
626,479-June 6, 1899. P. C. BELL. Elastic compound.
A compound of vegetable oil, 59 parts; flower of sulphur, 15 parts; liquid tar, 1 part; petroleum residue, 20 parts; and powdered tale, 5 parts. The petroleum residue is heated to $112^{\circ} \mathrm{F}$., the powdered talc and tar is mixed therewith, and the vegetable oil then gradually added while maintaining the said temperature, next raising the temperature to $200^{\circ} \mathrm{F}$. and adding the flower of sulphur, and finally raising the temperature to $340^{\circ} \dot{F}$. and stirring until viscid.
697,689-June 27, 1899. C. HEINZERL1NG. Treatment of old or waste vulcanized rubber.
Waste rubber is dissolved by the action of anilin, toluidin, or xylidin, and the solvent separated from the india rubber.
630,485-August 8, 1899. M. ZINGLER. Composition for treating decayed or other rubber.
A solution for treating decayed or other rubber by long immersion, consisting of 30 or 40 gallons of boiling water containing about 5 pounds of tartar emetic, mixed afterwards with 72 pounds of tannic acid and about 2i $\frac{1}{2}$ pounds of a metallic sulphite salt such as calcium sulphite.
632,022-August 29, 1899. C. REPPIN. Process of treating india rubber, guttapercha, etc.
It consists in raising wood oil (expressed out of seeds of elaeococea vernicifera), with which may be mixed a cheaper oil having greater density and lighte color, to a suitable heat, as $250^{\circ} \mathrm{C}$., whereby the same will be coagulated; pulverizing the solidified oil and mixing with india rubber and the like.
685,141-October 17, 1899. A. H. MARKS. Process of reclaiming rubber from vulcanized rubber waste.
Finely ground rubber waste is submerged in a dilute alkaline solution in a sealed vessel and subjected to a temperature or 344° to $370^{\circ} \mathrm{F}$. for about twenty hours
657,776-November 28, 1899. A. GENTZSCH. Plastic fett.
An intimate conglomeration of gutta-pereba with shredded or macerated animal skins and hair.
638,775-December 12, 1899. A. E. J. V. J. THELLGAARD. Process of devulcanizing caoutchouc, india rubber, etc.
The comminuted vulcanized material is treated with a solution of sodium sulphite-the amount being in proportion to the contained sulphur-under the influence of heat, and then washed.
639,926-December 26, 1899. O. LUGO. Rubber substitute or artificial rubber.
It consists of sulphurized oil practically free from glycerine compounds. Seventy-five per cent of the substitute may be mixed with rubber.
639,927-December 26, 1899. O. LUGO. Manufacture of rubber substitutes.
Process consists in subjecting sulphurized oil to hydrosaponification until it becomes liquid, then dehydrating the liquid vulcanite, adding sulphur, and then heating the mass.
640,735-January 9, 1900. P. C. BELL. While etastic compound.
It consists of vegetable oil, 65 parts; chloride of sulphur, 20 parts; mineral matter, such us lime, 5 parts; and zinc oxide, 5 parts; and bisulphide of carbon, 5 parts. The vegetable oil is heated to $80^{\circ} \mathrm{F}$., the chloride of sulphur and bisul phide of carbon added at 60° F., the mass stirred until it foams and kept in agimatter added, whereupon it hardens, when the product is pulverized and bleached.
642,764-February 6, 1900. A. E. J. V. J. THEILGAARD. Process of devulcanizang caov.tchouc, india rubber, etc.
The comminuted vulcanized rubber is treated with a cyanide solution (potassium cyanide) in proportion to the amount of contained sulphur the temperature being eventually raised; the material is then washed and dried.
$642,814-$ February 6,1900 . R. COWEN. Process of cleaning rubbcr.
Rubber is reduced to a plastie condition by heating, and then strained under pressure to remove foreign materials.
645,3s1-March 13, 1900. W. PRAMPOLINI. Composition of matter.
As a substitute for india rubber, the gummy matter of the shrub Synantheroeas Mexicanas (known also by the Indian names of "Tule," "Copalin," "Terba del Negro," "Guayle," "Jiguhite," and "Hule"), combined with the residual of of a volatile hydrocarbon solvent.
647,112-April 10, 1900. J. J. PEARSON. Composition of cork and rubber for bootheels, etc.
An intimate mixture of cork and rubber, the cork being held under great compression in the rubber.
651,640-June 12, 1900. H. L. RUSSEGUE. Elastic waterproof composition.
A composition of balata and vegetable fiber-a sheet of balata is united with dry vegetable fiber by pressure.
651,582-June 12, 1900. H. SCHNEIDER. Substitute for gutla-pereha.
A composition formed of 45 per cent of asphalt tar, 40 per cent of resin, 10 per cent of spirits of turpentine, and 5 per cent of linseed oil.
651,75s-June 12, 1900. B. C. FOWLKES. Dental compound.
The compound comprises a solvent, vebicle, and drying constituents, as carbon bisulphide, 2 ounces; benzin, 1 dram; and chloroform, 1 dram; with black dental rubber, one-eighth of an ounce; and powdered aluminum, $1 \frac{1}{4}$
ounces. ounces.

CASEIN PLASTICS.

86,710-February 9, 1869. J. \& W. THIEM. Improved composition for moldings. A mixture of sawdust, 4 pints; milk curd, 1 pint; slaked lime, one-third of a pint; and cotton, 1 ounce, more or less.

15s,939-August 11, 1874. J. FRAUENBERGER. Improvement in artificial ivory, corals, etc.
A composition made of casein 2 parts, heated in a closed vessel on a water bath and then boiled under suitable heat with 1 part of a varnish-like solution of copal in concentrated liquid ammonia and alcohol.
169,05s-October 19, 1875. J. G. W. STEFFENS. Improvement in compositions for ornaments.
A composition of curd, alkali, and resinous matter; fixed by steeping in whey or milk before pressing, and in cold water containing oil of vitriol after pressure. 189,431-September 19, 1876. J. FRAUENBERGER. Improvement in compositions and processes for making artificial coral, ivory, etc.
Casein is mixed with sal soda and waterand dissolved under the action of heat; the oily matter is removed; and after cooling and coloring, acetic acid is added and the resulting pasty, gummy mass is freed from moisture by pressure and evaporation.
S07,179-October 28, 1884. E. E. CHILDS. Preparalion of casein and of articles madc therefrom.
Casein prepared from milk curd or cheese is worked or kneaded in water at or near the boiling point until it reaches a tough and glutinous consistency.
so7,269-October 28, 1884. E. E. CHILDS. Preparation of casein and of articles made therefrom.
Casein is prepared from milk curd, having washed or eliminated from it fatty and other objectionable matters, by working or kneading the curd in its naturally saturated condition, sufficient water of saturation being retained to admit of the working, at a temperature below the boiling point of water, until it reaches a tough and glutinous consistency.
\$5S,697-December7, 1886. L. R. MESTANIZ. Making artificialbone, ebony, marble, etc.
Skim milk is treated with salt, caustic soda, terra alba, hydrochloric, nitric, and sulphuric acids, and coloring matter, or with an alum solution and glycerine in lieu of a mixture of hydrochloric and nitric acids. Pot cheese may be used as the base, with borax in place of caustic soda.
610,626-Seplember 13,1898 . P. H. HENSEN. Composition containing cascin for
electric insulating or other purposes. electric insulating or other purposes.
A composition consisting mainly of casein, india rubber, and asphalt, subjected to pressure in a hot mold.
632,408-September 5, 1899. W. A. HALL. Process of producing casein.
See Group XVIII, Fine Chemicals, Proteids.
646,844-April $\$$, 1900. W. KRISCHE AND A. SPITTELER. Process of manufacturing water-resisting products from casein.
Soluble casein is rendered insoluble by the action of acids or salts, as by dissolving casein in water containing 5 per cent of sodium carbonate and coagulating by gradually adding a weak solution of lead acetate, and is then treated with formaldehyde, either while wet or after it has been dried.
649,690-May 15, 1900. W. A. HALL. Solid casein.
Solid homogeneous casein produced by hydrating the casein by grinding and thoroughly agitating the same in water so that the water is beaten into every cell thereof, thus forming a thin pulp, and then draining and drying the product and permitting the same to shrink together.
662,444-November 77,1900 . C. JUNG. Insulating composition.
A mixture, say, of equal parts of crude caoutchouc and casein, with a minor quantity of a resin, is vulcanized.

OTHER PLASTICS.

3,598-May 25, 1844. E. DEUTSCH. Improvement in waterproof cements, etc.
Bitumen, asphaltum, and like material is distilled, the residuum cooled and used as a base to mix with variousingredients as protoxide of lead, siccative oil, resin, wax, sulphur, etc., to form different coating and protecting products.
4,562-January 28, 1846. C. BRAN WHITE. Improvement in compositions for making handles, molds, etc.
Half a pound of starch in one pint of cold water is added to one quart of boiling water and well mixed, then allowed to cool, when finely sifted dry mahogany sawdust (or wood ashes or whitening) is mixed therewith to form a dough.
17,949-August 4, 1857. W. M. WELLING. Improvement in factitious ivory.
A mixture of shellac, ivory dust, and camphor, with pigments, as impalpable white, vermilion, etc., according to the color, mixed and heated, preferably by steam under pressure, to 115° to $138^{\circ} \mathrm{C}$.
19,778—March 30, 1858. J. BURROWS HYDE. Improvement in compositions for coating telegraph wires.
A composition formed by mixing I part of boiled linseed, cotton seed, or resin oil with 8 parts of asphaltum, the latter to be melted and the oil gradually stirred in.
45,518-December 20, 1864. I. N. PEIRCE. Improved composition for crayons.
A compound, using kaolin as the base, as kaolin 48 parts, calcined plaster of paris 16 parts, white glue I part, and water.
$50,658-$ October 24, 1865, H.J. GRISWOLD. Improved transparent composition for tablets.
A coating formed of 5 pounds of chemically prepared soapstone incorporated with 18 pounds of white shellac varnish is applied to a card or other foundation.
51,009-November 21, 1865. R. BORCHERDT AND H. BERGMAN. Improvcd composition for the manufacture of toys.
A mixture of glue, 5 pounds; sugar or honey, 10 pounds: glycerine, $2 \frac{1}{4}$ pounds, and Perry's white, 3 pounds.
60,984-January 1, 1867. H. WURTZ. Improved composition of glue or gelatine, and other materials, called durogel.
A combination of bichromate of potash with glue or gelatine, as solutions of 250 parts of glue with 5 parts of bichromate of potash, beated together.
65,087-March 19, 1867. A. PELLETIER. Improved composition for coating wood,
cloth, metals, and for forming various articles.
The compound consists of vegetable fiber, soapstone, silicate of soda, red with diluted marge. It is made impervious to water when coated by treatment with diluted muriatic acid, I part acid and 3 parts water.

71,210-November 19, 1867. A. YELLETIER. Improved composition for coating woad, iron, paper, etc.
A mixture of vegetable fiber pulp, silicate of soda, and soapstone, in about equal proportions by weight, made into sheets or used as a coating; it may be given a coat of coal tar and covered with powdered steatite.
71,898, December 10, 1867. R. O. LOWREY. Improvement in composition of matter for the manufacture of waterproof paper and other articles.
A new compound, produced by treating vegetable fiber or pulp, or article made therefrom, first, with solution of gelatine or animal glue, soap, and glycerine or saccharine water, and then with a suitable astringent solutlon which will render it insoluble in water, as of alum and salt in about equal proportions.
72,787-December 31, 186\%. A. B. ELY. (Reissue: 2,969-June 9, 1868.) Improvement in heel stiffeners.
Fiber and resin are mixed and rolled, pressed or molded into form, or felted and woven fabrics are saturated with gums or analogous substances, and heated and pressed in molds.
76,77s-April 14, 1868. H. W. JOHNS. Improved compound for roofing and other purposes.
The combination of asbestos with pigments, oleaginous or resinous matters or varnishes, or spirits, or ground or powdered minerals, or rubber.
77,938-May 12, 1868. W. M. WELLING. (Reissue: 5,940—June 30, 1874.) Improvement in artificial ivory.
A mixture of shellac I6 parts, camphor 1 part, and tale 16 parts, all by weight; mixed, heated, ground and molded while in a heated state.
77,991-May 19, 1868. R. O. LOWREY. Improved plastic compound for roofing and other purposes.
Vegetable fiber, with or without the addition of sand, clay, or similar substances, is mixed with silicate of soda, and after rolling, pressing, or molding, stances, is mixed with silicate of soda, and after rolling, pressing, or molding, therewith, and, when hard enough to handle, treated in a hot solution.
79,794-July 7, 1868. S. WHITMARSH. Improved composition for forming moulded and coated artictes.
A composition of blood with asbestos or other mineral or earthy matter, mixed or ground together and exposed to a temperature of $176^{\circ} \mathrm{C}$. to give it a hard and waterproof character.
85,018-December. 15, 1868. J. M. MERRICK, JR. Improved material for the manufacture of boxes, picture frames, buttons, insulators, inkstands, and other articles.
Powder of silica chemically prepared or in the form of diatomaceous deposits or infusorial earth is mixed with gum shellac or other gums.
85,055-December 22, 1866. C. E. BONNET. Improved composition for arnamental mouldings.
One-fourth of a pound of paper pulp is added to a solution of 2 pounds of glue in 5 pints of water, then a mixture of zinc white or white lead and I gill of linseed oil, and then sufficient whiting to form a tough dough.
s8,516-March 50,1869 . R. W. RUSSELL. Improved fibrous composition, stab and panel for roofs, toors, watls, tanks, and for other purposes.
Disintegrated cane fiber is charged with or mixed with bitumen and formed into slabs, sheets, ete.
89,100-April 20, 1869, W. M. WELLING. Improved etastic composition to imitate ivory and similar materials.
An elastic compound is formed by a mixture of 1 pound of shellac, and, say, 3 ounces of india rubber; with this base there may be mixed gumcamphor, kaoline, ivory dust, bone dust, or dust of holly, satin, or other woods.
89,551 April 27, 1869. W. M. WELLING. Improved composition for artificial ivory.
A mixture of kaolin, 2 parts, and shellae, I part, with or without a small A mixture of kaolin, 2 parts, and sheliac, 1 part, wough heated rolls and portion of gumcamp
molded while warm.
91,090-June 8, 1869. W. COMPTON. Improved composition-crayon.
A mixture of about 6 pounds paris white 3 g ounces starch, 3 ounces of soap, and from one-half to $2 \frac{1}{4}$ ounces of gum or glue.
92,50S—July 6, 1869. G. F. GOETZE. Improved papier-maché compound.
A mixture of paper pulp 5 parts, glue 5 parts, turpentine 2 parts, oil 2 parts, flour 4 parts, and whiting to suit; forming a petrified compound.
99,355-February 1, 1870. G. SCHLUETER. Improvement in compositions for molding from plaster of paris.
Dry pulverized gum is mixed with dry plaster and coloring matter, after which water is added.
101,101-Mfarch 22, 1870. J. R. COLE. Improved composition for the manufacture of tobacco pipes, stems, and cigar holders.
Paper pulp is mixed with a solution of alum or other salts that will render it incombustible, and molded.
121,152-November 21, 1871. M. W. BROWN. Improvement in composition stoppers for vessels.
A mixture of 30 parts of glycerine and 40 parts of gelatine, with or without 4 parts of an alkaline solution of 10° Baumé.
192,962—January 2s, 1872. C. H. POND. Improvement in insulating compounds for tclegraphs, etc.
A mixture of coal tar, 1 part, and charcoal, or sawdust, tanbark, or other A mixture of coal tar, I part, and caarcoarts. The woody matter may be organic body baving fiber or st
124,201-March 5, 1872. M. G. FARMER. Improvement in compounds for insulating telegraph wires, etc.
ing telegraph wires, etc.
A mixture of resin, 24 parts; beeswax, 16 parts; spermaceti, 8 parts; and oil, A mixture of resin, 24 parts; beeswax
1 part; for saturating porous insulators.
129,217-July 16, 1872. A. K. EATON. Improvement in compounds of gelatine, tannin, and cellulose.
A compound resulting from the chemical union of cellulose, tannin, and gelatine; say, glue, 54 parts; tannin, 46 parts, in the form of catechu or any of the crude tannin gums, and cellulose, 150 parts.

142,595-September 9, 1873. A. THIELE. Improvement in composition mastic.
A mixture of 40 parts of sand, 100 parts of ehalk, 15 parts of tallow, and 6 parts of tar.
144,548-November 11, 1873. J. L. KENDALL. Improvement in paper products.
Paper pulp and sponge is saturated with linseed oil and subjeeted to pressure.
148,8\%9-March 24, 1874. I. I. JACKSON. Improvement in composilions for printers' inking rollers.
A mixture of gluc, 16 pounds, glycerine, 16 pounds; borax, 1 pound; and japan, 1 pound.
148,910-March 24, 1874. A. WILKINSON. Improvement in compositions for coating tclegraph wires.
A mixture in, say, the proportions of white lead, I pound; japan, I ounce; pltch, 4 ounces; shellac, 3 ounces; tallow, I nunce; naphtha, I ounce; and linseed oil, I ounce.
149,615-April 14, 1874. D. G. AND S. STAIGHT. Improvement in artiflcial ivory for piano keys and other articles.
Alabaster, gypsum, or other variety of sulphate of lime is treated with heat and subsequent immersion in white hard varnish, olive oil, or other oleaginous, fatty, or waxy matter, and then repeatedly immersed in heated water or alum water; the hardness being varied by the use of the alum.
149,749-April 14, 1874. J. G. HALEY. Improvement in compounds for a waterproof material.
A compound made of limesoap, prepared of hydraulic cement and linseed oil, mixed with sulphate of zinc, bisulphuret of carbon, alum, asbestos, and clay.
150,194-April $28,187 \%$. A. SCHMIDT. Improvement in composition moldings.
A composition of ground tanhark, ground eggshells, and slacked lime, with an admixture of glue and linseed oil, is molded under a steam-beated dye with a sheet of veneer for the face of the molding.
168,086-September 28, 1875. F. B. DUFFEY. Improvement in ptastic compounds
for making ornamental articles.
A mixture of Spanish whiting, 3 pounds; white lead ground in oil, I pound; coach Varnish, 6 drams; dammar varnish, 6 drams; Japan drier, 3 drams, and coach Varnish, 6 drams; dam
boiled linseed oil, 10 ounces.
174,527-March 7, 1876. F. HICKMAN. Improvement in malerials for chair seats,
backs, veneers, floorings, etc.
Sawdust or fine shavings, saturated with dissolved glue or melted shellae, is spread upon a backing of cloth or other material, and rolled or pressed before spread upon a backin
it is completely dry.
189,939-April 10, 1877. B. J. CLARKE. Improvement in crayons for marking on glass, etc.
A mixture of 6 ounces of beeswax, 7 ounces of suet, and 1 pound of dry color; with balf an ounce of oil of cedar.
190,769-May 15, 187\%. A. KIESELE. Improvement in compositions for casting ornamental flgures.
A composition consisting of paraffin, I pound; stearine, 4 ounces; and pulverized sugar, 12 ounces.
192,779-July $s, 1877$. O. LONG AND P. H. DRAKE. Improvement in adhesive Bubstances.
It consists of a solution of worn-out printers' inking rollers (composed of glue and molasses, or glue, glycerine, and molasses) with the addition of tobacco to render it insect proof.
198,91s-July 17, 1877. H. BAYLE. Improvement in compositions for motded articles.
A compound consisting of 100 pounds of papier-maché, 20 pounds of gum arabic, and 5 to 6 ounces of bronze powder.
198,884-January 1, 1878. J. B. HAYDEN. Improvement in composition for molded articles.
Flexible threads or strips of wood cut with the grain and irregularly crossedFlexible threads or strips of wood cat with saturated with glue and compacted under pressure.

201,067-March 5, 1878. J. W. SWARTS. Improvement in crayons.
Composed of glue, 8 parts, and an alkali, as a solution of carbonate of soda, I part, boiled to a hard saponification of the mass; and I part of the same mixed with 3 parts of paraffine wax and coloring matter.
201,283-March 12, 1878. C. C. PARSONS. Improvement in compositions for crayons.
Composed of clay, fatty matter, resin, and coloring matter melted together, as bard tallow, 4 parts; resin, I part; powdered clay, I $\frac{1}{4}$ parts, and lamp black, one-half part.
201,348-March 19, 1878. J. W. \& C. M. HYATT. Improvement in siticeous malerial to imitate ivory and similar substances..
An alkaline silicate, as silicate of soda, is used to agglutinize a solid animal tissue. Comminuted bone, horn, or ivory is mixed with the silicate of the contissue. Comminuted of sirup, and molded or rolled into sheets and dried, or treated with sistency of sirup, and The composition is treated with calcium chloride to render the silicate insoluble.

202,636-April 23, 1878. W. H. DIBBLE. Improvement in composition for manufacturing molded articles.
A dry pulverulent composition formed by indurating and pulverizing blood A dry pulverulent composition formed or mineral solids-about equal parts by in combination with
206,007-July 16, 1878. G.-R. EVANS. Improvement in nonconducting compounds,
A fire-resisting and nonconducting compound, consisting of 3 or 4 parts of pulverized petrified wood, I part of mica, and I part of talc, with sufficient clay or verize material to make a pasty mass.
208,056-September 17, 1878. J. ROBLEY. Improvement in manufacture of floor cloth.
A mixture of sawdust, ground wood, or other vegetable matter, with copal A mista and dry paint or mineral coloring matter. spread on a canvas, textile, or fibrous base.

209,588-October 29, 1878. C. WALPUSKI. Improvenent in the manufacture of colored crayons.
A composition consisting of a suitable base, as kaolin, with starch and gelatinous matter combined with coloring matter; (the colors can be worked in a dry state and fixed on paper with water).
210,201-November 26, 1878. A. KEMPENNER. Improvement in plastic composition for the manufacture of aquarium frames, etc.
A mixture of sand, fire clay, coal tar, and asphaltum.
215,757-May 27, 1879. A. KIESELE. Improvement in compositions for casting ornamental figures.
A mixture of 5 parts of paraffin with 2 parts of starch.
217,360-Juty 8, 1879. J. C. FRIEDRICHS. Improvement in compounds for forming letters, figures, or ornaments.
A mixture of one-half pound of umber, one-quarter pound of litharge, 5 pounds of plaster of paris, 1 pound of clay, one-quarter pound of terra-sienna, 2 pounds of boiled oil, 1 pound spirits of turpentine, and one-half pound of Japan drier.
217,705-July 22, 1879. W. F. NILES. Improvement in the manufacture of ornamental buttons from blood and other materiats.
A compound formed of powdered blood and colored, lumped, powdered blood with a gelatine or albumin substance, molded with pressure and heat.
218,538-August 12, 1879. J. B. KING. Improvement in compositions for walls and ornaments.
A mixture of 3 parts of clay; I part pulverized lava; 1 part dextrine or similar gum; I part fibrous material, as cotton, paper, wool, or asbestos; I part ground plumbago, and 1 part pulverized glass, with sufficient water to render the mass plastic, with or without a small quantity of plaster of paris.
221,825-November 18,1879. L. E. JANNIN. Improvement in composition for
stereotype molds. stereotype molds.
A mold or matrix for forming stereotype plates is made of a cement composed of protoxide of lead and glycerine.
221,881-Navember 18, 1879. H. P. WEBB. Improvements in paints for filling the seams of vessels.
A quick drying liquid-gum vehicle, composed of resin dissolved in naphtha, combined with an earthy base, as red oxide of iron.
223,598-January 13, 1880. A. KRYZINSKI. Compasition for covering moldings. Composed of a solution of glue, 4 pounds; rye-flour, 8 pounds; and whiting, 190 pounds.
223,869-January 27, 1880. N. ULLMAN AND M. D. STILES. Crayon compound.
Formed of lampblack, 16 parts; alcohol (95 per cent), 48 parts; and Siberian lead or graphite, 1 part; all by weight.
283,880—January 27, 1880. J. BURBRIDGE, R. C. THORPE, AND T. OAKLEY. Composition for elastic rollers.
Composed of sulphurized oil, fibrous material, and gum-resin or pitch; as from $3 \frac{1}{2}$ to $4 \frac{1}{2}$ pounds of fibrous material added to $1 \frac{1}{2}$ pounds of gum-resin and combined with 6 pounds of sulphurized oil. The rollers are subjected to a heat of about $150^{\circ} \mathrm{C}$. for about three hours.
225,261-March 9, 1880. O. F. WOODWARD. Composition of matter for making molded articles of manufacture.
Gypsum and resin mixed together under heat-say in the proportion of 5 parts of the former to 4 of the latter.
225,679-March 16, 1880. A. T. WOODWARD. Plastic compound.
A mixture of pulverized silica-such as flint, glass, or sand-and a mineral or vegetable resin or pitch, with or without boiled linseed oil or other drying oil, or turpentine, or benzine; impervious to water and suitable for insulating purposes.
225,817-March 23, 1880. T. FLETCHER. Composition for flling tecth.
A paste composed of alumina pyrophosphate or phosphate triturated with phosphoric or pyrophosphoric acid and mixed with a substance capable of combining therewith and taking up excess of acid and solvent, as powdered hydrate

226,547-Aprit 13, 1880. J. L. POPE. Composition of matter.
A mass of pulverized cork mixed with a suitable binder (colored or not), with or without any suitable substance susceptible of taking a porish, and solidified by pressure.
226,583-April 20, 1880. I. B. ABRAHAMS. Plastic composition of matter for the manufacture of jewelry and fancy articles.
One part of glue is dissolved in 2 parts of slightly acidnlated water and mixed with I part or resin or shellac liquefied by heat and the addition of turpentine, when 4 parts of starch and a dilute acid is added with heating.
296,738-Aprit 20, 1880. 'T. FLETCHER. Composition for filling teeth.
A solution of phosphate of tin in phosphoric acid is combined with the powdered product of a mixture of lime 1 part, and silica and alumina each 5 parts, fused together.
297,291-May 4, 1880. E. L. ORMSBEE. Substance for mounting stuffed birds, etc.
A mixture of glue, sand or sawdust, and Marseilles green, in about equal proportions; it forms an imitation of wood.

2297,352-May 11, 1880. E. EVERHART. Composition for insulating telegraph wires, coating metals, covering roofs, and for other purposes.
A mixture of 250 pounds of asphalt and 100 pounds of resin, with 20 pounds each of powdered charcoal and infusorial earth.
229,491-June 29, 1880. P. L. SYLVESTER. Manufacture of buttons from plastic
matcrial. matcrial.
An ornamental coating of tinsel, foil, brocade, or gold sand, combined with shellac; produced by mixing shellac and the tinsel, etc., with heat, then pulverizing, and sprinkling the surface of the mold with the powder.
229,494-June 29, 1880. P. L. SYLVESTER. Monufacture of buttons from plastic material.
A plastic material composed of bleached shellac, 1 part, and mineral white (carbonate of lime), 2 parts, without pigments.

291,510-August 24, 1880. J. COLLINS. Lining gas generators, acid chambers, and fountains for mineral waters.
Powdered asphaltum with sufficient deodorized beazine to form a thick paste is heated until the asphaltum is dissolved, and powdered plumbago added, pound for pound.
231,786-August 81,1880 . J. TAYLOR. Manufacture of flexible tubes.
A coating composition consisting of 4 ounces of a product, obtained by dissolving I ounce of alum with 1 pound of linseed oil and boiling, mixed with 1 pound of molasses and 1 pound of gum arabic.
235,900-December 28, 1880. G. F. SENTER. Composition from mineral woal for journal bearings.
Three parts of mineral wool and 1 part of plumbago are mixed and ground together and sufficient water glass added to form a paste, which is molded into a compact mass with heavy pressure, dried, and dipped in melted paraffin or other unctious material.
296,03L-December 28, 1880. J. W. HYATT, C. S. LOCKWOOD, AND J. H. STEVENS. Factitous material to imitate ivory, horn, etc.
Bone dust is welded by heat and pressure, with or without the admixture of a water repellant, as a gum solution, or an acid, as boracic acid, to facilitate the welding.
256,480-January 11, 1881. S. BARR. Compound for manufacture of gas tubing.
A mixture of glue, 10 pounds; glycerine, 12 pounds; soap, 4 ounces; borax, 1 ounce; and copperas, three-fourths of an ounce; with sufticient water, using heat, to form a paste.
287,569-February 8, 1881. H. B. MEECH. Dry-ground pulp.
The pulp of rags, jute, straw, or other wet-pulped vegetable fibers, is dried and then ground or pulverized to a fine powder for admixture with varnishes, gums, or oils.
258,980-March 15, 1880. J. B. SPENCE. (Reissues: 9,982, 9,989, and 9,984-Decem-
ber 30, 1881.) Manufacture of metallic compounds from sulphur and sulphides.
"Spence's metal," composed of metallic sulphides, as sulphide of iron and sulphide of copper, and sulphur; formed by pulverizing the sulphide and comsumphing it with fused sulphur.
239,409-Morch 29, 1881. W. A. WALLER AND J. P. HITCH. Composition for slating surfaces of blackboards.
A mixture of I pound of lampblack and 1 pound of gum arabic in water with 8 pounds of Spanish white and 16 pounds of plaster of paris added.
239,466-March 29, 1881. E. J. DE SMEDT. Insulating or nonconducting compound for electrical purposes.
Telegraph wires and electrical conductors are insulated or covered with an oxidized hydrocarbon obtained by treating coal tars and the heavy oils of petroleum with an oxidizing agent.
239,951-April 12, 1881. W. M. GRAZE. Plasic composition from paper-pulp for
floors, brake-shoes, journals, etc.
A composition of matter, and articles made thereof, consisting of a mixture of paper-pulp and metallic fillings (with or without a sizing of oil, resin, paraffin or the like) solidified under pressure.
242,758-June 14, 1881. C. CRABTREE. Composition to be used in making squibs waterproof.
A mixture of 1 pound of beeswax, 3 pounds of flowers of sulphur, 1 pint of alcohol and one-half pound of gum shellac.
244,921-July 12, 1881. J. C. SELLARS. Composition for molds ond compositionmold for forming concrete.
A lubricating binding material not affected by alkalis, such as paraffin, combined with sand or charcoal.
244, 486-July 19, 1881. E. ROSENZI. Composition of matter for molded articles to resemble glass and iron.
It consists of sand, 100 parts; coal ashes, 40 parts; lime (burned), 10 parts; with arsenic, magnesia, borax, and soda, in variable quantities, fused in a crucible and cast.
246, 391-August 90,1881 . J. R. HOWELL. Composition of matter to be used in the arnamentation of moldings and picture frames and the manufacture of light hollow ware, toys, trays, etc.
A mixture of 8 pounds of glue, 6 pounds of resin, 2 pounds of paper pulp, and 2 quarts of linseed oil, thickened to a paste while hot by the addition of whiting. 247,797-October 4, 1881. M. W. BROWN. Composition of matter.
A composition consisting of skin glue or gelatine, water, glycerine, carbonate of lime, and earth paint, to be applied to paper or fabrics to render them fexible, tenacious, and resistant to wear.
$248,324-$ October 18,1881 . H. W. JOHNS. Asbestos moterial and process of manufacturing the same.
Asbestos is reduced to fihers; formed into a bat, with or without wires or cords placed therein; moistened, as with a glutinous or waterproofing solution; and subjected to pressure.
250,257-November 29, 1881. O. O. KARSCH. Composition for artificial-wood ornaments.
Ten pounds of glue dissolved in 4 quarts of water is combined with 6 pounds of resin dissolved in 1 quart of linseed oil with heat, and sifted whiting and plaster of paris added and molded while warm and plastic.

251,475-December 27, 1881. F. W. SCHROEDER. Insulating composition or compound for coating electric and other wires or conductors.
A compound formed from 2 pounds of glue, 16 ounces of mastic, 14 ounces of dextrine, 9 ounces of asbestos, $2 \frac{1}{3}$ ounces of chrome-alum, one-fourth of an ounce of chloride of iron, and 16 ounces of glycerine, with or without the addition of 8 to 20 ounces of albumen.
251,474-December 27 , 1881. F. W. SCHROEDER. Insulating composition or compound for coating electric and other wires or conductors.
The composition is like that of No. 251,473 , with the omission of asbestos.
251,970-January 5, 1882. J. TAYLOR. Coating and insulating wire for electrical purposes.
A coating of benzoin is applied directly to the wire or outside of a fibrous

253,200-February 7, 1882. T. GUILFORD. Composition for buttons, etc.
A mixture of pulverized horn or hoof and steatite, with or without coloring pigments.
254,461-March 7, 1882. J. D. CHEEVER. Waterproof composition.
A composition, consisting of short fibers, as of jute, 30 pounds; spent tan bark powdered, 50 pounds; pulverized pagodite or agalmatolite, 30 pounds; powdered red chalk or red oxide of iron and clay, 20 pounds; and flour sulphur, $1 \frac{1}{4}$ pounds, mixed in a mill, with the addition of 10 pounds of vaseline and 20 pounds of cantchouc-the latter made miscible with coal tar or petroleum naphtha. Burlap is prepared to receive a coating of the above by applying to the same, by hot calendering, a composition of glue, yellow soap, and alum.
254,964-March 14, 1882. B. HARRASS. Plastic compound.
For making imitation wood objects, a mixture of 3 parts of paper pulp or cellulose, 1 part of starch, and 2 parts of flour, boiled, and converted into a fibrous paste, is mixed with sawdust; or a mixture of 2 to 10 parts of cellulose, 6 to 30 parts of sawdust, 1 to 5 parts of binding material-as dextrine, albumen, etc.I to 5 parts of four and one-eighth to 2 parts of clay, chalk, etc., for backing veneers.
255,937-April4, 1882. M. B. CHURCH. Plastic materiat.
For wall covering, a mixture of 5 to 8 pounds of glue, with 1 to $1 \frac{1}{1}$ pounds of sulphate of zinc, and 100 pounds of plaster.
257,706-May 9, 1882. W. C. HORNE. Crayon.
A luminous substance, such as a phosphorescent powder, is combined with a base or vehicle to form a paste which is molded and dried. It makes luminous marks.
258,549-May 50, 1882. F. BOREL. Insulating material for elecirical conductors. A siccative oil, such as linseed oil, transformed by heat into a solid elastic mass, with or without an admixture of a resinous matter, such as colophony.
259,878-June 20, 1882. C. S. LOCKWOOD. Plastic composition for the cores of billard balls, and for other purposes.
Comminuted and desiccated glue, with or without glycerine, is welded and agglutinated by heat and pressure.
261,623-July 25, 1882. H. W. MORGAN. Preparation of whatebonc
A solution of whalebone, formed by dissolving shavings, cuttings, etc., in an alkali.
$262,427-$ August 8, 1832. W. M. JACKSON. Gaљ-proof cement.
A componnd of glycerine, 24 parts; gelatine, 1 part; and litharge or yellow oxide of lead, 30 parts.
264,771-September 19,1892. M. W. SAMUEL. Method of and means for the production of figures in relief on various substances.
An adhesive plastic, consisting of 45 per cent of wax and 50 per cent of powdered resin, combined with heat, to which 5 per cent of Venice turpentine is added, with boiling.
266,05s-October 17, 1882. J. J. SACHS. Production of materials for castings, cements, lead pencils, etc.
A composition consisting of sulphur and plumbago or other nonmetallic substances or mixtures, in the proportion of 4 parts of the former to 3 parts of the latter, or thereahout.
266,493-October 24, 1882. W. MATT. (Reissue: 10,348-June 19, 1889.) Artificial stone for veneers, etc.
A mixture of glue, 6 pounds; resin, three-fourth of a pound; linseed oil, $1 \frac{1}{2}$ pounds; paper pulp, 1 pound; glycerine, one-fourth of a pound; and steatite or its equivalent, and coloring pigments.
267,045-November 1, 1899. R. S. WARING, AND J. B. HYDE. (Reissue: 10,350July 5,1889 .) Insulaling material for electric uses.
An insnlating compound composed of two or more of the heavier products arising from the redistillation of the residuum of petroleum, as obsidine tempered with a softer residuum product to give flexibility.
267,046-November 7, 1882. R. S. WARING. (Reissue: 10,951-July 9, 1883.) Insulating compound for electric wires.
A compound consisting of the liquid distillates of the residuum of petroleum with resinous or bituminous substances, together with clay, chalk, pulp, or like material.
271,120-January 29, 1888. W. F. R1KEMAN. Composition for covering piano keys, etc.
It consists of a mixture of gypsum, 60 parts; shellac, 30 parts; silica, 10 parts; and ivory black, 10 parts.
271,994-February 6, 188s. D. M. STEWARD. (Reissue: 10,944-June 19, 1889.) Electrical insulator.
Steatite, in a natural block cut into the desired form, or in the form of powder is herdened or vulcanized by treating it with ammonia and muriatic acid and then subjecting it to heat. The vulcanized powdered steatite is mixed with a binding material, as plaster of paris, and molded.
274,622-March 27, 1889. J. F. MARTIN. Insulating compound for clectrical work. A mixture of marble dust, plaster of paris, and glue size; it is formed into tubes.
275,123-April 9, 188s. I. R. BLUMENBERG. Indestructible compound for lining and coating tubes, cylinders, and other vessels, electric wires; also for joint packing, and coating tubes, cylinders, and other vestel, A compound of lamphlack, about 4 per cent; asbestos, 20 per cent; litharge, A compound of lamphlack, about 4
45 per cent; and glycerine, 31 per cent.
275,422-April 10, 1889. S. F. SHELBOURNE. Insulating compound for electric conductors.
A compound of paraffine and one or more of the heavier and separate distillates passing over in the redistillation of the residuum of petroleum.
275,904-April 17, 1883. C. GRUNZWEIG AND P. HARTMANN. Artificial cork. A composition formed of boiled starch and powdered cork.
276,607-May 1, 1889. G. J. LESSER. Plastic and elastic composition for forming elastic rolls, elastic pads, and for other useful purposes.
A compound of glue, 25 pounds; gelatine, 6 pounds; glucose, 25 pounds; extract of lead, I pound; and glycerine, 15 pounds; formed by first forming a glue or
gelatine with the lead compound, and combining said compound with a compound of glue and glucose with the glycerine added.
276,891-May 1, 1889. J. G. SANDERSON. Insulaling electrical conductors.
A pulvernlent mixture of nonconducting metallic oxide-as the sesquioxide of iron-and sulphur is mixed with melted bitumen.
276,998-May 8, 1883. S. BARR. Compound for coating gas-tubing.
A mixture of glue, 30 pounds; glycerine, 30 pounds, and bichromate of potash, ${ }_{1}^{2} \frac{1}{4}$ Ounces.
277,707—May 15, 1883. P. E. GONON. Manufacture of lead-pencils.
A pencil consisting of a marking core surrounded hy material, as wood pulp, pressed around the core in a plastic or semifluid state. (Claims for the apparatus.)
278,481-May 29, 1885. S. M. ALLEN. Material for roofing purposes.
Powdered or pulped fiber is mixed with heated asphalt and the paste formed into sheets, or applied to a web or backing of paper or other fabric.
278,586-May 29, 1883. J. GREIVES. Electricat insutating materiat.
A compound consisting of chalk and colophony, and containing from 40 to 90 per cent of chalk.
279,492-Junc 12, 1853. A. MEUCCI AND T. DENDI. Plastic pastc.
A composition consisting of gelatine or a substance containing gelatine, 2 to 4 parts; fiber deprived of its mineral, gummy, and resinous substances, one-fourth to one-half part; an acid, as dilute muriatic acid, 1 to 2parts; starch or analogous substances, 1 to 2 parts; tarnish, 1 to 2 parts; oxide of zinc, 6 to 8 parts; and terraalba, 2 to 4 parts.
281,999, July 24, 1883. J. B. HYDE. (Rcissues: 10,409; 10,404-November 6, 1888.) Insulating compound for electrical conductors and apparatus for compounding ond applying the same.
A compound composed of petrolenm or mineral oils combined under heat, in a closed vessel, with the hard bituminous residuum from petroleum distillation.
282;014-August 7, 1883. J. F. MARTIN. Compound for electric-wire insulators.
A compound of asphaltum and from 40 to 60 per cent of fine marble dust.
28s,044-August 14, 188s. D. B. TURNER. Composition to insulate, preserve, and protect wire for electrical purposes.
A compound formed of 1 part by weight of castor oil, and 5 parts of the black resinous substance obtained as a residunm of oil distillation, and known as "Nubian pitch," "Nubian gum," and "colophony niger."
283,200-August 14, 1889. H. R. BRISSETT AND J. HOWE. Composition for coating and insulating underground wires.
A composition of cottonseed oil, 30 ounces; Venetian turpentine, 30 ounces; resin, 18 ounces; asphaltum, 39 onnces; steatite, 48 ounces; paraffine, 16 ounces; pine tar, 12 onnces; sulphur, $17 \frac{1}{\frac{1}{2}}$ ounces; and red lead, 15 ounces.
233,526-August 21, 1889. J. W. STANSBURY AND J. M. HEDRICK. Lining for burial caskets, etc.
A compound composed of 3 pounds of alcohol, 4 pounds of white lead, 3 pounds of gum shellac, 1 pound of white glue, and plaster of paris.
283,793-August 28, 1889. C. S. LOCKWOOD. Plastic material.
A compound consisting of 8 pounds of powdered hone or similar material, 2 ounces of phosphate of ammonia or its elements, and 2 pounds of powdered shellac, may be subjected to pressure in heated molds or r ixed with a solvent and mixing rolls.
283,794-August 23, 1889. C. S. LOCKWOOD. Plastic material.
Eight pounds of pulverized and desiccated hone is mix . with 2 ounces of phosphate of ammonia and subjected to pressure in heated molds.
283,796-August 28, 1889. C. S. LOCKWOOD. Zincatcd bone.
Bone dust or like material is mixed with sulphate of zinc, the mixture sub mitted to a water bath, and then the free acid washed ont to render the gelatine insoluble.
285,797-August 28, 1889. C. S. LOCKWOOD. Plastic malerial.
A mixture of tannate of iron and bone or horn dust is subjected to pressure in a heated mold, as 8 parts of bone dust and 2 parts of tannate of iron, or a mixture of 16 parts of bone dust, 4 parts of solid extract of logwood, and i part of sulphate of iron made into a solution, and the moisture expelled.
284,098-August $2 s, 1889$. R. S. WARING. Insulating material and preparalion of the same.
An insulating material for lead-covered cables: produced by subjecting An ral asphaltum, or the heavier distillates or residual products of petroleum to natural asphaltum, or the vaporizing point of water, to eliminate the latter and a degree of heat above the vaporizing poducts-approximate, $175^{\circ} \mathrm{C}$,-but below the point at which destructive distillation or eracking begins.
287,946-October 23, 1889. C. J. VAN DEPOELE. Insulaling malerial.
A mixture of silicate of soda with earthy substances or metallic oxides, as zine white or red lead; paper is saturated therewith.
287,994-November 6, 188s. H. ARMSTRONG AND J. A. LOUDON. Boiler-covering.
Fibrous peat, separated or disintegrated from the bulk of its earthy matter, is mixed with cement as a covering for steam-pipes, boilers, etc.
288,112-November 27, 1889. W. MATT. Artificial stone for veneers, molded articles, etc.
A compound consisting of glue, 10 pounds; asbestos. 10 pounds; linseed oil arnish, one-half pound; colophony, one-half pound; glycerine, 1 pound; varnish, one-hali pound; colatite or kaolin and pigments.
289,237-November 27, 188s. L. EBERLE. Composition for gilt noldings.
A mixture of one-half pound each of stick-lac and sandarac, and one-eighth pound each of galipot, gamboge, and dragon's blood in alcohol.
290,057-December 11, 1883. J. BURROWS HYDE. Insulating compound for electric conductors.
Mineral and coal-tar bitumens are melted and combined with petroleum or mineral oil. In coating thread-covered electric wires with an insulating medium, the covering is saturated with a volatile fluid, as crude petroleum, before the wire enters the heated insulating composition. The waste yapors evolved are wire enters sealed and foating holder and used for heating the furnace.
stored in a seal

290,058-December 11, 1888. J. B. HYDE. Insulating compound for electric conductors and the process of compounding the same.
A compound of dry powdered peat with bituminous substances and hydrocarbon fluid added under heat; short lengths of vegetable fiber may be added to the melted composition.
290,888-December 25, 1883. F. J. KALDENBERG. Manufacture of articles from waste amber.
Articles made of pieces of amber and gum animé molded together: formed by pulverizing the gum, mixing it with pieces of amber, and subjecting it to heat and pressure.
291,164-January 1, 1884. A. DICKMAN AND M. HEINTZ. Veneer.
A composition veneer built up in alternate layers or wood shavings and glue; the shavings are cut to particles of a uniform size.
291,284-January 1, 1884. E. BRADY. Composition of matter for molding fruits, fancy-topped tables, birds, etc.
It consists of 1 pound of pulverized hard stone, 1 pound of pulverized slate stone, one-quarter pound of common sand, one-quarter pound of white sand, one-sixth pound of pulverized clam shells, one-quarter pound of common brick, one-quarter pound of charcoal, 3 pounds of blue clay, 1 pint of linseed oil, and water.
291,710-January 8, 1884. J, GREIVES. Electric insulating material.
Caustic lime in powder, hydrated or otherwise, is combined with resin in a fused state, the lime being in excess; from 2 to 5 per cent of a fixed oil, as resin oil, may be added, to render the compound flexible.
291,717—January 8, 1884. J. GREIVES. Electric insulating material.
A compound of resin and natural silicate of magnesia-as talc or soapstonecombined by fusion, the silicate being in excess; from 5 to 10 per cent of a fat or oil is added to temper the compound.
291,718-January 8, 1884. J. GREIVES. Electrical insulating material.
It is composed of crystalline lime carbonate, as marble, spar, etc., reduced to powder and combined with resin by fusion of the latter, with or without the addition of powdered asbestos.
292,770—,January 29, 1884. P. H. VANDER WEYDE. Manufacturing a rot-proof covering for underground telegraph cables.
The fibrous envelope of a metallic conducting wire is saturated with Utah elaterite or mineral wax, combined with from 5 to 10 per cent of bitumen.
292,956-February 5, 1884. M. SCHÜ'TZ. Compound for preserving the soles of boots and shoes.
It consists of 25 parts of shellac and 25 parts of alcohol, mixed with 50 parts of boiled linseed oil.
299,784-February 19, 1884. W. s. RAVENSCROFT. Pulp caster-wheel.
A caster wheel made of paper or wood pulp.
294,457-March 4, 1884. J. FOTTRELL. Composition for electrical insulation.
Metallic soap, which may be formed from a common brown soap and an alum solution, alonc or combined with benzine, turpentine or gasoline, and lin
oil and varnish, and with or without a thickening material, as white lead.
297,626-Aprit 29, 1884. J. H. PAGE. Indestructible compound for coating wires for electrical purposes.
A compound of litharge and glycerine, formed into a thick paste.

298,072-May 6, 1884. D. H. DORSETT. Insulating material.

The residuum of 50 gallons of coal tar, distilled until it will resist 55° to $60^{\circ} \mathrm{C}$. without softening, combined with 2 gallons of crude petroleum paraffine, 100 with or without one-half poind of black oxide of manganese and one-fourth with or without one-half pou
pound of ammonia chloride.
300,464-June 17, 1884. L. HAAS. Compound material for the manufacture of sheets, boards, blocks, artifcial wood, etc.
Eighty per cent of wood or vegetable fiber and 20 per cent of scrap leather and shoe waste or shoddy waste and crude asbestos are ground or reduced to a fiber, the moisture evaporated, and mixed with thinned asphaltum blended with a suitable quantity of pitch, sulphur, whiting, crude asbestos, and litharge.
s00,799—June 17, 1884. O. F. PARSONS. Fire and water proof compound.
A mixture of 20 gallons of coal tar, 12 pounds of air-slacked lime, 7 pounds of Spanish brown, 6 pounds of sulphur, 2 pounds of litharge, 8 pounds of salt, and 7 pounds of American ocher.
\$02,977-August 5, 1884. W. M. BRASHER. Floor-covering.
One hundred and twenty pounds of litharge is added to a solution of 120 pounds of sugar of lead in 100 gallons of water, and of gailipns of the same is size, 10 pounds of wood pulp, and 20 gallons of linseed oil (three-fourths raw and one-fourth boiled). It is spread on a textile base.
s03,501-August 12, 1884. C. LORTZING. Art of making artifcial asphaltum from the residue of tameries.
The precipitated residuum of the waste waters of tanneries and the like is dried, powdered, mixed with powdered limestone, and subjected to heat and pressure; the product possesses all of the qualities and appearance of asphaltic mastic.
S04,020-August 26, 1884. C. G. MUSKAT. Composition for covering and insulating electric wires.
one pound of castor oil is boiled with 2 pounds of gum copal and incorporated with 3 pounds of powdered slate.
304,775-September 9, 1884. S. BARBIER AND C. H. COIFFIER. Compposition to be used as a substitute for hard india-rubber, celluloid, iron, and the like.
A mixture of ivory waste, or dust, and horn agglomerated by means of albumen.
305,205-Seplember 16, 1884 . C. S. LOCKWOOD AND J. W. HYATT. Plastic material to imitale ivory, etc.
Organic or analogous material is thoronghly comminuted, say to one twentythousandth of an inch, and then subjected to heat ($160^{\circ} \mathrm{C}$.) and great pressure in a mold; a homogencous mass being formed without the use of adhesives.
507,184-October 28, 1884. A. DERROM. Composition mastic for covering roofs, tele-graph-wires, and the like.
A mixture of "crude, hard Venezuelan bitumen" and purified, soft Venezuelan bitumen.

308,778-December 2, 1884. C. T. LEE. Composition for making nonconducting handles for sad-irons, etc.
Powdercd mica, or like material, is combined with glue which has been treated with acetate of iron, so that the mass does not soften with moistnre.
s10,899-January 20, 1885. M. MACKAY. Plastic compound suitable for molding into various useful articles, such as screw-stoppens for bottles, jars, etc.
It consists of a compound of 75 pounds of lac, 38 pounds each of gum-sandarac, resin, and ivory-black, and 168 pounds of asbestos or other suitable fibrous material or silicates.
s11,875-February 10, 1885. R. P. COUGHLIN. Manufacture of ctock-cases, statuary, vases, and other articles from plastic materials.
A composition of Keene's cement, resin, and alum, with or without coloring matter. A composition for dyeing artificial marble consists of extract of logwood, copperas, tincture of iron, and water.
s16,574-April 21, 1885. S. KRAUS. Artificial slate pencil.
Colored slate pencil, formed of coloring matter, 10 pounds; talc, 5 pounds; and potters' clay, 10 pounds; mixed, formed, and baked.
317, $388-$ May 5, 1885. C. S. LOCKWOOD AND J. W. HYATT. Process of treating silicate of soda in combination with zinc oxide, etc.
A composition, and articles formed thereof, consisting essentially of silicate of soda and zinc oxide, combined, comminuted and partly dehydrated; produced by forming an aqueous solution of the silicate of soda with an admixture of zinc oxide in the proportion of 4 parts of silicate (26° Baume) to 1 part of zinc ment in an ammoniacal bath
319,084-June 2, 1885. J. A. FLEMING. Preparation and production of insulating materials.
Finely divided wood, or other vegetable fibrous material, is desiccated and impregnated with a mixture of melted bitumen or asphalt incorporated with silicates of magnesia, or lime, iron, alumina, or of two or more of them, and with amber resin, or other resin having a high melting point, as kauri, and molded under pressure.
\$2 1,956-July 14, 1885. J. W. ELLIS. Composition of matter for the preservation and insulation of wires.
A compound of roofing pitch with sulphur, one thirty-second part; resin, onesixteenth part; and lime, one thirty-second part.
S22, 805—July 21, 1885. A. G. DAY. Vulcanized product, termed "kerite."
A compound formed by the mixture of cottonseed oil, linseed oil, coal tar or bitumen, and the sulphide of antimony or other suitable sulphide (product of No. 322,802).
S22,805-July 21, 1885. A. G. DAY. Vulcanizable compound, or crude kerite.
A compound formed by the mixture of vegetable astringents with cottonseed oil, linseed oil, and coal tar or bitumen (product of No. 322,804).
322,996-July 28, 1885. S. P. M. TASKER. Manufacture of leathery compound.
Fibrous material-animal vegetable, or mineral-is saturated with gelatine, molded or worked into the desired form, and then treated with tannic acid.
S25,890-September 8, 1885. I. P. WENDELL. Composition of matter for use as insulating material.
A mixture of $2 \frac{1}{1}$ pounds of asbestos, one-half a pound of antimony, one-eighth of a pound of sulphur, and $2 \frac{1}{9}$ pounds of liquid silicate of soda.
925,891-September 8,1885. I. P. WENDELL. Composition of matter for use as insulating material.
A mixture of 2 pounds of asbestos or talc, 1 pound of litharge, one-half a pound of antimony, and 3 pounds of liquid silicate of soda.
927,462-September 9, 1885. H. C. SPALDING. Insulating compound for electrical
cables, etc. cables, etc.
A permanently viscous or plastic insulating compound consisting of boiled linseed oil and crude turpertine.
s27,477-September ${ }^{2} 9,1885$. H. C. SPALDING. Compound for insulating underground electric conductors.
A permanently plastic insulating material, as a filling for underground conduits containing electric conductors, consisting of refined asphalt, 90 parts, and petroleum residue, 10 parts.
328,366-October 13, 1885. C. WALPUSKI. Composition for pencil-leads and crayons.
A composition consisting of a base-such as potter's clay-a binding medium, and two distinet colors-a writing color and a copying color.
329,349—October 27, 1885. W G. WIGGINS. Substitute for billiard-cue chalk.
Finely granular barytes is mixed with liquid dextrine, with or without a small percentage of gypsum, and molded into blocks.

334,782-January 26, 1886, F. KIMBLE. Making targets.
Composed of pitch, 100 pounds, and plaster of paris, or whiting, 25 to 75 pounds.
334,974-January 26, 1886. A. A. OLIVER. Composition of matter for roofing, furniture, etc.
A composition of manila or other fibrous stock, say, 1,000 pounds; asbestine powder, 1,000 pounds; linseed oil, 170 pounds; oil of tar, 170 pounds, and tungstate of soda, 90 pounds; with or without ground emery, 50 pounds.
337,47q-March 9, 1886. S. M. ALLEN. Composition of matter for making molded articles.
A mixture of, say, 100 pounds of asphalt, resin, or equivalent substance, with of wood pulp or other vegetable or animal fiber. The fiber is saturated with water or spirits preparatory to mixing with the resinous or gummy matter.

939,519-April 6, 1886. W. W. BARNES AND J. D. EMACK. Composition of matter suitabte for casting medallions, tiles, picture frames, moldings, etc.
A mixture of soluble glass, 100 parts; ground fint, 80 parts; ground iron, 30 parts; and roll sulphur, 40 parts; combined by heating up to $180^{\circ} \mathrm{C}$.
3s9,777-April 18, 1886. J. HOWE. Composition to be used for insulating wires. A mixture of cottonseed oil, 1 quart; asphaltum, 5 pounds; white resin, $4 \frac{1}{2}$ pounds; paraffin wax, $1 \frac{1}{2}$ pounds, and Venetian turpentine, 2 pounds.

341,072-May 4, 1886. E. C. C. STANFORD. Manufacture of useful products from
seawecd. seaweed.
Algic acid is produced from seaweed by an admixture of an alkali with the seaweed from which the salts have first been extracted. One humdred parts of the washed seaweed is mixed with 5 parts of an alkali, as carbonate or hydrate of soda or biborate of soda, and the gelatinous solution separated from the undissolved ingredients.
341,757-May 11, 1886. G. A. LINDGREN. Compound for preventing window
frost. frost.
It comprises $1 \frac{1}{2}$ ounces of sodium chloride, $3 \frac{1}{4}$ ounces of water, 77 ounces of glyeerine, $2 \frac{1}{4}$ ounces of isinglass, 1 ounce of cologne spirit, and one-half ounce of sulphuric acid.
342,377-May 25, 1886. R. F. NENNINGER. Composition for floor and wall coverings, ete.
A mixture of paper pulp in adry state and the gummy viscons residue derived from heating linseed oil.
342,578-May 25, 1886. R. F. NENNINGER. Process of manufacturing composition for floor and wall coverings, etc.
Any fibrous material is molded or pressed into desired shape and dried, then treated with a gummy or resinous waterproof substance, as linseed oil, after heating to a high temperature dissolved in a volatiie solvent, such as naphtha, and finally the volatile solvent is evaporated.
349, 684-May 25,1886 . J. W. \& F. R. HOARD. Insulating and protecting elcetric wires and cabtes.
An electric conductor insulated with a covering of linseed or equivalent dry ing oil, highly oxidized throughout its mass by exposure to air or oxygen to the consistency of a jelly, and applied without a solvent.
S44,833-July 6, 1886. J. FOTTRELL. Composition of matter for the etectrical insulation of wires covcred with cotton, silk, or worsted braid or tape.
A compound of boiled linseed oil, 6 gallons; oxide of zinc, 10 pounds; Venetian turpentine, 1 pound; lead shavings, 2 pounds; to which is added, after mixing and boiling, copal varnish, 1 gallon, and sandarac varnish, 1 pint.
s45,542-July 15, 1856 . A. L. REINMANN. Cement for securing metal rings to electric-tamp bullos and for other purposes.
A mixture of 8 ounces of calamine and 4 ounces of chalk, and a suitable adhesive material, as glue, with or without a small amount of glycerine.
346,002—July 20, 18s6. C. N. WAITE. Marking crayon.
A hygroscopic substance, such as glycerine or chloride of zinc, is combined with the crayon material, so that the marks lormed will not lorm a dry powder or impair the surlace of the board.
346,841-August 3,1586 . E. G. CHORMANN. Composition for decorative purposes. It consists of a mixture of silex, an alkaline salt, carbon, clay, a metallic chloride, and a flux; to be used ror coating purposes or to be molded.
347,565-August 17, 1886. O. BRACH. Porous mass for blotting purposes and for making cigar pipes, etc.
A porous compound consisting of vitreous sand, coarse river sand, pipeclay, and hogs-bean meal. The molded material is dried and burned at nearly the melting point of silver.
sfr,994-September 14, 1886. T. J. PEARCE AND M. W. BEARDSLEY. Insulating wire and conductors for electrical purposes.
A mixture of bisulphide of carbon and maltha is employed as an insulating coating.
s49,751-September Q_{2}, 1886. A. H. ROWAND AND R. S. HUNZEKER. Composition of matter for packing the joints of gas pipes, etc.
It is composed of pitch and molasses.
351,611-October 28, 1886. R. ALEXANDER. Compound for insulating telegraph wires, etc.
A compound of mineral wool or glass-flock, say, 100 pounds; asphaltum, 60 to 70 pounds; and cement or carbonate of lime, 20 to 30 pounds. The glass-flock is treated to a hot bath of boracic acid previous to mixture to anneal or soiten the fibers.
352,445-November 9, 1886. J. W. BUTLER. Composition for the manufacture of blocks for containing eleciric wires or cables.
A compound of trinidad or other hitnmen, say, 15 pounds; crude paraffin, 12 ounces; Portland cement, 6 ounces; Aylesford sand or finely powdered lime12 ounces; Portland cement, 6 ounces; Ay assard 8 , or 8 pounds; roughly pnlped wood, or tan-yard waste, 8 pounds; with or without Taranaki sand, 8 ounces.
s52,449-November 9, 1896. C. W. COLLINS. Cement for pipe-joints.
Composed of plaster of paris and limewater; the latter nentralizing any free acid.
352,852-November 16, 1886. D. BROOKS, JR. Insulating material for electric wires.
Resin and resin oil are combined in about equal proportions.
359,655-November 50, 1886. C. J. VAN DEPOELE. Composition of matter for insulating electric conduciors.
A mixture of pulverized mica, silicate of soda, and a pulverulent earthy substance.
s55, 776-January 11, 1887. W. J. MICHELS. Plastie composition for wall-hangings, etc.
One hundred pounds of a vulcanized composition composed of a regetable one hundred pounds of a castor oil or castor oil and cottonseed oil, say 100 pounds; kauri gum, 25 pounds; resin 6 pounds. camphor gum, $1 \frac{1}{2}$ pounds; and 25 pounds flowers o sulphur is mixed with 100 pounds of wood pulp and 1 pound of paraffin.
s56,36s-January 18, 1887. J. JAMETON. Composition for blackboards.
A mixture of coke-dust, 50 parts; soap-plaster, 39 parts; carbon-black, 10 parts; and graphite, I part.
\$56,411-January 18, 1887. T. MCSWEENEY. Composition for paeking joints and other purposes.
It consists of resin, 1 part, and mineral asphaltum, 4 parts, mixed together and melted, and 6 parts of the mixture combined with 6 parts of black wax-tailings, melted, and 6 parts yellow wax-tailings.

No. 210-18

358,746-March 1, 1887. H. S. MEYERS. Copying-pencit, etc.
It cousists oI a soluble color (described), a soluble color with lime (described), mineral wool, soap, oxgall, and soap-paste. It gives copies in black.
361,347-April 19, 1887. C. T. CROWELL. Dielectric composition.
A mixture of sand or marble dust, 4 parts; pulverized glass, 1 part; lime, 2 parts; resin, I part; isingluss, 1 part; and coal tar or "unitite," 2 parts.
362,076-May S, 1887. S. H. GILSON. Composition for insulating and other purposes.
A compound of gilsonite, 90 parts, and oil or [at, 10 parts; with or without india rubber.
s66,26s-July 12, 188\%. R. F. SILLIMAN. Underground cable for telegraph wires. Wires are coated with powdered mica mixed with caustic potash or soda, dried, and heated to a red heat.
366,9s6-July 12, 1887. H. W. MERRITT. Compound for covering electric wires. A compound of quicklime, 1 pound, slaked in 1 quart of water; 1 pound of fir-balsam; 4 pounds of ground asbestos; 1 onnce of sugar, and a small quantity of oxalic acid, 3 grains, dissolved in hot water.
966,5s7-.July 12, 1887. H. W. MERRITT. Semielastic compound for covering electric wires, etc.
Two pounds of fluid silicate of soda is substituted Ior the quicklime of No. 366,336.
366,898-July 19, 1887. J. TATHAM. Insulating compound.
A compound of 4 to 6 parts of resin to 1 part of cottonseed oil.
366,967—Juty 19, 1887. W. MATT. Plastic compound for use in the decorative arts, etc.
It consists of gelatine, 10 pounds; water; digested skins, cut into small pieces; Venetian turpentine, 2 pounds; linseed oil, 2 pounds; and resin, 6 pounds; thickened with the addition of 20 pounds of paper pulp, with or without marble dust.
969,099-August 90,1887 . N. J. CLAYTON. Composition to be used as a nonconduetor of heat and for other purposes.
Cottonseed hulls, or waste or refuse of cottonseed oil mills are saturated with a solution of alum to render them incombustible, and then combined with sawdust treated with a hydrate of lime, and mixed with plaster of paris, in the proportion of 1 of plaster to 4 of hnlls.
371,406-October 11, 18s7. W. W. BARNES. Plastic compositiom for insulating electric wires, ctc.
A mixture of mineral coal, 50 parts, and sulphur, 10 parts, each redueed to an impalpable powder and then mixed, and fused by heat. Also availahle Ior building and paving blocks, etc.
371,681-October 18, 18s7. J. GRANT. Conductor for electric wires.
A componnd of resin and petroleum residunm, forming a semiplastic mass. 372,55\%-November 1, 1887. T. MCSWEENEY. Composition for the manufacture of structural artictes.
A mixture of asphaltum, 60 pounds; resin, 20 pounds; and coal tar 20 pounds; the latter rednced to one-fourth of its bulk by boiling; 1 part of the aforesaid mixture being combined with 7 parts of paper pulp and 3 parts of pulverized glass or fine sand
375,639—December ${ }_{\sim}^{27}$, 1887. DE W1TT C. JAMES. Underground electric conductor.
An inclosing and insulating compound of resin, pulverized glass, and sulphur.
376,456-Janzary 17, 1888. C. WALPUSKI. Copying pencid.
Composed of nigrosine, tannate of iron, a snitable oleate, and a binding medinm.

977,078-January s1, 1888. C. E. HAYNES. Compound for making paper leatherboaid, ete.
To a mixture in water of silicate ol soda, 1.42 parts; rosin, 1.42 parts; alum, 76 parts; crnde potassa, . 4 parts; and fish glue, 2 parts; assisted by electro-chemparts; crnde potassa, 4 , there is added 39 parts of pulp, and it is then manipulated in the ordinary way
s77,081-January 31, 1888. J. F. MARTIN. Compound for coating iron, wood, canvas, etc.
A base or body composed of glue, sulphureted water or sulphur in solution, paris-white and zinc white, with or without shellac and alcohol, and coloring matter.
377,348-January 31, 1888. I. P. WENDELL. Compound for safe linings, etc.
A mixture oI fiber or powdered ashestos, Fossil meal or iniusorial eartb, and silicate of soda; say in the proportions oI 1 part each of asbestos and the earth, and 1 to 2 parts of the silicate.
582,382-May 15, 1888. J. A. KIESELE. Composition of matler.
Composition for castings, consisting ol ozocerite and sugar; say 5 parts of the Iormer and 5 to 7 parts of the latter.

38s,096-May 22, 1888. D. BROOKS, Jr. Anti-induction composition for etectric cables.
A composition ol low induction capacity, consisting of a powdered electrical A compong material, as plumbago, gum copal, linseed oil, and turpentine, in condueting mater
abont equal parts.

385,698-May 29,1888 . C. F. BROADBENT. Composition of mattcr to be used in the manufacture of medallions, ete
Snlphur and powdered pumice stone constitutes the base, with powdered antimony and boneblack.

396,064-July 10, 1888. H. F. FERRIS. Materiat for railway-rails, building-blocks; paving-blochs, etc.
A mixture of paper pulp 500 parts, silicate of soda 25 parts, and barytes 10 parts.
ss\%,017-July 31, 1838. W. A. SNYDER. Putty for making ornamental moldings.
It consists of dissolved glue, resin, and whiting, combined with paraftine oil and spirits of turpentine.

387,041-July 31, 1888. W. S. BLAKE. Tobacco-pipe bowl.
A mixture of ground corncob and silicate of soda, with or without earthy material.

389,519-September 11, 1888. C. T. LEE. Composition of malter.
A laminated suhstance, such as mica, in a comminuted state, is mixed and incorporated with a resinous gum, such as shellac.

398,029-November 20, 1888. A. POITEVENT. Insulating composition.
A mixture of common lime, say 2 parts; crude turpeatine, 1 part; and pine tar, 2 parts.
398,882-November 27, 1888. F. A. MEYER. Plastic compound.
A composition consisting of sulphur, fihrous material, finely divided mineral, and a waxy or similar substance, such as paraffine, whose fusion point is below that of the sulphur.
393,64/-November 27, 1888. S. HEIMANN. Non-conducting compound.
A mixture of 60 pounds of dry, pulverized peat, 25 pounds of ground asphaltum, $2 \frac{1}{2}$ pounds of pulverized plumbago, and a thin solution of 5 pounds of plaster of paris and of soluble glass; compacted by heat and pressure.
494,987-December 18, 1888. C. M. REQUA. Composition of matter for marking penculs or crayons.
A mixture of 7 pounds of paraffine, 1 pound of beeswax, and 1 pound of resin, with coloring matter.
\$95,241-December 25, 1888. E. LANGEN. Substritute for cork.
Powdered pith is mixed with an adhesive material-as starch, paste, and linseed oil or tar, to render the mass elastic-and dried; a fireproof material, such as water glass, may be added.
396,900-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composilion, etc.
A refractory crystalline compound, for incandescent illumination: formed of magnesia oxide or carbonate, 37 per cent; caustic strontia, 37 per cent; calcium fluoride, 26 per cent; and feldspar (added after first beating), 3 grains to 100 grain of the prior mixture. The resulting powder is mixed in glycerine, molded or coated, and subjected to beat, it being white or opalescent, rough on the surface, and practically infusible.
896,801-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composilion, etc.
A.refractory crystalline compound for incandescent illumination: composed of magnesia oxide or carbonate, 50 grains; caustic strontia or carbonate, 55 grains; alumina oxide or carhonate, 10 grains; calcium-fluoride, 30 grains; and feldspar, five one-hundredths grain.
996,802-January 15, 1889 . J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
A refractory crystalline compound for incandescent illumination: composed of calcium oxide or carbonate, 210 grains; magnesia oxide or carbonate, 40 grains; caustic strontia or carbonate, 180 grains; alumina oxide or carhonate 15 grains; calcium Huoride, 100 grains; and feldspar (added after first beating), 2 grains to 100 grains of the prior mixture.

396,s0s—January 16, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic minerat composition, etc.
A refractory crystalline compound for incandescent illumination: composed of calcium oxide or carbonate, 65 grains; magnesia oxide or carhonate, 50 grains strontia oxide or carbonate, 30 grains; alumina oxide or carhonate, 15 grains; and cryolite, 20 grains.

396,504—January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
A refractory crystalline compound for incandescent illumination: composed of calcium oxide or carbonate, 480 grains; magnesia oxide or carhonate, 96 grains; of calcium oxide or carbonate, 480 grains; magnesia oxide or carbonate, 96 grains; strontia oxide, 110 grains; strontia carbon
and aluminite or ammonia alum, 32 grains.

396,305-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic minerat composition, etc.
A refractory crystalline compound for incandescent illumination; composed of arragonite, or the caustic lime from arragonite, 80 grains; magnesia oxide 160 grains: celestine or strontia sulphate, 350 grains; barium sulphate, 17 grains and calcium fluoride, 142 grains.

396,306—January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
A refractory crystalline compound for incandescent illumination: composed of celestine or strontia sulphate, 131 grains; magncsia carhonate, 96 grains; silica or silicic acid, 15 grains; carbonate of soda, 24 grains; and carhonate of potassa, 32 grains.
396,907—January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
A refractory crystalline compound for incandescent illumination: composed of magnesia oxide or carbonate, 438 grains; strontia oxide (caustic), 342 grains strontia carbonate, 90 grains; strontia sulphate, 90 grains; calcium oxide or car bonate, 208 grains; glucinium oxide or carbonate, 24 grains; with or without zirconium oxide, 20 grains; and fluor spar, as a flux, 230 grains.

997,612-Februrary 12, 1889. F. S. RANDALL. Composition for making arlicles of commerce and art.
A mixture of 2 parts of sawdust, 4 parts asbestos, 1 part alum, 2 parts dextrine, and 6 parts of glue mixed with 1 part of acetic acid.

400,535—March 26, 1889. J. L. HASTINGS. Plastic mineral composition.
A composition for forming a refractory compound for incandescent illumination, consisting of magnesium oxide, 250 grains; uranium oxide, $2 \frac{1}{4}$ grains; calcium fuoride (for fux), 60 grains; starch, 50 grains; and gum-tragacanth, 100 grains; the gum being treated in a solution of one or more salts of acetate, chloride; or nitrate of magnesium, strontiusa, calcium, or aluminum.

400, 386 -March 26, 1889. J. L. HASTINGS. Plastic mineral composition.
A refractory compound for incandescent illumination, containing strontia oxide, strontia carhonate (native rock), strontia sulphate (native rock), calcium oxide, calcium carbonate, magnesium oxide, magnesium carhonate, calcium fluoride, magnesium cbloride, magnesium sulphate, uranium oxide, and starch in varying proportions.

401,014-April 9,1889 . A. DE FIGANIERE. Insulating and coating compound. A hard fusible compound consisting of 6 parts of pulverized semibituminous coal, 2 parts of unslaked lime, and 7 parts of coal tar pitch.
403,548-May 21, 18s9. B. E. OLSEN AND C. GABRIEL. Compound for piping, bowls, etc.
It consists of sand, 43 per cent; sulphur, 33 per cent; pitch, 1 per cent; and an eartb, such as ground burnt clay, 23 per cent; mixed together under the action of superbeated steam.
409,631-May 21, 1889. A. T. WOODWARD. Plastic compound for use in various arts.
It consists of 100 pounds of powdered silica or silicate-such as glass- 50 pounds of mineral or Fegetahle resin or pitch, 150 ounces of oxide of lead or zinc, and the same of animal or vegetable wax, and 75 ounces of boiled linseed oil, with a slight admixture of drying oil.
406,427-July 9, 1889. J. R. CLUXTON. Compound for the scrubbing surfaces of washboards.
A mixture of 4 pounds of powdered fire clay, 1 pound of litharge, 1 pound of Spanish white, one-half pound finely granulated or powdered wood, one-fourth pound of pitch, and one-fourth pound of gum shellac, with a solvent oil, mixed with heat and molded.
407,271-July 16, 1889. A. T. WOODWARD. Plastic compound.
A compound of 50 pounds of silica, 10 pounds of sulphur, 2 pounds of arsenic, 5 pounds of manganese, and 25 pounds of resin, or gum, with or without 3 pounds of wax, and 5 pounds of oil.
407,896-July 30, 1889. F. MARQUARD. Insulating composition.
A compound of 20 pounds of wood pulp, 1 pound extract of logwood, one-eighth pound of bichromate of potash, one-eighth pound of sulphate of iron, 4 pounds of animal glue, 10 pounds of rosewood sawdust, and $2 \frac{1}{2}$ pounds of an albuminous substance, as hullock's blood with or without vegetable fiher, such as flax, hemp, etc.; forming a dark, almost black material.
407,998-July 90, 1889. F. MARQUARD. Insulating composition.
A compound of 20 pounds of fine rosewood sawdust, 1 pound extract of \log. wood, one-eighth pound bichromate of potash, one-eighth pound sulphate of iron, and 5 pounds of an albuminous substance, such as bullock's blood, with or without vegetable fiher.
408,222-August 6, 1889. M. L. DEERING. Composilion of matter.
It consists of fibrous material, hlood, waterproof gum, and creosote, in the general proportions of 1 pound of fiber to 1 quart of hlood.
408,951-August 19, 1889. C. S. BUSHNELL. Process of packing roofing composilion.
The base material is placed in a shipping case and a tubular jacket introduced to form a chamber within said material. The ingredients with which the base is to he mixed are then melted and poured into said chamber, and the jacket removed, leaving theingredients in the center surrounded by the base material.
409,584-August 20, 1889. J. L. HASTINGS. Plastic mineral composilion.
A composition for forming a refractory compound for incandescent illumination, containing two or more metallic compound substances-such as oxides, carbonates, or sulphates of metals-a flux, a moistening fuid, and one of flame or ligbt coloring substances. such as oxide of uranium, strontium, and lead chromate or chromium oxide, permanganic acid, cadmium sulphide, sodium salts, or indium oxide, and calcite.

409,985-August 27, 1889. C. T. LEE. Composition of matter.
A composition consisting solely of comminuted mica (in flakes or scales) and silicate of soda.

414,208-November 5, 1889. P. E. GONON. Composition of matler for molding8.
It consists, essentielly, of a mixture of dry fibrous or cellulose material treated witb coloring matter, with one-third puiverized soapstone, and an adhesive hinding material is used for 500 grains of the pulp and coloring matter binding material is used for 500 grains of the pulp and coloring matter
414,209-November 5, 1889. P. E. GONON. Composition of matler for moldings.
It consists of fihrous or cellular material, soapstone, an adhesive material composed of glue and starch, and bronze powders.

415,648-November 26, 1889. S. H. GILSON. Composition for overhead insulators.
A compound of gilsonite, 20 parts; granulated material, as sand, 74 parts; and petroleum-still wax, 6 parts.
415,962-November 26,1889 . O. A. ENHOLM. Composition for lining eleciric-battery jars.
It consists of mineral wax, say, 50 per cent; sulphur, 25 per cent; ground glass, 15 per cent; and resin, 10 per cent.
418,947-January 7, 1890. A. HART. Crayon.
Composed of a pigment and carnauba wax, 1 pound; stearic acid, 1 pound; and paraffine wax, $1 \frac{1}{4}$ pounds.
425,615-April 15, 1890. A. A. KNUDSON. Insulating compound.
A plastic compound of substantially equal proportions of carbolic acid and shellac, or like material, capahle of being hrought to a viscous condition.
426,202-April 22, 1890. J. F. MUNSIE.' Insulating compound.
A composition consisting of paper pulp treated so as to he noninflammable, fire clay, Portland cement, and a noninflammable agglutinating or binding agent, as white glue and silicate of soda. Molded articles after drying are immersed in a hot bath of india rubher or fireproof paint.
427,167-May 6, 1890. N. C. FOWLER. Heat-insulating compound.
The base consists of sifted or lixiviated ashes (or carbonate of magnesia, diatomaceous earth, or clay) and carbonate of calcium, with which may be incorporated finely fiberized fiber, lamphlack, and pumice stone.
431,646-July 8. 1890. W. A. BURROWS. Composition for the soles of boots and shoes.
Leather waste reduced to flock is mixed with an aqueous solution of gelatine, to which not more than one-tenth per cent of chrome alum has been added to render the mixture nonabsorbent of water when dry.
481,748-July s, 1890. C. R. GOODWIN. Composition for porous carbon structures.
A composition of finely divided gas or other hard carbon, with agglomerants forming moldable paste and with organic matter of cellular or fihrous structure that when baked will form a highly porous structure.

438,215-July 29, 1890. I. RABINOWICZ. Insulating compound.
A composition of 70 pounds of palm starine pitch, 40 pounds of gilsonite, 9 pounds of potassium bitartrate, and 2 pounds of tartaric acid.
496,789-September 16, 1890. J. W. EASTON. Insulating material.
Powdered soapstone, from 60 to 70 per cent, is mixed with fibrous material, as jute, and waterproofing material, as paraffine.
488,S11-October 14, 1890. O. A. ENHOLM. Composition of maiter for making cells or relaining-vessels.
A mixture of asbestus fibers, say, 40 parts; mineral wax, 30 parts; gutta-percha, 30 parts; and shellac, 10 parts.
488,698-October 28, 1890. A. E. MENUEZ. Insulating compound.
A composition of equal parts, by measure, of powdered mineral wool, powdered graphite or a hardening clay, and ashestus fiber, with liquid silicato of soda to form a thick paste. The graphite may be omitted.
439,526-October 21, 1890. O. KLETTE. Composition for paper stucco.
Vegetable pulp is impregnated with glue, plaster or whiting, sicative, sul-
phuric acid, and linseed oil. A finished stamped piece is covered with silk, by phuric acid, and linseed oil. A finished stamped piece is covered with silk, by applying a coat of gelatine and affixing the silk, first steamed, by pressure under heat.
489,796-November 4, 1890. T. D. BOTTOME. Insulating composition.
Finely powdered silicon dioxide is mixed into a stiff paste with a solution of orthosilicic acid.
440,991-November 11, 1890. F. E. BLAISDELL. Insulating composition.
Seventy-two parts of asbestos and 18 parts of plastic clay, mixed dry, are mixed with a flux, as of feldspar and borax.
444,775-January 13,1891. A. \& S. DU PONT. Process of manufacturing artificial ivory.
Hydrate of lime is treated with an aqueous solution of phosphoric acid to form phosphate of lime; there is then mixed therewith carbonate of lime, magnesia, alumina precipitate, gelatine, and albumen. The mass is desiccated and subjected to great pressure until solidified.
445,111-January 20, 1891. J. GROTE. Composition for treating articles made from paper.
A composition comprising starch, water glass, and a fatty substance, such as beeswax.
446,502-February 17, 1891. E. G. WRIGHT. Composition of matter for cable-filling.
A mixture of crude petroleum, 1 pound 79 ounces; tallow, 1 pound 10 ounces; gypsum, 8 ounces; whiting, 3 ounces; pine tar, 2 pounds; and paraffin wax, 1 pound.
447,412-March S,1891. J. S. PALMER. Composition of plastic material.
A mixture of stearine, hitumin, wood-flour, and ground fiber, with or without whiting, or pigment, or coloring substance.
452,182-May 12, 1891. F. C. GOODALL. Marine cement.
A mixture of 40 parts by weight of hard asphaltum, 40 parts of liquid asphaltum, 8 parts of boiled or other siccative oil, and 12 parts of finely ground cork. 452,765-May 19, 1891. F. SALATHE. Composition of matter.
It consists essentially of pulp or fibrous material and a certain resinoid hydrocarbon of the $\mathrm{C}_{10} \mathrm{H}_{16}$ series.
452,869-May 26, 1891. G. W. TOOKER. Artificial ivory.
A compound of albumen, bone-ash powder, and talc, with fibrous material when it is desired to show a grain.
454,547-June 23, 1891. A. W. SPERRY. Insulating material.
A compound of, say, 3 parts of mineral wool, 6 parts of liquid silicate of soda, and 1 part of zinc white.
460,24-September 29, 1891. R. F. FLYNN. Floor covering.
A base of palm-oil pitch with the addition of coarse granules of cork is applied to a textile backing.
461,467-October 20, 1891, M. O. FARRAR AND C. C. HOWE. Compasition of matter for insulaling purposes.
It consists of silica, 434.7 to 478.4 parts; alumina, 297.6 to 362.3 parts; peroxide of iron, 13.4 to 88 parts; magnesia, 3.7 to 21 parts; lime, 2.9 to 13.8 parts; soda, 3.2 to 41 parts; potash, 55.1 to 124.4 parts; water, 14.5 to 62.2 parts; asphaltum, 50 to 75 per cent; mixed with the aid of heat and molded under pressure.
464,367-December 1,1891. S. W. KMBLE. Insulating composition.
It consists of pulverized mica, say, 40 parts; a mineral substance, such as tale It consists of pulverized mica, say, 40 parts; a mineral substance, such as tale
free from lime, 40 parts; and silicate of soda, 3 parts; combined and molded free from lime,
under pressure.
464,569-December 1, 1891. S. W. KIMBLE. Composition of matter for insulating purposes, etc.
A mixture of pulverized mica, say, 50 parts; a mineral substance, such as asbestos or feldspar, 50 parts; soluble glass, from 3 to 10 parts; and sulphur or sulphur compound, as iron or copper pyrites, 2 parts; molded under high pressure without heat.
471,458-March 22, 1892. G. SCEWARZWALD. Composition of matter for pencils or crayons.
It consists of 100 ounces of paraffin wax, 2 to 10 ounces of dammar gum, 2 ounces of bichromate of potassium, 100 ounces of bronze powder, and 25 ounces of naphthol.
472,352-April 5, 1892. I. HILL. Compound for insulating electric wires.
A mixture of I pound each of pirtizite pitch, candle tar, and coal tar, and onehalf pound each of asphalt pitch and resin.
474,865-May 17, 1892. P. VON SLAMA. Composition for use as ornamental moldings, etc.
It is composed of dextrine, sulphate of lime, silicate of soda, and vegetable fibers; 10 parts of soluble glass is mixed with a 40 per cent solution of dextrine in water, 40 to 60 parts of sulphate of lime added, and vegetable fibers in water,
479,967-August 2, 1892. R. G. DE VASSON. Plastic composition.
It consists of 1 to 2 volumes of fragments or powder of cork, and 2 to 1 volIt consists of 1 to 2 volumes of fragments or powder of cork, and an agglutinant composed of plaster of paris, dextrine, and sesquioxide
of iron, with an oxychloride, such as the oxychloride of zinc, when it is to be used in damp places.
480,094-August $2,1892$. S. D. HOFFMANN. Composition for and method of mak-
ing heads and limbs of dolls. ing heads and limbs of dolls.
A compound of 100 parts of glue and 25 parts each of glycerine, zinc oxide, and Japanese wax.
484,345-October 11, 1892. J. T, SMITH. Process of trcating cork.
It ís confined in a mold and subjected to heat under pressure, whereby the resinous matter is vaporized and the pieces are cemented and solidified.
490,641-Januairy 31, 189s. M. H. DEVEY. Insulaiing compound.
A mixture of slag, 8 parts, and glass, 2 parts; ground fine, with a binding medium, as boiled linseed oil, driers, shellac, and paraffin, to form a paste.
495,581-April 18, 1893. W. P. EMERY. Composition of matter for vailroad ties, etc.
A mixture of 479 parts of paper pulp, 10 parts of albumen, 5 parts of sour milk, 1 part of lime, and 5 parts of chloride of zine.
503,425-August 15, 1893. J. W. KIDWELL. Non-corrodible plastzic composition.
A mixture of titanic minerals or natural oxide of titanium (as from the phosphate ores of Nelson county, Va.), 8 parts; and asphaltum or like hydrocarbon, 2 parts. To render it extremely refractory it may be heated to about $1,400^{\circ} \mathrm{C}$.
504,988-September 12, 1893. J. MELLINGER. Method of manufacturing artificial wood.
To a mixture of 150 pounds of fibrous material-as tan bark-and 15 pounds of slaked lime, there is added a solution formed of 1 pound of borax, 2 pounds of alum, one-half pound carbonate of potassium, one-half pound zine sulphate, 3 pounds sodium chloride, and 1 pound of sodium bicarbonate, in water, with 30 pounds of liquid silicate of sodium and 25 pounds of lye of 35 per cent; the pulp is molded and subjected to pressure.
505,916-October s, 1893. J. HOFFMAN. Insulating compound and method of manufacturing the same.
A compound of asbestos fiber with a binding material composed of asphalA compound of ashestos fiber with a binding material composed of asphal-
tum, heeswax, and shellac; produced by spraying the asbestos with a mixture of beeswax and asphaltum with a suitable solvent, as benzine; drying; then mixing powdered shellac, with or without albumen, with the mealy substance thus formed; and molding under heat and pressure.
507,678-October 31,189 . J. J. FANNING. Insulating compound.
A mixture of 6 ounces plaster of paris, 5 ounces pulverized asbestos, 4 ounces dextrine, and I ounce of linseed or other oil.
508,107-November 7, 1898. H. HAYNES. Insulating compound for printingprcsses.
A mixture of 1 gallon of machine oil, 1 quart of glycerine, three-quarters of an ounce of paraffine wax, and 2 ounces of castor oil; to be applied to the tympan sheet of the press.
514,015-February 6, 1894. J. L. MILLER AND W. T. CROSSE. Composition of maiter for making chalk engraving-plates.
It consists of $2 \frac{1}{\frac{1}{4}}$ drams of silicate of soda, 4 drams of silicate of magnesia, onehalf pound of Frencb chalk, and 1 pound of barytes.
515,192-February 20, 1894. G. A. CANNOT. Material for insulating electric wires.
An insulating coating for electric wires consists of, first, a coating of bitumen; second, of peat fiber; third, of spermaceti; fourth, of tar; and, fifth, of peat
fiber. The wire is passed through a guide, by which its surface is leveled and made uniform.

The volatile elements of the fossil resins ozokerite, asphalt, and amber are driven off by distillation, and the residuums are mixed in the proportion, say, of ozokerite, 50 parts; amber, 45 parts; and asphalt, 5 parts.
522,745-July 10, 1894. J. L. TRUSLOW, Jr. •Insulating composition.
It is composed of ground cork, 90 parts, infusorial earth, 5 parts, and a binder, binder, as resin, 5 parts.
529,582-July 24, 1894. C. KÖSTER. Process of manufacturing veneers.
Concentric layers of a plastic mass in contrasting colors are formed on a core, and then veneers are cut therefrom in a direction transverse to the length of the core. The composition consists of glue, glycerine, and fossil meal.
524,021-August 7, 1894. A. HAGELE. Floor-cloth.
A composition consisting of dried and ground leaves, and a binder, such as an oil, resin, and gum, applied to a textile backing.
528,744-November 6, 1894. O. STILES. Insulating compound.
A mixture of 6 parts of alcohol, 3 parts of shellac, 3 parts of asbestos, and I part each of mica and alum.
529,788-November 27, 1894. W. GRISCOM, JR. Vulcanizable compound.
It is composed of substantially equal parts of animal fat candle tar (a residual product from the distillation of animal fats, oils, etc.), and a hard or nearly product residual product from petroleum distillation, and sulphur in proportions of from 2 to 8 per cent of the mass.
537,S21-April 9, 1895. A. C. THOMPSON. Insulating compound.
A mixture of 1 gallon alcohol, 5 pounds of gum shellac, 6 pounds pulverized asbestos, 4 pounds pulverized French chalk, 1 pound balsam tolu gum, and 4 pounds ground mica.
558,614-April 30, 1895. J. W. KIDWELL. Insulating material.
A mixture of titanic mineral (see No. 503,425), asphaltum, and silicious material, say 5 per cent, such as rice hulls or other organic material rich in silicic acid.
551,588-December 17, 1895. H. R. KNOCH. Artificial building-block.
A mixture of 50 parts of paper pulp with 12 parts of peanut shells, 2 to 3 parts of gum-tragacanth, and 2 to 5 parts of dissolved caustic soda.
551,550-December 17, 1895. G. DOEBRICH. Composition for hands and feet of douls, etc.
A mixts, etc. A mixture of glue, 1 pound;
one-half pound; flour, 1 tablespoonful; albumen and coloring matter.
552,269-December 31, 1895. W. L. WOODS. Plastic composition and process of combining same.
A composition consisting of silica, 60 parts; magnesia, 30 parts; sulphur, 60 parts; and mineral wax, 3 to 10 parts; produced by grinding the silica and
magnesia to a powder and expelling the moisture therefrom, repeatedly melt ing the sulphur and the mineral wax and pouring them into cold water remelting the sulphur adually incresing the temperato adang the sinica an magnesia, and then gradually increasing the temperature to $260^{\circ} \mathrm{C}$., and cook ing until the sulphurous fumes are expelled.
559,376-May 5, 1896. A. GENTZSCH. Composition for clectric insulation and process of making same.
A composition of shellac, 50 parts; resin, 50 parts; birch-tar oil. 5 parts; aniline oil, 5 parts; and anthracene, 20 parts; produced by treating, the shellac and resin with repeated washings to dissolve out all soluble matter, then melting and boiling together, melting the unthracene mixing in a malten state, and adding the aniline oil and birch-tar oil, which have been previously freed of water and matter soluble in water.

560,S21-May 19, 1896. J. J. MURPHY. Composition of matter for making and sealing joints between pipes, etc.
A compound of flower of sulphir, 100 pounds; fine flint sand, 100 pounds; anti mony, 2 pounds; lead, 9 pounds; bismuth, 1 pound; powdered glass, 10 pounds; and borax, 2 pounds

586,683--Seplember 29,1896 . L. HON1G. Insulating compound.
It consists of alcohol, 30 parts; gum shellac, 25 parts; wheat flour, 20 parts; powdered asbestos, 20 parts; glue, 2 parts; varnish, 2 parts; and glycerine, 1 part. 571,11\%—November 10, 1895. F. R. HALL. Composition of matter.
A mixture of 9 parts by weight of prepared pitch-roofing pitch which has been distilled until a portion of its oil has been driven off and the melting point raised to about $170^{\circ} \mathrm{F}$. -5 parts of asbestos fiber, and 4 parts of gum kauri.
572,016-November 24, 1896. C. KÖSTER. Composition of matter for manufacturing artificial veneers
It consists of 11 grams of sawdust, 14 grams zinc-white, 40 grams flour paste from 4 grams of flour 1 gram resin glue 20 grams boiled lingeed oil, and 10 grams grape sugar or like saccharine matter. (See No. 523, ö 82 .)
578,514-March 9, 1897. W. HOSKINS AND W. A. SPINKS. Substitute forbilliard chalk.
A compound of normally white pulverized silica, with or without corundum, a binding agent, as glue, and a coloring agent
594,888-December-7, 1897. A. MILLAR. Process of obtaining useful products from silkwormas.
The large intestines of silkworms, when they have attained the maximum size and are about to begin spinning, are subjected to pressure, without preliminary treatment, and the gelatin product drawn into threads and dried.
595,776-December 21, 1897. H. D. HOLBROOK. Sheet material of cork and mechanism for producing same.
A flexible, elastic sheet consisting of a homogeneous body of granulated cork and elastic cement molded under pressure, with threads running through the body of the material, and with the cork protuberances removed by sandpaper ing or otherwise.
597,283-January 11, 1898. M1. HOCQUET. Method of producing plastic composition from cork, ctc
A plastic composition consisting of cork impregnated with borax, a gelati nous substance, tannin, and bichromate of potash; produced by treating comminuted cork with a solution of borax, drying and then mixing with a solution consisting of gelatin, 40 parts; Dutch glue, 25 parts; glycerin, 15 parts; crystallized sugar, 16 parts; ammonia, 2 parts; and sulphur, 2 parts; with a tannin solution and potassium bichromate solution added.
597,806-January 25, 1898. H. MARANGOLO. Compound for lreating glass.
A fluid compound composed of 40 per cent of alcohol, 40 per cent of glycerine, and 20 per cent of water. To impart luster and prevent formation of frost.
606,921-July, 5, 1898. G. B. FRALEY. Composition of matter for clectric heaters. A mixture of talc, say, 60 pparts; silicate of soda, 20 parts; carbonate of soda, 10 parts; and water, 10 parts.
611,814-October 4, 1898. A. M1LLAR. Insoluble gelatine thread or filament.
An insoluble thread or filament eomposed of gelatine: produced by dissolving the gelatine in hot water and adding the proper chemical substances, such as bicromate of potash, either directly or in the form of a solution. The mixed solution is then concentrated to a suitable degred of thickness and forced through nipples in the form of threads. The threads may be formed of simple gelatine and then hardened.
613,763-November 8, 1898. J. C. GRAFT. Plastic compound.
lt is composed of ' 2 parts of sbellac, 1 part of French chalk, 1 part rice flour, and a small part of beeswax.

615,000-November 29,1898 . S. R. THOMPSON. Composition for pipe-joints or the like.
A mixture of 12 parts of paris white (calcium carbonate), 5 parts of oxide of iron, $2 \frac{1}{2}$ parts of hrick dust, and one-half part of plumbago, with boiled linseedoil to form a stiff putty.
516,560-December 27, 1893. H. REDHEAD AND G. W. ENMERSON. Composition for making tight joints.
A mixture of cement, 50 parts; bolled oil, 20 parts; venctian red, 10 parts litharge, 5 parts; and chalk 15 parts.

619,019-February 7, 1899. J. HAVERSTICK. Composition for floor-coverings, etc. It consists of a base or filling of ground corn-cob with a binding material.

619,337-February 14, 1899. W. PAINTER. Gluten conpound.
A compound of gluten and a ground or pulverized body material, produced by mixing gluten in the plustic state with pulverized cork, wood pulp, or other material-say in the proportions of 2 parts of gluten to 1 of cork-rolling o moldiug into form, and subjecting to heat, as a temperature of $120^{\circ} \mathrm{C}$., for about

619,338-Fobrury 14, 1899. W. PAINTER. Gluten compound.
Gluten in its plastic state is mixed with glycerine, and then with a body material-as gluten 65 per cent, glycerine 5 per cent, and ground cork 30 per cent-and tbe product subjected to heat-about $100^{\circ} \mathrm{C}$. for seven hours.
(i,21,807-March 2s, 1899. B. FORD. Insulating compound.
A liquid insulating compound heavier than water, composed of a mixture of 2 parts by weight of asphalt and 1 part of paraffin oil.

585,345-May 28, 1899. A. MILLAR. Insoluble thread or flament.
A thread or filament composed of a proteid strand insoluble in water; produced by treating threads of albumen or casein or the material before it is formed into threads, with chromic acid, tannic acid, picric acid, etc.
625,894-May 50, 1890. J. J. NUGENT. Composition for blackboard8.
It consists of slacked lime, 100 pounds; black stain, 25 pounds; ground quartz, of a plurality of grades, 39 pounds; plaster of paris, 40 pounds; cement, 18 pounds; and glue, 6 ounces.
626,479-June 6, 1899. P. C. BELL. Elastic compound.
A compound consisting of vegetable oil, 59 parts; flour of sulphur, 15 parts; liquid tar, 1 part; petroleum residue, 20 parts; and powdered talc, 5 parts; produced by heating the petroleum to $112^{\circ} \frac{\mathrm{F}}{}$., adding the talc and liquid tar, then gradually adding the vegetable oil while maintaining the same temperature, raising the temperature to $200^{\circ} \mathrm{F}$., adding the sulphur, and finally raising the temperature to $340^{\circ} \mathrm{F}$., and stirring the mass until viscid.
627,008-June 13, 1899. G. OLNEY. Composition of matter.
A mixture of sodium silicate, in a plastic or liquid state, say, 2 pounds; dry paper pulp, 4 ounces; and powdered glass, 8 ounces.
627,207-June 20, 1899. D. ROGERS. Plastic material for manufacturing shultles, bobbins, ctc.
A mixture of wool flock, resin, terra alba, china clay, Brits white, grated potatoes, aluminum, shellac, alcohol, and coloring matter in equal or varying proportions according to the hardness required.
627,867-June 20, 1899. H. TZSCHUCKE. Translucent plastic compound.
A composition prepared by forming a milk of chalk or gypsum and separate solutions of glue, alum, magnesium sulphate and coloring matter, mixing and stirring the same, then adding glycerine, oil, and alcohol, stirriag, straining, or filtering, heating to near the boiling point, and cooling slowly.
629,600-July 25, 1899. R. PLATZ. Composition of matter for molding purposes.
A mixture of saw dust, 17 parts; pulverized chalk, 27 parts; and water-glass, 56 parts.
632,014-Angust 29, 1899. S. HACKELBERG. Composition for protecting panes of glass.
A mixture of water, 30 parts; glycerine, 60 parts; sugar, 9 parts; and cumarin, 1 part; to prevent the deposit of vapor and hoar frost.
636,567-November 7, 1899. A. P. TSCHIRNER. Dental cement.
A cement free from substances soluble in water, formed of phosphoric acid, ammonia, and metallic oxides, such as zinc, tin, and aluminum.
686,657-November 7, 1899. F. GATZSCHE. Composition of matter for soles and heels of boots or shoes.
A mixture of waste of paper manufactories, 4 to 5 pounds; asplaaltum, 1 pound; resin, one-half pound; turpentine oil, bne-fourth pound; peroxide of iron, 2 ounces; and tallow, one-fourth pound.

636,818-November 14, 1899. P. H. A. LEDER. Packing.
An elastic and compressible packing, consisting easentially of asbestos fibers, cellulose, and parafine.

637,106-November 14, 1899. F. GATZSCHE. Composition for making floor-cloth.
A mixture of water, 7 gallons; glue, 1 pound; wax, one-fourth pound; plumbic ocher, one-fourth pound; linseed oil, one-half pound; and tungstic acid, 1 ounce; made at a temperature of $80^{\circ} \mathrm{C}$.
638,003-November 28, 1899. T. H. BLACKNALL AND W. T. JORDAN. Composition for blackboords.
It consists of emery flour, about 3 per cent; pumice stone, 2 per cent; lampblack, 3 per cent; and chrome green, 1 per cent; mixed with an adhesive liquid. and incorporated with 91 per cent of paper stock.
642,319-January So, 1900. F. GATZSCHE. Composition for making artiftcial teather fabric.
A mixture of glue, 1 part; wax, 1 part; oil, one-half part; turpentine, one-fourth part; and alcohol, one-half part.

6\&3,251-February 13, 1900. G. McKAY. Composition of matter for sealing purposes. It consists of 45 per cent of sulphur, 25 per cent of brick dust, 10 per cent of foundry sand, 2 per cent of tin, 2 per cent of lead, 2 per cent of bismath, 4 per cent of plaster of paris, 5 per cent of iron filings, and 5 per cent of borax.

645,989-February 20, 1900. F. SEHR. Manufacture of cemenl.
It consists of 50 per cent of powdered hard porcelain, 35 per cent half-burnt porcelain, 15 per cent of raw feldspar, and water glass to form a paste.
647,764-April 17, 1900. O. H. SCHNEPPER. Plasic compound.
A composition consisting of a gelatin solution, calcium chloride, coloring matter, and ether. Adapted to be applied to glass and give the effect of stained glass, or as a backing for mirrors.

654,688-July 51,1900 . J. E. THORNTON AND C. F. S. ROTHWELL. Subsitute for celluloid, etc., and process of manufacluring same.
A transparent substance consisting of a dissolved and hardened salt of aluminum and a fatty acid, as aluminum oleate treated with benzole.

645,689—July 11,1900 . J. E. THORNTON AND C. F. S. ROTHWELL. Article applicable for various purposes, together with process of manufaciuring same.
A transparent substance consisting of a dissolved and hardened salt of zinc and a fatty acid, as zine oleate treated with benzole.

656,252-August 21, 1900. F. G. KLEINSTEUBER. Compound for dissolving resins.

A compound to be used with solvents of resin, consisting of 3 parts of dammar dissolved in 5 parts of oil of turpentine, with a mixture of 50 parts of tung or wood oil, 23 parts of benzole, and 5 parts of oil of turpentine added thereto: a suitable proportion is added to the resin solvent, of benzole, alcohol, oll of turpentine, or the like.
663,572-December 11, 1900. S. HELMANN. Substitute for gulta-percha.
A compound of fincly-pulverized peat, resin-oil, say, equal parts, and about 2 per cent of amyl acetate.

PROCESSES.

2,048-April 16, 1841. S. GOODWIN. Improvement in the mode of hardening manufactures of cement and rendering them impervious to moisture.
Cement casts are rendered impervious to air, moisture, or decay by boiling
in a mixture of oil and resin.
47,068 March 28, 1865. A. MEUCCI. Improved process for removing mincral, gummy,
and resinous substances from vegctable fibre.
The material is treated, first, in a dry state with the gases produced by the action of nitromuriatic acid upon carbonate of lime and iron; second, in a wet state with the same substances; and third, with a caustic alkali, with or without oil.
61,267-January $15,1867$. A. T. SCHMIDT. Improvement in the manufacture of
paper treatment of paper pulp. paper and treatment of paper pulp.
Paper, paper pulp, and textile fabrics of vegetable fiber are treated with a mixture of glycerine, oil of vitriol, and water, and subsequently with an alkaline bath, rendering them water proof and like parchment. 102,484-May s, 1900. W. M. BRYANT. Improvement in preparing the pith of
corn stalks for use in the arts.
Vegetable pith is compressed and then coated with tenacious material, such as cloth, paper, varnish, paint, etc.
103,199-May 17, 1870. S. KINGAN, administrator of J. Anderson, deceased. Improvement in the manufacture of roofing-felt.
Roofing sheets formed by saturating fibrous material with a mixture of purified asphaltum and oil, or tar, at or immediately before the felting operation. 113, 454-April 4, 1871. A. T. SCHMIDT. Improvement in treating paper and vegetable fibrous substances.
Paper (sized or unsized), paper pulp, and other vegetable fabrics and substances are treated with a bath of the mother water of the chlorides of zinc, tin, calcium, magnesium, or aluminium, or either of them, with or without the admixture of carbonates and oxides or orther substances, and washed with water or alkaline solution, to render them tough, impervious to waser, and resistant to the action of acids and alkalis. To impart flexibility and softness the material is then treated with a solution of glycerine and water, or sugar and water. Layers of treated paper are combined with layers of vegetable cloth similarly treated for the manufacture of belting, paeking, etc.: also with emery powdered glass, sand, or other pulverized or granular metal or mineral for use in the arts.
114,880-May 16, 1871. T. TAYLOR. Improvement in the treatment of paper and paper pulp.
Paper is treated in a concentrated solution of chloride of zine, followed by thorough washing.
120,580-October $\$ 1,1871$. D. W. HANNA. Improvement in methods of utilizing the waste chloride of zinc in treating paper.
After paper has been treated in a batb of the solution as per No. 113,454, it is washed in water until the amount of the liquor washed from the paper raises it to from 30° to 40° Baume. The waste or surplus mother-water is then concentrated by boiling to from 65° to 75° Baumé, at which gravity it is used for treating paper.
166,475-August 10, 1875 . W. F. NILES. Improvement in processcs of manufacturing articles from horn and hoof.
Horn or hoof is powdered, mixed with boneblack, bolted or sifted, then slightly moistened and subjected to pressure in heated molds.
186,924-February 6, 1877. B. CARPLES AND J. M. KOEHLER. Improvement in processes of treading animal bones and making artifcial whalebones therefrom.
Bones are boiled in an acid bath, to remove the earthy salts, then repeatedly washed in cold water, cut into shapes and sizes, and pressed until dry.
192,863-July 10, 1877. W.'H. DIBBLE. Improvement in processes of naking composition articles.
Either organic or inorganic, pulverized or granulated substances, as sawdust or clay or slate, are mixed with blood, as in equal quantities by weight, the mass heated, and then subjected to great pressure in heated molds, forming
articles of great bardness.
193,302-July 94 , 1877. W. COURTENAY. Improvement in making hollow articles of vulcanized fiber.
Tubular artieles are formed from vulcanized fiber by partially dissolving the edges in chloride of zinc, forming the tube upon a mandrel, cementing the edges under heat and pressure, and wetting and shrinking upon a mold, or mandrel, to impart the desired contour while drying.
199,846-August 7, 1877. J. BLISS AND F. O.BADGER. Imuprovement in processes of treating blood for forming ornamental articles.
Blood alone is reduced to a dry and powdered condition and subjected to beat and pressure in molds or dies.

196,894-November 6, 1877. T. HANNA. Improvement in the manufacture of waterproof vulcanizcd fiber.
Vulcanized fiber having its substance rendered moisture proof is formed by submitting the article or the material to a bath of nitric acid or a mixture of nitric and sulphuric acids, or sulphuric acid and nitrate of potash, or the fumes arising in the manufacture of bisulphate of potash.
196,895-November 6,1877 . T. HANNA. Improvement in the manufacture of vulcanized fiber.
The waste or cleansing bath holding chloride of zinc in solution is utilized by submitting it to the action of chemical reagents, as by adding to it a solution of carbonate of soda, or any of the alkaline carbonates, carbonate of zine being precipitated and sodium ehloride remaining in solution.
197,088-November 18, 1877. J. F. BOYNTON. Improvement in ornamentation of the surfaces of hard material.
The surface of shell, bone, marble, or other hard substance is dried and then impregnated, to a greater or less depth, with one or more balogens, such as impregnated, to a

210,617-December 10, 1878. W. J. LEWIS. Improvement in the manufacture of buttons and other articles from vegetable ivory, etc.
Vegetable ivory is pulverized and subjected to pressure in heated molds, with or without agglutinizing matter.

215,783-April 1, 1879. J. BLISS. Improvement in the treatment of albumen for the production of molded articles.
Vegetable or animal albumen is dried, pulverized, and sifted, and compressed in beated molds or dies.
217,418-July 8, 1879. G. H. SMITH. Improvement in treatment of bone, vegetable
ivory, ctc.
Bone, vegetable ivory, and other porous hard material is treated with a solution of gum or other converting agent-as a solution of gum in bisulphide of carbon or like volatile solvent-and the material then drained and the superfuous converting agents removed by volatile solvents, whereby the pores are filled with transparent or translucent material.
201,852 - November 18, 1879. W. F. NILES. Improvement in manufacturing
buttons, etc.
Paper pulp is dried: separated into a linty mass; saturated with albumen or gelatin; dried; broken up into small pieces or bunches, and subjected to great pressure in molds at a heat of $100^{\circ} \mathrm{C}$. or upward.
224,036-February 8, 1880. W. F. NILES. Process of manufacturing buttons and other articles from fibrous material and powdered hoof.
Paper pulp is dried; separated into a linty mass; saturated with albumen or gelatin; broken into small pieces or bunches; mixed with dried powdered hoof, one-fourth part by weight, and molded with great pressure at a heat of $100^{\circ} \mathrm{C}$.
or upward. or upward.
225,556-March 16, 1880. J. BLISS AND F. O. BADGER. Janufacture of buttons and other articles.
Coarsely powdered hoof is moistened with a pigment, dried, mixed with dried blood, aud finely ground, and subjected to high pressure in heated dies. 23s, 322-October 19, 1880. L. A. BRODE. Nanufacture of slabs or blocks from wood.
or paper pulp, or from sheets made from such pulp or paper pulp, or from sheets made from such pulp.
Slabs or blocks are formed of pulp, treated with a solution of gum tragacanth or tragacanthin, and a paste formed of rye or wheaten four, pitch powder litharge, alum, and gelatine, and submitted to heat and pressure.
238,885-November 2, 1880. W. H. SMITH. Art of preparing waste vegetable prod-
ucts for use and transportaion. ucts for use and transportation.
Loose fibrous or granulated yegetable material, as sawdust, bran, ete., is heated to 65° to $150^{\circ} \mathrm{C}$., to dry and soften the natural gums or resins, and then
subjected to impact in molds. subjected to impact in molds.
237,497-February 8, 1881. A. R. DAVIS. Method of making articles from waste amber.
Amber is reduced to a plastic condition by the ageney of solvents-as bisulphide of carbon-and then subjected to pressure under heat. Mottled or blotched amber is produced by molding together ground amber with large fragments.
239,776-April 5, 1881. W. T. HENLEY. Mode of insulating electrical conductors.
Submarine telegraph cables are insulated by first covering the wires with india rubber and then vulcanizing the same in ozocerite, paraftine, or similar hydrocarbon.
259,794, April 5, 1881. J. W. HYATT. Manufacture of factitious material to imitate ivory.
Articles are formed from an inert material, as zinc oxide, and an adhesive agent, as shellac, by mixing, say, 8 parts of powdered shellac with 32 parts of a solvent, as aqua ammonia, and 40 parts of zinc oxide, subjecting the mixture to the action of a mill, then desiccating the solid elements of the mixture with, in some cases, $\frac{r}{}$ second grinding in a dry state, and finally compressing
and solidifying the powder in heated molds. and solidifying the powder in heated molds.
243,963-July 5, 1881. J. PATHE. Method of treating horn shavings.
Horn shavings are soaked in a solution of toracic acid and arsenious acid, first cold and then warm, and the swelled horn shavings are then heated up to
$120^{\circ} \mathrm{C}$., under pressure, and united into a solid $120^{\circ} \mathrm{C}$., under pressure, and united into a solid mass.

244,170-July 12, 1881. S. BARR. Manufacture of gas tubing.
Bichromated oil varnish is applied to the surface of a glue and glycerine compound to render the same indestruetible by heat and insoluble in water.
247,477-Septembér 27, 1881. W. V. BRIGHAM. Art or method of making ornamented or variegated gelatinous shects to imitate tortoise shell, etc.
A solution of gelatine, suitably colored, is tlowed upon glass, and sprinkled with a second solution of gelatine or analagous substance, suitably colored or prepared, while liquid or semiliquid, which solutions are then mingled or blended. The film is backed by covering it with paper or cloth, which is permitted to dry thereon, the film being detached from the glass after drying.
256,048-April 4, 1882. C. POPPENHUSEN. Molding articles of india-rubber and other vulcanizable gums.
The mold is filled with a liquid, as linseed oil, to exclude all air therefrom, and the liquid is then displaced by pressing the compound into the mold so filled.

256,872-April 25, 1882. F. BODINE. Method of treating pulp and the resultant material.
Vegetable pulp is saturated with linseed or otber vegetable or drying oil, and
olled, pressed, or molded, with or without coloring material. rolled, pressed, or molded, with or without coloring material.
257,607-May 9,1882 . A. PARKES. Treatment of cellulose and the manufacture of articles therefrom.
In the manufacture of articles of cellulose, or coating therewith, the cellulose is dissolved in a solution of iodide or nitrate of zine or nitrate of lime, molded to the form required; the solvent then removed by washing and treating with an alcoholic or vegetable naphtha solution, and the article rolled, pressed, or calendered.
259,971-June 6, 1889. J. A. FLEMING. Preparation of materials for use in electric insulation.
Finely pulverized wood, desiceated, is saturated or impregnated with paraffine wax or with a mixture of wax and resin, and molded under pressure.

268,034-November 28,1882 . M. MACKAY. Manufacture of insulaling compounds. A mixture of mineral wax, such as paraffine wax or ozocerite-wax, 1 part; vegetable tar, 24 parts; and shellae and asbestos or otber dry fibrous substance, 32 parts of each. Ground slate or silica or clay free from iron is sometimes employed in place of wax.

279,384-June 12, 1883. C. HEMJE AND T. C. BRECHT. Machine for compressing plastic and other material.
The materials are subjccted to a bath of a sprayed fluid and then to compression.
284,289-SSeptember 4, 1883. J. A. FLEMING. Preparation or production of insulating materials or articles.
Finely pulverized wood, desiccated, is impregnated, under pressure, with a mixture of melted bitumen or asphalt incorporated with a substance of the resin type, and with or without a substance of the paraffin type or of the anthracene type, or of both paraffin and anthracene types.
288,500-November 18, 188s. B. BOROWSKY. Method of uniting small pieces of amber into a large block.
The pieces of amber are hermetically closed in a receptacle, subjected to a light pressure, beated to a high degree of heat, about $500^{\circ} \mathrm{C}$., a strong pressure then applied, and finally it is slowly cooled.
297,639-April 29, 1884. R. SCHIMMEL. Process of manufacturing chair-seats of vegetable flber and chromic acid.
Ground rags and vegetable fioer, in equal parts, are mixed and formed into a paste with the addition of chromic acid, 3 parts to 100 parts of water; formed into sheets; backed with textile fabric; molded and pressed; varnished and dried.
s01,405-Juty 1, 1884. F. THIEMER. Method of producing molded articles from substances containing ligneous fibers.
Molded articles are produced from sawdust, wood shavings, wood pulp, straw, etc., by treatment with chloride of zine and basic chloride of magnesium, compression into molds, and drying.
s02,795-Juty 29, 1884. F. TAYLOR. Method of treating vulcanized fiber and like material.
To impart softness and flexibility to vulcanized fiber, the fiber, after the organic change has been produced, is subjected to the action of a solution of deliquescent salt, as chloride of zinc, with or without glycerine or sugar water combined therewith.
317,387-May 5,1885 . C.S. LOCKWOOD AND J. W. HYATT. Process of treating alkaline silicates, etc.
Articles are formed of an alkaline silicate with or without an inert material, by forming a solution of the silicate, and introducing, if preferred, the inert material, desiccating the solution, comminuting the compound, and subjecting ine powde bath.
317,390-May 5, 1885. C. S. LOCKWOOD, J. W. HYATT, AND J. H. STEVENS. Process of trealing gelatine when combined with tannic acid, etc.
One hundred parts of gelatine, say, are combined with 5 to 10 parts of tannic acid, the compound dried and comminuted, and the desiccated powder subjected to pressure in heated molds.
326,220-September 15, 1885 . A. H. HUTH. Manufacture of compounds of indiarubber, gutta-percha, and like materials.
Earth wax and gums and resins are fused and maintained in a state of fusion until all matters volatile at the fusing temperature are expelled, then cooled, powdered and mixed with india rubber, gutta-percha, or analogous substances.
3s0,019-November 10, 1885. A. HAMANN. Process of rendering billiard and writing chalk unbreakable.
Cubes or pieces of chalk are saturated with fluid-oil varnish or boiled linseed oil or other drying oil.
343,590-June 15, 1886. O. LUGO. Producing solid compounds resembling vulcanite from hair, etc.
Hair is subjected to heat and pressure.
\$49,760-September 28, 1886. E. C. C. STANFORD. Algin and other useful products. Seaweed is mixed with a solution of carbonate of soda and boiled to produce a cellulose residue; the solution is treated with sulphuric acid, or hydrochloric acid may be used, producing alginic acid as a precipitate; the remaining solution is neutralized with alkaline earth, producing a precipitate of sulphate of lime; the remaining solution is evaporated to a density at which sulphate of
soda crystallizes out as Glauber's salts; and the mother liquor is finally evaporsoda crystallizes out as Glauber's salts; and the mother liquor is final
ated to dryness and the residue carbonized, forming kelp substitute.
355,998-January 11, 1887. M. KAMAK. Treating horn.
Horn is subjected to the action of a solution of water, sugar of lead, and vinegar until it assumes a light brown hue. To give it the appearance of mother-of-pearl it is then introduced into a solution of muriatic acid.
359,156-March 8, 1887. C. JACKSON. Manufacture of hardened asbestos.
Fibrous asbestos is combined with a binding material, as shellac, rendered liquid in a solvent; the solvent is evaporated; the material pressed in molds; exposed to heat to perish the binding material or change it so that it is nolonger soluble in the solvent; when the article is simultaneously subjected to heat and heavy pressure.
S66,341—July 12, 1887. H. W. MORROW. Method of treating vulcanizcd fiber.
To impart softness and flexibility to vulcanized fiber, the fiber, after the organic change has been produced, is subjected to the action of a solution of water combined therewith. (See 302,795 .) with or without glycerine or sugar
370,645-September 37,1887 . H. ORDENSTEIN. Manufacture of articies from plaster-of-paris ar other compositions or materials.
A formed article of plaster of paris or other porous material is treated with carnaub-wax to fill the pores and strengthen and harden and give a polishable surface.

371,550-October 18,1887 . E. T. L. CLARK. Process of hardening and preserving
plaster-of-paris casts and molds, und making them impervous to water. plaster-of-paris casts and molds, und making them impervious to water.
The casts or molds are immersed in a solution of borax and then treated with
white or paraffine wax. white or paraffine wax.
389,210-September 11, 1888. C. A. FAURE. Method of preparing asbestos.
A sheet of asbestos is immersed in a soluble salt, as chloride of calcium or chloride of berium, dried, and again immersed in a second solution containing a silicate, such as the silicate of soda or a fluosilicate, whereby it is rendered

395,08s-December 25, 1888. W. SIEMENS. Process of manufacturing insulated conductors.
The fibrous matter covering wire strands is impregnated with caoutchouc, oil, or simplar liquid, by drying the covered wires under vacuum by means of sulphuric acid or other hygroscopic substance, and then admitting the heated
caoutchouc, oil, or other substance into the vacuum chamber coutaining the wire.
405,201-June 11, 1889. B. E. CHURCH. Process of treating asbestos.
Broken asbestos is mixed with a solution of rubber and naphtha which has been mechanically distended by water-as by mechanically mixing a solution of rubber in naphtha with water-then the water is removed by pressure, and the mass is formed into shape by heat and pressure; the asbestos
with water and the india-rubber solution then mixed therewith.
410,042-August $\mathfrak{2 7}$, 1889. J. L. STEWART AND J. L. HASIINGS. Process of producing refractory compounds.
A refractory crystalline compound for incandescent illumination is produced by pulverizingeand mixing a strontium compound or salt with one or more pulverized mineral substances and with a flux composed of a fuoride or a subjecting the molded material to a moderate drying beat, and finally to a high subjecting the
temperature.
419,779-January 21, 1890. G. KOLLER. Process of treating glue and getatine molds.
Glue or gelatine molds are treated with strong oxidizers, as an aqueous solution of anhydrous chromic acid, and afterwards exposed to light; or the glue may be dissolved in an aqueous solution of an energetic oxidizer, the mold formed, and afterwards exposed to the action of light.
420,768-February 4, 1890. W. BOOTH. Art of manufacturing articles from wood pulp.
Wood pulp is reground, after it has been subjected to the indurating pickle and dried, and the ground product is then compressed into the desired form.
422,760-March 4, 1890. R. P. FIRST. Article of chemicalty treated flbrous material and mode of making the same.
Shaped articles composed of laminated forms of chemically treated fibrous material are produced by producing a laminated body from a chemically treated sheet of fiber, and then subjecting these laminæ to endwise pressure, whereby they are swaged into the desired form.
428,925-May 27, 1890. I. W. MARSHALL. Process of treating fibrous materiat.
In washing sheets of fibrous material which have been treated with acids, the sheets are confined under pressure between plates having corrugated faces with or without perforations.
429,999-June 10, 1890. C. A. CATLIN. Plastic composition.
A fibrous material is combined with a cementing agent in a pulverulent state by mixing the substances together with water and after a thorough mixture, removing the surplus moisture, and compacting with heat and pressure.
497,044-September 29, 1890. F. L. RAWSON. Method of impregnating parts of electrical apparatuses.
Hollowed or cored insulating parts of electrical apparatus formed of hydraulic cement are impregnated with heavy, oily or resinous matter, by means of a matter around it.
498,509-October 14, 1890. T. A. EDISON. Method of insulating etectrical conductors.
Balata or similar gum is prepared for insulating purposes by dissolving in a
solvent of chloroform and passing chlorine gas through the solution until the hydrogen of the material is sufficiently replaced by the halogen, if the chlorination is carried so far that the material is brittle, a small quantity of the gum solution not chlorinated is mixed therewith.
441,870-December 9, 1890. E. T. GREENFIELD AND J. NAGEL. Process of working high-boiling hydrocarbons for impregnating purposes.
For impregnating fibrous, porous, or cellular bodies, a high-boiling hydro-lower-boiling hydrocarbon to supply the volatile matters evaporated.
$441,951-D e c e m b e r, ~$
minuting materials of a viscous or pasty nature. 1990 . Wrocess of and apparatus for comminuting materials of a viscous or pasty nature.
Material of a viscous, pasty, or gummy nature is comminuted by subjecting
it to motion and attrition in a closed receptacle under a reduced temperature, it to motion and attrition in a closed receptacle under a reduced temperature, where the material becomes friable.
445,285-January 97, 1891. F. EGGE. Method of molding amber.
Pieces of amber are molded into an integral article by the application of heat and an automatic pressure constantly and uniformly applied; as by the action of a weight applied through a lever.
460,056-September 22, 1891. E. FAHRIG. Proccss of manufacturing a composition
applicable for electrical insulating purposes, etc. applicable for electrical insulating purposes, etc.
Properly prepared pulp-cellulose or linen pulp-is beaten up with manila flber; then there is added a soap solution and the mass is treated with a precipitate until precipitation shows in the whole mass; the pulp formed into sheets; powdered with an insulating powder; subjected to pressure and dried; treated with an insulating solution; and again subjected to heavy pressure.
468,222-February 2, 189\%. H. B. GARRIGUES. Process of nolding plastic material. Plastic material is packed in foil oy introducing the material into molds of
thin foil while the latter are suspended in open-mouthed pockets, reducing the thin foil while the latter are suspended in open-mouthed pockets, reducing the diameter of the article by means of cold, and afterwards closing the open ends of the molds by turning the edge of a blank over the end of the core and mold.
483,646-October 4, 1892: A. H.S. DYER. Process of making artificial mica sheets for electrical insulation.
Overlapping inica scales are laid on a freshly varnished foundation plate, the sheet is varnished, and additional layers of mica are laid in a similar manner the solvent of the varnish, rolled, submitted to heavy pressure, and cooled.
483,653-October 4, 189\%. C. W. JEFFERSON. Motding mica forms for clectrical insulators.
Laminated mlca sheets are formed and set by cementing together lamina of mica scales with overlapping edges, compressing the sheet into the desired form while the cement is wet, drying the cement by evaporating the solvent
thereof, and chilling while under compression.

492,056-February 21, 1895. M. SICHEL. Method of producing dental cement.
Metallic aluminum is first dissolved in glacial phosphoric acid to produce a phosphate of aluminum; next oxide of zinc is subjected to a white heat to reduce it to a gummy condition, the two are mixed and the compound subjected to heat, then cooled and pulverized, more of the gummy oxide added and the whole mixed in a powdered condition; and finally, when ready for use, sufficient of the sald phosphate of aluminum is added to reduce the whole to a plastic condition.
494,891-April 4, 1899. R. REIMAN. Process of manufacturing artificial bone.
Natural bone or bone meal is chemically dissolved, the elements precipitated, filtered, and washed, and then mixed with albumen, alumina sulphate, and cellulose in solution, and snbsequently partly dried and subjected to a high temperature, at the same time keeping the mass under strong pressure.
497,S2L-May 16, 1893. C. W. JEFFERSON. Process of making mica insulating plates.
Mica sheets are distributed evenly upon and within liquid cement by showering them thereon throngh the air at a sufficient height so that the sheets become substantially parallel to a horizontal plane before reaching the cementsay 18 feet-and the excess of cement is then expelled by pressure, the plates dried, and the surface gronnd ontil parallel; successive showerings of mica sheets are made into the cement, iron foundation sheets being introduced between the showerings, and the mass divided up into separate parts.
b01,22, July 11, 1893 P. C. DAME AND L. PRUD'HON. Method of making artiticial whalebone.
Animal hair is subjected to a softening bath, as of lime and potash, then immersed in a bath of acetic acid, and finally subjected to pressure.
508,653-November 14, 189s. E. THOMSON. Insulating composition.
Silicious or like material, as fine kaolin and soluble silicate of soda, is applied to sheets of paper, the sheets piled together and dried; they may be baked and the paper carbonized, with layers formed of more or less vitrified silicions material.
517,011--March 20, 1894. J. C. PEABODY. Method of making indurated articles from plaslic material.
Wood fiber or paper stock in dry condition is mixed in the presence of heat with linseed oil and resin, and then powerfully compressed, while still warm and plastic, in cold molds.
520,28s-May 92,1894 . K. WITZ. Manufacture of plastic articles.
Paper board or like material is impregnated with hellebore juice to increase its elasticity and tenacity, prior to subjection to pressure between dies.
522,242-July 3, 1894. A. F. TINNERHOLM AND C. F. PETERSON. Process of manufacturing insulaling material.
Mica plates are built up by forming superposed layers of mica scales covered with finely fowdered gum or resin, and subjecting the combined layers to heat with finely io.
529,905-November 27, 1894. W. GRISCOM, JR. Method of compounding vulcanizable compounds, and vulcanizing and applying same.
Vulcanizable compounds containing such plastic material as eandle tar are compounded by heating the plastic matter to a melted condition, separately melting the sulphur, and then mixing the melted masses; the componnd is then applied in permanent adherence to fabricated material.
5s0,517-December 11, 1894. A. N. FORD. Process of manufacturing insulating compositions for electrical purposes.
Fibrous material is saturated with a partially oxidized drying oil, then dried, and then repeatedly saturated or coated and dried until the mass has nucreased in weight from 50 to 200 per cent; When the material is ground, and formed into mass, mixed wis
530,958-December 18, 1894. B. McCABE AND A. THAYER. Method of molding vegetable flbrous material.
Vegetable fibrous material is first treated with acid, then forced through apertures in a head, whereby it is formed into strips or strings, which are deposited
in a plastic condition in a mold, compressed, and finally immersed in water.
558,746-February 5, 1895. R. REIMAN. Process of manufacturing artificialbone.
Natural bone is macerated, the liquid separated from the organic solids, the gelatine separated from the residue of the organic matter, and the gelatine product is then combined with a ch
will give body to the composition:
558,265-April 30,1895 . H. P. LANE AND E. FOLK. Process of making molded articles from wood pulp.
The article is molded of wood pulp, then impregnated with oil and resin, baked, and then subjected to heavy pressure between smooth
599,928-May 28, 1895. J. A. WHEELER. Process af molding fibrous pulp.
Fibrons pulp, moistened with water, is mixed with sodium silicate, and then with pulverized calcined magnesite sufficient to convert it into a donghy body; then with pulverized quicklime; then pulverized resins or gums are added, and the mass heated and molded, dried or baked, an
549,254-November 5, 1895. C. F. PETERSON. Method of making insulator-rings.
In forming flanged insulator rings of bnilt-up pieces of mica, the pieces of mica are bent and assembled to form the predetermined ring and cemented together are bent and assembled the irregular structure is built np; the structure is then subjected to pressure as the irregular structure is built
and heat in a mold, and chilled.
561,958-June 9, 1896. T. G. B. GOLDMANN. Process of making articles from homogeneous ptastic compositions.
A binding substance is dissolved in a water-soluble solvent, such as alcohol; then mixed with a filling material and pigment in finely divided state, in proportion to their specific welghts in dry state; next water is added to the ming ture under continnous stirring until the intimately mixed mass or intitated sabstance and filling material is separated from thick paste; when the water is removed, the paste dried, pulverized, and as a thick paste; when the water is
compressed while subjected to heat.
574.793-January 5, 1897. A. N. FORD. Art of making oil fabrics.

Fibers are loosely separated and repeatedly immersed in boiling oil so as to coat the separate fibers; the oil oxidized after each immersion by the action of coat the separate fibers; the oil oxidized aiter each immed condition, and the air, with the fibers maintained in their looseny separated

589, 256 -August 51, 1897. J. GRAY AND C. H. CASE. Process of making insulating material.
Pulp is formed into shape, heated in a bath of molten sulphur, toen subjected to heat under pressure, and subsequently immersed in a cold bath.
589,657-September 7, 1897. W. G. BRISTOW. Method of and means for molding plastic material.
A partial vacunm is created beneath a flexible tissue placed over a pattern, the plastic material is then cast within the tissue thns drawn into the mold; bardened; and the pressure is then restored beneath the tlssue, forcing it from the pattern and releasing the cast from the tissue.
595,168-Dccember 7, 1897. L. GROTE. Process of manufacturing moldable mass or articles from asbestos.
Asbestos is stceped in a bath composed of a solution of 1 part of glue, 6 parts of a solution of soluble glass of 20° to 30° Baume, and 7 to 9 parts of a solution of 40 per cent formaldehyde; it is then compressed to remove superfluous moisture, subjected to a bath of a salt of alumina, dried, pulverized, compressed, and then dried first in the open air and then in an ovel.
618,692—January 91 , 1899. F. LAMPLOUGH. Process of manufacturing a subslance having insulating properties.
Vegetable fiber is submitted in presence of oxidizable resinous bodies and a proportion of nonoxidizable oil to a gradnally-increasing heat until all air, dampness, and volatile matters are driveo oft; the action of the heat is conchued until the nonoxidizable oil is destroyed and until the yegetable fiber is
changed into a homogeneous mass, when the fluid portion is removed, air is changed into a homogeneous mass, when the fruid portion is removed, air is
introduced under pressure to oxidize the material, and it is pressed and desiccated.
622,525-April 4, 1899. H. BRUNSWIG. Method of transforming, fibrous cellulose into a dense material.
Fibrons cellulose is reduced to an impalpable condition in water, the water drained from the mass, with or without boiling to expel the air, and molded and dried.
625,608-April 25, 1899. C. IVES. Process of treating gelatin, glycerin, and bichromate of potash.
A substance of rubber or gutta-percha like character is produced from a compositiou of gelatine, glycerine, and bichromate of potash, with which adnlterating material may becombined, by mixing the ingredients in as nearly an anhydrous state as possible, whereby, chemical action between the bichromate of potash and gelatine is sufficiently inactive to allow time for molding the composition under pressure, and heating it while under pressure to 95° to $150^{\circ} \mathrm{C}$.
625,572—May 29, 1899. J. A. WHEELER. Process of molding fibrous pulp.
To give more body and increase the solidity, fibrous pulp is mixed with pul-
verized incombustible material; moistened with hot water; sodium silicate verized incombustible material; moistened with hot water; sodium silicate
added, the mass kneaded, and quicklime added thereto; and pulverized resins are mixed with the mass while heated, with or without the subsequent addition of calcined pulverized magnesite soaked in chloride of magnesia.
625,450-May 23, 1899. J. KAISER. Process of manufacturing materials similar to
wood from fibrous refuse. wood from fibrous refuse.
Fibrous refuse is fluxed with lye, then saponified with resin, and subjected to pressure, when ground wood and an agglutinant, as grape sugar, is mixed with the said material and the mixture dried and kneaded.
681,719-August 22, 1899. A. IMSCHENETZKY. Refractory material.
The process of forming refractory material consisting of asbestos, with or consists in first saturating articles of asbestos with a solntion of sodinm silicate mixed with sodinm bicarbonate, then saturating the same first with a sodinmsilicate solution, and then with a sodium-bicarbonate solntion.
640,725-Joinuary 2, 1900. P. W. WIERDSMA AND J. KUIPERS. Process of treating vegetable waste.
Vegetable waste-produced in the manufacture of potato flour-is treated for the removal of dirt and matters solnble in water; then dried and disintegrated: mixed with resin or other gum to render
to a powder; and molded nuder pressure.
64s,012-February 6, 1900. A. SMITH. Process of producing material suitable for electric insulation or other purposes.
Two parts (by measure) of acetic paraldehyde and I part of methylated spirit are mixed; 3 parts of liquid carbolic acid, which has been liquified by adding 5 per cent of water, added: and to the mixture, in a closed vessel, there is added in small doses, while cooling, 3 to 6 parts of methylated spirit, which has been saturated with hydrochloric-acid gas; and
molded; the molded article may be impregaated with paraftin.
647,119-April 10, 1900. T. SEEHAUSEN. Process of compounding fllings for rubber tires.
Light ground vulcanized rubber is mixed with resin oil, heated for two hours at a pressure of 45 pounds per square inch; then there is added a second mixture of ground vuleanized patent rubber waste, which has first been washed in water and dried with loofah fibres, solar oil, and turpentine; and finally there
is added to this mass a mixtore of india rubber, sulphur, ammonia, soda, and is added to this mass a mi
neutral acetate of lead.
652,144-June 19, 1900. A. SKROBANEK. Process of producing artifcial wood.
It is produced by cleaning and carding peat, separating the humic and ulmic acids as borates and silicates, mixing the peat-mull with a filler and a hardening material-such as a composition of silica, alnmina, and sodium borate and silicate-forming alternate layers therewith and with the carded fiber laid in different directions, and molding the componnd; the mull is treated with a hot solution of sulphuric acid and alnm.
654,646-July 11, 1900. F. G. KLEINSTEUBER. Methad of dissolving resins.
There is mixed with the resin solvent a snitable quantity-2 to 10 per cent of the resin-of a componnd composed of a solution of dammar and tung or wood oil in benzole, and oil of turpentine with or without oil of rosemary.

654,951-July 31, 1900. W. J. CORDNER. Process of manufacturing composition applicable for electric insulation.
Rhea fiber is treated in a solution of silicate of soda of 15° to 20° Baumé, dried, saturated with a heavy hydrocarbon, such as resin oil and the like, the surplus heavy hydrocarbon removed, the saturated fiber treated with heat to transform it into a heavy hydrocarbou cellulose, which is disintegrated and mixed with gums, resins, oxidizable oils, and the like to form a composite material.
$655,130-J u l y$ \$1, 1900. R. M. THOMPSON. Method of treating wurtzilite.
The mineral is subjected to the action of steam heat to reduce it to a softened or fused state.
655,1s1—July 31, 1900. R. M. THOMPSON. Wurtailite method and product.
The mineral is softened, as by the action of neat, and combined with a hardening material, as mica, asbestos, or soapstone, and afterwards a quantity of sulphur.
657,818-September 11, 1900. M. FREMERY AND J. URBAN. Manufacture of cellulose.
Cellulose material, such as cellulose, hydrate of cellulose or hydrocellulose, is subjected to an energetic preliminary treatment with reducing or oxidizing bleaching media, such as sulphurous-acid salts or chlorine in the form of hypochlorite, and then subjected to the action of an ammoniacal solution of copper.
659,558-October 9,1900. J. G. BIERICH. Process of producing homogeneous horn substances.
Horn cuttings and shavings are cleaned, mixed with glycerine, and the mixture subjected to a temperature of $100^{\circ} \mathrm{C}$. for about forty minutes and at a pressure of about two hundred atmospheres, the process being carried on under
exclusion of air. exclusion of air.
669,929-December 4, 1900. W. GELINEK. Process of manufacturing solid substances from fibrous material and product thereof.
A composition of fibrous material, with coal tar, colophony, asbestos, kaolin, infusorial earth, and lime, compressed when hot in molds under bigb pressure

GROUP XVI.-ESSENTIAL OILS.

ESSENTIAL OILS, PERFUMES, AND FLAVORS.

162,529-April 27, 1875. A. G. CAMPBELL. Improvement in portable toilet water's and extracts.
Fragrant attars are ahsorbed by carbonate of magnesia and then reduced to a powder, the same being adapted to readily produce toilet waters and extracts by lixiviation with alcohol. Thus, for cologne water, a mixture of 3 ounces of attar of bergamot, 2 drams of attar of neroli, and 1 dram of attar of rose is poured on 4 ounces of carbonate of magnesia.
200,168-February 12, 1878. D. M. BUIE. (Reissue: 10,3s8-June 5, 1883.) Process of manufacturing oils from organic substances.
Steam and carbonic acid are injected into the retort containing the materials, such as pitch pine, sassafras, juniper, myrtle, peanuts, cottonseed, etc., and heated to a high temperature.
380,274-November 10,1885. A. M. TODD. (Reissue: 10,705-Mareh 30,1886.) Proces8 of obtaining menthol.
A crystalline product is obtained from the oil of mentha piperita by congealing it to a jelly-like form and draining the oil therefrom; the crystals may be fused and subjected then to a second congealing and draining and a gradual raising in temperature.
556,944-March 24, 1896. J. C. W. F. TIEMANN. Process of converting compounds of the citral series into isomers.
Compounds of the citral (geranium) series are subjected for some time to the action of dilute sulphuric acid, producing isomers having a lower b. p. and a higher sp.gr. than the original bodies.
557,431-March 31, 1896. L. R. SCAMMEL. Process of obtaining eucalyptol.
A solution of phosphoric acid is added to the eucalyptus-oil or other volatile oil containing eucalyptol, and the eucalyptol phosphate formed is then decomposed by hot water.
588,766-August 24, 1897. M. EKENBERG. Process of making perfumes.
Perfumes, contained in closed vessels, have an inodorous hydrocarbon or ether added, as butane, having a boiling point helow $30^{\circ} \mathrm{C}$., to be readily vaporized at the temperature of the hand or the air of a living room
600,429-March 8, 1898. E. DE LAIRE. Ionone derivativc.
A new product, an isomerid of ionone, b. p. $140^{\circ} \mathrm{C}$., of the odor of violets, is produced by treating ionone or pseudo-ionone with a concentrated condensingacid, such as sulphuric acid.
601,193-March 22, 1898. J. ZIEGLER. Essence of violets.
Citral, or an oil containing citral, is treated in a mixture of acetone and diluted alcohol, with an active oxidizing agent, as a saturated solution of chloride of lime or barium peroxide, and the product further oxidized by boiling with ferric chloride.
617,552_January 10, 1899. P. BARBIER. Synthetic violet-oil and process of making same.
A new product, $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}$, a yellowish oil, b. p. $162^{\circ} \mathrm{C}$., under pressure of $10 \mathrm{~m} . \mathrm{m}$., is produced by condensing an aldehyde of the formula $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$. as citral, with methylpentenone (oxide of mesityl) under the infiuence of an alkaline reagent, and transforming the product into an isomeric ketone by the action of an acid condensing agent.
626,585-June 6, 1899. J. Z1EGLER. Synthetic violet-oil and process of making same.
A new product, b. p. 138° to $149^{\circ} \mathrm{C}$., under pressure of 12 m . m . It is produced by heating a mixture of acetone, lemon-grass oil, alcohol, cobaltous uitrate, and chloride of lime; distilling off first the lighter and bad-smelling portions, then the essential oils, mixing these oils with sodium bisulphate and fractionally distilling.
637,209-November 14, 1899. I. KLTMONT. Process of making ionone.
Citral and acetylacetone in acid solution are heated with reagents adapted to combine with the water, and the oily matter is separated and purified.
650,028-May 22, 1900. J. C. W. F. TIEMANN. Process of decomposing ionone.
The ionone is boiled with an alkali sulphite in the presence of a binding agent for any liberated alkaline bydrate; the solution subjected to steam distillation; and alkali added to the remaining solution to liberate the alpha ionone.

ARTIFICIAL MUSK.

412,545-October 8, 1889. E. SCHNAUFER AND H. HUPFELD. Process of making artifcial musk.
An oil having the formula $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$, adapted for use as a substitute for musk, is made by digesting a mixture of metaxylol and isobuty alcohol with
chloride of zinc, nitrating the resulting hydrocarbon, and separating the oil by dissolving out, extraneous matter.
416,710-December 10, 1889. A. BAUR. Process of making artificial musk.
Toluol is mixed with butyl chloride; the product of the reaction diluted with water and distilled with steam; the vapors treated with a mixture of fuming nitric and sulphuric acid; and the product, a substitute for musk, crystallized from alcohol.
451,847-May 5, 1891. A. BAUR. Artificial musk.
A new product, being a trinitrated hydro carbon derived from toluene or its homologues, in solid crystalline form. It is made, for example, from toluene, or xylene mixed with a butyl halogen compound, distilled, treated with fuming nitric and sulphuric acid, and crystallized with alcohol.
481,685-August 50, 1892. A. BAUR. Artificial musk and process of making the same.
A new product, being a trinitro-derivative of the butylated or analogous metacresol in a white crystalline form, is produced by mixing an ether of metacresol or other substituted phenol, with a metallic chloride, as aluminium chloride; heating, mixing with water, and isolating the butylated cresolether, thereby obtaining an aromatic, colorless liquid; introducing the ether into fuming nitric (or nitric and sulphuric) acid; heating, and crystallizing from a solvent, as alcohol.
586,S24-March 26, 1895. A. BAUR. Artificial musk.
A new compound, the trinitro-derivative of butylhydrindene, in the form of white needles, sparingly soluble in alcohol having a m. p. $139^{\circ}-140^{\circ}$ C., is produced by beating an ethod-aromatic hydrocarbon, such as hydrindene, with a ing the product.
546,086-September 10, 1895. A BISCHLER. Artificial musk and process of making same.
A new compound, a white crystalline body, insoluble in water and soluble in alcohol and ether, is produced by forming a cyanide derivative of an aromatic butylic hydrocarbon-such as cyanide of butyl toluene-heating the same in a mixture of fuming nitric and sulphuric acid, and cooling and precipitating from a solvent, as alcohol.
559,783-May 5, 1896. A. MÜLLER-JACOBS. Process of making artificial musk.
A saturated solution of the soluble parts of kerosene or naphtha in ice-cold sulphuric acid is nitrated, then gradually heated to 65° to $82^{\circ} \mathrm{C}$. neutralized with ammonia or other alkali, and the neutralized product, mixed with a weutral resin soap, is precipitated by means of a solution of a metallic salt, as sulphate of aluminum.
560,771-May 26, 1896. A. BAUR. Artificial musk.
A new product, crystallizing in white needles, m. p. 137° C., insoluble in water and soluble in organic solvents as alcohol, is produced by treating butylxylene in the presence of aluminium chloride with homologous fatty chlorides such as acetyl chloride, and nitrating the ketone thus obtained.
602,361-April 26, 1898. C. SCHMID. Process of making artificial nuusk.
A new product, derived from resins, a heavy orange-red oil, is produced by distilling certain fossil resins, such as copal, amber, or retin resin, with superoxidizing reagents, as a mixture of potassium bichromate and sulphuric acid; neutralizing the filtered mass by ammonia and alcohol; driving off the alcohol, and extracting with ether.

For other products of this group, see Group XVIII, "Fine Chemicals."

GROUP XVII.-COMPRESSED AND LIQUEFIED GASES.

HYDROGEN.

229,3s9-June 29, 1880-C. M. TESSIE DU MOTAY. Process and apparatus for manufacturing hydrogen aas.
A current of watergas and steam is passed through a body of highly heated lime, thereby converting the mixture into hydrogen and carbonic acid, and then through a body of lime at a lower temperature whereby the carbonic and is absorbed. The carbonate of lime is reconverted for reuse by burning in its presence a gas containing hydrogen.
229,540-June 29, 1880. C. TESSIE DU MOTAY. Process for the production of hydrogen gas.
A current of coal gas is passed through a secondary highlyheated convertinggenerator, thereby increasing its volume, subsequently said gas is passed through compounds contained in the accomposing during the passage the ay the products are passed through lime at a lower temperature
S66,081—July 5,1887 . H. H. EDGERTON. Obtaining hydrogen from water gas. Hydrogen is separated from the heavier constituents of water gas by dialysis.

CHLORINE.

506,640-October 10, 1893. R. KNIETSCH. Package of liquid chlorine.
A new article, liquid chlorine in an iron or steel vessel, and sufficiently anhydrous not to attack the iron or steel.
649,565-May 15, 1900. C. E. ACKER. Process of manufacturing caustic alkali and halogen gas.
See Group X, Electro-chemistry

OXYGEN.

66,279-July 2, 1867 . H. A. ARCHEREAU. Improved mode of preparing oxygen
and applying the same to useful purposes. and applying the same to useful purposes.
Sulphuric acid is heated and decomposed into sulphurous acid, water, and oxygen, and the oxygen collected and compressed for use in producing high temperatures in metallurgic operations.
71,657-Dccember 3, 1867. B. R. SMITHSON. Improved apparalus for generaling oxygen gas.
Sulphuric acid is fed into a retort filled with pumice stone maintained at a red heat; a washer absorbs the sulphurous-acid vapors, the oxygen passing to a

86,248-January 26, 1869. O. M. PHILLIPS. Improvement in the manufacture of oxygen-gas.
In the production of oxygen gas from alkaline manganates a partial vacuum is formed at certain intervals in the retort to facilitate gas generation.
s07,041-October 21, 1884. M. HERZOG. Apparatus for the dialysis of air.
A dialyzing apparatus for air has a series of chambers separated by a series of colloid or caoutchoue septa with an air pump for creating a suction and eliminating the nitrogen and producing superoxygenated air.
499,815-July 22, 1890. A. BRIN. Process of obtaining oxygen from air.
Barium oxide is heated in a retort to from 650° to $800^{\circ} \mathrm{C}$.; air is then admitted uncil peroxidation takes place. When the air supply is shut off, and the barium retort.
440,777-November 18, 1890. F. SALOMON. Process of obtaining orygen.
A mixture of a metallic oxide, such as lead monoxide or lead carbonate, and an alkaline earth, such as lime, is heated in a current of air so as to cause oxygen to be absorbed, which is then expelled by a current of carbonic-acid gas.
500,697—July 4, 189s. G. WEBB, Jr., AND G. H. RAYNER. Process of making oxygen.
For the production of ogygen gas from air a composition is used, formed of caustic soda dissolved in hot water with oxide of manganese and manganate of soda added, all in equal parts; the mass being then heated and evaporated to dryness, and then heated to a temperature in excess of that of the oxygen manutacture. After cooling, the mass
dered oxide of manganese prior to use.
545,973-September 10, 1895. J. PURVES. Process of making gas and apparatus therefor:
Fuel gas is made with denitrogenized air to increase its calorific power. oxygen produced rom air by the action of a metallic oxide-as barinm oxide, Which will absorb oxygen from air when heated, and liberate the absorbed oxygen when raised to a higher temperature-is fed to the producer, the heat
of the hot gases being used to heat the oxygen retorts. The latter are made of the hat gases being used to heat the oxygen retorts. The latter are made
double and revolvable, and the generation of oxygen continuous by the double and revolvable, and the generation of oxygen continuous by the
periodic reversal of the retorts and alternate raising and lowering of their periodic rever
temperatures.
576,915-February 9, 1897. A. SWEETSER. Apparatus for making oxygen.
As a new article of manufacture for feeding into an oxygen-generating apparatus, oxygen-yielding material is formed into cakes or rods provided with apparatus, ox ygen-yieldang material is for
688,615-August 24, 1897. E. B. STUART. Compound for separating oxygen and method of making same.
A manganate and an alkali-as binoxide of manganese, 24 parts, and caustic soda, 76 parts-the alkali heing in excess of thatnecessary to form a manganate, are melted; the compound being liquid and nonvolatile above the temperature at which steam forms and below that which decomposes steam.
688,615-August 24 , 1897. E. B. STUART. Process of and compound for separating oxygen.
Atmospheric air and steam are alternately passed through a finsed mixture of a manganate and an alkali salt, as a chloride of an alkaline earth capable of fusing and remaining in a permanent liquid form when fused.
588,616-August 24, 1897. E. B. STUART. Oxygen-separating compound and method of making same.
A nonaqueous oxygen-absorbing preparation, containing an oxygen-absorbing material, as oxide of manganese, and sufficient fusible material, as caustic which decomposes steam, is formed by beating manganese, its oxide or salt, with fusible material, in the presence of oxygen at a temperature between that at which a manganate forms and that at which steam decomposes, and adding the fusible material until the mass becomes liquid.
588,617-August 24, 1897. E. B. STUART. Method of oblaining oxygen and nitrogen from air.
Air and steam are alternately passed through a fusible chemical, such as a manganate of soda, in liquid form.

NITROGEN.

207,086-August 15, 1878. G. A. TREUTLER. Improvement in processes for the continuous preparation of nitrogen gas.
Nitrogen gas is continuously prepared by forcing air through iron filings mixed with a hygroscopic material and moisteued with ferrous sulphate, mixed with a hygroscopic materim the air and the iron salt is converted into
ferreby the oxyen is absorbed from the
feric sulphate, and the latter is then deoxidized by the action of the metallic iron.
225,750-March 25, 1880. T. B. STILLMAN. Manufacture of nitrogen gas.
In the manufacture of nitrogen gas, to remove all traces of oxygen, the gas is passed through melted sodium, potassium, or other metal having a bigh aftinity for oxygen.
226,632-April 20, 1880. T. B. STILLMAN. Manufacture of nitrogen gas.
Nitrogen gas is purified and oxygen removed therefrom by passing it through Nitrogen gas is purified and oxygen phosphoric acid, anhydrous sulphuric acid, or anhydrous chloride of zinc, and then over or in contact with melted sodium, or anhydrous chloride ot zinc, and theng affinity for oxygen.
z81,002—July 10, 1888. J. F. BENNETT. Apparatus for separating nitrogen from atmospheric air.
It employs a series of annular chambers with porous walls, together with an air pump, to remove a part of the ni

NITROUS OXIDE.

87,s19-March 2, 1869. W. P. BARKER. Improvement in the use of nitrous oxide as an anæsthetic agent.
Nitrous oxide is mixed with chloroform, or other anæsthetic.
120,978-November 14, 1871. W. F. \& W. A. JOHNSTON. Improvement in methods 120,978-November 14, 1871. W. F. \& W. A. Jotressing and liquefying nitrous oxide and other gases.
of compres
Claims the apparatus of process No. 120,977 ; a bydraulic pump with one or more tanks or series of tanks.

SULPHUR DIOXIDE.

127,008-May 21, 1872. N. P. AKIN. Improvement in the mañufacture of sulphurous acid.
Sulphur or pyrites is burned in a closed water-jacketed chamber under pressure, which is maintained likewise in the washing chamber and condenser. Liquid sulphurous acid and an aqueous solution of sulphurous acid from the
unliquefied gases are simultaneously prodnced.
187,41s-Februøry 13, 1877. R. P. PICTET. Improvement in processes of producing artificiat cold by means of anhydrous sulphurons oxide.
Anbydrous sulphurous oxide is used as a refrigerating agent.
191,778-June 12, 1877. R.P.PICTET. Improvcment in manufacturing sulphurous anhydride.
Sulphur and sulphuric acid are heated, the product passed through a cleansing medium and a debydrating medium, and liquefied by pressure, in a continnous operation.
376,88s-January 24. 1888. E. HÄNISCH AND M. SCHROEDER. Process of - obtaining sulphurous acid.

Liquid sulphurous acid is produced by passing the furnace gases through a spray of water, heating the resulting solution of sulphurous acid to evaporate the sulphurous-acid ges therefrom, cooling the separated gases, and converting the same into liquid form by compression and condensation.

CARBON DIOXIDE.

55,088-May 29, 1866. J. S. BALDWIN. Improved method of collecting and separating carbonic acid from mixtures of gases.
Water is sprayed through mixed gases in a chamber under pressure, taking up the carbonic-acid gas: the surcharged water then passing into a second chamber under a partial vaculum, where the gas is set free.
359,996-March 29, 1887. S. CABOT. Process of and apparatus for making carbon dioxide.
Limestone is alternately heated to redness by gaseous products of combnstion at a bigh temperature, and with superheated steam with exclusion of air, unti its carbon dioxide is expelled, the steam being condensed and removed from the carbon dioxide evolved. A reduced atmospheric pressure is produced and maintained in the closed furn tce pending the passage of superheated steam.
383,957-June 5, 1888. H. LEFFMANN. Manufacture of carbonic acid and heavy magnesia.
Native magnesite, or magnesium carbonate, is decomposed by heat in a closed retort, producing carbonic acid and extra-heavy magnesia.
496.546-May 2,1895 . W. WALKER. Process of and apparatus for recovering car-
bon dioxide. bon dioxide.
Impure carbonicacid gas is passed through retorts containing a solid carbonate, as carbonate of soda, which absorbs the carbonic acid with the production of a bicarbonate. The nitrogen and other gaseous impurities are thus removed by exhaustion and the temperature raised to cause the pire carbonic-acid gas to pass off. Water is sprayed upon the carbonate and the solution obtained removed, and the carbonate crystallized ont for reuse.
52S.651-July 24, 1894. E. W. ENEQUIST. Process of obtaining carbonic acid, sodium sulphate, and magnesium sulphate, etc.
A solution of niter-cake (contrining 24 to 28 per cent of free sulphuric acid) or an alkaline acid sulphate is employed as a solvent for magnesite in the production of carbonic acid. lron and other impurities are precipitated and removed,
sodinm carbonate is added, and the resulting magnesium carbonate separated sodium carbonate is added,
from the sodium sulphate.

APPARATUS.

17,394-May 26, 1857. W. A. ROYCE. Reissued December 24, 1872. No. 5,201-Improvement in machinery for compressing gaseous bodies. No. 5,202-Improvement in machinery for compressing gaseous bodies.
Reissue 5,201 relates to the compression of gaseous mediums with means for ahsorbing the evolved heat and for holding and transmitting the power; the metallic reservoir, pipes, etc., are coated on the inside with close-grained metals,
vegetable gums, resins, or oils to retain the gas. Under reissue No. 5,202 , serial vegetable gums, resins, or oils to retain the gat
compression is employed with refrigeration.
120,977-November 14, 1871. W. F. \& W. A. JOHNSTON. Improvement in apparatus for liquefying nitrous oxide and other gases.
Gaseous or aeriform matter is liquefied by pressure transmitted from a pump by means of a liquid.
214,161-April S, 1879. F. LITTMANN. Improvement in apparatus for preparing water for ice machines.
The process consists in converting water into steam, freeing the steam from impurities, then condensing the steam, and finally heating the water resulting
from such condensation by means of a succeeding current of steam to drive off any remaining air.
320,S10-June 16, 1885 . J. J. SUCKERT.
a liqueficiole gas from a condensable vapor.
The process consists in first reducing the temperature of a solution of the gas by the vaporization of a liquefied gas, and then passing the liquefiable gas and and separating it from the gas.
389,521-September 11, 1888. E. LUHMANN. Apparatus for removing gases from liquids.
A vacium pan having a spiral channel for the liquor, forms, with two vertical pipes, a siphon, the pipes connecting with the respective ends of the spiral channel.
491,699-February 14, 1893. E. B. CUTTEN. Preparing liquid chlorine.
Chlorine gas is dehydrated by steps of cooling, by contact with calcium chloride, and by contact with anhydrous sulphuric acid, and is then liquefied by pressure. The noncondensed gases are then separated, and flasks are charged with liginid chlorine by drawing off from the bottom of the chlorine vessel to the bottom of a flask coupled thereto, causing the air in flask to compress until it attains the pressure of chlorine liquefaction, and then allowing the compressed air in the flask to escape.
503,556-August 15, 1893. E. SOLVAY. Apparatus for treating pulverulent material with gases.
A pparatus for process No. 503,558.

509,558-August 15, 1899. E. SOLVAY. Treattng pulverulent material with gases.
The gas is passed from top to bottom through a body of the material contained in a closed vessel; then the ends of the vessel and the body are reversed and fresh material is added at the temporary top and treated material removed from the temporary bottom, when the vessel with the body of material is returned to its normal position and the passage of gas from top to bottom resumed.
506,659-October 10, 1898. R. KNIETSCH. Process of and apparatus for making liquid chlorine.
Chlorine gas is forced through a body of heated suIphuric acid into a confined space and is liquefied by pressure transmitted through the sulphuric acid. The sulphuric acid is cut off from the parts of the apparatus exposed to the air by a body of mineral oil.
575,714-January 26,1897 . C. HEINZERLING. Process of recovering volatile substances from air or other gases.
The air or gas (as gases from coal distillation, distillation of peat and hituminous shale to obtain oils, distillation of wood, preparation of water-proof texture or tissue and in the production of smokeless powder, and in the production of chloroform, carhon bisulphide, or carhon tetrachloride) is compressed; indirectly cooled by water while compressed ; further cooled by indirect contact with previously expanded portions of the air or gas, a portion of the volatilile suhstances being separated by the latter reduction of temperature; and finally the air or gas is permitted to expand to suhstantially normal pressure, whereby the remaining volatile substances are separated.
625,759—May $\$ 0,1899$. E. C. HARGRAVE. Liquid air conveying conduit.
The liquefied air is piped from one point to another, a portion being allowed to evaporate, and conveyed through an annular space around the main body of the air or gas to maintain said body in a liquefied state and prevent undue pressure thereirom.
650,608-May 29, 1900. T. J. McTIGHE. Method of cooling gases.
A compressed gas, with the heat of compression removed, is caused to act expansively in elevating within a heat-insulated tube a suitable liquid cooler than itself, therehy doing work and falling in temperature in proportion to the work done, the expanded and cooled gas cooling a further body of compressed gas.

GROUP XVIII-FINE CHEMICALS—INORGANIC.

BROMINE AND IODINE.

12,077-December 12, 1854. E. STIEREN. Reissued June 1, 1869. No. 9479-Improved process of treating the nother-water of salines to obtain usefui products. No. S480-Improved apparatus for oblaining bromine and other products from the mother-water of salines.
Sulphate of magnesia is obtained from bittern water of saline springs by evaporating to 36° Baumé, treating with lime, filtering, washing the precipitate, treating with sulphuric acid, concentrating and crystallizing. Iodine is obtained from the lye separated from the bydrate of magnesia by treating with soda sulphate, removing the sodium chloride, treating the liquor with sulphate of copper and iron, and the precipitate thereof with manganese and heat. Bromine is obtained from the liquor after heating with soda carhonate or caustic soda.
62,464-February 26, 1867. D. ALTER. Improved apparatus for the manufacture of bromine and iodine.
The retort consists of a stone box and lid with a leaden beating flue.
62,988-March 19, 1867. D. ALTER. Improvement in the distillation of bromine and iodine.
The fumes of bromine and hydro-bromic acid are absorbed by an alkali.
82,309—September 22, 1868. G. A. HAGEMANN. Improvement in the manufacture of bromine from bittern.
A sandstone trough or vessel is used, furnisbed with a bore, for the introduction of steam to dispense with the insertion of metallic pipes into the liquor. tion of steam to dispense with the insertion of metalic pipes into the liquor. ical action of the steam with the physical effects of its beat.
110,66ゅ—January s, 1871. J. J. JÜHLER. Improvement in apparatus for the manufacture of bromine.
Stills are made of wood, or with a lining of wood, which cbars to a certain depth, and then the destructive action of the bromine ceases.
217,076-July 1, 1879. J. N. J. DUBREUIL. Improvement in manufacture of iodine and bromine.
To prepare green seaweed for the extraction of its useful salts, the weeds are first disintegrated, then lime is mixed with the pulped mass and the liquid extracted by straining or pressing. The salts are then precipitated from the solution.
219,004-August 26, 1879. R. MÜLLER AND H. BÖCKEL. Improvement in the manufacture of iodine and bromine.
To ohtain iodine $u n d$ bromine from bittern or other liquids containing them, the liquor is subjected in a finely divided and heated state to the action of chlorine gas.
856,291-January 18, 1887. F. C. PHILLIPS. Process of obtaining iodine from bittern.
Iodine is first set free from its chemical combination in tbe bittern and is then absorbed with dead-oil or equivalent oily or tarry substance, and the iodine extracted from the oil by means of an alkali and distillation. The resulting hittern liquor is distilled to extract the bromine therefrom.
356,292—January 18, 1887. F. C. PHILLIPS. Extracting bromine and iodine from bittern.
Bromine and jodine are first set free from the chemical combination in which they occur in salt-water bittern, and dead oil, or heavy oil from coal tar, is then mixed therewith to absorb them; the oil is then separated from the hittern, and the bromine and iodine extracted from the oil by means of an alkali, as caustic soda.
447,926-March 10, 1891. H. H. WING. Procces of obtaining bromine and iodine.
Bittern, concentrated to a sirupy consistency, is mixed with silicious material and calclned, producing fumes of chlorine, bromine, and iodine, which fumes are brought in contact with bittern water in a tower, wherehy the bromine and are brought in contact withe bittern water are liherated by the chlorine, and the iodine and bromine collected.

448,541-March 17, 1891. T. PARKER AND A. E. ROBINSON. Process of making iodine by etectrolysis.
See Group X, Electro-chemistry.
456,183-July 21, 1891. H. H. WING. Process of obtaining iodine.
The mother-liquor resulting from the purification of sodium nitrate is mixed with silicious material and calcined, and the sublimed iodine collected from the fumes. The uncondensed vapors are brought in contact with a further quantity of said mother-liquor to effect a further purification of iodine.
460,570-September 29, 1891. H. H. DOW. (Reissue: 11,290-April 12, 1892.) Process of extracting bromine.
Bromine in brine or bittern water is first freed from its cbemical comhination, the bromine is then separated from the brine by means of an air blast and the bromine-laden air is forced through a metal or substance that will combine with the bromine, producing a bromide, which is hoiled to dryness out of contact with the air.
461,681-October $20,1891$. J. C. KAUTZ. Process of purifying bromine.
The bromine vapors, hefore condensation, are passed through a solution of the bromide maintained at the proper temperature.

SODIUM AND POTASSIUM.

942,897-June 1, 1886. H. Y. CASTNER. Manufacture of sodium and potassium.
The reduction of the alkali is effected by the carbide of a metal diffused through the alkali in a state of fusion at moderate temperatures. An easily reducible metal or its oxide mixed with a hydrocarbon and coked will serve as a carbide.
980,775-April 10, 1888. O. M. THOWLESS. Process of obtaining sodium, etc.
The substance containing the sodium or potassium, as caustic soda, is heated and gradually supplied to heated carhonaceous matter, and the vapors condensed.
\$80,776-April 10, 1888. O. M. THOWLESS. Apparatus for obtaining sodium, ete.
Apparatus for the practice of process No. 380,775.
s91,110-October 16, 1888. H. S. BLACKMORE. Manufacture of sodium.
A mixture of calcium hydrate, 27.5 pounds; ferric oxide, 31.1 pounds; sodium carbonate, 30.9 pounds; and carhon, 10.5 pounds; is heated and the vapors collected and condensed.
$460,985-$ October 19, 1891. C. NETTO. Process of making sodium or potassium.
Caustic alkali is brought into contact with reducing carboniferous matter at such a low temperature that only the caustic alkali is reduced to a metallic state, while the alkali carhonate simultaneously formed remains undecomposed and is withdrawn out of reach of the carhoniferous matter without interruption of the reducing process.

SELENIUM.

235,616-December 21, 1880 A. G. BELL AND S. TATNTER. Process of treating selenium to increase its electric conductivity.
To increase the electrical conductivity and sensitiveness to light of selenium it is gradually heated to a point where the selenium is beginning to fuse aud then allowed to cool, the proper moment for stopping the beating heing shown by the ceasing of the increase of deflection of a galvanometer needle, and also by a change from a leaden color to blackish or nearly black.

RARE EARTHS.

87,477—March 2, 1869. C. M. TESSIÉ DU MOTAY. Improvement in preparing zirconia for use in producing tight, and for other purposes.
The silicate of zirconium is treated with chlorine in the presence of charcoal, transforming it into the double chloride of zirconium and of silicum; the latter is volatilized off and the chloride of zirconium is then converted into an oxide; tbe zirconia is then moistened and molded; an agglutinating agent can be used;
the pencils, disks, etc., are then higbly heated and annealed. the pencils, disks, etc., are then higbly heated and annealed.
377,701-February 7, 1888. C. A. VON WELSBACH. Process of obtaining salts of cerium, etc.
Compounds of the rarer metals-cerium, lanthanum, and didymium-are obtained from their earths by heating the mineral earth, plunging the heated earth into water, crushing, dissolving the fragments in a mineral acid, as concen. trated hydrochloric acid, and precipitating by oxalic acid, washing aud filtering the precipitate, heating it and afterwards dissolving it in nitric acid, digesting the solution with excess of the earth, separating the precipitate and the solution, dissolving the precipitate in nitric acid, and so producing cerium nitrate, concentrating the solution and heating it with nitric acid and ammonium nitrate, and then separating by fractional crystallization the ammonium double nitrates of lanthanum and of praseodymium and neodymium.
396,900-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
See Group XV, Plastics, Other Plastics.
396,901-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, ctc.
See Group XV, Plastics, Other Plastics.
396,302-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
See Group XV, Plastics, Other Plastics.
s06,309—January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mincral composition, etc.
See Group XV, Plastics, Other Plastics.
996,904-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
See Group XV, Plastics, Other Plastics.
396,305-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mineral composition, etc.
See Group XV, Plastics, Otber Plastics.
996,506-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic mincral composilion, elc. See Group XV, Plastics, Other Plastics.
s96,s07-January 15, 1889. J. L. STEWART AND J. L. HASTINGS. Plastic min-
eral composition, etc. See Group XV, Plastics, Other Plastics.
s96,698-January 22,1889 . J. L. HASTINGS. Process of producing refvactory
compounds.
A refractory crystalline compound, available for incandescent illumination, is produced by forming a base from two or more pulverized mineral substancessuch as oxides, carbonates, or sulphates of metals, e. g., an intimate mixture of strontium oxide (caustic) and carbonate, calcium oxide and carbonate, and magnesium oxide and carbonate-mixing said base with a flux composed of one or more haloid salts-such as chlorides, iodides, fluorides, or bromides of metals, e. g., a mixture of calcium iodide, magnesium chloride strontiun chloride, and calcium fuoride-moistening the mixture with perchloric acid, molding and drying, and finally exposing to a high temperature.
400,\$85-March 26, 1889. J. L. HASTINGS. Plastic mineral composition. See Group XV, Plastics, Other Plastics.
400,586-March 26, 1889. J. L. HASTINGS. Ptastic mineral composition. See Group XV, Plastics, Other Plastics.
409,684-August 20, 1889. J. L. HASTINGS. Plostic mineral composition. See Group XY, Plasties, Other Plastics.
409,65s-August $20,18 s 9$. C. A. VON WELSBACH. Process of obtaining zirconium nitrate.
Zirconium nitrate in a form suitable for an incandescent body is produced by first converting the zirconium into a sulphate, and after treating with ammonia dissolving the same in nitric acid, thereby obtaining a precipitate which is digested with ammonia, dissolved in nitric acid, and evaporated.
410,865-September 10, 1889. F. THIELE. Process of making zirconium nitrate.
Water-soluble nitrate of zirconium is produced by subjecting zirconium ores to the action of hydrochloric acid, heating the residue with sulphuric acid for several hours to form zirconium sulphate, and adding a concentrated solut on of barium nitrate to form by reaction therewith zirconium nitrate, barium sulphate being precipitated.
571,631-November 17,1896. R. LANGHANS. Process of producing coatings composed of earthy oxids.
See Group X, Electro-chemistry.
571,539-November 17, 1896. R. LANGHANS. Process of producing coatings composed of earthy oxids.
See Group X, Electro-chemistry.
617,656-January, 10, 1899. W. BUDDEUS. Process of obtaining thorium oxids.
Monazite sand is comminuted and introduced into molten alkali hydrate; the resultant mass dissolved in hot water; the resultant alkali phosphate crystallized out; the mother liquor evaporated; water added to the res:due, stirred, and the liquor containing the oxides of thorium and of the cerium bases is decanted or otherwise removed from the heavy sediment of ferrous titanate and zircon. The mixture of the oxides of thorium and of the cerium bases is treated with sulphurous acid to dissolve out the oxides of the cerium bases and leave the thorium oxide.

platinum metals.

241,216,-May 10,1881. J. HOLLAND. Process of fusing and molding iridium.
The metal is subjected to a high beat and then about one-fourth its weight of phosphorus is added, when it quickly fuses and is cast in highly heated molds. As soon as set it is placed in a crucible with lime, and again highly heated to eliminate the phosphorus.

HYDROCARBONS.

CARBON COMPOUNDS.

130,909-August 27 , 1872. H. J. FENNER AND F. VERSMANN. Improvement in the manufacture of anthracene.
Anthracene is obtained by the distillation of coal-tar pitch by a regulated temperature of from 315° to $425^{\circ} \mathrm{C}$. from heat externally applied. A partial vacuum assists the distillation.
178,862-February £2, 1876. C. LOWE AND J. GILL. Improvement in processes for separating mixed coal-tar products.
Carbolic acid is crystallized from mixed tar acids by successive steps of refrigeration, crystallization, and dehydration, the mixed tar acids being in a state of partial or complete hydration.
227,588-May 11, 1880. F. SALATHÉE. Manufacture of anthracene.
Anthracene tar, produced by treating petroleum or its derivatives in the presence of charcoal at a dull red heat (400° to $550^{\circ} \mathrm{C}$.), and condensing the tarry matter produced.
37q,24S-October 25, 1887. J. VAN RUYMBEKE. Aniline tar.
Tar containing about. 7 per cent of nitrogen and available for the direct production of aniline by treatment with acid is obtained from concentrated tank waters by distillation.
s86,8s0-Juty 1, 1888. W. KELBE. Process of obtaining retene.
Retene ($\mathrm{C}_{8} \mathrm{H}_{18}$) is produced by heating resin-oil-a product of the dry distillation of colophony-with sulphur until the formation of hydrogen sulphide is finished. The raw retene obtained by distillation of the residue. or by extraction by a solvent, is purified by repeated crystallizations.
563,588-Juty 7, 1896. T. L. WILLSON. Process of manufacturing hydrocarbon gas. See Group X, Electro-chemistry.
588,250-August 17, 1897. E. F. MACKUSICK. Process of generating gas from carbides.
The carbide is treated with a mixture of water and glycerine, or other nonvolatile, noninflammable, and recoverable fuid which does not react upon the carbide, the whole mass of carbide being exposed to the action of the rent of gas.
696,189-December 28, 1897. W. BOLTON. Process of generating acetylene gas.
Calcium carbide is impregaated with a substance substantially insoluble in water \rightarrow such as stearine, the rate of gas generation being regulated by the Water-such as stearine,
degree of impregnation.
©i25,479-May 2s, 1899. F. ULLMANN. Process of purifying acetylene gas.
Impure acetylene gas is treated with oxidizing chromic compounds in which the chrome is present as an acidifier-for instance, with chromic acid or aqueous or acidified chromic-acid solution or acidified bichromate solution-for the purpose of oxddizing the impurities.
685,017-October 17, 1899. C. B. JACOBS. Process of moking benzine and homologues.
Hydrocarbons are produced by mixing together a metallic carbide and a fusible metallic hydrate of molecular equivalent weights-as barlum carbide and barium hydrate-and subjecting the mass to a heat sufficient to fuse the hydrate, forming an oxide and benzene and its homologues, anthracene, napthalene.
638,175-November 28, 1899. E. S. DOLAN. Method of generating acetylene gas.
Small quantities of calcium carbide are tightly wrapped in a plurality of thicknesses of pliable, porous material-as coarse cheesecloth-and several of the packages are placed within a gas-generating chamber in contact with each other and water is applied.
641,444-January 16, 1900. E. DE FAZI. Manufacture of gas.
A mixture of calcium monoxide, colophony, and calcium carbide-as calcium monoxide, 80 parts; colophony, 10 parts; and calcium carbide, 5 parts-is treated with water.
646,019-March 27, 1900. E. DE FAZ1. Manufacture of gas.
A mixture of calcium monoxide, bitumen, and calclum carbide-as calcium monoxide, 80 parts; bitumen, 10 parts; and calcium carbide, 5 parts-is treated with water.
647, P95-April 10, 1900. O. ERNST AND A. PHILIPS. Material for purifying acetytene go.s.
A solid, highly porous metal containing a salt of hypochlorous acid; as bleaching powder stirred into a sludge with slacked lime and calcium chloride and dried at such a temperature that the salt of hypochlorous acid does not decompose.
647,559-April 17, 1900. J. A. DEUTHER. Process of producing ethylene gas.
Ethylene gas, $\mathrm{C}_{2} \mathrm{H}_{4}$, is produced by decomposing water in the presence of a
compound composed of a metal capable of decomposing water, and the carbide of such metal, whereby the nascent hydrogen transforms the generated acetylene into ethylene.
648,688-May 1, 1900. J. H. GREEN. Process of manufacturing gas.
Calcium carbide and liquid hydrocarbons, as gasoline, are placed in a vessel and water fed at intervals to the mixture, whereby the generated gas will pass through the liquid hydrocarbons and collect gas from the same.
659,448-October 9, 1900. M. P. E. LETANG. Process of generating acetylene gas from carbide of catcium.
Calcium carbide and glucose, or like substance, which will render lime soiuble or fluid, are simultaneously subjected to the action of water.
661,401-November 6,1900. E. FOUCHE. Process of storing explosive gases.
The receiver is filled with a porous substance provided with numerous separate small bores or perforations, filled with a suitable fluid, and the compressed gas is charged into the receiver where it is absorbed by the liquid and stored in isolated quantities; or the gas itself is compressed into liquid form and stored thereby in isolated quantities in the porous substance.
622,258-November 20,1900. E. N. DICKERSON. Process of storing acetylene gas. Liquefied acetylene gas is mingled, in miscible proportions, with a solvent, such as fusel oil. and maintained under a reduced pressure.

HALOID COMPOUNDS

CHLORIDES

218,671-August 19, 1879. J. F. GESNER. Improvement in manufacture of ethylchloride.
A current of hydrochloric-acid gas is passed through a boiling alcoholic solu* A ion, the water and alcohol separated from the resulting gas, and the chloride-oftion, the vapor purified and conderised as a continuous operation.
220,397-October 7, 1879. J. W. MALLET. Improvement in the manufacture of chloroform and allied products.
Chlorine, or other analogous element, and methane, ethane, or other bydrocarbon gas, are passed through a body of porous material not acted upon by the $90^{\circ} \mathrm{C}$.
S22,194-July 14, 1885. G. MICHAELIS. Dranufacture of chtoroform and of purifled acetates.
Crude acetates are subjected to dry distillation at high temperatures to remove the fuid products therefrom, which are subjected to the action of a hypochlobeing suitable for conversion into acetic acid or purified acetates.
383,992-June 5, 1888. G. RUMPF. Manufacture of chloroform from acetone.
Acetone in a dilute state is periodically introduced into the bottom of a still containing cloride of lime solution with agitation of the solution. The chloride of lime employed is more than five times the weight of the acetone, resulting in the chloroform produced equaling the acetone in volume.
487,744-May 18, 1890. T. F. COLIN. Process of obtaining chlorine compounds from natural gas.
See Group X, Electro-chemistry.
455,862-September 2, 1890. E. G. SCOTT. Process of making carbon tetrachloride. Chlorine is passed into iodine and carbon bisulphide and the resultant mass fractionally distilled, whereby the tetrachloride is separated from the sulphur bichloride, the latter caustic alkali, and a mixture or compound of carbon sulphide and iodine is produced, suitable for use in the first step.
489,592-Janzary 10, 1899, R. P. PICTET. Process of purifying chloroform.
Commercial chloroform is cooled to -80° to $-82^{\circ} \mathrm{C}$. and the solid bodies removed by filtration. It is then cooled below - $80^{\circ} \mathrm{C}$. and the voncrystallizable parts, which contain impurities, removed. The chloroform is then distilled at a very low temperature and the midde 80 per cent of the product tacen as chemically pure.

585,270-March 5, 1895. R. AUSCEUTZ. Process of obtaining chloroform.
Chemically pure chloroform is produced by decomposing by beat double compounds of chloroform and lactid-like condensation products, derived from ortho-phenol carbonic acids, as salicylid, and condensing the pure chloroform.
Salicylid-chloroform is prepared by boiling salicylid in chloroform. Salicylid-chloroform is prepared by boiling salicylid in chloroform.
551,131-Deceinber 10, 1895. P. MONNET. Process of making toluenesulphochlorids. Liquid or ortho-toluenesnlphochıoride is produced by the direct action of chlorsulphonic acid on toluene at a temperature not exceeding 5° nor below 0° C., in the presence of a large excess of said acid and with constant agitation.

554,974-February 18, 1896. H. BAUM. Process of making orthohalogenphenol.
Orthohalogens of phenol, particularly the bromine and chlorine combinations, are produced by the action of the desired halogen upon phenol neated to about $150^{\circ} \mathrm{C}$. It is purified by binding a portion of the product to an alkali base and the ortho compound is separated in a pure state by distillation.
573,483-December 22, 1895. O. PORSCH. Process of making chloroform and apparatus therefor.
Vapors from the dry distillation of an acetate, and chlorine gas, are continnously discharged, in opposite directions, under pressure, in an aqueons bath of an alkaline earth, as milk of lime, subjected to heat. The hydrochloric acid is separated from the resultant vapors and the chloroform vapors condensed.
578,899-March 16, 1897. B. R. SEIFERT. Process of making aromatic natrosulfo chlorids.
Aromatic nitro compounds are heated with chlorhydrin sulphuric acid in excess of one molecule. The liquid mass is then poured onto ice and the precipitated nitrobenzenesulpho-chloride strained off. The acid in the mothereral acid to obtain a further quantity of the chloride.
603,195-April 26, 1898. W. MAJERT. Process of purifying orthatoluenesulfochlorid.
A part of the orthotoluene-sulpho-ehloride is distilled out from a mixture of the ortho and paia-chlorides; the residue is then cooled to crystallize out a part of the paratolnene-sulpho-chlorides, when the liquid is again distilled and again cooled.
606,470—June 28, 1898. P. P. MONNET. Process of making chlorin derivatives of toluene.
The ortho or paratoluene-sulpho-chloride when heated to $150^{\circ} \mathrm{C}$. is treated with a current of dry chlorine gas and the reaction maintained at 150° to 200° C. until the required chlorine has been absorbed.

BROMIDES.
462,544-November 5, 1891. F. H. FISCHEDICK AND C. E. KOECHLING. Bromine compound.
Bromamid, (tribrom bromanilid), a new compound for use as an antiypyretic, of the formula $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~B}_{3}, \mathrm{NH}, \mathrm{HBr} ; \mathrm{m} . \mathrm{p} .115^{\circ} \mathrm{C}$. It is formed by the action of bromine on a solution of aniline in alcohol.
621,s19-March 21, 1899. J. BREDT. Bromin derivative of phthalimid, and process of making same.
A new compound, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{Br}$, a white crystalline powder, m. p. 206° to $207^{\circ} \mathrm{C}$., yielding bromine when strongly heated, is produced by dlssolving phthalimid in dilute caustic lye, stirring the solution into an ice-cold aqueous solution of bromine, and filtering and drying at a low temperature.

IODIDES.

322,940—July 28, 1885. T. KEMPF. Manufacture of iodoform, bromoform, and chloroform.
See Group X, Electro-chemistry.
486,250-September 9, 1890. J. MESSINGER AND G. VORTMANN. Substitute for iodoform.
A new product; a red brown odorless powder; m. p. $225^{\circ} \mathrm{C}$. It is derived from iodine and salycylic acid.
446,875-February 24, 1891. J. MESSINGER AND G. VORTMANN. Compound of iodine with thymol.
A new iodine substitution product of thymol; an amorphous odorless brownred powder; m. p. $110^{\circ} \mathrm{C}$. It is produced by the action on an aqueous solution of thymol to which soda lye has been added, of a solntion of iodine in an alkaline iodide at a temperature of $15^{\circ} \mathrm{C}$.
454,223-June 16, 1891. E. OSTERMAYER. Compound of antipyrine and iodine.
A neww compound for medicinal purposes, having the formula $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{IN} \mathrm{N}_{9} \mathrm{O}$; m. p. $160^{\circ} \mathrm{C}$. It is formed by the action of potassium carbonate and iodine upon a solution of antipyrine.
472,828-Aprii 12, 1892. L. SCHOLVIEN. Iodine dcrivatives of acetyl paramiaophenetole.
Tri-iodine-diacetyl paramidopenetole, or "iodophenin," is a new product of the formula $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathbf{I}_{2} ;$ M. P. 130°. It is produced by combining a solution of acetyl paramido-phenetole with a solution of iodine.
509,617-November 28, 1899. F. GOLDMANN. Pharmaccutical compound.
A new componnd, of the formula $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OI}_{3}$, a white crystalline powder, m. p. $121.5^{\circ} \mathrm{C}$., soluble in ether, etc., but with difficulty in alcohol, is produced by treating one molecular proportion of creosotinic acid with three of iodine.
561,581-June 2, 1896. L. C. URBAN. Carvacrol iodid.
A ncw product, an amorphous yellowish-gray or buff powder, m. p. $153^{\circ} \mathrm{C}$., insoluble in water and alkali, is produced by dissolving in water a mixture of carvacrol 1 part, and sodium hydroxide 2 parts, and adding an aqueous iodine solution with constant stirring at $15^{\circ} \mathrm{C}$.
575,175-January 12, 1897. A. SCHUFTAN. Iodoform substitute.
A new product, a yellow, light powder insoluble in water, soluble in alcohol, etc., decomposing at $127^{\circ} \mathrm{C}$. is produced by dissolving methylenebisphenyldimethylpyrazolon in hydrochloric acid and adding bromine water to the solution. 576,494-February 2, 1897. A. CLAUS. Metaiodinorthoöxyquinolinana-8ulfonic acid.
A new product, m. p. $285^{\circ} \mathrm{C}$, with separation of iodine, sparingly soluble in water; is produced by subjecting an allaline solution of orthoöxyquinolinanasulphonic acid to the action of an iodine, and then to the action of hydrochloric acid.

618,167-January 24, 1899. A. CLASSEN. Sodium salt of iodin compound. See Group X, Electro-chemistry.
618,168-January 24, 1899. A. CLASSEN. Iodin derivatives of phenols and bismuth salts thereof.
See Group X, Electro-chemistry.
627.981-July 4, 1899. A. CLASSEN. Iodin compound and process of making same. New compounds, odorless, derived from phenolphtalein in the form of powders, of the general formula $\mathrm{C}_{22} \mathrm{H}_{10} \mathrm{I}_{4} \mathrm{O}_{4}$, in which the hydrogen atoms of the hydroxyl groups may be replaced by metallic atcms, as tetraiodophenolphtalein. They are produced by reacting with iodating agents upon a solution of phenolphtalein. The product is treated with an acid; the precipitate dissolved in sodium hydrate, and treated with a metallic salt.
627,982-July 4, 1899. A. CLASSEN. Iodin derivatives of aromatic amins and process of making same.
New odorless compounds are produced by treating a secondary aromatic amin, as diphenylamin, with iodine, and absorbing the hydroiodic acid formed with mercury oxide. The product is combined with a substance, such as actyl chloride, adapted to form a derivative containing the iodine atoms in the nucleus.
641,491—January 16, 1900. A. BISCHLER. Iodochoroxyquinolin.
A new product, a greyish-yellow, scentless powder, almost insoluble in water, is obtained by treating an aqueous solution of an alkaliue salt of the chlor-5: oxy-8-quinolin with potassium iodide and hypochlorites.
14s,144-February 18, 1900. L. LEDERER. Process of preparing haloid derivatives of acetone.
A halogen is caused to react with acetone dicarbonic acid in the presence of a substance adapted to act on the corresponding halogen hydrogen acid

FLUORIDES.

649,885-February 20, 1900. F. VALENTINER. Process of making fuoroform.
An intimate mixture of iodoform, fluoride of silver, and inert granular material, as sand, is warmed.

ALCOHOLS AND PHENOLS.

252,782—January 24, 1882. A. LIEBMANN. Manufacture of the higher homologues of phenol, naphthol, and resorcin.
Phenol, naphthol, and resorcin are transformed into their higher homologues by subjecting them in a suitable still to the action of the corresponding fatty alcohols in the presence of chloride of zinc.
407,442-July 2,1889 . E. MEYER. Process of obtaining methyl alcohol from woodpulp lyes.
Lyes produced in the manufacture of wood pulp are concentrated, mixed with charcoal, briquetted, distilled, and the methyl products condensed. The charcoal is revived for further use by lixiviation. The distillate is free from formic, acetic, and other tar acids.
487,620—May 1s, 1890. K. SCHOLZ. Obtaining permanent hydroquinone.
Permanent or durable hydroquinone in citron yellow crystals is obtained by recrystallizing in the presence of sulphuric acid.
466,918-January 12, 1892. B. R. SEIFERT. Carbonate of guaiacol and creosol.
New medical compounds obtained by the action of phosgene on guaiacol or the nomologue creosol. Carbonate of guaiacol, having a m. p. of $85^{\circ} \mathrm{C}$., is of has a m . p. of $145^{\circ} \mathrm{C}$.
479,781-August 2, 1892. C. W. BRUNSON. Process of purifying liquids.
See Group X, Electro-chemistry.
48刃,101-September 6, 1892. B. R. SEIFERT. Process of making disinfectants.
Phenols difficultly soluble in water, as cresol or crude carbolic acid, are converted into soluble disinfecting mixtures by mixing with water and a metallic salt of an aromatic compound of the classes of aromatic acids and phenols, as salicylate of soda.
495,204-April 11, 1893. J. MESSINGER, G. VORTMANN AND H. JANSSEN,
Compound of cresol, etc.
A new compound, para-isobutyl-ortho-cresoliodide, a yellow powder, insoluble in water and caustic alkalis, decomposing above $60^{\circ} \mathrm{C}$., is produced by treating para-isobutyl-alpha-cresol in alkaline solution with iodine.
501,285-July 11, 1893. B. R. SEIFERT. Creosote compound.
A new compound, creosote chemically united with carbon dioxide, being a semi-fluid oil, not caustic, is produced by treating creosote dissolved in soda lye with phosgene, or by heating creosote with ethers of carbonic acid.
516,858-March 15, 1894. B. R. SE1FERT. Phenol-bismuth compound.
New antiseptic compounds of phenols in chemical combination with bismuth, nearly non-poisonous, neutral and insolnble in water, alcohol and ether, are prodnced by treating the poisonous phenols in an acid, neutral or alkaline solution with bismuth salts, filtering and washing.
526,786-October 2,1894 . O. MANASSE. Process of making phenol alcohol.
Formaldehyde is caused to act on phenol or phenol-like substances in the presence of alkaliue or nentral condensing agents, such as soda lye, potassa lye, potassium cyanide, etc.
541,096-June 18, 1895. E. R. KOBERT. Process of precipitating blood by pyrogallic acid.
A blood-forming iron preparation is formed by treating blood with pyrogallic acid and washing the precipitate with alcohol.
549,214-July 23, 1895. W. MAJERT. Aromatic glycocol derivative.
Glycocol derivatives, crystalline or crystallizable, and having but one acetamid remainder bound to one uitrogen atom, and containing the group $\mathrm{NHCOCH} \mathrm{NH}_{2}$, are produced by treating a glycocol ether or glycocolamid, preferably the hydrochlorides, with primary aromatle amins, and separating the derivative by means of an excess of ammonia.
548,719—October 29, 1895. P. P. MONNET. Process of making rhodinol.
Raw rhodisol, obtained by fractional distillation of oil of geraniums, is treated with acetic acid; the acetic ether of rhodinol is purifled by washing and
distllation, and the rhodinol regenerated by saponification of this acetic ether
of rhodinol by digesting it with alcoholic caustic alkali. The product is then subjected to several fractional distillations, with the separation as a by-product of a mixture of licarén and an acetone, having an odor of menthene.
554,998-February 18, 1896. L. LEDERER. Process of obtaining phenols.
Substances containing phenols, as crude cresols, etc, are subjected to the action of choloracetic acid in the presence of soda lye. The alkaline salt produced is acids, which are treated with mineral acids to produce phenols. phenoxacetic
568,975 -July 14, 1896. L. LEDERER. Process of obtaining oxybenzylic alcohol.
An aromatic phenol is cansed to react with formic aldehyde in the presence of a nonacid condensing agent. the free phenol is removed by steam, and the
oxybenzylic acid extracted with ether.
574,421-January 5,1897. L. O. HELMERS. Process of obtaining aqucous solutions
of phenols.
A new product, of a viscid brown color, smelling of phenol, consisting of a phenol and the sulphonic-acid componnd of ichthyol or thiol (a chemical combination of a sulphureted hydrocarbon compound, containing at least 5 per cent of the said constituents in a solvent, and evaporation. 577,802-February 16, 1897. A. HESSE. Terpene alcohol.
A new product, $\mathrm{C}_{11} \mathrm{H}_{2 n} \mathrm{O}$, (h. p. at air pressure $226^{\circ} \mathrm{C}$.), noncombining with calcium chloride, is produced from volatile saponified oils particularly African, Reunion, and other geranium oils, by heating with an acid anhydrid, removing the nonalcoholic ingredients by distillation with steam, saponifying the residual esters with alkalies, also under pressure, and distilling the terpene alcohol with
steam. 607,494-July 19, 1899. G. TOBIAS. Process of making pyrocatechin.
Salts of the phenoltrisulpho-acid are heated with caustic alkali to above $200^{\circ} \mathrm{C}$. and the alkaline salt of the procatechindisolpho-acid thus obtained is heated
625,480-May 23, 1899. H. VIETH. Process of rendering ichthyol odorless.
Ichthyol compounds are distilled with steam under a pressure less than an
atmosphere.
651,061—June 5, 1900. A. WEINBERG. Diamidonaphthol.
A new diamidonaphthol, having the constitution $\mathrm{NH}_{2}: \mathrm{NH}_{2}: \mathrm{OH}=2: 8: 7$, melting at $220^{\circ} \mathrm{C}$. while decomposing, is prodnced by the combination of the 2 , 7 -amidonaphthol with diazo bodies in an alkaline solution, and reduction of the thas
obtained azo dyestuffs.

ALDEHYDES AND THEIR PRODUCTS.

489,290-September 27, 1892. I. ROOS. Process of making salicylaldehyde-alphaphenylmethyl hydrazone.
A new compound, being a white crystalline powder, insoluble in water, of m. p. $73^{\circ} \mathrm{C}$. It is produced by combining salicylaldehyde and alphamethylphenyl hydrazine in a solvent, such as methyl alcohol.
504,626-September 5, 1893. J. SCHMID. Medical compound.
A new compound, crystallizing in vellowish fiat needles, m. p. $90^{\circ}-91^{\circ} \mathrm{C}$., and A new compound, crystanle in water, is produced by the action of salicylaldehyde on paraphenetidin.
548,198-July 23, 1895. A. SCHMIDT. Production of prolocatechuic aldehyde-metaalkyl ethers.
A new group, as protocatechuic aldehyde-meta-ethyl-ether, which crystallizes out of water in small glittering scales and has a m. p. of $77.5^{\circ} \mathrm{C}$, is produced by the reaction of a compound of the type of benzenesulpho chioride upon a mono-metallic salt of protocatechuic aldehyde, alkylating a salt of the so-formed compounds of the type of para-benzene-sulphoprotocatechnic aldehyde, and
splitting of the ether product from the compounds of the type of para-benzenesplitting off the ether product from the compounds of the type of para-benzene-
sulphoprotocatechuic aldehyde-meta-alkyl ether obtained in that way by means sulphoprotocatechuic aldehyde-meta-alkyl ether obtain
of saponification agents, such as potassium or soda lye.
545,099-August 27, 1895. A. SCHMIDT. Protocotechuic aldehyde-meta-alkyl ethers and process of making same.
The ethers are produced by causing a suitable compound of the type of benzyl chloride to act upon a mono-metallic salt of protocatechnic-aldehyde, alkylating a salt of the so-formed compounds of the type of para-benzyl-protocatechuicajdehyde, and separating from the product the protocatechuic-aldeh yde-metaalkyl ether by decomposition, as by hydrochloric or hydrobromic acid.
575,281-January 12, 1897. B. HONOLKA. Process of manufacturing aramatic aldehydes.
Monobenzylanilin, its homologues or nitro products, is oxidized in the presence of a dilute mineral acid, such as an acidulated bichromate solution.
581,053-Aprit 20, 1897. F. ACH. Process of obtaining cinnamic aldedyde.
Benzaldehyde and acetic aldehyde are dissolved in alcohol, cooled to 10 C ., and treated with concentrated soda lye with agitation.
598,914—Fcbruary 15, 1898 . E. H. C. DÜRKOPF. Formaldehyde tannin.
New compounds, methylene-di-tannins-as methylenc-di-gallotannic acid, $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{O}_{18}$ - a reddish-white light powder, decomposing at $230^{\circ} \mathrm{C}$.-are produced by reacting upon tannin with formic aldehyde in the presence of a condensing agent, as hydrochloric acid, the formic aldehyde being molecularly equivalent to one-half the amount of tannin.
601,07\%—March 2\%; 1898. E. H. C. DÜRKOPF. Formaldehyde proteids containing iodin.
New compounds, reddish-yellowish powders, liberating iodine on decomposition, are produced by allowing iodine or an iodine solution, as that of potassium iodide, to act upon a formaldehyde-proteid-as for instance casein-combination. 602,697-April 19, 1898. A. CLASSEN. Formaldehyde starch and method of making same.
New chemical compounds of formaldehyde and starch, not decomposed by heating to $180^{\circ} \mathrm{C}$., are produced by heating the said substances together under pressure to about $100^{\circ} \mathrm{C}$., the compounds obtained being again treated with formaldehyde, and excess of formaldehyde removed.
$618,460-$ November 1, 1898. P. P. MONNET. Process of making aromatic aldehydes. The methyl group in compounds of the aromatic hydrocarbon series is aldehydized by treating the compound, such as nitrotoluene, with an oxidizing agent, syach as manganese binoxide (Weldon mnd) and sulphnric acid, in such a pro-
portion that the agent is insufficient for the oxidation of the total methyl to portion that the agent is insufficient for the oxidation of
aldehyde, and then separating out the aldehyde produced.

656,994-November 14, 1899. B. HOMOLKA AND A. STOCK. Process of obtaining ortho and para nitro benzaldehyde.
Nitrobenzylidenanilinsulphonates, where the nitro group is in ortho or para position to the CH group, are made to react with the salts of a primary aromatic base, and the nitrobenzyliden bases thus obtained are treated with dilute mineral acid.
640,564-January 2 1900. B. HOMOLKA AND A. STOCK. Process of moking
amidobenzaldehyd.
The elements of water are linked to the amidobenzylideneanilin compounds, and the mixture of aniline base and aldehyde thus obtained separated in the usual manner.
650,022-May 2.2, 1900. H. OPPERMANN. Volatile chloral compound, and process
of making same.
Bromine is first treated with menthol, slowly and while keeping them cool, and then chloral is added.

VANILLIN.

151,119-May 19, 1874. W. HAARMANN. Improvement in the manufacture of arti-
ficial vanillin. ficial vanillin.
Artificial vanillin is produced by treating a solution formed of coniferin or the cambinm of coniferons woods, with chromate of potassa and sulphuric acid, heat-
ing, distilling, and treating the residuum with ether.
192,542-June 26, 1877. F. TIEMANN. Improvement in manufacture of vanillin. The process consists, first, in adding to an etheric solntion of oil of cloves,
hydrate of sodium (or potassium) and acidulating with sulphnric or hydrohydrate of sodium (or potassium) and acidulating with sulphnric or hydro-
chloric acid, eliminating the ether by distillation; second, heating the eugenol chloric acid, eliminating the ether by distillation; second, heating the eugenol
so obtained with the addition of acetic anhydride, adding warm water to the so obtained with the addition of acetic anhydride, adding warm water to the
cooled liquid, and permanganate of potassium, eliminating therefrom the cooled liquid, and permanganate of potassium, eliminating therefrom the
mangancse dioxide; third, adding an excessof hydrate of sodium to the filtered mangancse dioxide; third, adding an excess of hydrate of sodium to the filtered
liquid, and evaporating; and, finally, adding sulphuric or hydrochloric acid to liquid, and evaporating; and, finally, adding sulphuric or hydrochloric acid to
the concentrated solution, agitating the same with an addition of ether, and purithe concentrated solution, agitating the same with an addition
fying the vanillin so ohtained by any of the known methods.
457,863-August 18, 1891. G. DE LAIRE. Pracess of moking isoeugenol.
Isoeugenol, for use in the production of vanillin, is made by heating eugenol or essence of cloves with hydrate of potassa and alcohol, expelling the alcohol with steam, and separating the isoeugenol by treating the mass with acid and 25,862 18 , G. 1020 .
457,864-August 18, 1891. G. DE LAIRE. Process of making compounds of
isocugenol.
Monomolecular derivatives of isoeugenol are obtained by heating a mixture of isoengenol and an organic anhydride acid, as anhydrous acetic acid. Acetyl
487,167-Navember 29, 1892. F. ACH. Eugenol benzyl-cther and process of preparing
same. same.
A new componnd, a colorless oil, solidifying in thick prisms, m. p. 29° to $30^{\circ} \mathrm{C}$. is produced chloride, heating the mixture, and then distilling off the spirits, and precipitating eugenol benzyl-ether with water. It is purified by shaling with dilute alkali and distilling in a partial vacuum.
487,204-November 29, 1892. F. ACH. Process of preparing vanillin.
The process consists in the following steps: First, dissolving eugenol in alcohol, adding thereto alkaline hydrate and a halogen compound of benzyl, and heating the mixtnre; second, dissolving the resnlting eugenol benzyl-ether in alco-
hol, adding thereto alkaline bydrate, keeping the same at the boiling point for some time, then partially distilling off the alcohol, and adding water to the residue; thrird, adding to the resulting isoeugenol benzyl-ether a mixture of sodium chromate, sulphuric acid, and water; and, finally, adding hydroehloric acid to the resalting vanillin benzyl-ether.
Vanillin benzyl-ether, a new compound, has a m . p. of 63° to $64^{\circ} \mathrm{C}$. and a for-
mula of $\mathrm{C}_{6} \mathrm{H}_{3}$, CHO , OCH , OCH mula of $\mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{CHO}, \mathrm{OCH}_{3}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$.
487,205-November 29, 1892. F. ACH. Isoeugenol benzylether and process of pre-
paring the same. paring the same.
A new compound, crystallizing in fine felted needles, m. p. 58° to $59^{\circ} \mathrm{C}$., and used in the preparation of vanillin, is prodnced by dissolving eugenol henzylether in rectified spirits, adding caustic potash, keeping at the boiling point for
from sixteen to twenty-four hours, and then partially distilling off the alcohol from sixteen to twenty-four hours, and then partially distilling off the alcohol
and adding water to the residue. The isoeugenol benzyl-ether is purified by and adding water to the residue. The iso
pressing and recrystallizing from alcohol.
497,546-May 16, 1893. G. DE LAIRE. Pracess of making vanilloyl-carbonic acid
and vanilin. and vanillin.
Crude vanillin is first treated with bisulphite of soda in water; alcohol is then added little hy little ontil the latter takes np the vanillin salts; when the alcoholic and aqueous solutions are separated and the aqueous liquor is treated with snlphuric acid to set free the vanilloyl-carbonic acid, which is dissolved out with ether and the solvent evaporated. Vanilloyl-carbonic acid is heated above
$134^{\circ} \mathrm{C}$. its M. P., when it separates into vanillin and carbonic acid; the fused 134° C., its M. P., when it separates into vanillin and carbonic acid; the fused
mass is dissolved in ether, agitated with an aqueous solution of carbonate of mass is dissolved in ether, agitated with an aqueous solution of carbonat
magnesia, and the ether which holds the vanillin in solution evaporated.
519,695-M1ay 15, 1894. J. BERTRAM. Process of making vonillin.
Vanillin and its isomers are produced by treating the metallic compounds of protocatechuic aldehyde, such as sodinm protocatechnic aldehyde, with
haloid compounds of methyl, as methyl-iodide, or methyl sulphates.
553,099-January 14, 1896. M. OTTO AND A. VERLEY. Process of obtaining vanillin, etc.
A carbon compound, as isoeugenol, having a benzene nucleus with a lateral chain $\mathrm{C}_{3} \mathrm{H}_{5}$, in order to produce its corresponding aldehyde, as vanillin, is oxidized by ozone (as by passing a current of ozone through it), and the
resulting aldehyde is then isolated. resulting aldehyde is then isolated.
55s,585-January 21, 1896. M. OTTO AND A. VERLEY. Manufacture of vanillin. See Gronp X, Electro-chemistry.
$560,494-$ May 19, 1896. W. HAARMANN. Process of obtaining vanillin.
Isoeugenol is oxidized in a strong alkaline solution by means of a peroxide, as
sodium peroxide. sodium peroxide.
561,077-June 2, 1896. F. ACH. Process of obtaining vanillin.
Vanillin benzyl ether is decomposed by treating it with an acid in the presence of an alcohol, then distilling off the alcohol, driving off the benzyl-ethyl-ether
and separating the vanillin. and separating the vanillin.

565,918-August 18, 1896. J. L. NOVARINE. Process of obtaining vanillin.
A solution of eugenol in a suitable solvent, such as a carbon bisulphide, is subjected to the action of a solution of chromylchloride, the dichlorochromyleugenic compound thus obtained is decomposed by water, the productsextracted, and the vanillin isolated. The dichlocochromyl-eugenic compound, a new product, is a brown or greenish hrown powder, more or less crystalline and easily decomposed by water.
565,919-August 18, 1896. J. L. NOVARINE. Process of obtaining vanillin.
A solution of eugenol, or its ether in glacial acetic acid, is subjected to the action of chromyl-chloride in the same solvent; the solution diluted with water; the products extracted, saponified, and the vanillin isolated.
571,917-November 24, 1896. C. BERGMANN. Process of obtaining vanillin.
Paraoxybenzaldehyde is changed into the meta-nitro and meta-amido combination, and the latter is then transformed into metamethoxy-paraoxybenzaldebyde (vanillin) by the action of nitrous acid in alcoholic solntion.
572,890-December 8, 1895. C. GOLDSCHMIDT. Vanillin paraphenetidin.
A new compound, $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{~N}$, yellow crystals, m, p. $97^{\circ} \mathrm{C}$., solnble in water, insoluble in ether, is produced by acting upon vanillin with paraphenetidin. 575,070-January 12, 1897. B. R. SE1FERT. Isohomovanillin.
New aromatic substances of the formula $\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{OC}_{n} \mathrm{H}_{2 \mathrm{n}}+1\right) 1(\mathrm{OH}) 2\left(\mathrm{CH}_{3}\right) 4$ (COH) 5 , whereby the general group $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}+1$ is limited to the special cases CH_{3} and $\mathrm{C}_{2} \mathrm{H}_{5}$, solnble in soda-lye, ether, and alcohol, forming colorless or yellowish scales and needles, and being especially characterized by a vanilla-like scent and taste. Theymay be produced by the action of chlorotorm on isohomopyrocatechinether of the formula $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OC}_{n} \mathrm{H}_{2 n}+1\right) 1(\mathrm{OH}) 2\left(\mathrm{CH}_{3}\right) 4$ or by chloroform on an alkaline solntion of isocresol with successive treatment of the product by acid, ether, and sodium bisulphite.
585,584-June 29, 1897. W. MAJERT. Process of obtaining vanillin.
An aqueous solntion of isoeugenol sodium and a sodium salt of bajogen nitrobenzene sulpho-acid is hoiled, producing isoeugenol-phenylether nitrosulphate of sodium; the isoeugenol phenylether nitrosulphonic acid is oxidized to a salt of vanillin phenylether nitrosulphuric acid, and the vanillin separated by means of an alkali.
651,756-August 22, 1899. F. ACH. Process of making iso-eugenol and derivatives thereof.
A new compound, mono-eugenol-phosphoric acid, m. p. When hydrated 105° C., is produced by treating eugenol in a neutral condition with phosphorous-oxy-chloride; making an alkaline solution of the product, and acidifying Treated withalkal, iso-e ${ }^{\circ}$ drated condition at 133° C. An acid alkali salt is prepared from the last acid, dried and heated, producing iso-elugenol.

ETHERS.
516,766-March 20, 1894. F. KRAFFT AND A. ROOS. Process of making ether. Sulphonic acids, or their ethers, are heated with alcohols producing ethers; as
ethyl alcohol added to henzene-sulphonic acid and heated to 185° to $145^{\circ} \mathrm{C}$. produces ethyl ether.
475,640-January 19, 1897. P. FRITZSCHE. Process of obtaining ether.
Gases containing ethylene, after removal of tar, ammonia, benzol, and hydrogen sulphide, are washed with dilute sulphuric acid to remove hydroarbons of condensation, then treated with concentrated sulphuric acid at from 100° to 140° C., to ahsorb the ethylene, and, after dilution, to distillation; the vapors of ether, alcohol, and water, according to their alcohol and ether contents, being passed through ethyl sulphuric acid of varying degrees of dilntion.
680,575-April 15, 1897. F. H. HÄHLE. Catechol ether.
Monoethyl ether of pyrocatechin, a new substance of the formula $\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{OH}$. $\mathrm{OC}_{2} \mathrm{H}_{5}$ having a b. p. of $215^{\circ} \mathrm{C}$., solidifying at 26° to $27^{\circ} \mathrm{C}$., and erystallizing easily in to colorless, bright transparent prisms. It is easily soluble in alcohol, in ether, and in dilnted aqueous soda-lye, solidifying with concentrated soda lye into a white salt having an agreeable aromatic smell resembling thymol.

ACIDS.

382,829-December 22, 1885. H. PRINZ. Manufacture of beta-naphthylamine sulphoacid.
See Group XI, Dyestuffs, Artificial, Organic.
335,034-Dccember 22, 1885. H. VOLLBRECHT AND C. MENCSHING. Manufacture of color-producing acids.
See Group XI, Dyestuffs, Artificial, Organic.
518,989; 518,990-May 1, 1894. H. A. FRASCH. Petroleum sulfo-acid.
See Gronp XI, Dyestuffs, Artificial, Organic.
563,382-July 7, 1896. F. KRECKE AND I. ROSENBERG. Amidonaphtholdi-sulpho-acid K.
See Group X1, Dyestuffs, Artificial, Organic.
569,419-October 13, 1896. H. LAUBMANN. Dinitroanthrachrysone-disulphonic acid and method of making same.
See Group XI, Dyestuffs, Artificial, Organic.
569,485-October 13, 1896. A. PIUTT1. Paraethoxyphenylsuccinamic acid and method of making same.
A new product, easily soluble in alcohol and acetic acid, crystallizing in ustrous colorless plates, m. p. $160^{\circ}-161^{\circ} \mathrm{C}$., is produced by heating succinic acid with paraphenetidin until formation of water cea
606,487-June 28, 1898. F. BENDER. Amidonaphtholdisulpho-acid and process of making same.
See Group XI, Dyestuffs, Artificial, Organic.
607,056-July 12, 1898. J. KOETSCHET. Process of making aldehydo-benzoic acid.
A new anilin salt, slightly soluble in water, m. p. 165° C., with evolution of gas, becoming on melting an insoluble body with m. p. above $250^{\circ} \mathrm{C}$., is obtained by treating ortho-oxalyl-benzoic acid with anilin in aqueous solution. Anilido-benzylidene-ortho-carboxylic acid is obtained by boiling this new anilln salt with a neutral solvent, such as toluene or xylene, and the acid thus obtained is converted into aldehydo-benzoic acid by extracting with ether and vaporizing the ether.

616,129-December 20, 1898. I. LEVINSTELN AND C. MENSCHING. Process of making alphylamidonaphthol-sulfonic acids.
See Group XI, Dyestuffs, Artificial, Organic.
621,679-March 21, 1899. M. H. ISLER. Oxyanthraquinone sulfo acid and process of making same.
See Group XI, Dyestuffs, Artificial, Organic.
625,697-May 29, 1899. H. A. MERNTHSEN. Oxynaphthindophenolthiosulfonic acid and process of making same.
See Group XI, Dyestuffs, Artificial, Organic.

ESTERS OR SALTS.

99,817-August 17, 1869. L. D. GALE AND I. M. GATTMAN. Improvement in the manufacture of sugar of lead and acetic acid.
See Group I, Acetic Acid.
179,999-February 1, 1876. J. W. HAAS. Improvement in processes for manufacturing cream of tarter.
Argols with hydrochloric acid, chloride of potassinm, and water are treated in a closed vessel with superbeated steam for about three hours and the solution then allowed to crystallize.
185,597-October 24, 1876. G. SCHNITZER. (Reissue: 10,004-January 9, 1882.) Manufacture of cream of tarter.
Argols with hydrochloric acid, chloride of potassium, and water are subjected to steam pressure for the necessary length of time, and the cream of tarter separated from the residual solution after it has crystallized. (Same as No.172,999.)
217,235-July 8, 1879. E. MULLER. Improvement in the manufacture of bitartrate of potassa.
Hydrochloric acid is added to the solution of argols and water-one equivalent by weight of hydrochloric acid to the contained tartrate of lime-and after erystallization of the cream of tarter chalk is added to the mother water to precipitate the tartrates.
22\&,598-December 16, 1879. E. MUELLER. (Reissue: 10,011—January 17, 1882.)
Manufacture of cream of tartar.
Argols are boiled in water, in the proportion of about 3 pounds to a gallon of water, under pressure of 60 pounds, by steam injected into the water and which is allowed to escape from the converter, the cream of tartar being separated by crystallization.
277,016-May 8, 1883. A. DREYFUS. Apparatus for treating argols in the manufacture of cream of tartar.
In the boiling of argols with steam under pressure, boneblack and china clay are successively introduced into the vessel after the hoiling has commenced, but before the setting of the solution. rhe steam is permitted to partially escape during the boiling.
294,598-March 4, 1884. F. DIETRICH. Manufacture of cream of tartar.
Dissolved argols are treated with phosphoric acid or its compounds to precip-
itate iron and alumina itate iron and alumina, clarified and decolorized.
313,629—March 10, 1885. R. SILBERGER. Manufacture of cream of tartor.
The mother liquor obtained in the manufacture of tartaric acid from argols is treated with soda and potassium chlorate to obtain potassium bitartrate, and chlorate of sodium as a by-product.
395,485-February 2,1886. E. SCHAAL. (Reissue: 10,82s-March 29, 1887.) Man-
ufacture of resin-acid cthers,
Raw resin acids are freed from volatile or soft constituents by distillation or extraction; the hard resin-acid residues are then condensed to ether by treatment with alcohols or phenol at a high temperature, with or without pressure or the addition of substances favoring the reaction, and finally the resin-acid
338,865-March 23, 1886. R. SCHMITT. Manufacture of salicylic-acid compounds. The application of the process of No, 334,290 to the substituted phenolates results in the production of substituted salicylic salts, likewise without any
separation of phenol. separation of phenol.
314,483-August 31, 1886. H. VON PERGER. Production of phenyl-methyl oxyquinicine.
A new product; m. p. $122^{\circ} \mathrm{C}$. It is prodnced by the action of hydrazohenzole upon acetylacetic ether.
350,012-September 28, 1886. M. V. NENCK1 AND R. SE1FERT. Production of salol.
A new product; $\mathrm{m} . \mathrm{p} .43^{\circ} \mathrm{C}$. It is produced by the action of oxychloride of phosphorous upon a mixture of salicylic acid and a phenol.
550,468-Oclober 5, 1886. R. SCHMITT AND C. KOLBE. Manufacture of naphtholcarbonic alkaline salts.
They are produced by the action of dry carhonic acid atatmospheric temperature, either without pressure or with pressure, in conjunction with a cooling process, upon naphthol alkaline salts; the dry naphthol-carhonic alkaline salts thus obtained being converted into alpha or beta carbonaphthol-acid alkaline salts by heating in an hermeticaly closed vessel at from 120° to $140^{\circ} \mathrm{C}$. Carthe alkaline salts of alpha or beta naphthol under pressure at 120° to $145^{\circ} \mathrm{C}$.
361,690-April 26, 1887. R. GNEHM. Production of a new ethyl-cther.
A new ethyl-ether, of the formula $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$; m.p. $126^{\circ} \mathrm{C}$. It is produced by the action of acetyl-acetic ether upon ethylenediamine.
566,885-July 19, 1887. E. SCHAAL. Process of making ethers from petroleum.
Liquid petrol acid, obtained from petroleum by the process of No. 335,962 , is mingled with an alcohol, heated, and the petrol ethers, separated by distillation, are washed and purified.
377, 811-January 81, 1888. C. KOLBE. Manufacture of salicylic acid cster.
Salol is prodnced from a mixture of salicylic acid and a phenol by passing a current of phosgene gas therethrough at a temperature of about $170^{\circ} \mathrm{C}$.

383,306-May $2 \mathrm{E}, 1888$. C. KOLBE. Manufacture of salicylic-acid csters.
Salol is produced from a mixture of salicylic acid and a phenol, which may be melted or dissolved in a solvent-as benzole-by the action of trichloride of
phosphorus.

digest of Patents relating to chemical industries.

s91,24S-October 16, 1888. P. W. HOFMANN. Process of manufacturing salol. Salol is produced by heating phenolate of sodium in an atmosphere of phosgen gas, Salicylate of sodium, previously produced, may be mixed there with. 489,805-November 4, 1890. A. MARTIGNIER. Process of obtaining cream of tartar
Lyes, argols, tartars, and other tartarous matters are treated with an alkaline sulphate, as of soda or potash, the residuum separated from the liquid and cream of tartar precipitated from the latter with sulphuric acid.
L55,085-May 26, 1891. J. BONGARTZ. Guaiacol ether.
A new product, the benzoic ether of guaiacol, having the composition $\mathrm{C}_{6} \mathrm{H}_{4}\left\{\begin{array}{l}\left.0 . \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right\} \\ \mathrm{O} . \mathrm{CH}_{5}\end{array}\right\}$ and m. p. $50^{\circ} \mathrm{C}$. Crude guaiacol is converted into a salt, preferably its potassinm salt, and purified, heated with beuzoyl chloride and the benzoyl compound recrystallized from alcohoi.
486,770-November 22, 1892. P. ERNERT. Process of making salicylate of phenyl. Salicylic.acid is heated at or about $230^{\circ} \mathrm{C}$., with exclusion of air and vaporization of water.
492,868-March 7, 1893. H. JANSSEN. Salicylic-acid compound.
A new compound, crystallizing out of alcohoi in small white scales, insoluble in cold water, m. P. $187^{\circ} \mathrm{C}$., is produced by reacting upou paranitrophenol in the presence of dehydrating agents with salicylic acid, reducing the nitro phenylester of salicylic acid thus obtained, and treating the formed amido phenylester of salicylic acid with acetic acid anhydride, of acetyl chloride in such quantity as is necessary to replace one hydrogen atom of the amido group by an acetyl group.
495,497-April 18, 1899. A. LIEBRECHT. Basic bismuth gallate.
A new compound, a yellow powder, without odor, solnble in a large excess of mineral acids, and contaiping 55 per cent to 56 per cent oif bismuth oxide-a suitable substitute for iodoform-is produced by dissolving neutral bismuth nitrate in dilute nitric acid, adding a solution of gallic acid in alcohol and water, and to the mixture adding caustic alkali, alkali carbonate or the like until the whole remains but slightly acid, and precipitating with acetate of soda or by diluting with water.
501,446-July 11, 1899. E. SCHAAL. Manufacture of resin-acid esters.
The aqueous vapors formed during the heating of a resin acid in the presence of an alcohol or hydroxyl derivative are drawn off by suction as soon as the formation of the esters begin, and the alcohols distilled off are replaced by a fresh supply until the formation of the product is completed.
503,7LS-August 22, 1893. F. GEROMONT. Lactyl-paraphenetidid and process of making it.
A new compound, of the formula $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$, crystallizing in white needles, $\mathrm{m} . \mathrm{p} .117 .5^{\circ} \mathrm{C}$., and soluble in an abundance of water, is prodnced by heating the lactate oi paraphenetidin to 130° to $180^{\circ} \mathrm{C}$. until the resulting watery vapors are completely driven off. The said lactate is formed by dissolving paraphenetidin in dinute sulphuric acid, mixing with a solution of calcinm lactate, precipitating the calcium sulphate with alcohol, filtering, and evaparating to dryness.
609,055-November 21, 1898. H. THOMS. Salicylate of tolyldimethylpyrazolon.
A new crystalline compound, having the formula $\mathrm{C}_{2} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O} . \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$, and m. p . $106.5^{\circ} \mathrm{C}$., is produced by heating together aceto-acetic ether and orthotolylhy drazin, methylating the product, and combining therewith salicylic acid.
509,520-November 28, 1893. P. FRITSCH. Salicylic ester of acetol.
An alkaline salicyate, as salicylate of soda, is heated with mono-halogen-acetone and the alkaline chloride separated from the resulting acetol.
611,14s-December 19, 1898. W. H. HIGGIN. Process of making sodium acetate.
Esparto-liquar and similar alkaline liquors are evaporated and the residue treated by regulated heat, so that the temperature shall exceed $200^{\circ} \mathrm{C} .$, but shal never reach the heat at which sodinm acetate is decomposed (about $400^{\circ} \mathrm{C}$.), thereby producing a mass of "char," which upon treatment with water yields a solution of acetate of sodium along with other matters.
253,018-July 17, 1894. C. STOEHR. Dimethylpiperazin tartrate.
A new compound, having the formula $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$; a white parvder when water free, easily soluble in water, insoluble in alcohol, and m. p. $242^{\circ}-243^{\circ} \mathrm{C}$.; is produced by combining tartaric acid and dimethylpiperazin in equal molecular proportions.
Es0,826-December 11, 1894. C. F. CROSS AND E. J. BEVAN. Manufacture of cellulose acetate.
A compound, or intimate mixture, of cellulose and zinc acetate is produced by mixing cenulose hydrate with zinc acetate solntion, drying and dehydrating the compound. This product is treated with chloroform, whereby a solution of cellulose acetate is obtained free from cellulose, and the solvent is evaporated. 693, 118 -February 5, 1895. J. MEYER. Tannin compound.

A new compound, consisting of a mixture of mono-and diacetyl tannin, an amorphous light-yellow powder, soluble in alcohol and insoluble in water; is produced by heating tannin with a mixture of glacial acetic acid and acetic acid anhydride.
657,841-April \&s, 1895. J. F. VON MERING. Process of making ethers of para-oxyphenylurethane.
New compounds, acidyl combinations of the para-oxyphenylurethans, crystallizing readily, are produced by heating para-axyphenylurethan with an acidyl reagent.
541,489-. June 25, 1895. J. F. VON MERTNG. Acidyl compound of para-oxyphenylurethan ethers.
New compounds, readily crystallizable and mare or less saluble in alcohol and benzene, are produced by heating the ethers of para-oxyphenylurethans with reagents containing the acidyl group, as acetic acid anhydrid.
541,899-July 2, 1895. B. THIEME. Process of making nitropentaerythrit.
The pentaerythrit produced by condensation in the presence of lime of acetaldehyde and formaldehyde, is treated with concentrated nitric and sulphuric acids.
544,104-August 6,1895. F. LÜDY. Bismuth oxyiodidgallate and process of preparing same.
A new product, a grayish-green amorphous powder, insoluble in water and ordinary solvents and decomposing slowly in moist air, is produced by the reaction of gallic acid upon bismuthoxyiodid.

549,728-November 12, 1895. F. KRAFFT AND A. ROOS. Process of making
esters.
Esters are produced by the action of an alcoho: and a carbon acid at a temperature above $100^{\circ} \mathrm{C}$., in the presence of an aromatic sulphonic acid.
558,197-April 14, 1896. A. MÜLLER-JACOBS. Process of manufacturing tannate of zircomium.
A hot saturated solution of tanmic acid is slowly added to a hot solution of a soluble salt of zirconium, and the precipitate is washed and dried.
561,790—June 9, 1896. B. R. SEIFERT. Substituted salol.
New compounds, solid, crystalline, coloriess, withont smell, soluhle in alcohol, insoluble in water, and M. P. Irom 55° to 170° C., are produced by heating a mixture of a substituted phenol and salicylic acid to 140° C.; adding a dehydrating agent as phosphorous pentachloride; continuing the heating until generation of
from alcohol.

562,199-June 16, 1896. M. OTTO AND A. VERLEY. Process of obtaining ether.
The acid ethers of geraninol are produced by heating the natural essences Which contain this alcohol with the chlorides of organic acids, as butyric chloride, and an alkaline metal, as sodium, in the presence of a neutral solvent, and perfumes by partial saponification by heating in an aqueons solution of calcium carbonate for some days in a closed vessel.
563,993-July 14, 1896. G. A. WELTER. Amidoalkylsalicylic acid.
It is produced by treating nitroalkylsalicylic acid with reducing agents, such as tin and hydrochloric acid. When the product is treated with an acetyl compound, such as glacial acetic acid, acetylamidoalkylsalicylic acid is proerties.
569,415-October 19, 1896. O. HINSBERG. Antipyrin mandelate and method of making same.
A new product, m. p. 52° C., soluble in nearly all solvents and separating out as an oil, and soldifying as an opaque powder, is produced by the reaction of antipyrin with phenylglycollic acid.
569,429-October 19, 1896. R. SCHIFF. Salicylic compound and method of making same.
A new white crystalline product, a compound of salicyic acid and hexamethylenetetramin, easily soluable in alcohol and water, M. P. 95° C., is produced mixture and crystallizing.
571,352-November 17, 1896. E. FISCHER. Method of obtaining telra-alkyt uric acid.
The salt of a dialkyl uric acid is treated with a haloid ether in an indifferent or inert diluting agent, such as ethyl ether, as by warming an alkaline solution of, a dimethyl uric acid with a solution of potassio-tartrate of copper in excess, then treating the resulting cuprous salt of dimethyl uric acid, mixed with powdered glass, with a haloid ether.
572,345-December 1, 1896. H. T. JARRETT. Process of making potassium bilar trate.
Argols are first dissolved in a solution of caustic soda and its carbonate to the point of neutralization, one-tenth of the weight of argols added in potassium chloride, filtered, a decolorizing agent added, and the potassium bitartrate precipitated directly from the mixture by an acid.
575,227-January 12, 1897. A. GALLINEK AND E. COURANT. Process of manujacturing esters of diiodosalicylic acid.
New products, as the alkyl ester of the difadosalicylic acid, a white crystalline compound, m. p. $132^{\circ} \mathrm{C}$., of the formula $\mathrm{C}_{6}, \mathrm{H}_{2} \mathrm{I}_{2}<\mathrm{COHAlk}_{\mathrm{CO}}^{\mathrm{OH}}$, are produced by subjecting salicylic acid esters to the action of indine in the presence of a compound, as mercury oxide, which combines with the hydroiodic acid lormed.
580,575-April 18, 1897. F. H. HÄHLE. Catechol ether.
A new product, monoethyl ether of pyrocatechin, m. p. $26^{\circ}-27^{\circ}$ C., b. p. 215° C., solidifying with concentrated soda-lye into a white salt, is produced by the ethylization of pyrocatechin by means of caustic soda and sodium ethyl sulphate.
580,630-April 18, 1897. G. WENDT AND J. LEHMANN. Valeric esters of creo-
sote. products, slightly yellow oily liquids, soluble in alcohal, b. p. $260^{\circ} \mathrm{C}$., and New products, 117° and $121^{\circ} \mathrm{C}$. are produced by boiling a mixture of the in vacuum between 117° and 121°., are produced main constituents of creosote-crensol and gnaiacol, respectively-with valerimain cons.
580,744-April 19, 1897. G. H. WEISS. Carbonyl mctadiamido salicylic acid.
A new product, crystallizing in white laminæ, m. p. 252° O., soluble with difficulty in water and alcohol, is produced by treating nitroamido salicylic acid ficulty in water and alconing the product. The diazo compound forms azo dyewith phasgene and reducing the p.
stuffs which are easily mordanted.
581,893-May 4, 1897. L. SELL. Salicin compound and proce8s of making same.
An extract from the fruit oI the Aesculus hippocastanum in combination with salicin, saligenin, glucose, and free hydrochloric acid, a stable, grayish-yellow sowder freely soluble in water; is produced by subjecting salicin incorporated powder freely soluble in water, is prion of hydrochloric acid, and then adding more salicin.
585,068-June 22, 1897. A. WELLER. Quinin-carbonic ether and process of making same.
New products, derivatives of the levogyrate alkaloids of cinchona bark, tasteless, soluble with difficulty in water, readily soluble in chloroform and in acid; are produced by the action on the said alkaloids with an ether of chlorocarbonic acid.
588,412-Auqust 17, 1897. E. FISCHER. Trimethylbenzyl-uric acid and process of making same.
New compounds, as trimethylbenzyl-uric acid, m. p. 171° to $173^{\circ} \mathrm{C}$. , crystallizing from alcohol in large crystals, insoluble in alkalis, are produced by treating a trialkyl-uric acid together with an alkali, with a haloid ether.
591,485-October 12, 1897. G. MERLING. Compound of gamma-oxypiperidincarboacids and process of making same.
New products, containing acidyl as wen as alkyl groups, mostly colorless crystals, nearly insoluble in water, adapted to combine with inorganic and strong organic acids, are produced by combining triacetonamin and its analo-
gous combinations, as, for instance, benzaldiacetonamin-vinyl-diacetonamin, with hydrocyanic acid, and then saponifying the so-obtained cyanhydrins (nitryls) Gamma-oxypiperidin-carbo acia is heated with both acidyl and alkyl reasents.
599,123-February 15, 1898. H.ENDEMANN. Glycerol ether of aromatic compounds.
New products, the glycerin ethers of aromatic substances containing oxygen in the form of hydroxyl, such as guaiacol, and which split and liberate a phenollike substance and glycerin, are produced by combining the phenol-like substance with sodium hydrate and causing same to
molecular proportions, generally at 140° to $150^{\circ} \mathrm{C}$.
602,646-April 19, 1898. C. F. M. SCHAERGES AND P. SCHWARZ. Process of making alkaline acetosulfanilate.
A new product, soluble in water, is produced by acetylizing an alkaline salt of sulphanilic acid by means of glacial acetic acid, and removing free sulphanilic of sulphanilic acid by means of glacial acetic acid, a
602,834-April 26, 1898. O. DOEBNER. Condensation product from salicylic and gallic acids.
A new compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{7}$, a white amorphous powder, is produced by the reaction of phosphorous oxychloride on a equimolecular mixture of salicylic and gailic acids, which may be in the presence of a solvent and diluent, as toluene; subsequently removing the formed metaphosphoricacid by pouring the mixture on ice water ard then washing and drying.
605,24,6-June 7, 1898. E. DÜRKOPF. Bismath melhylent-di-gallate and process of
making it. making it.
A new chemical compound, characterized by a voluminous powdery form, a blue-gray color, insoluble in water, and soluble in alkaline solutions with an orange color, is produced by precipitating bismutb bydroxid from a bismuth salt by an aqueous solution of ammonia, washing the precipitate, and acting salt by an aqueous solution of ammonia, wasbing the precipitate, and acting
upon it by methylene-di-gallic acid and water by gradual addition and slow digestion at a slightly elevated temperature.
606,930-Juty 5, 1898. L. LEDERER. Process of obtaining hydroxylized phenyl cthers.
Mixtures of bydroxylized phenyl etbers with phenols, such as wood-tar oils, guaiacol, etc., are mixed with potassium carbonate, and the resulting mixture is then treated with ether.
607, 172-July 12, 1898. K. HOCK. Pharmaceutical compound and process of making same.
A new condensation product is produced by the reaction of cold concentrated solutions of one molecule of hexamethylenetetramin and of three molecules of tannin. The precipitate, of a yellowish-brown color, is rendered ingoluble, odorless, and tasteless, by heating in a porcelain pan until it forms a hard lump.
610,348-Sepicmber 6, 1898. A. EINHORN. Ester of parä̈midometaoxybenzoic acid.
Obtained by heating paraämidometaoxybenzoic acid in alcoholic solution with mineral acids; a white crystalline product, m. p. 120° to $122^{\circ} \mathrm{C}$.; useful as an ointment.
614,991 - November 29, 1898. P. SCHIDROWITZ AND O. ROSENHEIM. Piperidyl carbamate of piperidin and process of making same.
A new product, $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$, white, crystalline, soluble in water, alcohol, etc., $\mathrm{m} . \mathrm{p} .79^{\circ}$ to $80^{\circ} \mathrm{C}$., is produced by treating piperidin dissolved in a solvent, as acetone, with carbonic acid.
615,051-November 29, 1898. P. SCHIDROWITZ AND O. ROSENHEIM. Piperidin salts and process of making same.
New products, dicarboxylic salts of piperidin, having the form of prismatic plates and soluble in water, as tartrate of piperidin, $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{6}$, m. p. 136° to 137° C., are produced by treating piperidin with a dicarboxy fatty acid, such as tartaric acid.
615,307-December 6, 1898. H. REINHARDT. Orexin tannate and process of making same.
A new product, an odorless, tasteless, white, or slightly yellow powder, insoluble in water, is produced by mixing an aqueous solution of orexin hydrochlorate with an aqueous solution of tannin at 45° to $50^{\circ} \mathrm{C}$., and precipitating with an aqueous solution of sodium acetate.
616,656-December 27 , 1898. E. FISCHER. Process of oblaining alkyl-uric aeid.
The ester of an acid possessing considerable electrical conductivity, such as nitric acid, is added to a solution of uric acid proper with an alkali; the solution is heated under pressure and with agitation, and after adding hydrochloric acid to the hot solution it is cooled and crystallized.
616,700-December 27, 1898. E. FISCHER. Alkyl derivatives of uric acid and process of making same.
New compounds, mixed alkyl derivatives of uric acid, as dimethyl-benzyluric acid, $\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{O}_{3}$, m . p. 282° to $283^{\circ} \mathrm{C}$., soluble only in alcohol, are produced by acting upon a mixture of an alkali solutiou and uric acid with a haloid ether; cooling and separating the monoalkyl derivative of uric acid; then acting upon a mixture of the said derivative and an alkali solution with a haloid etber; coo
619,5/9-February 14, 1899. A. EINHORN. Glycocol ester and process of making same.
New products, as the methyl ester of diethyl-glycocol-para-amidosalicylic acid, a thick colorless oil, soluble with difficulty in water. They are produced by allowing an amin to act upon the resulting halogen-alkyl derivatives.

620,141-February 28, 1899. H. JANSSEN. Bismuth compound and process of making same.
A new compound, a brown powder, insoluble in benzene and ligroin, dissolving partially in alcohol under decomposition, is produced by heating a misture of bismuthoxyiodide and dibromgallic acid at 60° to $80^{\circ} \mathrm{C}$. until development of carbon dioxide has ceased.
620,563-March 7, 1899. R. BLANK. Process of obtaining indoxylic compounds of amido malonic esters.
The aromatic amido malonic acid esters arc beated to 200° to $270^{\circ} \mathrm{C}$. untll one molecule of alcohol is eliminated.
621,804-March 28, 1899. E. FISCHER. Alkyl derivative of uric acid and process of obtaining same.
A sufficient amount both of an alkali and a haloid-ether, such as methyliodid, is added to uric acid proper to make the ratio each of the reagents to the uric
acid proper as 4 to 1 , whereby tetra-alkyl-uric acid and trialky-uric acid are directly obtained.
621,805-Mareh 28, 1899. E. FISCHER. Process of making alkyl derivatives of uric acid.
Uric acid is reacted on with an alkali and a haloid ether, as potasb lye and metbyl iodide, under beat and agitation, in the proportions of two molecules eack of the alkali and the haloid ether to one of the uric acid.
622,456-April 4, 1899. H. C. FEHRLIN. Process of manufacturing salol.
Basic salicylate of soda with the necessary quantity of phenol is treated with phosphorus oxychloride at from 120° to $140^{\circ} \mathrm{C}$. The product is then treated with carbouate of soda, and salol distilled off with steam.
623,789-April 25, 1899. E. KAUDER. Frocess of making alkyl-ethers of morphine.
A neutral alkyl-ester of phospboric acid is caused to act on a suitable solution of morphine whose replaceable hydroxyl-hydrogen has been replaced by a metal whose bydroxide possesses alkaline reaction.
624,772-May 9, 1899. A. EINHORN. Glycocolphenolester and process of making same.
Glycocolphenolesters of the general formula alphyl- $\mathrm{O}-\mathrm{COCH}_{2}-\mathrm{NX}_{2}$, Wherein NX_{2} represents the residue of a secondary amin, are produced by mixing halogen-aceticacidphenolesters with secondary amins, as by mixing chloracetyguaiacol with diethylanun, forming thick oils easily soluble in alco hol, ether, and benzine, hittle soluble in water, and wist
soluble in water, and which act as powerful antiseptics.
625,158-May 16, 1898. A. EINHORN. Esters of para-oxy-meta-amidobenzoic acid and process of making same.
A new product, a white crystalline compound, m. p.above $100^{\circ} \mathrm{C}$., is produced by the action of mineral acids upon the alcoholic solutions of para-oxy-metaamjdobenzoic acid.
625,159—May 16, 1899. A. EINHORN. Glycocolamidocinnamic-acia ester.and proccss of making same.
Alkyl-amidoacetyl-meta-amidocinnamic-acid esters produced by first combining meta-amido-cinnamic-acid ester with cbloracetrichloride and then with
amins; an oil soluble in alcohol, ether, and benzene, with difficulty in water, amins; an oil soluble in alcohol, ether, and benzene, with difficulty in water, $165^{\circ} \mathrm{C}$.
626,910-June 13, 1889. E. KAUDER. Process of making alkyl ethers of morphine. A suitable alkaline solution of morphine is acted upon by a nitric-acid ester of the desired alkyl.
627,081-June 18, 1899. C. O. WEBER AND C. F. CROSS. Method of making cellulose tetracetate.
The reactions of acetylchloride and acetic anhydride on a mixture of cellulose and magnesium acetate are controlled by adding regulated quantities of nitrobenzene after the reaction has started.
629,433-July 25, 1899. A. EHRENBERG. Process of making alkyl ethers of morphin.
A neutral inorganic oxygen-acid-ester of an alkyl, as methyl sulpbate, is caused to act upon an alkaline solution of morphine.
680,522-August 8,1899 . L. SELL. Saligenin compound and process of making same.
A new preparation of saligenin is produced by the reaction of same with a physiological tannic acid (a tannic acid that is not reconverted into gallic acid on boiling with dilute acids) in the presence of a dilute acid at an elevated temperature.
681,761-August 22, 1899. F. ACH, Pracess of preparing alkyl-uric acid.
An oxymethylene uric acid is dissolved in an acid, as hydrochloric acid, and reduced by tin, producing 7 -methyl-uric acid.
631,762-August 22, 1899. F. ACH. Process of making oxymethylene-uric acid.
An alkaline solution of an oxymethelene-uric acid is treated with methyliodide.
699,605-September 5, 1899. C. O. WEBER AND C. F. CROSS. Process of making cellulose esters
Structureless cellulose is mixed with a salt of a fatty acid and the mixture treated with the acid chlorides and a minimum of 10 per cent of the anbydrides of the said acid.
696,384-November 7, 1899. F. HOFMANN. Process of making carbonates of aromatic series.
One of the chlorocarbonyl derivatives of the pyridin base series is first made to act on an aromatic phenol, and the so-formed carbonate is then separated from the reaction mixture.
639,174-December 12, 1899. F. HOFMANN. Elhyl ether of salicylo-carbonic aeid. A new product, a white crystalline powder, m. p. $95^{\circ} \mathrm{C}$., is obtained by the action of the etbylic ether of chloro-carbonic acid having the formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$. CO.Cl, on salicylic acid in the presence of a suitable basic compound, such as dimethyl-anilin.
642,218-January 30,1900 . H. C. FEHRLIN. Process of making salol.
Alkaline and earthy alkaline salts of acid-phenyl-carbonic ether are subjected to the action of phosphorus oxychloride.

648,280-February 13, 1900. A. WELLER. Salicylates of lhe yttrium group
New antiseptic products, consist of a metal of the yttrium group, as didymium salicylate, obtained from the double earth didymium in the form of a pale pink powder, insoluble in water, of the formula $\mathrm{Di}_{9}\left(\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COO}_{6}\right)$.
646,631-Aprils, 1900. A. WELLER. Phenol ether of quinin carbonic acin.
A further series of new products is produced according to the proecss of No. 585,068 , a phenyloxy group taking the place of the alkyloxy group.
647,263-April 10, 1900. B. HEYMANN. Ester of acetylphenylglycinortho eartonic acid.
New compounds, yielding an indigo leuco compound when heated with dry caustic alkalis. They are produced by subjecting the neutral esters of phenylglycinortho carbonic acid to the action of acetylizing agents.
648,580-May 1, 1900. A. BÉHAL. Process of making ethereal salls of formic acid. Equimolecular proportions of formic acid free from water and the anh \quad dride of another organic acid are mixed at a moderate temperature.

650,408-May 29, 1900. E. MENNEL. Process of makino acidyl morphin esters. An alpha-mono-acidyl compound of morphine, whose acidyl constituent is of producing a carboxy-alkylic ester of an acidyl-morphine ester and an alkali

KETONES.

275,108- April S, 188s. J. BRONNER. Melhod of purifying impure anthrachinone
and alizarine. and aliantie.
The oolvent is vaporized and the vapor condensed and percolated through the mass, the quantity of solvent used being such as to retain the soluble impurities in oolntion as well as the pure anthrachinone, whereby the repeated evaporations, condensations, and percolations dissolve out the soluble impurities and the pure anthrachinone, the insoluble impurities being retained by filtration and the soluble impurities are separated from the pure anthrachinone by the crystallization of the latter.
385,777-July 10, 1888. G. RUMPF. Manufacture of acetone.
An acetate is subjected to slow destructive distillation in a closed vessel ot a low temperature (about $300^{\circ} \mathrm{C}$.), with stirring and steam to prevent too high a temperature. The crude acetone is diluted to separate oily matters, treated with lime to remove bigher ketones and other compounds, and rectified in a column still.
s90,59乌-Oclober 2, 1888. M. J. SCHREITER. Proccss of refining camphor.
Camphor is rectified by dissolving it with heat in camphor oil in such proportions that the camphor is separated as fine crystals; filtering the solution with animal charcoal, ashestos, or cellulose; and separating the remaining crystals by centrifugal force.
\$99,079-November 20, 1888. G. RUMPF. Manufacture of acelone.
An acetate is purified by passing it continuously through a aystem of externally heated tubes with stirrers, and is then subjected to destructive distillation to make acetone.

443,402-December 23,1890 . M. V. NENCKI. Gallacctophenone.
A new product, corresponding to $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4} ; \mathrm{m} . \mathrm{p} .168^{\circ} \mathrm{C}$. It is obtained by the action of pyrogallic acid with glacial acetic acid and zinc chloride.
444.004-January 6. 1891. H. LÜTTKE AND L. SCHOLVIEN. Salicylate of phenyldimethilpyrazolonc.
A new compound of the formula $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$; m. p. $91.5^{\circ} \mathrm{C}$. It is produced by heating-preferably under pressure-phenylhydrazine, acetyl, acetic ether, and methyl-salicylic ether in the presence of a haloid hydric acid.
460,186-September 29, 1891. L. SCHOLVIEN. Process of making dimethylphenylpyrazolone.
Molecular quantities of methylphenylpyrazolone and sodium methyl sulphate are heated under pressure, with hydriodic acid and alcohol as a diluent.
464,861-December 8, 1898. G. EBERT. Process of making phenylethylmethylpyrazolone.
A new product, a homologue of antipyrine, of the formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$; m.p. between $7 \mathrm{I}^{\circ}$ and $72.5^{\circ} \mathrm{C}$. It is obtained by heating phenylmethylpyrazolone with iodethyl; decomposing the product by soda lye; taking up the oil with benzine; treating with hydrochloric acid and dissolving the hydrochlorate in alcohol; treating with ether, filtering and drying the product; then treating it with soda lye and separating and drying the oil as a final product, which setsin crystalline form.
509,066-Augusl 8, 1893. Н. THOMS. Salicylate of para-tolyldimethylpyrazolon. A new compound, m. p. $101^{\circ} \mathrm{C}$., not readily soluble in water, is produced by combining para-tolylhydrazin with acetic acid ether, heating, methylating the resulting para-tolymethylpyrazolon, and melting the product with salicylic acid in equi-molecular proportions.
516.707-March 20, 1894. L. KNORR. Paratolyldimethylpyraz̃olone.

Paratolyldimethylpyrazolone of the formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$, m. p. $137^{\circ} \mathrm{C}$., crystallizing in colorless prisms soluble in water, of difficult solubility in ether, is prowaced by condensing paratolyl hydrazin with acetyl acetic ether, separating condensation.
535,55\%-March 12, 1895. O. PORSCH. Process of making acetone.
Commercial acetate of lime mixed with calcium bydrate in excess is aubjected to distillation under addition of superheated steam and constant agitavapore from the carbonated lime. The conad sedi vapors mixed with water are allowed to atand to aeparate out tar oils and
ments, and are then purified by fractional distilation and rectification.
548,353-October 22, 1895. A. BOEGLIN. Antipyrin compound.
A new medicinal compound, $\left(\mathrm{C}_{11} \mathbf{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)_{3} \mathrm{Fe}_{2} \mathrm{Cl}_{3}$, brittle, nonhygroscopic crystals, of a reddish-brown color, soluble in water and m. p. $225^{\circ} \mathrm{C}$., is procrystals, of a redaish-brown color, solous aolutions of antipyrine and ferric chloride.
556,943-March 24, 1896, J. C. W. F. TIEMANN. Aromatic ketone and process of making same.
A new product of the formula $\mathrm{C}_{38} \mathrm{H}_{20} \mathrm{O}$, insoluble in water, soluble in alcohol, is produced by treating a mixture of citral and acetone with alkaline alcohol, is produced by treating a mixture of cifitag by fractional distillation, agents, dissolving the product in ether, purifying by fractional distillation,
and converting into a fragrant isomeric ketone by dilute acids and subsequent and converting into a
fractional distillation.
359,685-May 5, 1896. J. C. W. F. TIEMANN. Process of making ketone from orris-root.
A new product, $\mathrm{C}_{13} \mathrm{H}_{20}$ O, insoluble in water, soluble in alcohol, etc. It is produced by distilling orris-root extract in a current of steam; trcating the produced by distilling orris-root extrant distillation; treating with oxidizing distillate with alkali and subsequent distilation; eliminate the alliali; treating the resulting ketone with phenylagents to eliminate the alkali; treating the resulting ketone with
574,725-January 5, 1897. J. R. FRANCE. Process of purifying camphor.
Crude camphor is dissolved in a hydrocarbon of less sp. gr. than water, as naphtha; the aupernatant solution of pure camphor is drawn off, filtered, the
solvent distilled off, and the pure anhydrous granular camphor crystallized.
579,412-March 2s, 1897. F. STOLZ. Pyrazolon compound and process of making same.
A new product, the phenyj 2.3 dimethyl 4 dimethylamido 5 pyrazolon, a white
A new product, the phenyly
No. $210-19$
with m. p. of its salicylate of $69^{\circ} \mathrm{C}$., is produced by methylating 1 phencl 2.3 dimethyl 4 amido 5 pyrazolon.
582,2R1-May 11, 1897. O. NAGEL. Process of making arlificial camphor.
Hydrochlorinated terpene, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{HCl}$ is first produced by saturating anhydrous turpentine with anhydrous hydrochloric-acid gas while both are cooled by ice. The resulting crystals are then treated with lime to remove chlorine, and oxidized by nitric acid, producing camphor, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$.
683,719-June 1, 1897. J. C. W. F. TIEMANN. Process of making aromatic ketones.
Citral and the homologues of acetone are treated with an alkaline condensing agent to form new ketones (methylized, ethylized, etc., ketones), which are then converted, by means of acids, into ketoncs isomeric with those first formed.
588,720-June 1, 1897. J. C. W. F. TIEMANN. Fragrant ketone.
The process of No. 583,719 is applied to citronellone, an aldehyde containing two atoms more of hydrogen than citral
608,019-July 26, 1898. A. BAUSCHLICHER. Process of and apparatus for naking acetone.
A dry mixture of acetate of lime and calcium hydrate is treated with superheated steam under continuous stirring and constant temperature to scparate the acetone vapors, which are condensed and rectified; the crude acetone acetone oils, arc injected into water under pressure and the mixture rectified.
610,361-September 6, 1898. O. MANASSE. Oxycamphor and process of making it.
A new product, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$, white, crystalline, m. p. 203° to $205^{\circ} \mathrm{C}$., volatile with steam vapor, and having a weak pepper-like taste, is produced by dissolving pears, then treating with soda, lye, and then with ether, and evaporating the ether.
610,664-September 13, 1898. W. SCHMIDT. Process of refining camphor.
Crude camphor is dissolved in a closed chamber in a solvent that does not mix with water and of less sp. gr., as benzine or naphtha, the oupernatant solution being withdrawn and filtered in a cloaed filtering chamber, the solvent distilled off, and the pure anhydrous camphor crystallized.
628,299-July 4, 1899. R. WILLSTÄTTER. Tropin ketone and process of making same.
New products, ketones of tropin bodies, are produced by adding chromium trioxide in small installments to a tropin body, in the presence of acetic acid, With agitation; the amount just equaling two-thirds of the molecular equiva-
lent of the tropin body; then heating to $100^{\circ} \mathrm{C}$, cooling, neutralizing the acid lent of the tropin body; then heating to $100^{\circ} \mathrm{C}$., cooling, neutralizing the acid with fixed alkali, and separating.
648,389—May 1, 1900. H. O. CHUTE. Process of making acetone.
The pulverulent material is continuously conveyed in a thin film or layer over a heated surface maintained at the proper temperature, and the acetone is removed by a current of oxygen-free gas moving in the opposite direction, under a partial vacuum, the gas being reheated and reused.
650,347-May 22, 1900. A. VERLEY. Process of making ozonized terpinol.
Ozone is caused to act upou terpinol and the ozonized terpinol is isolated with ether.

SULPHUR COMPOUNDS.

318,662-May 26, 1885. E. W. R. SCHRÖTER. Topical remedy.
Icthyolsulphur acid, a new product, applicable for medicinal uses, is an oil containing sulphur and sulphuric acid chemically combined, Formed by the action of sulphuric acid on an oil containing sulphur.
919,082-Juner, 1885. C. FAHLBERG. (Reis8ue: 10,667—December 1, 1885.) Manufacture of saccharine compounds.
A new saccharine compound, benzoic sulphinide, of the formula $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{SN}$; sweeter than cane sugar; m. p. $200^{\circ} \mathrm{C}$. It is made from the derivatives of coaltar by converting toluene into toluene-sulphonic acid, oxidizing said acid or its salts into sulphobenzeic acid or its salts, then evaporating the latter and treating it with phosphorpentachloride and caustic or carbonate of ammonia, and
finally separating the pure saccharine from the ammonia saits thus obtained.
Toluene is regenerated and hydrochloric and sulphurous acids generated at the same time from the solid toluene-mono-sulphochloride by the action of carhon, water, and superneated steam under pressure. Chlorine is generated for ing powder, and water, respectively, bydrochloric and phosphoric acids, or one of them.
991,875-Oetober 30,1888 . E. A. BAUMANN. Medical compound.
Diæthylsulphondimethylmethan, a new product of general composition of $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~S}_{2} \mathrm{O}_{4}$; m. p. ${ }^{125^{\circ}}$ C. b. p. 300° C. It is Formed by the oxidation of acetonæthylmercaptol with an aqueous solution of potassium permanganate.
s93,388-November 27, 188s. E. OSTERMAYER. Produclion of iodized sulphoacids of phenols, etc.
Iodinized phenol, cresol, or thymol sulpho-acids are produced by treating the respective sulpho-acids or their salts with iodine or a salt of iodine in presence ol an oxidizing agent.
996,526-January 22, 1889. E. BAUMANN. Sulphur compound.
Diethylsulphonemethylethylmethane, a new product, of the formula $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~S}_{2} \mathrm{O}_{4}$; $\mathrm{m} . \mathrm{p}^{76^{\circ}} \mathrm{C}$. It is produced by the oxidation with potassium permanganate to a ethylsulphohydrate, with addition of hydrochloric acid.
401,500-April 16, 1889. F. KRÜGER. Medical compound.
A new product having the formula $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{SO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, m. p. $133^{\circ} \mathrm{C}$, which is formed by the oxidation of the ethylmercaptol of the benzaldehyde $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}$ $\left(\mathrm{SO}_{2} \mathrm{H}_{5}\right)_{2}$ by means of permanganate of potassium.
401,501-April 16, 1899. F. KRÜGER. Medical compound.
A new product, tetramethyl-disulphonmethane, having the formula $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$ $\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$, m. p. $120^{\circ} \mathrm{C}$. is produced by the action of gaseous hydrochloric acid on a mixture of methylmercaptan and acetone well cooled, the methylmercapganate of potassium.
4s1,472-July 1, 1s90. M. LANGE. Process of making thio-oxydiphenylamine.
A new product, useful as a medicament: m. $\mathrm{p} .155^{\circ} \mathrm{C}$. It is formed by heating together a sait of metaoxydiphenylamine, water, and sulphur. The reaction is promoted by adding an alkali or alkaline carbonate in excess.

442,094-December 9, 1890. E. A. BAUMANN. Sulpho compound.
A new product, diethylsuiphone-diethyl-methane, of the formula $\mathrm{C}_{9} \mathrm{~S}_{2} \mathrm{O}_{4} \mathrm{H}_{20}$: m. p. 87° C. It is ohtained by the action of diethylketone with ethyl-mercaptan in the presence of bydrochioric acid, the product being oxidized with permanganate.
495,124-April 11, 1899. A. SPIEGEL. Sulphur compound.
Hydrocarbons, such as mineral oils, are first treated with caustic soda, then with sulphuric acid, the product then washed with water and brine successively. neutralized with aikaline lye, and the salt and sulphones separated by treatment with a solvent of the sulphones.
495,848-Aprit 11, 1893. E. JACOBSEN. Sulphur compound of hydrocarbon.
New compounds, being neutral hydrocarbon bodies, nonhygroscopic, of a folisted or pulverulent form, soluble in water, nearly devoid of taste or smell, and consisting of unsaturated paraffins, or mixtures containing unsaturated paraffin, combined with sulphur, are produced by combining sulphur by means of heat with a hydrocarbon free from sulphur, treating with sulphuric acid, separating the crude soluble product, and purifying, neutralizing, and drying.
496,112-April 25, 1899. C. FAHLBERG. Process of making pure saccharin.
Saccharin, or anhydro-ortho sulphamin-benzoic acid, is purified by introducing the dry crude product-a mixture of the said acid with para sulphamin-benzoic acid-into an aqueous solution of an alkali, as caustic potash, containing such quantity of the alkali as will neutralize and dissoive only the said ortho-acide. g., 55 parts by weight of caustic potash for 185 parts of ortho-acid-filtering, and adding to the filtrate an acid, as a mineral acid, stronger than the orthoacid, whereby pure saccharin is precipitated.
496,119-April 25, 1899. C. FAHLBERG. Process of purifying saccharin.
A solution of a mixture of the alkaline salts of anhydro-ortho sulphaminbenzoic acid and para-sulphamin-benzoic acid is treated with an acid, as bydrochloric or oxadic, which is stronger than the para-acid, in such quan tity as is requisite to separate out the para-acid only; heated, cooled, and then filtered when the ortho-acid, or pure saccharin, is precipitated from the filtrate by the addition of a stronger acid, preferably a mineral acid.
497,740—May 16,1893. J. ZIEGLER. Quinolin compound.
A new antiseptic, oxyquinolin phenol suiphonate of oxyquinoline, soiuble in water and forming amber-colored hexagonal crystals, is produced by digesting a mixture of phenol, oxyquinolin and sulphuric acid, then treating the soobtained oxyquinolin-phenolete with a solution of sulphuric acid in water at a temperature near the boiling point.
613,204—January 23, 1894. E. W. R. SCHRÖTER. Process of making pure sulfonic compounds.
A hydrocarbon containing sulphur in chemical combination is treated with concentrated sulphuric acid; and the crude sulphonic compound obtained is several times treated with bydrochioric acid and the acid eliminated.
564,784-July 28,1896. C. FAHLBERG. Process of making saccharin.
Toluene is treated with suiphuricacid, and the ortho and para toluene-sulphonic acids are converted into their magnesium salts by means of a magnesium salt. The greater part of the para-magnesium sait is separated from the ortho by crystallization of the former, and the ortho sait and the remainder of the para salt are converted into salts of sodinm or potassium by treatment with carbonate of sodium or potassium and oxidized into the corresponding neutral ortho and para sulphobenzoates of sodium or potassium. The neutral salts are treated with acid, and the acid salts treated with alcohol and hydrochloric acid gas and converted into ortho and para ester-acids, which are neutraized with sodium carbonate and treated with phosphorous pentachloride to convert them into ester-benzosulphochlorides. These are transiormed into their amids hy am which is then separated out.
579,898-March 30,1897 . G. L. SCHAEFER. Medical compound.
New compounds, comprising an alkaloid base, such as quinine and gnaiacol suiphonic acid, are produced by heating guaiacol with concentrated sulphuric acid, diluting, neutralizing with a carbonate or hydrate, as potassium carbonphonic acid and then dissolving the alkaloid therein.
684,471-June 15, 1897. L. O. HELMERS. Water-soluble compound of ethereal oils. A new compound, consisting of an ethereal oil or a camphor and the sui-phonic-acid compound of ichthyol and thiol-and the process applies to like insoluble substances-is produced by causing the constituents to react, said suiphonic-acid compound being soluble in water.

60z,682-April 19, 1898. W. DIETERLE. Process of producing orthotoluene sulfonic acid.
Orthothiocresol is subjected to the action of an oxidizing agent, as potassium permanganate, producing orthotoluene sulphonic acid. A continuance of the oxidation converts the latter into orthohenzene suiphonic acid.

602,942-April 26, 1898. L. O. HELMERS. Iodin derivative of ichthyol and thiol.
A new compound, solubie in water, is produced by reacting upon iodine with a sulphonic-acid compound of a sulphureted hydrocarbon that is soluble in water.
622,854-April 11, 1899. B. HOMOLKA AND A. STOCK. Nitrobcnzyliden sulfonic acid and process of making same.
New products, as the ortho or para-nitro-benzylidenanilin-sulphonic acids and their homologues, are produced by oxidizing the ortho or para-nitrobenzylanilin snlphonic acids or their homologues. They are soluble in water, with a yeilowish color, insoluble in alcohol, ether, etc., and give, on decomposition with diluted mineral acids, nitrobenzaldehyde.

624, 027—May 2, 1899. L. O. HELMERS. Tasteless compound from sulfureted hydrocarbons, and process of making same.
New products, pulverulent neutral salts, insoluble in water and devoid of taste and smell, consist of an alkaline-earthy and metallic base, and a sulphonicacid compound derived from sulphureted hydrocarbons combined with suiphuric acid. They are produced by extracting the salts with a solvent, such as alcohol, adapted to dissoive only the bitter substances.

624,028-May2, 1899. L. O. HELMERS. Tastelcss compound from sulfureted hydrocarbons, and process of naking same.
New products, sulphonic-acid salts of aikaiine-earthy metals and metals proper derived from sulphureted hydrocarbons combined with sulphuric acid, devoid of taste and smell, are produced by heating the salts up to 130° to $140^{\circ} \mathrm{C}$.

625,392-May 25, 1899. L. O. HELMERS. Deodorized compound of mineral oils, and process of making same.
Sulphonized componnds derived from sulphureted minerai oils by treatment with sniphuric acid are made odoriess, or nearly so, by treating aqueous solutions thereof, while cool, with an oxidizing agent, and then concentrating by heating.
628,503-July 11, 1899. E. TWITCHELL. Fatly aromatie sulfo compound and proccse of making same.
A new compound, a suipho-fatty-aromatic acid, a combination of the sulphonic radical with the stearic radical and one of the aromatic radicals of the general formuia $\mathrm{R}\left(\mathrm{HSO}_{3}\right) \mathrm{C}_{13} \mathrm{H}_{35} \mathrm{O}_{21}$ a stabie, viscous, nonvolatile oil. It forms water-soluble salts with the alkali metais, and insoivbie salts with the other metals, and is produced by mixing any memher of the fatty-acid series with a member of the aromatic series and treating with sulphuric acid.
628,881-July 11, 1899. G. WENDT AND J. LEHMANN. Process of making sulfoacids of atiphatic creosotesters.
The esters, under continuous stirring, are subjected to the action of concentrated sulphuric acid at below $150^{\circ} \mathrm{C}$., the mixture allowed to stand for two hours, neutralized, and the sulpho-acids separated out.
646,772-April $\mathrm{s}, 1900$. A. VERLEY. Process of making sulfonates.
Pyridin and chloro-sulphonic acid are caused to react in a neutral soivent; a phenol is added; the solvent removed, and the resulting mixture is treated with potash and the pyridin driven off, and the potassium salt obtained is saturated with an acid.
647,237-April 10, 1900. F. SCHMIDT. Diamidodiphenylamin sulfonic acid and process of making same.
A new product, yielding dyestuffs, is produced by condensing molecuiar quantities of para-chiornitrohenzenesuiphonic acid or its salts with paraphenylenediaminsulphonic acid or its salts and subsequent reduction.
648,261-April24, 1900. B. HOMOLKA AND A. STOCK. Nitrobenzylanilin sulfonic acid and process of making same.
A new product, where the nitro group is in the ortho or para position, heing a yellow powder, is produced by heating nitrohenzyl-chloride-where the nitro group is in ortho or para position-with an aqueous solution of a salt of anilinsulphonic acid in the presence of alkaline substances.
648,568-May 1, 1900. J. KOETSCHET. Process of making toluene sulfochtorid.
Toluene is treated with three or more parts by weight of chloro-sulphonic acid Toluene is treated with three or more parts by weight of chloro-suiphonic acid
free from sulphuric anhydride, the temperature being maintained between 5°
and $35^{\circ} \mathrm{C}$. or about $10^{\circ} \mathrm{C}$.
650,218-May 22, 1900. E. BARELL. Orthoguaiacol sulfo-acid and process of making same.
A new product, crystalized in small laminæ which do not meit up to $270^{\circ} \mathrm{C}$., is produced by treating pure guaiacol with concentrated sulphuric acid at from 70° to $80^{\circ} \mathrm{C}$., isolating a solution of the barium salt this formed, decomposing same with sulphuric acid, concentrating and crystallizing out by refrigeration.
651,045-June 5, 1900. J. LAGUTT. Process of making saceharin.
Orthosuiphamidobenzoic acid is dissolved in a dehydrating agent, as sulphuric acid, and after standing at ordinary temperature it fs poured upon ice and water, thereby causing the precipitation of saccharine.

NITROGEN COMPOUNDS.

NITROSUBSTITUTION COMPOUNDS.

252,47s-January 17, 1889. J. A. KENDALL. Manufacture of dinitro-benzole from gas oblained b"' distillation of coat.
It is obtained from benzole or nitro-benzole existing in gas produced from carbonaceons substances, by passing the gas through a mixture of nitric and sulphuric acids, the latter being in excess.
412,680-October 8, 1889. C. SAVIGNY. Process of treating the mother tiquors of phenol nitrates.
The mother liquors resulting from the manufacture of nitro-phenols are heated, and nitric acid distilled therefrom; then cooled, and picric or nitrocresylic acid precipitated: then heated, and the sulphuric acid concentrated, and nitrates added to effect the nitrification of phenols, cresols and the iike.
650,S32-May 22,1900 . M. MANDT AND R. HOLDMANN. Process of oxidizing orthonitrotoluene.
Ortho-nitro-toluene is oxidized in the side chain by treatment with suiphuric acid and maganese peroxide at a temperature above $100^{\circ} \mathrm{C}$.

SUBSTITUTED AMMONIAS.

295,825-March 25, 1884. Z. H. SiKRAUP. Manufacture of parachinanisol.
A new product; an oily liquid. It is obtained from the methylic ether of phenol by heating mixtures of nitro and amido anisol with glycerine and saiphuric acid.
308,286-November 18, 1884. Z. H. SKRAUP. Production of tetrahydro-parachinamisol.
A new product; m. p. $43^{\circ} \mathrm{C} ., \mathrm{b}$. p. $283^{\circ} \mathrm{C}$. It is obtained from parachinanisol by the action of nascent hydrogen, and develops an intensely green color by the action of perchloride of iron, bichromate of potash, or an aqueous solntion "f chlorine, upon the free base or its saline compounds; hence it is also styled "thalline."
349,80s-June 15, 1886. C. FAHLBERG. Medicated benzoic sulphinide compound. A medicated componnd, consisting of benzoic sulphinide and an organic alkaloid, as quinine, produced by dissolving benzoic sulphinide and the alkaloid in alcohol or water and crystallizing out the salt.
400,086-March 26, 1899. O. HINSBERG. Phenacetine.
A new product of the general composition $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N} ; \mathrm{m} . \mathrm{p} .135^{\circ} \mathrm{C}$. It is obtained by reducing nitrophenetoie and fusing the phenetidin-chlorhydrate thus formed with dried sodium acetate and glacial acetic acid.
422,251-February 25, 1890. S. RADLAUER. Process of preparing a hypnotic.
Chioral-urethane and aicohol are caused to act upon each other in a vacuum at a temperature of $100^{\circ} \mathrm{C}$, and the product, having the formula $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{Cl}_{8} \mathrm{O}_{\mathrm{S}} \mathrm{N}$, with $\mathrm{m} . \mathrm{p} .42^{\circ} \mathrm{C}$., is crystallized in water.
422,S34-February 25, 1890. T. CURTIUS. Hydrazin.
A new product, expressed by the formula $\mathrm{N}_{2} \mathrm{H}_{4}$, which, in the form of a gas, is set free from its hydrate by metallic sodium. The hydrate is formed by the
action of sodium nitrite on the chlorhydrate of glycocoll ether, the diazo-acetic ether produced being converted into the triazo acetate and the salt of hydrazin derived therefrom and converted into the hydrate of this hydrazin.
426,059-Aprit 8, 1890. J. F. VON MERING. Chloralformamide.
A new product, having anæsthetic properties and $\mathrm{m} . \mathrm{p} . \mathrm{I} 15^{\circ}-116^{\circ} \mathrm{C}$., of the
formula $\mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}$:CHO. NH_{3}. formula $\mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}: \mathrm{CHO} . \mathrm{NH}_{2}$.
425,040-April 8, 1890. J. F. VON MERING. Chloralformamide.
The process of producing the same (No. 425,039) consists in treating chloral with formamide, in the proportion of their molecular weights.
488,286-May 20, 1890. C. PAAL. Phenyldihydroquinazoline.
A new medical compound, having the formula $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}$, and m. p. $95^{\circ} \mathrm{C}$. It is produced by acting with reduciug agents upon the formyl derivative of the orthonitrobenzyl analine.
489,728-January 10, 1893. J. BERLINERBLAU. Paraphenetol-carbamide and process of making same.
A new compound, having a sweet taste, crystallizing in white needles and soluble in hot water and the ordinary solvents, is produced by treating paraphenetidine or para-anisidine with phosgene, each in a solvent, as benzole, filtering, adding ammonia to the filtrate, distilling off the solvent, and erystallizing.
602,504-August 1, 1893. H. THOMS. Process of making para-phenetol carbamide. A compound having a strong sweet taste, and a m. p. of $170^{\circ} \mathrm{C}$., is produced by boiling an aqueous solution of para-phenetidin-hydrochloride' (three molecules) with common urea (two molecules), or the carbamide salt of ammonia or ammonium carbonate may be used.
608,748-August 22, 1893. L. LEDERER. Amido-crotonylanilid and process of making it.
A new compound, of the formula $\mathrm{C}_{10} \mathrm{H}_{10}\left(\mathrm{NH}_{2}\right) \mathrm{NO}$, moderately soluble in most solvents, crystallizing in colorless needles, and having a m. pof $146^{\circ}-147^{\circ} \mathrm{C}$., is produced by treating acetylacetanilid with ammonia and allowing it to stand twenty-four to thirty bours.
626,258-September 18, 1894. S. RADLAUER. Salicyl-anilid.
A new compound, soluble in alcohol, but not in water, m. p. $100^{\circ} \mathrm{C}$.. is produced by heating acetanilid with salicylic acid in molecular proportions.
535,846-March 19, 1895. J. F. VON MERING. Substitution product of phenetidin. New compounds, antipyretic bodies, difficult of solution in water, are produced by heating together phenetidin, a suitable acid such as propionic or butyric acid, and a condensation product, such as zinc chloride, in such proportions that one hydrogen atom of the amido group in the phenetidin is replaced by an acid remainder of greater molecular weight than acetyl.
536,524-March 26, 1895. W. HERZBERG. Amidotriazin.
See Group XI, Dyestuffs, Artificial, Organic.
640,752-June 11, 1895. M. FREUND. Hydrasininin.
A new product, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$, m. p. $116^{\circ}-117^{\circ} \mathrm{C}$., combining with one equivalent of an acid, is produced by snbjecting bydrastine to the action of an oxidizing agent.
543,579-Julys0, 1895. L. LEDERER. Process of producing phenoxacetic anitids, etc. The anilids of the phenoxacetic acids, as phenoxacet-para-phenetidids, are produced by reacting on phenoxacetic acids with aromatic amido-compounds, as para-phenetidin, and crystallizing ont with alcohol.
558,863-April 21, 1896. F. VALENTINER. Process of making acetophenonphenetidin.
Molecular weights of acetophenon and para-phenetidin are heated together.
663,009-June 30,1896 . A. BISCHLER. Methoxy-acetphenetidin.
A new product, orystallizing in white needles, m. p. $102^{\circ} \mathrm{C}$., of general formula $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ and soluble in cold water. It is iormed by heating the alkyloxyiatty acids or the chlorides of the amids thereof, with primary and secon
aromatic aming, as by heating para-phenetidin with methoxy-acetic acid.

567,968-September 22, 1896. A. EICHENGRÜN. Iodoform combination with hexamethylentetramine.
New compounds, crystalline inodorous additive combinations of iodoform with hexamethylentetramine, or its haloidalkyl derivatives, which are not sol uble in water and are decomposed by acids or alkalis, liberating iodoiorm, are produced by the reaction of the constituent in a solvent, as iodotorm and hexamethylenamine in absolute alcohol.

669,416-October 13,1896. O. HINSBERG. Ester of alkoylamidophenols and method of making same.
Carbonic esters of alkoylamidophenol, colorless compounds, m. p. 80° to 161° C., easily soluble in hot water or alcohol, are produced, together with their derivatives, by treating alkoylamidophenols, and their derivatives, the nitrogen atom of which is alkylated, in the form of their salts with csters of chlorcarbonic acid.
574,595-January 5, 1897. R. W. CORNELISON AND W. H. WARREN. Process of obtaining aceto derivatives of aromatic amins.
They are produced directly by the reaction of an acetic-acid salt and an aromatic-amin salt upon each other; the acetic-acid radical being replaced with another acid radical, such as a sulphuric-acid radical, and the acetic-acid rad
574,596-January 5, 1897. R. W. CORNELISON AND W. H. WARREN. Process oj obtaining aceto derivatives of aromatic amins.
They are produced by the reactions of an acid salt of acetic acid with the desired aromatic amin.
574,874-January 12, 1897. H. BAUM. Paraphenetidin compound.
New medicinal paraphenetidin compounds, as meta-alkyloxy, salicylidenparaphenetidin, are produced by condensing gentisinaldehyde with paraphenetidin, and alkylating the product of condensation.
576,579-Febrvary 2, 1897. I. ROOS. Salicyl paraphenetidin.
New products, as the orthoöxybenzyliden-alkyl derivative of amido phenol, insoluhle in water, soluble in alcohol, etc., m. p. 94° C., of the formula Alk. ${ }_{\text {alkyl derivative of amidophenol. }}^{\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OH}\right) \text { are produce }}$

88,384-March 9, 1897. P. T. AUSTEN AND H. C. TUTTLE. Process of making acetanitid, etc.
Acetanilid or the acetoluids are formed by heating anilin' or the toluidins with dilute acetic acid, or even with crude pyroligneous acid, under pressure. 586,551-July 20, 1897. F. W. FRERICHS. Process of manufacturing acetanitid.
Acetic acid and anilin oil are subjected to distillation with agitation under reduced pressure until most of the free anilin oil and acetic acid has been reduced pressure until most of the free anilin oil aud acetic acid has been
removed; the last traces are then removed by distillation under the action of live steam.
686,854-July 20, 1897. W. MAJERT. Process of making ammoniacal casein.
A new compound, in dry solid form, ensily soluble in water, is produced by treating finely-powdered dry casein with ammonia gas.
695,897-December 21, 1897. H. R. VIDAL. Process of making paramidophenol.
Oxyazobenzol is rednced by sodium sulphide in the presence of a caustic alkali.
696,797-January 4, 1898. E. TAUBER. Process of making amidins.
New products, the amidins of amidophenol ethers, as ethenylparaparadiethoxydiphenylamidin, m. p. $121^{\circ} \mathrm{C}$. are produced by heating the acetyl compounds of amido-phenol ethers with amidophenol ethers themselves and a sulphide, and hydrochloric acid.
602,109-April 12, 1898. I. ROOS. Process of making salts of paramidophenol.
New products, the primary salts of citric acid with alkyl ethers of paramidophenol, white or crystalline compounds, m. p. $186^{\circ}-187^{\circ}$ C., soluhle in water and less so in alcohol, are produced by dissolving molecular quantities of citric acid and amidophenol alkyl etber in a solvent, as alcohol, and crystallizing.
602,690-April 19, 1898. C. F. M. SCEAERGES AND P. SCHWARZ. Acetyt derivative of phenetidin.
New products, the acetyl derivatives of alkaline phenetidin sulphonates, as sodium acetyl phenctidin sulphonate, a reddish-white microcrystalline, hygroscopic body, soluble in water, are prepared by treating phenetidin with concentrated sulphuric acid, converting the phenetidin-sulphonic acid into a salt, and acetylizing this salt by means of glacial acetic acid and acetic anhydrid.
605,977-June 21, 1898. B. R. SEIFERT. Oxyphenyl-guanidin and process of making same.
Certain new oxyphenyl-guanidins adapted to cause anesthesia, are produced by melting or dissolving together a carbodiimid with an amidophenol body.
615,828-December 13, 1898. H. C. FEHRLIN. Process of purifying acetanilid.
Crude acetanilid is distilled, preferably under diminished pressure, by a current of superheated vapors of acetic acid of a temperature not lower than the boiling point of acetanilid at the vacuum used.
615,829, December 13, 1898. H. C. FEHRLIN. Process of making acetanilid.
A current of superheated vapors of acetic acid at $185^{\circ} \mathrm{C}$. is passed through anilin oil heated to $160^{\circ} \mathrm{C}$, and the water simultaneonsly removed, until the conversion of the anilin-oil into acetanilid is satisfactorily completed.
618,809-January 51, 1899. H. R. VIDAL. Process of making amidophenols.
An amido-snlphonic acid of the aromatic series in a concentrated sulphuric acid solution is reacted upon by an oxidizing agent, as manganese peroxide.
629,099--July 18, 1899. F. VALENTINER. Process of making acetophenonphenetidid.
Acetophenonc and paraphenetidin in molecnlar proportions are heated in a vacunm to the combination temperature, when the desired product is distllled off in vacuum.
640,565-January 2, 1900. B. HOMOLKA AND A. STOCK. Process of making amidobenzyliden anilin compounds.
Nitrobenzylanilins are subjected to the action of alkali sulphids while heated. 641,100-January 9, 1900. H. GUSSMANN. Process of making para-oxy-para-amido-ortho-oxydiphenylamin.
Para-oxy-para-amido-diphenylamin-ortho-sulphonic acid is heated with caustic alkalis at 150° to $200^{\circ} \mathrm{C}$
641,870-January 23 , 1900. L. KNORR. Naphthalanmorpholin.
New products, as ethylnaphthalanmorpholin, a thick oil, distilling at $320^{\circ} \mathrm{C}$, forming crystals, m. p. 237° to 238° C., are produced by the action of ethanolamins npon dihydronaphthalene oxide, and heating of the naphthol product with acids.
647,075-April 10, 1900. W. H. CLAUS, A. RÉE, AND L. MARCHLEWSKI. Process of making compounds of paraphenetidin.
A solntion of paraphenetidin and glucose in a solvent is heated, the solvent thereaiter separated, and the uncombined constituents dissolved out with colvents.

> PURINS AND DERIVATIVES.

Purins.

559,347-April 28, 1896. E. FISCHER. Chloro-theophyllin ana process of preparing it.
A new componnd, $\mathrm{C}_{5} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{ClN}_{4} \mathrm{O}_{2}$; m. p. $300^{\circ} \mathrm{C}$., soluble in hot alcohol. It is produced by heating 1 part dimethyl-uric acid with 2 parts phosphorus pentachloride and 4 parts phosphorus oxychloride to $150^{\circ} \mathrm{C}$. for several hours. 571,353-November 17, 1896. E. FISCHER. Bromotheophyllin and process of making same.
A new componnd, $\mathrm{C}_{5} \mathrm{H}\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{BrN}_{4} \mathrm{O}_{2}$, m. p. 315° to $320^{\circ} \mathrm{C}$., soluble with difficulty in alcohol and water, is produced by heating a mixture of theophyllin, culty in alcohomind 5 part, and bromine, under prassure; driving off the excess of bromine, and purifying the residue.
598,502-Fcbruary 8, 1898. E. FISCHER. Process of making purins.
A new product, trichloropurin, $\mathrm{C}_{5} \mathrm{HN}_{4} \mathrm{Cl}_{3}+\mathrm{H}_{2} \mathrm{O}$, m. p. 184° to $188^{\circ} \mathrm{C}$., is produced by heating dichloroxypurin, 1 part, with phosphorus oxychloride, 70 parts; and agitation; then evaporating in vacuo. To purify the crude product ether is added, the ether removed, and the residue boiled in water.
607,028-July 12, 1898. E. FISCHER. Process of making purin derivatives.
New crystalline compounds, amido purin derivatives which have the amido radical bound to the allozan nucleus of the purin residue, are produced by the
action of ammonia upon a chlorine derivative of purin having chlorine bound to the alloxan nucleus. They dissolve with difficulty in alcohol or water and decompose at bigh temperature before or while melting.
607,029-July 12, 1898. E. FISCHER. Adenin and process of making same.
A new compound, methyl-adenin, m. p. $347^{\circ} \mathrm{C}$., is produced by agitating amido dichloropurin with hydriodic acid and phosphonium iodide for several hours at ordinary temperature, then heating to the boiling point and until a clear solution results; filtering and treating with ammonia.
617,985-January 17, 1899. E. FLSCHER. Alkyl-purin and process of making same. A new compound, 7 -methyl-2-6-dichloropurin, m. p. 196° to $197^{\circ} \mathrm{C}$., is prepared by heating theobromine with phosphorus oxychloride under pressure, then removing excess of phosphorus oxychloride, adding water, and treating with dilute soda lyc. Methylized oxypurins are prepared by treating methyldichloropurin with an alkali, and
going with a mineral acid.
625,441-4uy 23, 1899. E. FISCHER. Thio derivative of purin and making same. New compounds, a thiopurin having the group SH bound to one or more of the carbon atoms of the purin molecule, as 1-3-7-trimethyl-2-6-dioxy 8 -thiopurin or thiocaffein, crystallizing in fine flexible needles, m. p. $308^{\circ} \mathrm{C}$. They are produced by heating under pressure a halogen-purin derivative with the solution of an alkaline sulphydrate and then acidulating the solution.
631,705-August 22, 1899. E. FISCHER. Process of making theobromin.
3-7-dimethyl-6-amido-2-8-dioxypurin is treated with phosphorous-oxy-chloride, the resulting oxychloropurin is isolated and treated with a reducing agent, and the then resulting $3-7$-dimethyl-6-amido-2-oxypurin, a new product, is isolated and acted upon with nitrous acid.
631,705-August 22, 1899. E. FISCHER. Oxypurin and process of making same.
Trichloro-purin is acted upon with an alcoholic alkali; the 2-8-dichloro-6-alkyl-oxypurin is then acted upon with hydrochloric acid and the resulting dichloro-oxypurin alkalized; the product, 1-7-dimethyl-6-oxy-2-8-dichloro purin. being a new compound, m. p. between 245° and $255^{\circ} \mathrm{C}$. Subsequent treatment produces alkylized hypoxanthins, etc.
651,708-August 22, 1899. E. FLSCHER. Oxypurin and process of making same.
A new compound, 8-chloro-2-6-diethoxypurin, m. p. $205^{\circ} \mathrm{C}$., is produced by heating tricbloropurin with excess of sodium-ethylate. This product is dissolved in hydriodic acid and treated with phosphonium-iodide to produce xanthin.
631,709-August 22, 1899. E. FISGHEK. Oxypurin and process of making same.
A new compound, 6 -oxy- 2 -8-dichlor-purin, is produced by treating $2-8$-dichlor6 -ethoxy-purin with fuming hydrochloric aeid and heat. This product is treated with hydriodic acid and phosphonium iodide to obtain hypoxanthin.
632,828-September 12, 1899. F. ACH. Process of making uric-acid derivatives.
An alkaline solution of a uric acid is treated with a haloid ether at a low temperature.
647,392-April 10, 1900. E. FISCHER. Oxypurin and process of making same. 2-8-dichloro-6-ethoxy-purin, a new compound, m. p. $200^{\circ} \mathrm{C}$., is produced by dissolving trichloropurin in ethyl alcohol, treating with a sodium solution, and tinally supersaturating with acetic acid. Said compound is treated with a reducing agent to produce hypoxanthins.

Xanthins.

569,489-October 13, 1896. E. FISCHER. Process of making xanthin derivatives.
Dialkyl uric acid is treated with a pentahalogen compound of phosphorus in the presence of a solvent, such as phosphorus oxychloride, and the resulting balogen derivative is treated with a reducing agent to convert it into a homologue of xantbin of the type of theophyllin.
569,490-October 13, 1896. E. FlSCHER. Process of making derivatives of ixanthin.
A halogen dialkyl derivative of xanthin (No. 569,489) is converted into its salt, which salt is then alkylized and the resulting halogen trialkyl derivative of xanthin reduced, whereby the homologue of xanthin of the type of caffein is produced.

688,s27-August 17, 1897. E. FISCHER. Process of obtaining xanthin devivatives.
Tetramethyl-uric acid is heated with five times its weight of phosphorus oxychloride in a closed vessel to 160° to $165^{\circ} \mathrm{C}$. for ten hours, and the crude product then subjected to the action of fuming bydrochloric acid, the solution evaporated to dryness, and t eated with soda lye, The chlorocaffein remaining

617,986—January 17, 1599. E. FISCHER. Process of making heteroxanthin.
7-methyl-2-6-dichloropurin is heated with hydrochloric acid under pressure.
618,045-January 17, 1899. E. FISCHER. Alkyl-hypoxanthin and process of making same.
A new compound, methyl hypoxanthin, m. p. 353° C., readily soluble in water, assuming a brown color when heated to $340^{\circ} \mathrm{C}$., is produced by heating 7-methyl-6-oxy-2-chloropurin with hydriodic acid and phosphonium iodide. The product is methylatcd to produce dimethyl-hypoxanthin.
681,707-August 22, 1899. E. FLSCHER. Xanthin derivatives and process of making same.
A new product, chloroxanthin, or 8-chloro-2-6-dioxy-purin, is produced by treating an 8 -chloro-2-6-dialkyl-oxpurin with hydrochloric acid. The product is subsequently alkylized and treated with methyl iodide.

631,757-August 2, 1899. F. ACH. Xcathin derivative and process of naking same.
Certain alkyl-urie acids, as 3 -methyl-uric acid, are treated with phosphorus-oxy-chloride, producing a new compound, 3-methyl-chloro-xanthin, having no meiting point, but decomposing at $345^{\circ} \mathrm{C}$. This compound is submitted to the action of reducing and methylating agents.

6\$1,758-August $\sim 2,1899$. F. ACH. Alkyl-xanthin derivative and proccss of making
same.
A 7 -alkyl-uric acid, as 7 -methyl-uric acid, is heated with phosphorus-oxy chloride alone and the product purified and crystallized. The uew compound, chloro-hetcroxanthin, has no melting point, but decomposes at $340^{\circ} \mathrm{C}$. It is alkylized and reduced.

631,759-August 22, 1899. F. ACH. Alkyl-xanthin and process of making same. A new product, chloro-theo-bromin, m. p. 292° to 293° C., is produced by heating 3-7-dimethyl-uric acid with phosphorus-oxy-chloride alone, crystallizing dissolving in alkeli, and precipitating with acid. This product is alkylized and reduced.

631,760-August'22, 1889. F. ACH. Alkylised xanthin and process of making same A new compound, 3-methyl-xanthin, having no melting point, but decomposing at 400 C , is acid and phosphonium-iodide. This product is alkylized and reduced.

PYRAZOLES.

307,399—October 28, 1884. T. KNORR. Preparation of dimethyl-phenyl-oxypyrazol. A new product, m. P. $13^{\circ} \mathrm{C}$. Acetylacetic ether is mixed with a molecular quantity of phenyl-aydrazine, water is eliminated, and the condensed product phenyl-hydrazine-acetylacetic etber, is heated to 100° to $150^{\circ} \mathrm{C}$. and crystallized forming methyl-phenyl-oxypyrazol. This is heated with methyl chloride, bromide, or iodide and converted into dimethyl-phenyl-oxypyrazol.

CHINOLINES OR QUINOLINES.

257,917-February 15, 1851. Z. H. SKRAUP. Production of oxychinoline.
A new product, for the manufacture of blue dyestuffs and other purposes, produced by the action of glycerine and sulphuric acid upon a mixture of ortho-nitro-phenol and ortho-amido-phenol.
2s7,918-February 15, 1881. Z. H. SKRAUP. Production of oxychi̇noline.
A new product, for the manufacture of blue dyestuffs and other purposes, produced by the action of glycerine and sulphuric acid upon a mixture of para-nitro-phenol and para-amido-phenol.
241,788-May 17, 1881. Z. H. SKRAUP. Manufacture of artifcial ehinoline.
A new product. It is produced by the action of glycerine and sulphuric acid upon a mixture of nitro-benzole and aniline.
252,846-January 24, 1882. W. PICKHARDT AND H. ENDEMANN. Preparation of ehinoline.
Citrate of chinoline, a new product, is made by treating purifled artificial chinoline (No. 241,738) with citric acid.
252,847-January 24, 1882. W. PLCKHARDT AND H. ENDEMANN. Preparation of chinoline.
Sulphate of chinoline, a new product, is made by treating purified artificial chinoline dissolved in alcohol with sulphuric acid.
254,097-February 21, 1892. W. PICKHARDT AND H. ENDEMANN. Medicat compound.
Hydrochlorate of chinoline, white and free from lepidine, is made by dissolving purified artificial chinoline in aqueous hydrochloric acid and evaporating.
254,098-Fehruary 21, 1882. W. PICKHARDT AND H. ENDEMANN Monufacture of chinoline.
The artificial chinoline of Skraup is refined and purified by treatment with tartaric acid, the acid tartrate of chinoline being separated from the solution, and the chinoline liberated by the action of caustic alkalis.
256,444-April 11, 1882. W. PICKHARDT AND H. ENDEMANN. Salicylate of chinoline.
A new product. It is made from purified artificial chinoline by treatment in alcohol with salicylic acid.
256,445-April 11, 1882. W. PICKHARDT AND H. ENDEMANN. Benzoate of chinoline.
A new product. It is made from purified artificial chinoline by the distillation of a mixture of pure benzoic acid and chinoline.
257,828-May 9, 1882. W. PICKHARDT AND H. ENDEMANN. Tartrate of oxychinoline.
It is prepared by the action of tartaric acid upon the oxychinoline of Skraup, (No. 237,918).
257,829-May 9, 1882. W. PLCKHARDT AND H. ENDEM ANN. Hydrochlorate of oxychinoline.
It is prepared by the action of hydrochloric acid upon the oxychinoline of Skraup.
260,317-June 27, 1882. W. PICKHARDT AND H. ENDEMANN. Acid tonnateqf chinoline.
A new product. It is prepared by evaporating a mixture of tannic acid, 5 pounds, and artificial chinoline, 1 pound, in a minimum quantity of water.

260,318-June 27, 1882. W. PICKHARDT AND H. ENDEMANN. Neutral tannate of chinoline.
A new product. It is prepared by evaporating a mixture of tannic acid, 5 pounds, and artificial chinoline, 2 pounds, in a minimum quantity of water.
260,319-June 27, 1852. W. PICKHARDT AND H. ENDEMANN. Basic tannate of chinoline.
A new product. It is prepared by evaporating a mixture of tannic acid, 5 pounds, and artificial chinoline, 3 pounds, in a minimum quantity of water.
270,045-January 2, 1883. O. FISCHER. Method of preparing oxyquinoline.
Oxyquinoline, 凡 now antiseptic, is obtained by treating quinoline-sulphonic acid with caustic soda or potash, under the action of heat.

273,495—March 6, 183s. O. FISCHER. Process of preparing oxyhydro-ethyl chinoline.
Oxybydro-ethyl chinoline, a new product, is made by first converting chinoline into oxychinoline, then treating the same with tin and bydrochloric acid and converting the oxyhydro-chinoline produced into oxyaydro-ethyl chinoline by treatment of the isomeric oxyhydro-chinoline with ethyl iodide by heat in a water bath, and extracting the base with water and precipitating with caustic sodz.

276,796-May 1, 188s. O. FLSCHER. Preparation of oxyhydro-methyl chinoline. Oxyhydro-methyl chinoline, a new product, is produced by substituting methyl iodide for ethyl iodide in the process of No. 273,498

digest of patents relating to chemical industries.

hydro-bases. 7, 1883. A. BOHRINGER, Method of producing monalcylised
They are produced by first converting the tertiary bases (as chinoline) into and or he ammonium bases (as chlorde of methyl-chinoline) by alcylisation, cylated hydro-bases (as mono-ethyl-bydro-chinoline) which liberate the monacylated hydro-bases (as mono-ethyl-hydro-chinoline).
355,842-January 11,1887. R.SCHMITT. Manufacture of oxychinoline carbonatcs. They are produced by treating the oxychinoline alkalies and earthy alkalies with carbonic acid under pressure and at an elevated temperature.
466,707-Jauuary 5, 1892. J. ZIEGLER. Process of preparing phenal sulphonates chinotine
The ortbo and para phenol sulphonates of ortho-oxychinoline are formed by the production of ortho-oxychinoline by digesting orthoamido-phenolmed by phonic acid with orthonitrophenolparasulphonic acid and with glycerine and sulphuric acid; precipitating the oxychinoline from the product of the reaction by means of soda and purifying it; and then heating it with ortho or para phenol sulpbonic acld in molecular proportions. The phenol sulphonate para phenol line is a yellow sirup, solidifying in erystals at a low degree of cold or in a vacuum chamber.
466,708-January 5, 1892. J. ZIEGLER. Process of preparing oxychinoline sulphate.
The substitution of sulphuric acid for the ortho or para phenol sulphonic acid of process No. 466,707 (in the proportion of two molecules of oxychinoline to one of sulphuric acid) results in the production of the sulphate of ortho-oxychinoline, a new product of the formula $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{m} . \mathrm{p} .172^{\circ}-173^{\circ} \mathrm{C}$.
478,495-Tuly 5, 1892. J. ZLEGLER. Antiseptic quinoline.
A soluble antiseptic, consisting of quinoline combined with a saponaceous solution. It is formed by saponifying oils or fats in the presence of quinoline; boiling until the solution is complete; and thereafter adding water to the solution.
486,963-November 15, 1892. J. ZIEGLER. Chinolinchinophenol-sulphate and method of obtaining same.
A new compound, a sulphur-yellow powder, soluble in water, m. p. $114^{\circ} \mathrm{C}$. , is produced from ortho-oxychinoline and chinoline by heating r mixture of one of the said substances and a sulphate of the other.
512,590-January 9, 1894. G. N. VIS. Orthooxyethyl-alpha-benzoylamido-quinolin. A new compound, crystallizing in small needles, m. p. $206^{\circ} \mathrm{C}$., and scarcely soluble in water, is produced by treating æthoxy amido quinoline or a hydrochloric acid salt thereof with benzoyl-chloride.
663,116-June 30, 1896. J. ZIEGLER. Process of making quinolin compounds.
An antiseptic disinfectant, soluble in water, is produced by boiling for ten hours two molecules 0 -oxyquinoline in alcohol with one molecule pyrosulphate of potassium, separating and drying the product.

CHINALDINES.

s09,935-December 30, 1884. O. DOEBNER AND W. VON MILLER. Manufaclure of bases called chinaldines.
New products applicable for the manufacture of coloring matters or for antiseptics and medicinal uses. They are obtained by combining an acid and a metallic salt, acting as a reducing agent, with aldehyde or its equivalents, and a primary aromatic base; purifying the base obtained by the reaction. Chinaldine is a fluid, b. p. $240^{\circ} \mathrm{C}$.
s16,248-April 21, 1885. O. DOEBNER AND W. VON MILLER. Formation of methoxy and ethoxy chinaldine.
New products, derivatives of chinaldine and applicable for the manufacture of coloring matters, or for antiseptic and antipyretic purposes. They are obtained subsequent alkylation of the oxychinaldines formed the same with alkali, and subsequent alkylation of the oxychinaldines formed; or by the sction of aldeethyl ethers. Methoxy-chinaldine, m.p. $125^{\circ} \mathrm{C}$.; ethoxy-chinaldine, $\mathrm{m} . \mathrm{p} .72^{\circ} \mathrm{C}$.
\$16,249-April 21, 1885. O. DOEBNER AND W. VON MILLER. Formation of the hydrobase of chinaldine.
Chinaldine bases or the oxymethoxy and althoxy chinaldines are boiled with tin and concentrated sulphuric acid, the product freed from tin, and the hydrobase separated by treatment with soda lye and distillation. They are new products applicable for the manulac^ure of grey coloring matter or as antiseptic or medicinal agents. Hydrochinaldine is an aromatic $\neq u i d$, b. $\mathrm{p} .246^{\circ} \mathrm{C} . ;$ methox y^{-} hydrochinaldine, b. p. $270^{\circ} \mathrm{C}$.

ISATINS.

310,604-January 13, 1885. P. J. MEYER. Manufacture of isatins and substituted isatins.
Isatins and substituted isatins, available for the manufacture of artificial indigo, are obtained from dibalogenized acids, their salts, amides, ethers, and aldelyydes, or from aromatic amines or substituted amines, by directly fusing or boiling their solutions, and treating the product with a strong acid.
618,096-January 24, 1899. B. HEYMANN. Diacetyl-indoxyl and process of making same.
A new product, a white powder, nearly insoluble in water, m. p. $82^{\circ} \mathrm{C}$. , on heating with caustic lyes transformed into indoxyl, the latter yielding indigo by oxidation. It is produced by heating an alkaline salt of phenylglycinorthocarbonic acid with acetic anhydrid.

ALKALOIDS

379, 298 -March 13,1888 . L. B. WELD. Preparing hydrochlorate of quinia.
Sulphate of quinine is dissolved in boiling alcohol with sodium chloride; sulphate of soda and excess of sodium chloride is precipitated by concentration; and the alcohol evaporated to deposit the hydrochlorate of quinine as crystals. 450,887-April 21, 1891. C. T. LIEBERMANN AND F. GIESEL. Process of obtaining ecgonine.
Ecgonine is produced from the amorphous alkaloids contained in coca leaves or in crude cocaine, by decomposing the amorphous alkaloids by a suitable medium, as by boiling in bydrochloric acid, into organic acids and ecgonine, separating the organic acids by filtration, evaporating the solution, and crystallizing the ecgonine with alcohol. The ecgonine is converted, by treatment with benzoyl or benzoic anhydride, into benzoyl-ecgonine, and the latter may be converted into cocaine.

501,066-July 11, 1899. E. GRIMAUX. Process of making salls of quinine.
Chlorhydro-snlphate or bromhydro-sulphate of quinine, double salts possessing great solubility, are prepared by adding to and incorporating with basic quinine sulphate, hydrochloric and hydrobromic aclds, respectively, and removing the excess of the reagent.
584,888-June 15, 1897. J. F. F. VON MERING. Benzyl-morplin.
A new product, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{OC}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$, crystallizing in large brilliant prisms, but slightly soluble in water, easily soluble in alcohol, etc., is produced by heating morphin in presence of an alkali-as sodium-alkylate-a benzyl halogen and a suitable solvent, as alcohol, separating the precipitate, neutralizing it by an acid, as hydrochloric acid, and then purifying.
585,610-June 29, 1897. R. WILLSTÄTTER. Process of making peeudotropin.
Tropin is treated with alkalics at an elevated temperature, as by boiling with a concentrated amyl-alcoholic solution of sodium amylate.
657,804-January 25, 1898. J. U. LLOYD. Mcthod of and apparatus for extracting nicotine.
A column of tobacco in a closed chamber is burned from the bottom, the prodnets of combustion being drawn up through the mass of nnburned tobacco, and the nicotine vapors absorbed in an acid solution.
605,491-June 14, 1898. E. LANGHELD. Quinine derivative and process of making same.
A new derivative, $\mathrm{C}_{19} \mathrm{H}_{00} \mathrm{~N}_{2} \mathrm{O}_{5}$, a yellowish amorphous powder, very soluble in water, alcohol, etc., and baving an acid reaction, is produced by treating a quinine solution with ozonized gas until precipitation will not be caused by an alkali.
620,406-February 28, 1899. F. D. BANNING. Process of extracting nicotine.
Steam and ammonia are passed throngh the tobacco fiber and then into reclaiming acid.
623,798-April 25,1899 . R. MACKILL. Extracting nicotin.
A tobacco extract is first agitated with a caustic-soda solution, then gasoline is added and aprain agitated, when the gasoline with the nicotine in solution is decanted and distilled.

625,075-May 16, 1899. A. WELLER. Carbonic esters of cinchona alkaloids and process of making same.
New, tasteless products, insolnble in water and benzene, soluble in alcohol and acids. They are produced by reacting with phosgene upon sufficient cinchona alkaloid to displace both chlorine molecules of the phosgene with the cinchona alkaloid; then adding an acid to form the corresponding salt
699,264-July 18, 1899. F. J. VON MERING. Process of nuking ethyl morphin.
Ethyl bromide is caused to act upon an alkaline solution of morphine.
657,859-November 28, 1899. A. WELLER. Tasteless quinin compound.
Tasteless products, derivatives of the quininc or cinchonidin carbonic acid, are prepared by causing the cinchona alkaloids or their salts to act either upon substituted isocyanates or upon substituted carbonic chlorides.
640,977-January 9. 1900. H. THRON. Process of making quinin carbonic elher.
The salts of the alkaloids of the cinchona bark are acted upon with an ether of cblorocarbonic acid.

PYRAZINES AND PIPERAZINES.
471,520—March 22, 1892. W. MAJERT. Process of making piperazin.
It is obtained from its hydrocarbon compounds, as dinaphthylpiperazin, by isolating the piperazin by means of an alkaline solution, distilling off the piperazin into a suitable acid to form salts, and crystallizing out the salts.
LS2, 108-September 6, 1892. P. VOLKMANN. Process of making piperazin.
The dinitroso compounds of diphenylpiperazin. ditolylpiperazin, dixylylpiperazin, dinaphthylpiperazin, or the sulpho ácids or other snbstitution products thereof, are treated with sulphurous acid, sulphur dioxide, or alkaline bisulphites. 500,665-July 4, 1893. W. MARCKWALD. Process of obtaining piperazini.
A salt of cthylene or an aromatic amide is caused to act upon an aromatic sulpho-compound of an amide in the presence of an alkali at a temperature above the normal, producing an aromatic disulphonic piperazide. This product is mixed with water or an inorganic acid solution and heated, whereby the piperazin is split off as an acid sulphate, and the acid salt is neutralized at a temperature above the normal, wherehy free piperazin is obtained.
509,087-November 21, 1893. W. MAJERT. Pracess of making piperazine.
Diphenyl or ditolyl piperazine, or a salt tbereof, is subjected to the action of the fumes of anhydrons sulphuric acid, the sulpbo product is treated with fuming sulphuric acid, and an alkali or alkaline earth is then mixed therewith and the mixture heated.
511,503-December 19, 1893. W. MAJERT AND A. SCHMIDT. Piperazin.
Anhydrous piperazine, a new compound, of the formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{2}$, a yellowish crystalline substance, m. p. 104° to $112^{\circ} \mathrm{C}$. and a strong solvent of aric acid, is prodnced by distilling a mixtnre of piperazine hydrate and a solid alkalihydrate, several times repeated, then heating the distillate in a closed vessel with an alkali-hydroxide or barium oxide, and finally distilling the mixture over sodium.
514,652-Felruary 1s, 1894. C. STOEHR. Dimethylpiperazin.
A new compound, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}$, forming white crystals, m. p. $118^{\circ} \mathrm{C}$. and b. p. $162^{\circ} \mathrm{C}$., and easily soluble in water and alcohol, is produced by distiling alycerine with ammonium chloride and ammonium carbonate, or agents giving off ammonia, and then isolating the thus formed dimetbylpyrazine and reducing it, as by metallic sodium alcohol.
597,454-Janualy 18, 1898. W. B. \& A. B1SHOP. Process of making piperazin salts.
Stable salts are produced by thoroughly mixing piperszine or piperazine hydrate and all organic hydroxy acid, as citric or tartaric acid, by melting or in

597,745-January 25, 1898. P. SCHIDROWITZ AND O. ROSENHEIM. Piperidin derivative.
New products, as a derivative of piperidin with guaiacol of the formula (C_{7} $\left.\mathrm{H}_{8} \mathrm{O}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$, are produced by acting upon piperidin or its homologues with an ether of a monoxyphenol.

615,488-December 6, 1895. L. KNORR. Morpholin and process of making same.
A new product the morpholin $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$, a liquid with b. p. $128^{\circ} \mathrm{C}$., soluble in water, alcohol, etc., having an odor similar to piperidin, is produced by heating certain derivatives of dioxyethylamin with acid condensation agents, then making the solution alkaline and distilling with steam.

PROTEIDS.

544,912-August 20, 1895. N. R. FINSEN. Process of making hæmatin albumen.
A new food product is produced by mixing defibrinated blood with nitric acid, coagulating with heat, washing and drying the albumen, heating the product in vacuo, and powdering.
566,280-August 18, 1896. O. SCHMIEDEBERG. Process of obtaining iron derivatives of albumen.
An iron derivative of albumen is extracted from the liver or other animal organ by slowly heating with water to the boiling point, separating the coagulum and treating it with dilute tartaric acid.
567,706-September 15, 1896. D. FINKLER. Method of obtaining albumen.
The fatty constituents of albuminous substances being first saponified and washed out, the other undesirable constituents are decomposed by boiling with a suitable reagent, as peroxide of hydrogen; the products of decomposition are washed out with a neutral salt solution, the albumen separated from the solu tion, and traces of the latter removed with aicohol.
632,408-September 5, 1899. W. A. HALL. Process of producing casein.
The curd is precipitated from milk by means of muriatic acid, and the casein thus formed is subjected to a temperature sufficient to volatilize the acid-about $120^{\circ} \mathrm{F}$. -and preferably in the presence of a current of air.

GROUP XIX.-CHEMICALS NOT OTHERWISE ENUMERATED.

INORGANIC.

SULPHUR.

166,279-August 3, 1875. S. H. JOHNSON. Improvement in methods of and apparatus for separating free sulphur.
The sulphur-bearing substance in a dry state is mixed with carbon bisulphide and heated in a closed vessel with agitation; the agitation stopped, and the liquid contents forced through the settled granular residuum forming a filter by the vapor pressure generated. A fresh charge of carbon bisulphide is then admitted into the extractor, mixed with the residuum by agitation, settled, the liquid contents discharged into a separate receiver, and the resultant product applied to a fresh charge of sulphur-bearing material, thus securing a strong solution for evaporation.
182,362-September 19, 1876. E. J. FRASER. Improvement in processes and apparatus for refining and packing sulphur.
Fused sulphur is run into wet sacks.
349,981-September 28,1886. C. F. CLAUS. Obtaining sulphur from hydrogen sulphidc.
Hydrogen sulphide mixed with a chemical equivalent of atmospheric oxygen is passed through anhydrous oxide of iron preheated to not less than $98^{\circ} \mathrm{C}$ whereby the desired heat of the oxide is maintained, and free sulplur is con tinuously formed.

354,393-December 14, 1886. C. F. CLAUS. Process of obtaining sulphur from sulphureted hydrogen.
As an improvement on the process of No. 349,981 , the iron oxide is mixed with lime, magnesia, alumina, or like substances to prevent the formation of clinkers. 359,164-March 8, 1887. H. L. LIGHTNER, Apparatus for atomizing sulphur.
Sulphur is reduced to an impalpable powder by atomizing liquid sulphur with a jet of hot air or steam.

S61,761-April 26, 1887. E. HÄN1SCH AND M. SCHROEDER. Process of obtaining sulphur from furnace-gases.
The furnace gases are passed through water or a water-tower; which water is then heated, and the sulphurous acid gas thereby absorbed and given off is passed through or over a glowing, bed of fuel, and then through a glowing mass of fire-brick in the absence of a reducing agent.
449,629—December 30, 1890. E. F. WHITE. Manufacture of fowers of sulphur.
Liquid sulphur, melted by a steam coil without boiling, is fed through a siphon into a retort and boiled under less than an atmospheric pressure, the vapor being passed to a condenser and the coudensed sulphur forced by an air blast to a receiver. The air blast creates the partial vacuum in the retort and the flow of liquid sulphur thereinto.
493,193-March 7, 1893. C. W. STICKNEI. Process of roasting sulphur-bearing ores.
One portion of the ore is roasted with steam generating hydrogen sulphide and another portion is roasted with air generating sulphurous acid gas, and the gases are mingled in contact with a solution of a sulphate of iron, copper, or zinc, resulting in the deposition of the sulphur.
b02,481-August 1, 1898. H. H. EAMES. Process of desulphurising metallic ores. See Group X, Electro-chemistry
616.391-December 20, 189S. V. DE BARANOFF AND E. HILDT. Process of obtaining sulfur from sulfates.
Sulphur, sulphurous acid, and sulphides are simultaneously produced direct from sulphates by reducing a metallic sulphate by means of carbon under heat, cusing the carbonic acid generated to act in presence of water upon a metallic sulphide to generate hydrogen sulphide; and then treating a metallic sulphate with the hydrogen sulphide under heat and decomposing the sulphate into sulphur, sulphurous acid, and sulphides.

PHOSPHOROUS

171,813-Jonuary 4,1876. A. G. HUNTER. Improvement in retorts for distilling phosphorouts.
The phosphoric-acid mixture is heated in a retort aud the volatillzed products are caused to pass through carbon in another portion of the retort heated to a white heat before passing to the condenser.

417,943-December 24, 1889. J. B. READMAN. Process of obtaining phosphorous. See Group X, Electro-chemistry.
45s,8\%1-May 26, 1891. H. H. WING. Manufacture of phosphorus.
A mixture of a phosphate and a silicate is calcined by a reducing flame at a high temperature, whereby phosphoric anhydride is expelled and reduced, the fumes passing to a depositing chamber maintained at about $260^{\circ} \mathrm{C}$., in which red phosphorus is deposited, the remaining fumes being conducted through water chambers in which yellow fhosphorus is condensed.
627,16s-October $9,1894$. A. SHEARER AND R. R. CLAPP. Process of making phosphorus.
A pulverized mixture of a metallic chloride-as sodium or potassium chlorideand carbon and calcined phosphate of alumina is heated in a retort in the presence of dried hydrochloric acid gas.
602,747-April 19, 1898. C. K. HARDING. Process of smelling phosṕhorus. See Group X, Electro-chemistry.

CARBON.
90,89/-June 1, 1869. J. DICKINSON. Improvement in the preparation of mineral carbon for use in the arts.
Black diamonds sre shaped with drill points and cutting edges and faces for dressing or cutting stones, etc., and firmly setting in metal tools, by rubbing or abrading one diamond or carbon against another.
263,758-September 5,1882. C. F.BRUSH. Process of baking carbon rods.
For baking, the rods are stacked in pyramidal form in a receptacle and the interspaces and spaces at ends and sides of the pyramidal pile filled with sand. 379,960-March 27, 1888. C. H. LAND. Manufacture of refractory carbon.

Carbonaceous matter is subjected in an open muffle, located in a furnace, to the products of combustion under pressure, whereby a counter-resistance is offered to expel oxygen from the muffle, prevent ignition of said matter, and drive off determined elements therefrom.
568,383-September 29, 1896. E. G. ACHESON. Manufacture of graphite. See Group X, Electro-chemistry.
598,549-February 8, 1898. Н. H. WING. Process of manufacturing graphite. See Group X, Electro-chemistry.
617,979-January 17, 1899. E. G. ACHESON. Method of manufachring graphite articles.
See Group X, Electro-chemistry.
645,285—March 18, 1900. E. G. ACHESON. Method of manufacturing graphite. See Group X, Electro-chemistry.

HALOID COMPOUNDS.

696,578-October 8, 1867. J. E. M1LLS. Inqprovement in the manufacture of chloride of zinc.
Zinc chloride is produced direct from its oxide, carbonate, or silicate ores by digesting same with muriatic acid. In the case of silicate ores the chloride is freed from the gelatinous silica by evaporating the water and excess of acid and redissolving the zinc chloride. Iron and manganese, when present, are separated by drying the digested mass, oxidizing, and redissolving the zinc
chloride.

175,58S-April 4, 1876. J. WYETH. Improvement in compressed chloride of ammonium.
Chloride of ammonium is compressed into a rod or cylinder, for convenience in use.

196,464-October 2\$, 1877. C. LENNIG. Improvement in manufacture of sal ammoniac and sulphate of soda or potash.
A mixture of sulphate of ammonia and muriate of soda, or potash, is continuously fed into and through a furnace chamber heated to a dull cherry-red heat, and sulphate of soda, or potash, continuously withdrawn; sal ammoniac being continuously condensed in a condensing chamber in the form of flaky particles.
212,596-February 25, 1879. W. GENTLES. Improvement in manufacture of muriate of ammonia.
Suitable ammoniacal liquor is distilled and the volatilized carbonate of ammonia passed into a solution of calcium chloride, the resultant solution heated, the remaining clear liquor treated with hydrochloric acid, and the arsenic of the calcium-chloride and hydrochloric acid precipitated as tarter-sulphide of arsenic plus a little sulphur. The clear and settled liquor is rendered alkaline with the ammoniacal liquor evolved, the iron settled, and the liquor condensed to crystallization.

220,449-October 7, 1879. W. H. WAHL AND E. Y. ELTONHEAD. Improvement in the manufocture of chloride of zinc.
Crude chloride of zinc is made from precipitated dross by granulating the same and treating with hydrochloric acid.

281,860-August 31, 1880. E. SOLVAY. Manufacture of chloride of lime.
The hydrate of lime is formed into small fragments of uniform size, as little balls.

234,695-November 16, 1880. J. F. N. MACAI. Manufacture of ferric oxide and cupric chloride.
See Group XIX, Inorganic, Oxides.
236,051-December 28, 1880. E. J. MALLET, JR. Manufacture of chloride of zine. A refrigerant is applied to the surface stratum only of a solution containing zinc sulphate and a salt, such as sodium chloride, and the crystallization excited extends throughout the warmer body of the solution as well as the cold top stratum.

319,118-June 2, 1885. A. PATCHEN. Solution of dichloride of copper, etc., for treating ores.
A solution of sulphate of copper with sodium chloride and metallic copper is subjected to pressure and heat in oclosed retort

330,155-November 10, 1885. T. SCHMIDTBORN. Process of making ammonium chloride.
Ammonium sulphate and potassium chloride are brought together in ar aqueous solution and heated to about $150^{\circ} \mathrm{C}$. for an hour, cooled until needles begin
to form, when the superatant liquor is removed and evaporated to obtain the ammonium chloride, while the precipitate-potassium sulphate-is freed from adbering rquor.
388,061-March 16, 1886. R. GRÄTZEL. Process of making fluorine salts.
Fluoride of aluminium and double finorides of aluminium and potassium, or of aluminium and sodium, are produced from fuorides of alkali metals by treatment with chloride of aluminium.
351,184-October 19, 1886. C. F. MABERY. Producing anhydrous aluminuam
chloride. chloriae.
Hydrochloric-acid gas is passed over aluminium or aluminium alloy heated to from 200° to $300^{\circ} \mathrm{C}$., and the vaporized aluminium chloride formed is cated deased; or hydrochloric-acid gas is passed through an electric furmace where aluminium is being reduced from its ore or compounds.
356,15s-January 18, 1887. G. JÄRMAY. Separating ammonium chloridefrom solutions by refrigeration.
Sodium chloride is added to the warm liquor obtained in the ammonia-soda process, containing ammonium chloride, sodium chloride, and carbonates of ammonium and of sodium, and it is then refrigerated and ammoninm chloride deposited. The liquor may be then warmed, more sodium chloride added and again refrigerated with deposition of ammonium chloride; the mother liquor being then used in the ammonia-soda process instead of brine.
359,601-March 22, 1887. W. FRISHMUTH. Process of making aluminium chlo-
An intimate mixture of aluminium oxide, sodium chloride, and carbon, in equal parts by weight, with a carbonizable agglutinating material, as molasses, is molded into lumps and subjected to a temperature high enough to carbonize without disintegrating the lumps, and then distilled in a retort in the presence of chlorine gas.
385,345-Judy 3, 1888. C. A. FAURE. Process of obtataing aluminium chloride.
An aluminium ore is heated in direct contact with the flame to a proper com bining temperature, then a mixture of hydrochloric-acid gas and hydrocarbon vapor is passed over the heated ore and the resulting vapor condensed.
S86,137—July 17, 188s. G. JÁRMAY. Separaling ammonium chloride.
To the residual liquor from the ammonia-soda process there is added at one operation the requisite quantity of sodium chloride to replace the ammonium chloride, such amount being greater than what would saturate the original ammonium chloride liqnor. The salt is kept in suspension by constant agitation, and at the same time cooled, whereby ammonium chloride separates ont. The mother liquor is applicable in the ammonia-soda process in the place of brine.
386,704-July 24, 1888. L. GRABAU, Manufaclure of aluminiutm fuoride.
The alkali fluoride in cryolite is converted into aluminium fuoride by treating cryolite with sulphate of ammonia, evaporating the solution, heating the product to redness and finally washing the same.
393,578-November 27, 1888. L. PAGET. Production of zinc chloride, etc. See Group X, Electro-chemistry.
409,668-August 27, 1889. H. Y. CASTNER. Purifying aluminium chlorides.
Auhydrous double chlorides of aluminium are melted with a suitable quantity of a metal, as aluminium or sodium, adapted to reduce the contained iron to a metallic state, which is then separated.
412,800—October 15, 1889. W. SHAPLEIGH. Process of making lead chloride.
Finely divided lead iaintroduced into an aqueous solution of nitric acid, a blast of air being forced through the liquor while it is undergoing chemical action. Lead chloride is then precipitated by the addition of hydrochloric acid together with a blast of air to oxidize the lower oxides of nitrogen given off, and lead nitrate is then added to remove the excess of hydrochloric acid.
414,835-November 12, 1889. F. W. A. FRERICHS. Process of making bromides of the alkalis.
Bromides of potassium, of sodium, and of ammonium are produced from their respective sulphates by mixing the sulphate with calcinm hydroxide, calcium aulphite, or calcium bisulphite, water, and bromine. By evaporation and crystallization the pure bromides are obtained.
4R2,500—March 4, 1890. H. Y. CASTNER. Process of purifying aluminium chloride. The anhydrons double chloride compounds of aluminium containing iron are melted and passed through a aeries of electrolytic tanks, the iron chlorides being decomposed and metallic iron deposited. The electric current gradually
decreases in quantity proportioned to the gradually decreasing quantity of iron.
494,044-July 1, 1890. O. O. B. FROELICH. Process of making antimony fluorides. A powdered mixture of antimonyore, alkaline nitrates, and fuor spar is treated with oil of vitriol, and the soluble matter then extracted with water and steam. After neutralizing with alkalis the liqnor is evaporated to crystallization.
447,063-February 24, 1891. E. R1CHTER. Process of making ariffcial cryolite.
Gaseous silicic fluoride, obtained in treating phosphates containing fluorine with sulphuric acid, is converted with water into a solution of hydrotnosilicic acid, and treated with alumina hydrate and a caustic alkali or an alkali carbonate to form artificial cryolite and silicic acid, which are separated by filtration.

479,925-August 2, 1892. C. WACHENDORFF. Double salts of fluoridc of cntimony

 and sulphate of ammonia.A new double salt of fluoride of antimony and sulphate of ammonia having the formula (SbFI_{3}) $2.1 \frac{1}{4}\left(\mathrm{NH}_{4}\right) \mathrm{SO}_{4}$, is produced by pouring into not too much water the product obtained by heating crude antimony with sulphuric acia, producing a basic sulphate of antimony which is put into the theoretical quantity of ammonium fluoride in aqueous solution, heated, and then crystanized
out. Also by charging fluoride of antimony with less than the theoretical out. Also by charging fluoride of antimony with
quantity of ammonium sulphate for crystallization.
508,796-November 14, 1893. W. ACKERMANN. Process of making aluminum fuoride.
To produce an aluminium fluoride solution free from silicious bodies, calcined silicate of aluminium is treated with an acid, as hydrof uoric acid, whereby the sillicon is converted into insoluble silicic acid which is removed by filtration.
509,478-November 28, 1899. T. MAYER. Antimony compound and process of making same.
A new series of double salts, crystalline compounds corresponding to the type
ous fluoride in quantities of two molecules of the latter to one of the former Oxide of antimony is dissolved in a mixture of one-third hydrochloric acid and two-thirds hydrofuoric acid and then the alkali metal sulphate is added.
513,901-January 16, 1894. H. S. BLACKMORE. Process of making alkali salls.
Soluble non-silicious salts of the alkalis are produced from insolnble combinations or mixtures containing alkali silicates by exposing the alkali silicates (as orthoclase) to the action of the oxide and salt of an earth metal (as calcium oxide and calcium chloride) at a high temperature, say $1,100^{\circ} \mathrm{C}$., in the presence of super-heated steam under super-atmospheric pressure, then cooling and aeparating the soluble alkali salt or salts.
519,971-February 6 1894. W. ACKERMANN. Process of making aluninum fuoride.
Iron is removed from solutions of aluminium fuoride by converting it into a ferrous combination by means of hydrosulphuric acid, and then crystallizing out the aluminium fluoride.
514, 125-February 6, 1894. F. M. LYTE AND G. LUNGE. Process of making caustic alkali and lead chloride.
See Group II, Caustic Soda.
529,715-July 31, 1894. A. SOMMER. Process of making liquid chlorides.
Chlorides are made from solid substances by exposing the same to chlorine and allowing the liquid chloride to drain away as rapidly as formed without previous volatilization. In flowing through a cooler in a thin stream to a receiver it is subjected to the action of chlorine gas.
599,070-November 13, 1894. P. GREDT. Process of recovering iodides, chlorides, or olher salts from blast-furnace gases.
The gases are anbjected to water showered as fine rain, the same liquid being pumped up and used until a atrong lye is produced, which is evaporated down, the volatile constitutents being driven off, and the solid residne containing iodide and chloride of potassium is dissolved in water and separated by fractional crystallization.
539,150-January 8, 1895. O. O. B. FROELICH. Double salts of antimony
A new antimony mordant, a solnble crystalline compound of antimony fuoride with a double oxalate of antimony and alkali, is produced by combining solutions in water of antimony fnoride and of oxalate of antimony and alkali, in the proportion of one molecule of oxalic acid to three molecnles of hydrofnoric acid.

535,601-March 12, 1895. C. SCHILL AND C. SEILACHER. Double salt of antimony and process of obtaining same.
A new compound, a double salt of antimonious fluoride, having the fornula $3 \mathrm{SbF}_{3} . \mathrm{NH}_{4} \mathrm{~F}$, forming rhombic prisms and soluble in the proportion of 10 parts of salt to 8 parts of water, is produced by dissolving 100 parts of antimonions oxide in excess of hydrofnoric acid, then adding 4 parts of ammonia, filtering and crystallizing.
558,725-April 21, 1896. F. A. GOOCH. Process of producing hydrous chloride of aluminium.
Aluminous material heated and under pressure is treated with dilute hydrochloric acid of half strength; the filtered solution is treated with gaseous hydrous aluminium chloride is separated ont and washed with concentrated hydrochloric acid.

558,726-April 21, 1596. F. A. GOOCH. Process of producing hydrous chloride of aluminium.
A snitable aluminous earth is heated with snlphuric acid until the acid fnmes cease to be evolved, and the process is then proceeded with according to No. 558,725.

582,93s-May 18, 1897. W. MlLLS. Process of making fuorides.
Metallic fluorides are prepared from aqueons solntions of metallic chlorides by heating together a mixtnre of ammonium sulphate and calcic flooride (fiuorspar) at about 350° C., and then adding the ammonium fluoride thua obtained to the chloride solution.
599,111-February 15, 1898. F. RAYNAUD. Process of making aluminium-sodium chloride.
A current of bydrogen sulphide and a current of atmospheric air are passed alternately through a mass of blocks of a porous mixture of bauxite, carbon, and sea salt heated to redness until the whole of the aluminium is converted into chloride.
640,908-January 9, 1900. H. K. HESS. Process of and apparatus for making chloride of zine.
Hydrogen gas is produced by heating chloride of zinc above its melting point by contact with a body of incandescent carbon in a state of combnstion, introducing steam in to the carbon, and reducing the zinc chloride, thereby forming bydrochloric acid and zinc, vaporizing the hydrochloric acid which passes over to a condenser, the metallic zinc passing through the carbon into a receptacle, and finally uniting the zinc and the acid, and re-forming chloride of zinc and producing hydrogen.

641,406-January 16, 1900. J. G. A. RHODIN. Process of obtaining solutble potassium salts from feldspar.
A pulverized mixture of feldspar (orthoclase), lime, both equal parts, and sodium chloride, one-hifth part, is beated to a bright yellow heat and maintained for a considerable time withont melting or fusion. After cooling the potassium readily combines with acids to form salts. For fertilizer purposes an excess of lime is advantageous.

648,809—May 1, 1900. O. J. STEINHART, J.L. F.VOGEL, AND H. E. FRY. Process of making anhydrous zine chloride.
A zinc chloride solution is boiled in a partial vacuum. A current of previouslv dried air is passed through and over the molten chloride.

OXIDES.
151,219-May 26, 1874. R. GUENTHER. Improvement in the manufacture of dry soluble silica.
Concentrated silicate of soda or potash is added to hyposulphite of soda which has been heated until the water of crystallization is nearly evaporated, cansing the liquid glass to coagulate. The latter is taken out, freed of adhering hypo sulphite by pressure while yet warm, and subsequently pulverized. The hyposulphite is evaporated and again used.

MANUFACTURING INDUSTRIES.

206,635-July 30,1878 . R. \& C. STEINAU. Improvement in preparation of peroxide of iron.
Water is caused to alternately rise and fall through a layer or mass of iron scraps, as lathe turnings, and the peroxide formed is collected.
234,595-November 16, 1880. J. F. N. MACAY. Manufacture of fervic oxide and cupric chloride.
Modified hydrated, ferric oxide after being calcined, known as "colcothor", or "jewelers' rouge," and cupric chloride are produced at one operation by tbe mutual reaction, in the presence of air, of cupric oxychloride and solution of in a solution of sodinm chloride with access of air.
239,S46-March 29, 1831. C. SCHEIBLER. Process of obtaining magnesia.
Dolomite or other lime and magnesia compound is burned and then treated with a saccharine solution, 10 to 15 per cent of sugar, to dissolve out the lime, the magnesia being separated from the other insoluble constituents after precipitation by decantation, filtration, or otherwise. The caustic product may be comminnted by slaking to a pulverulent hydrate and then treated with the saccharine solution.
252,982-January 31, 1882. J. WEBSTER. Manufacture of soluble alumina.
Aluminous material, as commercial alum, is mixed with carbonaceous material, as gas pitch, and roasted; then treated with dilute hydrochloric acid and allowed to give off sulphureted hydrogen; then steam and air is passed throngh the componnd while heated to carry off sulphur and ferrie sulphide; and finally the residnum is boiled and the liquor drawn off after cooling, leaving the soluble alnmina as a precipitate. The vapors of sulphur and ferric sulphide are condensed for use in the manufacture of colors, etc.
$266,115-$ October 17, 1882. A. K. EATON. Preparing peroxide of lead.
Red lead is treated with acetic acid, by which the peroxide component of the red lead is removed, producing acetate of lead and leaving the peroxide of lead as a residuum.
$266,970-$ November 7, 1889. J. B. M. P. CLOSSON. Manufacture of magnesia.
Crude or artificially recarbonated dolomite is digested with a solution of chloride of calcium and the resulting solution of magnesium chloride is heated with calcined dolomite or ordinary burned lime.
267,551-November 14, 1882. C. MARCHAND. Mamufacture of binoxides of barium and cateium.
Barium or calcium binoxide is produced by subjecting baryta or lime, heated to a red heat, to the action of ozonized oxygen or ozonized air.
285,579-September 25, 1883. J. D. DARLING. Process of producing alumina.
Alumina is obtained from alum salts or compounds, or from aluminum sulphate by forming a gelatinous hydrated precipitate, subjecting the precipitate to a suitable heat to convert it into a calcined oxide and expel therefrom the
sulphate of ammonia contained therein, and finally leacbing therefrom the sulphate of ammonia contained therem
remaining sulphates or other impurities.
294,051-February 26, 1884. J. K. KESSLER. Process of making copper satts by the aid of etectricity.
See Group X, Electro-chemistry.
305,828- September 50,1884 . C. MARCHAND AND V. M. PICABIA. Manufacture of anhydrous caustic baryta.
Barium nitrate is subjected in a closed vessel to the direct action of gases heated to $1,000^{\circ}$ to $1,300^{\circ} \mathrm{C}$., driving off the oxide of nitrogen and liquerying the baryta. The retort has a removable top and is mounted on trunnions and, aiter
solidification, the cake is dumped. solidification, the cake is dumped.
318,503-May 26, 1885. G. DEUMELANDT. Process of separating basic compounds from slags.
The free bases contained in basic slag are separated hy treating the pulverized slag at the boiling temperature with a solution of a suitable ammonium salt, filtering off the solution, and treating the filtered solution with a mixture of air and car
338,628—March 2s,1886. L. Q. \& A. BRIN. Manufacture of anhydrous oxide of barium.
In the manufacture of anhydrous oxide of barium or baryta by calcining barium nitrate, moisture and carbonic acid are excluded from the baryta while cooling by exbausting the air of the cooling chamber, or filling same with a gas, such as nitrogen, destitute of molsture, and carbon dioxide.
359,423-March 15, 1887. A. BRIN. Process of making barium bioxide.
Barium nitrate is first heated to form caustic baryta, then the caustic baryta is reheated in a closed vessel with an exhanst to remove the nitrous and other gases given off, and when the vapors cease to be given off atmospheric air is admitted to form barium bioxide.
$370,511-$ September 27,1887 . C. L. \& W. J. WIGG AND M. Steele. Obtaining ferric oxide from the waste liquors of copper-works.
The residual liquors obtained in the precipitation of copper by the wet process and the residual chloride-of-calcium liquor obtained in the manulacture of chlorine by the Weldon process are mixed and agitated, the precipitate and supernatant liqnor separated, and the liquor treated with an equivalent of lime to precipitate the iron, which is oxidized and furnaced. The white pre-
cipitate first formed is treated with dilute hydrochloric acid, washed, pressed, cipitate first formed is treated with dilute hydrochloric acid, washed, pressed,
and gently heated to purify and prepare the sulphate of lime for use as a byand gently
product.
382,197-May 1, 1888. F. J. SEYMOUR. Method of obtaining alumina from clay. Clay or aluminous earth mixed with a deoxidizing agent, as pulverized carbon, and a flux, such as chloride of sodium, and with copper or other metal
of greater specific and atomic weight than aluminum, is heated to a temperaof greater specific and atomic weight than aluminum, is heated to a tempera-
ture of $1,400^{\circ}$ to $2,000^{\circ}$ C., and the mixed vapors are condensed and collected in a conduit, silica first depositing, and beyond, alumina mixed with the metallic oxide.
382,273-May 1, 1888. F. J. SEYMOUR. Method of obtaining alumina from clay. A modification of the process of No. 382,197, the clay being mixed with zinc, carhon, and a flux.

382,505—May 8, 1888. K. J. BAYER. Process of obtaining alumma.
Pure alumina compounds are obtained Irom bauxite and other materials containing alumina, by subjecting the aluminate lye under constant stirring and at ordinary temperature to the action of hydrate of alumina, so as to decompose
said solution and precipitate hydrate of alumina, the remaining mother liquor being concentrated, mixed with bauxite or other material containing alumina, and the mixture calcined.
440,539-November 11, 1890. F. CANDY. Process of preparing iron ore for filters. Argillaceous carbonate of iron is subjected in a closed retort to a carbonizing but unt a rusing heat, gradually cooled and then pulverized for use for filtering
purposes. purposes.
45b,229-June 30, 1891. L. MOND. Process of making compounds of nickel and carbon monoxide.
Oxidized nickel ore is exposed to the reducing action of carbon monoxide, hydrogen, or a hydrocarbon, at from 300° to $350^{\circ} \mathrm{C}$.; then the reduced oxide is cooled to below 150° C. and treated with carbon monoxide (free from uncom-
bined oxygen and halogens) till the nickel is extracted and the vapors are conbined ox
densed.
455,299-June s0, 1891. L. MOND. Compound of nickel and carbon monoxide.
Nickel-carbon oxide, a compound of nickel and carbon monoxide of the formula $\mathrm{NiC}_{4} \mathrm{O}_{4}$, is a colorless liquid, B. P. about $43^{\circ} \mathrm{C}$., but very volatile in the presence of other gases. Solidifies at $-25^{\circ} \mathrm{C}$.
455.611-July 7, 1891. P. A. EMANUEL. Process of reducing kaolins and clays to
their component oxides.
The clay, stirred in with water until in a state of suspension, is treated with sulpburic acid and heat, and the sulphate of alumina separated from the silica, iron being removed with binoxide of lead or manganese, and the solution evaporated to recover the sulphate ol aluminium. Sulphate of aluminium is reduced
to alumina by mixing with sulphur and heating, the fumes being conducted to sulphuric-acid chambers.
461,416-October 20, 1891. J. A. BRADBURN AND J. D. PENNOCK. Process of obtaining alumina from bauxite.
The iron and organic matter in ferrous bauxite is oxidized by mixing the gronnd mineral with a solntion of hypochlorite and then passing carboaic-acid gas into the solution. The oxidized bauxite is tben treated with a canstic-sod
solution, filtered, and the hydrate of aluminium precipitated and calcined.
494, $757-$ April 4, 1898. H. Y. CASTNER. Manufacture of oxides of the atkaline metals.
The alkaline metals, heated to about $300^{\circ} \mathrm{C}$., are oxidized by the action of air With a decreasing proportionate mixture of nitrogen, the material being moved
tbrongh a tubular retort in one direction with a current of air moving in the tbrongh a tubular
opposite direction.
514,039-February 6, 1894. H. F. D. SCAWAHN. Process of purifying aluminous ninerals.
Minerals containing alumina are roasted, ground, and mixed with hydrochloric and nitric acids-or crude material as sodinm chloride and sodium or potassium nitrate to produce the same-tben snlphuric acid is added, the decomposed mass is heated, the waste nitro-hydrochloric acid and produced ferric impurities respectively removed by washing and floating.
515,895-March 6, 1894. K. J. BAYER. Process of making alumina.
Alumina is dissolved direct from banxite by mixing pulverized bauxite in a concentrated angmand tirring and ordinary temperature to the action of hydrate of constant stirring and at ordinary temperature to the action of hydrate of alnmina so as to decompose said solution and precipitate hydrate of alumina, lye. The mixture is subjected to constant agitation at a pressure of three to four atmospheres at a temperature of 160° to $170^{\circ} \mathrm{C}$.
519,704-May 15, 1894. A. G. FELL. Obtaining lead salts from native ores.
Ground lead ores are treated in an acid solution containing free sulpburic acid and formed of sulphuric acid, another inorganic acid, as muriatic or nitric acid, sulphate of soda, and water. The undissolved residue is separated
from the solution of soluble salts, any contained silver is removed, and the from the solution of soluble salts, any contained silver is removed, and the
residue is subjected under a moderate heat to a compound, as sal-soda, which contains an alkaline base. The insoluble lead salts are separated from this solution, nitric acid or nitrate is mixed witb the residue, and it is roasted if an oxide is to be produced.
544,519-August 13, 1895. A. W. NIBELIUS. Process of cxtracting aluminium oxid.
The raw material-clay, clay-slate, anthracite-slate, minerals, and rocks, alkali and subjected while beated to a petrolenm air flame the acid being an densed and utilized for lixiviating the alumina, which is finally precipitated. 585,52:-June 29, 1897. H. JAEGER. Process of making tin oxid.

Metallic tin is raised to a high temperature, $1,200^{\circ} \mathrm{C}$., in the absence of air; then, when at said high temperature, abundance of air is admitted to the molten metal, and the tin oxide formed is removed.
624,041-May 2, 1899. C. B. JACOBS. Process of manufacturing soluble barium compounds.
See Group X, Electro-chemistry.
626,880-June 6, 1899. C. LUC̣KOW. Process of producing peroxide of lead.
See Group X, Electro-chemistry.
626,547-Junc 6, 1899. C. LUCKOW. Process of producing oxid of copper.
See Group X, Electro-chemistry.
641,55u-January 16, 1900. M. E. ROTHBERG. Process of making mannesia and plaster-of-paris.
Limestone containing carbonate of magnesia is dissolved in hydrochloric acid prodncing a solution of the chlorides ol calcium and magnesia; calcium oxide is added to precipitate magnesia and form additional calcium chloride;
the liguor is drawn off, leaving the magnesia to be washed and dried, and sulphuric acid is added to precipitate calcium sulphate, which is separated, dried, and calcined. The hydrochloric-acid solution is reused.
644,050-February 27, 1900. H. BECKMANN. Manufacture of lead peroxide and its application to electrical storage batteries.
See Group X, Electro-chemistry.
647,s20-April 10, 1900. S. B. NEWBERRY. Process of making strontia.
A mixture of strontium sulphate, or celestite, and an oxide of an alkaline earth, as lime, is calcined at a high temperature. The calcined product is
leached.

650,023-May 22, 1900. H. OPPERMANN. Process of making magnesium superoxid.
Magnesium hydrate, 50 parts, moistened to such an extent only that it retaius its powdery form, ismixed withary, pulverized, sodium superoxide, IO to 12 parts. reduce the temperature of the mixture below that at which oxygen is liberated.
650,518-May 29, 1900. C. SAVIGNY. Process of making dioxid of barium.
A mixture of hydrated crystallized baryta and finely divided carbon in equal parts is heated to $150^{\circ} \mathrm{C}$. to drive off the greater part of the water; the mixture is then heated in a metallic basin for two to three hours at 100° to $150^{\circ} \mathrm{C}$., when material, as cardboard, to $1,000^{\circ}$ to $1,200^{\circ} \mathrm{C}$. For from five to eight hours, producing porous anhydrous oxide of barium, which is then deoxidized.
650,763—May 29, 1900. E. RAYNAUD. Method of obtaining alumina from its ores. A mixture of crushed aluminous ore, ores which resist attack wholly or partially by sulphurous acid, and a quantity of a sulphureted compound of an aluminates, is heated to a dark red heat for about two necessary for formiug andminates, is heated to a dark red heat for about two hours; then lixiviated, and the residue treated to the action of a current of sulphurous-acid gas in combination with water, the alumina dissolving as a sulphite. The solution is phurous gas.

SULPHIDES.

126,275-April 30,1872 . A. K. EATON. Improvement in the manufacture of sulphide of sodiun.
Crude sulphate of soda is melted in a heated tube and percolated through highly heated carbon, whereby it is decomposed and sodium sulphide produced. \$s9,680-October 26,1880 . E. C. E. \& L. L. LABOIS. Manufacture of carbon bisulphicte and sulphuric acid from pyrites, and apparatus therefor.
See Group I, Acids, Sulphuric Acid.
278,816-June 5, 188s. C. E. PARSONS. Method of producing golden sulphuret of antimony.
Native sulphide of antimony (antimony glance) and sulphur are separately dissolved in saturated solutionsol caustic alkali, which solutions are then mixed und the mixture treated with acid.
892, 786-December 22, 1885. H. J. F. NIEWERTH. Metallic alloy or compound in producing the same.
Heavy metals are alloyed with the sulphurets of metals by first dissolving the mulphuret of the metal in molten zinc, and then mixing the product with the heavy metals desired to form the alloy in their molten condition, and finally zupelling off the zinc. In the formation of alloys of heavy metals with the sulphuret of metals, small quantities of the sulphuret of an alkaline metal are idded to the heavy metals in their molten condition, so that the decomposition of the sulphuret takes place gradually, and the sulphur and nascent alkali are enabled to combine with the heavy metals.
343,674-June 15, 1886. E. W. PARNELL AND J. SIMPSON. .Process of treating ammonium sulphide to obtain hydrogen sulphide.
A mixture of ammonium sulphide and ammonium sesquicarbonate in solution is subjected to the action of heat-or of a partial vacuum-hydrogen sulphide being evolved.
425,081-April 8, 1890. A. KEILLER. Process of making zinc sulphide.
In the precipitation of zinc sulphide from neutral hydrated solutions of zinc salts by means of hydrothionic acid, a precipitation of all of the zinc is secured by the addition of an alkaline sulphate which is soluble in water and indifferent to the hydrothionic acid, as potassium sulphate.
463,14s-November 17, 1891. P. A. EMANUEL. Process of, and apparatus for, preparing atuminium sulphide.
Dry aluminium sulphate mixed with sulphur is heated in a retort, and carbon bisulphide is injected into the residual product. An angular entrance for the carbon bisulphide jet gives a rotary movement to the charge.
513,660-January So, 1894. C. T. J. VAUTIN. Process of making aluminum sulfid.
Metallic aluminium, slightly in excess, and lead sulphide (galena) are melted together at a bright red heat, producing metallic lead and aluminium sulphide. 586,567-July 20, 1897. B. VON SCHENK. Process of making polysulfds.
A mixture of sulphur and hydrated lime in the proportions, respectively, of 60 and 40 per cent, is boiled in water and a lye formed of 10° Baumé, descanted, and reduced to arout 5° Baume, when an alkali carbonate is added, and the solution descanted and evaporated to dryness, cooled, and ground, thus producing
alkaline polysulphides by a reaction between soluble polysulphides of calcium alkaline polysulphides by a reaction be
and alkaline carbonभtes, or sulphates.
605,978-June 7, 1898. H. S. BLACKMORE. Process of making aluminium sulfid. A heated mixture of aluminium oxide and carbon bisulphide is blown into a retort containing a chemically inert molten bath capable of dissolving aluminium sulphide, as cryolite, with a mixture of potassium and sodium chlorides. 605,458-June 7, 1898. H. S. BLACKMORE. Process of making sulfids.
Carbon-bisulphide vapor is passed through a molten aluminate of an alkali or other metal-as sodium aluminate or a mixture of sodinm and potassium aluminate-producing aluminium sulphide with sulplides of the alkali or other metals. Aluminium oxide is added to molten sodium hydroxide to saturation, and the vapor passed therethrough.
605,812-June 14, 1898. H. S. BLACKMORE. Process of making aluminium sulfd. Carbon bisulphide vapor is introduced into a fused bath-a mixture of cryolite and potassium fuoride-containing dissolved aluminium oxide, transforming the latter into aluminium sulphide.
606,576-June 28, 1898. D. A. PĖNIAKOFF. Aluminium sulfid and process of
making same. making same.
A new substance, porous aluminium sulphide, is produced by treating heated dehydrated sulphate of alnminium, alone or mixed with other metallic sulphates, by means of bisulphide of carbon or oxysulphide of carbon at a temperature below the fosing point of aluminium sulphide.
648,778—May 1, 1900. A. MOFFATT. Process of making hydrosulfids.
To produce in solution a hydrosulphide of an alkaline-earth metal, such as barium, calcium, o rontium, two equivalents of the sulphide of an alkalineearth metal are m.ced with one equivalent of a magnesium salt. A dry mechanical mixture of the ingredients is suitable for shipment and storage.

BASIC HYDROXIDES.

Ammonia.

67,447-August 6, 1867. A. PARAF. Improvement in the manufacture of ammonia. Ammoniacal liquor is distilled and the vapors purified by passing through charcoal.
127,470-June 4, 1872. R. J. EVERETT. Improvement in the preparation of ammonia, sulphur, and other products from gas-time.
Spent gas-purifying materials are heated in a retort, the liquefied sulphur collected, aud the sulphur vapors and ammonia condensed. The condensed salts which latter, on boiling filtering and evaporatiolution of the ammonia monia.
192,264-October 15, 1872. H. H. \& C. J. EAMES. Improvement in treating ammoniacal liquors of gas-works, etc.
Ammoniacal liquor is subjected to the direct action of steam or superheated steam, while flowing in a stream, to eliminate the contained volatile substances by vaporization.
197,059-March 25, 187s. T. CHRISTY, Jr., AND A. BORROWNICKI. Improvement in processes for treating sewage and amnoniacal waters for the production of fertilizers, etc.
Ammoniacal and other liquids of gas works, sewage, etc., are treated with a ammonia is recovered and the product may be treated to produce cyanogen and other matters.
150,00\%-April 21, 1874. C. M. TESSIE DU MOTAY. Improvement in transforming atmospheric gases into oxygen and amnionia, etc.
Ammonia is produced by the reaction of carbureted hydrogen upon nitride of titanium-the latter being formed by the reduction of oxides of titanium or the spent nitride of titanium from a former operation-with coke in a blast furaace.
Cyano-nitride of titanium is produced by prolonging the operation in the Cyano-nitride of titanium is produced by prolonging the operation in the
retort. The cyauo-nitride is removed and treated with a soda or potash solution, setting free ammonia and forming the cyanides of sodium or potassium and titanic acid. The cyanides are obtained by evaporation. Pure hydrogen gas combined with light carbon vapors at a low temperature-e.g., zero-may be used in place of carbureted hydrogen for producing cyanogen compounds.
156,181-October 20, 1874. J. E. SIEBEL. Improvement in recovering phosphorie acid and purifying ammonia.
A solution of phospate of lime obtained in the treatment of bones with phosphoric acid is saturated with ammonia, phosphate of lime preeipitated, and the solution evapora ted, the ammonia collected, and the phosphoric acid recovered. By usiug crude ammonia the same can be puritied.
158,265-December 29,1874. L. S. FALES. Improvement in processes and apparatus for the manufacture of aqua ammonia.
The spent liquor of gas works is heated in a closed vessel, and so long as sulphureted hydrogen escapes the gas is conducted into a vessel charged with sulphuric acid, and after sulphureted hydrogen is no longer apparent it is conducted through a cold worm into a closed receiver, from thence into the lower compartment of a filter charged with alternate beds of charcoal and caustic alkalis, from the top of the filter into an oil chamber, and from thence into an ascending series of chosed vessels containing water, having communication from one to another consecutively, and also with a common branched pipe, which
conducts into one or more settlers.
161,197—March 25,1875 . F. MAXWELL-LYTE. Improvement in processes of manufacturing ammonia.
A triad or pentad element, as antimony or bismuth, combined with a readilyoxidizable element, as potassium or sodium, is used as a body for the synthetic manufacture of ammonia from aqueous vapor and nitrogen. A temperature
between 100° and $400^{\circ} \mathrm{C}$. should be maintained. The alloy is regenerated by hetween 100° and $400^{\circ} \mathrm{C}$. should be main
means of a reducing agent at a red heat.
193,920-August 7, 1877. S. CABOT, Jr. Improvement in processes for abtaining ammonia salts.
Salts of ammonia and bicarbouate of soda are produced as independent products by spraying a saline soda solution through volatilized mono-cerbonate of ammonia charged with carbonic-acid gas.
230,903-July 20, 1880. J. L. MARSH. Manufacture of aqua-ammonia.
A mixture of sulphate of ammonia, lime and water is heated and volatilized in a steam jacketed vessel, with agitation around a horizoutal axis, to expose a maximum area of surface to the heat.
238,991-October 5,1880 . H. P. LORENZEN. Method ant apparatus for obtaining ammonia.
In the recovery of ammonia from nitrogenous substances by distillation, ammonia is developed trom the gases by contact with incandescent oxide of
calcium. It is then subjected to a cooling agent and to the action of sulphuric acid.
253,045-January 31, 1882. H. J. E. HENNEBUTTE. Process of treating ammoniacal salts.
In the treatment of ammoniacal salts the liqnor is acidulated to prevent the formation of
258,498-May 23, 1882. O. A. STEVENS AND E. L. DU BARRY. Combined furnace and stack for destroying noxious or poisonous gases.
Noxious gases evolved in the treatment of gas liquor are first passed in ascendare then burned at an intense heat.
259,145-Junc 6, 1882. H. J. E. HENNEBUTTE AND C.J. F. R. DE J. MENARD. Process of treating ammoniacal liquors.
Salts of ammonia sre produced from ammoniacal liquors by subjecting the or concentrating the resulting liquor. A small quantity of the double chloride of ammonium and lead is added when evaporating in sheet metal vessels to preserve the same.
269.856-September 5, 1882. H. Y. \& E. B. CASTNER. Manufacture of ammonia and bone-black.
Boneblack and ammonia are produced by passing the bone continuously heating the same mixed with air, then passing the gases over hot slaked lime through a cooler and tinally in contact with acid.

264,801-September 19, 1882. R. W. WALLACE AND C. F. CLAUS. Utilization of by-products in the manufacture of coal-gas.
Ammonia is separated from ammoniacal liquor by treating the liquor with sodium chloride and carbonic acid, then separating the ammonium chloride sodium chloride and carbonic acid, then sepa
from the solution and decomposing it by lime.
265,792-October 10, 1882. T. B. FOGARTY. Process of, and apparatus for, manufacturing gas.
In the manufacture of water gas eyanogen and cyanides are produced and the gas freed from nitrogen by burning in a combustion chamber the carbonic 3xide and hydrogen produced in a generator furnace, and then passing the incandescent products of such combustion through a mass of carbon and alkali. with steam. The charge is then returned to the cyanidizing chamber.
265,798-October 10, 1882. T. B. FOGARTY. Process of manufacturing gas.
The claim is for the specific production of cyanogen by process No. 265,792.
267,550-November 14, 1882. J. G. MACFARLAN. Process of and apparatus for the manufacture of ammonia and animat charcoal.
Superheated steam, decomposed by being passed througb carbonaceous matter, is passed into the bone retorts, accelerating the carbonization and increasing the ammonia product.
269,509-December 19, 1882. L. MOND. Manufacture of cyanogen compounds and ammonia.
In the manufacture of cyanogen compounds or of ammonia therefrom, tbe materials-carbon, carbonate or oxide ol barium, and a basic absorbing materia, with air before exposing them in a heated state to the action ol nitrogen.
277,041-May 8, 1889. F. LORENZ. Process of and apparatus for oblaining'ammonia.
Relates to a series of consecutive steps for treating the hot gases of bone and other furnaces; moistening, cooling, passing through towers, heating, contact with acid, reusing fuid products for collecting ammonia, etc.
278,823-June 5, 1889. J. P. RICKMAN AND J. B. THOMPSON. Manufacture of ammonia and its salts.
Ammoniacal salts are produced from urine or like animal excreta by mixing therewith stale urine, or a portion of similar material in a state of fermentation, and distilling the ammoniacal gases into a vessel containing acid. The impure solution thus formed is then drawn off into a still, and the ammoniacal subvessel containing sulphuric acid, for the formation of sulphate of ammonia.
282,411-July 31, 188s. B. TERNE. Process of trealing tank-waters af slaughterhouses.
The liquor is concentrated to a semi-solid condition and then passed into and upon the floor of a heated retort, whereby it is rapidly distilled to dryness; the ammonia being collected and the residual partly nitrogenized animal matter utilized as a fertilizing compound.
288,325-November 19, 188s. T. b. FOGARTY. Process of and apparatus for making ammonia.
The process involves the formation of incandescent generator gas and the decomposition of the undecomposed steam in the crude gas by the carbonic oxide contained in the gas, the conversion of the nitrogen into ammonia by contact witb a falling column of pulverized carbon and alkali, and the decomposition of the cyanogen produced. by steam; the temperature being controlled by an adjustment of the amount of falling cyanidized carbon and the volume of steam.
288,924-November 19,1889. T. B. FOGARTY. Process of and apparatus for manufacturing ammonia.
The process consists in treating a falling shower ot pulverized alkalized carbon with a current of highly-heated nitrogenous or furnace gases to form cyanogen and cyanogen salts, then transferring these compounds to separate chanogen and cyanogen salts, then transferring these compounds to separate, ammonia.

291,264—January 1, 1884. J. \& J. ADDIE. Process of obtaining ammonia from furnace-gases.
Sulphurous acid, or the gas of sulphuric acid, is mixed with the gases from blast and other furnaces to fix the ammonia, and the ammonia salts are then blast and other furnaces to fix the ama.
304,260-August 26, 1884. E. CAREY, H. GASKELL, एR., AND F. HURTER. Proccss of obtaining ammonia from ammonium sulphate.
Sulphate of ammonia is intimately mixed with sulphate of soda and at an elevated temperature-about $300^{\circ} \mathrm{C}$-ammonia and bisulphate of soda are produced, in which latter form the sulphuric acid may be utilized for many purposes. A current of steam is required to make the reaction complete.
ss7,246-March 2, 1886. C. F. CLAUS. Process of purifying coal-gas and obtaining ammonia and other products therefrom.
Coal gas is purified by passing it with gaseous ammonia, supplied by the process, tbrough a mixing chamber and a series of gas scrubbers, showering the liquor successively through a series of coke towers against an ascending flow of carbonic acid, separating the sulphide of hydrogen from the carbonated ammonia liquor, and then heating the latter from 75° to $90^{\circ} \mathrm{C}$. -using the carbonic acid in the coke towers-and distilling the beated liquor and condensing the carbonate of ammonia.
ss7,987-March 9, 1886. A. FELDMANN. Process of manufacturing ammonia.
In the manufacture of spirits of sal ammoniac, a liquor free from lime and lime combinations is obtained by mechanical filtration-by a filter press or a centrifugal machine-in contradistinction to precipitation and decanting.
342,287-May 18, 1886. J. VAN RUYMBEKE. Process of obtaining ammonia.
Ammonia compounds are produced from liquids containing organic substances in solution by showering them through forced air currents over porous substances charged with putrid ferments, and subjecting the putrefied liquor mixed with an alkaliguric-acid condensers.
S42,722-May 25, 1886. W. C. WREN. Process of and apparaths for distilling ammonia.
The process consists in vaporizing aqua ammonia, cooling the vapor and discharging it into a receiver, the vapor being under constant pressure during the entire operation.

34s,675-June 15, 1886. E. W. PARNELL AND J. SIMPSON. Recovery of ammonia in ammonia-soda manufacture.
Ammonia and sulphureted hydrogen are produced by heating alkali wastefrom the Le Blanc process-with a solution of chloride of ammonium producing sulphide of ammonium, which latter is decomposed by acid sulphate of ammonia evolving sulphureted hydrogen. The neutral sulphate of ammonia is ammonia a vailable for another pon of
351,412-October 26, 1886. J. VAN RUYMBEKE. Process of obtaining ammonia and illuminating gas from tank waters.
Concentrated tank waters are distilled at a heat not exceeding $260^{\circ} \mathrm{C}$., and the volatile products collected, whereby highly-illuminating and ammoniacal gases are obtained and decomposition of yaluable substances are avoided.
351,865-November 2, 1886. C. W. ISBELL. Process of concentrating ammoniacal liquor.
A suitable quantity of the weak liquor is supplied to a closed heating vessel and aiso a further quantity of the weak liquor to a receiving vessel submerged and cooling water, then the liquor is heated in the heated ressel, the ammonia in cooling water, then the liquor is heated in the heated vessel, the ammonia vapor driven off passed through a cooling worm above the heating vessel, so and finally the ammonia vapor is introduced into the weak liquor in the receiving vessel to increase the strength thereof.
352,287-November 9, 1886. J. YOUNG, DEC'D. Process of producing currents of
liquids in vacuo.
In the separation of ammonia from sewage or other liquids in a vacuum, the force of the liquid entering the vacuum chamber is employed to operate a pump for the removal of the liquid from the chamber.
356,610-January 25, 1887. W. YOUNG AND G. T. BEILBY. Process of and apparatus for obtaining ammonia from coal.
The process oi treating coal, sbale, and otber substances to obtain ammonia and ammoniacal compounds consists in heating the material to a temperature sufficient to separate its volatile matter, which latter is exhausted from the retort, passed through a condenser, and the noncondensable gases returned to by supplying any excess of the exbaust.
\$67,992-August 9, 1887. P. J. McMAHON. Process of preparing anhydrous ammonia.
The method consists in evaporating concentrated ammonia, separating the weaker solution resulting from said evaporation and conducting it to a receptacle, and continuously and directly conducting any aqueous vapors arising therefram to and re-evaporating the same with tbe concentrated ammonia being treated. Impurities taken up by the reabsorbing liquid of a motor or other apparatus are removed and a uniform strength of liquid ammonia maintained in the system, by heating the same to expel the gases therefrom and conducting said gases to the ammonia tank, discharging the residuum, and adding to the liquid in the system water sufficient to absorb the quantity of gas collected from the reabsorbing liquid.
371,187-October 11, 1887. T. B. FOGARTY. Process of and apparatus for making ammonia.
Relates to modifications of No. 371,186 (Sulphites and Sulphates); as a subprocess steam is introduced in excessive volumes simultaneously with the nitrogen gas in the same superbeated retort and at about the same point.
374,618-December 18, 1887. W. F. NAST. Oblaining ammonia from manure, etc. Ammonia is extracted from manure or other organic matters by adding an alkaline base, treating with sodium chloride (5 per cent lime and 2 per cent sodium chloride) in a closed vessel at a high temperature-about $150^{\circ} \mathrm{C}$.-and passing the vapors through an acid bath.
379,487—March 13, 1888. L. MOND. Obtaining ammonia and hydrochloric acid.
The vapor of ammonium chloride is passed through a vessel containing one or more salts or oxides-as the protoxide of nickel-whereby ammonia is produced and collected. The residual ammonia is then driven off by means of a neutral gas, and collected, and superheated steam is then injected to form bydrochloric acid and complete the cyele of operations. The process is then repeated.
g79,488-March 1s, 1888. L. MOND. Obtaining ammonia and chlorine from ammo. nium chloride.
Process No. 379,487 is modified by injecting hot, dry air in lieu of steam, producing chlorine instead of hydrochloric acid.
381,832-April 24, 1888. , F. EGNER. Process of obtaining arnmonia and boneblack.
In the manufacture of bone-black and ammonia, the gaseous products of the bone retortsare mixed with gas from a gas producer, the ammonia is then removed therefrom, and the gas is then consumed in the furnaces, to beat the retorts.

389,781-Sepember 18, 1888. W. WEBSTER, Jr. Process of electrolyzing sewage and sea-waler.
See Group X, Electro-chemistry.
596,705-January 22, 1889. E. MEYER. Obtaining ammonia and oxalic acid from sugar waste.
A solution of a caustic akali is heated and a predetermined quantity of concentrated desacharized lye, or its equivalent, in the form of molasses, is gradually added at intervals with continued beat. The caustic alkali must be in excess of the organic matter-at least 8 times, but not to exceed 20 . The oxalic salts are separated from the resultant mass, and the alkaline residue rendered caustic and again used.
417,777-December 24, 1889. T. B. FOGARTY. Process of making ammonia.
In the manufacture of ammonia hy the cyanide process, incandescent gasesand air to burn the gases are introduced into a moving mixture of pulverized carbon and alkali and they travel together, as in a descending column, producing alkaline cyanides and cyanates, steam being subsequently introduced to produce ammonia and otber products.
417,778-December 24, 1889. T. B. FOGARTY. Process of making ammonia.
As a modification of the process of No. 417,777, the air is in excess of the quantity required to burn the gases.
417,779-December 24, 1889. T. B. FOGARTY. Apparatus for making ammonia Apparatus for the processes Nos. 417,777 and 417,778.

454,108-June 16, 1891. H. E. BAUDOUTN AND E. T. H. DELORT. Manufacture of ammonia from sodium nitrate.
Nitrate of soda is mixed with a suitable hydro-carbon, as tar or coal, and heated to a temperature sufficient to decompose the hydro-carbon, 800° to 900° C., Whereby the resulting hydrogen decomposes the nitrate and forms ammonia with carbonate of soda as a by-product.
459,198-September 8, 1891. A. HENNIN. Process of making ammonia and gas.
Gas and ammonia are simultaneously produced from coal by injecting air and steam into a bed of incandescent fuel and controlling the temperature of the generator by regulating the proportions of steam and oxygen or air, and hy egula
477,089-June 14, 1892. H. VON STROMBECK. Process of purifying ammonia.
Crude ammonia-gas is purified hy exposing it to the action of comminuted metallic sodium, which comhines with the alcholic hodies.
486,647-November 29, 1892. L. STERNBERG. Process of oblaining ammonia or other salts from molasses.
The waste lyes resulting from the extraction of sugar or the manufacture of alcohol from molasses are freed from any excess of lime, strontia, and baryta, and concentrated to, say, 45° baume, then mixed with a carrier, as granulated coke, dried, and calcined in an atmosphere of superheated steam, producing
ammonia gas, which is condensed and treated for the production of ammonia ammonia gas, which is condensed and treated for the production o
sulphate or otherwise, and the potassium and other salts recovered.
488,207-December 20, 1892. P. KUNTZE. Process of and apparatus for making ammonia.
Nitrogenous material, such as peat, is dried and then calcined, and the aqueous and the tarry vapors conducted off separately; the latter passed through incandescent material-as calcareous porons tar coke-forming tar, ammonia, and combustible gas. The calcined material is simultaneously treated with heated
air and the aqueous yapor to forni ammonia and heating gases, the latter heing air and the aqueous vapor to fornl ammonia and heating gases, the
utilized for heating the air and calcining the nitrogenous material.
500,650-July 4, 1898. T. B. FOGARTY. Apparatus for and process of obtaining combined nitrogen and fuel gases.
A producer gas, consisting chiefly of the oxides of carhon, free nitrogen, and hydrogen, is formed and mingled with hydrocarhon vapors and highly heated, and then passed along with a falling pulverized carbon-alkali mixture and in the anme direction, producingallan gas
$500,651-$ July 4 , 1899. T. B. FOGARTY. Method of and apparatus for producing cyanides and ammomia.
Nitrogenous gas, hydrocarhon gases and vapors, and a suitable alkali are passed together in a falling column through an incandescent retort, and produce alkaline cyanides, ammonia, and fuel gas.
505,497-September 19, 1898. G. L. VAIL AND T. CHARLTON. Process of purifying ammonia gas.
The process consists in passing the gas under a pressure of nine to twelve atmospheres, approximately, through a quantity of aqua ammonia at a temperature sufficiently low, as 56 F., to remove by condensation the moisture and other impurities with which the gas is laden; the aqua ammonia containing
such a per cent of ammonia gas, say from 29 per cent to 32 per cent by weight, such a per cent of ammonia gas, say from 29 per cent tically reached the fimit of gas absorption.
515,909-March 6, 1894. H. A. FRASCH. Art of manufacturing ammonia.
The ammoniacal liquor is distilled, the vapors cooled and the condensed matter separated, and the cooled and dehydrated ammoniacal vapors are then passed
through a saturated solution of ammonia maintained at a temperature which through a saturated solution of ammonia mantained at a temperature which adapts it to take up the pyridin and kindred impuritie
for the ammonia gas. The vapors are then ahsorbed.
518,488-April 17, 1894. E. SOLVAY. Process of purifying ammonia.
The process of purifying a flowing stream of ammonia liquor consists in raising the temperature of separate portions of said stream to unequal heat increasing in the direction of flow, and thereby evolving carhonic anhydride and sulphoreted gases from the warmer portion, passing the evolved gases through the similar gases from said cooler portions, passing said gases through an independent cooler portion of said liquor, and finally passing the heated vapors thereof
in proximity to and in a direction opposite to the flow of said stream of liquor for heating the same unequally.
521,401-June 12, 1894. T. CHARLTON AND K. M. MITCHELL. Process of and apparatus for manufacturing aqua ammonia.
A superheated mixture of air and steam is passed through ammoniacal liquor and through a condenser and ahsorbers; the strong liquor withdrawn from the first absorber; and the residuum liquor returned in the reverse direction from the last to the first ahsorber.
522,557-July s, 1894. L. STERNBERG. Apparatus for obtaining ammonia.
Apparatus for process No. 523,819 .
529,819—July 31, 1894. L. STERNBERG. Process of making ammonia.
Ammonia is produced from nitrogenous organic matter by calcining such material in a retort'in an atmosphere of steam and of hot nonoxidating gas or mases. The gases and vapors discharged from the retort are freed from amgases. The gases and vapors discharged rom the the retort.
528,999-November 18, 1894. L. TRALLS. Process of obtaining fertilizers from waste lyes.
Lyes-obtained by leaching brown coal ashes-containing acid salts of alumina and oxide of iron, und waste ammoniacal liquor are mixed in such proportions as to convert the sulphuric acid combined with the aluminium and proportions as to convert the sulphate and leave the alumina in the form of a iron oxide into ammonium sulphate, and the peroxide of iron in the form of a hydroxide, and evaporated to dryness.
547, 276-October 1, 1895. L. MOND. Process of and apparahus for obtaining ammoniacal products.
In the extraction of ammonia and tar from producer gases, the hot gases are cooled with water and the air for the producer is heated by the water, the coolcooled with water, and the air for the producer is heatearated by a weakly acid ing and heating alternating. The free ammonia of a salt of ammonia, the tar separated frome solution, and the solusolution of a salt of ammonia, the tar separated from again utilized.
557,166—March 91, 1896. L. STERNBERG. Process of obtaining ammonia from waste sugar lyes.
waste sugar lyes.
Gaseous nitrogenous organic compounds are transformed into ammonia by
aluminate, as the aluminate of potassium. Waste lyes from the extraction of sugar or the manufacture of alcohol from molasses are concentrated to, say, 75 Brix, then mixed with alumina and an aluminate forming a plastic mass, molded into bricks, dried, and heated in a retort to incandescence.
578,457-March 9, 1897. C. KELLNER. Process of and apparatus for simultaneously producing ammonia, sodium hydroxid, and chlorin.
See Group X, Electro-chemistry.
583,262-May 25, 1897. H. J. KREBS. Process of and apparatus for distilling ammonia.
An aqueous solution of ammonia is continuously fed into a still and a current of high pressure steam from a steam boiler is discharged into the still; the gas is conveyed away and cooled, and the residual water and the condensed steam are fed back to the steam hoiler.
586,950-July 20, 1897. F. W. A. FRERICHS. Process of purifying ammonia.
Commercial water of ammonia, while under pressure, is subjected to a temperature of at least $180^{\circ} \mathrm{C}$. and preferably higher, to set free all of the permanent gases which can develop under conditions prevailing in ice machines, which gases are removed and the resulting ammonia gas liquefied; it may then be subjected to distillation at a low temperature, preferably from 10° to $20^{\circ} \mathrm{C}$. to condense and separate out the carbon compounds.
598,195-February 1, 1898. T. F. COLIN. Process of making cyanids and ammonia. Powdered heated alkali is continuously showered into a closed furnace shaft,
into the base of which there is directly and separately introduced, under pressure, highly heated air and fuel gas, and above the latter a heated liquid hydrocarbon; the successive steps effected being the combustion of air and gas, the dissociation of the liquid hydrocarbon, and the dissociation of the alkali and formation of cyanides; followed, outside of the furnace, by the decomposition of the cyanides by steam, and the formation of ammonia.
598,918-February 15, 1898. T. B. FOGARTY. Process of and apparatus for making cyanids and ammonia.
Prior to bringing producer gas into contact with a shower of pulverized alkalized carbon to form alkaline cyanides, an adjusted quantity of highly heated air is added to effect further combustion, and pulverized anthracite coal or coke or material rich in free carbon is showered through the gases to remove all oxygen and carhonic-acid gas.
607,948-July 26, 1898. H. MEHNER. Method of producing ammonia.
See Group X, Electro-chemistry.

Other hydroxides.

144, 517 -November 11, 187s. C. M. T. DU MOTAY. Improvement in the manufacture of baryta.
Sulphate of barium, mixed with coal, is reduced to sulphuret of harium and then transformed into hydrated haryta, or into carbonate of baryta, the intermediate reagents used heing revivified and reused.
159,446-February 2, 1875. C. H. PHILLIPS. Improvement in manufacturing milk of magnesia.
Magnesia hydrate is prepared hy subjecting a soluble salt of magnesia-as magnesia sulphate-to the action of ammonia.
326,066-September 8, 1885. W. G. STRYPE. Process of making hydrates of barium and of strontium.
A solution of sulphide of barium or strontium is subjected to the action of air forced up through the solution in the presence of an oxide of iron, such as ochre or other hydrated ferric oxide.
328,478-October 20, 1885. H. C. FREIST. Manufachure of hydrate of ahmina.
A mixture of pulverized aluminous material, sulphate of soda, carbonate of lime, coal dust, and fluorspar is subjected to a high heat; the mass leached, and the solution, either hefore or after removal of insoluhle impurities, treated with a metallic peroxide, sesquioxide, or hyperoxide to precipitate the iron in insoluble form; which precipitate is removed and the carbonic-acid gas to form a carbonate of soda and precipitate the the action of carbonic-acid gas
alumina as hydrate of alumina.
331,182-November 24, 1885. G. F. BIHN. Method of obtaining hydrate of alumina for paper makers' use from bauxite, etc.
To produce an artificial hydrate of alumina free from iron, an intimate mixture of bauxite, salt cake, and coal is calcined, the mass lixiviated with water, and the liquor, separated from the insoluble matter, hoiled with finely divided metallic copper or ansoluble matter, is then treated with carhonic-acid gas or bicarbonate of soda, precipitating hydrate of ammonia.
589,889-May 28, 1895. M. N. D'ANDRIA. Process of making magnesium hydrate. Calcined and slacked dolomite is subjected to the action of water, repeatedly agitated, settled, and decanted until the residue is mainly magnesium hydrate. Large tanks into which the tide can flow are preferably used.
$571,538-$ November 17, 1896. R. LANGHANS. Electrolytic process of converting hydroxids of earth and earth alkali metals into indissolubte organic or inorganic salts, etc.
See Group X, Electro-chemistry.

CHLORATES

388,217-August 21, 1888. E. K. MUSPRATT AND G. ESCHELLMANN. Manufacture of sodium-chlorate.
Magnesia suspended in water by agitation is treated with chlorine, the resulting magnesian liquor hoiled down to crystallize out magnesium chloride and the liquor then decomposed by means of caustic soda or carbonate of soda, or mixtures of the same, to produce sodium chlorate.
388,997-September 4,1888 . E. K. MUSPRATT AND G. ESCHELLMANN. Manufacture of potassium chlorate.
In the manufacture of potassium chlorate hy means of magnesia and chlorine the magnesia liquor is boiled down to crystallize out magnesium chloride, the liquor is then heated with potassium chloride, and the potassium chlorate separated from the magnesium chloride by crystallization. The mother liquor is now treated wi
sium chloride.
480,492-August 9, 1892. E. B. CUTTEN. Method of etectrolytically producing potassium chlorate.
See Group X, Electro-chemistry.

480,498-August 9, 1898. E. B. CUTTEN. Method of electrolytically producing potassium chlorate.
See Group X, Electro-chemistry.
491,701-February 14, 1893. E. B. CUTTEN. Method of electrolytically producing potassium chlorate.
See Group X, Electro-chemistry.
492,003-February 21, 1898. H. GALL AND A. DE VILLARDY DE MONTLAUR. Manufacture of chlorates of the alkaline metals and metals of the alkaline earths. See Group X, Electro-chemistry.
493,023-March 7 1893. W. T. GIBBS AND S. P. FRANCHOT. Process of obtaining chlorates of the alkalis or of the alkaline earth metals by electrolysis.
See Group X, Electro-chemistry
519,400-May 8, 1894. H. BLUMENBERG, Jr. Electrolysis. See Group X, Electro-chemistry.
636,848-April 2, 1895. H. BLUMENBERG, Jr. Electrobysis. See Group X, Electro-chemistry.
537,179-April 9, 1895. H. BLUMENBERG, Jr. Electrolysis. See Group X, Electro-chemistry.
538,314-A pril 30, 1895. K. J. BAYER. Process of producing potassium chlorate.
Zinc oxide (used in place of lime) is treated with chlorine gas; the hypochlorite of zinc obtained is split into zine chlorate and zine chloride; the solution is mixed with potassium chloride, and the potassium chlorate separated by crystallization, while the zine is obtained in the liquor in the form of zinc chloride.
543,326-July 2s, 1895. K. J. BAYER. Process of producing potassium chlorate.
Potassium chloride is added to a mixture of zinc oxide and water up to the saturation point of the mixture, the solution is heated to near the boiling temperature, and chlorine is introduced until the zinc oxide is dissolved, when the potassium chlorate is crystallized out and the zine chloride liquor is concentrated.
565,3\%4-August 4,1896 . H. BLUMENBERG, Jr. Electrolysis. See Group X, Electro-chemistry.
587,LS7-August 3, 1897. F. HURTER. Apparatus for manufacturing chlorate of potash by etectrolysis.
See Group X, Electro-chemistry.
620,683-March 7, 1899. T. A. UEELING. Process of and apparatus for reducing and oxidizing salts.
See Group X, Electro-chemistry.
697,000-June 13, 1899. P. IMHOFF. Process of making oxyhalogen salts. See Group X, Electro-chemistry.
627,063-June 13, 1899. P. [MHOFF. Manufacture of oxyhalogen salts.
See Group X, Electro-chemistry.
633,272-September 19, 1899. T. PARKER. Process of manufacturing chlorates by electrolysis.
See Group X, Electro-chemistry.
NITRITES AND NITRATES.
249, 275—November 8, 1881. T. VARNEY. Process of drying nitrates.
A portion is melted and mixed with an unmelted crystalline portion, thereby expelling the water from the crystals.
400,207—March 26, 1889. C. N. HAKE. Process of making ammonium nitrate.
Nitric-acid vapor is combined with ammonis gas in an air chamber or ammonia-gas with fine spray of nitric acid with the temperature maintained and in the second case as a supersaturated liquid which solidifies on cooling.
448,361-March 17, 1891. R. S. PENNIMAN. Process of manufacturing nitrate of ammonia.
Protected nitrate of ammonia is produced by dehydrating the nitrate and while it is in a melted condition mixing therewith a protecting medinm, as any while it is in a melted condition mixing therewith a protecting medinm, as any of the soft products of
graining by agitation.
448,362—March 17, 1891. R. S. PENNIMAN. Preparing nitrate of ammonia.
The nitrate is dehydrated while in a melted condition by mechanical agitation accompanied with the injection of air. It is then cooled and grained by mechanical agitation and a protecting medium, as vaseline, is applied to the mass.
478,067-June 28, 1892. R. S. PENNIMAN. Method of manufacturing nitrate of ammonia.
Nitrate of ammonia liquefied under a high temperature is subjected to mechanical agitation together with injected blasts of air to prevent decomposition írom overheating and to fully eliminate watery vapors.
$500,914-$ July 4: 1893. J. LANDIN. Process of making ammonium nitrate.
Alcohol is percolated through a mixture of sodium nitrate and ammonium sulphate to produce an alcoholic solution contaiuing ammonium nitrate plus some sodium nitrate, and a residue of sodium sulphate plus some ammonium sulphate. The'alcoholic solution is treated, hy passing it first through ammonium sulphate, and next through ammonium chloride, producing an alcoholic solution of ammonium nitrate and a precipitate of sodium sulphate and sodium chloride, and the sodium chloride is then sublimed with the poixture of sodium sulphate, and ammonium snlphate to produce sodium sulphate and ammonium chloride.
572,819-December 8, 1896. L. G. PAUL. Process of making nitrites.
An alkaline nitrate is melted together with the caustic compound of the same alkali, and sulphur is gradually added to the melted mass.
573,964-December 29,1896 . G. CRAIG. Process of purifying ammonium nitrate.
Nitrate of ammonia is dissolved out of mixtures by percolating or digesting with anhydrous or high-strength ammonia, and then the solvent is evaporated off.
595,178-December 7, 1897. A. KNOP. Proccss of making nitriles.
A nitrite is manufactured by heating a mixture of a nitrate, r caustic alkali, and carbon. Fused canstic soda, 120 parts, and cole, 31 parts, arefirst mixed and
cooled. Then 300 parts of saltpeter are melted with 120 parts of 90 per cent caustic soda, and the first mixture added in fragments.
597,006-January 11, 1898. R. N. LENNOX. Process of making ammonium nitrate. A mixture of sulphate of ammonia, 13 parts, and a nitrate of a metal capable of double decomposition, as sodium nitrate, 17 parts, is distilled at less than atmospheric pressure, and at a temperature not exceeding $230^{\circ} \mathrm{C}$.
632,994-September 5, 1899. H. K. BAYNES. Process of decomposing alkali nitrates. See Group I, Acids, Nitric.
689,893-April 25, 1889. T. FAIRLEY. Process of making ammonium nitrate.
Bicarbonate of ammonium is subjected to the action of a saturated solution of sodinm nitrate, the liquid separated from the moistened solid, and the former cooled to about $15^{\circ} \mathrm{C}$. to crystallize ont the ammonium nitrate.

SULPHITES AND SULPHATES.

17,850-Iuly 21, 1857. L. GAMOTIS AND S. MARTIN. Improved apparatus for making acid sulphite of lime.
The fumes from burning sulphur are drawn by suction successively through a series of vats filled with milk of lime.
59,239-October 30, 1866. G.T. LEWIS. Improvement in the manufacture of suiphoacetate of alumina.
Alumina (obtained from cryolite) is treated with acetic acid and sulphuric acid, or in place of the latter sulphate of alumina or alum.
82, 154 -September 15, 1868. W. M. PAGE AND E. B. KRAUSSE. Improved process of preparing sulphate of barytes.
Sulphate of baryta is first boiled in water to render it more friable, then dried, and boiled in a weak acid solntion-as of sulphuric acid-followed by a weak solution of silicate of soda to purify, then boiled in a saturated alum solution to whiten, and dried and pulverized, to be subsequently mixed in distilled water and floated for a fine product
108,177-October 11, 1870. H. PEMBERTON. Improvement in the manufacture of paper.
Sulphate of lime, for use in paper manufacture, is made from a solution of calcium chloride, for which bittern may be used, and a solution of impure soda sulphate or niter cake.
11,S05-January \$1, 1871. R. DE WITT BIRCH. Improvement in the manufacture of copperas.
The waste liquor from manufactures using sulphuric acid for cleaning iron is settled, the free acid neutralized with wrought fron, concentrated to from 28° to 40° Baume, the vapors being passed over lime to a condenser, the liquor settled and crystalized on erystallizing sticks, and the crystals dried with air warmed by the hot vapors.
125,153-Aprila, 1872. H. A. WHTTING. Improvement in processes and apparatus for the manufacture of sulphate of lead.
Sulphate of lead is manufactured by the direct action of hot concentrated sulphuric acid upon an alloy of lead aud zine, 1 per cent zinc. The dried sulphate of lead is whitened by calcining at a red heat.
151,589-May 26, 1874. J. HARGREAVES AND T. ROBINSON. Improvement in the manufacture of sulphate of soda and potassa.
Mixed sulphurons-acid gas, air, and water vapor are used in the proportions of 2 volumes each of gas and water vapor, and air to furnish 1 volume of free oxygen, the mixture being passed through the chambers in series, each in turn being the first of the series. sodium chloride, or potassium chloride, is used in pieces containing about three-quarters of a cubic inch, with the smaller pieces
packed near the sides of the chamber, or tower.
195,998-Octaber 9, 1877. L. S. FALES. Improvement in treating gas-liquar for ammonia salts.
The incoming ammoniacal liquor is heated by means of the sulphuretedhydrogen gas, and the latter thereby cooled previons to passing it into water to absorb it, in the manufacture of sulphate of ammonia.
200,134-February 12, 1878. C. FAHLBERG. Improvement in processes for utilizing zinc sulphate.
Zinc sulphate is treated with sodium carbonate or bicarbonate to precipitate the zinc as a carbonate, and the sodium bicarbonate is then recovered by an ammonio-soda process.
216,32s-June 10, 1879. H. GROUVEN. Inprovement in the manufacture of sulphate of ammonia.
Sulphate of ammonia is made from turf and similar material by decomposing the vapors and gases obtained from heating a mixture of turi and chalk by means of a contact mass; converting the carbonate of ammonia to sulphate of ammonia in the presence of sulphate of lime, and purifying and crystalizing the sulphate of ammonia.
200,005-September 23, 1879. Z. C. WARREN. Improvement in the manufacturc of sulphate of lime.
Sulphate of lime, of about the specific gravity of paper pulp, is mede by commingling cooled streams of milk of lime and sulphuric acid prepared in combining proportions.
224, 101-February 3, 1880. W. J. MENZIES. Process for the maufacture of sulphate of soda.
A pure sulphate of soda is obtained from niter cake and muriatic-acid cylin-der-cake, by neutralizing the free acid of the one and the free sodium chloride of the other, treating them in a reverberatory furnace, either together or singly, with the addition, respectively, of sodium chloride or sulphuric acid, and then precipitating the iron salts and impurities from a hot seturated solution of the product with an alkali or alkiline earth and bleaching-powder. An anhydrous sulphate of soda is produced, white and free from iron.
229,24i9-June 29, 1880. C. N. HAKE. Manufacture of potassium sulphate from kainit.
A solution of magnesium sulphate is added to ground kainit, the chlorides of magnesium and sodium going into solution while a residue of schönit is formed, the schönit heing separated from the said chlorides by decautation. Caustic lime, baryta, or strontia is added to pulverized schönit and the product calcined, lixiviated, and concentrated to secure the potassinm sulphate.
248, \$10-Jine 21, 1881. C. SCHEIBLER. Proccss of scparating gypsum from the solutions of starch-sugar produced by treating the latter with sulphuric acia.
The solution is neutralized by menns of lime, the bulk of the gypsum removed by filtration or decantation, and the solution then treated with an excess of

digest of patents relating to chemical industries.

barium-oxalate or other insoluble barium salt obtamed from a soluble oxalate and which forms an insoluble combination with lime, the remaining gypsum 247,046-September 13, 1881. H. GROUVEN. Process of and apparatus for haking ammonium sulphate.
As an improvement on the process of No. 216,323, the peat, or animal refuse rich in nitrogen, is charged successively into a series of peat, or animal refuse and gases are passed through all in series ending with the one longest charged. \&59,160-June 6, 1882. F. HOHLWEG. Process of obtaining magnesinm sutphate
from ciude mineral.
Crude mineral containing cigrbouate or silicate of magnesia is powdered and treated with a solution of sodium bisulphate and the magnesinm sulphate separated by crystallization. With the addition of carbonate of soda the magnesia is precipitated from the solntion as a carbonate in the usual manner. 267,582-November 14, 1882. R. N. R. PHELPS AND W. A. CLARK, JR. Proeess of treating the waste pickle-liquor of iron-works.
See Group F, Acids, Sulphuric.
286,735-October 15, 188s. H. RÖSSLER. Process of making eupric sulphate.
Gases containing sulphurous acid, as the waste gases of chemical works, are injected jointly with air and steaminto an oxidizing solution of cupric sulphate
containing free copper, as cement copper.
292,260—January 22, 1854. C. SEMPER. Ctilizing waste calcium chloride and ulphate.
Waste calcium sulphate, produced in the manufacture of acetic acid from acetate of lime, is calcined at a high temperature and the impurities driven off. s18,972-June 29, 1885. E. A. FALES. Process of making ammonium sulphate.
In the distillation of ammoniacal liquor and the passage of the vapor through sulphuric acid, the acid is covered with a layer of coal oil to give white sulphate of ammonia crystals and avoid discoloration.
921,341-June 90 , 1885. E. CAREY, H. GASKELL, JR., AND F. HURTER. Proe ess of making sodium sulphite.
Salts-monohydrated carbonate of soda-are exposed to the action of sul-
phurous-acid gas. phurous-acid gas.
gigs,215-October $27,1885$. E. B. RFTTER AND C. KELLNER. Process of making
solutions of bisulphites.
80lutions of bisulphites.
The carbonate of a base is first subjected to the action of sulphurous acid, whereby carbonic acid is expelled and the snlphite formed is dissolved in the weakened acid solution. The sulphite solution is then reimpregnated with sulphurons acid and a combination with the second base effected and the formation of a double salt.
s38,558-March ${ }^{23}$, 18s6. E. B. RITTER AND C. KELLNER. Process of manufacturing sulphites.
In the manufacture of sulphites, sulphurous-acid gas is purified, prior to making a solution of the same, by passing it through a solid material, as limestone, which will combine with sulphuric acid, and a filter of solid material for dry particles,
and then cooling the acid. and then cooling the acid.
ss9,974-April 18, 1886. W. O. \& W. P. CROCKER. Producing sumpite or bisulphite of sodium.
For the production of sulphite-of-sodium liquor from sulphate of sodium for the reduction of wood to pulp, the sulphate of sodium mixed with carbonaceous matter is roasted, leached, evaporated to dryness, and the product granulated, and heated with agitation in contact with air or oxygen until incandescence ceases, when it is made into a solution. It may be charged with an additional portion of sulphurous or other acid before introduction into the digester. By the addition of a small quantity of bisulphite of calcium any sulphide or sulphate of sodium is decomposed, sulphate of calcium being precipitated.
339,975-April 1s, 1886. W. O. \& W. P. CROCKER. Process of makiny bisuthites. Bisulphite-of-sodium liquor is produced by roasting the acid sulphate of sodium to reduce it to neutral sulphate and recover one proportion of sulphnric acid, suspending neutral sulphite of calcium in the solution by agitation, and finally charging the mixture with sulphurous acid, which may be obtained by decom position of the sulphuric acid recovered. The neutral sulphite of calcium is obtained by treating the used bisulphite-of-sodium liquor with oxide or carbonate of calcium.
s65,\$18-June 21, 1887. W. M. PAGE AND E. B. KRAUSSE. Process of and apparatus for treating barium sulphate.
The crude material is subjected to successive steps of grinding, boiling with dilute acid, washing, drying, regrinding, agitation in hot water, screening, settling in water, and drying.
s71,186-Oclober 11, 188\%. T. B. FOGARTY. Process of and apparatus for making ammonium sulphate.
Highly heated nitrogenous generator gas is mixed with adjusted volumes of superheated steam and air and mingled with a falling mass of pulverized carbon and alkali in a retort, producing cyanogen, which in turn is decomposed by the steam to ammonia, hydrogen and carbon oxides; the ammonia and carbonic acid being then treated with sulphuric acid and lime of gypsum to produce sulphate of ammonia and carbonate of lime.
s73,264-November 15, 1887. H. BAUM. Process of making pyrosulphates.
Pyrosulphates of the alkalimetals, as also of ammonia, are produced by heating the acid sulphates thereof in a vacuum to a temperature of irom 200° to $400^{\circ} \mathrm{C}$.

376,189-January 10, 1888. A. FRANK. Production of sulphite solutions.

Free as well as combined sulphurous acid is recovered from the lyes resulting from the manufacture of cellulose by the sulphite process, by converting the sulphurous acid into a monosulphite by means of calcinm or a calcinm salt, separating the monosulphite from the lye and purifying the same by washing in a solution of sulphurous acid or of an alkali sulphite or an alkaline earth.
s76,190-January 10, 1888. A. FRANK. Production of sulphite solutions.
Acid sulphite solutions are produced from calcium monosulphite (a product of the process No. 376,189) with calcium sulphate as a by-product, by treating the calcium monosulphite with sulphuric acid or with acid sulphate of soda.
s79,820-Mareh 20, 1888. A. SCHANSCHIEFF. New mercurie salt for batteryfluids.
A new salt, yellow basic sulphate of merenry combined with bisulphate of mercury, substantially of the formula $2 \mathrm{HgO}, \mathrm{SO}_{4}+\mathrm{HgSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$, is produced by dissolving mercury in sulphuric acid, evaporating excess of acid, adding water,
separating the precupitate and treating it with acid and again with water and so on, either retaining the solntion in the liquid form or evaporating to obtain
the solid salt.
992,286-Novenber 6, 1888. H. PEMBERTON, JR. Delydrating sodium sulphate.
The erystals of natural or artificial Glauber's salt are treated with a hot saturated solution of sodium sulphate until they melt; the anhydrous salt not in solution is then allowed to settle, and the saturated solntion is run off or allowed to recrystallize to be used again.
395,159—December 25, 1888. W. MANNiNG. Process of treating gypsum.
In the treatment of gypsim for the production of an impalpable opaque anhydrous powder, it is given a sccond calcination and subsequent grinding to expcl
all water of erystallization.
407,925-July 30, 1889. C. J. E. DE HAËN. Double sulphate of anlimony.
A new product, the double salt of fluoride of antimony and sulphate of ammonia, having the formula $\mathrm{SbFl}_{3}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}-$ available in the dyeing art in lieu of tartar emetic-is produced by mixing fluoride of antimony and snlphatc of
415,739-November 26, 1889. H. A. SEEGALL. Process of making chromium
8ulphates.
Chromic or chromous sulphates are produced from chrome materials by heating the same to $600^{\circ} \mathrm{C}$. in closed receptacles with the acid sulphates of any fixed alkali, such as sodium bisnlphate, with the chrome materials held in suspension by agitation; and then condensing the vapors and regaining the sulpharicacid which has not entered into the reaction. The quantity of vapor is rednced by mixing with the mass a substance that does not melt or decompose at $600^{\circ} \mathrm{C}$.,
as barium sulphate. 599 378—May 19, 181 sulphite.
crilled; the oxide of iron used is roasted purified with oxide of iron and then distilled; the oxide of iron used is roasted, and the dry ammonia from the distilla-
tion and the sulphurous gas from the roasting, condducted in suitable proportions
into a saturating tank into a satnrating tank, form ammonium sulphite or bisulphite.
452,886-May 19, 1891. H. PENNINGTON. Process of making lead sulphate.
Metallic lead in shreds or flakes is subjected to the alternate action of dilute acetic acid and of atmospheric air; the mass of lead is drained and loosened up after the acetic solution is drawn off; and the said solntion is mixed with a sufficient quantity of sulphnric acid to thoroughly reduce the lead acetate to a
lead snlphate without excess of free sulphuric acid, the solution being agitated
to prevent the formation of acicular crystols and leave the sulp to prevent the formation of acicular crystals and leave the sulphate practically
amorphous. amorphous.
453,187-May 26, 1891. J. VAN RUYMBEKE. Process of makingbasic persulphate
of iron.
Pulver
Pulverized iron ore-oxide of iron-is first mixed with sulphuric acid and persulphate of requisite basicity is produced. persuphate of requiste basicity is produced.
508,900-August 22, 1893. W. E. CASE. Process of making aluminium fuosut-
phate. phate.
Aluminium flnosulphate free from iron is produced by adding calcium fluoride of the freshly precipitated white product obtained by adding a solntion of a alkaline carbonate to an aluminium fuosulphate solntion which has been freed from iron. The resulting ferruginous precipitate is separated from the fluosulphate solution by mechanical means.
504,324-September 5, 1893. W. E. CASE. Process of making aluminium com-
pounds, pounds.
An insoluble aluminium compound is produced by combining aluminium adding an alkali carbonate. if iron is present the alkali carbonate is added until a filtered test sample shows the solution free of iron in the ferric form the iron precipitate is then removed and additional alkali carbonate added to precipitate the aluminium compound.
504,385-September 5, 1893. W. E. CASE. Process of making aluminum fuosulphate.
An alumiuium alkeli fluosnlphate free from iron is produced by adding calcium flnoride to an aqueous solution of crude aluminium sulphate, then adding a solutiou of an alkaline carbouate, as of sodium carbonate, to precipitate iron,
and separating the aluminium fluosulphate solution from the solid prodnct. and separating the aluminium fluosulphate solution from the solid prodncts.
$\underset{\substack{\text { 512, } 103-J a n u a r y ~ 16, ~ 1894 . ~ W . ~ E . ~ C A S E . ~ P r o c e s s ~ o f ~ m a k i n g ~ a l u m i n u m ~ c o m-~}}{\text { pounds. }}$ pounds.
An insoluble aliminium compound is formed by combining aluminium sulphate and calcium fluoride to form an aluminium-fluo-sulphate solntion, addng thereto a caustic alkali, as ammonium hydrate, to precipitate the iron,
removing the iron, and then adding a further quantity of the caustic alkali to precipitate the aluminium compound.
614,040-February 6, 1894. H. F. D. SCHWAHN. Process of purifying native sulfate of barium.
The proces of No. 514,039 (Gronp XIX, Oxides) is specifically applied to the purification of native sulphate of barium from iron, etc.
515,763-March 6, 1894. C. VON GRABOWSKi. Process of and apparatus for purifying sulfate lyes.
See Group X, Electro-chemistry.
626,076-September 18, 1894. M. L. GRIFFIN. Process of making calcium bisulfite liquor.
To prepare "lime sludge," resulting from the treatment of carbonated-soda liquors with lime in the manufactnre of caustic soda, for use as a substitute for lime in the manufacture of bisnlphite liquors, it is washed to remove the alkali, flowed over riftes to remove heavy impurities, and the precipitate of carbonate of lime thus purified is separated from the water by settling or filtering. The sludge is then charged with sulphurons-acid gas.
541,598-June 25,1895 . J. D. DARLING. Process of utilizing niter-cake or other acid sulfates.
See Group X, Electro-chemistry
542,429-July 9, 1895. E. A. STARKE. Process of making neutral alkaline sulfates from bisulfates.
Neutral alkaline sulphate is made by adding a portion of sulphur to the acid sulphate and heating the mass. The sulphurous acid fumes are collected and converted into sulphuric acid.

543,002-July 2S, 1895. S. H. EMMENS. Proccss of makiug ferric sulfate.
The gases from a sulphnret or sulphate roasting or calcining furnace are passed into water in which ferric hydrate is suspended.
565,953-August 18, 1596. E. ANDREOLf. Apparatus for indirect electrolysis. See Gronp X, Electro-chemistry.
$601,006-$ March 22, 1893. H. E. STURCKE. Preparing sulfate of lime from residues.
Residues from the manufacture of canstic soda, and comprising essentially carbonate of lime, are dissolved in muriatic acid, filtered, precipitated with sulphnric acid to form snlphate of lime, filtered, and the snlphate of lime washed and dried. The last filtrate is used for treating fresh quantities of residues. A waste calcium-chloride solntion from the ammoninm-soda process is filtered, precipitated with sulphnric acid to form sulphate of lime, and filtered, and the last filtrate used for caustic soda residnes.
601,179-March 22, 1898. H. E. STURCKE. Process of and apparatus for making sutfate of lime.
Residues from the manufacture of canstic alkali, comprising essentially carhonate of lime, are made into a thin milk, the insoluhle impurities are mechanically removed, and the milk of carbonate is then treated with snlphuric acid to convert the carbonate into sulphate of lime, which is separated out and dried.
605,697-June 14, 1898. R. E. CHATFIELD. Process of utilizing acid sulfates of soda.
Residue acid sulphate of soda solutions are acted upon hy ammoniacal compounds from gas liquor or other sources to produce mixed sulphates of ammonia and soda. The solntion is then evaporated to a specific gravity of 1.380 at boiling temperature to crystallize ont sulphate of soda, the evaporation is then continned to crystallize out the mixed salts, which latter crystals are dissolved in cold mother liquor to a specific gravity of 1.285 and evaporated to crystallize out sulphate of ammonia.
694,751-October 10, 1899. O. HOFMANN. Method of refning cupric-sulfate solutions. A cupric-sulphate solution containing salts of iron, arsenic, antimony, etc., is neutralized and heated to 75° to $80^{\circ} \mathrm{C}$., when pulverized cupric oxide is
added and air is injected to precipitate the impurities.
640,026-December 26,1899. A. S. RAMAGE. Process of and apparatus for makong copperas.
Carbonate of magnesinm is added to the waste liquor of pickling vats to nentralize the free snlphuric acid, and the liquor is then filtered, evaporated, and crystallized, giving a copperas mixed with a little magnesium sulphate which improves the same for the manufacture of venetian red.
641,550-January 16, 1900. M. E. ROTHBERG. Process of making magnesia and plaster of paris.
See Gronp XIX, Oxides.
650,980-June 5, 1900. O. MEURER. Process of making metallic sulfates.
To prodnce sulphates free from iron from sulphide ores containing sulphide of iron, the ores are heated with polysulphides of the alkalis, cooled and cansed to be crumbled in the air, after the addition of water; dried and subjected to with water and the sulphates are dissolved.

PHOSPHATES.

42,140-March 29, 1864. E. N. HORSFORD. Improved double phosphate of lime and soda for culinary and other purposes.
To a mixture of 5,000 ponnds of water and 500 ponnds of oil of vitriol there is added 700 pounds of bnrned bones and constant agitation is continned for sixteen to eighteen hours, when the mass is leached and lixiviated, forming a liquid acid phosphate of lime, in which about two-ninths of the lime of the original phosphate of lime remains in combination with the phosphoric acid. This is concentrated with the addition of hydrate of soda in the proportion of 0.0144 of a pound for each degree of Baumé until it becomes an emulsion of crystals. The product is rendered nonhygroscopic by dilating the emulsion o crystals with gelatinized water, and subjecting to slow crystallization, and starch.

62,977-February 19, 186\%. J. E. LAUER. Improved acid compound for use in baking and cooking.
An acid salt, obtained by treating boneblack with bydrochloric acid and then adding snlphnric acid to the liquor.
75,841-March 10, 1868. E. N. HORSFORD. Improved preparation of acid phosphate of lime.
Sulphuric acid is added to a solntion of acid phosphate of lime in a solntion of a salt of lime, the acid of which salt is volatile, as nitric acid, and the volatile acid driven off by beat, leaving acid phosphate of lime mixed with or feebly combined with sulphate of lime, which is separated by leaching.
75,828-March 10, 1868. G. F. WILSON. Improvement in the manufacture of acid phosphates.
Farinaceons matter is mixed with acid phosphate of lime by feeding a coarse mixture of the material between rollers, preferably of dressed granite.
75,S29-Mfarch 10, 1868. G. F. WILSON. Improvement in preparing bones for the manufacture of acid phosphates.
Bones are distilled in horizontal retorts with condensation of the products of distillation, the remaining gases being conveyed to the furnace and burned. Each charge of distilled bone is raked from the retort into an iron cooler which is sealed and the bone cooled nnder exclusion of air

75,380 -March 10, 1868. G. F. WILSON. Improvement in drying acid phosphatcs. Granulated acid phosphate of lime is exposed to continnous currents of heated air on both sides of vertical columns thereof, which are progressively fed
downward. downward.
75,9s3-March 10, 1868. G. F. WILSON. Improvement in burning bones for the manufacture of acid phosphates.
Bones are burned white hy subjecting them to a steady, long-continued, nniform heat, with sufficient regulated air to secure perfect combustion without cooling off the furnace, the temperature of distillation being not for once inter-

5sssh- March 10, 1868. G. F. WILSON AND E. N. HORSFORD. Improvement in the manufacture of phosphates and in extracting phosphoric acid from bones.
Burned bones are treated with sulphuric acid dilnted with a weak solution of acid phosphate of lime to or beyond the point of precipitating the snlphate of lead present, and the mixture is treated with continnous agitation.
The material is leached in broad shallow pans with alternate affusion of water and tamping to secure leaching of the whole mass.
76,763-April 14, 1868. E. N. HORSFORD. Improved method of preparing acid phosphate of lime.
Sulphuric acid purified of sulphate of lead is employed in the mannfacture of pulverulent acid phosphate of lime, to be used for raising bread.
86,289-January 26, 1869. A. DUVALL. Improved method of mixing liquids with dust or powder for the manufacturc of phosphates, and for other purposes.
The palverized material and the acid are fed in to a blast of air or jet of steam, either or both, and thereby thoroughly mixed and projected into a receiving chamber.
110,680-January 9, 1871. N. B. RICE. Improvement in the manufacture of acid phosphates for use in baking-powders, etc.
To I, 000 pounds of pulverized phosphate of lime, as contained in apatite or bone, there is added 1,400 ponnds of terbydrated phosphoric acid, dilnted with 2,800 pounds of water, with enongh more phosphoric acid to neutralize and satnrate all carbonates, oxides, etc. After standing a week with frequent agitation the superphosphate of lime in solution is decanted or leached out. Part of the liquor is treated with sulphuric acid to deposit the lime in solution and leave a dilnte phosphoric acid, and part is treated with alkaline sulphates depositing the lime as a snlphate and leaving a superphosphate of the base.
128,743-February 15, 1872. B. TANNER. Improvement in the manafacture of phosphates of the alkalis.
Monosodic, bisodic, or trisodic phosphates, or like phosphates of potash or ammonia, are produced by mixing sodium chloride, or potassium or ammonium chloride, with phosphoric acid in the proper combining proportions, and subjecting the mixture to the action of steam, superbeated steam, or mixtures of hot air and steam.
12s,744-February 15, 1872. B. TANNER. Improvement in the manaffacture of superphospinates of lime.
See Gronp VIII. Fertilizers.
180,298-August 6, 1872. E. N, HORSFORD. Improvement in the manufacture of phosphate of lime and yeast-powders.
Solid monocalcic phosphate, produced hy evaporating, with a current of heated air, a solution of monocalcic, orthophosphate, and free phosphoric aciũ, mingled with a solntion of the phosphate of lime of burned bones in hydrochloric acid, in such proportions that the total namber of lime atoms equals the total nnmber of atoms of phosphoric acid. The monocalcic phosphate is mixed a yeast powder, and the latter with flour for the production of self-raising form
187,685-April 8, 187s. F. M. LYTE AND H. STORCK. Improvement in the manufacture of acid phosphates.
Soluble acid phosphates are prodnced by attacking earthy phosphates, especially phosphate of calcinm, with properly diluted phosphoric acid, precipitating.the earthy matter by means of alkaline sulphates, as snlphate of ammoninm, and then extracting the sulphuric acid of the residual liquor with the phosphate of barium, lead, or atrontinm, or the carbonates or other snitahle salts of these bases. The residues are either treated with sodium carbonate, caustic soda, and the phosphoric acid precipitated from the liquid with lime, or in certain other specified ways.
140,051-June 17, 187s. J. E. LAUER. Improvement in manufacturing crystalline acte phosphate of lime for yeast-powders.
Boneblack is first treated with dilnte snlphuric acid to deposit the snlphate of lime, and it is then treated with muriatic acid evaporated and crystalized. (See No. 62,277.)
164,457-June 15, 1875. A. JAS. Improvement in ctissolving tribasic phosphate of lime in water containing carbonic acid.
Tribasic phosphate is dissolved in water by means of a current of carbonic acid gas, at a greater or less pressure, according to the qnantity to be dissolved.
178,146-May 50, 1876. J. V. HECKER. Intprovement in acid-powders and processes of producing them.
An acid powder consisting of monocalcic ortho-phosphate, sodinm chloride, and calcinm chloride: produced by treating boneblack with sulphnric acid and then with hydrochloric acid and sodium chloride, leaching and evaporating to
dryness. dryuess.
196,771-November 6, 1877. J. E. SIEBEL. Improvement in processes of producing
the mono or acid phosphate of ammonia. A mixture
to a boiling heat for a suticlent and sulphate of ammonia in water is snbjected to a boiling heat for a sufticlent length of time to form sulphate of lime and monophosphate of ammonia, which latter is leached out and evaporated to dryness. The evolution of free ammonia is avoided by replacing a proper amount
of the sulphate of ammonla with sulphuric acid. of the sulphate of ammonla with sulphuric acid.
229,518-July 6, 1880. C. A. CATLIN. Acid phosphate for baking-powders.
An acid phosphate in which the active ingredient has an excess of base over a dihydrogen calcic phosphate, and in which both the phosphoric acid and the sulphate of lime are completely hydrated: produced by treating bone-ash or other tricalcic phosphate with oil of vitriol diluted with an excess of water under agitation and heat.
229,57s-July 6, 1880. G. F. WILSON AND C. A. CATLIN. Preparation of potas-
sium phoswhate for sium phosphate for baking-powder.
An acid powder containing as the active ingredient an acid potassinm phosphate with an excess of base over a dihydrogen potassic phosphate, and having both the acid phosphate and the sulphate of lime completely hydrated; produced by treating tricalcic phosphate with dilute oil of yitriol nnder agitation and heat, decomposing the hydrogen dicalcic phosphate into hydrogen dipotassic phosphate with potassium sulphate, and converting the mass into a dry powder.

229,574-July 6, 1880. G. F. WILSON AND C. A. CATLIN. Preparation of sodium phosphate for baking-powder.
An acid powder in which the active ingredient is an acid sodium phosphate phosphate and sulphate of lime completely hydrated: produced by decompos.
ing tricalcic phosphate with dilute oil of vitriol, and then effecting a double decomposition with sodium sulphate under agitation and heat, and convertlng
the mass into a dry powder.
s01,406; s01,407-July 1, 1884. S. G. THOMAS. Manufacture of alkaline phosphates. See Group VIII, Fertilizers.
\$13,s69-March 5, 1885. C. V. PETRAEUS. Solution of acid phosphates.
A combination of iree phosphoric acid with phosphate of soda, consisting of dihydrogen, sodic phosphate, phosphoric acid, and water, is produced by leaching a mixture of bone ash, 100 parts, with sulphuric acid of 49° Baumed by 100 parts,
diluted to 20° or 25° Baumé; and adding to the solution 161 parts of diluted to 20° or 25° Baume; and adding to the solution 161 parts of Glauber's
salts for each 28 parts of lime therein.
322,698-July 21, 1885. F. DIBBEN. Manufacture of superphosphates.
One part of acid soda sulphate is dissolved in 4 parts of water at a temperature
of $130^{\circ} \mathrm{F}$, allowed to stand until the neutral sulphate is crystallized nut of the mother liquor, when $3 \frac{1}{4}$ pounds of the mother liquor is added to 1 pound of phosphate of lime, and heated until the surplus water is evaporated.
324,471-August 18, 1885. L. IMPERATORI. Eatraction of phosphate soda from slags.
Slags from phosphatic materials, as from the Thomas Gilchrist process, are smelted with sulphate of potash or soda and carbon, and subsequently treated
with carbonic acid. with carbonic acid.
574,201-December 6, 1887. C. V. PETRAEUS. Process of making acid potassium phosphates.
Impure acid phosphate of lime, produced by decomposing bone or similar phosphate with a suitable acid and leaching, is decomposed by sulphate of potash; then carbonate of potash or caustic potash is added in excess, that is, in sufficient quantity to form in the solution an acid phosphate of potash containing an excess of potash over that in the dihydrogen potassium phosphate; and, after filtration, the solution is evaporated to crystallization.
389,566-September 18, 1888. C. GLASER. Process of making acid phosphate.
Insoluble phosphoric acid contained in mineral and petrified phosphates is converted into available phosphoric acid by finely pulverizing the mineral and then applying phosphoric acid directly thereto. The ground mineral may be divided into 2 parts, and the phosphoric acid extracted from 1 portion, by any method, and applied to the other portion.
412,798-October 15, 1889. J. REESE. Crystatline catcic tetraphosphate and the pro-
cess of making the same. cess of making the same.
Crystallized tetrabasic phosphate of lime; produced by oxidizing phosphorus at a high temperature while in the presence of lime, until the lime is charged with phosphoric acid, and then withdrawing the charged lime and subjecting it to slow cooling. It is pulverized and used as a fertilizer.
412,798-October 15, 1889. J. REESE. Process of making phosphates.
In the manufacture of calcium phosphate from phosphoritic iron, the molten phosphoritic iron is blown with an air blast, in a basic-lined vessel aud in the presence of lime additions, until the phosphorus has been reduced to not less than one-half of 1 per cent (but little iron being oxidized when the phosphorus isin excess thereof, when the phosphate so formed is withdrawn. After lime is charged to the desired amount of phosphorus it is withdrawn and a charge of fresh lime added, whereby phosphates having any desired percentage of phosphoric acid may be produced.
417,S20—December 24, 1889. C. GLASER. Process of making acid phosphate.
Mineral and petrified phosphates are ground and exposed to the action of dilute phosphoric acid, and the moisture subsequently evaporated; the amount of acid used is theoretically insufficient to convert all of the tricalcic phosphate (or corresponding compounds) into monocalcic phosphate, but exceeds the theoretical amount necessary to convert the same into bicalcic phosphate, thus forming a mi
(See No. 389,566.)
418,259-December 31, 1889. C. E. D. WINSSINGER. Process of making bicalcic phosphate.
In the production of bicalcic phosphates, a mother liquor of monocalcic phosphate of lime is produced by forming a phosphoric-acid solution-hy treating suitable phosphatic material with an excess of sulphurie acid-filtering, and treating the solution with carbonate of lime, or milk of lime, to convert it into a monocalcic-phosphate solution free from iron, etc. The solid residue from the filtration may he treated with a phosphoric-acid solution and sutphate of lime obtained as a by-product. The monocalcie solution is converted into a monosodic solution by treatment with sulphate of soda, which is then treated
with carbonate of soda, and the resulting neutral solution is treated with lime; with carbonate of soda, and the resulting neutral solution is treated with lime; the phosphate of lime separated from the resulting caustic-soda solution (a byproduct), and the separated phosphate treated
445,567-February 3, 1891. A. MEMMINGER. Process of making acid phosphates.
The drying of a compound of phosphatic material and acid is accelerated hy adding thereto a fluoride compound, as calcium fluoride, and the drying period is graduated hy comminuting to a definite degree and adding a greater or less proportion of the fluoride compound, or by parying the degree of comminution.
446,815-February 17, 1891. C. GLASER. Process of making alkatine phosphates.
Pure phosphates of the alkalis are ohtained from crude commercial phosphoric acid by decomposing the salt of an alkali and an acid volatile at higher temperature (as nitrate of soda) by fusing same with crude commercial phosphoric acid in excess of the amount required to form a pyrophosphate; then dissolving the fused massin water and boiling until conversion of meta and pyro phosphoric acid is effected; then treating with the carbonate of an alkalution free alkali) till alkaline reaction is ohtained;
from insoluble impurities and crystallizing.
493,889-March 21, 1895. S. L. GOODALE. Method of treating hydrated phosphates of alumina.
Insoluble hydrated phosphates of alumina and iron are heated by indirect heat in suitable receptacles until all the water of constitution is expelled, or usually until the entire mass has a temperature of about $325^{\circ} \mathrm{C}$., when the heat is arrested and the mass cooled before unfavorable molecular rearrangement is developed.
50\%,424-August 1, 1899. H. PRECHT. Process of obtaining meta or pyro phosphoricacid combinations.
To produce a soluhle potassium phosphate the insoluble potassium metaphosphate is melted and rapidly cooled to prevent crystallization. A basic body, as potash or soda, is added either before or during the melting, so that phosphor
acid in the form of pyrophosphate will in part be present in the molten salt.

57, 512-December 8, 1896. H. ALBERT. Process of manufacturing phosphates of alkatis.
See Group X, Electro-chemistry.
598,182-February 1, 1898. H. POOLE. Process of making phosphates.
Pulverized native aluminum phosphate is mixed with a boiling solution of caustic soda to decompose the native phosphate, then filtered; then silica is added to the boiling solution while open to the atmosphere, whereby the alumina is precipitated as a silicate; the tribasic-sodium phosphate crystallized out; and finally the aluminum silicate treated with sulphuric acid, whereby aluminum sulphate is formed.
601,089-March 22, 1898. J. G. WIBORG. Phosphate and method of making same.
A tetra-calcium-sodium (or potassium) phosphate. See Group VIII, Fertilizers, Products.
697,267-June 20, 1899. C. LUCKOW. Process of producing basic phosphates of copper by means of electrolysis.
See Group X, Electro-chemistry.

CARBONATES.

200,134-February 12,1878. C. FAHLBERG. Improvement in processes for utilizing zinc sutphate.
See Group XIX, Sulphites and Sulphates.
235,231-December 7, 1880. F. GUTZKOW. Manufacture of carbonate of magnesia. It is obtained in a light and flocculent form by forcing carhonic-acid gas through the pulp of magnesium hydrate in a heated state.
278,288-May 22, 1889. D. SIDERSKY AND H; PROBST. Process of obtaining carbonate of strontium.
To recover the strontium salts from the residues of the treatment of saccharine solutions with strontium, the strontianite is dissolved in said residues with an excess of hydrochloric acid, the strontium solution filtered off, the strontium in the solution converted into a sulphate, and the latter finally reconverted into a carbonate.
280,172—June 26, 1883. H. GROUVEN. Manufacturc of strontium carbonate.
Powdered celestine, or strontium sulphate, is mixed with a double sulphate of potassium and magnesium, and powdered carbon or coal, and the mixture purnaced in crucibles with exclusion of air. The mass is then lixiviated with exclusion of air, and the solution evaporated with introduction of carbonic-acid gas until the development of hydrogen sulphide stops. The precipitated strontium carhonate is separated from the potassium carbonate left in the solution.
301,389-Juty 1, 1884. E. A. MEBUS AND J. W. DE CASTRO. Manufacture of carbonate of strontium.
Sulphate of strontium is finely ground, mixed with water, and treated with carbonate of ammonia, or ammonia and carbonic-acid gas-water may be usedproducing carbonate of strontium and sulphate of ammonia. Ammonia is recovered by distillation of the sulphate of ammonia with lime.
305,962-August 19, 1884. A. WÜNSCEE. Method of obtaining carbonate of magnesia.
Ammonie and carbonic acid are introduced into a solution of soluhle magnesic salts, wherehy ammonium-magnesium carbonate is formed, which is separated from the ye and heated to drive of the ammonia and a part or all of the carbonic acid. Caustic megnesia may be added to the
510,979-December 19, 1893. G. LUNGE AND C. H. M. LYTE. Procesis of making basic tead salts and caustic alkali.
Basic lead carbonate is formed ánd caustic soda.
See Group II, Sodas, Caustic Soda.
534,177-February 12, 1895. E. RUEFF. Process of making light basic magnesium carbonate.
Carbonic-acid gas is introduced with agitation into a mixture of magnesia, 1 part, and water, 25 parts, until ahout 1 part by weight of gas has been ahsorbed, when the mixture is boiled down.

534,212-February 12, 1895. H. ENDEMANN. Process of making light magnesium carbonate.
A mixture of magnesia, 20 parts; carbonate of ammonia, 30 parts; and water, 500 parts, is agitated and allowed to harden into a cake. The ammonia may be expelled'by exposing to a temperature of $60^{\circ} \mathrm{C}$. in a partial vacuum, or the cake can be broken up and washed.
534,218-February 12, 1895. H. ENDEMANN. Process of making light carbonate of magncsia.
A mixture of magnesia, 10 parts, and the bichromate of a fixed alkali, as of soda, 32 parts, in 250 parts of water, is subjected to agitation under a graduallycollected.

601,007-March 22, 1898. H. E. STURCKE. Amorphows carbonate of lime and method of ond apparatus for obtaining same.
A new product: dry powdered carhonate of lime, in extremely fine particles having a specific weight of from 78 to 94 grams per 100 c . c. When dried at not exceeding $100^{\circ} \mathrm{C}$., is produced from the residues of the manufacture of caustic alkali by removing the caustic lime, mixing the residue with water, mechan action of a vacuum filter and drying.

603,225-Aprit 26, 1898. H. E. STURCKE. Process of preparing amorphous carbonate of lime from residues.
Amorphous calcium carbonate is produced from residues by first removing the insoluble impurities from calcium oxide and alkali carbonate by mechanical separation, then causing the oxide and carbonate to react upon each other in water, and separating the celcium carhonate formed from the alkali hydrate and from all soluble impurities including calcium hydrate. The calcium carbonate is then mixed with water, passed through a mechanical separator, filtered, and dried.
608,226-April 26, 1898. H. E. STURCKE. Process of preparing amorphous carbonate of time from residues.
Calcium carbonate, when made from residues according to $\mathrm{N}_{0}, 603,225$ and sep-

SILICATES.

28,540-May 29, 1860. G. E. VAN DERBOURGH. Reissue April 1, 1868. No. 1297. Reissue May 17, 1864; 1,674, (A). Improved mode of reducing silicates to a liquid or gelalinous state. $1,675(B)$. Improvement in apparatus for treating silicious substances.
Superheated steam is employed in a digester to reduce silicions and other refractory substances to a liquid or gelatinous state.
s9,185-July 7, 186s. T. ELKINTON. Improvement in the manufacture of alkaline silicates.
The ingredients are fed through roof openings onto the sloping bed of a furnace, down which the fused silicate flows in a continuous stream to an outlet, subject to the direct heat of the furnace
s04,044-August 26,1884 . S. G. THOMAS. Manufacture of alkaline salts.
Alkaline chlorides are decomposed, and alkaline silicates and other nonhaloid alkaline salts and hydrates produced, together with chlorine and hydrochloric acid, by acting on sodinm chloride in a Bessemer converter or Siemens or puddling furnace by the silicon contained in molten pig iron in presence of ox pugen, oxide of iron, or any oxygen-yielding hody. The chlorides are suboxygen, oxide of iron, or any oxygen-yielding hody. The chlorides are sub-
mitted to treatment inclosed in iron cases or compressed into shapes with or without oxide of iron to render the reaction more effective and prevent volatilization.
s60,840-April 12, 1887. J. T. ADAMS. Batoh for making glass.
A substance containing volatile hydrocarbon, as coal or sawdust, is mixed with a glass batch to clarify the bath.
376,409-January 10, 1888. A. KAYSER. Process of making alkaline silicales and carbonates.
The oxide of sodium or potassium is ohtained from the chloride by mixing the chloride with clay, heating the mixture in a converter directly by passing highly-heated gases containing steam through the converter, smelting the converted material together with an alkali, and then extracting the sodium or potassium combinations by lixiviation.
376,410-January 10,1888. A. KAYSER. Process of making alkaline silicates.
Silicate of sodium or potassium is made from the chloride thereof by mixing the chloride with silica, molding into bricks, and heating in a converter with highly-heated gases containing steam passed through the converter.
445,091-January 20, 1891. P. SIEVERT. Process of dissolving water-glass.
A clear solution of water glass is made by softening and partially dissolving the lumps by intimate contact with a jet of steam and treating them with a spray of alkaline lye, the solution being enriched by flowing over the glass limps and continuously discharged as it forms.
448,77e-March 24, 1891. M. W. BEYLIKGY. Silicate compound.
A new product, an alkaline-magnesian silicate solution, in which the silicate has the general formula, $7\left(\mathrm{Na}_{2} \mathrm{O}, 5 \mathrm{SiO}_{2}\right), 2\left(\mathrm{Mg}^{\prime \prime} \mathrm{OSiO}_{2}\right)$, insoluble after per fect drying, is produced by the action of a compound salt of fluosilicate of magnesium and hydrocarbonate of magnesia on a solution of tersilicate of soda.
590,143-September 14, 1897. W. GARROWAY. Process of making alkalinc silicates and nitric acid.
Silica and an alkaline nitrate are heated with superheated steam passed through the retort or furnace.
683,841-September 26, 1899. F. HENKEL. Process of making soluble alkatine silicates.
Six parts of a solid alkaline silicate is mixed with 1 part of water and heated at from 100° to $120^{\circ} \mathrm{C}$. until the water disappears and a homogeneous mass forms which is easily soluble in cold water. Or the solid alkaline silicate is mixed with a hot concentrated solution of the silicate. Sawdust, peat, or other substance may be added as a loosening agent when it is to be used as a fertilizer.

alUMinates.

454,187-June 16, 1891. A. KAYSER. Pracess of making sodium aluminate.
A mixture of insoluble sodium silico-aluminate-produced by process No. 376,409 (see Group II, Sodas, Sodium Carbonates)-and lime is subjected to a decomposing temperature and the product leached.
472,668-April 12, 1892. E. FLEISCHER. Process of making aluminates of alhalies. In the manufacture of alkali aluminates from aluminous substances and alkaline sulphates, thiosulphates, or sulphides, the ingredients are mixed with iron and lime and heated in the presence of a reducing agent, the iron and lime being so proportioned that the sulphur present is taken up by the iron and the silicic acid by the lime, while the latter is in excess to prevent the formation of soluble combinations of sulphide of iron with the alkalis.
572,026-November 24, 1896. D. A. PÉNLAKOFF. Process of making atuminate.
A mixture of an alkaline sulphate and an alkaline sulphuret and a substance containing alumina is heated to incandescence, producing an alkaline aluminate. The gas mixed with heated air is passed into retorts filled with calcined alkaline chloride to produce chlorine and alkaline sulphate.
608,657—May 10, 1898. D. A. PENLAKOFF. Process of making alkaline aluminates.
Aluminates, free from sulphides of iron and the like, are produced by calcinIng a mixture of bauxite, alkaline sulphate, and carbon in the proportions indi cated by the formula $2\left(4 \mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{Fe}_{2} \mathrm{O}_{3}\right)+8 \mathrm{Na}_{0} \mathrm{SO}_{4}+5 \mathrm{C}$, the proportions of the car bon being such that only one-fourth of the oxygen in the alkaline sulphate will be combined therewith.

612,364-October 11, 189S. F. RAYNAUD. Process of making alkaline aluninates. Alkaline aluminates free from silicates are produced by passing stcam through a heated mixture of aluminnous ore and any sulphide, the base of which is capable of combining with alumina, sulphureted hydrogen being simultaneously produced. Preferably, briquets are formed of aluminuous ore (alumina 640 parts); carbon, 207 parts; and an alkaline sulphate, as sulphate of soda, 900 parts; and dried for treatment.
618,772-January 31, 1899. H. S. BLACKMORE. Process of making alkali aluminates.
An alkali aluminate is produced by gradually introducing aluminium hydroxide, or aluminium hydrated oxide into a molten alkalis salt. With sodium chloride, sodium aluminate and hydrochloric acid are produced.

manganates and permanganates

326,657-September 22, 1885. T. KEMPF. Process of manufacturing permanganates. Solutions of the manganic-acid salts are electrolyzed in the positive compartment of a cell having a porous diaphragm, producing permanganic-acid salts ment of a cell having a porous
515,44-February 27, 1894. J. H. PARKINSON. Porous permanganate block and process of making same.
Permanganate of potash or soda is thoroughly mixed with kaolin-say from 10 to $12 \frac{1}{2}$ per cent-and formed with water into a stiff paste, which is baked hard and dry in a partial vacuum for use in the production of oxygen.
588,614-August 24, 1897. E. B. STUART. Manganate and process of producing same.
A double manganate of sodium and calcium, for use in extracting oxygen from air, is produced by subjecting sodium hydrate 80 parts, calcium oxide 56 parts, and binoxide of manganese 88 parts, with oxygen 128 parts, to a temperaparts, and binoxide of manganese 88 parts, with oxygen 128 parts, to a temperapreferred.
691,288-August 15, 1899. R. H. REEVES. Methad of disinfecting.
Sulphuric acid is mixed with a dry mixture of manganate of soda and carbon or wood dust to evolve gases for suppressing noxious vapors. After the gases are evolved water is added to form permanganic acid, which acts on sewage.

PROCESSES AND APPARATUS.

9,145-July 27, 1852. H. W. ADAMS. Process for the manufacturing of metallic zinc in the form of a fine powder by the use of steam.
Vaporized zinc is brought into contact with steam, the temperature of the steam being less than the melting point of the zinc, whereby the zinc vapor is steam being less than the medting point of the zinc, whereby the
12,819-May 8, 1855. B. HARDINGE. (Reissue; 344-January 22, 1850.) Improvement in apparatus for dissolving silica.
The solvent is taken from the upper part of the charge in the digester, passed through a heatcr, and the vapor discharged into the bottom of the charge in connection with a stirrer.
45,684-December 27, 1864. E. SONSTADT. Improvement in the manufacture and purificalion of magnesium.
A solntion of magnesium chloride and potassium chloride is evaporated to dryness and the residue heated to redness and acted upon by sodium producing dryness and the residue heated to redness and acted upon by sodium producing
magnesium, which is distilled and purified, using an iron retort with exclusiou of air.
54,266-April 24, 1866. C. H. WING. Improved method of preparing magnesium for burning.
Magnesium wire or ribbon is formed into a spiral coil.
77,987-May 19, 1868. C. KUEHN. Improved mode of utizizing tin serap or waste.
The scrap is boiled in water and 25 per cent of muriatic acid and $2 \frac{1}{2}$ per cent of nitric acid (of weight of scrap metal) is added, and the tin dissolved. Successive charges are treated in the same bath with additions of acid until it is satuevaporated and the chloride of tin is obtained.
96,524-Novmber 2, 1869. F. WILCOX. Improved process of refining the waste from German silver and other metals.
It is carbonized by pouring the molten waste into a crucible containing nitrate of soda, or other material supplying oxygen.
96,525-November 2, 1869. F. WILCOX. Improved proccss of utilizing the waste formed in cteaning copper and brass goods.
The waste is settled and the sediment dissolved with the aid of steam and the copper deposited out by means of iron plates. The liquor is then filtered, evaporated, and the sulphate of iron obtained. The deposited copper is washed, fused, and cast.
102,143-April 19, 1870. D. D. PARMELEE. Improvement in treating tin scrap to obtain useful products.
Tin is removed from tin scrap by treating the same in an inclosed vessel with chlorine gas, carrying off the fumes and condensing them as chloride of tin.
107,711-September 27,1870 . A. OTT. Improvement in treating tin serap for the manufacture of stannate of potash, etc.
Fifty pounds of tin scrap is digested with 8 quarts of a lye of caustic soda 18° Baume, 10 pounds of litharge, $1 \frac{1}{2}$ pounds of sodium nitrate, and 1 pounds of sodium manganate along with steam. The liquor is decolorized by filtering through bonehlack evaporated to 18° Baume and cooled when stannate of soda chrystallizes. For stannate of potash in place of the soda componnds, 14 pounds of a lye of caustic potash, 2 pounds of potassium nitrate and 2 pounds of potassium manganate are used.
112, 889-March 21, 1871. A. OTT. Improvement in preparing tin salts from tinners' waste.
Scrap tin is digested with muriatic acid and steam. The liquor is evaporated to 60° Baume, and bichloride of tin formed by heating it with muriatic acid sulphuric acid, and water. It is then distilled, bichloride of tin going over and chloride of iron remaining. The bichloride is reconverted into chloride by heating it with granulated tin.
119, $267-$ September 26,1871 . F, W. DORN. Improvement in praccsses of utilizing
tinners' clippings. tinners' clippings.
Scrap metal is treated with a mixture of muriatic acid gas, hyponitric-acid gas, and steam, or muriatic-acid gas and steam alone, followed by a jet of steam to wash off the muriate of tin.
121,9/8-December 19, 1871. C. LENNIG. Improvement in removing tin from tin serap.
A solution of caustic soda pr potash is poured over the scrap metal, drawn off. and then air forced through the mass of metal, and the operation successively repeated. Stannete of soda or potash is deposited out of the liquor.
128,265-June 25, 1372, T. F. WELLS. Improvement in processes of separating tin from iron in tinners' clippings.
Tin is separated from iron by means of hydrochloric acld to which nitric acid is gradually added in conjunction with chlorate of potash when the original bath gets exhausted. The tin is deposited out of the charged solution by zinc
or otherwise, and the remaining liquor-a solution of the chloride of iron and ane-is available for the preparation of paints, for a disinfectant, or for the preservation of wood.
199,417—July 16. ${ }^{187 \%}$. D. MCDANIEL, W. B. SPEAR, AND J. W. RICHARDS. Improvement in melhods of utilising wasle tin serap and galvanized iron.
Tin scrap is first treated with muriatic acid to dissolve the tin, and the iron metal being removed, galvanized-iron serap is immersed in the bath. Then to the liquor is added waste sal-ammoniac skimmings, and a chemical equivalent of waste numnoniacal liquor from gas works, the iron preeipitated, and the liquor cooled and crystallized, yielding a substitute for sal ammoniac as a flux for zlne eoating baths.
1h6,286-January 6, 1874. H. SIEGER. Improvement in recovering zinc from zinc fumes.
The fumes of zine and the gases evolved during the aperation of treating alloys of zinc in a dry state are passed through a chamber containing carbonic oxide, and the zinc fumes coudensed ina metallic state.
155,043-September 15, 1574. W. S. SAMPSON. Improvement in methods of peserving lime.
Lime is compressed into a solid mass, the barrel being lield in an adjustable clamp. It preserves it from air slacking and reduces bulk.
160,018-Fcbruary 2s, 1875. J. HOLLIDAY AND H. M. BAKER. Improvement in processes for removing tin from tin scrap.
Tin scrap is heated in a bath of fused alkaline nitrate and then plunged into water.
190,550-May 8, 1877. C. A. CATLIN AND G. F. WILSON. Improvement in processes of utilizing tin scrap.
The scrap metal is sprinkled with dry chloride of sodium or potasslum and nitrate of sodium or potassium, and then immersed in a caustic alkaline solution. Stannate crystals of the alkaline base are obtained from the evaporation of the satarated solution.
191,530-June 5, 1877. C. HORNBOSTEL. Improvement in processes of applying oxygenated air in blast furnaces.
Oxygen gas is supplied by torcing a current of air through a mixture of black oxide of manganese and sulphuric ucid.
196,831-November 6, 1877. J. M. SANDERS. Improvement in manufacture of oxide of tin.
Scrap tinned iron is subjected to a heat that will volatilize the tin, which is oxidized by the admission of air, and the tin oxide settled in a condensing chamber.
200,587-February 19, 1s78. P. C. VOGELLUS. Improvcment in separatingtin from tin-serap.
Scrap metal is treated in a dilute nitric-acid bath, the iron being in contact with the positive pole of an electric battery, or otherwise rendered passive.
208,795-October 8, 1878. J. HOLLIDAY AND J. LAMBERT. Improvenent in utilizing tin scrap and manufacture of stannates.
Tin scrap is treated in a bath composed of a solution af canstic soda or potash and an alkaline arsenite, nitrate or nitrite. The saturated solution of stannate and an alkaline arsenite, nitrate
251,588-December 27, 1881. C. C. HUGHES. Preparation of whitewash from lime. A whitewash free from grit is made by mixing lime with water and then grinding it. The product may be evaporated to a paste and packed in cans or barrels.
265,974-October 17, 1882. F. B. NICHOLS. Apparatus for evaporating or concentrating liquids and saturating liquids with gases.
Siphon slips, operating by surface attraction, are used to feed fluids out of tronghs.
268,701-Depember 5, 1882. J. A. MATHIEU. Process of and apparatus for evoporating liquids.
Solid matter is separated from a heated solution thereof by showering it into a vacuum.

277,884-May 22, 188s. J. CLARK. Method of rcducing metals from thcir orcs.
Refractory ores or material compressed into a bar or block, is exposed to concentrated solar heat at the forus of a lens or reflector and suitable reagents applied.
277,885-May 22, 188s. J. CLARK. Method of reducing metals from their ores.
Ores are melted or disintegrated by concentrated solar heat and simultaneously carbonaceous reagents are applied, whereby ores containing chlorides may he reduced without the use of sodinm or potassium.
298,149—May 6, 1884. C. R. A. WRIGHT. Process of dissolving metals in ammoniacal solutions.
Cuprammonium hydrate, or "copperized ammonia," or an analogous ammoniacal solution containing zinc, is produced by passing air through a solution of acal solution containing zinc, is produced the metal immersed therein.
sede, $157 \rightarrow J u l y$ 14, 1885. C. A. CATLIN. Process of recovcring tin from tin-scrap. The tin is dissolved in an alkaline bath, and an oxide or salt, such as oxide of lime, is added, which will precipitate the tin as an insoluble stannate.
ss4,207—January 12, 1886. J. J. WETHERILL. Apparatus for filtering and separaling metals.
A furnace for process No. 334,208. It has a chamber filled with refractory filtering material on which the metal to be filtered is placed, and one or more settling chambers with loosely built fire-brick division walls.
s34,208-January 12, 1886. J. P. WETHERILL. Process of filtering and separating metals.
Metals and alloys of metals are heated to a temperature intermediate between the fusing points of the metals, and the metal having tbe lower fusing point is fused and passed through filtering material at the intermediate temperature.
344,575-June 29, 1886. W. HASENBACH. Process of separating the tin from serap or pieces of tin-plate or tinned iron by means of hydrochloric acid.
The scrap metal is heated and treated with gaseous hydrochloric acid. The protochloride of tin formed distills ofti aud is caught in a condensing chamber.

S63,136-May 17, 1887. W. HASENBACH. Recovery of tin from seraps of tinned plate.
Protoxide of tin is obtained from lyes containing protochloride of tin and iron, obtained in the recovery of tin from tin-scrap by hydrochloric acid, by treating the lyes in closed vessels with pulverized carbonate of lime in excess, then separating the formed insoluble oxyprotochloride of tin from the dissolved oxyprotochloride of iron, and afterwards treating the oxyprotochloride of tin with carbonate of lime at a high temperature in a closed vessel, whereby the oxyprotochloride of tin is converted into a protaxide of tin.
369,17s-May 17, 1887. G. SCHENCK. Pracess of and apparatus for charging liquids with gases.
For charging liquids with gases, as in the manufacture of bisulphites, the gases are iorced into the liquor in a tank through tubes revolving therein beneath the surface of the liquor, and simultancously the liquor, drawn from an upper to a lower tank, is discharged in spruy through the gases in the top of the lower tank.
360,118-Juty $\delta, 1857$. A. LAMBOTTE. Process of recovering tin from tin-plate and other materials.
The serap metal is subjected to a continuous current of chlorine gas dilnted with air at a temperature above the bailing point of stannic chloride, and the vapors are conducted into a stannic chloride solution. The concentrated solution is evaporated duwn with a current of warm air.
$370,220-$ September 20,1887 . O. M. THOWLESS. Process of extracting aluminium.
Aluminium chloride is mixed with sodium-producing substances, as a mixture of aluminium chloride, 10 parts; chalk, 3 parts; coal, 10 parts; and carbonate of soda or soda-ash, 10 parts; with or without 1 part of cryolite as a finx, and heated in a vessel; then ground and washed to remove the carbon and other matter.
375,606-December 27, 1857. G. G. CONVERS. Process of treating sal-ammoniac or
fux skimmings.
The raw skimmings of a gal vanizing bath are subjected to the action of steam, which is injected into the mass, and simultaneously the condensed vapor containing the soluble chlorides of zine is drained off. The drained skimmings are then calcined and reduced.
 the vapors or fumes arising in the process of zine-smelting.
The ainc vapors and associated vapors from the smelting furnace are permitted to expand and separate by gravity in a condenser, the temperature of izing point of zinc, whereby the fixed gases absorb heat from and liquefy the zinc vapors.
405,368-June 18, 1889. E. MENNEL. Process of making double salts of mereury.
A uni or multi valent phenol is treated with an acidulated solution of a persalt of mercury.
407,818-July 30, 1859. C. A. CATLIN. Process of chruging liquids with gas.
A current of mixed gas is continuously passed through a series of tanks in onedireetion, while the liquid is intermittingly passed through the tanks in the opposite direetion, with agitation of the liquid and gas.
409,409-August 20, 1859. C. LANGER. Apparatus for trcating solids with gases.
It has a plurality uf parallel intersecting spirals or Archimedian serews, having intersecting circles of rotation.
410,067-August 27, 1859. H. BOWER. Process of facilitating chemical reactions
Two or more substances to be combined are subjected to the effect of impact and attrition from opposing jets. A finely divided solid may be used to intensily the impact and attrition.
412,247-October 8, 15s9. W. W. FRANTZ. Process of preserving lime.
Quicklime, hot from the kiln, is pulverized and hermeticully sealed in boxes in a hot state.
412,780-October 15, 1889. J. MicNAB. Process of filtering.
A soluble salt is leached from a mixed mass of soluble and insoluble material, by grinding the mass with water into a thick homogeneous paste, ndding sufficient water to dissolve the soluble portions, and forming a thoroughly-fluid homogeneous mixture in an agitating tank, and then forsing the mixture into the fibrous bags of a filter press by means of a foree pump.
421,935-Fcbnaty 25, 1590. J. HOLLIDAY. Process of making alkaline satts of antimony.
Alkaline antimonites, or antimoso-antimonates, are made by treating pulverized metallic antimony in a hot aqueous solution of an alkaline nitrate or nitrite and caustic alkali.
430,653-June 24, 1590. G. KASSNER. Proccss of producing plumbates of alkaline earths.
Plumbates of alkaline earths are produced by roasting in free air a mixture of lead oxide (or a mixture of such salts of lead as are reduced to oxides by of lead oxide (or a mixture oydrate or saustic compound of an alkaline earth. 455, 280-August 26, 1890. E. CAREZ. Proccss of making ammonium nitrate.
Barium sulphate is calcined out of contact with air, with a mixture of charcoal and a hydrucarbon, as resin-oil, and the product boiled with sulphur and water to produce polysulphide, which is transformed into barium nitrate by means of sodium nitrate, then crystallized and decomposed with ammonium barium sulphate.
$450,243-$ April 14, 1591. C. LIESENBERG. Proccss of clarifying liquids.
A clarifying liquid for solutions is prepared by treating a phosphate in the A clarifying of water with sulphurous acid.
459,05h-Seplember 8, 1891. J. N. G. BONNET. Process of recovering tin from waste tin-plate.
Stannates are formed by agitating the plated scrap in an alkaline solution and simultaneonsly forcing bat air into the solution. The solution is then drawn off and sulphurous acid introduced, precipitating the tin as staunic acid.
485,035-Oclober 25, 1592. H. C. W. HARMSEN. Process of separating tin from lin-plate waste.
The tin is dissolved in a bath of dilute sulphuric acid and nitric acid, and the saturated tin sulphate solution is then mixed with heated dilute nitric the saturated, and temperature maintained ut not less thau $40^{\circ} \mathrm{C}$., whereby the dissulved tin is precipitated as staunic acid.

489,624-January 10, 1893. C. L. C. BERTOU. Process of precipitating oxide of tin from solutions.
Carbonate of lime is gradually added to the solution with the latter at a temperature near but below ebullition and exposed to the air until the precipitation of tin is complete. It is then cooled, the precipitate collected and washed with cold water and suspended in solution of a carbonate of an alkali metal, the strength of which is gradually inereased until it presents a slightly alkaline reaction.
491,254-February 7, 1899. T. TWYNAM. Process of separating tin from iron or - steel.

The metal is first coated with a film which will form a scale when heated, as by dipping in a slightly glutinous solution of calcium chloride; it is then heated until the tha is oxidized and plunged into a water bath, the film of oxide falling off. The oxides may then be treated to separate the iron and tin oxides.
497,256-May 9, 1893. M. WANNER. Process of reducing sulphide ores and manufacturing carbon bisulphide.
Sulphide ore, cleaned from gangue and pulverized, is mixed with earbon or hydru-carbon and subjected to destructive distillation; the carboll-bisulphide vapor is collected and condensed and the reduced metal obtained.
519,891—May 8, 1894. J. REESE. Method of utilizing iron ore.
The entire contents of phosphoretic iron ores are utilized by magnetically separating therefrom the larger portion of the magnetic oxide, hnely pulverizing the tailings and treating with sulphuric acid to make the phosphates soluble
and available for plant food.
521,444-June 12, 1894. E. A. UEHLING. Process of and apparatus for analyzing goses.
The percentage of a constituent of a gas-say of the waste gasof blast furnaeesis continuously indicated by means of continuous suction through minute inlet and outlet apertures and the abstraction of the constituent from the gas in its passage between said minute apertures, whereby the tension of the gas is varied
b22,746-July 10, 1894. E. A. UEHLING AND A. STEINBART. Process of ant apparatus for arolyzing gases.
As an improvement on the process of No. 521,444 , the gas isfiltered and passed through a number of absorption chambers, each having a minute inlet and outthrough a number of absorption chambers, each having a minute inlet and outof which are severaIly determined by the changes from the normal tensions.

537,941-April 23, 1895. H. F. D. SCHWAHN. Method of roasting ores and recovering vapors therefront.
The ores or minerals ground and mixed with nitrate of sodium or potassium10 per cent-are roasted and sublimated, steam being injected into the chamber, and the resuitant vapors are forced through one or more baths of solutions of nitric acid, hydrochloric acid, a salt of an alkali metal-preferably sodium of cblorides water of about 10° Baumé, causing reactions with the production which are further treated as seems advisable or profitable.
539,785-May 7, 1895. E. E. LUNGWITZ. Process of smelting ores.
Ores, containing a volatilizable metallic element, are smelted in a furnace under a maintained pressure higher than the pressure at which the resulting metal or regulus, or one of its constituents, would boil at the temperature obtained in the furnace.
549,596-Novcmber 12, 1895. A. ERLENBACH. Methoct of willizimg tin of stannifevous materials.
Stanniferous materials, as tin scrap, stanniferous waste of dyeing and finishing factories, etc., are heated with muriatic acid to turn the tin into solutions of perchloride of tin; the solution is concentrated, and the heating continued to distill off the perchloride of tin, and simultancously therewith a stream of muriatic acid is introduced into the percbloride of tin.
556,568-March 17, 1896. E. WARZÉE. Proccss of precipitating iron from solutions containing iron and sinc.
Iron is precipitated as ferroso ferric oxide from solutions containing iron and zinc-as the spent clectrolytes of galvanic batteries-by adding zinc in excess and blowing in air at a temperature of $90^{\circ} \mathrm{C}$. to produce oxidation and agitation.
558,818-April 21, 1896. T. K. KLIMMER. Process of making alkaline solls of metallic acids.
For the production of alkaline salts with oxyacids of heavy metals from ores contalning the beavy metals combined with oxygen, the ore-such as chrome ore-is mixed with ferric oxide and all excess of alkaline carbonate, calcined in the presence of air, and lixiviated. The residue, dried and ground, is used in a subsequent operation.
582,47s-May 11, 1897. J. B. HILLIARD. Chemical apparatus.
To prevent gases from intermingling while passing through liquids, inclined, inverted, open channels are used for the gas, with entrance pipes connected with the lower ends of the cbannels and escape pipes connected with the upper ends.
593,415-November 9, 1897. S. GANELIN. Method of treating stelfid ores as leadzine ores.
Lead sulphide ores are introduced into a bath of a fused halogen sult capable of being decomposed by the sulphide-as chloride oi zinc-effecting th double
decomposition and the conversion of the leud sulphide into a halogen salt of lead, and of the base of the halogen salt of the bath into a sulphide.
600,547-March 8, 1898. T. HUNTINGTON AND F. HEBERLEIN. Process of treating sulfid ores of lead, cte., preparatory to smelting.
Sulphide ores of lead are oxidizcd by mixing the ore with an oxide of an alkane earth metal-as calcium oxide-heating the mixture in the presence of air to a bright red heat ($700^{\circ} \mathrm{C}$.), then cooling to a dull red heat ($500^{\circ} \mathrm{C}$.), and find
fuses.
602,63̊-April 19, 1398. G. DE CHALMOT. Method of obtaining free amorphous silicom.
Silicon in the presence of copper is reclaimed in a free condition by heating finely pulverized silicon-copper alloy mixed with sulphur in a closed vessel to a temperature between 250° and $300^{\circ} \mathrm{C}$. The silicon is set free asan amorphous powder. The amount of sulphur is regulated to form Cu, S or CuS.
605,579-June 7, 1898. H. S. BLACKMORE. Retort and method of making same.
An impervious, noncorrodible retort for manufacture of carbon bisulphide is made of fire clay lined with a glaze of lead sulphide formed by coating it with fusible oxide of lead and then exposing to the action of carbon-bisulphide vapor when at a red heat.
607,497-July 19, 1898. G. M. WESTMAN. Process of and apparatus for pyritic smelting.
Hot air Irom regenerators is forced up through a column of pyritic ore free from carbonaceous fuel; the gases and volatilized products pass off, the oxides are condensed, and the remaining gases, nitrogen and sulpburous acid, produce sulphuric acid, while matte and slag arc continuously drawn off from the base of the ore column.
616,821-December 27, 1898. J. BOCK. Process of ancl apparatus for obtaining crystals.
Large individual crystals are obtained from a heated saturated solution by passing it through a long, thin mass of erystals of the substance being crystalized, subjecting it to a gentle and slow disturbance and to a gradual cooling.
624,839-May 9, 1899. E. E. LUNGWITZ. Process of roasting ores.
The mass is opened by roasting under super-atmospheric pressure and suddenly removing the external pressure wbile the blast is shut off, whereby the expansion of the compressed gases within the mass break it open.
634,566-October 10, 1899. F. BALLOU. Art of smelting ores.
Water-saturated coke is used in the charge for a stack furnace, resulting in reduetion of eoke consumption due to the retarding of coke combustion until the charge has suuk to the smelting zone.

ORGANIC.

PROCESSES AND APPARATUS.
49,995-September 19, 1865. J. FRASER. Improved method of treating oil wells for the removal of paraffine.
Hot carbonic oxide is used for heating oil wells to redissolve the solid hydrocarbons.

80,895-August 11, 1868. F. RENZ. Improved process of mathufacturing sulphuric ether.
The vapor from corn mash is passed through sulphuric acid at a temperature of $240^{\circ} \mathrm{F}$., forming sulpho-vinic acid, which is washed at a temperature of $195^{\circ} \mathrm{F}$. and then passed througb sulphuric acid at a temperature of 275° to $300^{\circ} \mathrm{F}$., proand water baths, and the water condensed, leaving pure sulphuric etber.

186,623-March 11, 1878. W. F. SIMES. Inprovement in preparing camtphor.
Distilled or refined camphor is formed into blocks or tablets by pressure.
164,473-June 15, 1875. I. M. PHELPS. Improvement in permanent flour of camphor. I'ulverulent camphor is produced by subliming crude camphor in combination with glycerine. The glycerinated eamphor is compressed into blocks.

169,727-November 9, 1875. C. PETERS. Improvement in reagents for testing the strenglh of vinegar.
A mixture of litmus, one-half pound; concentrated liquid ammonia, 1 pound; alcohol, I quart; and water enough to make in all 17 quarts, constitutes a blue testing liquid that is turned red by vinegar.

247,793-October 4, 1881. W. H. ATKINSON. Refining camphor anel apparatais therefor.
Camphor is refined while surrounded by sheet metal or alloy, which can afterwards be stripped from the cake.

511,143-December 19, 1893. W. H. HIGGIN. Process of making sodium acetate.
Esparto liquor and other alkaline waste liquors containing sodium acetate are evaporated, the residue carefully heated at about $400^{\circ} \mathrm{C}$. , but below the heat at which sodium acetate is deco. uposed, and the charred mass leached.

Twelfth Census of the United States.

Census Bulletin.

No. 211.

WASHINGTON, D. C.
June 25, 1902.

AGRICULTURE.

WEST VIRGINIA.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of West Virginia, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land, nnder one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It also includes the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.

The farms of West Virginia, June 1, 1900, numbered 92,874 and were valued at $\$ 168,295,670$. Of this amount, $\$ 34,026,560$, or 20.2 per cent, represents the value of buildings, and $\$ 134,269,110$, or 79.8 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 5,040,420$, and of live stock, $\$ 30,571,259$. These values, added to that of farms, give $\$ 203,907,349$, the "total value of farm property."

The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal products."

The total value of such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 44,768,979$, of which amount $\$ 19,072,790$, or 42.6 per cent, represents the value of animal products, and $\$ 25,696,189$, or 57.4 per cent, the value of crops, including forest products cut or produced on farms. The total value of farm products for 1899 is more than twice that for 1889, but a part of this increase is probably due to a more detailed enumeration in 1900 than in 1890.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 8,160,860$, leaving $\$ 36,608,119$ as the gross farm income. The ratio which this latter amount bears to the "total value of farm property" is referred to as the "percentage of gross income upon investment." For West Virginia, in 1899, it was 18.0 per cent. As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for West Virginia.

Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN WEST VIRGINIA.

general statistics.

West Virginia has a total land area of 24,645 square miles, or $15,772,800$ acres, of which $10,654,513$ acres, or 67.5 per cent, are included in farms.

From the northeast corner of the state extending south and southwest to the Big Sandy River is a belt of mountains, interspersed with narrow valleys. Clay soil is found in limited areas in the higher portions of this region, while the "stream and upland alluviums" are found on the gentler slopes and in the valleys. The sandy soil which prevails in the extreme northeastern part is the least productive of the soils of this belt.

West of the mountains is a large area of broad flat hills better fitted for grazing than for cultivation, but among the hills are many streams that enrich a naturally fertile soil. Cattle and sheep thrive on the hillsides and are shipped in large quantities to the Baltimore and Pittsburg markets.

The remainder of the state has a gently rolling surface extending to the Ohio River. The soil is rich, consisting of clay and sand loams, mingled with humus and vegetable matter and enriched by disintegrated limestone.

NUMBER AND SIZE OF FARMS.
Table 1 shows, by decades since 1870 , the number of farms, the total and average acreage, and the per cent of farm land improved.
Table 1.-Farms and farm acreage: 1870 To 1900.

YEAR.	Number of farms.	number of acres fiv farms.				Per cent of farm land improved.
		Total.	Improved.	Unimproved.	Average.	
1900	92, 874	10,654, 513	5, 498, 981	5, 155, 532	114.7	51.6
1890	72,773	10,321, 326	4, 554, 000	5, 767, 322	141.8	44.1
1880	62, 674	10, 193,779	3, 792, $3: 7$	6, 401, 452	162.6	37.2
1870	39, 778	8, 528, 394	2,580, 254	5, 948, 140	214.4	30.2

The total number of farms in West Virginia in 1900 was 53,096 greater than in 1870 , and 20,101 , or 27.6 per cent, greater than in 1890. The increase in the total farm
acreage has not been so rapid, amounting to but 24.9 per cent since 1870 and 3.2 per cent in the last decade. These changes have involved a constant decrease in the average size of farms and an increase in the per cent of farm land improved.

FARM PROPERTY AND PRODUCTS.
Table 2 presents a summary of the principal statistics relating to farm property and products for each census year since 1870 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF PRODUCTS: 1870 TO 1900.

year.	Total value of farm property.	Land, improvements, and buildings.	Implements and machinery.	Live stock.	Farm producte. ${ }^{1}$
1900	\$203, 907, 349	\$168, 295, 670	\$5, 040, 420	\$30,571,259	\$44, 768,979
1890	178, 961,330	151,880,300	3, 116, 420	23, 964,610	20, 439,000
1880	153, 588, 725	133, 147, 175	2,699,163	17,742,387	19,360,049
$1870{ }^{2} \ldots$	120, 892, 738	101, 604, 381	2,112,937	17, 175, 420	323,379,692

${ }^{1}$ For year preceding that desiguated.
${ }^{2}$ Values for 1870 were reported in depreciated currency. To reduce to specio basis of other years they must be diminished one-fifth.
${ }^{3}$ Includes betterments and additions to live stock.
The gain in the last decade in the total value of farm property was $\$ 24,946,019$, or 13.9 per cent. In the same time, land, improvements, and buildings increased in value $\$ 16,415,370$, or 10.8 per cent; implements and machinery, $\$ 1,924,000$, or 61.7 per cent; and live stock, $\$ 6,606,649$, or 27.6 per cent. The value of farm products of 1899 was 119.0 per cent greater than the value reported for 1889 , but it is probable that a part of this gain is due to the more detailed enumeration made in 1900 than in 1890. One important item enumerated in 1900 but not in 1890 is the value of animals sold and animals slaughtered on farms, which for 1899 amounted to $\$ 9,428,066$.

COUNTY STATISTICS.
Table 3 gives an exhibit of general agrioultural statistics. by countiem.

Table 3.-NUMBER and acreage of farms, and values of speoified classes of farm property, June 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

All counties report increases in the number of farms in the last ten years, except Fayette and Logan, a territorial change having occurred in the latter county in that period. Nearly all counties report increases in their total farm area, and a still greater number report increases in the area of improved land. The average size of farms for the state is 114.7 acres, and varies from 72.2 acres in Clay county to 304.9 acres in Hardy county. The largest farms are, as a rule, in the counties given principally to the raising of cereals and live stock.
For the state, the average value of farms, exclusive of buildings, is $\$ 1,446.00$. Approximately three-fourths of the counties report increases in the total value of farms
since 1890, while McDowell alone reports ${ }^{\circ}$ decrease in the value of implements and machinery. The value of live stock reported was less than in 1890 in five countiesBerkeley, Fayette, Hancock, Logan, and Taylor.

farm tenure.

Table 4 gives a comparative exhibit of farm tenure in 1880, 1890, and 1900. The farms operated by tenants are divided into two groups, designated as farms operated by "cash tenants," who pay a cash rental or a stated amount of labor or farm produce, and farms operated by "'share tenants," who pay as rental a share of the products.
In Table 5 the tenure of farms for 1900 is given by race of farmer. The farms under the classification "owners"
in Table 4 are subdivided in Table 5 into groups designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive a fixed salary from the owners for their supervision and other services.

Table 4.--NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES : 1880 TO 1900.

YEAR.	Total number of farms.	NUMBER OF FARMS OPERATED RY-			PER OENT OF FARMS OPERATED RY-		
		Owners. ${ }^{1}$	Cash tenants.	Share tenants.	Owners. ${ }^{1}$	Cash tengnts.	Share tenants.
1900	92,874	72,583	7,526	12,765	78.2	8.1	13.7
1890___	72,773	59, 858	4,275	8,640	82.2	5.9	11.9
1880	62, 674	50,673	4,292	7,709	80.9	6.8	12.3

1 Including "part owners," "owners and tenants," and "managers."
Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Paet 1.-Number of farms of specified tenures.

E4.OE.	Total number of farms.	Owners.	Part owners.	Owners and tenants.	Managers.	Cash tenants.	Share tenants.
The State.-	92,874	65,797	4,620	1,112	1,054	7,526	12,765
White_--------	92,132 742	65,320 477	4,566 54	1,109 3	1,046 8	7,458 68	12,633 132

Part 2.-per cent of farms of specified tenures.

The State.-	100.0.	70.9	5.0	1.2	1.1	8.1	13.7
White	100.0	70.9	5.0	1.2	1.1	8.1	13.7
Colored -.-.---	100.0	64.3	7.3	0.4	1.1	9.1	17.8

Since 1880 the total number of farms has increased 30,200 , or 48.2 per cent. Since 1890 the number of farms operated by owners has increased 12,725 , or 21.3 per cent; the number by cash tenants, 3,251 , or 76.0 per cent; and that by share tenants, 4,125 , or 47.7 per cent. The percentages in Table 4 show that the number of farms operated by cash tenants has increased at a relatively greater rate in the last decade than the numbers operated by owners and share tenants.

Of the farms in the state, 99.2 per cent are operated by white farmers, and 0.8 per cent by colored farmers. Of the white farmers, 77.1 per cent own all or part of the land they operate, and 22.9 per cent operate farms owned by others. For colored farmers, the corresponding percentages are 72.0 and 28.0 , respectively.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," or
"managers," but it is believed that the number conducted by the last-named class is constantly increasing.
farms classifled by race of farmer and by tenure.
Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.
Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RAOE OF FARMER, AND TENURE.	Number of farms.	NUMBER OF ACRES IN FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	92, 674	114.7	10,654,513	100.0	\$203,907,349	100.0
White farmers	92,132	115.2	10,612,929	99.6	203,079, 638	99.6
Colored farmers.	742	56.0	41,584	0.4	827, 711	0.4
Owners _-.----------	65,797	117.9	7,757,841	72.8	149,916, 878	73.5
Part owners	4,620	126.5	584, 416	5.5	11, 236, 200	5.5
Owners and tenants-	1,112	168.3	187, 145	1.7	3, 455, 271	1.7
Managers	1,054	340.6	358, 994	3.4	6,337, 702	3.1
Cash tenants,	7,526	103.0	774, 933	7.3	13,039,719	6.4
Share tenants.	12,765	77.6	991,184	9.3	19,923,579	9.8

Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

RACE OF FARMER, AND TENURE.	average valoes per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Grobs income (products of 1899 not fed to live stock).	
	Land and im-provements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State	\$1,446	\$367	\$54	\$329	5394	18.0
White farmers _-_-	1,451	368	54	381	396	17.9
Colored farmers .-.--	746	181	30	159	225	20.1
Owners	1,470	394	59	355	415	18.2
Part owners -------	1,635	370	60	367	440	18.1
Owners and tenants	2,018	501	85	501	549	17.7
Managers	4,341	997	77	598	595	9.9
Cash tengints	1,246	232	34	221	292	16.9
Share tenants.	1,080	237	36	208	299	19.2

Colored farmers operate but 0.8 per cent of the farms of West Virginia, representing 0.4 per cent of the total value of farm property, and 0.4 per cent of the total acreage. The average values of all forms of farm property are smaller for colored than for white farmers. The higher per cent of gross income for colored than for white farmers is due to the smaller average size, and lower values, of the farms of colored farmers. Farms operated by managers have the highest average values of all forms of farm property except for implements and machinery, but the ratio which the gross income bears to the total value of farm property is smaller than for any other group.

FARMS CLASSIFIED BY ARTA.

Tables 8 and 9 present the principal statistics for farms olassified by area.

Table 8.-NUMBER AND ACREAGE of FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

area.	Number of farms.	NUMBER OP ACRES IN FARMS.			Value of parm PROPERTY.	
		Average.	Total.	Per cent.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$
The State -----	92,874	114.7	10,654, 513	100.0	\$203, 907, 349	100.0
Under 3 acres	599	1.9	1,164	(1)	412,490	0.2
3 to 9 acres---------	5,342	6.0	81,869	0.3	2,504, 745	1.2
10 to 19 acres...-..--	$\begin{array}{r}7,140 \\ \hline 19\end{array}$	13.6	96,831	0.9	4, 035, 183	2.0
20 to 49 acres		39.5	645, 963	6.0	16, 4:21, 338	8.0
50 to 99 acres_------	25, 529	69.1	1,765, 028	16.6	36, 873, 876	18.1
100 to 174 acres.-----	20, 164	126.2	2,544, 791	23.9	51, 903, 108	25.5
175 to 259 acres	7,542	208.8	1, 374,416	14.8	31, 137,456	15.3
260 to 499 a cres	5,127	339.0	1, 737, 835	16.3	32, 202,087	15.8
500 to 999 acres------	1,511	646.7	977, 235	9.2	15, 607, 300	7.6
1,000 acres and over-	614	2,083.7	1, 279, 381	12.0	12, 809, 816	6.3

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-aVERage values of specified Classes OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

Area.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock)	
	Land and im-prove(except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State -------	\$1,446	\$367	\$54	\$329	\$394	18.0
Under 3 acres	233	359	21	76	170	24.7
3 to 9 acres	218	168	12	71	113	24.1
10 to 19 acres_-.-....--	295	155	18	97	157	27.7
20 to 49 acres_--........-	493	185	26	147	217	25.5
50 to 99 acres	895	267	42	240	314	21.8
100 to 174 a cres-----------	1,666	444	73	391	473	18.4
175 to 259 acres_........	2,779	654	104	592	678	16.4
260 to 499 acres -------	4, 368	914	133	866	${ }^{901}$	14.4
500 to 999 acres	7,563	1,166	150	1,460	1,296	12.5
1,000 acres and over --	16,462	1,806	197	2,398	2,183	10.5

The group of farms containing from 50 to 99 acres includes the greatest number of farms, and the group of 100 to 174 acres comprises the greatest number of acres of farm land.

With a few exceptions, the average values of the several forms of farm property increase with the size of the farms. For the group of farms of less than 3 acres each, all values are comparatively high, as this class contains many florists' establishments, market gardens, poultry farms, and city dairies. The incomes from these industries are determined, not so much by the area of land used, as by the amount of capital invested and the amounts expended for labor and fertilizers.

The average gross incomes per acre for the various groups classified by area are as follows: Farms under 3 acres, $\$ 87.51 ; 3$ to 9 acres, $\$ 18.92 ; 10$ to 19 acres, $\$ 11.54$; 20 to 49 acres, $\$ 6.48 ; 50$ to 99 acres, $\$ 4.55 ; 100$ to 174 acres, 83.75 ; 175 to 259 acres, $\$ 3.25 ; 260$ to 499 acres, $\$ 2.66 ; 500$ to 999 acres, $\$ 2.00$; and 1,000 acres and over, $\$ 1.05$. The average gross income decreases regularly as the farms increase in size.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.
Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop, and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm; if vegetables are the leading crop, constituting 40 per cent of the value of products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40 per cent of their income from any one class of products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.
Table 10.-Number and acreage of farms, and Value of farm property, june 1, 1900, ClassiFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCE OF INCOME.	Number of farms.	NDMBER OF AORES INFARMS.			Value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State	92,874	114.7	10,654,513	100.0	\$203, 907, 349	100.0
Hay and grain	22, 400	111.5	2,497, 780	23.5	49, 118,762	24.1
Vegetables..	1,183	40.9	48,410	0.5	2,179,062	1.1
Fruits	1,381	108. 5	149,8+1	1.4	3,052,706	1.5
Live stock	36,255	138.5	5, 021, 968	47.1	101, 72n, 834	49.9
Dairy produce	1,828	94.5	172, 769	1.6	5,871,460	2.9
Tobacco	365	82.6	30, 147	0.3	355,876	0.2
Sugar	10	77.7	777	(1)	9,152	${ }^{1}{ }^{1}$
Flowers and plants -	20	9.2	185	(1)	124,060	(1)
Nursery products .--	11	142.1	1,563	(1)	52, 603	(1)
Miscellaneous _-----	29,421	92.8	2,781,073	25.6	41, 417, 834	20.3

Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINOIPAL SOUROE OF INCOME.	aterage talues per farm of-					
	Farm property, June 1, 1900.					
		${ }_{\text {Build }}$		Live		
The state	81,446	367	534	\$329	8394	18.0
Hay and grain						
	1,485	${ }_{4}^{435}$	47	${ }^{244}$	${ }_{487}$	22.0
Livestock			68 88 88	${ }_{\text {4 }}^{435}$	$\xrightarrow{\text { cter }}$	118.7
Tobacco ------		1881	- ${ }_{\text {29, }}^{29}$		${ }_{\text {c14 }}^{13}$	${ }_{42}{ }_{4}$
Sugare-rand plant	3,330	2,505	${ }^{225}$	${ }_{83}$	-	${ }_{32}^{14,}$
Nursery products	3,462		${ }_{36}^{111}$	${ }_{218}^{218}$	${ }_{4}^{4,852}$	${ }^{101 .}$
aneous ----		253	${ }^{36}$	214	297	21.1

The average values per acre of products not fed to live stock are: For farms deriving their principal income from flowers and plants, $\$ 219.63$; nursery products, $\$ 34.15$; vegetables, $\$ 7.67$; dairy produce, $\$ 6.18$; tobacco, $\$ 5.03$;
froit, $\$ 4.49$; hay and grain, $\$ 3.40$; live stock, $\$ 3.38$; miscellaneous, $\$ 3.21$; and sugar, \$1.71.

The wide variations in the averages and percentages of gross income are due, largely, to the fact that in computing gross income no deductions are made for expense involved in operation. For florists' establishments and nurseries, the average expenditures for such items as labor and fertilizers represent a far greater percentage of the gross income than in the case of "live-stock" and "miscellaneous" farms. If it were possible to present the average net income, the variations shown would be comparatively slight.

FARMS CLASS1F1ED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.
Tables 12 and 13 present data relating to farme classified by reported value of products not fed to live stock.

Table 12.-NUMBER aND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITHं PERCENTAGES.

value of products NOT FED TO LIVE stock.	Number of farms.	NUMBER OF ACRES IN FARMS.			VALUE OF FARM PROPERTY.	
		A verage.	Total.	Per cent.	Total.	Per cent.
The state_	. 92, 874	114.7	10,654,513	100.0	\$203, 907, 349	100.0
	433	89.0	38,555	0.4	503, 220	0.3
\$l to \$49--	3,512	36.5	128,166	1.2	1,680,800	0.8
850 to $\$ 99$	7,708	43.8	337, 478	3.2	4, 634, 260	2.3
$\$ 100$ to $\$ 249$	30,463	65.0	1,978, 662	18.6	29,781,339	14.6
\$250 to 8199	29, 248	105.7	3, 091,087	29.0	53, 310,550	26.1
\$500 to \$999	15, 583	179.7	2,799, 928	26.3	58, 131, 410	28.5
\$1,000 to \$2,499	5,177	315.8	1,634,779	15.3	41,517,550	20.4
\$2,500 and over	750	861.1	645, 858	6.0	14, 348, 220	7.0

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

value of pronucts NOT FED TO LIVE stock.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock)	
	Land and im-prove(except buildings).	$\begin{aligned} & \text { Build- } \\ & \text { ings. } \end{aligned}$	Implements and ma- chinery	Live stock.		
The State ---	\$1,446	\$367	\$54	\$329	\$394	18.0
$\$ 0$	879	137	10	143		
	326	90	7	56	27	5.6
\$50 to \$99--------2-----	387	123	12	81	70	11.7
\$100 to \$249------------	616	177	22	163	169	17.3
\$250 to \$499	1,159	310	49	305	345	18.9
\$500 to \$999 --	1,459 5 515	$\begin{array}{r}614 \\ 1 \\ \hline\end{array}$	101	$\begin{array}{r}550 \\ 1,036 \\ \hline\end{array}$	664 1,399	17.8
\$1,000 to \$8,499 -----------	5,515 13,651	1,278 2,775	191 338	1,036 2,372	1,399 4,186	17.8 21.9

Of the total number of farms in West Virginia, 433 report no income. Some of these farms are summer homes, some are farms partially abandoned in 1899, while others had changed owners or tenants, and the persons in charge, June 1, 1900, were unable to give definite information concerning the products of the preceding year. To
this extent the reports fall short of giving a complete exhibit of farm income in 1899.

live stock.

At the request of the various live-stock associations of the country, a new classification of domestic animale was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in previous census reports.
Table 14 presents a summary of live-stock statistics.
Table 14.-Domestic animals, Fowls, and bees on FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE values, and number of domestic animals not ON FARMS.

uive stook.	Age in years.	on farms.			
		$\underset{\substack{\text { Num- } \\ \text { ber. }}}{\text { den }}$	Value.	A Aerage value.	
Calres	Under 1 1 and under 2 3 and over. 1 and over 2 and over. 2 and over.				
Sters-					
Steers--					
Builers					
Cows kept for milik					
colspent for mill.	Inder 1 1 and under 2 and ove Under 1 1 and under All ages Ander 1 1 and over \qquad \square				
Horsees-					- $\begin{array}{r}179 \\ 17,775 \\ \hline\end{array}$
${ }_{\text {Mule cils }}$				${ }_{48.30}^{38.17}$	
Mules-------		9,791	659,692	${ }_{67} 6.38$	3,4
Lambs------		396,104	${ }^{867,5751}$	ck	\% 75
Sheep (rams and weth-		75,492	${ }_{1}^{1,5424,299}$	3.21	${ }_{90}$
Swine ------	All ages --	22, 844	1,399, 208	- ${ }_{2}^{3.14}$	${ }^{22,185}$
Fowls:					
Turkeys.			963,805 375,622		
Geese				3.37	
(sward					
Value ofstock.			$30,571,259$		

${ }^{1}$ Tbe number reported is of fowls over 3 months old. The value is of all, old and young.
${ }^{2}$ Incluaing Guine fowls.
The value of all live stock on farms, June 1, 1900, was $\$ 30,571,259$. Of this amount 33.9 per cent represents the value of horses; 27.4 per cent, that of neat cattle, other than dairy cows; 18.6 per cent, that of dairy cows; 8.7 per cent, that of sheep; 4.5 per cent, that of swine; 3.2 per cent, that of poultry; 2.4 per cent, that of mules; and 1.3 per ceut, that of all other live stock.

No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, however, the value of live stock not on farms was $\$ 1,777,189$, and the total value of live stock in the state, exclusive of poultry and bees not on farms, was $\$ 32,348,448$. There were about one-ninth as many horses two years old, and over, employed in towns and cities as in agricultural operations.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the changes since 1870 in the numbers of the most important domestio animals.
TÁble 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1870 TO 1900.

YEAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900	205,601	434, 181	185, 188	11,470	572,739	442,884
1890	185,492	377, 574	154, 722	7,390	785, 063	411, 018
1880	156,956	301,488	126,143	6,226	674,769	510,613
1870	104,434	197,246	90,479	2,189	552, 327	268,031

Every class of domestic animals shows a considerable increase in numbers since 1870, that of dairy cows, other neat cattle, horses, and mules being greatest and of uninterrupted progress. The number of sheep increased each decade except from 1890 to 1900 , for which period a decrease of 27.0 per cent is shown. The numbers of swine show regular increases, except for an unusually large report in 1880.

Compared with the census of 1890 , the present census shows the following increases in the numbers of live stock: Dairy cows, 9.1 per cent; other neat cattle, 15.0 per cent; horses, 19.7 per cent; mules and asses, 55.2 per cent; and swine 7.8 per cent. The large increases in the numbers of mules and horses are due to the development of oil fields and mines which require additional work animals.

In comparing the poultry report of 1900 with that of 1890, it should be borne in mind that in 1900 the enumerators were instructed to report no fowls under three months old, while in 1890 no such limitation was made. This fact explains to a great extent the apparent decrease in numbers of fowls of all kinds. Compared with the figures for 1890 , the present census shows decreases in the numbers of fowls as follows: Ducks, 56.5 per cent; turkeys, 51.0 per cent; geese, 26.5 per cent; and chickens, 13.7 per cent. The large increase in the number of eggs produced indicates conclusively that the decrease in the numbers of fowls is only apparent.

ANIMAL PRODUCTB.

Table 16 is a summarized statement of the animal products for 1899.
Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1890.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds -----------	3, 123, 455	\$636,012
Mohair and goat hair	Ponnds		
Miik	Gallons	183,861, $16,913,129$	35, 088, 153
Cheese	Pounds	74,243	
Eggs	Dozens	17,242,400	
Poultry	Pounds.-.-------	1, 673,120	199,089
Wax ----	Pounds----------		
Animals sold Animals slsughtered			2,895, 032
			19,072,790
Total			

[^76]The value of animal products for the state in 1889 was $\$ 19,072,790$, of which 49.4 per oent represents the value of animals sold and animals slaughtered on farms; 26.7 per cent, that of dairy products; 19.5 per cent, that of poultry and eggs; 3.3 per cent, that of wool, mohair, and goat hair; and 1.1 per cent, the value of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGRTERED.

The value of animals sold and animals slaughtered on farms, $\$ 9,428,066$, is 25.8 per cent of the gross farm income. Of all farms reporting live stock, 72,705 , or 81.6 per cent, report animals slaughtered, the average value per farm being $\$ 39.82$. Animals sold were reported by 53,294 farmers, or 59.8 per cent of all reporting live stock, the average receipts per farm for animals sold being $\$ 122.58$. In obtaining these reports the enumerators were instructed to secure from each farm operator a statement of the amount received from sales in 1899 less the amount paid for animals purchased during the year.

DAIRT PRODUCE.

In 1899, 1,828 farmers, or 2.0 per cent of the total number in the state, derived their principal income from the sale of dairy products. There were $24,412,594$ gallons more milk produced in that year than in 1889, a gain of 41.1 per cent. Cheese was produced on farms in about the same quantities for both years, but 20.3 per cent more butter was made on farms in 1899 than in 1889.

Of the $\$ 5,088,153$ given in Table 16 as the value of dairy products, $\$ 3,688,346$, or 72.5 per cent, represents the value of such products consumed on farms, and $\$ 1,399,807$, or 27.5 per cent, the receipts from sales. Of the latter amount, $\$ 841,147$ was received from the sale of $5,520,784$ pounds of butter; $\$ 531,127$, from 3,391,523 gallons of milk; \$21,559, from 38,855 gallons of cream; and $\$ 5,974$, from 60,842 pounds of cheese.

POULTRY AND EGGS.

Of the $\$ 3,721,427$ given as the value of poultry and eggs, 50.5 per cent represents the value of eggs produced and 49.5 per cent that of poultry raised. The number of eggs produced in 1889 was $9,919,974$ dozens, and in 1899, $17,242,400$ dozens, an increase of 73.8 per cent.

WOOL.

The production of wool for 1899 was $3,123,455$ pounds. This was the largest showing ever made for the state, and a gain of 22.0 per cent over the production of 1889 . This increase is more apparent than real, owing to the fact that the fleeces of at least 217,049 sheep were omitted from the table in 1890 but included in a general estimate of wool shorn after the census enumeration.

HONEY AND WAX.

The production of honey in 1899 was $1,673,120$ pounds, and of wax, 30,180 pounds. For 1889 there were 1,218,686 pounds of honey, and 22,109 pounds of wax. More than one-fourth of all farms in the state reported apiarian products.

HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.
Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.
Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

CLAssfan.	Horses.			DAIRY COWS.		
	Farms reporting.	Number.	Average per farm	Farms reporting.	Number.	Average per farm.
Total --------	74, 254	185, 188	2.5	80,477	205,601	2.6
White farmers_- Colored farmers	73,709 545	$\begin{array}{r} 184,123 \\ 1,055 \end{array}$	2.5 2.0	$79,972$	204,727 874	2.6 1.7
Owners ${ }^{1}$	60, 118	151, 840	2.5	64, 425	172, 410	2.7
Managers	797	2, 831	3.6	833	2,777	3.3
Cash tenants .--	4,914	10,721	2.2	5,589	11,726	2.1
Share tenants .-.--	8,425	19,796	2.3	9,630	18,688	1.9
Under 20 acres ----	5,783	8, 829	1.5	8,643	11,927	1.4
20 to 99 acres	36, 302	69,733	1.9	38, 952	77,738	2.0
100 to 174 acres	18,312	50,450	2.8	18, 949	55, 831	2.9
175 to 259 acres	7,029	24,263	3.5	7,161	26,692	3.7
260 acres and over.	6, 828	31,913	4.7	6,772	33, 413	4.9
Hay and grain ----	17, 812	44,375	2.5	17, 037	39,566	2.3
Vegetable .-.-.-.--	730	1,390	1.9	650	1,093	1.7
Fruit --------------	1,089	2,439	2.2	1,081	2,258	2.1
Live stock---------	32,398	89,316	2.8	33,552	99,215	3.0
Dairy------------	1,574	4,461	2.8	1,828	10,201	5.6
Tobacco---------	1,286 20,365	42,642	2.0 2.1	1,302 26,027	62,795 68	1.6 2.0

${ }_{2}^{1}$ Including "part owners" and "owners and tenants."
'Including sugar farms, florists' establishments, and nurseries.
CROPS.
The following table gives the statistics of the principal crops grown in 1899.
Table 18.-ACREAGES, QUANTITIES, AND VALUES OF PRINCIPAL FARM CROPS IN 1899.

CROPA.	Acres.	Unit of measure.	Quantity.	Value.
Corn	724, 646	Bushels	16, 610, 730	87, 698, 335
Wheat	447,928	Bushels	4,326, 150	3, 040, 314
Oats	99,433	Bushels	1,833, 840	637,176
Barley	253	Bushels	3,660	1,832
Rye	13,758	Bushels	111,031	68,784
Buckwhent	21, 410	Bushels	267, 257	134,893
Broom corn	82	Pouuds	32,570	2,029
Flaxseed.	2	Bushels	7	7
Clover seed		Bushels	3,030	13,798
Grass seed		Bushels	1,354	2,311
Hay and forage	601, 935	Tons	644, 635	5, 517,073
Tobacco	5,129	Pounds	3,087, 140	228, 620
Hops.	1	Pounds	662	117
Peanuta	11	Bushels	199	228
Dry beans	5,221	Bushels	52,815	80, 494
Dry pease	323	Bushels	3,613	3,731
Potatoes -	30, 123	Bushels	2,245, 821	1, 133, 381
Sweet potatoes	3,393	Bushels	202,424	125,523
Onions ---	674	Bushels	136, 423	107,547
Miscellaneous vegetables	28,616			1,589,481
Maple sugar ------------1		Pounds	141,550	12,273
Maple sirup		Gallons	14, 874	12,998
Sorghum cane	6,870	Tons	13,392	9,795
Sorghum sirup		Gallons	450,777	180, 140
Small fruits	1,994			149,39I
Orches -d fruit	$\begin{array}{r} 2715 \\ 2142,159 \end{array}$	Centals	21,921	$\begin{array}{r} 850,874 \\ 42,155,509 \end{array}$
Nuts	142,			-2, 4,488
Forest products				2,632,980
Flowers and plants	39			44,384
Seeds	7			760
Nursery products	548			61,700
Miscellaneous	15			5,233
Total	2,185, 285	-		25,696, 189

[^77]Of the total value of crops, cereals contributed 45.0 per cent; hay and forage, 21.5 per cent; forest products, 10.2 per cent; orchard fruits, 8.4 per cent ; miscellaneous vegetables, 6.2 per cent; potatoes, 4.4 per cent; and all other products, 4.3 per cent

The average value per acre of the various crops is as follows: Flowers and plants, $\$ 1,138$; nursery products, $\$ 113$; miscellaneous vegetables, $\$ 56$; potatoes, $\$ 38$; orchard fruits, $\$ 15$; hay and forage, $\$ 9$; and cereals, $\$ 9$. The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production required a relatively great amount of labor and large expenditures for fertilizers.

CEREALS.

The following table is a statement of the cereal production since 1869 .

Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1869 TO 1899.
Part 1.-ACREAGE.

YEdR. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899	253	21,410	724,646	99,433	13,758	447, 928
1889 -----	326	13,696	592, 763	180,815	14,962	349,016
1879 ------	424	30, 334	565,785	126, 931	17,279	393,068

${ }^{1}$ No statistics of acreage were secured prior to 1879.
Part 2.-BUSHELS PRODUCED.

1899	3,660	267, 257	16, 610,730	1,833,840	111, 031	4,326,150
1889	5,387	120, 469	18,730,506	2,946, 653	117, 113	3,634, 197
1879	9,740	285, 298	14,090,609	1,908,505	113, 181	4,001, 711
1869	50,363	82, 916	8, 197,865	2, 113, 749	277, 746	2,483,643

The total area devoted to cereals in 1879, was $1,133,821$ acres; in 1889, 1,151,578 acres; and in 1899, 1,307,428 acres. The total number of bushels produced in 1869 was $13,506,182$, and in 1899, $23,152,668$, showing an increase of 71.4 per cent in thirty years. The increases in area under cereals in the decade 1889 to 1899, were: Buckwheat, 56.3 per cent; wheat, 28.3 per cent; and corn, 22.2 per cent. The decreases were: Oats, 45.0 per cent; barley, 22.4 per cent; and rye, 8.0 per cent.
Of the total area under cereals in 1899, 55.4 per cent was devoted to corn; 34.3 per cent, to wheat; 7.6 per cent, to oats; 2.7 per cent, to rye, buckwheat, and barley.

Corn is raised in all the counties, particularly in the Kanawha Valley, Wayne, Kanawha, Jackson, and Mason counties reporting nearly one-sixth of the total area. Wheat is grown extensively in Jefferson, Berkeley, and Mason counties, these counties reporting nearly one-fifth of the total area. Hampshire, Hardy, and Morgan counties in the extreme northeast reported 61.6 per cent of the total acreage of rye. Preston county led in the production of oats and buckwheat, having reported over one-tenth of the area in oats, and.almost one-third of the total, acreage under buckwheat.

HAY AND FORAGE.

In 1900, 64,767 farmers, or 69.7 per cent of the total number, reported hay and forage crops. Exclusive of corn-
stalks and corn strippings, they obtained an average yield of 0.9 ton per acre. The total acreage in hay and forage for 1899 was 601,935 , or 3.9 per cent greater than ten years before.

In 1899 the aoreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 849 acres and 758 tons; millet and Hungarian grasses, 4,924 acres and 5,428 tons; alfalfa or lucern, 123 acres and 198 tons; olover, 25,170 acres and 23,521 tons; other tame and cultivated grasses, 555,787 acres and 494,467 tons; grains out green for hay, 18,118 acres and 13,017 tons; crops grown for forage, 1,964 acres and 3,694 tons; and cornstalks and corn strippings, 137,424 acres and 103,451 tons.

In Table 18 the production of cornstalks and corn strippings is included under "hay and forage," but the acreage is included under "corn," as the forage secured was only an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 may be seen in the following table.
Table 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRUITS.	NUMBER	Texes.	BUSEELS OF FEUIT.	
	1900.	1890.	1899.	1889.
Apples.	5,441,112	2,870,535	7, 195, 743	4,439,978
Apricots	1,870	1,248	-145	1, 587
Cherries	300, 363	126,307	87,828	51, 057
Peaches	1,695,642	450, 440	18, 100	376,662
Pears	110, 194	23, 055	19,475	15, 406
Plums and prunes.	187, 695	35, 053	19,123	3,774

The total number of fruit trees in the state in 1890 was $3,506,638$, and in 1900 there were $7,748,152$, showing an increase of $4,241,514$, or 121.0 per cent. Increases were as follows: Cherry trees, 137.8 per cent; apple trees, 89.6 per cent; apricot trees, 49.8 per cent. Over three times as many peach trees; over four times as many pear trees; and more than five times as many plum and prune trees were reported in 1900 as in 1890.

Of all fruit trees in $1900,70.2$ per cent were apple trees; 21.9 per cent, peach trees; 3.9 per cent, cherry trees; 2.4 per cent, plum and prune trees; 1.6 per cent, pear, apricot, and unclassified fruit trees. The latter class, which is not included in the table, numbered 11,276, and yielded 1,779 bushels of fruit.

The value of orchard fruits, given in Table 18, includes the value of 28,693 barrels of cider, 9,039 barrels of vinegar, and $1,843,060$ pounds of dried and evaporated fruits manufactured on the farms. Comparisons of yields, when made by decades only, have little significance, as the yield of any given year depends upon the nature of the season.

SMALL FRUITS.
Of the 1,994 acres devoted to small fruits, more than one-fourth were reported from Brooke, Harrison, Ohio, and Wood counties. Strawberries occupied 799 acres, or
40.1 per cent of the total area, and yielded $1,068,300$ quarts. The acreage and production of other berries were as follows: Raspberries and Logan berries, 704 acres and 788,360 quarts; blackberries and dewberries, 367 acres and 396,850 quarts; gooseberries, 59 acres and 66,400 quarts; currants, 50 acres and 51,340 quarts; and other small fruits, 15 acres and 16,820 quarts. These small fruits were grown by 11,623 farmers, who derived therefrom an average of $\$ 12.85$ per farm.

VEGETABLES.

The total value of vegetables grown in 1899, including potatnes, sweet potatoes, and onions, was $\$ 2,955,932$, of which 38.3 per cent represents the value of potatoes; 4.3 per cent, that of sweet potatoes; 3.6 per cent, that of onions; and 53.8 per cent, that of miscellaneous vegetables.

In the growing of miscellaneous vegetables 28,616 acres were used. Of this area the products of 21,958 acres were not reported in detail. Of the remaining 6,658 acres, 2,109 acres were devoted to cabbages; 1,812 acres, to tomatoes ; 1,416 acres, to sweet corn ; 688 acres, to watermelons; 215 acres, to cucumbers; 190 acres, to muskmelons; and 228 acres, to other vegetables.

товассо.

In 1899 tobacco was grown by 5,045 farmers on 5,129 acres, an average of a little over one acre for each farm reporting. From this area they produced $3,087,140$ ponnds, a gain in ten years of 10.4 per cent in acreage, and 18.6 per cent in production. Both the acreage and production of 1899 were the largest ever reported, the next largest being in 1889, when 4,647 acres produced 2,602,021 pounds.
The average yield per acre in 1889 was 560 pounds, while in 1899 it was 602 pounds. The total value of the crop in the latter year was $\$ 228,620$, an average of $\$ 45.32$ for each farm reporting, and of $\$ 44.57$ per acre.
The crop was grown in 48 counties, Lincoln county leading with 1,255 acres, and Putnam and Cabell coming next in order. These three counties together reported 60.0 per cent of the total acreage, and 63.7 per cent of the total production.

SORGHUM CANE.
The present census shows that in 1899 sorghum cane was grown by 14,834 farmers on 6,870 acres, an average of 0.5 of an acre for each farm reporting. From this area they sold 3,392 tons of cane for $\$ 9,795$, and from the remaining product manufactured 450,777 gallons of sirup, valued at $\$ 180,140$. This was a decrease in acreage from 1889 of 11.0 per cent. The total value of sorghum-cane products in 1899 was $\$ 189,935$, an average of $\$ 12.80$ for each farm reporting, and of $\$ 27.65$ per acre.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 39 acres, and the value of the products sold therefrom was $\$ 44,384$. These flowers and plants were grown by 47 farmers and florists. Of this number, 20 made commercial floriculture their principal
business. These 20 proprietors reported a glass surface of 124,710 square feet. They had invested in land, buildings, implements, and live stock, $\$ 124,060$, of which $\$ 50,100$ represents the value of buildings. Their sales of flowers and plants amounted to $\$ 38,650$, and of other products to $\$ 2,350$. The expenditure for labor was $\$ 3,845$, and for fertilizers, $\$ 337$. The average income for each farm reporting, including the value of products fed to live stock, was $\$ 2,050$.

In addition to the 20 principal florists' establishments, 335 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 189,768 square feet, making, with the 93,532 square feet belonging to the florists' establishments, a total of 283,300 square feet.

NURSERIES.

The total value of nursery products sold in 1899 was $\$ 61,700$, reported by the operators of 48 farms and nurseries. Of this number, 11 derived their principal income from the nursery business. They had invested in 'the aggregate $\$ 52,603$, of which $\$ 38,080$ represents the value of 1,563 acres of land. The value of their products
in 1899 was $\$ 54,872$, of which $\$ 52,462$ represents the value of nursery products, and $\$ 2,410$ that of other products. The expenditure for labor was $\$ 3,915$, and for fertilizers, $\$ 105$. The average value of all products for each farm reporting was $\$ 4,988$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 2,041,560$, an average of $\$ 22$ per farm. The average expenditure was $\$ 356$ for nurseries, $\$ 192$ for florists' establishments, $\$ 44$ for dairy farms, $\$ 32$ for vegetable farms, $\$ 27$ for live-stock farms, $\$ 24$ for hay and grain farms, $\$ 22$ for fruit farms, $\$ 16$ for tobacco farms, and $\$ 14$ for sugar farms. "Managers" expended on an average, \$74; "owners," \$23; "cash tenants," \$16; and "share tenants," \$14. White farmers expended $\$ 22$ per farm, and colored farmers, $\$ 10$.

Fertilizers purchased in 1899 cost $\$ 405,270$, an average of $\$ 4$ per farm and an increase since 1890 of 92.3 per cent. The average expenditure was $\$ 17$ for florists' establishments, $\$ 10$ for nurseries, $\$ 6$ for hay and grain farms, $\$ 6$ for vegetable farms, $\$ 5$ for fruit farms, $\$ 5$ for live-stock farms, $\$ 4$ for dairy farms, and $\$ 2$ for tobacco farms.

Twelfth Census of the United States.

Census Bulletin.

MANUFACTURES.

PENS AND PENCILS.

Hon. William R. Merriam, Director of the Census.

Sir: I transmit herewith, for publication in bulletin form, a report on the manufacture of pens and pencils during the census year ending May 31, 1900, prepared under my direction by Mr. Charles M. Karch, of the Census Office.
The statistics included in this report were collected, as in previous censuses, upon the schedule used for the general statistics of manufactures. But in order to present properly the important features of the several industries, it was decided to give them more detailed treatment than is given to manufacturing industries in general, or than these industries have received heretofore, and, for this purpose, to supplement by correspondence the canvass made by the enumerators and local special agents.
This report is divided into four parts, which relate respectively to the manufacture of fountain and stylographic pens, gold pens, steel pens, and lead pencils. A brief historical sketch for each industry is included in the report.
The statistics are presented in 30 tables. Tables 1 and 2 relate to the combined industry, as follows: Table 1 , a summary of the four industries; Table 2, quantities and values of pens-fountain, stylographio, gold, and steel-and lead pencils, manufactured during the census year, irrespective of the classification of the establishments by industries.
Tables 3 to 9 , inclusive, relate to the manufacture of fountain and stylographic pens, as follows: Table 3, a
comparative summary, 1890 and 1900; Table 4, number of establishments, by states arranged geographically, 1890 and 1900; Table 5, a comparative summary of the statistics of capital for 1890 and 1900; Table 6, cost of materials used for 1900; Table 7, quantity and value of all products of fountain and stylographic pen establishments, 1900; Table 8, quantity and value of fountain and stylographic pens manufactured during the census year, as reported by establishments of any character; Table 9, the detailed statistics for the industry in 1900, by states.
Tables 10 to 16 , inclusive, relate to the manufacture of gold pens as follows: Table 10, a comparative sumnary, 1880 to 1900; Table 11, the number of establishments in operation in 1890 and 1900, by states; Table 12, the statistics of capital for 1890 and 1900; Table 13, cost of materials used for 1900; Table 14, the quantity and value of all products of gold pen establishments for 1900; Table 15, the quantity and value of gold pens manufactured during the census year as reported by establishments of any character; Table 16, the detailed statistics for the industry in 1900 , by states.

Tables 17 to 23 , inclusive, relate to the manufacture of steel pens, as follows: Table 17, a comparative summary, 1870 to 1900 ; Table 18, the number of establishments in operation in 1890 and 1900, by states; Table 19, the statistics of capital for 1890 and 1900; Table 20, the cost of materials used for 1900; Table 21, the quantity and value of products of steel pen establishments for 1900; Table 22, the quantity and value of steel pens manufactured during the census year as reported by
establishments of any character; Table 23, the detailed statistics for the industry in 1900 , by states.
Tables 24 to 30 , inclusive, relate to the manufacture of lead pencils, as follows: Table 24, a comparative summary, 1860 to 1900; Table 25, the number of establishments in operation in 1890 and 1900, by states; Table 26, the statistics of capital for 1890 and 1900; Table 27, the cost of materials used for 1900; Table 28, the quantity and value of all products of lead pencil establishments for 1900; Table 29, the quantity and value of lead pencils manufactured during the census year, as reported by establishments of any character; Table 30, the detailed statistics for the industry in 1900, by states.
Owing to changes in the method of taking the census, comparisons between the earlier and later decades, represented in Tables 10,17 , and 24 , should be drawn only in the most general way. Nevertheless, the growth of the industries may be approximately measured from the figures given.

In drafting the schedules of inquiry for the census of 1900, care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the items of inquiry except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital, that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, was first called for at the census of 1890 . No definite attempt was made, prior to the census of 1890 , to secure a return of live capital invested.

Changes were made in the inquiries relating to employees and wages in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1900 the greatest and least numbers of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12 , the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wageearners during the entire year may have resulted in a variation in the number, and should be considered in making comparisons.

At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined
with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was ascertained, and no salaries were reported for this class. It is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.
Furthermore, the schedules for 1890 included in the wage-earning class, overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wage-earning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890.

In some instances the number of proprietors and firm members, shown in the accompanying tables, falls short of the number of establishments reported. This is accounted for by the fact that no proprietors or firm members are reported for corporations or cooperative establishments.

The reports show a capital of $\$ 3,671,741$ invested in the manufacture of pens and pencils in the 55 establishments reporting for the United States. This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, but does not include the capital stock of any of the manufacturing corporations engaged in these industries. The value of the products is returned at $\$ 4,222,148$, to produce which involved an outlay of $\$ 281,636$ for salaries of officials, clerks, etc.; $\$ 1,192,405$ for wages; $\$ 471,655$ for miscellaneous expenses, including rent, taxes, etc.; and $\$ 1,747,852$ for materials used, mill supplies, freight, and fuel. It is not to be assumed, however, that the difference between the aggregate of these sums and the value of the products is, in any sense, indicative of the profits in the manufacture of pens and pencils during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. The value of the product given is the value as obtained or fixed at the shop or factory. This statement is necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Chief Statistician for Manufactures.

PENS AND PENCILS.

By Charles M. Karch.

The statistics of the manufacture of pens and pencils in the United States at the census of 1900 are presented in this report under the following groups: Pens, fountain and stylographic; pens, gold; pens, steel; and lead pencils. Statistics for each of these groups are shown separately in this report.
A summary for the combined industry, as reported for 1900 , is presented in Table 1.

Table 1.-PENS, FOUNTAIN, GOLD, AND STEEL, AND PENCILS, LEAD: SUMMARY FOR THE UNITED STATES, 1900.

It appears from Table 1 that pens, fountain and stylographic, led in the number of establishments reporting in 1900 , closely followed by the gold pen industry, which reported but 1 establishment less. Of the total amount of capital invested in the four industries, lead pencils, with 7 establishments, contributed 60.7 per cent; steel pens, with 3 establishments, 9.7 per cent; gold pens, with 22 establishments, 13.5 per cent; fountain and stylographic pens, with 23 establishments, 16.1 per cent. Of the total value of products for the four industries, that reported for lead pencils formed 52.6 per cent; for fountain and stylographic pens 21.5 per cent; for gold pens, 18.9 per cent; and for steel pens, 7.0 per cent.

It should be noticed, however, that the four industries are very closely allied, and in many instances overlap. Many establishments principally engaged in
manufacturing fountain and stylographic pens produced gold pens and lead pencils; and establishments principally engaged in the manufacture of gold pens reported fountain and stylographic pens and lead pencils as subsidiary products; while establishments reporting lead pencils as the principal product manufactured pens as a secondary product. In the tabulation of the reports the rule was adopted of classifying establishments in accordance with the predominating product. In following out this plan, in many instances a product that appears as the principal product of one of the industries included in this report may appear again as a subsidiary product of one or more of the other industries.

Table 2 shows the production of pens, fountain, stylographic, gold and steel, and of lead pencils, manufactured during the census year, irrespective of the classification of the establishments in which they were produced, and it seems as convenient to present this information here as at any place in the report.

Table 2.-SUMMARY: KINDS, QUANTITIES, AND VALUE OF PRODUCTS, BY STATES, 1900.

pronucrs.	United States.	New York.	All others.
Pens: Total value	\$4, 119, 809	\$2, 337, 788	\$1,782,021
	\$1, 855, 658	\$1,004, 401	\$851, 257
Fountain-			
Value	\$902, 734	\$567, 667	8335,067
Stylographic-	1,803	1,613	196
Value	\$82, 876	871,684	\$10,992
Gold-			
Gross	6,735 $\$ 458,376$	5,210 $\$ 365,050$	\$93, ${ }^{1,525}$
Steel-			
Gross	1,764,079		1,764,079
Value	\$411, 872		\$411,872
Wood- 1 1,653,973 744803			
Gross Value	$\begin{array}{r} 1,653,973 \\ \$ 2,053,484 \end{array}$	$\begin{array}{r} 909,170 \\ \$ 1,151,495 \end{array}$	$\begin{array}{r} 744,803 \\ 9901,989 \end{array}$
Gold- 31			
Gross	31		5
Value	\$32,526	\$32, 326	$\$ 200$
Silver-			
Plated-			
Gross	3,988	3,204	784
Value $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.			
Other varieties-			
Vross	82, 100		\$2, 100

The aggregate value of the pens and pencils produced in the United States during the census year was $\$ 4,119,809$, of which 45 per cent represented the value of pens and 55 per cent that of pencils. New York state produced 56.7 per cent of the aggregate product; and "all others," comprising those states which reported less than 3 establishments, and which are shown collectively in order to avoid disclosing the operations of individual establishments, manufactured 43.3 per cent of the entire output of pens and pencils: Of the total production of pens, 54.1 per cent were manufactured in New York state. Fountain and stylographic pens represented 53.1 per cent of the total value of pens produced, gold pens 24.7 per cent, and steel pens 22.2 per cent. New York led also in the manufacture of pencils during the census year, having produced 58.9 per cent of the total output. Lead pencils inclosed in wooden cases contributed 90.7 per cent of the total value of pencils.

The lack of uniformity in the value of the products
manufactured by the establishments located in the various states is due to the variation in the quality of materials used and the design and workmanship of the articles produced. This difference in the value of the various designs is particularly noticeable in the statistics presented in the accompanying tables for establishments engaged in the manufacture of fountain, stylographic, and gold pens, and lead pencils incased in silver and gold.

Attention should be here directed to the fact that the figures reported in Table 2 possibly do not represent the total quantity and value of pens and pencils manufactured in the United States during the census year. Establishments engaged primarily in other industries may have manufactured one or more of these articles as a subsidiary product and made no direct mention of that fact in their returns. Notwithstanding these facts the figures reported may be accepted as fairly representing the quantities and values of pens and pencils manufactured during this period.

FOUNTAIN AND STYLOGRAPHIC PENS.

Although fountain and stylographic pens were manufactured in the United States prior to 1890, the census of that year was the first to publish separate statistics for the industry. The manufacture was successfully established as early as 1880 , but it was included under some other classification in that year. At the close of the first ten years of its existence the industry was established in 6 states and had in operation 15 plants, well capitalized and reporting a considerable product.

Table 3 is a comparative summary of the statistics for the manufacture of fountain and stylographic pens as returned at the censuses of 1890 and 1900 , with the percentages of increase for the decade.

Table 3.-PENS, FOUNTAIN AND STYLOGRAPHIC: COMPARATIVE SUMMARY, 1890 AND 1900, WITH PER CENT OF INCREASE FOR THE DECADE.

	DATE OF	CENSUS.	$\begin{array}{\|c} \text { PER CENT } \\ \text { OF IN- } \\ \text { CREASE. } \end{array}$
	1900	1890	$\begin{aligned} & 1890 \text { to } \\ & 1900 \end{aligned}$
Number of cstablishments	23	15	58.3
Capital...	\$590,629	\$142, 265	315.2
Salaried officials, clerks, etc., number.............	-84 8	124	250.0
Salaries	\$80,808	1 \$28, 902	179.6
Wage-earners, average number	, 318	152	109.2
Wages .-.-......................	\$141, 012	\$73,897	90.8
Men, 16 ycars and over	241	. 128	88.3
Wages ...	\$122, 777	\$67, 822	81.0
Women, 16 years and over	- 66	- 24	175.0
Wages	\$16,008	\$6,075	163.5
Children, under 16 years.	11		
Wages .-.	\$2, 227		
Misccllaneous expenses.	\$113, 334	\$12,380	815.5
Cost of materials used.	\$351, 932	\$123, 214	185.6
Value of products....	\$406, 454	\$351, 775	157.7

${ }^{1}$ Includes proprietors and firm members, with their salaries; number only
reported in 1900, but not included in this table reported in 1900, but not included in this table. (See Table 9.)

The table shows that during the decade the industry made rapid advancement, not only in number of estab-
lishments, but also in the amount of capital invested and the value of products. The percentage of increase in the number of women and children employed, as compared with the percentage of increase in the number of men employed, would indicate that some branches of the work performed by men in 1890 were done by women and children in 1900. Each item in Table 3 shows a good percentage of increase for the decade, and indicates that although the industry is yet in its infancy, it is firmly established and in a healthy and prosperous condition.
Table 4 presents, by states arranged geographically, the number of establishments actively engaged in the manufacture of fountain pens in 1890 and in 1900, and the increase for the decade.

Table 4.-PENS, FOUNTAIN AND STYLOGRAPHIC: COMPARATIVE SUMMARY; NUMBER OF ESTABLISHMENTS 1890 AND 1900, AND INCREASE DURING THE DECADE, BY STATES ARRANGED GEOGRAPHICALLY.

states.	1900	1890	lncrease.
United States	23	15	8
New England states	5	5
Connceticut.			
Massachusetts. Rhode Island	2 1	3	${ }^{1} 1$
Middle states.	11	9	2
New York.	9	8	
Central states.	7	1	
111nois.		1	
lndiana..	1		1
Ohio ...	1		1
Wisconsin.	1		4

${ }^{1}$ Decrease.

It appears from Table 4 that there were 8 more establishments engaged in this industry in 1900 than in 1890 , showing an increase of 53.3 per cent for the decade. The largest addition to the number of establishments was made by Ohio, which reported 4 establishments in 1900, having none in 1890. Massachusetts and Illinois reported decreases of 1 establishment each.
Table 5 is a comparative summary of capital as returned at the censuses of 1890 and 1900 , with the per cent each item is of the total and the per cent of increase for the decade.

Table 5.-PENS, FOUNTAIN AND STYloGRAPhiC: CAPITAL, 1890 AND 1900.

The most important item reported under the head of capital, both in 1890 and in 1900, was that of cash and sundries, including cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries. In 1890 this item represented 69.6 per cent of the total, and in 1900, 82.9 per cent, the increase for the decade being $\$ 390,833$, or 395 per cent. The items of land, buildings, and machinery, tools, and implements, each show a large percentage of increase for the decade, but represent a smaller per cent of the total in 1900 than in 1890. The smallest increase and the most considerable reduction of percentage of the total is shown by machinery, tools, and implements, indicating that there has been but little progress made during the ten years in the way of application of new and improved machinery in this industry. The amounts reported for land, buildings, and machinery represent only such as are owned by the establishments engaged
in the industry, and do not include the value of leased property.
Table 6 shows the cost of materials for 1900 , and the proportion of each item to the whole amount.

Table 6.-PENS, FOUNTAIN AND STYLOGRAPHIC: COST of MATERIALS USED, 1900.

	Amount.	Per cent of total.
Total	\$351,932	100.0
Principal materials .	347, 201	98.7
Purchased in raw state......................	10,000	2.9
Purchased in partially manufactured form Fuel	337, 201	95.8
Rent of power and heat	3,224	0.2 0.9
Freight..................	, 643	0.2

$\begin{aligned} & \text { Includes mill supplies and all other materials, which are shown separately } \\ & \text { in Table } 9 \text {. }\end{aligned}$ in Table 9.

Materials purchased in partially manufactured form represented 95.8 per cent of the total cost of materials. This item includes those reported under Table 9, as "mill supplies" and "all other materials." "Mill supplies" consisted of materials, such as oil, waste, belting, and other articles which did not enter into the product, but were necessary to the process of manufacture. "All other materials" comprised those not otherwise specified in the schedule of inquiry and included such articles as boxes, bags, and packages. Materials purchased in raw state are those upon which no manufacturing force has been expended. The amount paid for fuel included that used both for motive power and for heating purposes, and is correlative with the amount paid for rent of power and heat leased from other establishments. Some establishments found it impossible, in making returns, to separate from the cost of materials the amount paid for freight, and reported the two together. For that reason, the amount of freight paid, as shown in Table 6, does not represent the entire cost of freight and should be considered only in connection with the cost of materials.
Table 7 shows in detail, by states, the quantity and value of fountain and stylographic pens manufactured during the census year, and the subsidiary products reported by the establishments engaged in this industry.

Table 7.-PENS, FOUNTAIN and STYlographic: quantity and value of products, By states: 1900.

[^78]Table 7.-PENS, FOUNTAIN AND STYLOGRAPHIC: QUANTITY AND VALUE OF PRODUCTS, BY STATES: 1900-Continued.

states.	PRODUCTS-continued.								ALL OTHER PRODCCTS.
	Pencils.								
	Total gross.	Total value.	Gold.		Plate.		Other varieties.		
			Gross.	Value.	Gross.	Value.	Gross.	Value.	Value.
Totâl.	582	\$9, 500	5	\$200	521	\$8,000	56	\$1,300	\$64,206
New York.									21,716
All other states ${ }^{1}$. .	582	9,500	5	200	521	8,000	56	1,300	13,015 29,475

${ }^{1}$ Includes establishments distributed as follows: Connecticut, 2; Indiana, 1; Iowa, 1; Massacbusetts, 1; Pennsylvania, 2; Rhode Island, 1; Wisconsin, 1.

Of the total value of the products of the establishments engaged in this industry, New York produced 59.6 per cent. The overlapping of the industries is very strikingly exemplified in the above table, especially in the production of gold pens.

The tables which have thus far been shown for this industry give an incomplete statement of the quantity and value of fountain and stylographic pens manufac-
tured during the census year because of the rule adopted, as explained above, of classifying establishments according to the predominating product.

Table 8 makes up for this deficiency by showing the total quantity and value of fountain and stylographic pens produced during the census year, as reported by establishments of any character.

Table 8.-PENS, FOUNTAIN AND STYLOGRAPHIC: QUANTITY AND VALUE OF PRODUCTS, BY STATES, 1900.

states.	Total.	Fountain.		Stylographic.	
		Gross.	Value.	Gross.	Value.
United States.	\$985, 410	8,028	\$902, 734	1,803	\$82, 676
New York	639,351	3,760	567,667	1,613	71, 684
All other statesi.				130 60	

[^79]Table 8 includes the quantity and value both of the fountain and stylographic pens produced in establishments engaged principally in their manufacture, and of those reported as a subsidiary product in establishments engaged primarily in the manufacture of gold pens and lead pencils. The values reported do not in-
clude the amounts reported as the value of "all other products," in the tables showing products by establishments, therefore the totals given in Table 8 do not agree with the totals elsewhere given in this report, or with those dealing with this industry in the general report on Manufactures, Parts I and II.

HISTORICAL AND DESCRIPTIVE.

Fountain pens are the most modern variety of pens made and represent the highest type of the pen-maker's art. The first successful manufacture of these pens in the United States dates back but twenty-one years before the taking of the Twelfth Census, although attempts were made to manufacture them before that time. They were manufactured in England as early as 1835, but they were not satisfactory enough to warrant their use to any extent. ${ }^{1}$ At that time there were two fountain pens invented, known as the Schaeffer pen and the Parker hydraulic pen. Schaeffer's pen had a reservoir for ink in the holder and the ink was admitted

[^80]to the pen by the pressure of the thumb on a projecting stud. Parker's pen also had a reservoir in the holder, which contained a piston operated by a screw stem and a nut on the end of the holder. The lower end of the reservoir being dipped in ink, the piston was drawn up by rotating the nut, thus filling the reservoir. The ink was ejected as required by a reverse motion of the thumb nut. The early attempts to construct fountain pens were generally confined to the invention of contrivances such as internal tubes, ducts, valves, or springs, which were operated upon by the action of the nibs, and which forced the ink from a feeding pipe upon the pen, assisted by air admitted at the top of the holder
to take the place of the exhausted ink. Pens dependent upon such mechanism were very erratic in their work, as the ink flowed either too slow or too fast. After many experiments to secure a continuous and properly regulated flow of ink into the pen, it was found that the best results were obtained by the use of a tubular holder tightly closed at its upper end, and at the lower end fitted with an ordinary nib pen made of gold, with an ink feeder lying adjacent to the pen to attract the ink from the reservoir. As the ink in the process of writing is withdrawn, air enters at the lower end of the holder and ascends in globules throngh the column of ink to fill the space left vacant. There are many
varieties of fountain pens made in the United States, but the basic principles underlying all are practically the same, the retention of the ink by atmospheric pressure and the furnishing of a supply ready for use throughout many hours of continuous writing.

The stylographic pen is a variety of fountain pen in which a blunt needle incased in a sheath at the end of the holder serves as a valve to release the ink when the point is pressed on the paper.

Table 9 presents a detailed statement of the statistics for the fountain and stylographic pen industry, by states, 1900.

Table 9.-PENS, FOUNTAIN AND STYLOGRAPHIC: BY STATES, 1900.

[^81]Table 9.-PENS, FOUNTAIN AND STYLOGRAPHIC: BY STATES: 1900-Continued.

[^82]
GOLD PENS.

Although the manufacture of gold pens was carried on successfully as early as 1850 , the census reports on this industry prior to 1880 were not sufficiently accurate to justify their use in comparisons with later censuses to show the growth of the industry. The census of 1850 reported the manufacture of pens under the general classification of pens and pencils, and, as there was but a small amount of peucils, and a very limited amount, if any, of steel, fountain, and stylographic pens produced in the United States at that time, a very large proportion of the value of the products reported for that year was obviously that of gold pens. In the census of 1860 the manufacture of gold pens was reported as a subdivision of jewelry, and the reports show that there were then 9 establishments engaged in the industry, with a capital of $\$ 32,500$, employing 89 people at a cost of $\$ 32,228$, and manufacturing products to the value of $\$ 113,600$. The census of 1870 reported the industry in connection with the manufacture of gold pencils. The statistics for these combined industries in 1870 showed that there were 21 establishments engaged in the manufacture of gold pens and pencils, and that they had a capital of $\$ 268,250$, and a product of $\$ 467,380$. The growth of the gold pen industry since 1880 has been gradual but satisfactory, as is shown by the statistics presented in the following tables.

Table 10 is a comparative summary of the statistics of the manufacture of gold pens as returned at the censuses of 1880 to 1900 , inclusive, with the percentage of increase for each decade.

Table 10.-PENS, GOLD: COMPARATIVE SUMMARY, 1880 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	date of census.			PER CENT OF increase.	
	1900	1890	1880	$\begin{aligned} & 1890 \\ & \text { to } \\ & 1900 \end{aligned}$	$\begin{aligned} & \mathbf{1 8 8 0} \\ & \text { to } \\ & \mathbf{1 8 9 0} \end{aligned}$
Number of establishments	22	18	16	22.2	12.5
Capital	\$496, 246	\$473,964	3370,150	4.7	28.0
Salaried officials, clerks, etc., number	62	${ }^{1} 62$	$\left.{ }^{2}\right)$		
Salaries.....................................	\$67, 522	1\$75, 124	(2)	${ }^{4} 10.1$	
Wage-earners, average number.	${ }^{3} 878$	- 301	264	25.6	14.0
Total wages.....................	\$229, 679	\$185, 545	\$172, 207	23.8 21.7	7.7 22.6
Men, 16 years and ov				21.7 21.5	22.6
Women, 16 years and over	\$216, 838	\$178,489 23	${ }^{(2)} 19$	61.2	21.1
Wages................	\$12,541	\$6,952	${ }^{(2)}$	80.4	
Cbildren, under 16 years......				200.0 188.5	494.7
Wages.....................	$\$ 300$ $\$ 440$	$\$ 104$ 482753	$\left({ }_{3}\right.$	188.5 448.4	
Miscellaneous expenses Cost of materials used.	\$42, \$30 3	\$235,628	\$190,906	32.6	23.4
Value of products, including custom work and repairing.	\$799,078	\$718,070	\$533,061	11.3	34.7

${ }^{1}$ Includes proprietors and firm members, with their salaries; number only reported in 1900 , but not included in this table. (See Table 16.) ${ }^{2}$ Not reported separately.
3 Not reported.
4 Decrease.
It appears from Table 10 that for the decade oerween 1880 and 1890 the increase in capital and value of products was comparatively large, and in number of establishments, comparatively small; while for the decade
between 1890 and 1900 the increase in number of establishments was greater than in the preceding decade, yet the capital increased hardly at all, and the value of products little.
Table 11 presents, by states, the number of establishments actively engaged in the manufacture of gold pens in 1890 and 1900 , with the increase for the decade.

Table 11.-PENS, GOLD: NUMBER OF ESTABLISHMENTS, BY STATES, 1890 AND 1900.

states.	1900	1890	Increase.
United States.	22	18	4
California	1	1	
1llinois.	2		2
Maryland	1		1
Massachusetts	1	1	.
Michigan.	1	1	
Nebraska		1	${ }^{1} 1$
New York	14	12	2
Ohio.	1	1	
Rhode Island.	1	1	

Two-thirds of the establishments, both in 1890 and 1900, were located in New York. During the decade there was a net increase of t establishments in the United States; Illinois and New York contributing 2 each, and Maryland 1. The only state showing a decrease was Nebraska, which reported 1 establishment in 1890 and none in 1900.
A comparative summary of capital in its several subdivisions for 1890 and 1900, giving percentages of increase between the two census years, and the proportion of each item to the total for those years, is presented in Table 12.

Table 12.-PENS, GOLD: CAPITAL, 1890 AND 1900.

	1000		1890		Per cent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total.	\$496,246	100.0	\$473,964	100.0	4.7
Land.	33,000	6.6	12,000	2.5	175.0
Buildings .-..................	7,000	1.4	8,000	1.7	${ }^{1} 12.5$
Machinery, tools, and impleinents.	129,775	26.2	129, 120	27.3	0.5
Cash on hand, and sundries.	326,471	65.8	324,844	68.5	0.5

In this industry, as in the other industries reported in this bulletin, cash and sundries, including bills receivable, unsettled ledger accounts, etc., was the largest item reported in the table, but this item was only a little larger in 1900 than in 1890. The item for machinery, tools, and implements formed a considerable proportion of the total amount of capital for the years 1890 and 1900, indicating that machinery is extensively used in the industry, but from the very insignificant percentage of increase in this item during the decade, it is evident that very little new machinery has been added. The items of land and buildings each form but a small percentage of the total capital; the value of the land,
however, increased during the decade $\$ 21,000$, while the value of the buildings decreased $\$ 1,000$.

The cost of materials used in the manufacture of gold pens in 1900, and the cost of each item, with its percentage of the whole amount, are presented in Table 13.
Table 13.-PENS, GOLD: COST OF MATERIALS USED, 1900.

	Amount.	Per cent of total.
Total	\$312,537	100.0
Priacipal materials ${ }^{1}$	308,545	98.7
Fuent of power and heat	3,010	1.0

${ }^{1}$ luclndes items for mill supplies and all other materials, which are shown separately in Table 16.

By far the largest item shown in Table 13, covering almost the entire cost, is that reported for principal materials, which includes not only the materials purchased in partially manufactured form, butall materials that are used in the manufacture of gold pens. The largest part of this item consists of materials purchased in partially manufactured form. 'This item alone was $\$ 283,089$, or 90.6 per cent of the total cost of materials. The materials used were principally gold bullion and iridium, but other metals were used to some extent.
Table 14 is a detailed statement, by states, of the quantity and value of gold pens manufactured during the ceusus year by the establishments principally engaged in this industry, and the subsidiary products reported by them.

Table 14.-GOLD PENS: QUANTITY AND VALUE OF PRODUCTS, BY STATES, 1900.

${ }^{1}$ Includes establishments distributed as follows: Illinois, 1; Maryland, 1; Massachusetts, 1; Michigan, 1; Ohio, 1; Rhode Island, 1.

In this industry, as in the manufacture of fountain and stylographic pens, New York led, producing almost five times as much as all other states combined. The overlapping of the industries is more strikingly exemplified in this industry than in the manufacture of fountain and stylographic pens, the principal product of gold pen establishments making up only 52.1 per cent of the total number of gross produced, while in fountain and stylographic pen establishments the principal product furnished 86.5 per cent of the total.

The tables which have thus far been shown for this industry do not give complete statistics of the quantity and value of gold pens produced during the census year, because of the rule adopted of classifying establishments according to the predominating product. Table 15 shows the total quantity and value of gold pens produced during the census year as reported by establishments of any character.

TABLE 15.-PENS, GOLD: QUANTITY AND VALUE OF PRODUCTS, BY STATES, 1900.

states.	Gross.	Value.
United States.	6,735	\$458, 376
New York	- 5,210	365, 050
All other states ${ }^{1}$.	1,525	93, 326

${ }^{1}$ Includes establishments distributed as follows: 1llinois, 2; Maryland, 1; Massachusetts, 2; Michigan, 1; Ohio, 2; Rhode Island, 1.

Table 15 includes the quantity and value of gold pens produced in establishments engaged primarily in this industry, and also the quantity and value reported as a subsidiary product of establishments engaged in the manufacture of fountain and stylographic pens and lead pencils. The values reported in Table 15 do not include the amounts reported as the value of any other products, therefore the totals given in this table do not agree with the totals elsewhere given with those of the general report on Manufactures, Parts I and II.

HISTORICAL AND DESCRIPTIVE.

The manufacture of gold pens was commenced in the United States in 1835 by a watchmaker of Detroit, Mich. Attempts had been made in England to make gold pens prior to that time, but they met with little success. Alloyed gold is too soft to make a durable point, and this circumstance made it necessary to protect the pen points with diamonds or rubies until John Isaac Hawkins, a citizen of the United States, but residing in England while the experiments in the manufacture of the gold pen were in progress there, accidentally discovered that the native alloy of iridium and osmium, one of the hardest and most refractory of all metallic alloys, could be used for protecting the points to much better advantage and more cheaply. Hawkins' rights were purchased by a clergyman of Detroit, Mich., who induced the watchmaker above mentioned to manufacture gold pens. The first pens made by him were very poor substitutes for the quill then in use. In 1840 his plant was taken to New York, where the business was enlarged. Quite an impzovement was added to the plant by the machines, for the making and tempering of the pens, invented by John Rendell, one of the employees of the establishment. This establishment soon produced a gold pen so perfect that it combined the elasticity of the quill with the permanency of the metal. About 1850 it was discovered that by embedding the iridium points in the gold instead of soldering them on, the corrosive influence of the ink on the two metals, the solder and the gold, was avoided, and a firmer hold in the pen was given to the points. ${ }^{1}$

The gold pen bas been brought to its present degree of perfection by the American manufacturer, and the industry from its inception has been characterized by the use of American methods. For the production of the gold pen a high degree of skill is necessary, and only experts are employed in the different plants.

The gold used in the making of the pens is obtained from the United States Assay Office. It is then melted and alloyed to about 16 carats fine, and rolled into a long narrow ribbon from which pen blanks or flat plates in the shape of a pen, but considerably thicker than the finished pen, are cut by means of a lever press or die and punch. The blunt nib of the blank is notched or recessed at the end to receive the iridium that forms the exceedingly hard point which all good gold pens possess. The iridium is coated with a cream of borax ground in water, and laid in the notch formed in the end of the blank. It is then secured by a process of sweating, which is nothing more nor less than melting the gold of which the pen is formed so that it unites solidly with the iridium. The blank is then passed between rollers of peculiar form to give a gradually diminishing thickness from the point backward. The rolls have a small cavity in which the extreme end of the iridium-

[^83]pointed nib is placed, to prevent injury to the iridum. After rolling, the nib of every pen is stiffened and rendered spongy by hammering. This is the most important process in the manufacture of the pen, as the elasticity of the nrb depends entirely upon this operation. The pen is then trimmed by a press similar to that which is used for cutting out the blanks, or by automatic machinery. When the blank has been trimmed, the name of the manufacturer and the number of the pen are stamped on it by means of a screw press. The pen is given its convex surface also by means of a screw press, the blank being pressed between a concave die beneath and a convex one above. Quite a little force is necessary to bring the pen to the required convexity, and when this operation is completed, two jaws approach the blank and press it up on the opposite edges, thus giving the pen its final shape. The next step is to cut the iridium into two points by holding it on the edge of a very thin copper disk, which is charged with fine emery and oil and revolves at a high speed. The nib is then slit by a machine and the slit cleared by means of a fine circular saw. After slitting, the nibs are brought together by hammering, and the pen burnished on the inside in a concave form and on the outside in a convex form. This is necessary in order to give the pen a uniform surface and greater elasticity. These nibs are then set by the finger's alone, after which operation the pen is ground by a lathe with a thin steel disk and a copper cylinder, both charged with fine eniery and oil. The slit is then ground by a thin disk and the sides of the nibs and the points are ground upon the copper cylinder. After the grinding is done the pen is polished upon buff wheels, which completes the process of manufacture. Before the pen is placed upon the market, however, it is given a thorough inspection to see that it possesses the proper elasticity, fineness and weight, then passed to an inspector who tests it and weighs it.

Table 16 is a detailed statement of the statistics for the manufacture of gold pens, by states, 1900.

Table 16.-PENS, GOLD: BY STATES, 1900.

${ }^{1}$ Includes establishments distribnted as follows: California, 1; Illinois, 2; Marylani, 1; Massachusetts, 1; Michigan, 1; Ohio, 1; Rhode Island, I.

Table 16.-PENS, GOLD: BY STATES, 1900-Continued.

${ }^{1}$ Includes establisbments distributed as follows: California, 1 ; Llinois, 2: Maryland, 1; Massachusetts, 1; Michigan, 1; Ohio, 1; Rhode Island, 1.

STEEL PENS.

The steel pen manufacture was successfully established in the Uuited States by 1860, but the statistics of the industry were not separately reported until the census of 1870 . Its growth since that time, though slow, has been satisfactory, until to-day the home manufacturer not only supplies three-fourths of the home trade, but exports a cousiderable quantity.

The statistics for the manufacture of steel pens, as returned at the censuses of 1870 to 1900 , inclusive, with the percentages of increase for each decade, are presented in Table 17.

	date of census.				per cent of increase.		
	1900	1890	1880	1870	$\begin{gathered} 1890 \\ \text { to } \\ 1400 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$	$\begin{gathered} 1870 \\ \text { to } \\ 1880 \end{gathered}$
Number of estublishments.	3	3	3	3			
Capitul ...-........................	\% 4577 , 460	\$399.182	\$182,500	\$175,000	110.5	118.7	4.3
Smaried officials, clerks, etc., number	13 $\$ 21,416$	215 $2 \$ 20,143$	$\left(\begin{array}{l}3 \\ (3) \\ 3\end{array}\right.$	$\left(\begin{array}{l}3 \\ (3)\end{array}\right.$	113.3 6.3		
Wage-eurners, average number	473	496	280	257	14.6	77.1	8.9
Total wages	\$138,433	8132,032	\$88,500	\$60,000	4.8	49.2	47.5
Men, 16 years and over. Wages	65	-141	34	$\text { (8) } 47$	${ }^{1} 53.9$	314.7	127.7
Wages.................	\$26, 684	\$59,907	${ }^{(3)} 230$	${ }^{(3)} 195$	$\begin{array}{r}155.5 \\ 15.2 \\ \hline 1.8\end{array}$	40.0	17.9
Women, ${ }^{\text {Wages.............. }}$		\$66, 8276			52.0		
Children, nuder 16 years	10,627	- 33	() 16	() 15	12.1	106.3	6.7
Wages.	\$10, 127	\$5, 249	$\left.{ }^{3}\right)$	$\left.{ }^{3}\right)$	92.9		
Misccllaneous expenses.	\$ $\$ 37,405$	\$66,295	(4) 930	(4) 9	494.2		
Cost of materials used..	\$ $\$ 52,466$	+ 956,630	\$ $\$ 168,950$	$\$ 49,943$ $\$ 180,000$	17.4 9	45.4 63.6	
Value of products, including custom work and repairing..	\$294, 340	\$268, 259	\$164,000	\$180,000	9.7	63.6	18.9

1 Deerease.
${ }^{1}$ 2 Decreades proprietors and firm members with their salaries; number only reported in 1900 , but not included in this table. (Sec Table 23.)
${ }^{3}$ Not reported separately.
${ }^{4}$ Not reported.

It appears from Table 17 that the period of the industry's greatest growth was from 1880 to 1890. By a singular coincidence the number of establishments engaged in the industry has been the same at the several censuses. This does not necessarily mean that the establishments reporting in 1900 are individually the same establishments that reported in 1870, 1880, and 1890, although it is more than probable that one or more of the establishments reported in 1900 was actively engaged in the business in previous census years. During the whole period between 1870 and 1900 , the capital invested in the industry increased $\$ 182,460$, and the products $\$ 114,340$. Between 1890 and 1900 the value of the products increased very slightly, and the amount of capital showed a decrease of 10.5 per cent. The large number of women employed in the manufacture as compared with the number of men is to be expected in an industry using machinery that requires but little skill and strength to operate.

Table 18 presents, by states, the number of establishments actively engaged in the manufacture of steel pens in 1890 and 1900 , with the increases and decreases for the decade.

Table 18.-PENS, STEEL: NUMBER OF ESTABLISHMENTS, BY STATES, 1890 AND 1900.

states.	1900	1890	Increase.
United States.........	3	3	
Connecticut		1	11
New Jersey...	1	1	1
Onio.........-	1	1

During the decade 1 plant was established in Ohio, which in 1890 had none. Owing to the plan adopted by this census of classifying establishments in accordance with the predominating product, it is probable that the establishment engaged in this industry in Con-
necticut in 1890 was reported under some other classification in 1900. An examination of the returns for that state shows that steel pens were manufactured there during the census year, 1900, and the quantity and value of such product is included in Table 22.

In Table 19 is presented a comparative summary, for 1890 and 1900 , of the capital in its several subdivisions, with the percentage that each item is of the total in the two census years, and percentages of increase for the decade.

Table 19.-PENS, STEEL: CAPITAL, 1890 AND 1900.

	1900		1890		Per cent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total.	\$357, 460	100.0	8399,182	100.0	${ }^{1} 10.5$
Land.	20, 000	5.6	36,000	9.0	144.4
Buildings .-..................	43,000	12.0	52, 672	13.2	${ }^{1} 18.4$
plements.	82,000 212,460	22.9 59.5	87,443 223,067	23.0 59.4	16.2 14.8

The table shows a decrease of 10.5 per cent in the total capital for the industry during the decade, and decreases in each item making up the total. The most marked decreases are shown in the items of land and buildings; machinery, tools, and implements, and cash on hand, bills receivable, etc., formed a greater proportion of the total capital in 1900 than in 1890 , yet each of these items showed a decrease for the decade. This industry reported a considerable amount for machinery, tools, and implements, thus indicating that machinery is extensively used in the manufacture of the steel pen.
The cost of materials used in the manufacture of steel pens in 1900, and the cost of each item, with its proportion to the whole amount, are presented in Table 20.

Table 20.-PENS, STEEL: COST OF MATERIALS, 1900.

	Amount.	Per cent of total.
Total	\$ $5^{2} 2,466$	100.0
Principal materials ${ }^{1}$.	50, 237	95.8
Fuel....	2,090	4.0 0.2
Rent of power and heat	139	0.2

${ }^{1}$ rucludes items mill supplies and all other materials which are shown separately in Table 23.

Of the item "principal materials," $\$ 39,168$ was for materials purchased in partially manufactured form, while $\$ 10,491$ was for all other materials used in the manufacture. Steel and aluminum, and one or two other metals constituted all that was purchased in partially manufactured form.

Table 21 is a statement of the quantity and value of steel pens manufactured during the census year as reported by establishments engaged primarily in the manufacture of steel pens.
Table 21.-PENS, STEEL: QUANTITY AND VALUE OF PRODUCTS, 1900.

${ }^{1}$ Distributed as follows: New jersey, 1; Ohio, 1; Pennsylvania, 1.

This table does not give statistics of the industry by states, separately, as the number of establishments in each is too small to permit such presentation without disclosing the operations of individual concerns." The establishments reporting for this industry for 1900 were then engaged exclusively in the manufacture of steel pens and did not report any subsidiary product of other pens or of pencils. The above table, however, does not show the total quantity and valne of steel pens manufactured in this country during the census year, as some of the establishments, engaged primarily in manufacturing other articles, reported steel pens as a subsidiary product.

Table 22 shows the total quantity and value of steel pens produced during the census year as reported by establishments of any character.

Table 22.-PENS, STEEL: QUANTITY AND VALUE, 1900.

	Gross.	Value.
All establishments ${ }^{1}$	1,764, 079	\$411,872

${ }^{1}$ Distributed as follows: Connecticut, 1; New Jersey, 1; New York, 1; Ohio, 1; Pennsylvania, 1.

The totals shown in Table 22 do not agree with the totals elsewhere shown in this report or with those of the general report on this industry as presented in Manufactures, Parts I and II, for reasons previously mentioned.

HISTORICAL AND DESCRIPTIVE.

The real inventor of the steel pen is unknown. France, England, and the United States each have claimants for the honor, and it is difficult to decide to whom it belongs. Arnoux, a French mechanic, made metallic pens with side slits in 1750. Samuel Harrison, an Englishman, made a steel pen for Dr. Priestly in 1780. Peregrine Williamson, a native of New York, while engaged as a jeweler in Baltimore, made steel pens in that city in 1800. He met with signal success and produced a very good article. ${ }^{1}$
The first manufacture of steel pens by mechanical appliances was in England during the third decade of the Nineteenth century, and the names associated with it were John Mitchell, Joseph Gillott, and Josiah Mason, each doing something toward perfecting the processes of manufacture by mechanical means. At the period when these men commenced operations the pens in use were very crude specimens, made from a piece of steel formed into a tube, and filed into the shape of a pen, by hand, the joint of the two edges forming the slit. By degrees a press was contrived to do the cutting, bending, and marking; and machinery was devised for cleaning and polishing. Experiments were nade with the object of securing the best possible quality of steel, and by the year 1860, when the manufacture of steel

[^84]pens was first begun in this country, the article had been brought to a considerable degree of perfection.

The pens in use half a century ago were mostly tine pointed, and while they gave satisfaction in certain lines of penmanship, some objections were made to them for business and rapid writing. Since that time there has been a gradual improvement in the material used and the process of manufacture, and the finepointed pens have given away to some extent to the stub and other blunt-pointed pens.
The first steel pens made in the United States by mechanical appliances were made at New York in 1858 by Harrison \& Bradford. Two years later a factory was started at Camden, New Jersey, by Rịchard Esterbrook, sr., Richard Esterbrook, jr., and James Bromgrove. This firm met with success, and in 1866 the establishment was incorporated as the Esterbrook Steel Pen Company. Their enterprise was successful, and the growth of the plant has continued up to the present time. ${ }^{2}$
The many prefixes, such as Peruvian, Damascus, Amalgam, and Silver, used to describe the pen, are but fancy names and do not indicate the quality of the article. The material used for all kinds is cast steel of the best quality, imported from England or Sweden.

[^85]The best variety is that made from Swedish iron, which has in its granular structure a peculiar density and compactness. Steel for the manufacture of the pen has not yet been successfully produced in the United States.

The steel used in the industry is received in sheets varying in length, width, and thickness. These sheets are cut by the manufacturer into strips of convenient width, and are packed in an oblong iron box, which is placed with the open top downward in another box of the same material, the interstices being then filled up with a composition in order to exclude the air. The boxes are placed in a furnace, gradually heated until they are dull red in appearance, and then gradually cooled. In this process the strips become covered with bits of small scale. To remove this roughness they are immersed in a bath of diluted sulphuric acid, which loosens the scales, and they are then placed in wooden barrels containing water and broken pebbles. These barrels are revolved until the whole of the scaly substance is removed and the strips are of a silver-gray appearance. The strips are then taken to the rolling mill, where they are passed between successive rolls until reduced to the required gauge, the more common thickness being the one-hundred and sixtieth part of an inch. This operation requires considerable care and skill, as the variation of one-thousandth part of an inch in the thickness of the strip would seriously affect the flexibility of the pens. The strips are now three times their original length and have a bright surface.

In these preliminary processes the labor is performed by men and boys, but the processes of forming and shaping the pen, that begin at this point, are carried on by women and girls, who are more adapted to the work. The cutting of the blanks is accomplished by a die and a punch. This die is set in a bolster and is perforated by a hole the exact shape of the blank; and a punch, also of the exact shape of the blank, is attached to the bottom of the screw bolt of a press. The operator with her left hand introduces one of the strips of steel at the back of the press and pulls the handle toward her with the right hand. This causes the screw to descend, driving the punch into the bed, thus perforating the strip of steel with a scissor-like cut, and making a blank which falls through the opening in the die into a drawer below. The operator then pulls the strip of steel toward her until it is stopped by a little projection called a guide, and the operation just described is repeated, and again repeated, until the whole of one side of the strip is perforated, when the strip is reversed and the other side treated in a similar way. In the operation of cutting, a small V-shaped indentation is formed in the blanks upon the upper edge of that part inserted in the holder, which may be found upon a careful examination, and which plays an important part in the succeeding processes, as it enables the operator to distinguish between the smooth and rough sides of the blank.

The next process, called marking, is done by a stamp. The precise mark required is cut upon a piece of steel, which is placed in the hammer of the stamp. The stamp is operated by foot power. The operator takes a handful of blanks with her left hand, and by a dexterous motion makes a little train of them between the thumb and finger, presenting the first in the most ready position to be passed to the other hand. By the right hand the blank is placed, with the point toward the worker, in a gnide upon the bed of the stamp, where the hammer falls upon it and makes the impression of the name cut upon the punch. So skillful do operator's become in this process that they can stamp 200 to 250 gross of pens a day. Should the impression to be made be unusually large, the marking process is deferred until later in the course of construction.

The next process in the manufacture is "piercing," which produces the elasticity desired and causes the ink to attach itself to the pen. The tools used in this operation are very delicate and must be made with great precision. A piercing punch and bed are fixed in a screw press, and an ingenious arrangement of guides is fastened thereto. The operator then places the blank in its proper position and so manipulates the machinery as to cause the screw to descend, driving the punch into the bed. In order to soften the blanks, so that they can be properly shaped, they are put through a process called annealing. In this process the blanks are freed from the dust and grease that has become attached to them, and are then carefully placed in round iron pots, which are again inclosed in larger ones, covered over with charcoal dust to prevent the entrance of gases and put into the furnace, where they are heated to a dull red, and then gradually cooled.

After this process is finished the blanks are soft and pliable and readily assume the various shapes into which they are made by the next process, called " raising." In this operation a punch and die are again brought into use. The punch is fitted into a contrivance fixed in the bottom of the screw of the press; the die, or bed, is placed in a bolster, a cylindrical piece of steel attached to the bottom of the press, with a groove cut for the reception of the die. Four pieces of steel, called guides, are fixed to the bolster in such a position that the operator is enabled to slide the blank into the bed, where it is held by the guides until the punch descends, forcing the blank into the bed, and giving the pen its shape. The blanks are then placed in thin layers in round pans with lids and go through the process called "hardening." In this operation the pans mentioned are placed in the furnace for a period varying from twenty to thirty minutes, at the end of which time they have come to a bright red heat. The pans are then taken from the furnace and their contents thrown into a large bucket immersed in a tank of oil. This bucket is perforated, and when lifted from the tank the oil drains off. The pens are then placed in a perforated
cylinder, which is set in motion and drains off the remainder of the oil. At this stage of the manufacture the pens are very greasy and as brittle as glass. To remove the grease adhering to them they are again placed in perforated buckets and immersed in a tank of boiling soda water.

The pensare then put into an iron cylinder, which is kept revolving over a eharcoal fire until they are softened or tempered down to the degree required. This process is regulated according to the color shown by the pens, which indicates the varying temperature of the metal. After this operation the pens are black and rough at the point. To remedy these defects, the pens are subjected to the proeess known as "scouring," which consists in dipping the pens in a bath of diluted sulphurie acid, which removes all extraneous substances acquired in the hardening and tempering processes. Great care is exercised in this operation, as the acid is very likely to injure the steel. The pens are then placed in iron barrels with a quantity of water and a material composed of annealing pots broken and ground fine enough to pass through a fine riddle. The barrels are then set in motion, which is continued for a period varying from five to eight hours. At the end of this time they are placed in barrels with dry pot for about the same period, after which they are put into other barrels, together with a quantity of dry sawdust. They are then ground between the center pierce and the point. This is done by girls with the aid of a "bob," or "glazer," a cireular piece of alder wood about $10 \frac{1}{2}$ inches in diameter and one-half an inch in width. Around this a piece of leather is stretehed and dressed with emery. A spindle is driven through the center and the two ends placed in sockets. The mechanism thus arranged is set in motion by means of a leather band, and the operator, holding a pen firmly, grinds off, with a light touch, a portion of the surface.

The last and most important mechanical operation performed upon the pen is slitting. The tools used for this purpose are two oblong pieces of steel known as eutters, which are about $1 \frac{1}{2}$ inches long, three-eighths of an inch thiek, and $1 \frac{1}{4}$ inches wide. The edges of these cutter's are equal in delicacy to the cutting edge of a razor. One of the cutters is fixed in a press with a pair of guides screwed on either side, and the other eutter is held by a bolster, having attached to it a small tool called a rest, or table. The operator places the pen upon the table, pushes the point up toward the guide, and, by operating the machine, makes the upper eutter descend and meet the lower one, thus slitting the pen.

At this stage in the process of manufacture the outer edge of each point is smooth, but the inside edges are sharp and rough. To remedy these defects the pens are again put in the iron barrels with pounded pot, and kept revolving for five or six hours, when they are removed and polished in sawdust. The pens are then colored by being placed in a copper or iron cylinder
whieh revolves over a coke fire until the requisite tint is obtained. If the pens are to be lacquered they are placed in a solution of shellac dissolved in alcohol. This solution is afterwards drained off and the pens are placed in iron cylinders that are kept revolving until the pens are dry. The pens are then scattered upon iron trays and heated in an oven until the lacquer is diffused equally over the whole surface of the pens. The laequer gives the pens a glossy appearance and prevents rust; and when the pens have cooled they are complete as far as manufacturing processes are coneerned. Before they are offered to the public, however, they are given a very careful inspection, to see that no inferior ones are put on the market.

Table 23 presents a detailed statement of the statistics for the manufacture of steel pens, by states, 1900 .

Table 23.-STATISTICS OF STEEL PENS, 1900.

Table 23.-STATISTICS OF STEEL PENS, 1900-Continued.

	United States. ${ }^{1}$		United States. ${ }^{1}$
Average number of wage-earners, including pieceworkers, employed			
during each month-Continued.		Products: Total value	
		Pens, steel--	\$294, 340
February	37 37	Gross. Value....	1,075, 780
Mapril....	37	All other products.	$\$ 289,340$ $\$ 5,000$
May......	37	Comparison of produets:	\$5,000
June	37 37	Nuraber of establishments reporting for both years	3
July...	37 36	Value for census year..............	\$294,340
August....	36	Power:	\$267, 127
October...	${ }_{36} 36$	Number of establishments reporting.	3
November	36 42 4	Total horsepower	138
December.	36	Engiues-	
Miscellaneous expenses:		Steam-	
Rotal	\$37,405	Horsepower.	1
Taxes, not including internal revenue.................................	\$9945	Gas or gasoline-	
Rent of offices, insurance, interest, and ail sundry expenses not hitherto	\$1, 578	Number..	1
	\$34, 882	Rented- Horsepow	10
Materials used:		Establishments classified by number of persons employed	3
Materials used: Total cost.		ing proprietors and firm members:	
Principal materials- ${ }_{\text {Total }}^{\text {cost }}$.	\$52, 466	Total number of establishments	3
Purchased in raw state	\$39,168	Under $5 . .$.	
Fuel Purchased in partially manufactured form	\$39,168	5 21 to 20.	1
Rent of power and heat	\$2,090	51 to 100....	1
Mill supplies	\$139 $\$ 578$	101 to $250 . \ldots$	
All other materials Freight	\$10,491	501 to 1,000.	1
		Over 1,000....	

${ }^{1}$ Includes establishments distributed as follows: New Jersey, 1; Ohio, 1; Pennsylvania, 1.

LEAD PENCILS.

The lead pencil industry was first reported separately at the census of 1860 , as a subdivision of the general class of stationery. At the census of 1850 it was reported under the general classification of pens and pencils, when it was shown that there were four establishments engaged in the manufacture of pens and pencils, with a capital of $\$ 43,000$ invested, employing 58 people at a cost of $\$ 14,028$, and producing a product of $\$ 85,300$. It is probable that the value of the products of the lead
pencil industry was very small at that time, as it was only $\$ 20,400$ in 1860 . The growth of the lead pencil industry since 1860 has been constant, and in some periods remarkably great, as is shown by the statistics presented in the following tables.
Table 24 is a comparative summary of the statistics of the manufacture of lead pencils at the censuses of 1860 to 1900 , inclusive, with the percentages of increase for each decade.

Table 24.-PENCILS, LEAD: COMPARATIVE SUMMARY, 1860 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	date of census.					PER CENT Of increase.			
	1900	1890	1880	1870	1860	$\begin{aligned} & 1890 \\ & \text { to } \\ & 1900 \end{aligned}$	$\begin{gathered} 1880 \\ 10 \\ 1890 \end{gathered}$	$\begin{gathered} 1870 \\ 180 \\ 1880 \end{gathered}$	$\begin{aligned} & 1860 \\ & \text { to } \\ & 1870 \end{aligned}$
Number of establishments.	-207 7	¢ 500	4	8	6	40.0	25.0	150.0	33.3
Capital	\$2, 227, 406	\$3,100, 836	\$341,597	$\underset{(3) 150}{ }$	\$6,600	${ }^{1} 28.2$	807.7	30.8	3,856.8
Salarled officials, clerks, etc., number Salaries...............................	\$111, 890	2\$130, ${ }^{264}$	(3)	(3)		26.6 114.1			
Wage-earners, average-number	2,162	1,388	399	160	24	55.8	247.9	149.4	566.7
Total wages.....................	\$683, 281	\$450, 450	\$102, ${ }^{233}$	\$51,150	\$7,920	51.7	340.6	99.9	545.8
Men, 16 years and over.	758 $\$ 352,563$					56.9 33.3	316.4	78.5	261.1
Wages \ldots...............	\$352, 1,083	8264,481	${ }^{(8)} 144$	(3) 95	() 6	33.3 72.0	338.9	51.6	1,483.3
Wages	\$263, 118	\$144,409	${ }^{(3)}$	${ }^{3}$	$\left.{ }^{3}\right)$	82.2			
Children, under 16 years.			(8) 139	${ }^{3} 8$	(3)	16.1	96.4		
Miscellanage	\$ $\begin{array}{r}\text { \$67,600 } \\ \$ 278 \\ \hline 176\end{array}$	\$ \$41,560		(8)		82.7			
Cost of materials used ..	\$1,030,917	\$796, 378	\$97, 344	857,510	\$3,335	29.5	718.1	69.3	1,624.4
Value of products, including custom work and repairing	\$2,222,276	\$1,687,560	\$279, 427	\$180,000	\$20,400	31.7	503.9	55.2	782.4

[^86]In 1860 the 6 establishments engaged in this industry reported a capital of $\$ 6,600$ and products valued at $\$ 20,400$. From 1860 to 1870 the growth of the industry was nothing less than remarkable. Although the number of establishments was increased by 2 only, the increase in capital was $\$ 254,550$, and in products, $\$ 159,600$. This rapid growth was probably due to the establishment in New York of branches of the leading factories in Germany, where the process of manufacture had attained a high degree of perfection.

During the next decade the number of establishments decreased one-half, while the capital invested and the value of the products showed gratifying gains, indicating that the larger plants remaining were successful in the manufacture of the article. Although the number of establishments increased but one from 1880 to 1890 , the increase in the amount of capital invested exceeded that for any decade, and the increase in the value of the products was correspondingly large. In comparing the capital as reported at different censuses, however, it should be borne in mind that until the census of 1890 , no definite attempt was made to include live capital in the returns. During the past decade there has been a marked decrease in the amount of capital invested, but an increase in number of establishments and in value of products. Women wage-earners predominate in this industry, and for each decade except 1870 to 1880 their number increased in greater proportion than that of the men wage-earners.

The number of establishments actively engaged in the manufacture of lead pencils in 1890 and in 1900, with the increase or decrease, by states, is presented in Table 25 .

Table 25.-PENCILS, LEAD: NUMBER OF ESTABLISHMENTS, 1890 AND 1900.

states.	1900	1890	Increase.
United States.	7	5	2
1llinois.	1	.	1
Massachusetts.	1		1
New Jersey..	3	1	1
New R ode Island.	3	1	ii

${ }^{1}$ necrease.
It appears from Table 25 that the number of establishments increased 2 , or 40 per cent, during the decade. Mlinois, Massachusetts, and New Jersey each show a gain of 1 establishment, while Rhode Island reported 1 establishment in 1890 and none in 1900. The center of the industry in 1900 was in New York and New Jersey, and but 2 establishments are reported outside of those states.

Table 26 is a comparative summary of the capital for 1890 and 1900 , in its several subdivisions, with percentages of increase for the decade and the per cent each item is of the total.

Table 26.-PENCILS, LEAD: CAPITAL, 1890 AND 1900.

	1900		1890		Pér cent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total.	82, 227, 406	100.0	\$3, 100, 836	100.0	128.2
Land.....	151,800	6.8	270,000	8.7	143.8
Buildings	253,500	11.4	373,000	12.0	132.0
Machinery, tools, and implements.	244, 725	11.0	293,000	9.5 69.8	${ }_{1}^{116.5}$
Cash and sundries	1, 577,381	70.8	2,164,836	69.8	12.1

The total amount of capital invested showed a large decrease for the decade. The different items making up the total also showed decreases of varying proportions. The most marked decrease in the items is shown in the value of lands owned by the establishments. The item of machinery represented a greater percentage of the total capital in 1900 than in 1890, and showed the smallest percentage of decrease of any item reported in Table 26. The items of buildings owned and cash on hand, bills receivable, etc., represented very nearly the same percentage of the total for the year 1890 as in 1900 .
The cost of materials used in the manufacture of lead pencils and the proportion of each item to the total for 1900 is shown in Table 27.

Table 27.-PENCILS, LEAD: COST of MATERIALS, 1900.

	Amount.	Per cent of total.
Total	\$1, 030,917	100.0
Principal materials	1,002, 710	97.3
Purchased in raw state...............-	79, 233	7.7
	923,477 13,757	89.6
Rent of power and heat	13,757	
Freight.....	14,450	1.4

${ }^{1}$ lncludes mill supplies and all other materials, which are shown separately in Table 30.

The largest item shown in Table 27 is that reported for principal materials, which is divided into those purchased in raw state, that is, materials upon which no manufacturing force has been expended, and those purchased in a partially manufactured form. Of the amount shown for materials purchased in a raw state, the cost of cedar logs made up the greatest proportion. In the amount reported for materials purchased in a partially manufactured form are included cost of "mill supplies" and "all other materials," the former being $\$ 32,566$ and the latter $\$ 255,587$. Some establishments were unable to separate the amount paid for freight from the cost of materials, and reported the two together. For this reason the $\$ 14,450$ does not represent the entire cost of freight, and should be considered only in connection with the cost of material. Nothing was reported under the item "rent of power and heat."

A detailed statement, by states, of the number of gross and the value of the different varieties of lead pen-
cils, and the subsidiary products, of plants engaged primarily in this industry, is presented in Table 28.

Table 28.-PENCILS, LEAD: QUANTITY AND VALUE OF PRODUCTS, 1900.

states.	Aggregate value.	Products.									
		Total gross.	Total value.	Pencil cases.							
				Wood.		Silver.		Plate.		Other material.	
				Gross.	Value.	Gross.	Value.	Gross.	Value.	Gross	Value.
Total. New York All other states ${ }^{1}$	92,222, 276	1,383,822	\$1,705, 065	1,381,329	\$1,641,975	1,486	\$43,496	482	\$18,794	525	\$800
	$\begin{array}{r} 1,581,351 \\ 640,925 \end{array}$	$\begin{aligned} & 911,138 \\ & 472,684 \end{aligned}$	$\begin{array}{r} 1,213,785 \\ 491,280 \end{array}$	$\begin{aligned} & 909,170 \\ & 472,159 \end{aligned}$	$\begin{array}{r} 1,151,495 \\ 490,480 \end{array}$	1,486	43,496	482	18,794	525	800
states.	Products-continued.										ALL OTHERPRODUCTS.
	Pens.										
	Total gross.	Total value.	Fountain (complete).		Gold.		Steel.		Stylographic.		
			Gross.	Value.	Gross.	Value.	Gross.	Value.	Gross.	Value.	Value.
Total New York \qquad All other states	432, 759	\$115, 101	447	\$39,125	31	\$2,202	432,230	\$71, 318	51	\$2, 456	\$402, 110
	432, 759	115,101	447	39,125	31	2,202	432, 230	71,318	51	2,456	$\begin{aligned} & 252,465 \\ & 149,645 \end{aligned}$

${ }^{1}$ Includes establishments distributed as follows: Mllinois, I; Massachusetts, 1; New Jersey, 2.

It appears from Table 28 that New York led in the output of lead pencils in the census year, producing almost twice as many gross as all other states combined. To show to a better advantage the different varieties of lead pencils manufactured during the census year, it was decided to subdivide the product according to the case in which the lead was inclosed. In doing this 5 divisions (wood, gold, silver, plated, and other varieties) were made. Practically, all lead pencils manufactured are inclosed in wooden cases, as will be seen from Table 28. A considerable overlapping of the pen
and pencil industries is shown in this table. Table 28 gives only an incomplete enumeration of the quantity of lead pencils produced during the census year, for the reason that many lead pencils were reported as a subsidiary product of the industries engaged primarily in the manufacture of pens and other articles. The total quantity and value of lead pencils produced by establishments of any character is shown in Table 29.

Of the total quantity of lead pencils manufactured during the census year, those incased in wood were $1,653,973$ gross, valued at $\$ 2,053,484$, and all other

Table 29.-PENCILS, LEAD: QUANTITY AND VALUE OF PRODUCTS, 1900.

STATES.	Total value.	cases.									
		Wood.		Gold.		Silver.		Plated.		Other materials.	
		Gross.	Value.								
United States	\$2,264, 151	1,653,973	\$2, 053, 484	31	§32,526	2,281	\$111,518	3,988	\$64, 523	581	\$2, 100
New York All other ${ }^{\text {a }}$ (ates	$\begin{array}{r} 1,333,387 \\ 930,764 \end{array}$	909,170 744,803	$1,151,495$ 901,989	26 5	32,326 200	2,055 226	$\begin{array}{r} 102,718 \\ 8,800 \end{array}$	3,204 784	46,848 17,675	- 581	2,100

${ }^{1}$ Includes establishments distributed as follows: Illinois, 1; Massachusetts, 1; New Jersey, 3, inciuding 1 establishmeut which reported pencils as a by-product; Ohio, 1; Rhode Island, 2.
varieties were but 6,881 gross, valued at $\$ 210,677$. There were produced in all during the census year $1,660,854$ gross, or $239,162,976$ lead pencils-more than three for each man, woman, and child then living in the United States. The totals shown in Table 29 do not agree with the totals elsewhere given in this report, or with those in the general report on this industry as presented in Manufactures, Parts I and II.
As the importations of pencils, "paper or wood filled
with lead or other material, and pencils of lead," were but 85,119 gross, valued at $\$ 228,144$, for the fiscal year ending June 30, 1900, ${ }^{1}$ and as this was greatly in excess of the reports for the previous years, it will be seen that the American manufacturer practically supplies the home trade. It is to be regretted that no statistics are available as to the amount of lead pencils exported.

[^87]
HISTORICAL AND DESCRIPTIVE.

The manufacture of lead pencils is a comparatively modern industry in the United States, dating from 1861, when the Fabers, pencil manufacturers in Germany, established a branch factory in New York. The use, however, of metallic lead for marking is very old. Pliny refers to lead as used for marking lines on papyrus; La Moine cites a document of 1387 ruled with it; Cortez found the Aztecs, in 1520, using crayons made of it. ${ }^{1}$ The manufacture of lead into pencils, however, was not very general until after the discovery of the famous Barrowdale graphite mine in Cumberland, England, in 1564. The material from this mine was so highly desired and was so closely maintained as a monopoly that, in pursuance of an act of Parliament, the mouth of the mine was guarded by an armed force. To keep up the monopoly, the mine was worked only six weeks in a year, and its mouth was closed by flooding with water after the workmen left. The process of preparing the graphite mined here was the simple one of dividing it into slips. The most general method used to accomplish this purpose was that of compressing pulverized graphite with hydraulic presses into solid blocks, and then sawing it into.bars. About 1850 the Barrowdale mines became exhausted, and since that time the lead for pencils has been prepared by a process invented by Conté, of Paris, at the close of the last century, or some adaptation of that process. Briefly, his method was to powder the graphite ore and mix it with a powdered clay. These materials, mixed in varying proportions, constitute the marking portion of the modern lead pencil. The grades of hardness and softness are secured by using more graphite and less clay to produce the softer grades, and more clay and less graphite for the harder grades. While Conté, a Frenchman, originated this process, it was left to the Germans to perfect it, which they accomplished so completely during the first part of the past century, that Germany can well be called the home of the modern graphite pencil.

Graphite or plumbago, the material now universally used for true surface writing, has been known for more than five hundred years. This material resembles lead no more than chalk does. Graphite is a nearly pure form of carbon and has many peculiar qualities. It is only one-fourth as heavy as lead; can not be fused; is one of the softest minerals dug from the earth; and if subjected to a very hot fire it will not melt nor be consumed, but it will gradnally waste. This substance is found in its purest form at Ticonderoga, N. Y. The variety mined at this place contains 99.9 per cent carbon, while the best quality taken from the Ceylon mines is 99 per cent, and that found in the Barrowdale mine in England had but 87 per cent carbon. The inferior grades of graphite contain from 50 to 60 per cent of foreign

[^88]matter. For the manufacture of pencils only the finer grades of graphite are used. In addition to the places mentioned, graphite is mined in Siberia, where an excellent quality is found; at Harnon, Sweden; at Passau, Bavaria; at Schwarzback, Germany; in the province of Nelson, New Zealand; and in Mexico. In the United States, impure grades are found at Raleigh and Asheville, N. C., and at Cumberland Hill and Cranston, R. I. ${ }^{2}$ The clay used to mix with the graphite is a peculiar kind of pipe clay imported from Germany and Holland. The wood chiefly used for the holders is soft, straight-grained, red cedar, found in Florida, Georgia, Alabama, Mississippi, and Texas, and is used not only by American manufacturers but by all the pencil makers of the world.
Prior to the coming of the Fabers to the United States lead pencils were manufactured here, but to a very limited extent. The first step in starting the industry was made by William Monroe, of Concord, Mass., in 1812. At the commencement of the War of 1812 he was engaged as a cabinetmaker, but the nonintercourse, nonimportation, and embargo acts had so depressed business generally that he turned his attention to the making of pencils. The price for them was exceedingly high, owing to their scarcity, and success in making them meant large rewards. He procured a few lumps of black lead, pulverized them with a hammer, and separated the finer portions by suspension in a tumbler full of water. From the material thus prepared he made his first experimental mixture in a spoon, and out of it attempted to make a pencil. The result was so discouraging that he returned to his old occupation of making cabinets. He managed, however, to devote some time each day to his experiments, and after four months' work in this way he secured a better lead, which he incased in cedar-wood holders, thus producing the first American-made pencils. On the 2d day of July, 1812 , he proceeded to Boston with a modest sample of about 30 pencils, which found a ready sale. The purchaser encouraged him to continue the manufacture. On his next trip to Boston he took with him 3 gross. The dealer then made a contract with him for all the pencils he could make within a certain time, at a certain price. All the mixing of the lead and putting it into pencils was done entirely by his own hands in a small room of his dwelling, thoroughly protected from curious eyes, no one but his wife being permitted to know anything of his methods. He continued his pencil manufacture for about eighteen months, when he was compelled to abandon it, owing to the difficulty of obtaining raw materials. At the close of the war he resumed the manufacture, but the imported article was found superior, and he made but little progress in the

[^89]business. Until 1819 he carried on the manufacture as a subsidiary occupation with his cabinetmaking, but in that year, having met with better results, he devoted himself exclusively to the manufacture of lead pencils. After ten years of persistence and study directed toward the improvement of the quality of the pencils, his make grew into favor and supplied a part of the home demand.

It is said on reliable authority that Joseph Dixon attempted the manufacture of lead pencils at Salem, Mass., as early as 1830. Mr. Dixon's first consignment to a Boston firm was not enthusiastically received, but he was told that if he would place a foreign label on the pencils they would meet with ready sale. Rather than do this he had the pencils returned, and never again manufactured any. He gave his attention after that time to the manufacture of crucibles, and formed what is known as the Joseph Dixon Crucible Company. This firm began the manufacture of lead pencils in 1872, and met with exceptional success.

Prior to the manufacture of pencils by the Dixon company, 3 establishments of foreign origin were in operation in the United States. First, came representatives of the Faber plant in Germany, who began the manufacture of lead pencils in 1861. Next, in 1865, the Eagle Pencil Company was established in a similar way, and in the same year and in the same manner the American Lead Pencil Company was established. The above-named companies are now managed and owned by American citizens and have no connection with foreign plants.

After the industry bad been established in the United States in the manner described, its progress and growth were very rapid. This was due mainly to the following causes: The existence in the United States of very rich graphite mines; the extraordinary facilities for securing this substance from mines elsewhere; the presence here of the greatest cedar forests of the world; and the introduction of labor-saving machines.

The process employed to-day in the manufacture of the American lead pencil is the Conté system, but the article produced by it has been so infinitely improved in workmanship and detail beyond the original product, that it would seem as if the pencil had almost reached its limit of perfection. As now followed, the process is a difficult, painstaking, and most elaborate one, and there is needed in the manufacture both a practical and theoretical knowledge of its chemistry and mechanics.
The raw material (graphite) used in many Americanmade lead pencils is mined at Ticonderoga, N. Y. This mine closely resembles an anthracite coal mine both in external and internal appearance. In it there are two formations of the graphite-a large vein of the crystallized variety, and the compact or granulated form of deposit, the latter being the only one used in pencils. This latter kind is found in small veins, or in what
miners call "pockets." The graphite is taken, in the lump, direct from the mouth of the mine to the reducing mill, where it is pulverized by stamps under water, the particles floating off with the water through a series of tanks, in which they sink to the bottom, forming a sediment. The water being drained off and the sediment dried, the graphite is finally sent to the factory in barrels in the form of an impalpable powder-lusterless: and of a dingy color. At this stage the graphite is finer and softer than flour, and is as evasive to the touch as quicksilver.
The particles are then separated further, according to fineness, by a process known as "floating." To effect this separation the graphite is mixed with sufficient water to run very freely, and then turned into a hopper from which the water runs slowly through a series of tubs so arranged that the top portion of each tub drains off into the tub placed next to it, but on a lower plane than the first. In this manner the coarsest and heaviest particles settle to the bottom of the first tub, the next coarsest and heaviest in the next, and so on, the movement of the water being made very gentle. On reaching the last tub, the powder, being twice as heavy as water, sinks in it, if undisturbed, and so far settles that the water discharges at the top nearly clear. When the flow is stopped and the powder has settled, the clear water is withdrawn by removing successively, beginning with the upper one, a number of plugs inserted in holes in the side of each tub, care being taken not to agitate the contents so as to disturb the deposited dust. The deposits are then removed through gates at the bottom of each tub. The dcposit in the last tub is used for the finest grade of pencils, and those in the other tubs for the coarser grades.
The graphite is now ready for the clay, which is of a bluish-gray color, of great strength, and of a fatty appearance when wet. This clay is subjected to the floating process in the same way as the graphite, only the finest being used for mixing with the graphite in proportions varying according to the degree of hardness required. The more clay used, the harder the pencil; but for the medium grade the proportions are about seven parts of clay to ten of graphite, by weight. The graphite and clay are then mixed together with water to the consistency of thick crean, and the mixture is fed to the grinding mills, which consist of two flat stones about two feet in diameter, placed horizontally, only the upper one being in motion. The mass is ground between these stones many times in order to secure the most perfect strength, uniformity, and freedom from grit in the leads. The mass, when ground, is inclosed in stout canvas bags, and the clear water forced out of it by hydraulic pressure until it becomes a thick dough, when it is sent to a forming press. This is a small, ver. tical, iron cylinder, having a solid plunger or piston, driven by a screw. A plate is inserted in the bottom
having an opening of the shape and size of the lead desired, and through this hole the lead is forced something as a stream of water is forced from a syringe and coils itself round and round, like a coil of wire on a board set beneath the press. The coil is taken up, straightened, and broken off into lengths sufficient for 3 leads, which are then laid in order on a board, pressed flat by having a cover put over them, placed in a crucible, and baked in a kiln.
The material is now ready for the wooden cases, for which, in the cheaper pencils, pine is used, and in the better grades, cedar. At the sawmills the wood is cut into blocks about 7 inches long, and these are sawed into strips about $3 \frac{1}{2}$ inches wide and three-sixteenths of an inch thick. Each of these strips is sufficient to make the balves of 6 pencils. As the pencils are made six at a time, imperfect strips are put together so as to make a full strip out of the parts. These are packed closely in boxes and shipped to the factory. When they reach the factory they are passed in a continuous line under a cutter, which smooths their faces and cuts 6 little grooves-round or square-for the leads at the same stroke. The putting in of the leads is done by three operators. The first places the lead in the grooves and passes it to a second, who receives another strip with the grooves and surface coated with glue from the third operator, and puts them together. The united pairs are laid in rows, pressed together by a screw, and left to dry. The rough ends of the strips and the projecting leads are then ground smooth against a wheel covered with sandpaper. Next, the slips are fed one by one under a revolving cutter, which separates each into 6 rough pencil forms, and rounds these on one side by cutting away the superfluons wood. As they come from nnder the cutter they are turned over and passed under a second one, which rounds them on the
other side, so that they fall in a continuous stream of finished pencils.

The planing machine in this process uses revolving knives, which make a succession of little gouges in the wood. These gouges, which would otherwise leave the surface very irregular, leave it smooth by following one another so closely that they become one long cut. So perfect is the operation of these revolving cutters, which make 9,000 strokes upon the wood a minute, that they leave the surface not only "true," but so smooth that the finest sandpaper would scratch it. The pencils are then counted, a gross at a time, by an operator, who simply arranges them by the handful in grooves, each large enough to contain 1 pencil. If the pencils are to be colored, they are immersed in dye and then sent to the varnishing machines. Here they are fed into a little hopper, from which they settle through sidewise and are seized between two wheels, which thrust them endwise, one at a time, through a hole in a tube wherein they are varnished. Each pencil, pushed on by its follower in the single-file movement, emerges from the tube and drops on a horizontal belt. It then moves slowly with the belt some 30 feet, drying as it goes, when the belt, reaching a pulley, releases the pencil and it drops into a receptacle. Pencils are varnished in this machine at the rate of 100 a minute. The other operations are of minor consequence, consisting in shaving a little from the end, sharpening certain styles on a wheel, stamping, and packing. Except for the lead makers and a few attendants, the labor is done by women, the machines being automatic, so that little strength and skill is necessary. The work is singularly cleanly and in no respect unhealthy, and the factory is peculiar in being permeated by the aromatic odor of the red cedar.
Table 30 presents in detail the statistics for the manufacture of lead pencils, by states, 1900.

Table 30.-PENCILS, LEAD: BY STATES, 1900.

	United States.	New York.	All other states. ${ }^{1}$		Uñited States.	New York.	All other states. ${ }^{1}$
Number of cstablishments	7	3	4	Average number of wage-earners, etc.-Con.			
Character of organization:	4	1	3	Chiddred, October	327	135	192
	4	1	3	Oetober $\mathrm{November.............}$.	314	132	182
Incorporated compauy	3	2	1	December	255	75	150
Capital:				Miscellaneous expenses:		\$191.382	\$86,794
Total Land	$82,227,406$ $\$ 151,800$	\$1,493,381	$\$ 734,025$ $\$ 20,300$	Total Rent of works....	\$278,170	\$191, 720	\$600
Buildings	\$253, 500	\$119, 000	\$134,500	Taxes, not including internal revenue.	\$16, 172	\$13,289	\$2, 883
Macbinery, tools, and implements	\$244, 725	\$126,000	8118,725	Rent of offices, insurance, interest, and			
Cash and sundries..............	\$1,677,381	81, 116, 881	\$460, 600	all sundry expenses not hitherto in-			
Proprietors and firm members			3	cluded	\$260,684	\$177, 373	\$83,311
Salaried officials, clerks, etc.:	81	46	35	Materials used: Total cost	\$1,030, 917	\$755,549	\$275, 368
Total salaries........	\$111, 890	\$69,602	\$42,288	Principal materials-			
Officers of corporations-				Total cost -...	$\begin{array}{r} \$ 714,557 \\ \$ 79,233 \end{array}$	$\begin{array}{r} 457,733 \\ 879,033 \end{array}$	$\begin{array}{r} \$ 256,824 \\ \$ 200 \end{array}$
number.... Salaries.	\$34, 600	\$25,000	\$9,600	P'urcbased in partially manu-			
General superintendents, managers,				Fuel factured form.	$\$ 635,324$ $\mathbf{8 1 3 , 7 5 7}$	$\$ 378,700$ $.88,489$	$\begin{array}{r} \$ 256,624 \\ \$ 5,268 \end{array}$
clerks, etc.-				Fuel Nill suppi	\$132,566	\% 829,890	\$2, 676
Total number-.	73 $\$ 77,290$	\$44, 602	832, 688	All other materials	\$255, 587	\$244,987	\$10,600
Total salaries...............................	\$77, 290	\$44,602	832,688	Freight............	\$14, 450	\$14,450	
Number	58	-32	- 26	Products:	82,222,276	81,581,351	\$640,925
Salaries.	\$68, 860	\$89,960	\$28, 900	Total value..........	42,22,276	,4,581,351	
Women-	15		6	Pencils and pens Total value.	\$1,820, 166	\$1,328,886	\$491,280
Salaries.	\$8,430	\$4,642	\$3,788	Fencils-	1,383,822	911,138	
Wage-earners, incmuang pleceworkers, and				Total c a	11,705,065	\$1, 213,785	8491, 280
total wages:				Lead (complete)-			
Greatest number employed at any one	2,261	1,472	789	Number of gross	$\begin{aligned} & 1,381,329 \\ & 81,641,975 \end{aligned}$	\$1, 151, 495	\$490,480
teast number employed at any one time	2,201	1,472		Silver-			
during the year...........................	2, 029	1,330	699	Number of gross..	1,486	- 4,486	
Average number ...	2,162	1,415	\$190, 743	Value	\$43,496		
Wages....-...................	\$683, 281	\$492,546	\$190, 75	Plated- Number of gross..	482	${ }^{482}$	
Men Average number	758	523	-61.235	Value............	\$18,794	\$18,794	
Wages...........	\$352, 363	8291,032	\$61,531	Other varieties-			525
Women, 16 years and over-			329	Namber of gross..........	\$800		8800
Average number Wages	\$263,118	\$179,798	883, 320	Pens- Value			
Children, under 16 years-				Total gross..	432,759	432,759	
Average number	317 $\$ 66600$	\$21, 134	845, 88.	Total value............	8115, 101	\$115, 101	
Wages...........................	\$67,600			Fountain (complete)		447
Average number of wage-earners, including				Value	\$39, 125	\$39, 125	
pieceworkers, employed during each month: Men, 16 years and over-				Gold-			
January.....	752	519	233	Value	\$2,202	\$2,202	
February .	769	528	235	Steel-			
April.	753	535	218	Number of gross....	\$ 871,318	\$71, 318	
May...	777	536	241	Stylographic-			
June.	756	522	234	Number of gross.	51		
August...	770	521	249	other produet	\$402,110	\$252,465	\$149,645
September.	762	527	235 24	Comparison of products:			
October.....	756	518	238	Number of establishments reporting for	6	-3	
December	745	516	- 229	both years.	\$2,212,276	\$1,581, 351	\$630,920̄
Women, 16 years and over-				Value for census year .-......	\$1,890, 174	\$1,408,854	\$481,320
January...	1,086 1,093	755	- 338	Power:			
February	1,097	766	-331	Number of establisbments reporting.		2	- $\quad \begin{array}{r}2 \\ \hline\end{array}$
Mapril	1,114	488	- 326	Total borsepower			260
May..	1,099	790	- 309	Owned-			
June...	1,053	-754	-328	Steam-		2	,
Jugus	1,087	760	-327	Number....	1,360	1,100	260
September	1,087	7 758	1 329	Establishments elassified by number of per-			
October.	1,079	$9 \quad 746$	- 333	sons employed, not including proprietors			
November	1,079	$9 \quad 745$	5 334	and firm members:	7	73	3
Children, under 16 years-		126	$6 \quad 178$	No employees			1
January	304 318	8 - 136	3 185	Under $5 . .$.		1 . ${ }^{\text {a }}$	i. ${ }^{-1}$
February	${ }_{320}$	- 136	$6 \quad 184$	5 to 20.			
March	325	5137	$7 \quad 188$	21 to $90 .$.			
April	322	138	8	101 to 250			
May	310	0 135	5	251 to 500			1
July	316	6 - 130	5 180	501 to 1,000.	-	1	i-........
August. -	314	$4{ }^{4} 135$	- 179	Over 1,000			
Scptember.....							

${ }_{1}$ Includes establishments distributed as follows: Illinois, 1: Massacbusetts, 1; New Jersey, 2.

1

Twelfth Census of the United States.

Census Bulletin.

No. 213.
June 27, 1902.

agriculture.

ILLINOIS.

Hon. William R. Merriam, Director of the Census.

Sur: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture in the state of Illinois, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm andimprovements, acreage of differint products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It also includes the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.

The farms of Illinois, June 1, 1900, numbered 264,151, and were valued at $\$ 1,765,581,550$, of which amount $\$ 251,467,580$, or 14.2 per cent, represents the value of buildinge, and $\$ 1,514,118,970$, or 85.8 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 44,977,310$, and of live stock, $\$ 193,758,037$. 'These values, added to that of farms, give $\$ 2,004,316,897$, the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal CP 15M
products." The total value of all such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 345,649,611$, of which amount $\$ 130,816,905$, or 37.8 per cent, represents the value of animal products, and $\$ 214,832,706$, or 62.2 per cent, the value of crops, including forest products cat or produced on farms. The total value of farm products for 1899 exceeds that for 1889 by $\$ 160,890,598$, or 87.1 per cent. A part of this increase is doubtless due to a more detailed enumeration in 1900 than in 1890.

The "gross farm income" is obtained by deducting the value of the products fed to live stock on the farms of the producers from the total value of farm products. In 1899 the reported value of products fed was $\$ 81,897,180$, leaving $\$ 263,752,431$ as the "gross farm income." The ratio which this latter amount bears to the "total value of farm property" is referred to in the text as the "percentage of gross income upon investment." For Illinois, in 1899, it was 13.2 per cent.
As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.
The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Illinois.

Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN ILLINOIS.

GENERAL STATISTICS.

Illinois has a total land area of 56,000 square miles, or $35,840,000$ acres, of which $32,794,728$ acres, or 91.5 per cent, are included in farms.
Illinois is one of the most level states in the Union, with water courses flowing generally from the north and northeast to the southwest and south. In portions of the south and southwest the surface is slightly rough and broken, as it is also in the northwest in which is found the highest elevation.

The soil consists of a rich, black loam or mold, underlaid by drift deposits from 25 to 100 feet deep in places. This, with a favorable climate, makes Illinois one of the leading agricultural states in the Union.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850 , the number of farms, the total and average acreage, and the per cent of farm land improved.
Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

Year.	Number of farms.	number of acres in farms.				Per cent of farm proved.
		Total.	Improved.	Unimproved.	Average.	
1900	264, 151	32, 794, 728	27, 699, 219	5, 095,509	124.2	84.5
1890	240, 681	30,498,277	25, 669, 060	4, 829, 217	126.7	84.2
1880	255, 741	31, 673, 645		5, 558, 491	123.9	82.4
1870	202, 803	25, 882, 861	19, 329, 952	6, 55:2, 909	127.6	74.7
1860	143,310	20, 911, 989	13, 096, 374	7,815,615	145.9	62.6
1850 ----	76,208	12, 037, 412	5,039,545	6,997, 867	158.0	41.9

Since 1850 both the number of farms and the total farm acreage have increased rapidly, the rates of gain in the last decade being 9.8 per cent and 7.5 per cent, respectively. The greater rapidity of the gain in the total number of farms has resulted, in each decade except from 1880 to 1890 , in a decrease in the average size of farms. A gain in the percentage of farm land improved is shown for each decade. That the increase shown for the last decade
is comparatively small is due, in part, to the use of a more strict construction of the term "improved land" in 1900 than in previous census years.

FARM PROPERTY AND PRODUCTS.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850.

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF FARM PRODUCTS: 1850 TO 1900.

year.	Total value of farm property.	Land, improvements, and buildings.	Implements and machinery.	Live stock.	Farm products. ${ }^{1}$
1900.	\$2, 004, 316, 897	\$1, 765, 581, 550	\$44, 977, 310	\$193, 758, 037	\$345, 649, 611
1890	.1, 477, 759, 187	1,262,870, 587	34, 456, 938	180, 431, 662	184, 759, 013
1880	1,175, 772, 293	1,009, 594, 580	33, 739, 951	132, 437, 762	203, 980,137
$1870{ }^{2}$	1,104, 839, 631	920, 506, 346	34, 576,587	149, 756, 698	${ }^{3} 210,860,585$
1860	498, 680, 730	408, 944, 033	17, 235, 472	72,501, 2:5	
1850	126, 748,109	96,133, 290	6, 405, 561	24,209, 258	

1 For year preceding that designated.
2 Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years, they must be diminished one-fifth.
${ }^{8}$ Includes betterments and additions to live stock.
Between 1850 and 1900, the total value of farm property increased very rapidly, the increase in the last decade amounting to $\$ 526,557,710$, or 35.6 per cent. Since 1890 the value of farms has increased $\$ 502,710,963$, or 39.8 per cent; that of live stock, $\$ 13,326,375$, or 7.4 per cent; and that of implements and machinery, $\$ 10,520,372$, or 30.5 per cent. The value of farm products for 1899 exceeds that reported for 1889 by $\$ 160,890,598$, or 87.1 per cent, but a portion of this increase, and of that noted in the case of implements and machinery, is doubtless the result of a more detailed enumeration in 1900 than in previous census years.

COUNTY STATISTICS.
Table 3 gives an exhibit of general agricultural statistics by counties.

Table 3.-NUMBER AND aCREAGE of FARMS, and Values of specified classes of farm property, june 1, 1900, WITH VALUE OF PRODUGTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

COUNTIES.	NUMRELI Of farms.		ACRES in farms.		values of farm properity.				Value of products not fed to live stock.	expenditures.	
	Total.	With buildings.	Totad.	Improved.	Land and improvements (except buildings)	Buildings.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
The State	264, 151	255, 285	32, 794, 728	27,699, 219	\$1,514, 113,970	\$251, 467,580	\$44,977,310	\$193, 758, 037	\$263, 752, 431	\$22, 182,550	\$830,660
Adams	4,224	4,083	495, 762	387, 497	18, 318, 240	3,85s,990	597, 320	2,539,475	3, 131, 734	267,000	6,710
Bond --	1,908	1,869	89,758	50,914	1, ${ }_{4}$	- 286, 110	95, 180	213,472 951,040	361,312	56,680 48,900	$\begin{array}{r}3,780 \\ \hline 70\end{array}$
Bodne.	1,32I	1,300	173, 674	143, 371	$4,849,830$	2,097, 590	312, 320	1,416,033	1,762, 1 16	184, 150	27,300
Brown	1,605	1,573	180, 953	120,575	5,246, 740	1,141,830	192,500	1,058,095	922, 352	53,300	850
Bureau	8, 214	3,171	522,962	453, 244	28,567, 980	4, 739, 390	780,470	3,883, 146	4,799,181	389,930	8,960
Calhoun	1,061	1,011	144,978	71, 708	3, 332, 240	, 574,660	117,470	397, 269	656, 472	34, 320	410
Carroll	1, 85'	1,816	276,451	235,582	11, 697, 590	2,788,770	431,750	2,172, 814	2,305, 656	208,350	1,790
Cass	1,432	1,365	216, 869	165, 330	9, 765, 640	1, 424, 080	219, 640	1,243,724	1,463, 428	148, 920	4, 460
Champaign	4,316	4,107	627, 785	610, 186	45, 345,010	4,948, 770	1,029, 400	3,624,025	7,311,102	491,550	31,840
Christian	3,137	3,009	425, 942	409, 057	21,634, 330	2,725, 050	488, 890	2,669,545	3,132,578	275, 900	3,010
Clark	3,416	3,266	311,613	254, 344	8,391, 930	1, 719, 030	362, 430	1,579, 762	1,968, 096	86,710	900
Clay	2, 783	2,647	${ }^{266,536}$	217,990	$5,235,850$	1, 292, 110	${ }^{216,740}$	1,141, 931	1, 153, 931	32,050 92	2,850
Coles	2,004	1,963 2,684	279,163 310,500	235,200 279,738	$6,771,280$ $15,864,090$	$1,573,720$ $2,568,750$	281, 8980	$1,982,825$ $2,168,636$	$1,135,249$ $3,476,388$	92,070 329,340	3,130 14,540
Coles	2,789	2,634	310,500	279, 733	15,864,090	2,568,750	498, 960	2,168,636			
Cook	5,827	5,614	407,043	349, 519	68,265, 260	8,839,960	1, 105,610	2, 823,741	6,577, 969	1,071, 710	90,460 4,380
Crawford	2,585	2,472	258,044	221. 914	7,036, 450	1,389, 110	298, 970	1,2:28, 115	1,513, 007	69, 780	4,380
Cumberlan	2,484 2,560 1,691	2,404 2,519	215,094 394,283	188,808 352,180	$5,955,160$ $21,959,730$	$1,171,130$ $4,295,970$	262,540 732,470	1, ${ }_{3}, 061,105$	$1,346,702$ $3,940,525$	76,260 468,760	10,100
Dekalb Dewitt	2,560	2,519	394,283 $\mathbf{2 4 ,} \mathbf{7 3 5}$	352,180 219,880	$21,959,730$ $15,382,310$	4, 295,970 $1,639,710$	732,470 360,180	3, $1,541,273$	$1,940,525$ $2,559,394$	- 2168,710	17,860
Douglas	2,025	1,928	258, 065	241,316	16, 479, 640	2, 101,640	474,350	1,732,318	3, 216, 813	327,780	10,600
Dupage	1,704	1,676	195, 193	162,798	13, 422,310	2, 896,920	436, 940	1,707,095	2,097,004	321,460	9, 870
Edgar	3,105	2,962	381, 026	357, 157	20, 581,030	2,738,990	472, 060	2, 644, 427	4,082, 964	275, 040	26,530
Edwards	1,219	1,189	139,880	118,619	3, 138, 970	776,930	131,510	621,780	683,'600	33, 880	6,450
Effingham	2,421	2,337	286, 653	231,303	5,581,910	1, 325, 630	286, 630	1,117,608	1,261,771	55,270	7,080
Fayette	4,056	3,904	408, 583	332, 199	8,421,700	1,592,680	333, 620	1,597, 902	1,662,565	78,320	1,890
Ford	1, 901	1,808	308, 455	298, 335	19,443, 660	2,017,030	480, 420	1,604, 672	3, 106, 015	264, 570	2,940
Franklin	3, 050	2,952	232, 102	185, 415	3,442,990	-835, 110	206, 880	970,079 $3,731,492$	1,093, 4,154	32,970 282,870	$\stackrel{2}{2,820}$
Fulton-	4,271	4, 167	515, 396	372,298 130,107	$21,253,230$ $3,894,530$	$4,272,110$ 671,700	723,420 208,180	$3,731,492$ 588,880	1, $4,1057,1495$	282, 280	2, 510
Gallatin	1,675	1,536	159,366	130, 107	3, 894, 530	671,700	208, 180	288, 830	1, 03,		
Greene	2,320	2,204	316,633	251, 064	11,655,860	1,951, 190	322,630	1, 840, 832	1, 992, 332	207,730	12,920
Grundy	1,672	1,573	252, 257	233, 608	14, 323,590	1,960,650	456, 150	1,401, 485	2, 394, 580	160,730	, 020
Hamilton	3,156	3,063	236,320	194, 194	3,697,110	843, 980	186, 720	1, 0225,721	1, 157, 744	23, 280	760
Hancock	4,003	3,848	475, 535	405, 631	20, 041, 760	3,905, 200	635, 970	3,332, 039	3, 230,192	230,210	${ }_{390}$
Hardin	954	924	100,391	66,137	980,300	235,950	62,570	263,910	334, 541		
Henderson	1,382	1,296	219,296	167, 075	8,933,990	1,397, 150	215, 130	1, 723, 748	1,616,513	145,940 384,510	2,680 5,440
Henry	3,250	3,207	501, 076	448, 648	24,472, 610	4, 249, 700	$\begin{array}{r}655,420 \\ 1 \\ \hline\end{array}$	$3,966,914$ $3,749,478$	$4,186,223$ $6,726,875$	384,510 385,210	5, 10,920
Iroquois	4,332	4, 209	697, 412	646, 324	40,726,710		$\begin{array}{r}1,036,850 \\ 330 \\ \hline 140\end{array}$	3, 8885,187	1, $\mathbf{1}$, 597,718	130, 020	2,210
Jackson	2, 675	2,553	292,662 280,158	202,256 241,086	$5,927,530$ $6,330,500$	1, 370,730	307, 960	1,354,082	1, 233, 303	49,750	3,480
Jasper-	2,960	2,802	280, 158	241,086	6,330, 500	1,370,730	307,960	1,354,082	1,20,303		
Jefferson	4,065	3,871	322, 05.5	262,433	5, 977,590	1, 279, 080	274,300 238,630	1,451,114	$1,476,694$ $1,185,386$	126, 2680	6,690
Jersey--	1,538	1,514	206, 267	142,193	6,160,630	$1,389,390$ $2,860,280$	-238,630	2,455,553	2, $497,5 \cup 3$	171, 880	7, 230
Jo Daviess	2,389	2,353	365, 176	247, 206	12,415, ${ }_{2}, 390$	2, 710,900	148, 650	2, 611,780	727, 416	31, 510	490
Johnson	2, 080	2,026	192,777	132,333 248,364	$2,329,610$ $17,811,560$	4, 450, 540	693, 390	3,118, 811	3, 951, 477	617,720	41,890
Kane ---	2,370	2,322	311,470	248, 364	17,811, 560	4, 50,540				286,860	11,510
Kankakee	2,565	2,502	415, 127	368, 133	22,330, 840	$3,152,430$ $2,246,660$	649,580 450,050	2, 2362,695	3, 2129,142	189, 160	3, 480
Keudall	1,319	1,293	200, 850	185, ${ }^{\text {a }}$	$11,257,2: 0$ $23,384,330$	$2,246,660$ $3,881,600$	58\%, 090	3, 311,626	3, 809, 150	347,480	7,910
Knox	3,006	2, ${ }^{1} 290$	432,949 259,544	355,0686 190,106	23, $13,802,240$	$3,805,660$ 3,6750	493, 540	1,919,514	2, 180, 210	299, 600	4,450
Lake	2,229 4,661	2, 4,494	-706, 039	190,106 625	45,689, 1360	6, 703,680	1,226,070	4, 401, 443	7,201,557	640,500	9,720
Lawren	2,183	2,112	218,831	186, 934	5, 757, 200	1,211,260	253, 630	895, 055	1,388, 016	87,700	1,960
Lee	2, 860	2,762	453, 624	409, 362	28,613, 060	4, 449, 770	757,590	$2,959,994$ $3,588,573$	4, 115,733 $7,088,482$	380,090 414,880	8, 9
Livingston	4,284	4, 116	649,495	625,401	45,503, 330	4, 7 275,30	1, 6088,420	$\stackrel{3}{2,194,692}$	3, 910,859	370, 250	5,060
Logan	2, 405	2, 3132	381,037	357,205 307,108	26,062, 18,446	3, 157, 520	712,650	3, 122, 025	3, 008,406	206, 460	6,010
McDonough	2,816	2,748	358, 153	307, 108	18,446,010						
McHenry	2,774	2,742	369,225	271,017	18, 433, 490	4, 399, 760	718,270	3, 555, 698	3, 878, 377	483,380 667 210	23,910 31750
McLean	4,873	4, 624	737, 578	697, , 328	54, 532, 730	6,628, 510	1, 192,240	2, 139,480	3,490, 295	274,800	6,500
Macon	2,650	2,581	352, 109	333,016	22, 125,720	$2,887,180$	494, 160	2, 2 ¢58, 818	2, 732, 993	256,040	7,060
Maconpin	4,179	4,065	525,787	415, 125	$17,693,750$ $18,432,400$	4, 2 , 217,640	690, 330	1, 884,163	3, 149,868	483, 930	17,190
Madison	3,563	3,486	408,879	351,303	18, 432,400	4,22, 640					
Marion	3,369	3,267	:128, 734	269, 293	6, 393,830	1,686,880	274,190 319,730	$1,318,184$ $1,513,969$	$1,557,103$ $2,253,344$	84,100 186,990	6,870 5,980
Marshal	1,416	1,384	2334, 973	206, 485	$13,848,110$ $12,317,100$	1, $1,581,950$	339,270	1, 123, 576	2, 143, 298	193,400	5,430
Mason	1,766	1,668	309, 182	$\begin{array}{r}260,145 \\ 85 \\ \hline\end{array}$	12, 2138,080	1,570, 580	166, 410	1, 382, 537	523, 823	39, 230	1,700
Massac	1,251	1,192	126,990	r 173,060	10,767,580	1, 422, 050	252,360	1,546,251	1, 707, 133	196, 220	4,730
Menard	1,281	1,236	191,761	173,060	10,767,50						
Mercer	2,213	2,098	330,702	258,074	$13,722,830$ $5,755,110$	$2,470,640$ $1,267,890$	$\begin{aligned} & 391,350 \\ & 294,150 \end{aligned}$	2,956, 626.519	2, $1,3466,930$	156,100 121,330	10,70 5,980
Monroe	1,568	1, 540	207, 2450	154,066 377,644	re,	2,6ז9,870	422,030	2,036, 979	2, 119, 644	165, 100	8,020
Montgomery	3,353	3, ${ }^{1} 199$	436, ${ }^{4655}$	315,278	18,268, 840	3,019, 970	401, 680	$2,758.920$	2, 739, 831	279, 810	10,300
Morgan	2, ${ }^{\text {,666 }}$	2,561 1 1	346,8 203,946	188, 968	11,185, 790	1,326,160	255, 920	1, 275, 824	2, 058, 164	157,330	4,060
Moultrie	1,693	1,640	203, 946	188,968				3, 349, 294	4,313,708	393,600	20,200
Ogle	3,093	3, 024	467,723	399, 175	$23,617,050$ $19,177,020$	$\begin{aligned} & 4,414,780 \\ & 3,302,920 \end{aligned}$	684,560 567,060	2, 400,701	3, 453, 188	271, 400	10, 840
Peoria	2, 813	2,749	357,091 226,381	280, 996	19,892, 870	3, 900,260	217, 820	660,531	902, 424	44,140	3,000
Perry	1,962 1,740	1,904 1,686	272, 027	262, 714	17, 469,810	2,089,450	459,750	1,761,405	3, 158,502	315,340	8,790 16,840
Piatt		1, ${ }^{1,736}$	491, 818	387,999	13, 951,400	2, 730,530	437, 170	2,461,213	2, 902, 910	242,500	16,840
Pike	3,995					548,130	138,750	555,931	710, 846	28,620	6,320
Pope	1,977	1,915	$\begin{array}{r}204,920 \\ 89 \\ \hline\end{array}$	131,786 64,825	1,994, 370	490,100	122,240	350, 9996	614, 936	97,660	5,310
Pulaski	1,227	1, 5172	85, 905	73,967	$5,038,800$	651, 130	87,900 425,660	612,801 $1,045,272$	807,433 $1,770,210$	81,690 151,710	1,270 5,890
Putnam		1.549 2,410	315, 857	240,660	7,288,450		425,660 248,610	$1,045,272$ 934,900	$1,770,210$ $1,146,355$	151,710 39,980	1,890 2,450
Randolph	2,187	2,111	216, 634	187, 839	\| 5,083,430	1,250,830	248, 610	934, 900	1,146, 350	3,980	2,450

Table 3.-NUMBER AND aCREAGE of FARMS AND VALUES of SPECIFIED CLASSES of FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES-Continued.

counties.	NUMBER OFFARMS.		AORES IN FARMS.		VALUES Of farm property.				Value ofproductsnotfed to livestock.	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
Rock Island.	2,058	2,019	247, 766	185, 755	\$10, 401, 910	\$2,192,370	\$333,740	\$1,852, 455	\$1,958, 568	\$156, 650	\$2,750
St. Clair	3, 282	3, 223	369, 108	313, 649	18, 098, 330	3, 323,390	571,580	1,546,418	3, 034, 287	264, 010	7,280
Saline	2,934	2,770	219, 361	178, 724	3, 819, 950	900, 260	217,090	835, 927	1,094, 029	52,520	2,770
Sangamon	3, 907	3,753	514,256	478, 809	31, 376, 790	4,145, 670	608, 360	3,642, 514	4, 349, 124	459,750	2,740
Schuyler.	2,162	2,092	262, 884	181,856	9,244, 520	1,660,510	295, 190	1, 607, 463	1,597, 101	90, 040	1,380
Scott	1,131	1,082	144,772	117, 882	6,089, 640	1,059, 210	151, 330	857,047	1, 053,279	97,580	6, 460
Shelby	4,254	4,135	465, 341	407,781	17, 478, 990	2, 630, 880	504,410	2,624, 146	3,312,446	189, 560	2,990
Stark	1,164	1,123	181,875	155, 993	10,212, 930	1,619,990	247, 430	1,253, 845	1,560,100	110,890	3,620
Stephenson	2,901	2,832	348, 799	305, 913	17,965, 000	4, 148, 850	647,510	2, 683, 354	3, 138, 082	236, 690	4,070
Tazewell	2,840	2,770	384, 146	324, 712	25, 651, 620	3,477,450	574, 380	2, 262, 738	3, 928, 930	351, 620	8,330
Union	2,162	2,109	193,933	135, 820	4,214, 180	954,340	225,580	667, 670	1,292,169	133, 800	8,570
Vermilion	4,138	3, 949	575, 182	501, 098	33,597, 900	4,025,500	868, 930	3, 490, 620	5,801, 233	449, 220	13,790
Wabash	1,139	1,100	128,629	107,253	4,247,060	934,090	164, 120	540,580	842, 867	43, 100	920
Warr	2,157	2,085	331,845	284, 236	19,283, 510	2,649, 940	440, 180	3,312,627	3,020,718	298, 910	8,520
Washington	2,496	2,441	327,200	258, 835	6, 580, 520	1,566,450	308, 140	1,042,860	1,440,512	108,510	3,770
Wayne	4,061	3,957	371, 584	308, 381	7, 297, 440	1, 684, 740	304,200	1,664,354	1,634, 850	40,470	8.350
White	2,912	2,768	286, 813	253, 169	7, 873, 990	1, 259, 150	344, 460	1, 194, 451	1, 9863,150	125, 520	8,990
Whiteside	2,836	2,758	425, 231	371, 229	19,837, 530	3, 939, 240	673,720	3, 396, 463	3, 896,151	371, 990	2,930
Will	3, 584	3, 529	502, 331	441,803	33, 525, 720	5,327, 990	911,690	3,029, 842	4, 291,299	390,680	7,940
Williamson	3,146	3,065	247,117	201,035	4,307,630	1,085,750	277,320	912,554	1, 287, 469	44, 060	6,500
Winnebago	2,245	2, 200	315,761	271, 245	15,123,440	3,653, 910	505,250	2, 209, 991	2,889, 087	257, 640	1,190
Woodford	2,176	2, 101	318, 677	276,140	21, 451, 200	3, 240, 760	515, 340	1, 941, 367	3, 347, 401	211, 250	650

In the majority of counties the number of farms increased in the last decade, but ten counties, most of which are situated in the central part of the state, reported decreases. Only three counties, Kankakee, Sangamon, and Warren, report decreases in total farm area. The remaining counties show considerable increases. The decrease reported in improved acreage in some of the counties is due to a more intensive cultivation of the soil, and to the use of a more strict construction of the term "improved" by the Twelfth than by any preceding census. The average size of farms for the state is 124.2 acres. As a rule, the northwestern counties have the largest farms while smaller averages are shown for the southern counties.
All counties but one report large increases since 1890 in the total value of farms. For the state, the average value is $\$ 6,684$ per farm. Implements and machinery decreased in value in Cass, Clinton, and Putnam counties. More than four-fifths of the countios show an increase in the value of live stock, but a few of the central counties report decreases.

FARM TENURE.

Table 4 gives a comparative exhibit of farm tenure for 1880, 1890, and 1900. The farms operated by tenants are divided into two groups designated as farms operated by "cash tenants" and "share tenants." The groups comprise, respectively: (1) Farms operated by individuals who pay a rental in cash or a stated amount of labor or
farm produce, and (2) farms operated by individuals who pay as rental a stated share of the products.

In Table 5 the tenure of farms for 1900 is given by race of farmer, and the farms operated by owners are subdivided into four groups, designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the anited labor of two or more individuals, one owning the farm or a part of it, and the other, or others, owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

> Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

Year.	Total number of farms.	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPERATED BY-		
		Owners. ${ }^{1}$	Cash tenants.	Share tenants.	Owners. ${ }^{1}$	$\begin{gathered} \text { Cash } \\ \text { tenants. } \end{gathered}$	Share tenants.
1900-.--	264,151	160,453	38,173	65,525	60.7	14.5	24.8
1890...-	240,681	158,848	29,182	52,651	66.0	12.1	24.8
1880------	255, 741	175, 497	20,620	59,624	68.6	8.1	23.3

[^90]Table 5.-NUMBER and PER CENT OF FARMS OF SPECIFIED TENURES, JUNE. 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF Farms of specified tenures.

Race.	$\begin{gathered} \text { Total } \\ \text { number } \\ \text { of farms. } \end{gathered}$	Owners.	$\begin{aligned} & \text { Part } \\ & \text { owners. } \end{aligned}$	Owners and tenants	Managers.	Cash tenants.	Share tenants.
The State_-	264,151	121,715	34, 375	2,413	1,950	38,173	65,527
White_ Colored ${ }^{1}$ \qquad	$\begin{array}{r} 262,662 \\ 1,489 \end{array}$	121,172	34,203 172	2,401 12	1,945 5	$\begin{array}{r} 37,956 \\ \cdot 217 \end{array}$	$\begin{array}{r} 64,985 \\ 540 \end{array}$

Part 2.-PER CENT of Farms of specified tenures.

The State_-	100.0	46.1	13.1	0.9	0.7	14.4	24.8
White	100.0	46.1	13.0	0.9	0.7	14.5	
Colored ${ }^{\text {², }}$	100.0	36.5	11.5	0.8	0.3	14.6	36.3

${ }^{1}$ Comprlsing 3 Chinese and 1,486 negroes.
The percentages in Table 4 show that the number of farms operated by owners has not increased so rapidly in the last twenty years as the number operated by tenants. Between 1890 and 1900 the total number of farms increased 23,470 , or 9.8 per cent; the number operated by owners increased 1,605 , or 1.0 per cent; cash-tenant farms, 8,991 , or 30.8 per cent; and share-tenant farms, 12,874 , or 24.5 per cent. In 1890, 64.3 per cent of all tenants were share tenants, and in $1900,63.2$ per cent were share tenauts.

Of the white farmers, 60.1 per cent own all or a part of the land they operate, and 39.9 per cent operate farms owned by others. The corresponding percentages for colored farmers are 48.8 and 51.2. The greatest relative numbers of cash tenants are in counties near Chicago and other cities where land is very valuable and usually cultivated in small tracts.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," and "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE I, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RAOE OF FARMER, AND TENURE.	Number of farms.	number of acres in FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$
The State	264, 151	124.2	32, 794, 728	100.0	\$2, 004, 316, 897	100.0
White farmers \qquad Colored farmers ${ }^{1}$ \qquad	262,662	124.5	32, 711,516	99.7	2, 000, 987, 066	99.8
	1,489	55.9	83, 212	0.3	3, 329, 831	0.2
Owners --.---------	121, 715	118.1	14, 374, 612	43.8	847, 763, 370	42.3
Part owners	34, 375	142.9	4, 913, 163	15.0	275, 037, 180	13.7
Ownersand temants Managers	2,413	159.1	383, 827	1.2	18, 807,	0.9
	1,950	233.0	454, 378	1.4	33, 163.5183	18.4
Cash tenants-------	38,173	124.2	$4,710,769$ $7,927,979$	14.4 24.2	-367, $461,796,807$	18.4 23.0
Share tenants.	65, 525	121.0	7, 927,979	24.2	461, 496,807	23.0

Table 7--AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM. WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Race of farmer, AND TENURE.	AVERaOE VALUES PER FARM Of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				$\begin{gathered} \text { Gross } \\ \text { income } \\ \text { (products } \\ \text { of } 1899 \\ \text { not fed } \\ \text { to live } \\ \text { stock). } \end{gathered}$	
	Land and im-provements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State .-..----	\$5,732	\$952	\$170	\$734	\$999	13.2
White farmers _-------	5,755	950	171	736	1,003	13.2
Colored farmers ${ }^{\text {a }}$-...-	1,787	229	58	212	334	14.9
Owners --------------	4,974	1, 065	166	760	933	13.4
Part owners.-----------	6,069	, 936	187	809	1,081	13.5
Owners and tenants _-	5, 577	1,114	189	914	1,021	13.1
Managers _------------	13, 004	1,829	246	1,928	1,877	11.0
Cash telunts	7,703	973	193	765	1,188	12.3
Share tewants	5,605	707	153	583	940	13.3

Of the farms of the state, 99.4 per cent are operated by white farmers and 0.6 per cent by colored farmers. The average size of the farms of colored farmers is less than half that of farms of white farmers, and the average value of all forms of their farm property and products is approximately one-third as great. The slightly higher percentage of gross income shown for colored farmers is in keeping with the small average size of their farms, a factor which naturally involves more intensive cultivation than is practiced by the operators of the larger farms. This view is sustained by the percentages given in Table 9 , which show a decrease in gross income as the size of farms increases.

The farms of managers, though fewest in number, have the largest average area, and the highest average value, but as the values are high, the per cont of gross income is lowest for this group. The averages are generally lower for owners and share tenants.

farms Classtfied by area.

Tables 8 and 9 present the principal statistics for farms classified by area.
Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

area.	Number of farms	number of agres in Farms.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State _...-	264, 151	124.2	32,794, 728	100.0	\$2, 004, 316, 897	100.0
Under 3 acres	1,854	2.0	8,771	(1)	4,365,763	0.2
3 to 9 acres	7,221	6.3	45,167	0.1	13, 768, 612	0.7
10 to 19 acres	10,560	13.8	145,417	0.5	22,255,942	1.1
20 to 49 acres ...-----	41,160	34.8	1, 431,732	4.4	87, 488,216	4.4
50 to 99 acres	65, 851	75.6	4, 979, 857	15.2	285, 817, 605	14.3
100 to 174 acres	81,338	136.0	11,065,345	33.7	676, 928, 727	33.8
175 to 259 acres	35,579	211.2	7,513,342	22.9	464, 589, 320	23.2
260 to 499 acres...--	18,255	326.9	5,967,783	18.2	362, 743,805	18.1
500 to 999 acres	2,051	613.4	1,258,084	3.8	69,227,656	3.4
1,000 acres and over-	282	1,362. 5	384, 230	1.2	17,131,251	0.8

${ }^{1}$ Less than one-tenth of 1 per cent.

Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

area.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products Of 1899 not fed to live stock).	
	Land and im-provements buildings).	$\begin{array}{\|l\|} \text { Build- } \\ \text { ings. } \end{array}$	Implements and machinery.	Live stock.		
The State	85,732	\$952	\$170	\$734	\$999	13.2
Under 3 acres	1,154	1,020	70	111	568	24.1
3 to 9 acres	1,089	$6: 39$	52	127	288	15.1
10 to 19 acres	1,382	503	58	165	292	13.8
20 to 49 acres_-_-_----1	1,423	400	68	235	342	16.1
50 to 99 acres	3,132	655	122	431	621	14.3
100 to 174 acres	6,312	1,047	196	767	1,107	13.3
175 to 259 acres	10, 123	1,452	269	1,214	1,675	12.8
260 to 499 acres_	15,564	1,959	351	1,997	2,372	11.9
500 to 999 acres-------	26, 144	3,056	467	4,086	3, 836	11.4
1,000 acres and over --	47,315	4,447	570	8,417	6,195	10.2

The group of farms containing 100 to 174 acres each, contains the largest number of farms, and comprises more than one-third of the value of all farm property and of the total farm acreage.

For the group of farms containing less than 3 acres each, the average values given in Table 9 are relatively high, as this group contains most of the florists' establishments of the state, and a number of city dairies and vegetable farms. It should be borne in mind that the income from these industries is determined not so much by the acreage of land used, as by the amount of capital invested in buildings, live stock, and implements, and by the amounts expended for labor and fertilizers.

The average gross incomes per acre for the various groups classified by area are as follows: Farms under 3 acres, $\$ 279.20 ; 3$ to 9 acres, $\$ 46.01 ; 10$ to 19 acres, $\$ 21.16 ; 20$ to 49 acres, $\$ 9.83 ; 50$ to 99 acres, $\$ 8.22 ; 100$ to 174 acres, $\$ 8.14 ; 175$ to 259 acres, $\$ 7.93 ; 260$ to 499 acres, $\$ 7.26$; 500 to 999 acres, $\$ 6.25 ; 1,000$ acres and over, $\$ 4.55$.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop, and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables are the leading crop, constituting 40 per cent of the value of the products not fed to live stock, it is a "vegetable" farm. The farms of the otber groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive their principal income from any one class of farm products. Farms for which no income was reported are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCE OF INCOME.	Number of farms.	NUMBER OF ACRES IN FARMS.			FALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State	264, 151	124.2	32, 794,728	100.0	\$2,004, 316, 897	100.0
Hay and grain	107, 020	143, 1	15, 315, 711	46.7	991, 851,452	49.5
Vegetables.-.-.-----	6,656	40.4	268, 846	0.8	43, 997, 057	2.2
Fruits	2, 411	59.1	142,458	0.4	8,970,369	0.5
Live stock	113, 674	120.3	13,673, 753	41.7	744, 327, 774	37.1
Dairy produce	15,602	107. 2	1,673,279	5.1	129, 402, 044	6.5
Tobacco .-...-------	138	86.3	-11,904	0.1	589,222	(1)
Sugar	60	84.9	5, 096	${ }^{1}$	428, 329	(1)
Flowers and plants-	499	4.0	1,992	${ }^{1}$	4,648, 056	0.2
Nursery products .-	126	61.6	7,760.	(1)	1, 743,586	0.1
Miscellaneous -----	17,965	94.3	1,693,929	5.2	78,359,008	3.9

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE OF income.	A TERAGE VALUES PER FARM OF-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Grossincome(productsof 1899not fedto livestock).	
	Land and im-provements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State	\$5, 732	\$952	\$170	\$734	\$999	13.2
Hay and grain	7,442	961	197	668	1,187	12.8
Vegetables_-.-.-.-.-.	5,455	837	109	209	766	11.6
Fruits	2,512	838	107	264	659	17.7
Live stock	4,598	936	153	861	879	13.4
Dairy produce	5,822	1, 325	202	945	1,056	12.7
Tobacco -	3,086	674	109	451	639	15.0
Sugar	5,687	853	190	409	956	13.4
Flowers and plants .--	4, 888	4,202	182	43	3,739	40.1
Nursery products	11,446	1,982	234	176	4,741	34.3
Miscellaneous _-------	3,182.	636	124	420	608	14.0

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms deriving their principal income from flowers and plants, $\$ 936.61$; nursery products, $\$ 76.98$; vegetables, $\$ 18.98$; sugar, $\$ 11.26$; fruits, $\$ 11.15$; dairy produce, $\$ 9.84$; hay and grain, $\$ 8.29$; tobacco, $\$ 7.41$; live stock, \$7.31; and miscellaneous, $\$ 6.46$. In computing these averages, the total area of the farms of each group is used, and not merely the acreage devoted to the crop from which the principal income is derived.

The wide variations shown in the averages and in the percentages of gross income are due, largely, to the fact that in compating gross income no deduction is made for expenses involved in operation. For florists' establishments, nurseries, and market gardens, the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than for "hay and grain," "live-stock," or "miscellaneous" farms.

Were it possible to present the average net income the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.
Tables 12 and 13 present data relating to farms classified by reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE I, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUOTS NOT FED to LIve stock, With Percentages.

value of produots NOT FED to live sтоск.	Number of farms.	NUMBER OF ACRES IN FARMS.			value of farm PROPElity.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State --	264, 151	124.2	32, 794, 728	100.0	\$2, 004, 316, 897	100.0
	1,043	61.7	64,354	0.2	3, 545, 700	0.2
\$50 to \$99	$1,3,367$ 7 4×4 18	35.7 34	120, 129	0.4	5, 387, 780	0.3
\$100 to \$249	34, 208	47.0	1,607,911	4.8	65, 116, 570	0.5
\$250 to \$499	52, 110	75.7	3,943, 542	12.0	165,968, 680	8.2
\$500 to \$999	69,377	115.3	8,001, 324	24.4	418, 516, 330	20.9
\$1,000 to \$2,499	78, 593	171.8	13, 501, 505	41.2	925, 901, 970	46.2
\$2,500 and over	17,969	294.8	5, 296, 631	16.1	408, 887, 847	20.4

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUOTS NOT FED TO LIVE STOCK.

Value of pronucts NOT FRD TO LIVESTOCE.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock)	
	Land and improve (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State -------	85,732	\$952	\$170	\$734	$\$ 999$	13.2
\$0	2,622	368	61	349		
\$1 to \$49	1,161	271	32	136	35	2.2
\$50 to \$99	1,013	281	39	136	75	5.1
\$100 to \$249	1,290	3.71	53	210	174	9.1
\$250 to \$499	2,225	521	92	347	369	11.6
\$500 to \$999	4,442	848	152	590	722	12.0
\$1,000 to \$2,499 --------	9,087	1,378	252	1,064	1,551	13.2
\$2,500 and over--------	17,667	2,327	419	2,342	3,669	16.1

The absence of income in the first group is due in part to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The persons in charge of such farms, on June 1, 1900, could not always give definite information concerning the products of the preceding year. The same statement is true, also, of some. of the farms with reported incomes of less than $\$ 100$. To this extent the reports fall short of giving a complete exhibit of farm income in 1899. Other farms with small reported incomes are doubtless the suburban or summer homes of city merchants and professional men who derive thoir principal income from other than agricultural pursuits.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with previous census reports.
Table 14 presents a summary of live-stock statistics.
Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

LIVE STOCK.	Age in years.	on farms.			NOT ON FARMS. \qquad Number.
		$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$	Value.	Average value.	
Calves.	Under 1.	723,322 ${ }^{\circ}$	\$7, 195, 897	\$9.95	10,220
Steers_-	1 and under $2-$	364, 103	8, 251, 444	22.66	2,279
Steers	2 and under 3 -	299, 238	11,557, 852	38.62	5, 802
Steers	3 and over----	88,548	4,628, 175	52.27	32,251
Bulls	1 and over	59,732	2,284,576	38.25	2, 082
Heilers	1 and under 2 -	332,472	6,735, 360	20.26	3,464
Cows kept for milk	2 and over----	1,007, 664	34, 279, 218	34.02	56, 827
Cows and beifers not kept for milk.	2 and over----	228, 931	7,238,385	31.62	2, 109
Colts	Under 1	107, 967	2,518,050	23.32	2,654
Horses.	1 and under 2.	115, 377	4,575,418	39.66	2,327
Horses	2 and over---	1,126, 875	62, 604, 632	55.56	237, 938
Mule colts	Under 1----	13, 804	401.070	29. 05	113
Mules	1 and under 2 -	13, 194	585, 666	44.39	139
Mules	2 and over----	97,646	6,433, 775	65.89	6,216
Asses and burros	All ages ------	2,529	223,147	88.24	429
Lambs..-.	Under 1.-.-.--	401,431	989, 897	2.47	10,536
Sheep (ewes)	1 and over-	548,853	2,341, 230	4.27	29, 048
Sheep (rams and wethers).	1 and over-	80, 297	375,515	4.68	15,307
Swine	All ages	5, 915, 468	23, 616, 781	3.99	166, 944
Goats	All ages ------	8,877	19,932	2.25	2, 984
Fowls: ${ }^{1}$ Chickens ${ }^{2}$		16,600, 728			
Turkeys		446, 020			
Greese-		307, 657	0,47, 038		
Ducks -----		382, 857			
Bees (swarms of) ---		179, 953	486, 164	2.70	
Unclassified -------			8		
Value of all live stock-			193,758,037		

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.
${ }_{2}$ Including Guinea fowls.
The value of all live stock on farms, June 1, 1900, was $\$ 193,758,037$. Of this amount, 36.0 per cent represents the value of horses; 24.7 per cent, that of neat cattle other than dairy cows; 17.7 per cent, that of dairy cows; 12.2 per cent, that of swine; 3.8 per cent, that of mules; 3.3 per cent, that of poultry; 1.9 per cent, that of sheep; and 0.4 per cent, that of all other live stock.
No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, however, the value of live stock not on farms was $\$ 18,938,334$, about 10 per cent as great as the value of live stock on farms. The value of all live stock in the state, exclusive of poultry and bees not on farms, was, approximately, $\$ 212,696,371$.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the changes since 1850 in the numbers of the most important domestic animals.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS : 1850 TO 1900.

YEAR.	Dairy cows.	$\begin{aligned} & \text { Other } \\ & \text { neat } \\ & \text { cattle. } \end{aligned}$	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900	1,007, 664	2,096, 346	1,350,219	127, 173	629, 150	5, 915,468
1890	1, 087, 886	1, 975, 233	1,335, 289	107, 875	922, 631	5, 924, 818
1880	865,913	1,518,409	1,023, 082	123, 278	1,037, 073	5,170,266
1870	640,321	1,075, 265	853,738	85, 075	1, 568, 286	2,703,343
1860	522, 634	1,061,179	563, 736	38, 539	769, 135	2,502, 308
1850	294, 671	617,365	267,653	10,573	894, 043	1,915,907

${ }^{1}$ Lambs not included.
All classes of live stock, except sheep, show great increases in number since 1850 . The number of sheep has fluctuated, reaching the maximum in 1870. Since that time the decrease has been rapid, amounting to 31.8 per cent in the ten years between 1890 and 1900 .
An increase in the number of dairy cows is shown for each decade until the last, but the census of 1900 shows a decrease of 7.4 per cent. The increased production of milk in the last decade, however, leads to the belief that the decrease in the number of cows is merely apparent, owing to a difference in the methods of enumeration used in 1890 and 1900. In the latter year, many cows, milked at some time in the year, butnot "kept for milk" primarily, were classed with "cows and heifers not kept for milk," and consequently with "other neat cattle." The numbers of other neat cattle and horses have increased steadily since 1850. The rates of gain since 1890 were 6.1 per cent and 1.1 per cent, respectively. The number of mules and asses increased every decade, except from 1880 to 1890 . For the last decade the increase was 17.9 per cent. A decrease of 0.2 per cent in number of swine is also shown for the last decade, the only decrease for that class of stock since 1850 .

The prevailing high prices just previous to the enumeration, caused farmers to reduce their flocks and herds greatly, as is shown by the fact that for 1899 more than half the total value of animal products was derived from the sale of live animals on farms, and the value of animals sold in 1899 was one-third as great as that of all live stock remaining on farms, June 1, 1900.

In 1900 the enumerators were directed to report no fowls under three months old, but no such instruction was given in former census years. This accounts, in partat least, for the following decreases in numbers of all classes of domestic fowls between 1890 and 1900 : Geese, 57.6 per cent; turkeys, 57.3 per cent ; ducks, 48.0 per cent ; and chickens, 22.7 per cent. The increased production of eggs for the
same time clearly indicates that the decrease in numbers of fowls is only apparent.

ANIMAL PRODUCTS.

Table 16 is a summarized exhibit of the animal products of 1899 .

Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUOTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1899.

Products.	Unit of measure.	Quantity.	Value.
Wool	Pounds	4,799,742	\$966, 746
Mohair and goat hair	Pounds	2,793	
Milk	Gallons	1457, 106,995	
Butter	Pounds ----------	52, 4933,450	229,638,619
Cheese.	Pounds	$\begin{array}{r}\text { 86, } \\ \text { 322, } \\ \hline\end{array}$	8,942,401
Poultry			11, 307, 599
Honey	Pounds	2, 961,080	343,200
Wax---1mals sold	Pounds	75,290	69, 462,993
Animals slaughtered			10,154,596
Total			130, 816,905

[^91]The value of the animal products for 1899 was $\$ 130,816,905$, or 37.8 per cent of the value of all farm products and 49.6 per cent of the gross farm income. This value was also two-thirds as great as that of all live stock on farms, June 1, 1900. Of the total amount, 60.9 per cent represents the value of animals sold and animals slaughtered on farms ; 22.6 per cent, that of dairy products; 15.5 per cent, that of poultry and eggs; 0.7 per cent, that of wool, mohair, and goat hair; and 0.3 per cent, that of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms, $\$ 79,617,589$, is 23.0 per cent of all farm products and 30.2 per cent of the gross farm income. Of all farmers in the state, 214,094 , or 81.0 per cent, report animals slaughtered on farms, the average value per farm being $\$ 47.43$. Sales of live animals are reported by 198,944 farmers, or 75.3 per cent of the whole number, the average receipts per farm being $\$ 349.16$. McLean county was first in amount of sales, reporting $\$ 1,997,978$ from 3,957 farms, an average of $\$ 504.92$ per farm. Twenty-eight counties in the state each reported more than a million dollars received from sales of live animals.

DAIRY PRODUCE.

In 1899 the proprietors of 15,602 farms, or 5.9 per cent of all in the state, derived their principal income from the
sale of dairy produce, the total value of which constituted 22.7 per cent of that of all animal products. The production of milk in 1899 was $89,837,531$ gallons greater than in 1889, a gain of 24.5 per cent. McHenry, Kane, Cook, Lake, and Du Page counties were first in the production of milk, ranking in the order named.

Of the $\$ 29,638,619$, given in Table 16 as the value of dairy produce, $\$ 19,067,797$, or 64.3 per cent, represents the value of the portion sold, and $\$ 10,570,822$, or 35.7 per cent, the value of that consumed on farms. Of the former amount, $\$ 14,477,813$ was received from the sale of $186,549,335$ gallons of milk ; $\$ 4,306,553$, from $26,395,166$ pounds of butter ; $\$ 258,581$, from 560,532 gallons of cream ; and $\$ 24,850$, from 263,237 pounds of cheese.

Since 1889 the amount of butter produced on farms has decreased 8.1 per cent, and that of cheese produced on farms, 5.8 per cent. These changes are due, in part, to the transfer of butter and cheese making from the farm to the creamery, and in part to the increasing quantities of milk and cream consumed in cities.

POULTRY AND EGGS.
The value of the products of the poultry industry in 1899 was $\$ 20,250,000$. Of this amount, 55.8 per cent represents the value of poultry raised, and 44.2 per cent, that of eggs produced. The production of egge for 1899 was $26,051,605$ dozens greater than in 1889, a gain of 43.2 per cent. Shelby, Cook, and Lasalle counties were first in the production of eggs in 1899, while 30 counties reported more than a million dozens each.

WOOL.

The production of wool for 1899 was $4,799,742$ pounds, an increase of 6.9 per cent since 1889. This increase is more apparent than real, owing to the fact that the fleeces of at least 273,237 sheep were omitted from the tables in 1890 , but included in a general estimate of wool shorn after the census enumeration. One-fourth of the state total was reported by the nine following counties which rank in the order named: De Kalb, Macoupin, Pike, McLean, Vermilion, Jo Daviess, Crawford, Shelby, and Wayne.

HONEY AND WAX.

For 1899 there was a decrease of 35.7 per cent in the amount of honey produced and an increase of 49.3 per cent in the amount of wax, compared with the production of 1889. Honey and wax were reported, in 1899, from 34,932 farms.
horses and datry cows on specified classes of farms.
Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

Lasses	Horses.			dairy cows.		
	Farms report ing.	Number.	$\begin{array}{\|c\|} \hline \text { Average } \\ \text { pers } \\ \text { farm. } \end{array}$	Farms report ing.	Number.	$\begin{gathered} \text { Average } \\ \text { per } \\ \text { farm. } \end{gathered}$
Total	246, 614	1,350, 219	5.5	230,625	1,007,664	4.4
White farmers --Colored farmers	$\begin{gathered} 245,461 \\ 1,153 \end{gathered}$	$\begin{gathered} 1,347,090 \\ 8,129 \end{gathered}$	5.5 2.7	$229,854$	$\begin{aligned} & 1,006,236 \\ & 1,428 \end{aligned}$	4.4 1.9
Owners ${ }^{1}$---	$\begin{array}{r} 146,435 \\ 1,775 \\ \hline 37,797 \\ 61,007 \\ 61,07 \end{array}$	$\begin{aligned} & 100,596 \\ & 15,367 \\ & 25,367 \\ & 318,919 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.7 \\ & 5.8 \\ & 5.2 \end{aligned}$	$\begin{array}{r} 142,953 \\ 1,607 \\ 3,6076 \\ 52,979 \end{array}$	$\begin{gathered} 619,895 \\ 18,986 \\ 196,{ }^{287} 75 \\ 196,78 \end{gathered}$	4.3
Managers---						${ }^{6.2}$
Share tenants---						5.5 3.7
Under 20 acres	$\begin{aligned} & 14,560 \\ & 97,381 \\ & 9,345 \\ & \hline 7,3507 \\ & 20,255 \end{aligned}$	$\begin{aligned} & 28,004,042 \\ & 343,829 \\ & .61,943 \\ & 2877,766 \\ & 238,744 \end{aligned}$	$\begin{array}{r} 1.9 \\ 3.4 \\ 5.8 \\ 8.2 \\ 11.8 \end{array}$	$\begin{aligned} & 11,332 \\ & 88,034 \\ & 77,052 \\ & 34,402 \\ & 19,805 \end{aligned}$	$\begin{aligned} & 20,439 \\ & 257,100 \\ & 374,498 \\ & 224,128 \\ & 153,498 \end{aligned}$	
20 to 99 acres						2.7
100 to 174 acres						4.9
260 acres and over-						${ }_{7.8}^{6.5}$
Hay and grain ----	$\begin{array}{r} 101,194 \\ 5,608 \\ 1,983 \\ 108,931 \\ 13,282 \\ 108 \\ 105 \\ 16,247 \end{array}$	$\begin{array}{r} 616,953 \\ 14,138 \\ 5,480 \\ 579,388 \\ 70,666 \\ 7668 \\ 464 \\ 62,184 \\ 62,948 \end{array}$	$\begin{aligned} & 6.1 \\ & 6.5 \\ & 2.5 \\ & 2.8 \\ & 5.4 \\ & 5.3 \\ & 4.4 \\ & 4.4 \\ & 4.9 \end{aligned}$	$\begin{array}{r} 90,484 \\ 3,889 \\ 104,48 \\ 104,250 \\ 15,602 \\ 91 \\ 141 \\ 14,797 \end{array}$		3.5
Fruit -----------						2.1
Live-stock------						4.1
Dairy -------						13.2
Tobacco--						${ }_{4}^{4.2}$
Miscellaneous ${ }^{\text {a }}$------						2.9

${ }^{1}$ Including "part owners" and "owners and tenants."
${ }^{2}$ Including forists' establishments and nurseries.
CROPS.
The following table gives the statistics of the principal crops grown in 1899.
Table 18.-ACREAGES, QUANTITIES, AND VALUES, OF PRINCIPAL FARM CROPS IN 1899.

CROPs.	Acres.	Unit of measure.	Quantities.	Value.
Corn	10, 266, 335	Bushels_-	398, 149, 140	\$115, 092, 567
Wheat	1, 826,143	Bushels_-	19,795,500	11, 937, 458
Oats	4, 570,034	Bushels	180, 305,630	36, 990, 019
Barley	21,375	Bushels---	686,580	242, 834
Rye	78, 869	Bushels---	1,104, 670	509,688
Buckwheat	6,220	Bushels	65,050	36,225
Flaxseed	394	Bushels	4,336	4,705
Kahir corn	34	Busbels_	808	312
Clover seed		Bushels---	97,544	376, 262
Grass seed		Bushels.--	455, 161	274, 201
Hay and forag	3, 343, 910	Tons-----	4, 256, 211	25,569, 169
Tobacco	2,242	Pounds	1,447,150	85, 411
Hemp.	783	Pounds	515, 400	21,784
Hops \qquad Broom corn	95, 137	pounds	60,665,520	2,357,066
Peanuts .	49	Bushels---	879	
Dry bcans	3,451	Bushels---	30,122	46, 084
Castor beans	2,688	Bushels_--	15,695	16,139
Dry pease	12, 982	Bushels---	103,386	110, 554
Potatoes	136, 464	Bushels	12, 511,971	4,702, 033
Sweet potatoes	7,534	Bushels	541,695	303, 980
Onions -----------	108,282	Bushels	546,681	5,028, 148
Maple sugar		Pound	4,090	-478
Naple sirup		Gallons	9, 357	9,363
Sorghum cane	9,158	Tons----	5,165	14,257
Sorghum sirup		Gallons	625, 939	209, 087
Sugar beets----	16, 79.	T	9, 109	33
Grapes	14,281	Centals	200, 094	1, 383,169
Orehard fruits	${ }^{1} 341,675$			${ }^{8} 3,778,811$
Nuts				6,520
Forest products			-------------	2, 522,332
Flowers and plants	679			1, 894, 71456
Seeds Nursery products	3,142			578,306
Miscellaneous	2,400			44,110
Total -------------------	20, 865,406			214, 832, 706

[^92]2 lncluding value of raisins, wine, etc.
${ }^{3}$ lucluding value of cider, vinegar, etc

Of the total value of crops, cereals, including Kafir corn, contributed 76.7 per cent; hay and forage, 11.9 per cent; miscellaneous vegetables, 2.3 per cent; potatoes, 2.2 per cent; orchard fruits, 1.8 per cent; forest products, 1.2 per cent; broom corn, 1.1 per cent; flowers and plants, 0.9 per cent; small fruits, 0.6 per cent; and all other products, 1.3 per cent.

The average values per acre of the principal crops are as follows: Flowers and plants, $\$ 2,791$; nursery products, $\$ 184$; onions, $\$ 111$; grapes, $\$ 90$; small fruits, $\$ 77$; miscellaneous vegetables, $\$ 46$; sweet potatoes, $\$ 40$; tobacco, $\$ 38$; potatoes, $\$ 34$; hemp, $\$ 28$; broom corn, $\$ 25$; dry beans, $\$ 13$; cereals, including Kafir corn, $\$ 10$; and hay and forage, $\$ 8$. The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production required a relatively great amount of labor, and large expenditure for fertilizers.

CEREALS.

Table 19 is an exhibit of the changes in cereal production since 1849.
Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.
PAR'T 1.-ACREAGE.

year. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899 -----	21,375	6, 220	10, 266,335	4,570,034	78, 869	1, 826,143
1889 -----	41, 390	9,763	7, 863, 025	3,870,702	165, 598	2, 240,933
1879 ------	55, 267	16,457	9, 019,381	1,959,889	192, 138	3,218, 542

${ }^{1}$ No statistics of acreage were secured prior to 1879.
Part 2.-BUSHELS PRODUCED.

1899	686,580	65, 050	398, 149, 140	180, 305, 630	1, 104, 670	19,705.500
1889	1,197, 206	107,080	289, 697, 256	137, 6: $4,8: 8$	2, 628,046	37, 389, 444
1879	1,229, 523	178, 859	325, 792, 481	$63,189,200$	3,121, 785	51. 110,502
1869	2,480,400	168, 862	129, 921, 395	42. 780,851	2,456, 578	30,122, 405
1859	1,036,338	324, 117	115, 174, 777	15, 220, 029	951, 281	23, 837, 023
1849	110,795	184,504	57,646,984	10, 087, 241	83,364	9,414,575

The total area devoted to cereals in 1879 was $14,461,674$ acres ; in 1889, 14, 191,410 acres ; and in 1899, 16,768,976 acres. The increases in the acreages devoted to cereals in the last decade were: Corn, 30.6 per cent; and oats, 18.1 per cent. The decreases were: Wheat, 18.5 per cent; rye, 52.4 per cent; barley, 48.4 per cent; and buckwheat, 36.3 per cent. The total number of bushels grown in 1849 was $77,527,463$, and in $1899,600,106,570$.

Of the total area under cereals in 1899, 61.2 per cent was devoted to corn ; 27.3 per cent, to oats; 10.9 per cent, to wheat; and 0.6 per cent, to barley, buckwheat, and rye.

A comparison by counties shows that McLean and Champaign counties each produced over $15,000,000$ bushels of corn. Livingston and Lasalle counties produced over $13,000,000$ each; Iroquois, more than $12,000,000$; Vermilion, more than $11,000,000 ; 27$ counties produced from $5,000,000$ to $10,000,000$; and 58 counties, from $1,000,000$ to $5,000,000$ bushels each. Oats were raised in all the counties, but particularly in the eastern part of the state, where McLean county shows a yield of over $9,000,000$ bushels, and Iroquois over 8,000,000, with Lasalle and Champaign
counties following with large yields, in the order named. Wheat is grown in all sections, and rye is generally reported. Buckwheat was raised principally in Hancock, Iroquois, and Adams counties, the acreages for other counties being small.

HAY AND FORAGE.
In $1900, \mathbf{1 8 1 , 5 3 4}$ farmers, or 68.7 per cent of the total number, reported hay and forage crops. They obtained an average yield of 1.18 tons per acre, exclusive of cornstalks. The total area in bay and forage in 1899 was $3,343,910$ acres, or 5.1 per cent less than ten years before.

In 1899 the acreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 198,809 acres and 227,528 tons; millet and Hungarian grasses, 65,625 acres and 111,176 tons; alfalfa or lucern, 9,290 acres and 9,572 tons ; clover, 362,044 acres and 438,887 tons; other tame and cultivated grasses, $2,444,268$ acres and $2,762,546$ tons; grains cut green for hay, 142,248 acres and 182,337 tons; crops grown for forage, 121,626 acres and 216,517 tons; and cornstalks, 225,416 acres and 307,648 tons.

In Table 18 the production of cornstalks is included under "hay and forage," but the acreage is included under "corn," as the forage secured was only an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 are shown in the following table.

Table 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRUITS.	NUMBER OF TREES.		BUSHELS OF FREUTT.	
	1900.	1890.	1899.	1889.
Apples.	13, 430,006	6,949,336	9,178, 150	9,600,785
Apricots	14,444	4,466	1,437	393
Cherries	727, 973	288,836	204,279	86,254
Peaches	'2,448, 013	783,910	66, 805	341, 178
Pears	795, 551	81,067	133, 745	57,090
Plums and prunes	572, 774	104, 111	157,941	31,341

The total number of orchard trees increased from $8,214,726$ to $18,047,931$ in the decade 1890 to 1900. The number of apple trees nearly doubled, while all other varieties show even larger gains.

Of the total number of trees in $1900,74.4$ per cent were apple trees; 13.6 per cent, peach trees; 4.4 per cent, pear trees; 4.0 per cent, cherry trees; 3.2 per cent, plum and prune trees; and 0.4 per cent, apricot and unclassified trees.

Apples were grown in all parts of the state by 156,709 farmers, or 59.3 per cent of the total number in the state. Marion, Clay, Wayne, and Jefferson counties in the southern part of the state reported one-fifth of the total number. Peach growing is confined principally to the central and southwestern counties, but the other fruits are generally distributed over the state.

In addition to the trees shown in Table 20, unclassified fruit trees to the number of 59,170 are reported, with a yield of 24,854 bushels of fruit. The value of orchard
products given in Table 18 includes the value of 75,089 barrels of cider, 19,135 barrels of vinegar, and $1,526,420$ pounds of dried and evaporated fruits. The four adjoining counties of Hamilton, Williamson, Saline, and Franklin report considerably over half of this fruit.

The quantity of fruit produced in any year is determined largely by the nature of the season, and comparisons between the crops of the different years have little significance.

VEGETABLES.

The value of all vegetables grown in the state in 1899 , including potatoes, sweet potatoes, and onions, was $\$ 10,318,916$. Of this amount, 45.6 per cent represents the value of potatoes. This important crop was reported by 182,031 farmers, or 68.9 per cent of the total number in the state. Aside from the land devoted to potatoes, sweet potatoes, and onions, 108, 282 acres were used in the growing of miscellaneous vegetables. Of this area the products of 56,858 acres were not reported in detail. Of the remaining 51,424 acres, of which detailed reports were received, 19,829 were devoted to sweet corn; 7,317, to watermelons ; 7,082, to cabbages; 6,863 , to tomatoes; 3,646 , to muskmelons; 2,580 , to cucumbers; 767, to asparagus ; 599, to pease; 494, to rhubarb; 334, to carrots ; 333 , to celery; 292 , to beans; 291 , to beets; and 997 , to other vegetables.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 was 16,794 acres, distributed among 56,763 farms. The value of the fruits grown was $\$ 1,293,233$, an average of $\$ 23$ per farm. Of the total area, 7,113 acres, or 42.4 per cent, were in strawberries, and 5,032 acres, or 30.0 per cent, in blackberries and dewberries. The yields of these fruits were $13,151,330$, and $7,294,990$ quarts, respectively. The acreage and production of other berries were as follows: Raspberries and Logan berries, 2,909 acres and $3,458,000$ quarts; currants, 640 acres and 842,000 quarts; gooseberries, 491 acres and 779,730 quarts; and other berries, 609 acres and 603,166 quarts.

TOBACCO.

The present census shows that in 1899 tobacco was grown by 2,106 farmers on 2,242 acres of land, an average of 1.1 acres for each farm reporting. From this area they produced $1,447,150$ pounds. There were decreases in ten years of 46.0 per cent in acreage, and of 52.4 per cent in production. The average production for the five census years, 1849 tol 889 , was $3,990,938$ pounds, the largest crop being in 1859, when $6,885,262$ pounds were reported. From that time to the present there has been a steady decrease. The average yield per acre was 645.5 pounds in 1899, and 732.4 pounds in 1889 . The total value of the crop of 1899 was $\$ 85,411$, an average of $\$ 40.56$ per farm reporting, and $\$ 38.10$ per acre.

The crop was grown in 77 counties, Saline county leading, with 642 acres, or 28.6 per cent of the entire acreage, and 30.2 per cent of the total production.

sorghum cant.

The preseut census shows that in 1899, 16,203 farmers raised 9,158 acres of sorghum, from which they sold 5,165 tons of cane for $\$ 14,257$, and from the remaining product manufactured 625,939 gallons of sirup, valued at \$209,087, making the total value of sorghum products for 1899 , $\$ 223,344$, an average of $\$ 13.78$ for each farm reporting. There was a decrease in acreage from 1889 of 40.5 per cent.

The crop was distributed over 101 counties of the state, the area ranging from 3 acres in Boone to 358 acres in Saline county, which reported the largest acreage. The average area for each farm reporting was 0.57 acre.

BROOM CORN.

In 1899, 95, 137 acres, reported by 3,018 farmers, produced $60,665,520$ pounds of broom corn, valued at $\$ 2,357,066$. This is nearly four times the amount reported in 1890. The average area per farm reporting was 31.5 acres; the average yield per acre, 638 pounds; the average value per acre, $\$ 24.78$; and the average value per pound, 4 cents. The five counties of Coles, Douglas, Moultrie, Edgar, and Cumberland, situated in the east central part of the state, and ranking in the order named, produced more than five-sixths of the total crop.

CASTOR BEANS.

Castor beans were grown in 1899 by 300 farmers, who devoted 2,688 acres to their cultivation and secured therefrom a product of 15,695 bushels, an average of 5.8 bushels per acre. Of the total acreage, 94.0 per cent was reported from the southern connties of Clinton, Franklin, Jefferson, Bond, and Wayne, ranking in the order named.

SUGAR BEETS.

Though begun in the last decade, the growing of sugar beets is rapidly becoming an important branch of agriculture in Illinois. In 1899, 78 farmers devoted to this crop an area of 1,370 acres, an average of 17.6 acres per farm. They obtained and sold from this land 9,109 tous of beets, an average yield of 6.6 tons per acre, and received therefrom $\$ 36,223$, an average of $\$ 464$ per farm, $\$ 26$ per acre, and $\$ 3.98$ per ton. The cultivation of sugar beets was carried on in 15 connties, but to a very limited extent except in Tazewell county, which reported 72.8 per cent of the total acreage.

NURSERIES.

The total value of nursery stock sold in 1898 was $\$ 578,306$, reported by the operators of 288 farms and nurseries. Of this number, 126 derived their principal income from the nursery business. They had 7,760 acres of land, valued at $\$ 1,442,220$; buildings, $\$ 249,745$; implements and machinery, $\$ 29,431$; and live stock, $\$ 22,190$. Their total income, exclusive of products fed to live stock, was $\$ 597,351$, of which $\$ 544,944$ represents the value of nursery stock, and $\$ 52,407$ that of other products. The expenditure for labor was $\$ 143,173$, and for fertilizers, $\$ 5,11 \overline{0}$. The average gross income was $\$ 4,741$.

FLORICULTURE.
The area devoted to the cultivation of flowers and ornamental plants in 1899 was 679 acres, and the value of the products sold therefrom, $\$ 1,894,960$. These flowers and plants were grown by 646 farmers and florists. Of this number, 499, who made commercial floriculture their principal business, had invested in the aggregate $\$ 4,648,056$, of which $\$ 2,439,163$ represents the value of land and improvements other than buildings; $\$ 2,096,652$, the value of buildings; $\$ 90,651$, that of implements and machinery; and $\$ 21,590$, that of live stock. Their sales of flowers and plants amounted to $\$ 1,823,809$, and other products, $\$ 41,913$. They expended for labor $\$ 420,538$, and for fertilizers, $\$ 24,222$. The average gross income was $\$ 3,739$.
In addition to the 499 principal florists, 1,199 farmers and market gardeners made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of $2,433,114$ square feet, making, with the $6,310,906$ square feet belonging to the florists' establishments, a total of $8,744,020$ square feet.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 22,182,550$, an average of $\$ 84$ per farm. The average was highest on the most intensively cultivated farms, being $\$ 1,136$ for nurseries, $\$ 843$ for florists' establishments, $\$ 134$ for dairy farms, $\$ 132$ for sugar farms, $\$ 119$ for vegetable farms, $\$ 94$ for fruit farms, $\$ 91$ for hay and grain farms, $\$ 69$ for live-stock farms, and $\$ 49$ for tobacco farms. "Managers" expended for labor, $\$ 340$; "cash tenants," $\$ 105$; "owners," 877 ; and "share tenants," \$7l. White farmers expended $\$ 84$ per farm, and colored farmers, $\$ 23$.

Fertilizers purchased in 1899 cost $\$ 830,660$, an average of $\$ 3$ per farm, and nearly seven times the amount reported in 1890. The average expenditure was $\$ 49$ for florists' establishments, $\$ 41$ for nurseries, $\$ 15$ for vegetable farms, $\$ 6$ for dairy farms, $\$ 3$ for hay and grain farms, $\$ 2$ for live-stock farms, and $\$ 1$ for tobacco farms.

Twelfth Census of the United States.

Census Bulletin.

MANUFACTURES.

CARS, STEAM RAILR0AD.

Hon. William R. Merriam, Director of the Census.
Sir: I transmit herewith, for publication in bulletin form, a report on the manufacture of steam railroad cars, not including those made by steam railroad companies, and of cars and general shop construction and repairs by steam railroad companies, for the census year, 1900 , prepared under my direction by Mr. George A. Hutchins, of the Census Office.

The moderu tendency toward concentration of industrial enterprises is well exemplified in the establishments engaged in car construction, not operated by railroad companies. During the twenty years prior to 1900, the number of establishments decreased from 130 to 65 , a decrease of 50 per .cent, while the capital and product increased 834.9 per cent and 233.3 per cent, respectively, during the same period.

The statistics are presented in 16 tables. Table 1 shows, for the census year, a combined summary of the operations of the two industries, the manufacture of steam railroad cars, not including those made by steam railroad companies, and of cars and general shop construction and repairs by steam railroad companies. Table 2 shows comparative figures for the two industries at the several censuses. The statistics for steam railroad cars, not including operations of steam railroad companies, are presented in Tables 3 to 9 , inclusive, as follows: Table 3 , showing a comparative summary of steam railroad cars, not including operations of railroad companies, for 1880, 1890, and 1900; Table 4, showing a
comparative summary of the statistics of capital for 1890 and 1900; Table 5, showing the cost of materials used in 1900; Table 6 , showing a comparative summary by states, 1890 and 1900 ; Table 7, showing the statistics for this industry in four geographic divisions of the United States; Table 8, showing the exports of cars for 1880, 1890, and 1900; and Table 9, showing the detailed statistics for the industry in 1900, by states and territories. Tables 10 to 16 , inclusive, present the statistics for cars and general shop construction and repairs by steam railroad companies, as follows: Table 10, showing a comparative summary of cars and general shop construction and repairs by steam railroad companies for 1890 and 1900; Table 11, showing a comparative summary of the statistics of capital for 1890 and 1900 ; Table 12, showing the cost of materials used in 1900 ; Table 13, showing a comparative summary, by states and territories for 1890 and 1900; Table 14, showing the statistics of repair shops in seven geographic divisions of the United States; Table 15, showing a combined summary of the products for 1900; Table 16, showing the detailed statistics for the industry in 1900, by states and territories.
Table 2 shows the growth of the industry for the half century which terminates with the Twelfth Census. The manufacturing statistics of the censuses prior to 1850 were too imperfect and fragmentary in character to make it proper to reproduce them in such a table as a measure of industrial growth in the first half of the century. Owing to changes in the method of taking
the census, comparisons between the earlier and later decades, represented in Table 2, should be drawn only in the most general way. Nevertheless, the rate of growth in the manufacture of steam railroad cars may be fairly inferred from the figures given.

The schedules of inquiry for the census of 1900 were designed to elicit complete data relative to this industry, while at the same time care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the items of inquiry except those relating to capital, salaried offcials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital, that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, was first called for at the census of 1890. No definite attempt was made, prior to the census of 1890 , to secure a return of live capital invested.
Changes were made in the inquiries relating to employees and wages in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1900 the greatest and least numbers of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12 , the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wage-earners during the entire year may have resulted in a variation in the number, and should be considered in making comparisons.

At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was
ascertained, and no salaries were reported for this class. It is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.

Furthermore, the schedules for 1890 included in the wage-earning class, overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wageearning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890.

The 1,361 establishments represented in the combined summary of the two industries, with a capital of $\$ 207,904,125$ and a product aggregating $\$ 308,748,457$, employed 207,105 wage-earners during the census year. To these employees the sum of $\$ 113,049,623$ was paid in wages. In addition to the wage-earners, employment was given to 8,462 salaried officials, clerks, etc., to whom salaries amounting to $\$ 7,748,379$ were paid. There was expended by these establishments for miscellaneous expenses, $\$ 9,131,216$, and for the total cost of materials utilized in the manufacture of the product, $\$ 171,281,760$. It is not to be assumed, however, that a combination of these figures of expenses, subtracted from the total reported value of products, is, in any way, indicative of the profits in the manufacture of these products during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of the interest on capital invested, or of mercantile losses incurred in the business, or of depreciation in plant. Establishments operated by steam railroad companies, constructing and repairing cars for their own use, have, in most cases, considered the value of the product equal to the cost of labor, materials, and miscellaneous expenses incident to the manufacture of same. This statement is necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Chief Statistician for Manufactures.

THE MANUFACTURE 0F STEAM RAILR0AD CARS.

By George A. Hutohins.

HISTORICAL AND DESCRIPTIVE.

A report of the manufacture of cars and general shop construction and repairs by steam railroad companies; and of steam railroad cars, not including those made by railroad companies, should be prefaced by a brief account of the marvelous growth of that industry, effected by invention, experience, and changed requirements. The development and importance of railroads in the United States have been commensurate with the economic growth and political power of the nation.

The railroad is an important factor in humar progress, and has promoted the unification of the nation, by bringing men more closely together, and by furnishing the means of satisfying their wants with the varied treasures and products of the earth. Indeed, this vast network of railways has become the arterial system of national life, carrying to and fro the commerce of the nation and making the world one vast market. Every sphere of the social, industrial, and political world reflects the marvelous achievements of this agent of transportation.

The American railroad car is the outcome of a remarkable yet gradual development. Invention has followed invention, discovery has succeeded discovery, until, from the old-fashioned stage-coach placed on an unstable frame, with four flanged wheels, and heated with a warming pan, has been developed the luxury of the private car of to-day.

The railway was the invention of England, at that time leader of the world in the knowledge of the useful arts. There the power of steam was first utilized and first applied to locomotion. The use of cars for transportation cau be traced as far back as the year 1734, when Ralph Allen constructed a stone car which was clearly the forerunner of the freight car of to-day. The first passenger car was constructed in 1814. It consisted simply of the body of a stage-coach mounted on a wooden frame with flanged wheels. It was natural that the stage-coach should be selected as a model, for in it the conveniences of travel had been most highly developed, and it was also a matter of economy, for the stage owners became railroad promoters and transformed their displaced vebicles into railway coaches. ${ }^{1}$

[^93]In 1825 the Stockton and Darlington Railway of England was opened, and trains of coal cars with one passeuger coach were run regularly. The coach was well patronized for a time, but when the novelty wore off the faster stage-coaches carried the passengers.

The railway system which had its origin in England was quickly adopted in the United States. In 1827 a crude railway was constructed between Quincy and Boston for the purpose of transporting granite for Bunker Hill monument. The Delaware and Hudson Canal Company, in 1829, opened a road from Honesdale, to Carbondale, Pa., a distance of 16 miles, over which the first locomotive was run in this country. About the same time the South Carolina Railroad was begun. The first division of the Baltimore and Ohio road was opened in 1830. It was at first operated by horsepower, but steam locomotion was substituted in 1832. As early as 1840 a well defined systenn of railroads had been established in New England, and prior to 1845 the Pennsylvania and Reading was in operation, running to the coal fields of Pennsylvania. By means of these and subsequently constructed lines, the Atlantic states were put in close communication with the vast mineral supplies upon which is based the industrial and commercial development of the country.
In America the changes in car construction have been marked. The first important modifications were made necessary by the speed developed in the locomotive. With increased speed, the light, cast-iron wheels first demanded attention. The shape of the tread and flange was developed by Knight. Edgar and Winans developed the "chilled" features, and Davis altered the disposition of the metal and introduced into the cast-iron wheel a wrought-iron ring, thus perfecting the chill and strengthening the wheel. The light, unsteady cars easily adapted themselves to the unevenness of the road, but the new conditions of speed demanded a stronger rail, a more stable car frame, a flexible truck, and improvement in brakes. Indeed, the development of the locomotive has necessitated a scientific development of the entire railway system.
Adaptation to circumstances has changed the rail from the rude wooden stringer with a piece of strap iron spiked along the top, to the present refined section of
steel, whose every dimension, angle, and curve are exactly suited to the tremendous strain it has to bear.

In 1833, Ross Winans, of Baltimore, built three long cars, each capable of seating 60 passengers. With these originated the American passenger car of the present day, and to Winans is due the adoption of cars with longer and more stable frames, having bogie or swiveling four-wheeled trucks at each end. These cars were a marked improvement upon the old coach, yet they have been aptly called "combinations of inconveniences." Until late in the fifties the springs were made of india rubber. These were unsatisfactory because of their tendency to harden with age, and gradually they were replaced by steel springs. The cars bad no raised roof. The windows were glazed in solid without any sash, because of the fear that accidents would surely follow should they be opened. The methods of ventilation supplied an abundance of dust and cinders. The lighting was poor. The heat was supplied by cast-iron stoves which broiled those who sat near them, while they failed to warm those who did not.
The proper ventilation of cars is a problem that has not yet been satisfactorily solved. The successful system must at all times supply a sufficient quantity of air, without creating a draft, lowering the temperature, or admitting dust, cinders, smoke, or gases. Probably the best system provides for the admission of air from the exterior of the car to steam pipes where it may be heated before it reaches the interior.

The demand for adequate lighting has resulted in the adoption of a number of different systems. Electric lights are clean, cool, safe, and very desirable, but in their present stage of development they are too expensive for general use. The Pintsch system of lighting, which uses a high quality of oil gas, furnishes a desirable light and one which works well practically. It is safe, clean, of nominal cost, and in case of collisions or derailment does not furnish fuel to the flames.
Many of the dangers of the old platform, buffer, and coupler were eliminated by the patents of 'Colonel Miller, in 1867, but it was not until after the dining car was introduced that the importance of a safe, covered passage way came to be fully recognized. This need was met by Mr. Pullman in his "vestibuled train," which not only provides for the convenience and safety of the passengers while going from one car to another, but at the same time furnishes a buffer extending from platform to roof, thus producing one of the best antitelescoping features and greatly lessening the danger to human life in case of collision. The brake, with its wonderful development from the old hand brake to the air brake patented by Westinghouse; and the modern coupler, which is the result of countless experiments and over 6,500 patented inventions, have eliminated many of the dangers of the old methods and devices. Each year shows a marked improvement in features contributing to the comfort and safety of the passenger,
and in providing cheap, speedy, regular, and adequate transportation in cars especially adapted to the needs of the public.

In the construction of freight cars, the change has been equally marked. Many devices for the protection of life and property have been readily adopted. There is a general tendency toward specialization. No longer are grain, beef, fruits, and oil shipped in the same kind of cars. The transportation of various kinds of products has called into being cars peculiarly adapted to each class of freight, so that scores of different kinds of cars are now constructed to meet the demands of shippers. Perishable articles are now conveyed in cars which insure their preservation.
The tendency of the changes in the modern freight car is toward increased weight, strength, size, and convenience. In developing these qualities steel has been used in some cases to replace wood, and, in other cases, steel plates have been used to strengthen wooden construction. Ten years ago the steel car industry was in its infancy, but its growth during the decade has been phenomenal. At present the Pressed Steel Car Company, of Pittsburg, Pa., using in the manufacture of its product over 1,600 tons of steel a day, is the largest single consumer of steel in the world. The changes have resulted in an increased carrying capacity of the cars, a decrease in the relative dead weight moved, and a better paying load. Marked advances in the average capacity per car have been made in the last few years. The normal capacity in the sixties was about 15,000 pounds. The capacity increased to 28,000 in 1873 ; to 40,000 in 1875 ; to 60,000 in 1885 ; to 70,000 in 1895 ; while at the present time cars with a capacity of 80,000 to 100,000 pounds are in every-day use.
The economy of heavy loading has been indisputably proved. According to figures of the Industrial Commission, the average train load for the United States, as a whole, increased from about 175 tons of paying freight in 1890 to 243.5 tons in 1899.

The movement toward combination began among the railroads earlier than in industrial lines, and made possible "through trains" by which goods could be shipped long distances rapidly and at low rates.

The changes that have taken place in business methods have been largely due to improved methods of transportation. The traffic of railroads has become the greatest single business ever carried on in the annals of the world, all other business contributing to swell its volume. It has become one of the greatest factors in changing the conditions of supply and demand and revolutionizing the habits and aspirations of mankind.

The service of railroads in the United States may perhaps be best shown by the statement that during 1900 the passenger mileage amounted to upward of $1,600,000,000$ miles, a journey of 211 miles per capita for the population of the country. The ton mileage of freight amounted to $141,599,000,000$ tons; that is, the
freight service of the country was equivalent to the carriage of this amount of freight 1 mile. ${ }^{1}$
The census year was characterized by extraordinary activity in construction. Table 15 shows that in the car department 144,505 cars were constructed for steam railways, and $8,376,769$ cars were repaired. In the motive department of the railroad repair shops 272 locomotives were built, and $1,375,265$ were repaired. The number of repairs shown for cars and locomotives may include several repairs on the same car or locomotive. It must not be inferred that the number of single cars and locomotives reach so large a total. The total value of all new equipment manufactured and work necessary to keep the vast amount of rolling stock in repair during the year was $\$ 308,748,457$.

A study of economic history and industrial progress leads to the conclusion that in no other country has the development of the car industry been more rapid than in the United States. Transportation of persons and property with ease, speed, and safety has ever been the aim of railroad promoters and the demand of the American people, and as a result, the railway system of the United States to-day is the most progressive and among the most perfect in the world.
The statistics presented in the following tables embrace the operations of establishments engaged in the construction of "cars, steam railroad, not including operations of railroad companies," and "cars and general shop construction and repairs by steam railroad companies," during the census year. In these tables the figures showing the manufacture of street cars, whether horse, cable, or electric, appear only where they were constructed as a by-product in large plants engaged in the manufacture of steam railway cars. In the motive power and machinery department, the report of the number of locomotives built and repaired does not include the operations of the regular locomotive works in the country, but only those constructed and repaired by the railroad companies in their repair shops. The report of the bridge and building department includes the shop work only.
In reporting the operations of steam railroad companies, where cars were constructed and repaired for the use of the corporation operating the plant, the value of products equals the cost of labor, materials, and miscellaneous expenses incident to the manufacture of same. It was deemed inexpedient to estimate the market value of the cars constructed for, and repair work done on cars owned by the railroad companies operating their own plants; therefore an increase over cost is shown only on cars constructed for other railroad companies or contract work done for other establishments. Table 1 presents a combined summary for the indus-tries-cars, steam railroad, not including operations of railroad companies, and cars and general shop construction and repairs by steam railroad companies.

[^94]Table 1.-CARS, STEAM RAILROAD: COMBINED SUMMARY FOR THE UNITED STATES, 1900.

	Total.	Cars, steam railroad, not including operations of railroad companles.	Cars and general shop construction and repairs by steam rallroad companies.
Number of establishments. Capital:	1,361	65	1,296
Total	\$207, 904, 125	\$88, 323, 852	\$119, 580, 273
Land	\$21, 283, 601	\$4, 306, 808	\$16,976, 693
Buildings	\$45, 860, 155	\$9, 229,810	\$36, 630, 345
ments	\$37, 987, 255	\$9,538,673	\$28, 448, 582
Cash and sundries..............	\$102, 773, 214	\$65, 248, 561	\$37, 524, 653
Salaried officials, clerks, etc., number.	8,462	1,366	7, 7,096
Salaries.............................	\$7,748, 379	\$1, 638, 132	\$6, 210,247
Wage-earners, average number	207, 105	-33,453	$173,652$
Total wages	\$113, 049, 623	\$16, 987, 294	\$96, 062, 329
Miscellaneous expenses	\$9,131, 216	\$2, 837; 229	86, 293, 987
Cost of materials used.	\$171, 281, 760	\$61, 742, 747	\$109, 539,013
Value of products ${ }^{2}$.	\$308, 748, 457	890,510,180	\$218, 238,277

${ }^{1}$ Including custom work and repairing by steam railroad companies.
The combined summary in Table 1 shows that in the census year there were 1,361 establishments, with a capital of $\$ 207,904,125$, employing 215,567 wage-earners and salaried officials, with wages and salaries aggregating $\$ 120,798,002$. The materials used cost $\$ 171,281,760$ and the value of products aggregated $\$ 308,748,457$.
Of the 1,361 establishments in the combined industry, 1,296 , or 95.2 per cent, were operated by railroad companies. These establishments reported a capital invested of $\$ 119,580,273$, or 57.5 per cent of the capital of the combined industry. Of 8,462 salaried officials, 7,096, or 83.9 per cent, were employed in shops operated by railroad companies, and received $\$ 6,210,247$, or 80.1 per cent of the total salaries paid in this industry.
The total number of wage-earners, 207,105, received $\$ 113,049,623$. There were 173,652 wage-earners employed in railroad repair shops, who received $\$ 96,062,329$; that is, 83.8 per cent of the total number of wage-earners engaged in this industry were employed by establishments operated by railroad companies, and received 85 per cent of the total wages.
Of the total cost of materials, $\$ 109,539,013$, or 64 per cent, was raported for establishments operated by railroad companies, and of the $\$ 308,748,457$ reported for the total value of the product, $\$ 218,238,277$, or 70.7 per cent, was reported for railroad repair shops.
Steam railroad companies engaged in the construction and repair of cars in 1900, had an average capital of $\$ 92,191$, with 139 salaried officials and wage-earners, and salaries and wages aggregating $\$ 78,914$. The cost of materials for each plant averaged $\$ 84,521$, and the average product was $\$ 168,394$.
The average capital per establishment in plants not operated by steam railroad companies, in 1900 , was $\$ 1,358,828$. The number of wage-earners and salaried officials per establishment was 536, with wages and salaries aggregating $\$ 285,007$. The cost of materials per establishment was $\$ 949,888$, and the value of products was $\$ 1,392,464$.
The amount of capital per wage-earner, as deduced from the report of railroad repair shops, was $\$ 689$, and
in car construction the reports show $\$ 2,640$ capital per wage-earner. This difference is due mainly to the fact that car-construction plants not operated in connection with railroad companies usually have more cash on hand, bills receivable, unsettled ledger accounts, stock in process of manufacture, and finished products on hand than does the plant whose product is immediately converted to its own use. The cost of materials and the value of the product per wage-earner for railroad repair shops were $\$ 631$ and $\$ 1,257$, respectively, while plants not
operated by railroad companies reported $\$ 1,846$ for the cost of materials used, and $\$ 2,706$ for value of product per wage-earner.

Table 2 presents a comparative summary of the combined industries, as reported at the several censuses from 1850 to 1900 , inclusive, with the per cent of increase for each decade.

Since the beginning of the second quarter of the last century, the manufacture and repair of cars for steam railways has developed until it produces an annual prod-

Table 2.-CARS, STEAM RAILROAD: COMPARATIVE SUMMARY, 1850 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

uct to the value of over $\$ 300,000,000$. No comparison can be made with 1880, as the operations of establishments by railroad companies were not reported at that census. The fact that the classification has been slightly changed must also be taken into consideration in comparing the reports of 1890 and 1900 with the reports of previous censuses. The summary for 1870 includes the construction and repair of street railway cars. The Eleventh and Twelfth censuses include the construction of street railway cars only when they are manufactured as a by-product in large steam railway car construction plants. There were separate classifications for the construction and repair of street railway cars in 1890 and 1900 . The first census at which the statistics of the manufacture and repair of cars were returned with sufficient accuracy and detail to justify a comparison, was that of 1850 . In that year 41 establishments were reported, and in 1860 the number was increased to 62 , an increase of 21 establishments, or 51.2 per cent. The capital increased $\$ 2,057,702$, or 229.7 per cent, and during the decade the value of the product increased $\$ 1,809,055$, or 72.5 per cent. From 1860 to 1870 there was an increase of 109 establishments, or 174.2 per cent, while the capital increased $\$ 13,669,075$, and the value of the product increased $\$ 26,768,121$. From 1870 to 1890 the number of establishments increased 617; the capital, $\$ 103,200,895$; the cost of materials increased
$\$ 93,118,305$; and the value of the product advanced $\$ 168,474,701$.

During the last decade the car industry has shown another marked advance. In 1890 there were 787 establishments, with a capital of $\$ 119,833,687$, and an aggregate product of $\$ 199,545,435$; in 1900 there were 1,361 establishments, with a capital of $\$ 207,904,125$, and an aggregate value of product of $\$ 308,748,457$; an increase of 574 , or $7 \% .9$ per cent, in the number of establishments, $\$ 88,070,438$ in capital, and $\$ 109,203,022$, or 54.7 per cent, in value of product. The total number of wage-earners has increased from 1,554, with wages aggregating $\$ 664,708$, in 1850 , to 207,105 , with wages aggregating $\$ 113,049,623$, in 1900 . Of the total number of employees in this industry in 1900, 206,345, or 99.6 per cent, were men over 16 years of age. Thus Table 2 shows the remarkable growth of this industry during the past half century. The striking increase in the number of establishments, from 41 in 1850 to 1,361 in 1900, an increase of 1,320 , has not kept pace with the increase in capital, wage-earners, wages, materials, and product during the same period.
The following are the averages per establishment for 1850 and 1900, respectively: Capital, $\$ 21,855$ and $\$ 152,758$; wage-earners, 38 and 152 ; wages, $\$ 16,212$ and $\$ 83,064$; cost of materials, $\$ 33,992$ and $\$ 125,850$; and product, $\$ 60,818$ and $\$ 226,854$.

CARS, STEAM RAILROAD, NOT INCLUDING THE OPERATIONS OF RAILROAD COMPANIES.

Table 3 presents a comparative summary, 1880 to 1900, with percentages of increase.

Table 3.-CARS, STEAM RAILROAD, NOT INCLUDING OPERATIONS OF RAILROAD COMPANIES: COMPARATIVE SUMMARY, 1880 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	date of census.			PER CENT OF increase.	
	1900	1890	1880	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$
Number of establishments	65	71	130	18.5	145.4
Capital	\$88, 323,852	\$43, 641, 210	\$9, 272, 680	102.4	370.6
Salaried officials, clerks, etc., number	1,366	${ }^{2} 708$	$\left.{ }^{8}\right)$	92.9	
Salaries........	\$1, 538, 132	${ }^{2} \$ 759,702$	(3)	102.5	
Wage-earners, average number			14,232	6.7	120.3
Total wages	\$16, 987, 294	\$16, 076, 829	85, 507, 753	5.7	
Men, 16 years and over..	1616, 33, 136	\$ ${ }^{30,904}$	(8) ${ }_{(8)}^{13} \mathbf{8 8 5}$	7. 2	122.6
Wages-............id	\$16, 902, 543	\$15, 966, 188	$\left(^{8}\right)$	5.9	
over	107	254	13	157.9	1,853.8
Wages.....-.............	\$32, 452	\$75, 691	${ }^{(8)}{ }^{3} 8$	${ }^{1} 57.1$	
Children, under 16 years. Wages		\$ 196		7.1	${ }^{141.3}$
Miscellaneous expenses	\$2,837, 229	81, 725, 113	(3)	64.5	
Cost of materials used.-	861, 742, 747	\$44, 674, 486	\$19,780, 271	38.2	125.9
Value of products..	890, 510, 180	\$70, 083, 737	\$27, 997, 591	29.1	150.3

1 Decrease.

${ }_{2}$ Includes proprietors and firm members, with their salaries; number only reported in 1900, but not included in this table. (See Table 8.)
${ }^{3}$ Not reported separately.
One of the most notable features in the above table is the decrease in the number of establishments, caused by the combination or consolidation of a number of plants under a single corporate management. While the number of establishments had decreased 50 per cent from 1880 to 1900 , the capital increased more than eightfold, or $\$ 79,051,172$, and the value of the product increased $\$ 62,512,589$, or 223.3 per cent, during the same period. In 1880 there were 130 establishments, and in 1890 the number had been reduced to 71 ; a decrease of 59 establishments, or 45.4 per cent, during the decade. From 1890 to 1900 there was a decrease of 6 establishments, or 8.5 per cent. The capital increased from $\$ 9,272,680$ in 1880 to $\$ 43,641,210$ in 1890 , and in 1900 the aggregate capital was $\$ 88,323,852$, an increase of $\$ 44,682,642$, or 102.4 per cent, over 1890 . The amount paid to wage-earners showed an increase of $\$ 10,569,076$, or 191.9 per cent, from 1880 to 1890 , and a further increase of 5.7 per cent during the last decade, while the number of wage-earners increased 120.3 per cent from 1880 to 1890 and 6.7 per cent during the succeeding decade.

In comparing the increase in the cost of materials used and the value of the product, we find that from 1880 to 1890 the cost of materials increased $\$ 24,894,215$, or 125.9 per.cent, and the value of the productincreased $\$ 42,086,146$, or 150.3 per cent. In 1890 the cost of materials was $\$ 44,674,486$, and in 1900 it was $\$ 61,742,747$, an increase of $\$ 17,068,261$, or 38.2 per cent. The value of the product increased frum $\$ 70,083,737$ to
$\$ 90,510,180$, or 29.1 per cent. From 1880 to 1890 the number of women employed increased from 13 to 254 , but the next decade showed a decrease from 254 to 107 , or 57.9 per cent. The number of children employed decreased 41.3 per cent from 1880 to 1890 . During the last decade the number of children employed increased from 196 in 1890 to 210 in 1900 , or 7.1 per cent, and the wages increased from $\$ 34,950$ in 1890 to $\$ 52,299$ in 1900 , or 49.6 per cent. The increase in the average wages paid to children is probably due to the fact that more complex machinery is being used, and also to laws enacted by various states, defining and limiting the ages and number of hours per day which a minor shall work in mines or in manufacturing and mechanical industries. The capital, materials, and value of product have increased faster than has the number of wage-earners, showing that with increased equipment of plant an operative can use more material and manufacture a larger product than in 1880 or 1890.

While the number of establishments has decreased from 130 to 65 from 1880 to 1900, the average capital per establishment has increased from $\$ 71,328$ to $\$ 1,358,828$. The average cost of materials was $\$ 152,156$ per establishment in 1880 , and $\$ 949,888$ in 1900 , and the value of the product increased from $\$ 215,366$ per establishment in 1880 to $\$ 1,392,464$ in 1900 . The amount of capital per wage-earner was $\$ 652$ in 1880 ; $\$ 1,392$ in 1890 ; and $\$ 2,640$ in 1900. The cost of materials per wage-earner was $\$ 1,390$ in 1880 ; $\$ 1,425$ in 1890 ; and $\$ 1,846$ in 1900 . The value of the product manufactured by each wage-earner was $\$ 1,967$ in 1880 ; $\$ 2,235$ in 1890 ; and $\$ 2,706$ in 1900 .

Table 4 presents a comparative summary of the capital for 1890 and 1900 with the per cent that each item is of the total, and the per cent of increase during the decade.

Table 4.--CARS, STEAM RAILROAD, NOT INCLUDING OPERATIONS OF RAILROAD COMPANIES: COMPARATIVE SUMMARY OF CAPITAL, 1890 AND 1900.

	1900		1890		Per cent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total.	\$88, 323,852	100.0	\$43, 641,210	100.0	102.4
Land.	4, 306, 808	4.9	3, 811, 086	8.7	13.0
Buildings	9,229,810	10.4	7,878,189	18.1	17.2
Machinery, tools, and implements.	$9,538,673$ $65,248,561$	10.8 73.9	$7,626,804$ $24,325,131$	17.5 55.7	25.1 168.6
Cash and sundries-					

The total capital for 1900 was $\$ 88,323,852$, while in 1890 it was $\$ 43,641,210$; an increase of $\$ 44,682,642$, or 102.4 per cent, during the decade. In 1890 the value of land was $\$ 3,811,086$, which was 8.7 per cent of the total capital, and in 1900 the value was $\$ 4,306,808$, or 4.9 per
cent of the total; an increase of $\$ 495,722$, or 13 per cent. The value of buildings increased from $\$ 7,878,189$ in 1890 to $\$ 9,229,810$ in 1900 , an advance of 17.2 per cent. An increase of 25.1 per cent, or $\$ 1,911,869$, in the value of machinery, tools, and implements makes that item now exceed the value of buildings, and more than double the total value of land. The most marked increase is found in the item of capital, which includes cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries. In 1890 the value of this item was $\$ 24,325,131$, or 55.7 per cent of the total. The item increased $\$ 40,923,430$, or 168.2 per cent, during the decade, and in 1900 formed 73.9 per cent of the total capital. It can readily be seen that the constant demand for new varieties of cars, and the tendency to use steel in place of wood requires new and more expensive equipment, as well as a greater amount invested in materials in process of manufacture, and an increased value of finished products on hand.
Table 5 presents the cost of all materials used.
Table 5.-CARS, STEAM RAILROAD, NOT INCLUDING OPERATIONS OF RAILROAD COMPANIES: COST OF MATERIALS USED, 1900.

Materials used.	Amount.	Per cent of total.
Total	\$61, 742, 747	100.0
Prinelpal materials ${ }^{1}$	59, 773, 393	96.8
Fuent of power and heat		
Freight..................	947, 995	1.6

1 Includes mill supplies, and all other materials, which are shown separately in Table 8 .
${ }_{2}$ Less than one-tenth of 1 per cent.
The cost of partially manufactured materials, or those which have passed through one or more stages of production, such as lumber, iron, steel, etc., constituted the principal item, aggregating more than ninetenths the total cost. The amount paid for rent of power and heat was very small, showing that practically all of the power used in car construction was owned by the company operating the plant. The cost of fuel was $\$ 1,021,046$, or 1.7 per cent, and the amount of freight paid was $\$ 947,995$, or 1.5 per cent of the total cost. During the decade the cost of materials increased $\$ 17,068,261$, or 38.2 per cent.
The miscellaneous expenses, comprising rent of works, taxes, contract work, rent of offices, interest, insurance, ordinary repairs to buildings and machinery, and expenses incurred in the manufacture of the product, other than those reported for wages and materials, aggregated $\$ 2,837,229$. (See Table 9.) The amount paid for ordinary repairs of buildings and machinery, and for insurance, interest, advertising, etc., is the principal item of the miscellaneous expenses, aggregating $\$ 2,240,558$, or 79 per cent of the total. Of the remaining items, contract work forms 14.3 per cent of
the total expenses; taxes, 5.6 per cent; and rent of works only 1.1 per cent. No comparison of the separate items of miscellaneous expenses can be made with previous censuses, as in 1890 reports were made of total expenses only, and no figures were presented previous to the Tenth Census.
In 1890 there were in the United States 71 establishments engaged in car construction other than those operated by steam railroad companies, and during the decade 17 new establishments were constructed, but in 1900 only 65 establishments were in operation. This condition clearly illustrates the industrial changes which are constantly taking place in the commercial world. It does not necessarily indicate that 23 establishments formerly engaged in car construction have gone out of business and their plants are idle. In many cases the larger manufacturers have purchased the plants of their smaller competitors, and now use them for the manufacture of supplies for the central plants. Thus the product has been changed, and they can no longer be classified as establishments engaged in car construction and repairs. In some instances an establishment which was classified under "foundry and machine shop products" in 1890 had so changed its product that "car construction" predominated in 1900. This may account for the fact that, in some states, there was an increased number of establishments engaged in this industry, without a corresponding increase in the number of plants constructed during the decade.

In considering the location of the various plants it is interesting to note that a large part of the manufacturing was done near the various supply centers as well as in places convenient to commercial centers. In 1890 Pennsylvania was the leading state, with 15 establishments; in 1900 the number was reduced to 11 . In Illinois the number of establishments has increased from 9 to 17 , with a corresponding increase in production, and both in the number of plants engaged in the industry, and in the value of the product, this state has now taken first place. The North Central and the North Atlantic states, on account of their close proximity to coal fields, lumber districts, and the great commercial centers, have special advantages in the manufacture of cars, and in them are found the greatest number of well-equipped plants, and the greatest activity in the construction of new plants during the decade.

From the accompanying tables it will be seen that a large percentage of the establishments engaged in the manufacture of steam railroad cars, exclusive of those made by railroad companies, were located within a comparatively small area. The cities of Chicago, Joliet, Madison, Mt. Vernon, Litchfield, and EastSt. Louis, in Illinois, and St. Louis and St. Charles, in Missouri, reported a product of $\$ 32,568,374$, or 36 per cent of the total product for the United States. Michigan City, Terre Haute, Indianapolis, and Jeffersonville, in Indiana, reported a product of $\$ 9,006,577$, or 10
per cent of the total. Establishments in Allegheny, Pittsburg, McKees Rocks, Berwick, and Milton, in Pennsylvania, showed a product of $\$ 17,724,290$, or 19.6 per cent of the total. The cities of Rochester, Buffalo, and Depew, in New York, showed a product of $\$ 5,228,351$, or 5.8 per cent of the total. Detroit, Mich., Dayton, Ohio, and Wilmington, Del., reported a product of $\$ 16,707,419$, or 18.5 per cent of the total.

The larger plants are, for the most part, located in the suburb of some large city, near the coal and iron districts, and in places where supplies of lumber are easily
obtained. These conditions give the plant so located the advantage of being close to the great commercial centers an in a position to obtain skilled labor on short notice. The value of products, for the cities enumerated above, aggregated $\$ 81,235,012$ or 89.8 per cent of the total for this branch of industry.

Table 6 presents a comparative summary of the number of establishments, capital, salaried officials and salaries, wage-earners and wages, miscellaneous expenses, cost of materials, and products, for states having 3 establishments and over, in 1890 and 1900.

Table 6.-CARS, STEAM RAILROAD, NOT INOLUDING OPERATIONS OF RAILROAD COMPANIES: COMPARATIVE SUMMARY, BY STATES, 1890 AND 1900.

states.	Year.	Number of estab-lishments	Capital.	salaried officials, CLERRS, ETC.		Wage-earners.		Miscellaneous expenses.	Cost of materials used.	Value of products.
				Number.	Salaries.	Average number.	Total wages.			
United States. .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	65 71	$888,323,852$ $43,641,210$	1,366 708	\$1, 7698,132 769	33,453 23,292	$\$ 16,987,294$ $11,571,617$	$\mathbf{\$ 2}, 837,229$ $1,725,113$	$\begin{array}{r} \mathbf{8 6 1 , 7 4 2 , 7 4 7} \\ 44,674,486 \end{array}$	$\begin{array}{r} \$ 90,510,180 \\ 70,083,737 \end{array}$
Delaware.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	3 3	$\begin{aligned} & 2,429,007 \\ & 2,839,733 \end{aligned}$	73	$\begin{array}{r} 83,528 \\ 66,469 \end{array}$	$\begin{aligned} & 2,032 \\ & 2,001 \end{aligned}$	$\begin{aligned} & 1,041,088 \\ & 1,039,739 \end{aligned}$	$\begin{array}{r} 121,819 \\ 87,677 \end{array}$	$\begin{aligned} & 1,876,435 \\ & 1,528,628 \end{aligned}$	$\begin{aligned} & 3,274,922 \\ & 3,291,293 \end{aligned}$
Illinois	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	17 9	$\begin{aligned} & 18,732,466 \\ & 10,070,784 \end{aligned}$	279 176	330,409 128,712	9,314 4,583	$5,360,756$ $2,768,989$	$\begin{aligned} & 483,271 \\ & 217,384 \end{aligned}$	$\begin{aligned} & 17,075,461 \\ & 10,093,125 \end{aligned}$	$\begin{aligned} & 24,846,606 \\ & 17,117,223 \end{aligned}$
Indiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	4 4	$\begin{aligned} & 6,062,000 \\ & 5,199,706 \end{aligned}$	96 34	$\begin{gathered} 111,858{ }^{\prime} \\ 50,880 \end{gathered}$	$\begin{aligned} & 3,337 \\ & 2,650 \end{aligned}$	$\begin{aligned} & 1,550,764 \\ & 1,319,741 \end{aligned}$	$\begin{aligned} & 224,009 \\ & 150,782 \end{aligned}$	$\begin{aligned} & 6,287,256 \\ & 4,924,342 \end{aligned}$	$\begin{array}{r} 9,006,577 \\ 7,073,329 \end{array}$
Michigan.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	4 5	$\begin{aligned} & 6,693,209 \\ & 3,769,483 \end{aligned}$	$\begin{array}{r}107 \\ 85 \\ \hline\end{array}$	146,795 115,868	$\begin{aligned} & 3,187 \\ & 3,406 \end{aligned}$	$\begin{aligned} & 1,409,580 \\ & 1,376,037 \end{aligned}$	$\begin{aligned} & 227,774 \\ & 245,660 \end{aligned}$	$\begin{aligned} & 7,272,761 \\ & 8,007,974 \end{aligned}$	$\begin{array}{r} 9,920,780 \\ 11,078,281 \end{array}$
Missouri	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	4	4, $4,442,982$	117 50	125,561 52,247	$\begin{aligned} & 2,772 \\ & 1,354 \end{aligned}$	$\begin{array}{r} 1,373,353 \\ 869,104 \end{array}$	$\begin{array}{r} 198,160 \\ 75,773 \end{array}$	$\begin{aligned} & 5,101,335 \\ & 2,655,320 \end{aligned}$	$\begin{aligned} & 7,722,768 \\ & 3,974,173 \end{aligned}$
New York .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	4	$\begin{aligned} & 4,299,251 \\ & 1,835,321 \end{aligned}$	92 53	$\begin{aligned} & 75,920 \\ & 63,342 \end{aligned}$	$\begin{aligned} & 2,091 \\ & 1,792 \end{aligned}$	$\begin{array}{r} 1,038,948 \\ 978,102 \end{array}$	$\begin{aligned} & 81,996 \\ & 92,779 \end{aligned}$	$\begin{aligned} & 3,744,911 \\ & 2,382,777 \end{aligned}$	$\begin{aligned} & 5,228,361 \\ & 3,166,771 \end{aligned}$
Obio.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	5	$\begin{aligned} & 2,581,894 \\ & 2,843,166 \end{aligned}$	${ }_{21}^{61}$	$\begin{aligned} & 75,616 \\ & 38,890 \end{aligned}$	1,806 1,326	$\begin{aligned} & 862,011 \\ & 594,505 \end{aligned}$	$\begin{aligned} & 46,450 \\ & 92,007 \end{aligned}$	$\begin{aligned} & 2,791,908 \\ & \mathbf{2}, 817,678 \end{aligned}$	$3,942,372$ $4,784,136$
Pennsylvania.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	115	$\begin{array}{r} 33,828,723 \\ 7,060,466 \end{array}$	414	$\begin{aligned} & 426,399 \\ & 141,866 \end{aligned}$	$\begin{aligned} & 5,840 \\ & 3,524 \end{aligned}$	$\begin{aligned} & 3,111,556 \\ & 1,397,176 \end{aligned}$	$\begin{array}{r} 1,266,456 \\ 465,900 \end{array}$	$\begin{array}{r} 12,188,811 \\ 6,496,268 \end{array}$	$\begin{aligned} & 19,260,910 \\ & 10,080,722 \end{aligned}$
All other states.	$\begin{aligned} & 11900 \\ & { }_{2}^{1} 1890 \end{aligned}$	13 20	$\begin{aligned} & 9,166,320 \\ & 8,579,624 \end{aligned}$	$\begin{aligned} & 127 \\ & 115 \end{aligned}$	$\begin{aligned} & 163,046 \\ & 101,438 \end{aligned}$	3,075 2,656	$1,239,238$ $1,228,224$	189,294 297	6, 403, 869 5, 768,684	$\begin{aligned} & 7,307,894 \\ & 9,517,810 \end{aligned}$

${ }^{1}$ Includes establishments distributed as follows: Alabama, 2; Georgia, 2; Kentucky, 1; Maryland, 1; Massacbusetts, 2; New Hampshire, 1; New Jersey, 2; Tennessee, 1 ; West Virginia, 1,
2 neludes establishments distributed as follows: Alabama, 3; California, 1; Florida, 1; Kansas, 2; Kentucky, 2; Massachusetts, 3 ; Minnesota, 2; New Hampshire, 1; North Carolina, 1; Tennessee, 2; Virginia, 1; West Virginia, 1 .

The states which show a decrease in both capital and product are Delaware and Ohio. The state of Michigan, while showing an increase in capital, reported a decrease in value of product of $\$ 1,157,501$, or 10.4 per cent. In Illinois the capital increased from $\$ 10,070,784$ in 1890 to $\$ 18,732,466$ in 1900 , or 86 per cent. The value of the product in 1890 was $\$ 17,117,223$, and in 1900 an increase of $\$ 7,728,383$, or 45.1 per cent, was shown. Indiana reported an increase of $\$ 862,294$, or 16.6 per cent, in capital, and the product increased $\$ 1,933,248$, or 27.3 per cent, during the decade. Missouri in 1890 reported a capital of $\$ 1,442,927$; in 1900 the capital was $\$ 4,530,982$, an increase of $\$ 3,088,055$, or 214 per cent. The product increased from $\$ 3,974,173$ in 1890 to $\$ 7,722,768$ in 1900 , or 94.3 per cent. The capital in New York increased 134.3 per cent, and the value of the product showed an increase of $\$ 2,061,580$, or 65.1 per cent. Pennsylvania showed an increase of
379.1 per cent in capital, and an increase of $\$ 9,180,188$, or 91.1 per cent, in the value of the product. The marked increase in capital in Pennsylvania was caused by the construction of new plants for the manufacture of pressed steel cars. The value of the products shown for the establishments which had been in operation only a few months during the census year was only a small fraction of their annual capacity, and therefore the value of plant and cost of equipment, together with the other items of capital, makes it appear that the increase in capital was disproportionate to that of products.

Alabama and Massachusetts each had 3 establishments in 1890 , but in 1900 only 2 establishments were reported, operating independent of railroad repair shops, and no comparison can be made for the two censuses for these states.
Table 7 presents the operations of establishments engaged in car construction, exclusive of plants operated by railroad companies, in four geographic divisions.

Table 7.-CARS, STEAM RAILROAD, NOT INCLUDING OPERATIONS OF RAILROAD COMPANIES: COMPARATIVE SUMMARY, BY GEOGRAPHIC DIVISIONS, 1900.

In the United States there were 65 establishments, with the value of products aggregating $\$ 90,510,180$. The New England states, with 3 establishments, or 4.6 per cent of the total, manufactured a product of $\$ 825,012$, or 0.9 per cent of the total value. In the Middle states there were 21 establishments, with an aggregate product of $\$ 30,121,982$, or 33.3 per cent of the total. The Southern states, with 10.8 per cent of the total number
of establishments engaged in this industry, manufactured a product of $\$ 4,125,083$, or 4.6 per cent of the total. The Central states reported 34 establishments, with a product of $\$ 55,438,103$, or 61.2 per cent of the total. In the New England division each establishment reported an average of 4 salaried officials, with an average salary of $\$ 1,556$. The Middle states reported 29 salaried officials per establishment, with an average

EXPORTS OF PASSENGER AND FREIGHT CARS FOR STEAM RAILROADS 1880 TO 1900.

salary of $\$ 1,038$. The salaries of 660 officials in the Central states averaged $\$ 1,196$, and in the Southern states the average establishment had 13 officials, with an average salary of $\$ 1,153$.

The constantly increasing traffic in this country rapidly absorbs the product of the car shops, but there is also a foreign demand of considerable magnitude for

American-built cars. This demand changes with the varying industrial conditions and commercial activity of the countries importing these products, as well as with the economic conditions existing in this country.
The above graphic chart shows the value of cars, passenger and freight, for steam railroads, exported, 1880 to 1900.

In 1890 and 1891 the value of exported cars exceeded the value in 1900. During the business depression which followed there was a marked decrease in the number of cars constructed, both for foreign and domestic use. The construction of freight cars was the first to be affected. The number of passenger cars constructed in this country did not decrease materially until after the Columbian Exposition in 1893. The foreign demand and the exposition were potent factors in keeping many of the shops running during 1893. A year or
two later the demand for freight cars began to iucrease, and since 1897 the demand for both passenger and freight cars for foreign and domestic use has shown a constant growth. The exports for 1900, aggregating $\$ 2,558,323$, exceeded the average yearly exports from 1880 to 1890 by $\$ 1,581,872$; those from 1890 to 1900 by $\$ 756,484$; and the average for twenty years by $\$ 1,169,178$.

Table 8 presents the statistics of exports of cars and parts of cars, passenger and freight, for steam railways, 1880,1890 , and 1900.

Table 8.-CARS, PASSENGER AND FREIGHT, AND PARTS OF: EXPORTS, 1880, 1890, AND 1900, BY COUNTRIES. ${ }^{1}$

COUNTRIES TO WHICH EXPORTED.	1000	1890	1880	COUNTRIES TO WHICH EXPORTED	1900	1890	1880
	For steam railroads.	For steam railroads.	Forsteam railroads.		For steam railroads.	For steam railroads.	Forsteam railroads.
Total.	\$2, 558,323	\$2, 689,698	\$583, 723	NORTH AMERICA.			
Chinese Empire.	16,838			Dominion of Canada:			
East Indies-Britisb	2,947 12		48.562	Quebee, Ontario, Manitoba, etc..	\$15,464	\$19,900	82, 100
Russia-Asiatic	12,898		48,502	British Columbia --.........	12,070	,	4,716
Turkey in Asia.	220			Newfoundland and Labrador Central American states			
oceanta.				Costa Rica	16,495 6,149	33, 865	23,613
British Australasia.	50,754		10,204	Guatemala	1,271	3,500	
Hawail...........	15, 100	5,000	10,204	Hicaragna	2,664 4,704	26,365	
				Salvador..	1,707	4,000	
British Africa----....			18,100	Mexico.......	714,329	492, 326	28,743
Turkey in Africa-Egypt	401,151			West Mritish .	253	1,747	
				Cuba	79,723	163,455	39,450
Belgium-.....-.	30,713			Porto Rico	8,763		1,863
Denmark	125			santo Domin	12,862	1,710	
France...	280, 939	33,000		south america.			
Germany	62,319		26,800	Argentina south america.			
Gibraltar.			500	Argentina	105, 147	1,063,319	21,162
Netherlands	52,507			Brazil.	133, 378	347, 222	276, 683
Portugal.	1,583	16,792	1, 065	Colombia	13,107	9,300	4,800
Russia-Baltic and White Seas	1,300			Ecuador	1,990		
Spain -		43,920		Guiana-British	12,500	700	4,485
Sweden and Norwa	3,788 4,848			Peru	2,692 2,150	$\begin{array}{r}2,800 \\ 47 \\ \hline 700\end{array}$	1,510
United Kingdom	124,585	190,773	61,467	Venezuela	${ }^{210}$	7,490	

${ }^{1}$ Annral Reports United States Treasury Department on Commerce and Navigation of the United States, 1880, 1890, and 1900.

The exports to South American countries decreased from $\$ 1,648,210$ in 1890 to $\$ 279,181$ in 1900. This was probably due to the fact that there was less activity in railway construction than at the beginning of the decade; also to the fact that the railways which were in process of construction in 1890 were in a position to supply their own equipment. The exports to North American countries during the decade increased $\$ 466,266$;
to Europe, $\$ 280,147$; and to Oceania, $\$ 51,854$. No cars or parts of cars were exported to Asia or Africa in 1890 , but in 1900 these exports to Asia were valued at $\$ 33,492$, and those to Africa at $\$ 405,895$.
Table 9 presents in detail, for 1900, the statistics relating to the manufacture of cars, steam railroad, not including operations of railroad companies, by states and territories.

Table 9.-CARS, steam Railkoad, not including operations of Railroad companies: by states, 1900.

	United States.	Delaware.	Illinois.	Indiana.	Michigan.	Missouri.	New York.	Ohio.	Pennsylvania.	Other states. ${ }^{1}$
Number of establishments	65	3	17	4	4	4	4	5	11	13
Character of organization:										
Firm and limited partnershi	${ }_{3}^{1}$								3	${ }^{1}$
Incorporated company......	60	3	17	4	4	4	- ${ }^{1}$	$\stackrel{\square}{5}$	8	12
Miscellaneous...................................	1						1			
Total.	888, 323, 852	\$2,429,007	818,732, 466	86, 062, 000	\$6,693, 209	\$4,530, 982	\$4, 299, 25 I	\$2,581, 894	833, 828, 723	9,166,320
Land	84, 306, 808	\$239, 828	-8795, 701	- $\$ 190,000$	\$736,000	* 8393,229	- 4420,305	- $\$ 48,977$	\$944, 900	\$537,868
Buildings	\$9, 229,810	\$364,493	\$2,563,234	\$765,000	\$824, 875	\$755, 476	\$816,129	\$246, 517	\$1,780, 000	\$1,114,086
Machinery, tool	\$9,538,673	\$348,170	\$3,475,151	\$675,000	\$780,330	\$711,140	\$881, 616	\$137, 883	\$1,424, 595	\$1, 104,788
Cash and sundries.........	\$65,248,561	\$1,476,516	\$11, 898,380	\$4,432, 000	\$4,352,004	\$2, 671, 187	\$2,181,201	\$2,148, 517	\$29, 679, 228	\$6,409,578
Proprietors and firm memhers	7									
Salaried officials, clerks, etc.: Total number .-..........	1,366	73	279	96	107	117	92	61	414	127
Total salaries..................	\$1, 538, 132	883, 528	\$330,409	\$111,858	\$145, 795	\$125,561	\$75, 920	\$75, 616	\$426,399	\$163,046
Officers of corporations- Number			25		${ }^{6}$	2	2	10	36	19
Salaries..........	\$535, 161	\$27, 750	\$94,409	\$30, 495	\$33, 340	\$25,000	\$10,883	\$36, 320	\$219, 214	\$57,750
General superintendents, managers, clerks, etc.-										
Number.	1,254	66	254	90	101	115	90	51	379	108
Salaries..	81,002,971	\$55,778	\$236,000	\$81, 363	\$112,455	\$100, 561	\$65,037	\$39,296	\$207, 185	\$105, 296
Number	1,200	64	244	85	99	101	87	50		102
SaIaries.	\$974,179	854, 628	\$230,333	\$78,363	\$110,955	892, 691	\$63, 777	\$38,876	\$203, 658	\$100, 998
Women-										
Number Salaries.	$\begin{array}{r} 54 \\ \mathbf{\$ 2 8 , 7 9 2} \end{array}$	$\$ 1,250$	$\begin{array}{r} 10 \\ \$ 5,667 \end{array}$	$\begin{array}{r} 5 \\ \$ 3,000 \end{array}$	$\begin{array}{r} 2 \\ \$ 1,500 \end{array}$	$\begin{array}{r} 14 \\ 87,870 \end{array}$	$\begin{array}{r} 3 \\ \$ 1,260 \end{array}$	$\begin{array}{r} 1 \\ \$ 420 \end{array}$	$\begin{array}{r} 11 \\ \$ 3,527 \end{array}$	$\begin{array}{r} 6 \\ \$ 4,298 \end{array}$
Wage-earners, including pieceworkers, and total wages:					\$1,					
Greatest number employed at any one time during the year.	44, 447	2,494	10,677	3,866	3,972	3,288	3,380	2,181	10,636	3,953
Least number employed at any one time										
during the year	27,192 33,	${ }_{2,032}^{1,656}$	8,874 9	2,730	2,282	2,134	1,092	1,584	4,810	2,131
Wages...........	\$16,987, 294	\$1,041, 088	\$5, 360,756	\$1, 550,764	\$I, 409, 580	81, 373, 353	\$1,038,948	\$862,011	83, 111,556	\$1, 239,238
Men, 16 years and over-					1, 10, 58	ィ1,	1,	\$8,011		
Average number Wages \qquad	$\begin{array}{r} 33,136 \\ \$ 16,902,643 \end{array}$	$\begin{array}{r} 1,978 \\ \$ 1,028,781 \end{array}$	$\begin{array}{r} 9,171 \\ \$ 5,326,964 \end{array}$	$\begin{array}{r} 3,337 \\ \$ 1,550,764 \end{array}$	3,187 $\mathbf{\$ 1 , 4 0 9 , 5 8 0}$	$\begin{array}{r} 2,766 \\ \$ 1,371,198 \end{array}$	$\begin{array}{r} 2,072 \\ \$ 1,033,313 \end{array}$	$\begin{array}{r} 1,800 \\ 8860,799 \end{array}$	$\begin{array}{r} 5,753 \\ \mathbf{\$ 3}, 083,636 \end{array}$	$\begin{array}{r} 3,072 \\ \$ 1,238,558 \end{array}$
Women, 16 years and over										
A verage number	107	-29	50			6	17	6		
Wages	\$32, 452	88,925	\$15,041			82,155	\$5,119	\$1,212		
Average number...	210	25	93				2			
Wages	\$52,299	\$3, 432	\$19,751				\$516		27,920	\$680
Average number of wage-earners, including pieceworkers, employed during each month:										
Men, 16 years and over-										
January	34, 113	2,226	9,394	3,362	2,775	3,055	2,641	1,967	5,440	3,253
February	33,553	2,288	9,339	3,450	2,573	3,209	2,512	2,022	4,767	3,393
March	35,796	${ }_{2}^{2,289}$	9,691	3,438	4,155	2, 863	2,877	2,090	5, 205	3, 203
May.	33,851 34,647	2,098	9,408	3,368	3,122	2,808	2, 2,862	1,754 1,740	6,164	-3,129
June.	34,517	1,873	9,350	3,413	3,904	2,750	2,767	1,737	5,530	8,193
July	32,659	1,874	9,330	3,535	3,789	2,314	1,716	1,678	6,437	2,986
August	30,632	1,656	8,512	3,373	3,363	2,269	1,462	1,666	5,517	2,814
September	29,913	1,629	8,689	3,083	2,632	2,690	1,473	1,680	5, 349	2,788
October	30, 877	1,751	8,878	3,103	2, 366	2,929	1,344	1,698	6,883	2,926
November.	32,496	1,900	8,774	3,204	2,582	2, 806	1,260	1,743	7,356	2,871
Women, 16 years and over	34, 578	2,124	9,082	3,324	3,424	2,800	1,093	1,830	7,939	2,962
January	147	36	58				39			
March	137	29 29	58			8	37	5		
April.	143	31	5			7	37 36	5		
May	127	29	59			7	27	5		
	123	30	53			7	25	8		
July	79	30	43			3		3		
August	76	23	45			3		4		
October	68 79	23	36			5		4		
November	77	28	38			7		4		
December	93	31	47			9		6		
Children, under 16 years-										
January	194	27	93				5		65	
March ..	198	31	88	,			4		55	${ }_{3}^{2}$
April.	202	30	85				5		74 80	2
May	179	28	77				5		65	2
June	199	23	90				4		80	2
July	209	21	108						78	2
August	215	24	109						80	2
September	201	${ }_{22}^{23}$	96						80	3
November	223	18	92						105	,
December	268	21	95						140	8
Miscellaneous expenses:									140	
Total	82, 837, 229	\$121,819	\$483,271	\$224,009	8227, 774	\$198,160	881,996	\$45, 460	\$1, 265, 456	\$189,294
Rent of works ${ }_{\text {Taxes, not including internal }}$	\$181, 597		\$4,021			83, 263		\$2,170	\$20, 804	\$1, 339
Rent of offices, insurance, interest, etc...	$\begin{array}{r} \$ 169,440 \\ \$ 2,240,568 \end{array}$	\$7,100 $\$ 114,719$	\$38,899 $\$ 436,717$	\$212,978	$\begin{array}{r}\mathbf{8 3 4 ,}, 023 \\ \$ 191 \\ \mathbf{8} \\ \hline 151\end{array}$	$\begin{array}{r}87,463 \\ \$ 187 \\ \hline\end{array}$	\$8,446	\$13,876	\$20,806	\$15. 849
Contract work..............................	\$405, 634	\$114, 19	-83,634	821,081	$\$ 191,751$ $\$ 2,000$	\$187,434	\$73, 550	\$29,404	\$823, 846	\$172, iv6
Materials used:									\$400,000	
Aggregate cost	861, 742, 747	\$1, 876,435	\$17,076, 461	86,287, 256°	87, 272, 761	\$5, 101, 335	83,744,911	\$2, 791,908	\$12, 188, 811	\$5,403,869
Totar ${ }_{\text {Purchased }}$ in raw state	852,637,603	\$1, 744, 990	\$14, 050, 032	\$5, 581, 378	86, 370, 394	\$4, 658,343	$\text { \$3,066. } 390$	\$2,449,025	\$10, 175, 148	\$4,651,903
Purchased in raw state...............	\$45, 730		88,704	\$3, 468	\$11,684	88,801	$\$ 3,910$		\$8,976	\$188
Fuel.............................	\$52, 591,873	\$1,744, 990	\$14,041, 328	\$5, 577, 910	\$6, 358, 710	\$4, 549,542	83,062,480	\$2, 449, 025	\$10,166,173	
Fuent of power and beat	\$1, 021, ${ }_{\text {8313 }}$	\$22,339	$\$ 303,164$ $\mathbf{8 3 1 3}$	\$102,094	\$94, 390	\$101, 527	864,629	\$36,489	- \$195,927	\$100, 487
Mill supplies	\$214,639	\$15, 11.	\$91, 712	\$9,636	88,413					
All otber materials	86,921,161	\$81,617	\$2, 542, 123	8121,390	\$796, 629	\$433, 202	8614,699	\$9,906	\$1, 791,675	\$43,406
Freight..	\$947, 995	\$11, 670	\$88, 117	8472,768	83,935			\$290, 642	\$1, $\$ 3,711$	\$380, $\mathbf{\$ 7 7}, \mathrm{I} 62$

[^95]Table 9.-CARS, StEAM Railroad, not including operations of railroad companies: by states, 1900-Continued.

	United States.	Delaware.	Illinois.	Indiana,	Michigan.	Missouri.	New York.	Ohio.	Pennsylvania.	$\begin{aligned} & \text { Other } \\ & \text { states. } \end{aligned}$
Products:										
Aggregate value. Total number of cars constructed	890, 110,180	\$3, 274, 932	$\begin{array}{r} \$ 24,845,605 \\ 30,842 \end{array}$	$\begin{array}{r}89,006,577 \\ 15,234 \\ \hline 8\end{array}$	$\$ 9,920,780$ 22,000	\$7, 722, 768 9,903	85, 228, 351	83, 942, 372	$319,260,910$ 20,682	$\begin{array}{r} 87,307,894 \\ 9,736 \end{array}$
Total value.	\$70, 220,166	\$1,953,151	\$19, 616, 128	\$8,521, 954	\$9,281, 671	\$6, 317, 744	\$3,052, 189	\$3,710,477	\$12,718,711	85, 448,141
Passenger cars-										
Total value...	87, 368,299	\$1,363,500	83, 624,251	\$328, 538	.	8546,106	\$266,696	\$1,219, 428		819, 780
Baggage and express, nu	\$238, $\mathbf{7 2 4}^{\text {2 }}$	\$66, 692	\$18,373	\$38,522		817,760		881, 207		85,000
Chair and coach, number	-181									
Value ${ }_{\text {Dining }}$ bund..........	\$957, 526	\$54,000	878, 680	\$82, 872		8396, 374		\$335, 320		\$10, 280
Value	\$404,503		\$103,166	\$66,716		\$28,720		8205,902	
Mail, numb								8		
Parlor, numbe	\$197,465		\$50,933	844,109		\$66, 78		(1) 26		
Value ...	\$272, 303		\$45,665			\$26, 377		8200, 361		
Passenger, number	\$1,975, 469	\$1,190, 224	8524, 887	\$59,629		\$10,127		8191,302		
Private, number										
Salue Sleeping, numbe	\$154,709		8107,136	\$11,211				$\begin{aligned} & \$ 36,362 \\ & 13 \end{aligned}$		
Value ...	82,767,061	822,002	\$2, 339, 474	\$12,090			\$266, 696	\$123, 219		\$3,500
Other varietic.	\$400,609	830, 582	8356, 637	\$13,390						
Freight cars-									20,682	9,523
Total value	\$62, 161,013	\$22, 235	1515, 856,625	\$8, 193,416	\$9, 281, 671	\$5,771, 638	\$2,785, ${ }^{1} 943$	\$2, 324,7780	812, 718, 711	85, 205, 3 , 524
Bax, numbe	\$26, 562,893	816,532	89, 118,2677	\$5, 341,7816	\$3,679,362	\$4, 18, 7860		\$955,762	\$228, 361	\$2, 299,038
Coal and	28,857		1,574	2, ${ }^{2} 71$	-7, ${ }^{7,289}$	\$615, ${ }^{1,115}$	\$822,847	\$865,735	88, ${ }^{10,487} \mathbf{7 8 9}$	\$1, 331,598
Value Flat, numb	\$18,414,718	2	\$892,400	31,449, ${ }^{571}$	\$4, 223, 713	3615, 209	3822,847	\$65, 334	*,21, 172	\$1,331, 1,244
Value	81, 923,525	\$960	\$497, 843	\$249, 304	\$112, 132	8214, 094		8226,756	892,698	8529,738 ${ }_{\text {437 }}$
Fruit, number	1,620		8591,705						\$676	872,974
Furniture,	*1,717		7 700	654	210	228		.		
Value.	\$1,148, 2185		8506,265 2,230 20	8332, 1013	8135, ${ }^{1,200}$	8160, 160	\$14, 1,250		5, s_{31}	1,035
Galue ${ }^{\text {Gondol }}$	\$6,873,145		\$926, 640	\$6,984	8588,700	\$5,850	\$803, 152	8258,055	83, 683,359	\$5600, 405
Refrigerator, number	2,354		81, 1,693		$\begin{array}{r}\text { \$307, } 300 \\ \hline\end{array}$		593,373	\$13,992		838,577
Value	\$1,956,097		\$1, 224, 583		\$307,300		\$3,3\%	10,		${ }_{4}{ }^{497}$
Value	$\begin{array}{r} 2,700 \\ \$ 1,426,800 \end{array}$	\$4,743	8889, 314	\$229,162		85,665			\$4, ${ }_{39} \mathbf{3 8}$	$\begin{aligned} & \$ 293,529 \\ & 13 \end{aligned}$
Caboose, numb	-1884,855		\$19,814	856,940	\$1,500	\$62,464		\$4,800	831,700	\$7,647
Other varieties, numb	14,905		2,498	8527, ${ }^{1,009}$	6, $\mathbf{6 2 3}, 944$	- ${ }^{\text {246, } 698}$	- 8310,900		\$463, 802	833,018
Value....	83,005,351		\$1, 189, 784	8527,835	\$233,944	\$246,068	\$310,900			
$\xrightarrow[\text { Sotal number }]{\text { Street cars- }}$	935	463	179							
Total value..	81,090, 854	8567,416	\$135, 154					410,86		
Value ..	\$1, 062, 172	8559,966	\$114,020					49		8221,837
Open,								\$12, 660		
Valosed	4887	-283								105,169
Value ${ }^{\text {Combination, }}$, num	8693, 143	\$400, 687	\$70,793					, 26		1
Vaiue	868, 325	\$29,600	\$750					837, 195		\$775
Cable, closed,	\$21, 232		\$21, 232							
Value	87,450	\$7,450			\$839, 109	81,405,024		\$231,895	\$6,542,199	81,859,753
All other products...	890, 014	\$1, 321,771	\$5, 229,478	\$484,623	8639,109	1 ,				
Comparison of products: Number of establishments reporting for										
both years...............					89, 920, 780	87,722,768	\$4, 204,081	83, 472, 473	(13, $\begin{aligned} & \text { 856, } 290 \\ & 85,898,126\end{aligned}$	${ }^{\mathbf{8 6}, 715,735}$
Value for census year .-....	[559, 418, 873	\$1, 812, 928	\$19, 406, 789	87, 220,572	87,752,887	\$5,929, 329	83, 624, 994			
Power:										13
Number of establishments	34,687	1,623	11, 161	3,748	2,760	2,439	110	,		
Owned-										
Engines-	242		65	30	11	${ }_{2}^{17}$	17 2,995	-640	4,386	3,193
steam, H ,	32, 293	1,623	9,917	3,740	2,360					
Gas or gasoline, num			20					25		
Horsepower										
Worsepower	392				295			19		${ }^{6}$
Electric motors, numb	1,292		664	8	105		${ }_{3}^{50}$	340		
Other kind, number			500				65			
Horsepower .										5
Rented- Horsepower	5									
Furnished to other establishments-Horse-	60		60							
sons employed, not including proprietors and firm members:		3	17	${ }^{4}$	4	${ }^{4}$	4		5 \|........ 11	13
Total number of establishments										
Under 5	10									2
${ }^{21}$ to to 50.	8						1	1	1	2
101 to 250.	13				1	1				${ }_{1}{ }^{2}$
251 to 500	${ }_{9}^{8}$	2				2	2	$\cdots \cdots \cdots{ }^{\text {a }}$	1	3
Over 1,000.	16									

${ }^{1}$ Include establishments distributed as follows: Alabama, 2; Georgia, 2; Kentucky, 1; Maryland, 1; Massachusetts, 2; New Hampshire, 1; New Jersey. 2; Tennessee, 1: West Virginia, 1.

CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM RAILROAD COMPANIES.

Table 10 presents the statistics for general shop construction and repairs by steam railroad companies as returned at the censuses of 1890 and 1900 , with the percentages of increase during the decade.

Table 10.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM RAILROAD COMPANIES: COMPARATIVE SUMMARY, 1890 TO 1900, WITH PER CENT OF INCREASE.

	date of census.		$\begin{gathered} \text { PER CENT } \\ \text { OF } \\ \text { INCREASE. } \end{gathered}$
	1900	1800	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$
Number of establishments	1,296	716	81.0
Capital	\$119, 580, 273	\$76, 192,477	56.9
Salaried officials, clerks, etc., number .	7,096	1,953	263.3
Salaries	\$6,210, 247	\$1, 584, 242	292.0
Wage-earners, average number	-173,652	-106,632	62.9
Total wages-...........-.-...........	896,062, 329	\$60,213, 433	59.5
Men, 16 years and over..............	-173,209	106, 448	62.7
Wages...-.........................	695,939, 610	\$60, 161, 333	59.5
Women, 16 years and over	- 364	128	184.4
Wages	\$106, 426	339,248	171.2
Chilaren, under 16 years..............	- 79	-126	41.1
Wages	\% $\begin{array}{r}\$ 16,293 \\ \hline\end{array}$	\$12,852	26.8
Miscellaneous expenses...................	\$6,293,987	(1)	
Cost of materials used..	\$109, 539, 013	\$66, 561, 526	64.6
Value of products, including custom work and repairing	\$218, 238, 277	\$129, 461, 698	68.6

${ }^{1}$ Not reported.
The census of 1890 was the first at which the statistics of the manufacture of cars by steam railroad companies were reported separate from the statistics of the operations of plants, engaged in car construction, not conducted by railroad companies. During the decade the number of establishments has increased from 716 to 1,296 , an increase of 480 , or 81 per cent, while the capital has increased $\$ 43,387,796$, or 56.9 per cent. The cost of materials used increased from $\$ 66,561,526$ in 1890 , to $\$ 109,539,013$ in 1900 , or 64.6 per cent; and the value of the product, including custom work and repairing, was $\$ 129,461,698$ in 1890 , and $\$ 218,238,277$ in 1900 , an increase of $\$ 88,776,579$, or 68.6 per cent.

The most striking increase was shown in the number of salaried officials, clerks, etc., and their salaries. In 1890 the number of salaried officials was 1,953 , and in 1900 there were 7,096 officials, an increase of 5,143 , or 263.3 per cent. During the same period the salaries increased $\$ 4,626,005$, or 292 per cent. This increase is all the more striking, when it is remembered that the number for 1900 does not include the firm members and officials not drawing a salary. The total number of wage-earners increased 62.9 per cent, while the wages increased from $\$ 60,213,433$ in 1890 to $\$ 96,062,329$ in 1900, or 59.5 per cent.
Improved facilities for transportation by steam railways have resulted in constantly lessening the competition of canal and river transportation, and now they
have ceased to be effective for high-grade freight transportation. The extraordinary increase in traffic requires new equipment at the rate of about 500 cars and 10 locomotives per day. The repair work both on locomotives and cars has constantly increased. During the census year the 1,296 establishments operated by railroad companies reported a capital of $\$ 119,580,273$, and a product aggregating $\$ 218,238,277$, and employed 180,748 wageearners and officials. In this branch of the industry the product of the several establishments was manufactured or repaired for their own use. In the motive power and machinery department the total value of product was $\$ 94,447,260$, or 43.3 per cent of the aggregate. The product in the car department was valued at $\$ 118,376,552$, or 54.2 per cent, and the value of the shop work in the bridge and building department was $\$ 5,414,465$, or 2.5 per cent of the aggregate product.

Table 11 presents a comparative summary of the capital for 1890 and 1900 , with the percentage of each item to the total and the per cent of increase during the decade.

Table 11.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM RAILROAD COMPANIES: COMPARATIVE SUMMARY OF CAPITAL, 1890 AND 1900.

	1900		1890		Per cent of increase.
	Amount.	Per cent of total.	Amount.	Per cent of total.	
Total.	\$119, 580,273	100.0	876, 192, 477	100.0	56.9
Larfd.	16,976,693	14.2	10, 860,668	14.3	56.3
Buildings	36,630,345	30.6	20, 399,382	33.3	44.2
Machinery, tools, and implements.	28,448,582	23.8	18,473, 121	24.2	54.0
Cash and sundries	37,524,653	31.4	21, 459, 306	28.2	74.9

In 1890 the total capital was $\$ 76,192,477$, and in 1900 it was $\$ 119,580,273$, an increase of $\$ 43,387,796$, or 56.9 per cent. The value of land, buildings, machinery, tools, and implements, cash on hand, etc., relative to the total, has not changed materially during the decade. Of the total capital in 1890 the value of land composed 14.3 per cent; buildings, 33.3 per cent; and machinery, tools, etc., 24.2 per cent. In 1900 the value of land was 14.2 per cent; buildings, 30.6 per cent; and machinery, tools, etc., 23.8 per cent of the total capital. The largest per cent of increase was in the item including stock in process of manufacture, unfinished products on hand, etc., the aggregate value of which was $\$ 21,459,306$, or 28.2 per cent of the total in 1890 , and in 1900 the value was $\$ 37,524,653$, or 31.4 per cent of the total, an increase of $\$ 16,065,347$, or 74.9 per cent. During the decade the amount of capital invested in land increased 56.3 per cent; buildings, 44.2 per cent; and machinery, tools, and implements, 54 per cent.

Table 12 presents the cost of materials used, with per cent which each item.forms of the total cost.

Table 12.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM RAILROAD COMPANIES: COST OF MATERIALS USED, 1900.

Materials used.	Amount.	Per cent of total.
Total	\$109, 539, 013	100.0
Principal materials 1	106, 554, 718	97.3
Fuel Ref power and heat	$2,443,987$ 27,565	(2) 2.2
Frseight.................	512, 743	${ }^{(-)} 0.5$

${ }^{1}$ Includes mill supplies and all other materials, which are shown separately in Table 16.
${ }_{2}$ Less than one-tenth of 1 per cent.
The partially manufactured materials, such as lumber, iron, and steel, etc., constitute the principal item, aggregating 97.3 per cent of the total. The cost of
fuel was $\$ 2,443,987$. The amount paid for rent of power and heat was $\$ 27,565$, or less than one-tenth of 1 per cent of the total cost of materials, showing that nearly all of the power used was owned by the company operating the plant. The expenses, other than those for wages and materials, incurred in the manufacture of the product are reported in detail under miscellaneous expenses in Table 16. Of the total expense, $\$ 3,094,941$, or 49.2 per cent, was paid for contract work.
The second item in importance, aggregating $\$ 2,329,924$, was paid for rent of offices, interest, insurance, ordinary repairs of buildings and machinery, advertising, etc. Of the remaining items, rent of works formed only 0.7 per cent, while the amount paid for taxes constituted 13.1 per cent of the miscellaneous expenses, showing that a large percentage of the plants were owned by the corporations operating them.
Table 13 presents a comparative summary between 1890 and 1900 , by states and territories.

Table 13.-CARS and GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM RAILROAD COMPANIES: COMPaRATIVE SUMMARY, BY STATES AND TERRITORIES, 1890 AND 1900.

States and territories.	Year.	Num-estah-lish-ments.	Capital.	SALARIED OFFICIALS,CLERES, ETC.		wage-barners.		Miscellane-ous expenses.	Cost of ma. terials used.	Value of products, including custom work ing.
				Number.	Salaries.	Average number	Total wages.			
United States	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	1,296	$\$ 119,580,273$ $76,192,477$	$\begin{aligned} & 7,096 \\ & 1,953 \end{aligned}$	$\begin{gathered} \$ 6,210,247 \\ 1,684,242 \end{gathered}$	$\begin{aligned} & 173,652 \\ & 106,632 \end{aligned}$	$\$ 96,062,329$ $60,213,433$	$\underset{(1)}{86,983,987}$	$\$ 109,539,013$ $66,661,526$	$2218,238,277$ $129,461,698$
Maine	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 19 \\ & 10 \end{aligned}$	$\begin{aligned} & 921,905 \\ & \hline 90,672 \end{aligned}$	37 5	$\begin{gathered} 31,332 \\ 4,500 \end{gathered}$	$\begin{aligned} & { }_{239}^{671} \end{aligned}$	$\begin{aligned} & 300,755 \\ & 135,276 \end{aligned}$	35,436	$\begin{gathered} 487,604 \\ 82,536 \end{gathered}$	$\begin{aligned} & 857,136 \\ & 224,113 \end{aligned}$
New Hampshire	1900 1890	9 4	$\begin{aligned} & 850,873 \\ & 205,465 \end{aligned}$	30 2	$\begin{gathered} 24,201 \\ 2,120 \end{gathered}$	$\begin{aligned} & 966 \\ & 141 \end{aligned}$	$\begin{array}{r} 516,990 \\ 86,804 \end{array}$	36,763	$\begin{array}{r} 523,347 \\ 30,612 \end{array}$	$1,101,301$ 119,656
Vermont..	$\begin{gathered} 1900 \\ 1890 \end{gathered}$	7 8	$\begin{aligned} & 711,261 \\ & 534,729 \end{aligned}$	32	23,744	779 290	$\begin{aligned} & 446,017 \\ & 157,573 \\ & \hline 10 \end{aligned}$	4,614	$\begin{aligned} & 350,401 \\ & 163,976 \end{aligned}$	$\begin{aligned} & 824,776 \\ & 311,549 \end{aligned}$
Massachusetts.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	16 14	$3,056,043$ $1,988,676$	111 25	$\begin{gathered} 103,962 \\ 18,711 \end{gathered}$	3,031 2,264	$1,822,959$ 1,279	32,544	$1,752,564$ $1,300,705$	$\begin{aligned} & 3,712,029 \\ & 2,712,763 \end{aligned}$
Rhode Island ${ }^{2}$.	1900	3	120,900	17	14,490	215	133, 300	1,770	48,596	203, 326
Connecticut.	$\begin{aligned} & 1990 \\ & 1890 \end{aligned}$	$\stackrel{9}{8}$	$\begin{array}{r} 1,639,134 \\ 690,265 \end{array}$	100 9	$\begin{array}{r} 78,392 \\ 5,920 \end{array}$	$\begin{aligned} & 1,557 \\ & 682 \end{aligned}$	$\begin{aligned} & 943,503 \\ & 418,317 \end{aligned}$	41,879	$\begin{aligned} & 1,366,281 \\ & 274,237 \end{aligned}$	${ }^{2,430,056}$
New York	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 82 \\ & 46 \end{aligned}$	$\begin{array}{r} 11,244,747 \\ 4,213,639 \end{array}$	443 91	$\begin{array}{r} 344,596 \\ 75,535 \end{array}$	$\begin{gathered} 13,062 \\ 8,585 \end{gathered}$	$\begin{aligned} & 6,762,504 \\ & 4,420,441 \end{aligned}$	203, 221	$\begin{aligned} & 8,879,813 \\ & 4,527,381 \end{aligned}$	$16,194,850$ $9,046,025$ 9,046, 025
New Jersey	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	18 18	$\begin{aligned} & 2,819,759 \\ & 2,766,957 \end{aligned}$	179 99	137,191 63,775	$\begin{aligned} & 4,594 \\ & 6,134 \end{aligned}$	$\begin{aligned} & 2,399,675 \\ & 2,813,713 \end{aligned}$	195,707 800	$\begin{aligned} & 2,301,699 \\ & 3,172,891 \end{aligned}$	$\begin{aligned} & 5,034,267 \\ & 6,051,179 \end{aligned}$
Pennsylvania	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	144 61	$\begin{aligned} & 19,182,001 \\ & 17,475,056 \end{aligned}$	1,065 346	$\begin{aligned} & 810,857 \\ & 230,894 \end{aligned}$	$\begin{aligned} & 28,554 \\ & 22,649 \end{aligned}$	$\begin{aligned} & 15,825,640 \\ & 12,301,884 \end{aligned}$	$\begin{gathered} 3,280,079 \\ 82,909 \end{gathered}$	$\begin{aligned} & 23,147,674 \\ & 15,822,037 \end{aligned}$	$\begin{aligned} & 43,065,171 \\ & 28,769,728 \end{aligned}$
Delaware.	$\begin{aligned} & 1990 \\ & 1890 \end{aligned}$	5 3	$\begin{aligned} & 751,213 \\ & 767,875 \end{aligned}$	$\begin{aligned} & 17 \\ & 29 \end{aligned}$	$\begin{aligned} & 20,824 \\ & 19,178 \end{aligned}$	$\begin{aligned} & 880 \\ & 821 \\ & 80 \end{aligned}$	$\begin{aligned} & 599,025 \\ & 4899 \end{aligned}$	2,315	$\begin{aligned} & 460,519 \\ & 748,656 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,012,683 \\ & 1,280,485 \end{aligned}$
Maryland	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	19 10	$\begin{aligned} & 2,877,954 \\ & 2,904,577 \end{aligned}$	134 36	$\begin{gathered} 100,843 \\ 62,806 \end{gathered}$	$\begin{aligned} & 3,620 \\ & 2,978 \end{aligned}$	$1,849,737$ $1,437,658$	55, 163	$2,567,486$ $3,588,572$	$\begin{aligned} & 4,573,229 \\ & 5,079,035 \end{aligned}$
District of Columbia ${ }^{3}$.	1890	3	44,700	37	33, 810	253	126, 360	1,878	140,582	370,154
West Virginia	1900 1890	$\begin{array}{r}23 \\ 7 \\ \hline\end{array}$	$1, \frac{040,311}{533,305}$	90 14	67,646 9,217	$\begin{aligned} & 2,605 \\ & 1,022 \end{aligned}$	$\begin{array}{r} 1,256,640 \\ 1,433,335 \end{array}$	32,355	$\begin{array}{r} 1,586,916 \\ 467,841 \end{array}$	$\begin{aligned} & 2,943,557 \\ & 990,393 \end{aligned}$
Virginia.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r}28 \\ 8 \\ \hline\end{array}$	$\begin{array}{r} 1,733,389 \\ 1583,022 \end{array}$	283 22 28	248,425 13,730	$\begin{aligned} & 4,922 \\ & 1,643 \end{aligned}$	2, ${ }^{\text {833, }}$, 254	45,406	3,531,283	$\begin{aligned} & 6,277,279 \\ & 1,504,995 \end{aligned}$
North Carolina	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	12 9	$\begin{aligned} & 539,513 \\ & 210,458 \end{aligned}$	47 8 8	$\begin{array}{r} 38,463 \\ 6,540 \end{array}$	$1,141$	$\begin{aligned} & 550,504 \\ & 186.262 \end{aligned}$	29, 259	$\begin{aligned} & 893,150 \\ & 290,350 \end{aligned}$	1,511,376
South Carolina	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	\% ${ }_{5}^{6}$	$\begin{aligned} & 354,842 \\ & 420,859 \end{aligned}$	$\begin{array}{r} 27 \\ 7 \end{array}$	$\begin{gathered} 21,379 \\ 5,500 \end{gathered}$	$\begin{aligned} & 776 \\ & 828 \end{aligned}$	363, 041 394, 411	12,555	$\begin{aligned} & 294,334 \\ & \\ & 287,862 \end{aligned}$	$\begin{gathered} 691,361 \\ 688,191 \end{gathered}$
Georgia.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	32 11	$\begin{array}{r} 1,408,692 \\ 450,512 \end{array}$	${ }_{23}^{97}$	$\begin{aligned} & 98,003 \\ & 19,140 \end{aligned}$	$\begin{array}{r} 3,175 \\ 966 \end{array}$	$\begin{array}{r} 1,602,208 \\ 522,657 \end{array}$	89,380	$\begin{array}{r} 1,272,692 \\ 349,844 \end{array}$	$\begin{array}{r} 3,062,283 \\ 892,610 \end{array}$
Florida.	$\begin{aligned} & 1990 \\ & 1890 \end{aligned}$	13 10	$\begin{array}{r} 414,390 \\ 158,960 \end{array}$	33 7	$\begin{array}{r} 26,663 \\ 7,160 \end{array}$	$\begin{aligned} & 958 \\ & 280 \end{aligned}$	$\begin{aligned} & 486,488 \\ & 144,997 \end{aligned}$	$\begin{gathered} 19,224 \\ 1,800 \end{gathered}$	$579,870$ $201,514$	$\begin{aligned} & 1,{ }_{3512,245}^{245} \\ & \hline 2045 \end{aligned}$

[^96]Table 13.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM RAILROAD COMPANIES: COMPARATIVE SUMMARY, BY STATES AND TERRITORIES, 1890 AND 1900-Continued.

States and territories.	Year.	Number of estab-lishments.	Capital.	salaried officials, clerks, etc.		Wage-earners.		$\begin{aligned} & \text { Miscellane- } \\ & \text { ous ex- } \\ & \text { penses. } \end{aligned}$	Cost of materials used.	Value of products, including custom work and repairing.
				Average number.	Salaries.	Average number.	Total wages.			
Kentucky	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	25 9	$\begin{array}{r} \$ 1,761,958 \\ 305,229 \end{array}$	${ }^{96}$	$\begin{array}{r} \$ 82,689 \\ 10,240 \end{array}$	3, 672	$81,841,778$ 353,200	\$55,984	$\begin{array}{r} \$ 2,267,578 \\ 225,485 \end{array}$	$\begin{array}{r} \$ 4,248,029 \\ 588,925 \end{array}$
Tennessee.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	16	$\begin{aligned} & \mathbf{1}, 319,628 \\ & \mathbf{1}, 198,940 \end{aligned}$	65 15	$\begin{aligned} & 58,606 \\ & 16,672 \end{aligned}$	2,817 1,772	$\begin{array}{r} 1,459,319 \\ 995,287 \end{array}$	66,765	$\begin{array}{r} 1,528,363 \\ 593,819 \end{array}$	$\begin{aligned} & 3,113,053 \\ & 1,605,778 \end{aligned}$
Alabama.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	19 12	$2,019,434$ 909,911	118 4	$\begin{array}{r} 112,795 \\ 2,820 \end{array}$	4,030 1,373	1, ${ }^{7} 761,031$	86,045	$2,032,166$ $\mathbf{7 8 4}, 304$	$\begin{aligned} & \mathbf{4}, 172,192 \\ & 1,581,207 \end{aligned}$
Mississippi	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	9 5	$\begin{aligned} & 741,753 \\ & 612,744 \end{aligned}$	45 18	$\begin{aligned} & 40,754 \\ & 19,580 \end{aligned}$	$\begin{aligned} & 1,534 \\ & 1,076 \end{aligned}$	$\begin{aligned} & 807,899 \\ & 677,093 \end{aligned}$	18,336	$\begin{aligned} & 464,034 \\ & 632,876 \end{aligned}$	$\begin{aligned} & 1,331,401 \\ & 1,329,549 \end{aligned}$
Arkansas .	1980 1890	21 8	720,907 355,747	103 22	97,935 20,028	1,927	1,203, 7661	27,124	$\begin{aligned} & 765,003 \\ & 715,340 \end{aligned}$	$\begin{aligned} & 2,095,447 \\ & 1,299,558 \end{aligned}$
Louisiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	19 6	$\begin{aligned} & 782,588 \\ & 156,136 \end{aligned}$	43 10	46,344 7,235	1,378 611	800,398 $\mathbf{4 3 , 4 2 1}$	19,699 101	$\begin{array}{r} 562,658 \\ 61,592 \end{array}$	$\begin{array}{r} 1,429,099 \\ 112,847 \end{array}$
Indian Territory ${ }^{1}$	1900	3	8,080	3	2, 820	64	35,504	87	18,224	56,635
Orlahoma ${ }^{1}$.	1900	3	9,350	3	2,405	22	13,333	117	6,736	22,591
Texas	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 56 \\ & 31 \end{aligned}$	$\begin{aligned} & 3,730,792 \\ & 1,140,049 \end{aligned}$	$\begin{array}{r} 263 \\ 58 \end{array}$	$\begin{array}{r} 292,398 \\ 61,775 \end{array}$	$\begin{aligned} & 6,633 \\ & 2,354 \end{aligned}$	$\begin{aligned} & 4,004,769 \\ & 1,574,786 \end{aligned}$	138,838	$\begin{aligned} & 3,878,536 \\ & 1,223,674 \end{aligned}$	$\begin{aligned} & 8,314,691 \\ & 2,860,235 \end{aligned}$
Obio.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	91	$\begin{aligned} & 5,701,129 \\ & 3,907,278 \end{aligned}$	576 150	$\begin{array}{r} 456,971 \\ 107,675 \end{array}$	$\begin{array}{r} 11,534 \\ 7,397 \end{array}$	$\begin{aligned} & 6,087,052 \\ & 3,968,797 \end{aligned}$	391, 581	$\begin{aligned} & 5,963,808 \\ & 3,930,052 \end{aligned}$	$\begin{array}{r} 12,975,182 \\ 8,096,905 \end{array}$
Michigan .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 42 \\ & 17 \end{aligned}$	$\begin{aligned} & 2,527,256 \\ & 1,226,163 \end{aligned}$	182 32	147,119 33,340	$\begin{aligned} & 3,938 \\ & 2,098 \end{aligned}$	$\begin{aligned} & 2,026,000 \\ & 1,119,487 \end{aligned}$	39,642	$\begin{aligned} & 2,120,166 \\ & 1,492,487 \end{aligned}$	$\begin{aligned} & 4,332,927 \\ & 2,645,314 \end{aligned}$
Indiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 54 \\ & 48 \end{aligned}$	$\begin{array}{r} 4,730,231 \\ 3,929,805 \end{array}$	$\begin{aligned} & 348 \\ & 116 \end{aligned}$	$\begin{array}{r} 290,197 \\ 93,963 \end{array}$	$\begin{aligned} & 8,081 \\ & 6,613 \end{aligned}$	$\begin{array}{r} 4,325,101 \\ 3,274,288 \end{array}$	171,355	$\begin{aligned} & 5,454,676 \\ & 3,904,281 \end{aligned}$	$\begin{array}{r} 10,242,422 \\ 7,289,382 \end{array}$
1llinois	$\begin{aligned} & 1990 \\ & 1890 \end{aligned}$	$\begin{aligned} & 98 \\ & 70 \end{aligned}$	$\begin{array}{r} 11,726,424 \\ 7,791,234 \end{array}$	618 264	$\begin{aligned} & 568,702 \\ & 198,680 \end{aligned}$	$\begin{aligned} & 13,803 \\ & 10,277 \end{aligned}$	$\begin{array}{r} 7,422,527 \\ 5,855,481 \end{array}$	$\begin{array}{r} 267,497 \\ 5,629 \end{array}$	$\begin{aligned} & 8,286,776 \\ & 5,909,493 \end{aligned}$	$\begin{aligned} & \mathbf{1 6 , 5 8 0 , 4 2 4} \\ & 12,208,617 \end{aligned}$
Wisconsin	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 46 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 4,206,285 \\ & 1,681,256 \end{aligned}$	$\begin{array}{r} 272 \\ 50 \end{array}$	$\begin{array}{r} 245,163 \\ 44,778 \end{array}$	$\begin{aligned} & 4,502 \\ & 2,148 \end{aligned}$	$\begin{aligned} & 2,398,144 \\ & 1,217,632 \end{aligned}$	138, 270	$\begin{array}{r} 3,525,144 \\ 898,673 \end{array}$	$\begin{aligned} & 6,306,823 \\ & 2,221,152 \end{aligned}$
Minnesota.	1900 1890	$\begin{aligned} & 39 \\ & 18 \end{aligned}$	$\begin{aligned} & 4,933,805 \\ & 2,926,860 \end{aligned}$	264 66	243,448 56,706	4,700 1,951	$\begin{aligned} & 2,699,387 \\ & 1,219,325 \end{aligned}$	95,561	$\begin{aligned} & 3,380,441 \\ & 1,305,136 \end{aligned}$	$\begin{aligned} & 6,319,876 \\ & 2,628,174 \end{aligned}$
Iowa	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 68 \\ & 41 \end{aligned}$	$\begin{aligned} & 3,277,617 \\ & 2,404,648 \end{aligned}$	$\begin{array}{r}278 \\ 81 \\ \hline 1\end{array}$	249,948 65,312	5,497	$\begin{aligned} & 2,948,947 \\ & 2,121,824 \end{aligned}$	124,453 300	$\begin{aligned} & 2,896,269 \\ & 2,244,274 \end{aligned}$	$\begin{aligned} & 6,221,378 \\ & \mathbf{4}, \mathbf{4 7 3}, 089 \end{aligned}$
Missouri..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 43 \\ & 27 \end{aligned}$	$\begin{aligned} & 3,645,260 \\ & 1,394,974 \end{aligned}$	242 77	219,292 67,945	5,581 2,859	$\begin{aligned} & \mathbf{3}, 182,763 \\ & 1,737,771 \end{aligned}$	$\begin{array}{r} 102,500 \\ 1,637 \end{array}$	$\begin{aligned} & 3,019,674 \\ & 2,082,326 \end{aligned}$	$\begin{array}{r} 6,524,121 \\ -\quad 3,890,542 \end{array}$
Montana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	7	$\begin{aligned} & 624,725 \\ & 317,765 \end{aligned}$	49 12	$\begin{aligned} & 50,382 \\ & 10,354 \end{aligned}$	$\begin{aligned} & 62 \\ & 301 \end{aligned}$	$\begin{aligned} & 397,552 \\ & 226,013 \end{aligned}$	5,138	$\begin{aligned} & 301,338 \\ & 193,201 \end{aligned}$	$\begin{aligned} & 754,410 \\ & 429,568 \end{aligned}$
1daho ${ }^{1}$.	1900	4	177,912	12	13,326	399	293,396	2,743	214, 166	623,631
Wyoming ${ }^{1}$.	1900	7	691,725	28	29,374	853	623, 046	37, 194	480,199	1,169,813
North Dakota ${ }^{1}$	1900	3	171,043	7	6,726	126	67,922	1,400	64,847	140,894
South Dakota ${ }^{1}$.	1900	7	68,079	9	8,354	117	79,661	3,049	86,567	177,631
Nebraska.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	23 9	$\begin{aligned} & 3,635,267 \\ & 1,245,519 \end{aligned}$	114 28	100,401 20,877	$\begin{aligned} & 2,458 \\ & 2,041 \end{aligned}$	$\begin{aligned} & 1,421,284 \\ & 1,146,206 \end{aligned}$	92,946	$\begin{array}{r} 1,009,830 \\ 900,825 \end{array}$	$\begin{aligned} & 2,624,461 \\ & 2,067,908 \end{aligned}$
Nevada.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 404,577 \\ & 428,999 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	9,800 8,460	214 209	$\begin{aligned} & 168,102 \\ & 194,643 \end{aligned}$	7,446	$\begin{aligned} & 110,637 \\ & 231.893 \end{aligned}$	$\begin{array}{r} 295,985 \\ 435,084 \end{array}$
Utah ${ }^{1}$	1900	10	496,149	46	49,389	908	636,076	16,219	604,907	1,306, 591
Colorado	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 29 \\ & 10 \end{aligned}$	$\begin{aligned} & 1,681,860 \\ & 1,651,311 \end{aligned}$	$\begin{gathered} 137 \\ 26 \end{gathered}$	$\begin{array}{r} 148,040 \\ 47,700 \end{array}$	$\begin{aligned} & 2,687 \\ & 1,366 \end{aligned}$	$\begin{aligned} & 1,676,500 \\ & 1,023,809 \end{aligned}$	38,863	$\begin{array}{r} 1,278,299 \\ 894,090 \end{array}$	$\begin{aligned} & 3,141,602 \\ & 1,965,696 \end{aligned}$
Kansas	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 37 \\ & 26 \end{aligned}$	$\begin{aligned} & 2,931,699 \\ & 1,683,210 \end{aligned}$	176 60	$\begin{array}{r} 167,786 \\ 46,949 \end{array}$	$\begin{aligned} & 5,592 \\ & 2,819 \end{aligned}$	$\begin{aligned} & 3,476,400 \\ & 1,722,326 \end{aligned}$	101, 457	$\begin{aligned} & 3,071,173 \\ & 1,874,646 \end{aligned}$	$\begin{aligned} & 6,816,816 \\ & 3,644,038 \end{aligned}$
Arizona	$\begin{aligned} & 1990 \\ & 1890 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{array}{r} 430,119 \\ 72,724 \end{array}$	14 2	$\begin{array}{r} 21,300 \\ 1,414 \end{array}$	$\begin{aligned} & 576 \\ & 140 \end{aligned}$	$\begin{aligned} & 437,238 \\ & 112,990 \end{aligned}$	16, 454	$\begin{array}{r} 412,490 \\ 74,985 \end{array}$	$\begin{aligned} & 887,482 \\ & 189,390 \end{aligned}$
New Mexico.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	7	$\begin{aligned} & 386,721 \\ & 137,389 \end{aligned}$	19 4	18,784 $2,52 \overline{5}$	1,061	$\begin{aligned} & 685,401 \\ & 174,038 \end{aligned}$	1,913	$\begin{aligned} & 463,182 \\ & 177,503 \end{aligned}$	$\begin{array}{r} 1,069,280 \\ 354,068 \end{array}$
Washington	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	16 4	$\begin{aligned} & 944,800 \\ & 272,195 \end{aligned}$	55 9	$\begin{array}{r} 51,353 \\ 7,440 \end{array}$	$\begin{gathered} 956 \\ 342 \end{gathered}$	$\begin{aligned} & 653,206 \\ & 278,628 \end{aligned}$	14, 264	$\begin{aligned} & 760,858 \\ & 175,492 \end{aligned}$	$\begin{array}{r} 1,479,680 \\ 461,561 \end{array}$
Orcgon............................	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	14 5	$\begin{array}{r} 725,935 \\ 2,816,997 \end{array}$	$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 31,678 \\ & 26,70 \end{aligned}$	$\begin{array}{r} 751 \\ 1,101 \end{array}$	$\begin{aligned} & 495,169 \\ & 907,739 \end{aligned}$	15,688	$\begin{aligned} & 483,644 \\ & 781,217 \end{aligned}$	$\begin{aligned} & 1,026,169 \\ & 1,750,926 \end{aligned}$
California	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	29 10	$\begin{aligned} & 4,429,951 \\ & 3,139,514 \end{aligned}$	119 29	$\begin{array}{r} 141,798 \\ 23,840 \end{array}$	$\begin{aligned} & 4,920 \\ & 2,858 \end{aligned}$	$\begin{aligned} & 3,507,028 \\ & 2,151,594 \end{aligned}$	76,590	$\begin{aligned} & 3,825,340 \\ & 2,777,306 \end{aligned}$	$\begin{aligned} & 7,553,626 \\ & 4,923,071 \end{aligned}$
All other states..	$\begin{aligned} & { }^{2} 1990 \\ & { }^{3} 1890 \end{aligned}$	$\begin{array}{r} 3 \\ 11 \end{array}$	$\begin{aligned} & 470,387 \\ & 487,054 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 13,160 \\ & 12,598 \end{aligned}$	$\begin{aligned} & 394 \\ & 731 \end{aligned}$	$\begin{aligned} & 205,475 \\ & 610,586 \end{aligned}$	1,100	$\begin{aligned} & 157,255 \\ & 379,064 \end{aligned}$	$\begin{array}{r} 376,990 \\ 1,002,248 \end{array}$

${ }^{1}$ Not reported separately in 1890.
2 Includes establishments distributed as follows: Alaska, 1; District of Columbia, 2.
${ }^{3}$ Includes establishments distributed as follows: 1ndian Territory, 2; North Dakota, 2; Rhode 1sland, 2; South Dakota, 2; Utah, 2; Wyoming, 1.

In 1890 there were in the United States 716 railroad repair shops, and during the decade the number increased 580, or 81 per cent. The New England states reported 63 establishments in 1900 , an increase of 17 , or 43.2 per cent, since 1890. The Middle states increased 129 , or 91.5 per cent; the Southern, 152 , or 114.3 per cent; the Central, 164 , or 53.4 per cent; the Western, 77, or 110 per cent, while the Pacific states increased 40 , or 200.0 per cent. The largest actual increase during the decade has been in the Central and Southern states, which have also shown the greatest activity in the establishment of new plants during the census year.

The only decreases in number of plants were found in Vermont and the District of Columbia. The other states and territories except New Jersey and Nevada show an increase. The largest percentages of increase were in the Western and Pacific states.

In 1890 the 3 states having the greatest number of plants were Illinois with 70, Ohio with 64, and Pennsylvania with 61 . In 1900 Pennsylvania led with 144 establishments, Illinois was second with 98, and Ohio third, reporting 91 plants in operation.

Of the 51 states and territories included in the comparative table, 6 have shown a decrease in the value of
the product. The value of the products in New Jersey decreased $\$ 1,016,912$; in Delaware, $\$ 267,802$; in Maryland, $\$ 505,806$; in Nevada, $\$ 139,099$; and in Oregon, $\$ 724,757$. The decrease in the product in the District of Columbia can not be shown, on account of disclosing the operations of individual establishments.
There has been a remarkable increase in value of prod-ucts- $\$ 88,776,579$, or 68.6 per cent, during the decade. Pennsylvania led with an increase of $\$ 14,295,443$, New York was second with an increase of $\$ 7,148,825$, and Texas third with a product of $\$ 8,314,691$, an advance $\$ 5,454,456$ over 1890 . The states which show an increase of from three to five millions in the manufactured product are Virginia, Kentucky, Ohio, Illinois, Minnesota, Wisconsin, and Kansas; while those which show an increase of from one to three millions are Connecticut, West Virginia, North Carolina, Georgia, Tennessee, Alabama, Louisiana, Michigan, Indiana, Iowa, Missouri, Colorado, Washington, and California.

Table 14 presents the statistics by geographic divisions for the manufacture and repair of steam railroad cars, by establishments operated by steam railroad companies.

Table 14.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM RAILROAD COMPANIES: COMPARATIVE SUMMARY, BY GEOGRAPHIC DIVISIONS, 1900.

I Includes Alaska.

The Middle states led in the manufacture of products in this branch of the industry, with 20.8 per cent of the total number of establishments, 31.1 per cent of the capital invested, and with products valued at $\$ 70,132,571$, or 32.1 per cent of the total value. The Central states, with 36.3 per cent of the establishments and 34.1 per cent of the capital invested in the industry, manufactured a product valued at $\$ 69,503,153$, or 31.8 per cent of the total. The Southern states manufactured 18.5 per cent; the Western, 8.7 per cent; the Pacific states, including Alaska, 4.7 per ceut; and the New England states, 4.2 per cent of the total product.
The establishments of New England had an average capital of $\$ 115,875$; those of the Middle states, $\$ 137,922$; of the Southern states, $\$ 58,195$; of the Central states, $\$ 86,514$; of the Western states, $\$ 78,230$; and of the Pacific states, $\$ 103,465$. The average value of products for
the various geographic divisions were as follows: New England, $\$ 144,899$; Middle states, $\$ 259,750$; Southern, $\$ 141,689$; Central, $\$ 147,565$; Western, $\$ 128,630$; and Pacific states, $\$ 169,735$.

The average wages in New England were 5.8 per cent above the average for the United States; in the Middle states, 2.5 per cent below the average; in the Southern states, 4.3 per cent below; in the Central states, 2.7 per cent below; in the Western states, 14.3 per cent above; and in the Pacific division the average wages were $\$ 705$, or 27.5 per cent above the average wages for the industry.

Table 15 presents the statistics of the products for the combined industries, cars and general shop construction and repairs by railroad companies, and cars, steam railroad, not including the operations of railroad companies.

Table 15.-CARS, STEAM RAILROAD: COMBINED SUMMARY OF PRODUCTS, BY STATES AND TERRITORIES, 1900.

states and territories.	Aggregate value.	Motive fower and machinery.						
		Total value.	Locomotives.				Work for other corporations.	All other products.
			Built.		Repaired.			
			Number.	Value.	Number.	Value.	Value.	Value.
United States.	\$308, 748, 457	\$94, 447, 260	272	83, 276, 393	1,375,265	857, 383, 143	\$3, 338, 589	\$30, 449,135
Alabama.	4, 921,987	1,544,805			.1,414	986, 867	31,055	526,883
Arizona	887,482	542, 525			1,608	439,413	9,643	93,469
Arkansas.	2,095,447	873, 885	3	23,169	25,197	666, 911	46,928	136,827
California	7,553,626	1,783,739			2,977	1,630, 941	20,167	132, 631
Colorado.	3,141, 602	1,648,308			19,142	1,309, 052	198,618	140,638
Connecticut.	2, 430,056	1,198,797	6	53,728	350	511,352		633, 717
Delaware	4,287,605	490, 921			1,368	249,941	12,357	228, 623
Florida	1,112,245	575, 228			1,060	465,954	816	108, 458
Georgia .	3,407, 047	1,126,034		2,926	892,086	26,411	207, 537
Idaho.-....	523, 631	294, 333			1,329	223, 694	5,433	65, 206
Illinois.	41,426,030	7,402,600	27	338, $82 \dot{6}$	162,810	4, 497, 144	391, 048	2,175,582
Indiana	19,248, 999	4,363,977	1	6,709	102,604	2,983,445	143,509	1,231,314
Indian Territory.	56, 635	31,701			6,867	30,055		1,646
Iowa.	6, 221, 378	2,898,775	8	59,149	62,664	2,251,443	60,406	527,777
Kanbas.	6,816, 816	2,519,320	12	140,800	78,597	1,801,317	36,003	539, 200
Kentucky.	4,418,889	1,753,703			5,699	1,099,216	28,209	626, 278
Louisiana.	1, 429,099	959, 941			1,435	329, 551	21,101	609, 289
Maine.	857, 136	344,536			5,400	216,874	2,955	124,707
Maryland	6,087, 752	2,695,668			5,588	1,236,343	61,155	1,398,170
Massachusetts.	3,820, 819	1,709,229			902	1,196,487	430	512,312
Michigan	14,253,707	1,506,894	16	107,011	3,239	1,137,222	20,783	241,878
Minnesota	6,319,876	3,256, 252			29,071	1,826,432	469,236	960,584
Mississippi	1,331,401	481,510			1,818	337, 734	22,881	120,895
Missouri	14,246,889	2,482, 874	2	13,545	61, 233	1,559,718	229,877	679,734
Montana	754,410	624,006			3,541	327,637	1,869	194,500
Nebraska	2, 624,461	1,476,402			54,281	1,208, 860	47,931	219,611
Nevada	295,985	111, 856			132	90,834	12,587	8,435
New Hampshire	1,817,623	676,751			812	449,949	323	126,479
New Jersey	5,877,543	2, 551, 960			8,064	1,181,002	29,432	1,341,526
New Mexico .	1,069,280	631,029			16,598	591,129	25,400	14,500
New York	21,423, 201	6, 864,940	2	25,114	131, 290	4, 218, 942	324,190	2, 296, 694
North Carolina.	1,511,376	494, 661			15,044	430, 099	2,128	62, 334
North Dakota.	140,894	102,101			194	34, 941		67,160
Ohio	16,917,554	4,726,651			160,306	3,175, 272	52,023	1,499, 356
Oklahoma	22,591	9,400			1,672	9,400		
Oregon.	1,026,169	276, 894			252	233,750	10,375	31,769
Pennsylvania.	62, 326, 081	20,409,988	166	2,303,712	223, 987	8,878,878	521,698	8,705,700
Rhode Island	203,326	87, 629			98	73,655		13,974
South Carolina.	691, 361	365, 726			1,076	288, 665	4,839	62, 222
South Dakota.	177,631	91,917			5,740	66,015	867	25,035
Tennessee.	3,605,563	1,333, 763			2,673	888,751	48,770	396, 242
Texas.	8,314,691	4,046, 335	9	59,842	7,966	2, 239,853	270,132	1,476,508
Utah	1,306,591	703, 752			1,996	504,169	2,748	196,835
Vermont	824,776	343, 864	1	4,718	1,358	208, 441	15,632	115,073
Virginia.	6, 277,279	1,666, 179	6	61,455	76, 826	1,396,735	1,901	206,088
Washington..	1,479,680	742,945			3,274	339,445	74,919	
West Virginia.	5,310, 711	910,903			49,169	633,861	16,747	260, 296
Wisconsin.	6, 306, 823	1,942,515	13	77,615	12,251	1,125,855	30,876	708, 169
Wyoming	1,169,813	831,217			11,470	831,180	+ 37	
Other territories ${ }^{1}$.	376,990	149,571			998	76,733	4,144	68,694

[^97]Table 15.-CARS, STEAM RAILROAD: COMBINED SUMMARY OF PRODUCTS, BY STATES AND TERRITORIES, 1900-Continued.

STATES $\triangle N D$ TERRITORIES.	car department.									bRidge and building department (8 HOP WORK ONLY).			
	Total value.	Cars built.				Cars repaired.		Work for other corporations.	All other products.	Total value.	$\begin{aligned} & \text { Repairs } \\ & \text { and } \\ & \text { renewals. } \end{aligned}$	Work for other corporations.	All other products.
		Passenger.		Freight.		Passenger and freight.							
		$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$	Value.	$\begin{gathered} \text { Num- } \\ \text { ber. } \end{gathered}$	Value.	Number.	Value.	Value.	Value.		Value.	Value.	Value.
United States	\$208, 886, 732	1,871	\$8, 810,032	143,134	\$77,240,632	8,376,769	\$74, 665,500	87, 084, 857	841,085, 711	\$5,414, 465	\$8,937,170	\$241, 626	\$1, 235,669
Alabama	3, 316,991			2,177	1,352,082	121,317	1,515, 731	152, 416	296, 762	60,191	48, 227		11,964
Arizona	276,625					9,029	251,680	16, 310	S, 735	68,332	67,305		1,027
Arcransas.	878,798	5	20,272	51	16,723	120,368	657, 621	120,139	64, 143	342, 814	71,685	14,838	256,291
California	5,746, 358	4	11,777	667	329,577	58,973	1,576,111	334, 609	3, 498, 284	24,529	13,015	7,868	3,646
Colorado.	1, 305,898	7	26,583	221	91,801	186,675	959, 311	112,503	115,700	187, 396	96, 238		91,158
Connecticut	1,150,996	7	18,343	16	8,976	12,354	757,687	15,216	380, 774	50,263	29, 230		21,033
Delaware	3,790,846	233	1,963,500	42	22, 235	8,449	312, 530	34,210	2,058, 371	5,838	5,838		
Florida	524, 304			65	35, 254	39,437	461, 255	1,773	26,022	12,713	8,286	700	3, 727
Georgia	2, 112,365			1,062	439,621	58, 420	1,223,447	119,853	329,444	168,648	102, 217	1,200	65,231
Idabo.	222,887					28,561	192, 026	10,967	19,894	6,411	4,529	1,030	852
Illinois	33,617,555	381	3,722,715	32,889	17, 234, 323	741, 728	5,641,067	460,931	6, 558, 519	405, 875	369, 133	5,072	31,670
Indiana	14, 696, 545	69	350,234	17,111	9,185, 928	256, 131	3,584,005	493, 631	1,082, 747	188, 477	156,665	1,856	29,956
Indian Territorr	24,984					9,632	24,934						
Iowa	2, 960, 771			38	26,964	228,415	2,570,313	170, 172	193, 322	361, 832	305, 955	1,043	54,834
Kansas.	3,955, 303	6	21,300	662	353,037	220,673	3,170,853	196,257	213,856	342, 193	122, 155	10, 728	209, 310
Kentucky	2,600,076	1	3,079	555	328,786	147, 916	1,384, 470	138,997	744, 744	65,110	52,553		12,557
Louisiana.	446,507			25	11,726	48,443	368,974	19,012	46, 795	22,651	20,359		2, 292
Maine.	494,151	7	17, 241			20,236	434,363	21,802	20,745	18, 449	13, 941	273	4,235
Maryland	3,316,164	1	2,265	3,010	1,538,913	38, 272	1,221,773	53, 526	499,687	75,920	70,341		5,579
Massachusetts ..	2, 107, 170	20	35,451	330	165,582	72,206	1,342, 309	190, 228	373,600	4,420	4,420		
Michigan	12, 473, 201	3	10,055	22, 460	9, 496,779	72,782	1, 855, 941	86, 269	1,024, 157	273, 612	247, 373		26,239
Minnesota	3, 009,788	1	13, 904	117	56, 433	152, 941	2,157, 271	273,063	509, 117	53, 836	51, 445		2,391
Mississippi	828, 839			76	41,189	71,356	530, 114	33,712	2223, 824	21,052	21, 052		
Missouri	11, 466, 623	117	557,001	9,862	5,803,760	262,960	2,595,377	693,548	1,816,937	297, 392	82,660	159, 536	5, 196
Montana.	228, 796					36,850	228, 271		525	1,608	1,608		
Nebraska	1,074,737					44,901	631,541	377,663	65,533	73,322	73, 322		
Nevada	176, 748			12	6,157	18,142	51,169	6,954	112,468	7, 381	6,866		515
New Hampshire	1,207, 132	10	36,114	627	334, 500	20,579	219,801	54,603	562,114	33, 640	25,846		7,794
New Jersey	3,199, 291	16	111,304	1	435	217,801	1,888,186	107,609	1,091,757	126,292	125, 563	125	604
New Mexico..	426, 913					38,429	339,636	70, 052	17,225	11,388	5,284	4,478	1,576
New York	14, 205, 007	89	451,887	5,195	3, 114,212	1,792, 341	6, 319,591	737,088	3, 582, 229	353, 254	310, 265		42,989
North Carolina	-993,194	3	15,538	649	276, 476	27,015	633,263	26,483	41, 434	23,621	12,292		11,329
North Dakota.	38,793					4,430	36,833		1,960				
Ohio	11, 974, 609	207	1,266, 346	5,994	2,750,343	722,929	5,819,411	391, 324	$1,747,185$ 451	216,294 3,000	208,038 3,000		8,256
Oklahoma.	10,191					2,387	9,740						
						65,716	460,654	11,158	249,285	29,228	22,629		6,599
Oregon..........	721,047				18,524,347	1,466,305	12, 876,887	611,351	8, 726, 385	534,010	394,779	5,947	133, 284
Pennsylvania...	41,382,083	153	643,113	29,002	18,524,347	1,466,275	-91,343	3,717	17,830	2,907	2,557		350
Rhode Island	112,890					5,275 16,470	260,787	2,595	70,399	1,854	1,613		241
South Carolina	333,781					16,413 4,413	42,048	5,730	2,600	35,336	34,993		343
South Dakota.	50,378					4,413	42,088						
				919	513,600	143, 876	1,077,097	116,798	479,514	84,791	41,776		43,015
Tennessee	2,187,009			425	191,945	207,906	3,033,077	344, 021	535, 363	108, 386	73,776	23, 495	11,115
Texas.	4,159, 970	11	55, 564	425 14	191,948	- 33,876	3, 320,568	45,649	217,159	4,276	4,076		200
Utah	598,563			14	15,187 27,473	17,179	181,151	100,077	128, 767	43,444	21,600		21,844
Vermont.	437,468			54 1,468	27,473 983,971	154,625	1,860,432	89,128	1,532,475	141, 294	126, 409	50	14,835
Virginia	4, 469, 806	1	3,800	1,468	980, 91	154,825	1,80, 32						
Washington.:	705, 243			216	108,308	58,695	415,609	61, 141	130,185 987,245	31,492 196,924	20,105 195,020	2,700	8,687 1,904
West Virginia.	4,202, 884	1	2,378	3,650	2,003, 177	163,161	1, 085, 840	124,244	987,245 639,247	196,924 291, 774	195,020 260,669	- $\begin{array}{r}\text { +...... } \\ 104\end{array}$	1,904 31,00
Wisconsin......	4, 072,534	18	50,268	3,371	1,792,612	117,161	$1,540,355$ 333,149	50,052 4,402		201, 1,045	- 462	- 583	
Wyoming........	337,551					15,881 3,152	- 120,098	3,874	45,247				
Other territories ${ }^{1}$.	227, 419			101	58,200	3,152	120,088						

The above table divides the product into 3 depart-ments-the motive power and machinery, the car department, and the bridge and building department. The construction of new locomotives is almost entirely done by establishments engaged exclusively in that work, but a few were built in the car construction plants. In the motive power and machinery department, Pennsylvania led, both in the number of loco motives constructed and the value of the repair work. In the car department, the value of the street cars which were constructed as a by-product was included under "all other products." Of the 1,371 passenger cars constructed for steam railroads, 381 were manufactured in Illinois, 233 in Delaware, 207 in Ohio, 153 in Pennsylvania, and 117 in Missouri; that is, about four-fifths of the passenger cars were constructed in these 5 states. Illinois, Pennsylvania, Michigan, Indiana, and Missouri manufactured 111,324 freight cars, or 77.8 per cent of the total product of the United States.

The value of the products in the bridge and building department, including shop work only, was $\$ 5,414,465$. The product in the motive and power department aggregated $\$ 94,447,260$, and in the car department $\$ 208$,886,732. The average value of locomotives constructed was $\$ 12,046$. The value of 143,134 freight cars was $\$ 77,240,632$, or an average of $\$ 540$.

The 10 states leading in the construction and repair of steam railway cars were: Pennsylvania, with a product of $\$ 62,326,081$; Illinois, with $\$ 41,426,030$; New York, with $\$ 21,423,201$; Indiana, $\$ 19,248,999$; Ohio, $\$ 16,917,554$; Michigan, $\$ 14,253,707$; Missouri, $\$ 14,-$ 246,889; Texas, $\$ 8,314,691$; California, $\$ 7,553,626$; and Kansas, $\$ 6,816,816$. The aggregate value of the products for these states was $\$ 212,527.594$, or 68.8 per cent of the total value for the United States. The products for the first five states aggregated $\$ 161,341,865$, or 52.3 per cent of the total value.
Table 16 presents in detail the statistics relating to cars and general shop construction and repairs by steam railroad companies, by states and territories, in 1900.

Table 16.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS

		United States.	Alabama.	Arizona.	Arkansas.	California	Colorado.	Connecticut.	Delaware.	Florida.	Georgia.
1	Number of establishments	1,296	19	7	21	29	29	9	5	13	32
2	Incorporated company -......................	1,296	19	7	21	29	29	9	5	13	32
3	Total	8119, 580, 273	\$2, 019, 434	\$430, 119	\$720, 907	\$4,429,951	\$1,681,860	\$1,639, 134	\$751,213	\$414,390	\$1, 408, 592
4	Land	816,976,693	\$169, 200	\$54, 300	\$50, 950	\$300,165	- \$277,550	8389, 500	\$256, 825	\$35, 880	\$190,110
5	Buildings.	\$36, 630,346	\$559, 810	\$141, 289	8114,780	\$1, 242,009	\$576,572	\$246, 950	\$238,025	\$79,025	\$412, 414
6	Machinery, tools, and implement	\$28, 448, 582	\$660,570	\$130, 632	\$209,697	\$1, 409, 802	\$481,007	\$425, 412	\$977,391	\$127, 099	\$408, 005
7	Cash and sundries..............	837, 224,653	\$629,854	\$103, 998	\$345, 480	\$1, 477, 975	\$346,731	\$577, 272	\$158,972	\$172, 386	\$398,063
	Salaried officials, clerks, etc.: Total number		118				137				97
9	Total salaries General superintendents, managers,	\$6, 210, 247	\$112,795	\$21,300	\$97, 935	\$141,798	\$148,040	\$78,392	\$20, 824	\$26,663	\$98, 003
10	Total number	7,096	118	14	103	119	137	100	17	33	97
11	Total salaries	\$6,210,247	\$112, 795	\$21,300	\$97, 935	\$141, 798	\$148,040	\$78,392	\$20, 824	\$26, 663	\$98, 003
12	Number	6,954	116	14	103	117	137	99	17	33	96
13	Salaries.	86,149,463	\$111, 290	821, 300	\$97,935	\$140, 718	\$148,040	878,221	\$20, 824	\$26,663	897,763
14	Number Salaries	$\begin{array}{r} 142 \\ \$ 60,784 \end{array}$	$\begin{array}{r} 3 \\ \$ 1,506 \end{array}$			$\$ 1,080$		$\begin{array}{r} 1 \\ \$ 171 \end{array}$			1 $\$ 240$
	Wage-earners, including pieceworkers, and										
16	Greatest jumber employed at any one	191,387	4,388	703	2,155	5,371	3,206	1,662	918	1,111	3,435
	time during the year.										
17	Least number employed at any one time during the year.	156,865	3,645	478	1,716	4,519	2,184	1,448	846	855	2,941
18	Average number	173,652	4,030	576	1,927	4,920	2,687	1,557	880	958	3,175
19	Wages..............	\$96, 062, 329	81, 941,031	\$437,238	\$1, 203, 761	\$3, 507,028	81, 676, 500	\$943,503	\$529,025	\$486,488	\$1, 602, 208
20	Men, 16 years and overAverage number.										
21	Wages.......	\$95, 939,610	\$1, 939, 170.	\$437, 238	\$1, 203, 761	$\$ 3,502,570$	$\$ 1,676,500$	$\begin{array}{r} 1,551 \\ \$ 941,296 \end{array}$	$\begin{array}{r} 878 \\ \$ 528,376 \end{array}$	$\$ 485,768$	$\begin{array}{r} 3,169 \\ 81,601,128 \end{array}$
22	Women, 16 years and over-										
23	Wages...	\$106, 426	\$1,861			\$2,578		$\$ 2,207$	$\begin{array}{r} 2 \\ \$ 649 \end{array}$	$\begin{array}{r} 3 \\ \$ 720 \end{array}$	$\$ 1,080$
	Cbildren, under 16 years- Average number										
25	Wages	$\begin{array}{r} 79 \\ \$ 16,293 \end{array}$				5					
	Average number of wage-earners, including					\$1,880					
	pieceworkers, employed during each month:										
26	january	171,763	4,065	653	2,041				862	980	3, 213
27	February	172, 487	4, 131	617	2,040	4,871	2,540	1,511	872	991	3,205
28	March	174,961	4,177	589	2,028	4,723	2,616	1,518	862	976	3,228
29	April	175, 886	4,179	590	2,014	4,689	2,652	1,557	885	995	3,235
30	May.	175,917	4,199	593	1,966	4,760	2,707	1,559	893	1,052	3,252
31	June.	170, 060	3,805	506	1,792	4,775	2,450	1,572	877	1,076	3,151
32	July .	166,774	3,745	528	1,748	4,868	2,342	1,561	874	1,84	3,101
33	August	169,680	3,916	545	1,799	4,981	2, 550	1,560	876		
34	September	171, 610	4,020	533	1,857	4,978	2,725		872	861	3,015
35	October.	174, 884	4,051	561	1,930	5,060	2,944	1,588	888	916	$\stackrel{3}{3,110}$
36	November	176,568	3,966	577	1,949	5,147	2,948	1,578	882	938	
37	December	177, 918	3,970	619	1,956	5,185	3, 085	1,574	8888	940	${ }_{3,166}$
	Women, 16 years and over-										3,166
38	January	364	10			8		6	2		
39	February	364	10			8		6	2		6
40	March	363	10			8		6	2	3	6
41	April	364	10			8		6	2	3	6
42	May	375	12			8		6	2	3	6
43	June	367	11			6		7	2	3	6
44	July.	362	12	,		6		6	2	3	6
45	August.	362	11	---7...		6		6	2	3	6
46	Septembe	355	11					6	2	3	,
47	October	357	11			7		6	2	3	6
48 49	November	361	- 11			8		6	,	3	6
49	Children, under 16 years-.	374	11			7	6	2	3	6
50	January	73									
51	February	73				6					
52	March	78				6					
53	April.	79				6					
54	May .	81				7					
55	June.	78				5					
56	July .	80				4					
67	August	81				4					
58	September.	81				4					
59	October..	80				4					
60	November	85				4					
61	December	79				5					
	Miscellaneous expenses:										
62	Total --....	86, 293, 987	\$86,045	\$16, 454	\$27,124	\$76,590	838,863	\$41, 879	\$2, 315	\$19, 224	
63 64	Rent of works.............................	\$41,134					\$21,076				\$1,800
64 65	Taxes, not including internal revenue.-..	\$827, 988	\$12, 276	\$5,039	\$5,504	\$53, 658	\$13,772		\$1,692	\$10,985	\$16,472
65 66	Rent of offices, cte	\$2, 329, 924	\$73, 769	\$11, 415	\$21,620	\$22,932	\$3,468	\$41, 879	\$623	83, 146	\$69, 934
66	Material used:	\$3,094, 941					\$548			\$5,093	\$1,174
67 68	Total cost -..............................	8109, 539, 013	\$2,032, 166	8412,490	\$765,003	\$3, 825, 340	81, 278, 299	\$1, 366, 281	\$460,519	\$579, 870	
69	Purcbased in partially manufactured form	\$884, 290, 688	\$1,647, 8322	\$339,419.	8614,040	\$2,510, 424	\$933,489	\$988,571	\$122,174	\$354,218	\$1894,144
70	Rent of power and heat	\$2, 443, 987	\$35, 428	\$13,033	\$20, 479	$\$ 196,357$	\$35, 890	\$13, 870	\$13, 086	\$8,294	\$15, 159
71	Mill supplies	\$1,155, 435	\$35, 625	\$6,022	\$20, 02	\$15,174	\$18, 137	\$12,959	\$1,283	\$5,767	
72	All other materials	821, 108, 596	\$260,027	\$48,654	\$109, 982	\$899,668	\$290, 783	\$350, 581	\$ 823,976		
73	Freight...	\$512, 743	\$53, 664	\$5,362		\$180, 179				\$2, ${ }_{\text {\% }}$	\$347,803

BY STEAM RAILROAD COMPANIES, BY STATES AND TERRITORIES, 1900.

Idaho.	Illinois.	Indiana.	Indian Territory.	Iowa.	Kansas.	Kentucky.	Louisiana.	Maine.	Maryland.	Massachusetts.	Michigan.	Minnesota.	Mississippi.	Missouri.	
4	98	54	3	58	37	26	19	19	19	16	42	39	9	43	1
4	98	54	3	58	87	25	19	19	19	16	42	39	9	43	2
\$177, 912	\$11, 726, 424	\$4,730, 231	\$8,080	\$3,277, 617	\$2,931,699	\$1,761,958	\$782, 588	8921,905	\$2, 877,954	\$3,056,043	\$2, 527, 256	\$4, 933, 805	\$741, 753	\$3, 645, 260	3
\$28,000	\$2, 106, 841	\$514, 788	\$750	\$232, 825	\$358,213	\$262, 430	\$72,750	\$72,900	\$298,490	\$886, 850	\$3488, 620	\$453, 700	\$52, 692	\$764, 835	4
-367, 991	\$83,617, 599	\$1,671,232	\$4, 180	\$1,365,929	\$853, 770	\$484, 950	\$201, 639	\$876, 850	\$1,547, 939	\$1, 061,500	\$877, 176	\$2,117, 592	\$230,775	\$882, 094	
\$66,912	\$2, 214, 121	\$944,880	\$1,550	\$816, 126	\$861, 867	\$442,561	\$2200, 864	\$217,081	\$550, 609 $\$ 480,916$	$\$ 343,925$ $\$ 764,768$	$\mathbf{\$ 6 7 6 , 9 4 4}$ $\$ 624,516$	\$1,117, 309	\$251, $\mathbf{\$ 2 0 6}, 757$	\$701,632 $\mathbf{\$ 1}, 296,699$	
\$15,009	\$3,787, 863	\$1,699,331	\$1,600	\$882,737	\$857, 849	\$582, 017	\$247, 435	8255,074	\$480,916	\$764,768	\$624,516	\$1, 245, 204	\$206, 757	\$1, 296, 699	7
$\begin{array}{r} 12 \\ \$ 13,326 \end{array}$	$\begin{array}{r} 618 \\ \$ 568,702 \end{array}$	$\begin{array}{r} 348 \\ \$ 290,197 \end{array}$	$\begin{array}{r} 3 \\ \$ 2,820 \end{array}$	$\begin{array}{r} 278 \\ \$ 249,948 \end{array}$	$\begin{array}{r} 175 \\ \$ 167,786 \end{array}$	$\begin{array}{r} 96 \\ \$ 82,689 \end{array}$	$\begin{array}{r} 43 \\ \$ 46,344 \end{array}$	$\begin{array}{r} 37 \\ \$ 31,332 \end{array}$	134 $\$ 100,843$	111 $\$ 103,962$	$\begin{array}{r} 182 \\ \$ 147,119 \end{array}$	$\begin{array}{r} 264 \\ \$ 243,448 \end{array}$	\$40,754	$\begin{array}{r} 242 \\ \mathbf{8 2 1 9}, 292 \end{array}$	9
$\begin{gathered} 12 \\ \$ 13,326 \end{gathered}$	$\begin{array}{r} 618 \\ \$ 568,702 \end{array}$	$\begin{array}{r} 348 \\ \$ 290,197 \end{array}$	$\begin{array}{r} 3 \\ \$ 2,820 \end{array}$	$\begin{array}{r} 278 \\ \$ 249,948 \end{array}$	$\begin{array}{r} 175 \\ \$ 167,786 \end{array}$	$\begin{array}{r} 96 \\ \$ 82,689 \end{array}$	$\begin{array}{r} 43 \\ \$ 46,344 \end{array}$	$\begin{array}{r} 37 \\ \$ 31,332 \end{array}$	$\begin{array}{r} 134 \\ \$ 100,843 \end{array}$	$\begin{aligned} & 111 \\ & \$ 103,962 \end{aligned}$	$\begin{aligned} & \mathbf{8 1 4 7}, 1192 \end{aligned}$	$\begin{array}{r} 264 \\ \$ 243,448 \end{array}$	$\begin{array}{r} 45 \\ \$ 40,754 \end{array}$	$\begin{array}{r} 242 \\ \$ 219,292 \end{array}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$
$\begin{array}{r} 12 \\ \$ 13,326 \end{array}$	$\begin{array}{r} 598 \\ \$ 560,017 \end{array}$	$\begin{array}{r} 337 \\ \$ 285,479 \end{array}$	\$2, 820^{3}	$\begin{array}{r} 275 \\ \$ 248,708 \end{array}$	$\begin{aligned} & 171 \\ & \$ 165,295 \end{aligned}$	$\begin{array}{r} 94 \\ \$ 82,343 \end{array}$	43 $\mathbf{\$ 4 , 3 4 4}$	$\begin{array}{r} 36 \\ \$ 30,840 \end{array}$	\$100,843 ${ }^{134}$	\$102, $\begin{array}{r}109 \\ \hline 870\end{array}$	181 $\mathbf{\$ 1 4 6 , 8 1 9}$	$\begin{array}{r} 260 \\ \$ 241,198 \end{array}$	$\begin{array}{r} 43 \\ 839,794 \end{array}$	$\begin{array}{r} 234 \\ 8216,222 \end{array}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$
	$\begin{array}{r} 20 \\ \$ 8,685 \end{array}$	$\$ 4,71$		$\begin{array}{r} 88 \\ \$ 1,240 \end{array}$	\$2,491 ${ }^{4}$	\$846		\$492		\$1,092 ${ }^{2}$	1 $\$ 300$	82, $\mathbf{4}_{4}$	2 $\$ 960$	\$3,070	14 15
445	15,122	8,945	73	5,983	6,001	3,802	1,556	618	3,866	3,220	4,439	5,183	1,736	6,020	16
376	12,728	7,240	59	5,015	5,101	3,356	1,193	509	3,293	2,496	3,432	4,306	1,345	5,172	17
$\begin{array}{r} 399 \\ \$ 293,396 \end{array}$	$\begin{array}{r} 13,803 \\ \$ 7,422,527 \end{array}$	$\begin{array}{r} 8,081 \\ \$ 4,325,101 \end{array}$	$\begin{array}{r} 64 \\ \$ 35,504 \end{array}$	$\begin{array}{r} 5,497 \\ \$ 2,948,947 \end{array}$	$\begin{array}{r} 5,592 \\ \$ 3,476,400 \end{array}$	$\begin{array}{r} 3,572 \\ \$ 1,841,778 \end{array}$	$\begin{array}{r} 1,378 \\ \$ 800,398 \end{array}$	$\begin{array}{r} 571 \\ \$ 300,755 \end{array}$	$\begin{array}{r} 3,620 \\ \$ 1,849,737 \end{array}$	$\begin{array}{r} 3,031 \\ \$ 1,822,959 \end{array}$	$\begin{array}{r} 3,938 \\ \$ 2,026,000 \end{array}$	$\begin{array}{r} 4,700 \\ 62,599,387 \end{array}$	$\begin{array}{r} 1,534 \\ \$ 807,899 \end{array}$	$\begin{array}{r} 5,581 \\ \$ 3,182,753 \end{array}$	$\begin{aligned} & 18 \\ & 19 \end{aligned}$
$\begin{array}{r} 399 \\ \hline \$ 293,396 \end{array}$	$\begin{array}{r} 13,766 \\ \$ 7,409,512 \end{array}$	$\begin{array}{r} 8,076 \\ \$ 4,323,459 \end{array}$	$\begin{array}{r} 64 \\ \$ 35,504 \end{array}$	$\begin{array}{r} 5,488 \\ \$ 2,946,013 \end{array}$	$\begin{array}{r} 5,590 \\ \$ 3,476,251 \end{array}$	$\begin{array}{r} 3,564 \\ \$ 1,838,893 \end{array}$	$\begin{array}{r} 1,377 \\ \$ 800,299 \end{array}$	$\begin{array}{r} 571 \\ \$ 300,755 \end{array}$	$\begin{array}{r} 3,616 \\ \$ 1,848,957 \end{array}$	$\begin{array}{r} 3,028 \\ \$ 1,821,912 \end{array}$	$\begin{array}{r} 3,934 \\ \$ 2,024,760 \end{array}$	$\begin{array}{r} 4,696 \\ \$ 2,598,359 \end{array}$	$\begin{array}{r} 1,534 \\ \$ 807,899 \end{array}$	$\begin{array}{r} 5,572 \\ \$ 3,180,795 \end{array}$	20 21
	$\begin{array}{r} 34 \\ \$ 12,293 \end{array}$	\$1,642		\$1, 284		8 $\$ 2,885$			\$780	\$1,047 ${ }^{3}$	81, 240	\$312		\$1,569	$\begin{aligned} & 22 \\ & 23 \end{aligned}$
	3 $\$ 722$			$\begin{array}{r} 5 \\ 81,650 \end{array}$	\$149		\$99					3 $\$ 716$		3 $\$ 889$	24 25
														5,593	
384	13,641	7,943	68	5, 333	${ }_{5}^{6,668}$	3,562 3,575	1,407	578	3,668	3,040 3,040	3,741	4,729	1,448	5,439	27
378	13,840	8,094 8,110	62 67	5,291 5 5	5, 501	3,576 3,566	1,422	587	3,733	3,050	3, 838	4,765	1,619	5,519	28
386 395	14,095 14	8,110 8,179	72	5,501	5,697	3,518	1,407	589	3,743	3,065	3,921	4,863	1,642	5,528	29
${ }_{386}^{395}$	13,810	7,901	68	5,524	5,602	3,543	1,443	582	3, 699	3,095	4,015	4,890	1,691	5,492	
391	13, 407	7,770	62	5, 420	5,350	3,529	1,295	580	3, 704	3,058	3, 308	4,623	1,602	5,414	
385	13,312	7,692	64	5,443	5,398	3,512	1,349	523	3,413	2, 936	3,905	4,607	1,530	5,543	33
389	13,515	8,022	${ }_{61}^{63}$	5,572	5,442	3,617	1,399	541	3, 388	2,908	4,016	4,537	1,632	5,586	34
395	13,707	8,117	61	5,552	-5,689	3, 3 ,532	1,332	561	3,540	3,005	4,064	4,681	1,378	5,708	
${ }_{443}$	13,915	8,319 8,419	62	5,582	5,708	3,574	1,426	685	3,628	3,064	4,110	4,704	1,408 1,445	5,825	36
430	13, 868	8,351	62	5,574	5,756	3,607	1,472	601	3,659	3,096	4,094	4,720	1,445	5,825	
		5									${ }_{4}^{4}$	1			
	35	5		4		8			4	4	- 4	1			40
	33	4		4		8			4	4	4	1		6	41
	36	5		4		8			4	3	4	1			42
	36	5		4		8			4	3	4	,		6	43
	36	5		4		8			4	3	4	1		6	44
	36	5		4		8			4	3	${ }_{4}^{4}$	1		${ }_{6}^{6}$	46
	35	5		4		8			4	3	${ }_{4}^{4}$	1		6	47
	31	5		4		8			4	3	3			6	48
	31	5		4		8			4	3	3	1		12	49
	30														
							1					3		3	51
	3			4		,	1					3		3	52
	3			$\stackrel{4}{5}$,	1					3		1	5
	3			5	2	2						3		3	55
	3			5								3		3	56
	4			5			1					3			57
	4			5	2		1					3		$\stackrel{3}{0}$	58 59
	4			5	2		1					3		4	60
	3			10	$\stackrel{2}{2}$		1					3		4	61
	3											\$95, 561	818,386		62
\$2,743	\$267, 497	\$171,355	\$87	\$124, 453	\$101,457	(855,984	\$19,699	\$35, 435	\$55,163	\$32, 500	\$300			\$10	63
\$2,743	\$ $\$ 8,601$.-.......					$\$ 1,348$ $\$ 10,082$	86,715	- $-\cdots, 252$	-850	\$1,827	\$15,031	\$15, 441	\$48,637	${ }_{65}^{64}$
	[$\begin{array}{r}\$ 84,826 \\ \$ 172,683\end{array}$	$\begin{aligned} & \$ 33,490 \\ & \$ 131,072 \end{aligned}$	$\begin{array}{l\|l} 0 & \$ 26 \\ 2 & \$ 61 \end{array}$	$\begin{aligned} & \$ 36,894 \\ & \$ 87,559 \end{aligned}$	\$63,658	8 \$39,814	48,269	¢28,720	\$46, 911	\$29,994	833,572 83,943	\$80,530	\$2, 895	\$53, 853	65 66
\$20	\$172, $\mathbf{\$ 1}, 387$										\$3,943				
										81,752,564	82, 120, 166	83, 380, 441	\$464,034	83,019,574	67
\$214,166	\$8, 286, 776	\$5, 454, 676	\$18,224	\$2,896, 269	\$7, 071, 178	\$2,267,578	\$484,497	\$361, ${ }_{303}$	\$2, 172, 354	\$1,432,336	\$1,630,454	\$2,17is,062	\$362, 468	\$2,227,563	68
8174,649	\$6, 712,080	\$4,253, 201	\$13, 509	\$2,097, 832	\$2, 424,789	-\$1,857, $\$ 49.122$	\$ $\$ 13,870$	\$10,846	- ${ }^{22}$, 28,469	W, \$45,416	\$73,121	\$119, 239	\$16,472	\$85, 702	69
\$3,216	\$203,403	\$97,996	\$150	- \$101,214	\$77,365		. ${ }^{\text {a }}$,	\$1, 81			\$200	\$11,800	\$100	- \$2,641	70
					- 823,733	- \$15,037	- \$6,826	\$2, 266	- \$12, 324	- $\$ 11,426$	\$15, 284	\$1,038,015	$\$ 6,402$ $\mathbf{W} 8,592$	- $\begin{array}{r}\$ 39,003 \\ \$ 563,640\end{array}$	71
\$35815	\$1,250,503		\$4,425	- $\$ 630,467$	\$489,576	\$ $\$ 324,168$	857,465	\$112, 427	- \$352, 870	- $\$ 263,356$	$\$ 386,896$ $\$ 14,211$	\$1,038,015		\$ $\$ 1,025$	
\$35, 299 $\mathbf{\$ 1 8 7}$	\$1,250,503	\|\$1, $\$ 45,652$	4 212	\$ $\$ 33$, 583	- \$55,710	- \$21,061		\$762	\$1,669		\$14, 21				

Table 16.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM

		United States.	Alabama.	Arizona.	Arkansas.	California.	Colorado.	$\begin{aligned} & \text { Connect- } \\ & \text { icut. } \end{aligned}$	Delaware.	Florida.	Georgia.
	Products:										
74	Aggregate value.	8218, 238, 277	\$4, 172, 192	\$887, 482	\$2, 095, 447	87, 553,626	\$3,141, 602	\$2, 430, 056	\$1,012, 683	\$1,112,245	83,062, 283
75	Total value .-.......i-.............	\$94, 437, 260	81, 544, 805	\$542, 525	\$873, 835	81, 783, 739	\$1,648,308	\$1,198, 797	\$490, 921	\$575, 228	\$1,126,034
76	Locomotives built, number ...	272									
77 78		\$3, 276, 393			\$23, 169			\$53, 728			
78	Locomotivesrepaired, number.	1,375, 265	1,414	1,608	25,197	2,977	19,142	350	1,368	1,060	2,926
79 80	Value Work for other corporations.	$\$ 57,383,143$ $\$ 3,338,589$	\$986, \$31, \$	$\$ 439,413$ 89,643	\$666, 911	\$1,630,941	\$1, 309,052	\$511, 352	$\$ 249,941$ $\$ 12,357$	\$465,954.	\$ $\$ 892,086$
80	Work for other corporations, value.	\$3, 338, 589	\$31,055	89,643	\$46,928	\$20,167	8198, 618		\$12,357	\$816 ${ }^{\circ}$	\$26,411
81	Other products, value	\$30, 449, 135	\$526,883	\$93, 469	\$136, 827	8132,631	8140, 638	\$633, 717	\$228, 623	\$108,458	\$207, 537
82	Total value...	\$118, 376, 552	\$2,567, 196	\$276, 625	\$878, 798	85, 745, 358	\$1, 305, 898	\$1,180,996	\$515,924	\$524,304	\$1,767,601
83	Passenger cars built, number	81,441,793									
88	Vralue Freight cars built, number..........	\$1,441, 733			\$20, 272	\$11, 777	\$26, 583	818,343			
85 86 88	Freight cars built, number............................	26,543 $\$ 15,079,619$	\$681, 413		r 816, 723	$\begin{array}{r}\text { a } \\ \hline 667 \\ \$ 329,577 \\ \hline\end{array}$	\$91, ${ }^{221}$	18 $\$ 88$ $\$ 8$		\$35, 254	364 $\$ 170,964$
87	Cars repaired, number	8, 376, 769	121, 317	9,029	120,368	\$88,973	186, 675	12,354	8,449	39, 437	58, 420
88	Value -	\$74,665,500	\$1, 515, 731	\$251,580	\$657, 521	\$1,576, 111	\$959, 311	\$757,687	8312, 530	\$461, 255	\$1, 223,447
89	Work for other corporations, value.	\$7, 084, 857	\$152, 416	\$16,310	\$120, 139	\$334, 609	8112, 503	\$15, 216	\$84, 210	\$1,773	\$119,853
90	Other products, value ...	\$20, 104, 843	8217, 636	88,735	\$64,143	\$3, 493,284	\$115,700	\$380,774	\$169,184	\$26,022	\$253,337
91	Bridge and building departmentTotal value.	\$5, 414,465	\$60, 191	\$68, 332	\$342, 814	\$24,529	8187, 396	850,263	\$5, 838	812,713	8168,648
92	Repairs and renewals, value..	\$3,937,170	848,227	\$67,305	\$71, 685	\$13,015	896, 238	\$29, 230	\$5, 838	88, 286	\$102, 217
93	Work for other corporations, value.	\$241, 626			\$14,838	\$7,868				\$700	\$1,200
94	Other products, value...-.-.	\$1, 235,669	\$11, 964	\$1,027	\$256, 291	\$3,646	\$91, 158	\$21,033		83, 727	\$65, 231
95	Comparison of products: Number of establishments reporting for both years.	1,234	16	5	18	29	- 26	\$2,	5	10	- 29
96	Value for census year	8215, 921, 429	84, 067,895	\$767, 484	\$2, 088, 362	\$7, 553, 626	\$2, 979, 022	\$2, 430, 056	\$1,012,683	\$1,029,915	82, 950, 266
97	Value for preceding business year	\$179, 268, 482	\$8, 192, 798	\$707, 645	\$1,848, 661	\$6, 611,783	\$2,365,540	82, 294, 962	\$928, 390	8866,999	82, 632, 716
98	Power: Number of establishments reporting	932	16	6	12	19	17	8	2	9	22
99	Total horsepower. \qquad Owned- Engines	99,430	1,588	230	920	3,182	1,153	613	339	433	1,357
100	Steam, number.	1,556		6	14	36	21	12	11	12	25
101	Horsepower	90,342	1,588	140	720	2,150	1,147	498	339	433	1,237
102	Gas or gasoline, number.......	30									
103	Horsepower	703				12					
104	Water wheels, number	7				2	1				
105	Horsepower......................	56				16	5				
106	Electric motors, number	241		1		1	1				2
107	Horsepower.	4,343		15		20	1				120
108	Other kind, number			1		2					
109	Horsepower	2,096		75	200	125					
110	Supplied to other establishments,	381						75			
11	horsepower. From other establishments, borse-	1,890				859		115			
	power.										
	Establishments classified by number of employees:										
112		1,296	19	7	21	29	29	9	5	13	32
113	Under 5	132	1		8	3	2	1		3	
114	5 to 20.	325	4	2	6	9	6	1	2		9
115	21 to 50.	228	2	1	2	3	9		1	2	2
117	101 to 250°	172	2	1	1	6	4	3		4	5
118	251 to 500	154	5	1	3	4	4	1		1	4
119	501 to 1,000	61	1		1	1	2	1	1		1
120	Over 1,000	23	1			1					

RAILROAD COMPANIES, BY STATES AND TERRITORIES, 1900-Continued.

Table 16.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM

		Montana.	Nebraska.	Nevada.	New Hampshire.	New Jersey.	$\begin{aligned} & \text { New } \\ & \text { Mexico. } \end{aligned}$	New York.	North Caroliza.	North Dakota.	Ohio.	Oklahoma.
1	Number of establishments.	7	23	6	9	18	7	82	12	3	91	3
	Character of organization:											
2	Capital:	7	23	6	9	18	7	82	12	3	91	3
3	Total.	8524, 725	83,635, 267	\$404,577	\$850, 873	\$2, 819,759	\$386, 721	\$11, 244, 747	\$539, 613	\$171,043	\$5,701, 129	\$9,350
4	Land	\$37,500	\$1, 947,600	\$53, 700	\$130, 808	\$404,314	\$5, 000	\$1, 200, 582	\$36,540	\$20,180	\$659, 277	\$1,900
5	Buildings.	\$163,135	\$704, 550	\$104, 200	\$207, 412	\$1,218,005	\$113, 151	\$2, 679, 844	\$165,435	\$87, 214	\$1,661, 260	\$3,600
6	Machinery, tools, and	\$141, 513	\$593, 118	\$83, 303	\$265, 003	\$560,030	\$227,092	\$2,790, 025	\$166, 365	\$43, 750	\$1, 304, 205	\$1, 800
7	Cash and sundries.. Salaried officials, clerks, etc:	8182, 577	2388,999	\$163,374	\$247, 650	8637,410	\$41, 478	\$4,574, 296	\$171,173	\$19,899	\$2,086,387	82, 050
8	Salaried officials, clerks, etc.: Total number											3
9	Total salaries General superintendents, managers,	\$50, 382	\$100,401	\$9,800	\$24, 201	\$137,191	\$18,784	\$344, 596	\$38,463	\$6,725	\$456, 971	\$2,405
10	clerks, etc.- Total number.				30	179	19					3
11	Total salaries Men-	\$50, 382	\$100, 401	\$9,800	\$24, 201	\$137,191	\$18, 784	\$344, 596	\$38,463	\$6,725	\$466,971	\$2,405
12	Number	48	114	8	30	172	19	433	47	7	561	3
13	Salaries Women-	\$49,642	\$100,401	\$9,800	\$24,201	\$134,437	818,784	\$341,102	\$38,463	\$6,725	\$451,398	\$2,405
14 15	Number.	1				7		10			15	
15	Salaries	\$740				\$2, 754		\$3,494			85, 573	
	total wages:											
16	Greatest number employed at any one time during the year.	700	2,585	277	1,044	6,083	1,215	14,574	1,241	148	12,839	25
17	Least number employed at any one time during the year.	533	2,265	184	925	4,207	912	11,561	1,028	92	10,085	19
18	Average number	621		214	966	4,594	1,061	13,062	1,141	126	11,534	22
19	Wages. Men, 16 years and ove	\$397, 652	$\$ 1,421,284$	\$168, 102	8516, 990	\$2,399, 675	\$685, 401	\$6, 762,504	\$550, 504	\$67,922	\$6, 087,062	\$13,383
20	Average number	621	2,458	214	966	4,687	1,061	13,013	1,139	126	111, 620	22
21	Wages-......	\$397, 652	\$1, 421, 284	\$168, 102	8516,990	82, 397, 518	\$585, 401	\$6,747, 126	\$550, 128	\$67, 922	\$6, 082, 128	\$13,333
22	Women, 16 years and over- Average number											
23	Wages					\$2,157		\$15,378	\$376		$\$ 4,924$	
	Children, under 16 years-											
26	Average number											
	Average number of wage-earners, including											
	pieceworkers, employed during each											
	month:											
26	Men, 16 yuary											
27	February....	621	2,483	188	941	4,639	1,108	13,071	1,169	129	11, 423	21
28	March.	656	2,526	193	946	4,692	1,007	13,305	1,208	124	11,643	18
29	April.	626	2,477	266	970	4,761	1,037	13,488	1,197	120	11,732	20
30	May.	657	2,506	212	968	4,715	1,050	13,630	1,224	109	11, 767	23
31	June.	658	2,517	208	946	4,565	946	18,079	1, 097	110	11, 326	21
32	July ..	576	2, 324	209	939	4,440	1,011	12, 322	1,139	99	10,930	19
33	August	614	2, 348	204	949	4,485	1,043	12,460	1,106	133	10,987	22
34	September	613	2,388	227	953	4,465	1,047	12,473	1,108	146	11, 338	23
35	October	616	2,418	227	985	4,479	1,081	12, 824	1,096	139	11,688	25
36	November	565	2,472	230	1,034	4, 674	1,116	13,178	1,096	147	11,956	24
37	December	608	2,516	218	1,023	4,680	1,124	13,376	1,094	136	12,015	28
38	Women, 16 years and o											
39	February					7		47	2		15	
40	March					7		47	2		15	
41	April ...					7		47	2		15	
42	May ..					7		67	2			
43	June..					7		66	2		12	
44	July .					6		47	2		13	
46	August.					,		48	2		14	
46	September					6		47				
47	October..					6		46	2		14	
48	November					10		47	,		13	
49	December.					8		49	2		13	
50	Children, under 16 yearsJanuary											
51	February											
52	March .											
53	April .											
54	May.....											
65	June....											
56	July											
${ }_{58}^{67}$	August.											
58	September											
59	October.											
60	November											
61	December.											
	Miscellaneous expenses:											
62 63	Total	\$5,138	\$92,946	\$7,446	\$36,763	\$196, 707	\$1,913	8203, 221	\$29, 259	\$1,400	\$391,581	\$117
64	Rent of works Taxes not including internal reve-	\$4, 728	824,824	82, 631	85,013	\$17,078	8436	83,400 $\$ 63,721$			$\$ 1,350$ 858,321	
	nue.		444,24		*,010	W17,078	\$436	\$63, 721	\$4,831	\$1,400	\$58, 321	\$117
66	Rent of offices, etc. Contract work....	\$110	\$68,122	\$4,915	\$31, 750	$\begin{array}{r} \$ 76,411 \\ \$ 102,218 \end{array}$	\$1,477	\$136,100	$\$ 23,861$ $\$ 567$		\$327, 558	
	Materials used:										\$4, 552	
67 68	Total cost	\$301, 338	81,009,830	\$110,637	\$523, 347	\$2,301,699	\$463, 182	\$8, 879, 813	\$893, 150	\$64,847	\$5, 963, 808	\$6,736
68	Purchased in partially manufactured form.	8185, 328	\$746, 227	865,789	\$322, 192	\$1, 815, 797	\$324,462	86,648, 296	\$739,081	\$39,093	\$4, 384, 232	\$4, 266
69 70	Fuel..........	\$19, 209	\$46,634	\$9, 284	\$14,780	\$51, 243	\$18,153	\$158, 519	\$12, 300	\$6,195	\$111,639	\$286
71	Mill supplies...........										\$ $\$ 120$	
72	All otber materials	890,693	\$180, 964	\$30, 316	\$184,311	\$426,647	$\$ 99,042$	$\begin{array}{r} \$ 147,840 \\ \$ 1,925,158 \end{array}$	$\begin{array}{r} \$ 4,307 \\ \$ 137,462 \end{array}$	$\begin{array}{\|} \$ 975 \\ \$ 18,684 \end{array}$	$\$ 52,824$ $\$ 1,388967$	\$1882
73	Freight...		\$4,204	\$3,954							\$1, $\$ 26,026$	\$1,882

RAILROAD COMPANIES, BY STATES AND TERRITORIES, 1900-Continued.

Oregon.	Pennsyl. vania.	Rhode Island.	South Carolina.	South Dakota.	$\begin{aligned} & \text { Tennes- } \\ & \text { see. } \end{aligned}$	Texas.	Utah.	Vermont	Virginia	Washington.	West Virginia.	Wisconsin.	Wyoming.	Other states.	
14	144	3	6	7	16	56	10	7	28	16	23	46	7	3	1
14	144	3	6	7	16	56	10	7	28	16	23	46	7	3	2
\$725,985	\$19, 182, $\mathbf{8 2}, 128$ $\mathbf{8}, 663$	\$120,900	\$354, 842	\$68,079	81, 319,628	\$3, 730, 792	\$496, 149	\$711, 261	81, 733, 389	\$944,800	\$1, 040, 311	\$4, 206, 285			
\$ $\$ 2021,433$		$\$ 11,500$ $\$ 41,000$	$\$ 24,050$ $\$ 86,833$	- $\begin{array}{r}86,040 \\ \$ 34,600\end{array}$	\$162,517	8437, 873	\$141, 200	\$92, 100	- 8101,572	\$194, 820	\$1, $\$ 43,958$	\$4, $\$ 0689,376$	$\$ 591,725$ $\$ 36,760$	\$470, 387	3
\$161,219	84, 858, 929	\$50, 500	\$78,903	\$34, ${ }^{\mathbf{4} 6,941}$	\$ \$287,145	8897,579 $\$ 1,104,483$	\$115, 460	\$274, 200	\$482, 888	\$313, 270	\$279, 536	\$1, 343, 738	\$152,450	\$122, 525	5
\$221,283	\$6, 427, 505	\$17, 900	\$165,056	\$20, 498	\$422, 807	\$1, $\$ 1,290,857$	$\$ 147,412$ $\$ 92,087$	$\begin{aligned} & \$ 216,458 \\ & \$ 128,503 \end{aligned}$	$\begin{aligned} & \$ 421,488 \\ & \$ 727,443 \end{aligned}$	$\begin{aligned} & \$ 243,176 \\ & \$ 193,534 \end{aligned}$	\$220, 8465	(\% $\begin{gathered}\$ 690,578 \\ \$ 1,582,594\end{gathered}$	\$278, 796 $\$ 124,719$		6 7
$\begin{array}{r} 29 \\ \$ 31,678 \end{array}$	$\begin{array}{r} 1,065 \\ \$ 810,857 \end{array}$	$\begin{array}{r} 17 \\ 814,490 \end{array}$	$\begin{array}{r} 27 \\ \$ 21,379 \end{array}$	$88,35^{9}$	$\begin{array}{r} 65 \\ 858,606 \end{array}$	$\begin{array}{r} 263 \\ \$ 292,398 \end{array}$	$\begin{array}{r} 46 \\ \$ 49,389 \end{array}$	$\begin{array}{r} 32 \\ \$ 23,744 \end{array}$	$\begin{array}{r} 283 \\ \$ 248,425 \end{array}$	$\begin{array}{r} 55 \\ \$ 51,353 \end{array}$	$\begin{array}{r} 90 \\ \$ 67,646 \end{array}$	$\begin{array}{r} 272 \\ \$ 245,163 \end{array}$	$\$ 29,384$	$\begin{array}{r} 14 \\ \$ 13,160 \end{array}$	8
$\begin{array}{r} 29 \\ 831,678 \end{array}$	$\begin{array}{r} 1,065 \\ 8810,867 \end{array}$	$\begin{array}{r} 17 \\ 814,490 \end{array}$	$\begin{array}{r} 27 \\ 821,379 \end{array}$	\$8, 354	$\begin{array}{r} 65 \\ 858,606 \end{array}$	$\begin{array}{r} 263 \\ \$ 292,398 \end{array}$	46 $\$ 49,389$	$\begin{array}{r} 32 \\ \$ 23,744 \end{array}$	$\begin{gathered} { }_{2}^{283} \\ \$ \$ 48,425 \end{gathered}$	$\begin{array}{r} 55 \\ 851,353 \end{array}$	$\begin{array}{r} 90 \\ 867,646 \end{array}$	$\begin{array}{r} 272 \\ \$ 245,163 \end{array}$	$\begin{array}{r} 28 \\ \$ 29,374 \end{array}$	\$13,160	10
$\begin{array}{r} 29 \\ \$ 31,678 \end{array}$	$\begin{array}{r} 1,042 \\ \$ 800,687 \end{array}$	$\begin{array}{r} 17 \\ \$ 14,490 \end{array}$	$\begin{array}{r} 26 \\ \$ 20,959 \end{array}$	$\$ 8,354$	$\begin{array}{r} 62 \\ \$ 56,896 \end{array}$	$\begin{array}{r} 259 \\ 8289,758 \end{array}$	$\begin{array}{r} 46 \\ \$ 49,389 \end{array}$	$\begin{array}{r} 25 \\ \$ 21,978 \end{array}$	$\begin{array}{r} 280 \\ \$ 247,093 \end{array}$	$\begin{array}{r} 54 \\ \$ 50,948 \end{array}$	$\begin{array}{r} 90 \\ 867,646 \end{array}$	$\begin{array}{r} 270 \\ \$ 244,023 \end{array}$	$\begin{array}{r} 28 \\ 529,374 \end{array}$	$\begin{array}{r} 14 \\ \$ 13,160 \end{array}$	12
	$\begin{array}{r} 23 \\ \$ 10,170 \end{array}$		\$420		\$1, 710^{3}	\$2,644		$81,766$	$\begin{array}{r} 3 \\ \$ 1,332 \end{array}$	$\begin{array}{r} 1 \\ \$ 405 \end{array}$		\$1, 140			14
855	31,289	218	889	150	3,070	7,336	1,034	883	5,262	1,153	2,908	5,141	1,049	461	16
705	26,392	206	680	102	2,503	5,879	746	713	4,569	820	2,367	4,027	731	361	17
$\begin{array}{r} 751 \\ \$ 495,159 \end{array}$	$\begin{array}{r} 28, \mathrm{~B} 54 \\ \$ 15,825,640 \end{array}$	[$\begin{array}{r}216 \\ 8133,300\end{array}$	$\begin{array}{r} 776 \\ \$ 363,041 \end{array}$	\% $\begin{array}{r}117 \\ \hline 7961\end{array}$	$\begin{array}{r} 2,817 \\ 61,459,319 \end{array}$	$\begin{array}{r} 6,633 \\ \$ 4,004,769 \end{array}$	$\begin{array}{r} 908 \\ 8636,076 \end{array}$	$\begin{array}{r} 779 \\ \$ 446,017 \end{array}$	$\begin{array}{r} 4,922 \\ \$ 2,452,195 \end{array}$	$\begin{array}{r} 956 \\ \$ 653,205 \end{array}$	$\begin{array}{r} 2,605 \\ \$ 1,256,640 \end{array}$	$\begin{array}{r} 4,502 \\ \$ 2,398,144 \end{array}$	$\begin{array}{r} 853 \\ \$ 623,046 \end{array}$	$\begin{array}{r} 394 \\ \$ 205,475 \end{array}$	18
$\begin{array}{r} 751 \\ \$ 495,159 \end{array}$	$\begin{array}{r} 28,372 \\ \$ 15,779,638 \end{array}$	$\begin{array}{r} 215 \\ \$ 183,300 \end{array}$	\$362,681 ${ }^{774}$	879,661	$\begin{array}{r} 2,810 \\ \$ 1,457,718 \end{array}$	[$\begin{array}{r}6,633 \\ 34,004,769\end{array}$	$\begin{aligned} & 9635,776 \\ & 8635 \end{aligned}$	779 $\$ 446,017$	$\begin{array}{r} 4,897 \\ \$ 2,447,732 \end{array}$	\$652, ${ }^{985}$	\$1, 256, 280	\$ $\begin{array}{r}4,499 \\ \hline 896,997\end{array}$	$\begin{array}{r} 851 \\ \$ \$ 22,446 \end{array}$	$\begin{array}{r} 373 \\ \$ 198,601 \end{array}$	20
	$\begin{gathered} 144 \\ \$ 88,974 \end{gathered}$		\$360		\$1,601		\$300		$\begin{array}{r} 8 \\ 81,403 \end{array}$	1 $\$ 425$	\$360	81,147		$\begin{array}{r} 21 \\ \mathbf{\$ 6}, 874 \end{array}$	${ }_{23}^{28}$
	$\begin{array}{r} 38 \\ \mathbf{8 7 , 0 2 8} \end{array}$								$\begin{array}{r} 17 \\ \$ 3,060 \end{array}$				\$600		$\xrightarrow{24}$
783	27,636	206	790	113	2,933	6,439	895	742	5,040	965	2,579	4,247		356	
770	28,134	212	807	114	2,911	6,353	906	731	6,003	979	2,672	4,260	810	379	27
763	28,452	211	854	121	2,975	6,479	933	760	5,078	1,025	2,708	4,416	856	419	28
772	28, 625	218	856	118	2,934	6,459	958	730	5,044	1,050	2,701	4,554	812	397	29
778	28,540	218	853	112	2,885	6,430	936	859	5,127	1,056	2,734	4,011	795	401	30
713	28, 177	217	691	111	2,579	6,407	969	834	4,786	${ }^{907}$	2,454	4,496	743	366	31
728	27,617	215 216	731	103	2,698	6,620	883	799	4,661	884	2, 443	4, 417	758	349	32
788	27,907 28,378	216 217	751	119	2,658 2,769	6,838	830 852 8	798 786	4,748 4,791	893 887	2,500 2,591	4,520 4,623	844 869	342 358	33
760	28,801	217	741	120	2,775	6,949	921	770	4,798	918	2,598	4,707	898	376	35
736	28,872	216	740	139	2,841	6,944	897	772	4,796	942	2,605	4,695	955	366	36
739	29,430	217	740	119	2,861	6,870	961	766	4,902	954	2, 661	4,543	1,014	371	37
	142 143		2		8		1		8	1 1	1 1	3		21	38 39
	144	2		8		1		8	1	1	3		21	40
	144		2		7		1		8	1	1	3		21	1
	144		2		7		1		8	1	,	3		21	42
	143				7		1		7	1	1	3		21	43
	145		${ }_{2}^{2}$...	7		1		7	1	1	3		${ }_{21}^{21}$	44
	140		2		7		1		7	1	1	3		19	46
	144		,		7		1	9		1	3		20	47
	144	2		7		1		9	1	1	3		20	48
...........	149	2		7		1		8	1	1	7		21	49
	28								17				2		50
	32								17				2		51
	38								17				2		53
	41								17				2		54
	40								17				2		55
...........	40								17				2		56
	414								17				2		58
	41								17				2		59
	40								17				2		60
	38								17				2		61
\$15,688	83, 280, 079	\$1,770	\$12, 555	\$3,049	866,765	\$138, 838	\$16, 219	81, 614	\$45,406	\$14, 264	\$32, 355	\$138, 270	\$37,194	\$1,100	62
\$9,307	\$61, 868	\$1,770	\$4,508	\$1,270	\$12,478	\$45, 194	810,815	\$2,092	612,279	\$11,614	\$11, 831	\$15,988	86, 250	$\$ 900$	64
\$6,381	\$265, 622		\$8,047	\$1,779	\$54, 287	\$77, 644	\$5,404	82, 522	\$32, 927	\$2,420	\$20, 464	\$122, 282	\$30,944	\$200	65
	\$2, 952, 866					816,000									66
\$483,644	\$23,147, 574	\$48,696	\$294, 334		$\$ 1,528,363$	93, 878, 536		$\$ 350,401$	$\$ 3,531,2 \times 3$	$\$ 760,858$	$\$ 1,586,916$	$193,525,144$	$8480,199$	$\$ 157,255$	67
\$341,625	\$18, 813, 128	\$38, 106	\$197, 669	$\begin{aligned} & \$ 80,021 \\ & \$ 80,028 \end{aligned}$	\$1, 034, 198	83, 116, 632	$\$ 445,609$	\$294, 478	82, 480, 483	\$571, 888	\$1, 366, 609	$\$ 2,981,275$	8369, 771	$\$ 116,537$	68
\$19,629	\$355, 541	\$2,575	\$8, 235	32,029	\$21,458	\$87,472	\$16,087	\$11,052	\$57, 287	\$22, 086	\$19,616	\$69,274	\$18,499	\$7,678	69
\$ $\$ 200$	\$1,544	\%2,				8504 $\$ 63,569$		$\$ 500$ $\$ 6,605$		$\begin{aligned} & \$ 1,718 \\ & \$ 7,037 \end{aligned}$					70
$\$ 8,677$ $\$ 110,224$	8145,101 $\$ 3,829,654$	\$584 $\$ 7,381$	\$81,520	\$4, 782 $\$ 19,728$	$\$ 25,395$ 8134,723 8	$\$ 63,569$ $\$ 607,940$	\$88,131	$\mathbf{8 6 , 6 0 5}$ $\mathbf{3 8 7 , 5 0 1}$	805,330 $\$ 938,139$	\%157,065	\$ $\$ 184,524$	\$421,999	$\begin{array}{r}\text { 83, } \\ 888,262 \\ \hline 8\end{array}$	\$1, $\$ 31,737$	71 72
\$18,289	\$3,829,606	\$7,381	\$80,910	\$19,728	\$12,589	\$2,419	,3,080	\$265	\$44	\$64	\$160	§29,085			73

Table 16.-CARS AND GENERAL SHOP CONSTRUCTION AND REPAIRS BY STEAM

RAILROAD COMPANIES, BY STATES AND TERRITORIES, 1900-Continued.

Oregon.	Pennsylvania.	Rhode Island.	$\left\|\begin{array}{c} \text { South } \\ \text { Carolina. } \end{array}\right\|$	$\begin{aligned} & \text { South } \\ & \text { Dasota. } \end{aligned}$	$\begin{aligned} & \text { Tennes- } \\ & \text { see. } \end{aligned}$	Texas.	Utah.	Vermont.	Virginia.	Washing- ton.	$\begin{gathered} \text { West } \\ \text { Virginia. } \end{gathered}$	$\begin{aligned} & \text { Wiscon- } \\ & \text { sin. } \end{aligned}$	Wyoming.	Other states,	
81, 026, 169	843,065,171	\$203, 326	\$691, 361	\$177,631	\$3, 113, 053	\$8,314, 691	\$1, 306, 591	\$824, 776	86, 277, 279	\$1, 479,680	\$2, 943,557	86, 306, 823	\$1,169, 813	\$376,990	74
\$275, 894	\$20,409, 988	\$87, 529	\$855, 726	\$91, 917	\$1, 333, 763	\$4,046, 335	8703, 752	\$343,864	\$1,666, 179	\$742,945	\$910, 903	\$1, 942, 515	\$831,217	\$149,571	75
252		98	1,076	5,740	2,673	$\begin{array}{r} 859,84 \\ 7,962 \\ 7,965 \end{array}$	1,996	$\begin{aligned} & \$ 4,718 \\ & 1,358 \end{aligned}$	$\begin{aligned} & \$ 61,46 \\ & 75,826 \\ & 75 \end{aligned}$	3,274	49,169	$\begin{array}{r} 13 \\ \begin{array}{c} 13 \\ \hline 7,615 \\ 12,251 \end{array} \end{array}$	11, 470	998	76 77 78
$\begin{gathered} \$ 233,750 \\ 810,375 \end{gathered}$	$\begin{array}{r} \$ 8,878,878 \\ \$ 521,698 \end{array}$	\$73, 555	$\begin{array}{r} \$ 288,665 \\ \$ 4,839 \end{array}$	$\begin{array}{r} \$ 66,015 \\ \$ 867 \end{array}$	$\begin{aligned} & \$ 888,751 \\ & \$ 48,770 \end{aligned}$	$\begin{array}{r} \$ 2,239,853 \\ \$ 270,132 \end{array}$	$\begin{array}{r} \$ 504,169 \\ \$ 2,748 \end{array}$	$\begin{gathered} \$ 208,441 \\ \$ 15,632 \end{gathered}$	$\begin{array}{r} \$ 1,396,735 \\ \$ 1,901 \end{array}$	$\begin{gathered} \$ 339,445 \\ \$ 74,919 \end{gathered}$	$\begin{aligned} & \$ 833,861 \\ & \$ 16,747 \end{aligned}$	$\begin{array}{r} \$ 1,125,855 \\ \$ 30,876 \end{array}$	\$831, 180	$\begin{gathered} 876,738 \\ \$ 4,144 \\ \hline 18 \end{gathered}$	79 80
\$31, 769	\$8,705,700	\$13,974	\$62, 222	\$25,035	\$396, 242	\$1, 476,508	\$196,885	\$115,073	\$206,088	\$328,581	\$260, 295	\$708, 169		\$68,694	81
8721,047	\$22, 121,173	\$112,890	\$333,781	\$50,378	\$1, 694,499	\$4, 159, 970	\$598,563	\$437,468	\$4,469, 806	\$705, 243	81, 885, 730	\$4,072, 534	\$337,551	\$227,419	${ }_{83}^{82}$
	8643, 113					\$55, 564									
	$\begin{array}{r} 8,420 \\ 55805 \end{array}$				${ }^{53} 107$	${ }^{412}$			1,407	216		3, 371		ioi	${ }_{85}^{84}$
55,716	\$0,806,	-6,275	16,470	4,413		- 81919	${ }_{\text {\$15, }}^{38,876}$	$\begin{array}{r}\$ 27,473 \\ 17 \\ \hline 179\end{array}$	${ }_{1}^{\$ 983,971}$	\$108,308	$\begin{aligned} & \$ 51,127 \\ & \hline 163,161 \end{aligned}$	\$17,792, ${ }^{117} 121$	- $15.88{ }^{\text {8 }}$	\$58,200	86 87
\$460,654	\$12,876,887	\$91, 343	\$260, 787	\$42, 048	81,077,097		\$320, 568	\$187,151	81,860, 3128	\$415, 609		81,540, 355	\$333, 149	\$120,098	88
811,158	\$611,351	\$8,717	\$2, 595	\$5, 730	\$116,798	$\$ 34,021$	845,649	\$100,077	- $\$ 89,128$	\$51,141	\$124, 244	, \$50, 052	\$4,402	\$3,874	89
6249, 235	\$2, 184, 186	\$17, 830	\$70,399	\$2,600	8447,079	¢535, 363	\$217, 159	\$128,767	81, 532,475	\$130, 185	\$572, 141	\$659, 247		\$45, 247	90
$\begin{aligned} & \$ 29,228 \\ & \$ 22,629 \end{aligned}$	$\begin{gathered} \$ 584,010 \\ \$ 394,779 \\ \$ 850 \end{gathered}$	$\begin{aligned} & 82,907 \\ & 82,557 \end{aligned}$	$\begin{aligned} & \$ 1,854 \\ & \$ 1,613 \end{aligned}$	$\begin{gathered} \$ 34,936 \\ \$ 35 \end{gathered}$	$\begin{aligned} & \$ 84,791 \\ & \$ 41,776 \end{aligned}$	$\underset{\substack{\$ 73}}{\$ 10,786}$	$\begin{aligned} & \$ 4,276 \\ & \$ 4,076 \end{aligned}$	\$43,444 $\$ 21,600$	$\begin{aligned} & \$ 141,294 \\ & \$ 126,409 \\ & \hline 6=9 \end{aligned}$	$\$ 31,492$ $\$ 20,105$	$\begin{aligned} & \$ 196,924 \\ & \$ 195,020 \end{aligned}$		(1,045		${ }_{92}^{91}$
										\$2,700		\$104	\$583		
\$6,599	\$133,284	\$350	\$241	8843	\$43,015	\$11,115	\$200	\$21,844	\$14, 885	\$8,687	\$1,904	\$31,001			94
14	138	2	4	7	16	55	9	7	28	16	20	45	7	3	95
$\begin{array}{\|} \$ 1,026,169 \\ \$ 894,206 \end{array}$	$\begin{aligned} & \$ 42,657,032 \\ & \$ 31,426,681 \end{aligned}$	$\begin{array}{r} \$ 198,156 \\ \$ 178,938 \end{array}$	$\begin{aligned} & \$ 579,636 \\ & \$ 407,914 \end{aligned}$	$\begin{array}{\|} \$ 177,631 \\ \$ 147,308 \end{array}$	$\$ 8,113,053$ $\$ 2,719,703$	$88,304,204$ 86, 512, 638	$\left\lvert\, \begin{aligned} & \$ 1,305,471 \\ & \$ 1,179,629 \end{aligned}\right.$	$\begin{aligned} & \$ 824,776 \\ & \$ 757,615 \end{aligned}$	\$6, 277, 279 84, 712, 581	\$1, 479,680 181,080, 998	\$2, 906, 626 \$2, 376, 866	\$6,294, 223	$\$ 1,169,813$	\$376,990	${ }_{97}^{96}$
10 721	$\underset{13,335}{111}$	$\begin{array}{r} 2 \\ 120 \end{array}$	$\begin{gathered} { }_{41}^{6} \end{gathered}$	$\begin{gathered} 3 \\ 70 \end{gathered}$	$\begin{array}{r} 10 \\ 1,341 \end{array}$	$\begin{array}{r} 43 \\ 3,189 \end{array}$	$\begin{gathered} 5 \\ 375 \end{gathered}$	44^{7}	$\begin{array}{r} 24 \\ 1,433 \end{array}$	$1,187$	$\begin{array}{r} 17 \\ 834 \end{array}$	$\begin{array}{r} 32 \\ 3,071 \end{array}$	$1,121^{7}$	177	${ }_{99}^{98}$
701	12, ${ }^{260}$	120	8 413	$\begin{array}{r}3 \\ 7 \\ \hline\end{array}$	16 1,341	74 3,133	293 ${ }^{9}$	280	50 1,433	${ }_{93}^{13}$	$\begin{array}{r}22 \\ 834 \\ \hline\end{array}$	41 2,941	13 1,001	152	100
............	104						22	4							
												10			
	51									6		14			
	949					31	60			170		117	80	25	
	$3{ }_{30}^{1}$							20				3	10		109
20	41					25		100		80					111
		3	6										7	3	112
	36		i						$\begin{aligned} & 2 \\ & 5 \\ & 5 \end{aligned}$			11	1		114
	23											$\begin{gathered} 1 \\ 7 \\ 7 \end{gathered}$	1	1	115
	${ }_{28}^{15}$		3		2 3	10 6	$\stackrel{2}{2}$		4		$\begin{aligned} & 3 \\ & \hline \end{aligned}$	6	4		117
2	,		1		3	8			2		1	3	1	1	118
	15								1			1			120

${ }^{1}$ 1ncludes establishments distributed as follows: Alaska, 1 ; District of Columbia, 2.

Census Bulletin.

MANUFACTURES.

COTTON MANUFACTURES.

Hon. William R. Merriam, Director of the Census.

Sir: I transmit herewith, for publication in bulletin form, a report on cotton manufactures, prepared under my direction by Mr. Edward Stanwood, of Boston, acting in the capacity of an expert special agent of the division of manufactures of the Census Office.
In the presentation of the statistics for the industry at the census of 1900 , establishments chiefly engaged in the manufacture of cotton small wares, which at prior censuses were included as part of the industry, have been excluded, and separately treated, both in this report and in the general classification of industries.
Although the industry as a whole shows a fair percentage of increase for the decade ending with 1900, there have been periods of great depression interspersed with those of prosperity. The notable feature of the industry during the last ten years was the wonderful growth and universal prosperity of the industry in the Southern states.
The statistics of the cotton manufactures proper are presented in 24 tables: Table 1 showing the annual imports of manufactures of cotton from 1821 to 1900; Table 2 showing the annual exports of cotton manufactures from 1826 to 1900 ; Table 3 showing the annual exports of forelgn manufactures of cotton from 1821 to 1900 ; Table 4 being a comparative summary of cotton manufactures for the several censuses from 1840 to 1900; Table 5 showing the chief features of the statistics for 1900 for cotton goods and cotton small wares, separately, and the per cent that each industry is of the
total; Table 6 showing the number of spindles in cotton mills within 30 miles of Providence, R. I.; Table 7 being a comparative summary of capital invested, by geographical groups, 1890 and 1900; Table 8 showing, for corporations, the capital as reported at the census of 1900 , compared with their capital stock; Table 9 showing the number of wage-earners, men, women, and children, by geographical groups, 1880,1890 , and 1900 ; Table 10 showing the percentages of men, women, and children of total wage-earners, by geographical groups, for 1880, 1890, and 1900; Table 11 being a comparative summary of miscellaneous expenses, 1890 and 1900; Table 12 showing the quantities of raw cotton produced, imported, exported, and retained for consumption, 1880 to 1900; Table 13 showing, by states, the quantity and cost of domestic cotton, other than sea island, consumed, 1880 to 1900; Table 14 showing the kinds, quantity, and value of products, 1890 and 1900; Table 15 showing the additional value added by finishing processes to products of mills after spinning and weaving, both in cotton mills and in independent establishments; Table 16 showing the amount of yarn spun, coarse, medium, and fine, by states, geographically arranged, 1890 and 1900; Table 17 showing the active cotton spindles in the entire textile industry, by states, geographically arranged, 1890 and 1900; Table 18 showing the spindles in cotton mills, by states, geographically arranged, 1880, 1890, and 1900; Table 19 showing the annual sales of frame spindles from 1890 to 1900; Table 20 showing the number of spindles to each wage-earner and the labor cost per spindle, by states, geographically
arranged, 1880, 1890, and 1900; Table 21 showing the classification of looms, by geographical groups, 1890 and 1900; Table 22 presenting, for 1900, the number and capacity of spinning mills, of weaving mills, and of mills which do both spinning and weaving, by states, geographically arranged; Table 23 showing a comparative summary, by states, geographically arranged, 1840 to 1900 ; and Table 24 showing the detailed statistics of the industry, by states, for 1900. The statistics of the manufactures of cotton small wares are presented in two tables: Table 25 showing a summary of the industry for 1900; and Table 26 presenting the detailed statistics, by states, for 1900 .

In drafting the schedules of inquiry for the census of 1900 care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the general heads of the inquiry except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital-that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries-was first called for at the census of 1890; no definite attempt having been made, prior to that censas, to secure a return of live capital invested.

Changes were made in the inquiries relating to employees and wages, in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1900 the greatest and least number of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by asing 12 , the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wageearners during the entire year may have resulted in a variation in the number, and should be considered in making comparisons.

At the census of 1890 the number and salaries of proprictors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was ascertained, and no salaries were reported for this class. It is
therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.
Furthermore, the schedules for 1890 included in the wage-earning class overseers, foremen, and superintendents (not general superintendents or managers); while the census of 1900 separates from the wage-earning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890. With the exception of several other changes of a minor character in the special features of the schedule, the investigation has been conducted along the lines followed at the census of 1890 .

In some instances the number of proprietors and firm members, shown in the accompanying tables, falls short of the number of establishments reported. This is accounted for by the fact that no proprietors or firm members are reported for corporations. The reports for cotton manufactures proper show a capital of $\$ 460,842,772$ invested in the 973 establishments reporting for the industry. This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, but does not include the capital stock of any of the corporations. The value of the products is returned at $\$ 332,806,156$, to produce which involved an outlay of $\$ 7,123,574$ for salaries of officials, clerks, etc.; $\$ 85,126,310$ for wages; $\$ 21,650,144$ for miscellaneous expenses, including rent, taxes, etc.; and $\$ 173,441,390$ for materials used, mill supplies, freight, and fuel. For the 82 establishments manufacturing cotton small wares, the principal items were as follows: Capital, $\$ 6,397,385$; salaries, $\$ 226,625$; wages, $\$ 1,563,4 \pm 2$; miscellaneous expenses, $\$ 462,534$; cost of materials used, $\$ 3,110,137$; and value of products, $\$ 6,394,164$. It is not to be assumed, however, that the difference between the aggregate of these sums and the value of the products is, in any sense, indicative of the profits in the manufacture of the products during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. The value of the product given is the value as obtained or fixed at the factory. This statement is'necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Chief Statistician for Manufoctures.

COTTON MANUFACTURES.

By Edward Stanwood.

Civilized man finds three things absolutely essential to his life and comfort-food, shelter, and clothing. The labor necessary to procure the indispensable articles which represent these wants diminishes as one approaches the equator, and conversely it increases as one passes from torrid to temperate climates and thence ouward toward the poles of the earth. Tillage of the soil, the construction of dwellings, and the conversion of skins and furs or of vegetable or animal fibers into clothing, are arts which establish themselves naturally wherever man fixes his abode. The provision of shelter always remains a local art, from the necessity of the case. An adequate supply of fuel, which is a concomitant of shelter, was frequently the first want for which pioneer communities in early times were compelled to provide from without. Next they supplemented their own provision of clothing with fabrics and garments made elsewhere; and finally as population became dense, and labor was drawn from agriculture and was specialized in commerce and manufactures, they were obliged to import their food.

In the sense indicated, the colonists of America were engaged in all the arts necessary to supply their own wants, and among those arts was the manufacture of cloth and of clothing. They were prohibited by the laws of the mother country from carrying on manufactures for purposes of trade and profit, but the household manufacture always existed. A considerable part of their clothing was made from domestic material, spun and woven in their homes, and made up by members of their own families. When Hamilton wrote his great Report on Manufactures, in 1791, he referred to certain branches of the textile industry as already established, yet at that time there was but one cotton factory where spinning was carried on by means of machinery moved by waterpower, and that factory had been established less than a year and had but 72 spindles. There were no woolen mills in the modern sense of the term, but there were many fulling mills where wool was prepared for household spinning.

Although some progress was made during the next twenty years, it was not until the War of 1812 cut off foreign supplies that the cotton manufacture was truly "established." Since that time it has expanded steadily and marvelously. During every decade, not even
excepting that which covered the years of the Civil War, there has been an increase in the number of operatives employed and in the quantity and value of the goods manufactured. The census of 1850 showed a total value of products of $\$ 61,869,184$. Ten years later, in 1860 , the value of products had almost doubled, being $\$ 115,681,774$. In 1870 the value had increased to $\$ 177,489,739$, a large part of the increase being due to inflation of the currency. The decline to normal price in the ensuing decade masked the actual growth of the industry, and in 1880 the value of products was only $\$ 192,090,110$. In 1890 the value was $\$ 267,981,724$; at the census of 1900 it was $\$ 339,200,320$-five and a half times as much as in 1850 , when it was already the leading manufacturing interest in the United States. It was the first, the largest, and the most typical factory industry in the country, and still holds its ranks, almost undisputed, in all these respects.

The growth of the industry is sufficient proof, were such proof needed, that it has been profitable. Nevertheless it has been subjected to many and sometimes protracted seasons of discouragement and loss. The margin between the price of a pound of raw cotton and that of a pound of goods, whether yarn or cloth, is, in the face of the keen competition which exists, so small that the profits of a mill during a whole year may depend upon the luck or judgment of the treasurer in buying his raw material at the right or the wrong season, which in turn largely depends upon his skill or his fortune in forecasting a large or a small cotton crop. So far as that were the case, what one treasurer might lose another treasurer would gain, and the ultimate effect upon the profits of the industry as a whole would be nil. But the fact of a large or a small cotton crop makes an enormous difference in the profits of manufacturers. The general condition of the country determines the demand for goods, and consequently the price; but the cost of production depends greatly upon the price of cotton. Cheap cotton and a quick demand make the manufacture profitable; dear cotton, a sluggish rate of consumption, and labor troubles reduce or extinguish profits. Unfortunately the latter set of conditions is too often presented. Fortunately it is not usually met in so virulent a form as to cause actual loss, and the situation does not ordinarily last long.

Upon the whole, the history of the past ten years was not one of prevailing prosperity. Two influences interfered to reduce profits--an extremely wide fluctuation in the price of cotton, and the great increase of competition caused by the growth of the industry in the Southern states. The first of these influences was general in its application; the other applied to Northern mills only. The new Southern mills, equipped with the most efficient machinery, favored by peculiarly free conditions as to labor, chiefly engaged in the production of goods for which the demand was most steady, and helped not a little by close proximity to the field of supply of their raw material, were able to show constant and large profits; whereas their Northern competitors passed through seasons of no profit or of moderate gains, with only one or two periods when their business was eminently satisfactory.
The condition throughout the census year 1889-90 was highly favorable to manufacturers, and they made extraordinary profits. Barely 1 per cent of the cotton spindles in the country was idle, and most of those were so because they were antiquated and not worth running. But a rise in the price of cotton, from 10 cents a pound in January, 1890, to $11 \frac{1}{2}$ cents in April, brought discouragement, because a slackened demand for goods compelled a reduction in the price of cloth at the same time that the cost of producing it was increased. The change to unfavorable conditions was felt first in the great print-cloth center, at Fall River, where a stoppage of the mills and a general curtailment of production became necessary in August. Other branches of the cotton manufacture continued fairly profitable for a few months longer, but before the end of the year all branches were depressed. There was, nevertheless, a somewhat speedy recovery; an improvement set in quite early in the spring for all except print cloths, which continued to be weak. There was an extraordinary fall in the price of cotton, owing to the prospect of a large crop, from $12 \frac{3}{4}$ cents in May, 1891, to 8 cents in June. Notwithstanding this favorable turn of the market, the Northern mills felt the first check to prosperity, owing to Southern competition. Again in September of that year it became necessary both to curtail production by the Fall River mills and to reduce wages. This time the means taken were effectual. Stocks were worked off and the market demand became strong. Accordingly the year 1892 was one of the good years of the industry. No complaints were heard from any part of the country.
ln 1893 there was once more a reverse. Cotton manufacturing in England, which had been in an extraordinarily depressed state in 1892 , now became prosperous, whereas in the United States it was dull and unsatisfactory. In August there were strikes and closing of mills, and the unfavorable conditions continued throughout the year 1894. No doubt apprehension by manufacturers of tariff legislation less
favorable to their interests than the existing import duties went far to create the difficulties with which they contended. The passage of the act of 1894, however, did no injury to the interests of the manufacturers, and the industry revived, and was in a prosperous condition in 1895. Stocks were small, prices were fair, and although cotton was higher, the results of the year were remunerative. This was brought about because mills were well provided with stocks of lowpriced cotton of the 1894 crop, and the prospect of a short crop in 1895 gave tone to the market for cloth. Orders were large, prices advanced, machinery was in full operation, and the year 1895 ended with excellent prospects of a continuance of prosperity.

These prospects were not realized. Early in 1896 the market demand began to decline, and as the machinery continued in operation, goods accumulated. The situation became such that in June, efforts were made by means of auction sales of large stocks of goods to reduce the surplus. There was also the suggestion that there be once more an organized curtailment of production, which was not carried out. The attempt to work off the surplus goods was successful, and the prospects of manufacturers brightened to a certain extent, but it was soon discoyered that the market had been choked. Cotton advanced in price, narrowing the margin between the cost of raw cotton and the selling value of finished goods, and the demand was not great enough to absorb the output of the largely increased number of mills. The depression that existed in 1896 was due to the agitation and uncertainty that always prevail in a year of Presidential election, which were in this instance more acute than usual. But the peculiar situation of the two markets that determine the financial result of a cotton manufacturer's operations prolonged the depression, and continued it after other branches of business had begun to experience the great prosperity that marked the closing years of the century. Many mills were shut down in May and June, 1897. Renewed sales of goods by auction in the spring broke prices and demoralized the market, as well as reduced to petty proportions the demand for goods of current manufacture. There was another curtailment of production, then a great drop in the price of cotton; but the quick absorption of goods, owing to the generally prosperous condition of the people, rectified the situation altogether, and manufacturers entered upon a somewhat prolonged period of great prosperity. The only interruption was in the print-cloth branch, which was in a very unfavorable condition at Fall River in 1898, and the average return upon capital by the mills of that city for the year was only 2.2 per cent. But prosperity came to Fall River also during the year 1899, beginning about the month of March, and during the whole of the census year, from June, 1899, to June, 1900 , all the mills of the country were fully occupied. Goods were produced from cotton costing within a
fraction of the lowest on record, and although they were sold at prices which were low as compared with the average for any five years in the past, yet they yielded a profit which, taking the country as a whole, has never been exceeded.
It must always be borne in mind that the foregoing statements apply more particularly to establishments and to the conditions of trade in the manufacturing center's of the North. Prior to the close of the census year there had been scarcely any interruption of the exceeding prosperity of Southern spinners. They did not curtail production when many Northern manufacturers were in a state bordering upon despair: on the contrary, a large number of their mills were running day and night. They did not seek to dispose of their product by auction, but sold all they could make at prices which gave their stockholders handsome dividends.

THE FOREIGN TRADE IN COTTON GOODS.

It is further to be noted in this connection that for the first time in the history of American cotton manufacturing, the domestic market was more than once relieved and steadied by the exportation of goods to foreign markets. This statement does not signify that the export of domestics is a new thing, for it was a feature of the American foreign trade eighty years ago, but that for the first time the existence of an
important outlet for such goods saved manufacturers from a disastrous glut, and mitigated the keenness of the competition that became most serious when the South entered the market as a great producer.
The history of the trade of the United States in cotton goods presents some peculiarities which distinguish it from the trade in any other class of articles. In a broad sense the cotton manufacturers have possessed the home market for three-quarters of a century. Nevertheless, in the intervening years there has been a large and important iniport trade. The seeming paradox disappears when the first of the following. tables is critically examined. The imports consist mostly of goods which American manufacturers have never undertaken to produce on a large scale. An overwhelming proportion of the manufactures of cotton consumed in this and other countries consists of plain cloth woven from coarse or medium yarns. Save in a few exceptional years, the American manufacturers have been able to supply fully the demand for such goods. Meanwhile the arrangement of the tariff has been usually such that foreiga manufacturers were not permitted to compete successfully in this market.
Table 1 shows the annual imports of manufactures of cotton from 1821 to 1900 , inclusive, as compiled from the annual reports on Commerce and Navigation, published by the United States Treasury Department.

Table 1.-ANNUAL IMPORTS OF MANUFACTURES OF COTTON, 1821 TO 1900, INCLUSIVE. ${ }^{1}$

Years.	Total value.	CLOTHS.				Value of clothing, ready. made, and other wearingapparel, not incinding knit goods.	Value of embroiderjes, laces, insertings, trimmings, and lace ourtains, cords, and gimps.	Value of knit goods made on knitting machines or knitby hand.	THREAD (NOT ON BPOOLS), YARNS, WARPS, OR WARP YaRNs.		JEANS, DENIMS, AND DRILLINGS.		All other manufactures.
		Bleached and unbleached.		Printed, painted, and colored.									
		Square yards.	Value.	Square yards.	Valuc.				Pounds.	Value.	Square yards.	Value.	Value.
Total.	\$91,972,247		829, 300, 792		\$2, 709,603			\$5, 422, 605		\$1,881,685			\$2,657, 562
1821	7,788,514		2, 873, 383		4, 366, 407			397, 586		151,138			
1822	10,680, 216		3,774,992		5, 856, 763			866,618 629,211		181, 843			
1823	8,869,482		3, 2377,513		$4,899,499$ $4,609,236$			629, 211		103, 259			
$\begin{aligned} & 1824 \\ & 1825 \end{aligned}$	7, 239,759 $12,509,516$		1,991, 6661		4, $7,709,830$			545, 915		201, 549			375,771
1826	8,348, 034		2,565, 004		5, 056,725			404, 870		175, 143			
1827	9,316, 153		2,841, 215		5,316,546			439, 773		263, 772			$\begin{array}{r} 454,847 \\ 1,038,439 \end{array}$
1828	10, 996, 230		2, 839,547		6,133, 844			640,360 586,997		344,040 173,120			$\begin{array}{r} 038,439 \\ 412,838 \end{array}$
1829	8, 362,017 $7,862,326$		$2,784,984$ 2,716,037		4, 404, 078 $4,356,675$			586,997 387,454		173,120 172,785			$\begin{aligned} & 412,838 \\ & 229,375 \end{aligned}$
Total.	116, 486, 231		21,065,018		75,274,878			10,268, 156		4,324,967			5,553, 212
1831	16, 090, 224		4,399, 251		10, 046, 500			887, 957		393, 414			363,102
1832	10,399, 653		2,379, 301		6, 355, 475			1, 035,513		316,122 343,059			313,242
1833	7, 660,449		1,218,513		5, 181, 647 $6,688,823$			623,369 749,356		343, 793			533, 390
1834	$10,145,181$ $15,367,585$		1,793, 219		$6,688,823$ $10,610,722$			906,369		544,473			558,507
1836	17,876,087		2,795, 185		12, 192,980			1, 358, 608		555, 290			974,074
$1837 . .$.	11,150,841		1,647, 388		7,087, 270			1, 267, 267		404, 603			744, 313
1838	6,599, 330		1,007, 191		4,217,551			767, 856		222, 114			384,618
1839	14,692, 397		2, 158,703		9,000, 216			1, 879, 783		779,004			874, 691
1840....	6,504, 484		918, 203		3, 893, 694			792,078		387, 095			513, 414
Total.	136, 804, 969		16,674, 286		88,005, 850		\$3,612,457	11, 503, 447		6,014,843			10,994,086
1841	11,757, 036		1,573, 722		7, 434,727			980, 639		863, 130			904,818
1842	9,578,515		1,285,947		6, 168,544			1, 027, 621		457, 917			638,486
1843	2,958, 796		-393, 105		1, 739,318			307,243		26, 227			492,903
1844....	13, 641, 478		1,670,769		8, 894, 219			1, 121, 460		637,006			1, 318, 024
$1845 . .$.	13,863, 282		1, 823,451		8,572,546			1,326,631	. \cdot -	565, 769			1,574,885
1846	13,530,625		1,597, 120		8,755,392			1, 308, 202		656, 571			1,213, 340
1847	15, 021,550		2,630, 979		10,023,418			1, 173, 824		511, 136			682, 193
1848	19, 138, 141		2,487, 256		12, 490, 501		1, 387, 218	1,383, 871		727,422			661, 873
1849	16, 540, 200		1, 438, 635		10, 286, 894		1, 552,586	1,315, 783		770,509			1,175,798
1850	20, 775, 346		1,773,302		13, 640,291		672,653	1,558, 173		799,156			2,331,771

Table 1.-ANNUAL IMPOR'TS OF MANUFACTURES OF COTTON, 1821 TO 1900, INCLUSIVE1-Continued.

years.	Total value.	сцотня.				Value of clothing, ready. made, and ingapparel, notinclud- ing knit goods.	Value ofembroideries, maces, inserting,trimmings, and lace cords, and gimps.	Value of knit good made onknitting machines hand.	thread (not on SPOOLS), YARNS, War Yarng Yarns.		$\underset{\substack{\text { JEANB, DENTMS, } \\ \text { DRLLLINGE. }}}{\text { and }}$		$\begin{aligned} & \text { All other } \\ & \text { mannfac- } \\ & \text { tures. } \end{aligned}$	
		Bleached and unbleached.		Priuted, painted, and colored.										
		Square yards.	Value.	Square yards.	Value.				Pounds.	Value.	Square yards.	Value.	Value.	
1.	\$265, 744,157		864,692,197		8112, 936, 494		\$19,794,631	\$27, 728, 527		\$12, 486, 172			\$28, 106, 136	
$1851 . .$ 1	$\begin{aligned} & 22,921,093 \\ & 20,224,552 \end{aligned}$		$1,499,044$ $2,477,486$		$\begin{aligned} & 14,449,421 \\ & 11,553,306 \end{aligned}$		$2,715,425$ $2,289,863$	2, 117, 899 2, 152, 340		980,839 8878 840			$\begin{aligned} & 1,158,465 \\ & \hline 863,717 \end{aligned}$	
1853.	28,573,070		2,718,846		14,623, 268		4, 2 , 26,6	3, $2,002,631$		1,095,518				
${ }_{1855}^{1834} \ldots$	($\begin{aligned} & 34,803,055 \\ & 18,524,167\end{aligned}$		- ${ }_{12,56191,217}$		17, 423, 249		5, 8888 ,667 655	$3,013,664$ $2,055,595$		1,076, 987			- ${ }_{\text {6,009, }}^{2,011,271}$	
18	27,109,018		19,110, 752				1,385,0	2,516, 848						
1857	29, 815,480		21, 441,082				1,343,5	3, 210, 287		1,401, 153			2,419, 380	
1858 1859	-		741,077 784,964		12,391,713		-660,649			1,080,671				
1860	38, 215 ', 311		1,164, 207		25,934, 004		712,379	4, 410,359		1,776, 314			4, 419,268	
Total.	186, 119, 390	160, 189,415	29,195,616	152, 889, 316	42, 920, 114	83, 349, 446	7,337, 253	28,688,747		10,741,743	28,828, 725	\$6, 996,084	56,880, 887	
1861	24, 985, 389	13.1.....	705,156		14,9		341	3, 822,761		1,380,119			29	
1863	14,121, 889	${ }^{15}$,911, 460	1,527, 155	17, 2007,719	1, 1,2172385		㐌 693,672			${ }^{1,11605,7}$			4, $8,372,846$	
1864	14,341,501	12,039, 629	1,424,775	9,689,441	1,737,001		741, 310			1,279, 424			9,158,991	
1865	7,558, 932	7,400,680	1,059, 215	10, 278, 826	1, 452, 930		381,851	2,025,767		1, 608 , 292	2,569,706	466,835	1,564,042	
1866	29,519,228	55, 127,685	7,808,027	48,762, 557	6,944,	676	1, 467, 392	5,020, 167			13,473, 049	2,146,377	,997,060	
1868	16,660, 074		- ${ }_{2}, 795$,		5, $3,15,849$	1, $1,445,459$	1, $1,541,327$	5, ${ }^{5} 420$		1,617,149		1,715	- $3,656,383$	
1869	20, 481,312	26,860,638	3,533, 132	21,480,786	2,960,918			4,007, 276			6,947,359	991,051	8,988,935	
1870	23,380, 053	29,506, 154	3,925, 266	30,027, 259	4,003,037			4,734, 475			5,888,611	818,506	9,898,769	
Total.	266, 905, 606	211, 443, 055	26, 001, 955	189, 363, 275	25, 851, 170			51,237,968			29, 963,783	4,330,640	159, 483, 873	
1871	${ }_{\text {2 }}^{29,876,640}$	36,938, ${ }^{\text {a }}$	4, 8183,6	${ }_{36}^{28,975,8}$	3,634,315			5,085,993			46		15, 535, 459	
1873	${ }_{35,201,324}$	31, 152,540	8,865,5	33, 355,661	5,028,256			5,449,208			6, ${ }^{6}$	536,		
1874	28,193, 869	26,361, 866	3,093,933	${ }_{23}{ }^{33}, 380,235$	3,155, 494			4,621, 259			2,220,653	327, 138	16,996, 045	
1875	27, 738,401	${ }_{23,418,257}$	2, ${ }^{2} 87,222$	18, 399 , 891	2,593,936			4.948,024			1,955, 825	268,739	17,054,480	
1876	22,725,598	15,007, 450	1,845,653	15,501, 344	2,074,944			4,682			1, 299,627	182, 257	13,939, 873	
1878	19,081, ${ }^{187}$	11, 97676,594	1, $1,0767,142$	- ${ }^{10,299,915}$	1, 1 1086,426			- ${ }^{3,804,} 6820$			-641,611	86,919 104,633	12, 379,751	
1879.	19,922,310	6,673, ${ }^{\text {, }}$, 88	1,789, 359	$5,195,126$	707, 064			4,997,335			1,043, 268		13, 299, 486	
1880 ...	29,929,366	9, 466, 163	1,020,277	9,341,639	1,179, 999			7,514,989			6,422,387	1,067,664	19,146, 437	
Total.	302, 987, 592	47,307, 813	5,015,870	199, 782,036	24,741, 393	3,134,912	74,346,572	71, 435,037	11,184,870	6,303,612	24, 895, 570	4,384, 210	113, 625,986	
1881	31,219, 329	11, 236,712	1, 253, 428	7,128, 360	928,043			8,391,634			7,608,861	1,322,326	19, 813, 898	
1888	34, 3551,292	13, 798, 147	$1,503,127$	6, 687, 837 7,163, 340	- 924,602			$\begin{aligned} & 7,501,49 \\ & 8,560,063 \end{aligned}$			\|r	re797,527	2, 277, 5994	22, 164,520
	29,074,626	1, 687 , 613	1,174,322	119,504,784	2,187,044		10,012, 394	6,994,341	$1,895,699$	1, 1 , 399			7,574,345	
1885.	27,197,241	856, 213	103, 200	124, 274,281	2,653,320	408, 810	10, 123, 234	6,307, 239	1,909, 480	1,62, 202			6,949,236	
	29, 709, 266	2, 176,606		129, 551,543	3,467, 485	384,770	11,632, 351	6,858,072						
1888.	28, 917, 799	3,021,696	301,636 82,613	124,928,404	3, ${ }_{3}^{3,0356,532}$		10,467,073	${ }_{\text {6, }}^{6,910,104}$	1, $1,894,798$	919,994			6,871, 244	
1889	26,805, 942	2, 577 , 230		${ }^{127}$ 27808, ${ }^{\text {, }}$, 59	${ }_{3,696,194}$	${ }_{883,612}^{34,}$	9,591, 943	${ }_{6}^{6,389,325}$	1, $1,744,852$	- 960,703			$\stackrel{\text { c, }}{5} 5$	
1890.	29,918,055	1,508,239	129,588	${ }^{1} 26,251,402$	3, 373, 653	336,655	11,447,670	7,149, 030	1,706, 188	904, 135			6,577, 324	
Total.	14, 624, 770	20,444, 335	1,831,419	2412, 063, 936	52, 536,729	17, 190,458	123, 266,407	54, 733, 325	20, 891, 442	8,426, 407			56,640,025	
1891	29,712, 624			131,055, 214	${ }^{24,237,221}$	1, 201, 278	10,589, 490							
1892	28, 223,841	1,572, 224	140,001	${ }_{1}^{132,407,238}$	$24,505,666$ 2,536 2	1, $1,261,848$		5, 833, 652	1, $1,426,585$	664,952			4, 669, 433	
1894	-23, $23,560,293$	3, ${ }^{3}, 152,798$	${ }_{95,565}^{261,202}$	127, 1724,415	23, 385,241	(1,682,049	12,741,798	6, 392, 175 $4,360,655$ 6.58	1,734,418	${ }^{762,653}$			6,184,141	
$1895 . .$.	33,196,625	1, $1,544,421$	125,816	145, 342, 525	25, 428, 243	2,766,877	11,686, 016	6,535, 179	1,784,855	658,702			${ }_{5}^{4,995,792}$	
	32,437, 504	2,136,657		141,161, 822	${ }^{24,921,060}$	2,683, 315	10, 878, 954	6, 190, 672						
1898.	${ }_{27}^{34,267,2936}$	3,177, 241 $1,520,108$	273,654 120,767	- ${ }_{1435,938,}^{13975}$	$24,404,025$ $25,313,888$	2, ${ }^{2}$, 627,222	12, ${ }_{11}$		1,664, 117	647,388 687,999			8,307, 164	
	32, 054,434	1, 250, 932		${ }^{\text {2 } 51,196,236 ~}$	26,649,014	1,027, 306	14,550, 115	4, 335, 269	2, 225,974	- 8849,819			$4,291,110$ $4,535,988$	
1900	41, 296, 239	3, 061, 790	357, 604	${ }^{1} 61,986,063$	28,156,301	1, 231, 231	19, 208, 165	4,75,762	5,272,491	2,098,958			5,528,218	

Table 1 shows that from 1821 to 1855 the value of plain, uncolored cotton cloth imported exceeded $\$ 4,000,000$ in a single year only, the year 1831; and that the annual average value of such goods imported declined from $\$ 2,930,079$ in the decade $1821-1830$, to $\$ 2,106,502$ in the decade 1831-1840, and to $\$ 1,667,429$ in the decade 1841-1850. Except during the three years 1855-1857 the importation was not materially greater during the ensuing decade; and notwithstanding the great advance
of the country in population and wealth, the annual average value of the same class of goods in the years 1891-1900 was but $\$ 183,142$. This class consists of fabrics which are reported by the census as plain cloths for printing and converting, sheetings and shirtings, duck, etc., the value of the domestic production of which is so large that the foreign importation is undoubtedly less than 2 per cent of it.

The same table shows that the average value of the
imported oloths per square yard is much above the value of the domestic article. This is because the importation is confined almost exclusively to fine goods, which American manufacturers bave only lately begun to produce. Another class of importations which is larger than that already mentioned is colored goods. Some purchasers have so rooted a preference for foreign ginghams and calicoes that they will not buy the American product. The imports of such goods have lately shown a tendency to increase, but the value of colored cloth imported in 1900, when the amount was the largest in recent years, was little more than twice the annual average from 1860 to 1883 . The most important im-
portations of cotton are the fancy articles, classed as embroideries, laces, trimmings, cords, gimps, etc., which, r-ith knit goods, constitute more than one-half of the total value all articles of cotton imported. In short, the trade in foreign manufactures of cotton is almost altogether in special classes of goods which are not made extensively in the United States, or in articles which the customs and habits of buyers lead them to prefer, regardless of considerations of cost or superiority.
Table 2 shows the annual exports of cotton manufactures from 1826 to 1900 , inclusive, as compiled from the annual reports on Commerce and Navigation published by the United States Treasury Department.

Table 2.-ANNUAL EXPORTS OF MANUFACTURES OF COTTON, 1826.TO 1900, INCLUSIVE. ${ }^{1}$

${ }^{1}$ Annual Reports on Commerce and Navigation, United States Treasury Department.

Table 2.-ANNUAL EXPORTS OF MANUFACTURES OF COTTON, 1826 TO 1900, INCLUSIVE1—Continued.

years.	Total value.	cloths.				Wearing ap parel.	$\begin{aligned} & \text { All other } \\ & \text { manuu- } \\ & \text { factures. } \\ & \text { Value. } \end{aligned}$
		Uncolored.		Colored.			
		Square yards.	Value.	Square yards.	Value.		
Total...	\$66, 210,965	445, 869, 911	\$39,672,104	190,462, 398	\$16, 454, 141	810, 084, 320
${ }_{1872}^{1871}$	${ }^{3,558,136}$	14, 832, 981	$1,776,694$ 1,317	$5,083,923$ 2,844 888	724,841		1,056,601
1873	2,947,928	10, 187, 145	1,655, 116	3,585, 629	596, 912	.	695,500
1874	3,095,840	13,247, 142	1,681,209	4,625,180	668,781		745,850 819,551
1875	4, 071, 882	21, 224,020	2, 313, 270	7,593, 723	939, 061		
1876	7,722,978	59, 319, 317	5, 314,738	16,488, 214	${ }^{1}$, 455, 4642		952,778
1878		88,528,192	7, 023,463	37, 766 , 313	2, ${ }^{2}$, 9299919		1, $1,425,287$
1879	10, 853,950	$84,081,319$	6,288,131	45,116,058	3,209, 285		$1,856,634$ $1,190,117$
1880	9, 981, 418	68, 821,557	5,884,541	37,758, 166	2,956,760		1,190,117
Total...	127,491,518	1,062,022, 145	77, 387, 248	456,655,097	31, 215, 625	\$4, 265, 408	14,623, 237
1881	14, 105, 348	80, 399, 154	$6,624,374$ $9,351,713$	- $68,184,293$	4, 983,312 $2,326,319$	533,961 605,398 10,27	1,963,701
1883	${ }_{13}^{13,721,605}$	103, 634,459	${ }_{8,629}, 723$	34,066, 292	${ }_{2,648,278}^{2,364}$	770,460	1, 1773,144
1884	11, 885, 211	.99, 750,450	7,503, 361	${ }^{35,441,296}$	2, 579,866	-349, 270	1,452, 714
1885	11, 836, 591	114, 806,595	7,919,670	32,738, 123	2, 230,567	267,775	1,418,579
1886	13, 959,934	142, 547,980	9, 231, 170	51, 293, 373	3,149, 071	435, 536	1,144,137
181888	14,929,342	- $136,809,074$	${ }_{7}$,	-67, ${ }^{64,443,936}$	${ }_{3}^{4,522,612}$	- ${ }_{317,652}$	${ }_{1}^{1,359,978}$
1889	10, 212,644	77,596,862	5,577, 401	40,856, 329	2,885, 373	301, 803	1,448,067
1890	9, 999, 277	75, 716, 490	5, 480, 403	42, 309,770	2,886, 435	240,796	1,391,643
Total.	169, 240, 372	1,784, 369, 304	97,111, 912	661,332,474	37,566,275	7,558,516	27,003,549
1891		135, 529,590	9, 277,112	39,016,682			
18993		- $\begin{aligned} & 100,776,006 \\ & 124,349,278\end{aligned}$	6, ${ }^{6} \mathbf{3 0 6 0 , 0 2 2}$7,6397		2,484, 360 $2,802,462$	${ }^{452,} 3566$	
1894	$\begin{aligned} & 14,140,886 \\ & 13,789,810 \end{aligned}$			61,538, 458	3, 854, 935		
1895		125, 790,318	7,034,678	58, 467,743	3,444,539	518,730	2,791,863
1896	16, 837, 396 $21,037,678$ $17,024,092$ 23, 566, 914 24,003,087	166, 391, 639 230, 123, 603 191, 092, 442 $3034,063,083$264,374	9,539, 199	58,747, 729	3,419,158	708,099	3,170,940
${ }_{1898}^{1897}$			$\xrightarrow{12,511,389}$	-83,409,441			2, $2,799,077$
1899.			13,748,619	108, 940, 972	5,221, 278	1,275, 839	3,321, 178
1900			13, 229, 443	87, 880, 515	4,839,491	1,602,608	4,331,545

${ }^{1}$ Annual Reports on Commerce and Navigation, United States Treasury Department.

Table 2 shows that the exportation of cotton goods has been a feature of the foreign trade for more than seventy-five years. It is impossible to go further back than 1826, because the separate values of articles exported were then reported for the first time. The trade was established soon after the foundation of the modern factory industry, at Waltham, Mass. It became prominent when that first great success was followed up in the development of Lowell. As early as 1851 the annual value of cotton goods exported exceeded $\$ 7,000,000$; and it is safe to say that this amount represented more than one-half of the total value of American manufactures of all kinds sent to foreign countries in that year. The year 1860 marked the temporary culmination of this trade, when the declared value of cotton manufactures exported was but a trifle less than $\$ 11,000,000$. The Civil War ensued and not only this branch of the foreign trade, but the cotton trade itself also, was wellnigh annihilated for several years.
When the growth of the cotton crop was resumed, the United States had lost its foreign markets, had given up its shipping formerly engaged in the foreign trade, and had closed most of the mercantile houses in other lands which had previously given its merchants access to the markets of Asia, Africa, and South America. Moreover, the extraordinary increase of population and of
wealth at home, and the great demand for cloth to replenish family supplies exhausted during the war period, gave manufacturers ample field for their enterprise in supplying the home consumption. In these circumstances scarcely any attempt was made to recover foreign warkets. The exportation declined to a value of less than $\$ 1,500,000$ in 1864 , and from 1866 to 1876 , eleven years, the annual average was barely $\$ 4,000,000$. From 1877 onward there was a moderate revival of the trade. In only five years in the last quarter of a century, 1877 to 1902, has the value fallen below the high mark of 1860 , and on the whole there has been steady progress. The following table shows the value of exports of cotton goods in five-year periods:

PERIOD.	Total exports.	Yearly average.
1877-1881.	\$56,615,219	\$11,323, 044
1882-1886.	65, 231, 718	13, 046,324
1887-1891.	61, 759, 309	12,251,862
1892-1896.	70, 003, 724	14,000, 745
1897-1901.	105,904, 189	21,180,838

The exportation during the ceusus years of the last half century has been as follows: In $1860, \$ 10,934,796$; in $1870, \$ 3,787,282$; in $1880, \$ 9,981,418$; in 1890 , $\$ 9,999,277$; and in $1900, \$ 24,003,087$. These figures do not show the actual progress so well as the preceding
table, inasmuch as the exportation in 1880 and again in 1890 was less than during the years preceding or following those dates. The exportation in 1900 was the largest on record in declared value, although in the quantity of goods it was not so great as in 1899.
It was not possible, of course, to account for all the exports declared upon the clearing of vessels for foreign ports, since a considerable part of the domestics sold abroad are made for the home market and are purchased for sale in other countries after they have passed wholly out of the control and the knowledge of manufacturers; but so far as the managers of mills are able to trace their products, they furnished goods for export during the year $1899-1900$ to the value of $\$ 15,357,502$, or about five-eighths of the value of cloth exported during the fiscal year. Almost 60 per cent of the total value represents the product of Southern mills, and nearly 37 per cent the goods of New England. It is an interesting fact that South Carolina, which was histor-
ically and politically, during the years preceding the Civil War, the most conspicuous champion of a policy favorable to the exportation of raw cotton, upon which the planters most relied, and opposed to the fostering of manufactures of cotton, spun in its own mills in 1900 a quantity of cotton exceeding the half of its own crop, and exported close upon one-half of all the cotton cloth reported to the census as having been dispatched to foreign countries. The exact percentage of South Carolina of the total export reported was 45.5 .

Table 3 shows the annual exports of foreign manufactures of cotton goods from 1821 to 1900 , inclusive, as compiled from the annual reports on Commerce and Navigation published by the United States Treasury Department. It is presented only for the purpose of furnishing the means of ascertaining-by subtracting the amounts and values from the corresponding statistics in Table 1-the actual consumption of foreign goods.

Table 3.-ANNUAL EXports of foreign manuFactures of cotton, 1821 To 1900, inclusive. ${ }^{1}$

years.	Total value.	cLoths.				Value of clothing ready-made wearing including knit goods.	Value of ermbroidinsertings, and oflace and lace andwindow curtains.	Value of knit goods knitting or knit by haud.	THREADS (NOT ON SPOOLS), YARNS, WARPS,YARNS.		$\underset{\text { deans, denchs, and }}{\text { driLlings. }}$		All othermanufactures.
		Bleached and unbleacbed.		Printed, painted, and colored.									
		Square yards.	Value.	square yards.	Value.				Pounds.	Valne.	Square yards.	Value.	Value.
Total.	\$20, 747, 327		\$9,740,469		89, 954, 599			\$417,591		\$288, 994			\$315,674
${ }_{1822}^{1821}$	1,583, 473		1,194,910		379, 701			2,330 17314		6,532 88817			
1823	2,654, 174		1, 386,024		1, 206, 502			36, 881		24,767			
1824...	2, 561, 16		1, 929,272		1,544, ${ }_{1}^{1,231}$			${ }_{46,311}^{79,191}$		$\xrightarrow[9,412]{8,474}$			94,870
1826	2,226,090		1,018,702		1,032, 381			-74,788		63, 413			65,683
$1828 .$.	2,242, 739		730, 897		1,402, 103			44, 988		46, 736			18,015
1829 ..	1,564,940		699, 668		${ }_{7951}^{75181}$			42,222 57,104					48,723 55,316
1830	1,989, 464		823,697		995,028								55,310
Total.	23,581, 508		6, 916, 171		15,009, 337			342,713		664,813			648, 474
1831.	3,228, 858		1,211, 104		1,746, 442			57,015 62,775		70,254 29,026			144,043 167,573
1833	2,504, 218		822, 911		1,352, 1286			46, 937		134, 229			149,155
${ }_{1835}^{1834}$		1, $\begin{array}{r}893,5982\end{array}$					33,994		${ }_{87} 8,089$			19,526
	2,765,676				1,975, 156			16,689		78, 176			12,328
18837.	2, 683,418		${ }^{377,} 465$		2, 103 , 52711			41, 4460		- ${ }_{\text {29, }}$			-11,189
${ }_{1839}^{1838}$..	1, $1,255,265$		250, 773		945, 636			-12,916		- 34,082			- $\begin{array}{r}12,458 \\ 9\end{array}$
1840	1,103,489		189, 098		838,553								9,176
Total.	6,381,153		1,583,311		3,892,170		\$59, 953	107,048		539,911			198,760
			131,632		${ }_{50}^{574,603}$			16,943 4 4		198,996 208,193			7,982
1842 1843	836, 3082 308616		110,069 33,998		202, 808			4,881		15, 028			2,901
$1844 . .$.	404,648		${ }_{90,381}$		${ }^{278} \times 1434$			4,325 2,455		24,958 10,922			6,560
1845.	502, 535		162,599		281,775								44,802
1846	673, 203		357, 047		290,282			1,780		8,482 388			15,612
1847	486,135		83, 715		-640,919		9,835	20, 272					7,956
$1850 . .$.	439, 588		44, 724		274,559		30,833	22,943		21, 023			45,506
Total.	10,543,191		4,315,219		2, 939,349		284,541	290, 033		327, $20 \bar{\square}$			2,386, 844
1851	691,784		132, 020		440, 441		${ }_{30}^{31,928}$	22,287		49, 2155			40,926 57,619
${ }_{1853} 18 . \cdots$	1,018,285		401, ${ }^{4620} 5$		6 62, 540		11, 104	20, 396		69,607			173, 614
$1854 . . .$.	1,515,584		502, 387		684, 483		54, 353	62, 420					181, 146
$1855 . .$.	2,083,854		1,336,634				104,492	127,191					477, 077
1856	1,607, 340		1,145,178					17,531		${ }^{46,813}$			
1857	063		305,392 40,024		126,000		${ }_{5}^{6}$ 5, 216	6,813		10,012			208, ${ }^{289}$
858.	396, 304		${ }_{25,668}^{40,04}$				2,131	2,638		1,581			156,379
1889	331,072		64, 649		465, 592		5, 841	3, 015		27,618			497,977

${ }^{1}$ Annual Reports on Commerce and Navigatiou, United States Treasury Department.

Table 3.-ANNUAL EXPORTS OF FOREIGN MANUFACTURES OF COTTON, 1821 TO 1900, INCLUSIVE ${ }^{1}$ —Continued.

Years.	Total value.	clotes.				Value of clothing ready-made and other wearing apparel, not including knit goods.	Value of embroideries, laces, insertings, trimmings, and of lace and window curtains.	Value of knit goods made on knitting machines or knit by hand.	THREADS (NOT ON WARPS, OR WARPyarns.		JEANS, DENIMS, ANDDRILLINOS.		All other manufactures.
		Bleached and unbleached.		Printed, painted, and colored.									
		Square yards.	Value.	Square yards.	Value.				Pounds.	Value.	Square yards.	Value.	Value.
Total.	85, 710, 385	8,640,053	\$834, 314	10,932, 705	\$1,428,134	\$108, 061	\$37, 202	\$58, 362		\$18,267	788, 805	\$131, 762	\$3,094, 283
1861	323,897		32,301		67,934		3,100	983		1,683			217,896
$1862 .$.	341,324						11,410						329, 914
1864.	372, 428												714, 358
1865	681,916												681,916
1866	434,672	395, 018	60,323	259, 011	41,472	60,557	11, 872	2,914			19,977	3,085	254, 449
1867	409, 304	582, 620	67,923	545, 725	80, 560	19,324	2,126	1,283		1,519	158, 817	28, 124	208, 445
1868	949, 411	2, 428, 075	227, 165	3, 750, 059	447, 805	28,180	8,694	22, 961		15,065	374,516	62, 419	137,122
1869.	541,599	1,790, 546	155, 668	2, 293,584	297, 263			9,854			88,981	11,102	67,712
$1870 . .$.	941,476	3,443,794	290, 934	4, 084, 376	493, 100			20, 367			146, 314	27,032	110,043
Total.	9, 991,789	31, 068,319	2,417,108	47,472,719	5,012, 219			185, 302			3,369,768	568,225	1,808,935
$1871 . .$.	1,703, 029	6, 429, 725	493, 353	$8,954,387$	996,571			22,078			262, 965	45, 377	145,650
1872....	1,380, 048	4, 4 400, 048	330,543 351,041	$6,666,891$ $6,549,228$	722,742 727,919			14,163 20,878			542,099 540,107	89,658 99,008	222,942 258,100
1874.	1,218, 092	3,505,641	278, 897	4,884, 367	549, 164			21,279			445, 571	81,916	286,836
1875	997, 187	2,801,844	223, 343	4,619,899	501, 265			26,913			429, 931	72, 227	173,439
1876...	908, 612	2, 286,609	191,526	4, 400, 036	456, 471			24,520			426,552	69,505	166,590
1877.	699, 450	2,634,940	208, 899	3,328,721	325, 639			11,388			135, 874	22, 132	131, 392
1878	551, 923	1, 848,025	129,607	2, 859,015	260, 345			17,987			118,209	19, 443	124,541
1879.	386, 870	773,167	57,803	1,617,072	147, 449			9,459			203,672	28,016	144,143
1880.	689, 632	2, 232, 369	152, 096	3, 593, 103	324, 654			16,637			264,788	40,943	155, 302
Total.	2,851,339	4, 945, 717	339, 128	7,922,925	726,036	34,408	108,294	73,664	15, 957	5,180	907,444	139, 214	1,425,415
1881.	679, 075	2,451,652	166,594	2,748, 863	247, 507			14,707			341,680	52,468	197, 799
1882.	498, 312	1,833, 175	128, 107	1,479, 381	134, 633			16,628			261, 408	43, 979	174, 965
1883...	270, 144	462,887	33,200	388, 899	37, 125			5,376			304,356	42,767	151,676
$1884 .$.	${ }_{293}^{167,210}$	27,437 2,944	2,602	479,973 237,326	35, 052	3,430	7,496	6,852	5,014 5,209	2,356			109, 422
1886	435, 735	493	26	1,830,765	178,878	1,245	18,341	4,723	2,135	598			
1887.	160,718	29,869	1,564	236, 943	24,459	, 764	27,939	3,956	934	411			101, 625
1888.	128, 343	65, 880	2,787	141, 199	13,388	1,981	9, 450	1,091	2	1			99,645
1889	83,779	25,326	1,745	180,620	12,508	4,756	8,013	4,679	352	114			51,964
1890	134, 642	46,054	2,297	198, 956	21,768	7,728	8,405	5,549	2,311	656			88, 239
Total.	2,106, 172	161,919	9, 283	3,980, 825	342, 166	186,013	297, 818	103, 062	80,074	24,723			1,143,107
1891	129,632	7,052	401	196, 473	18,800	6, 384	6,897	6,022	4,557	1,922			89,206
1892	141, 263	720	40	298, 965	29, 044	7,708	19,097	9,244					76,130
1893.	161, 429	10,500	478	223, 376	21,167	8,504	55, 083	3,628	1,700	464			72, 105
1897	235, 212	6,237	292	313, 196	28, 614			19,753	6,670	2, 875			113, 600
898.	290,036	1,525	107	1,012, 910	78,125	16,654	28,166	8,330	1,140	${ }^{591}$			131, 869
$899 .$.	179, 351	18,901	1,104	215, 449	19,649	12,417	14,912	7,324	3,602	1,244			157, 413
$1900 . .$.	288, 103	17, 490	1,425	371, 440	32, 912	17,986	29,072	10,356	29,191	9,909			122,701 186,443

[^98]
THE GENERAL PROGRESS OF THE INDUSTRY.

Table 4 presents the summary of the cotton manufacture from 1840 to 1900, inclusive. The figures for 1900 do not include the manufacture of cotton small wares, which branch of the industry has been sepa-
rately treated at the Twelfth Census, and is made the subject of a special chapter at the conclusion of the repor't on cotton manufactures.

Table 4.-COMPARATIVE SUMMARY, COTTON GOODS, 1840 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	date of census.							per cent of increase.					
	1900	1890	1880	1870	1860	1850	1840	$\begin{gathered} 1890 \\ 1800 \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$	$\begin{gathered} 1870 \\ 180 \\ 1880 \end{gathered}$	$\begin{gathered} 1860 \\ \text { to } \\ 1870 \end{gathered}$	$\begin{gathered} 1850 \\ 180 \\ 1860 \end{gathered}$	$\begin{gathered} 1840 \\ 1800 \\ 1850 \end{gathered}$
Number of establishments. Capital.	\$460, 842,772	\$354, 020, ${ }^{905}$	\$208, 280, ${ }^{7566}$	\$140, $706,{ }^{991}$	\$98,585, ${ }^{1,269}$		\$51, 102, ${ }^{1,240}$	7.5 30.2	19.7 70.0	120.9 48.0	${ }^{1} 12.4$	10.3 32.3	111.8 45.8
Salaried ofticials, clerks, etc., number.	${ }_{1}^{4,713}$		${ }_{(8)}^{(8)}$	${ }^{(8)}$	${ }_{(8)}^{(8)}$	(3)	$\left({ }^{3}\right)$	74.0					
Wage-arners,average num-		288,464,7						105.6					
ber. ${ }_{\text {botal }}$	\$85,126, ${ }^{297109}$	- 218,876	${ }^{174,659}$		${ }_{\$ 23}{ }^{12290,028}$	${ }_{\text {88, }}{ }^{286}$	${ }^{74}$ (4)119	36.1	${ }^{25.3}$	29.0	10.9	3.2	28.0
Men, 16 years and over..	546, 134, 354	80, 88,887	, 61	809, ${ }_{\text {42, }}^{(8) 790}$	\$23, 4640,859	33, 150	(3)	61.2	${ }_{43.8}^{57.8}$	44.3	${ }_{18.7} 6$	1.4	
	\$46,923, 365	\$33,797, 517	${ }^{(3)}$		(3)	(8)	(4)	38.8					
	532, 123,709 ${ }^{\text {917 }}$ (33	106,607	${ }^{84,558}$	${ }^{69,637}$	75, 169	59,136	${ }^{3}$	16.0	26.1	21.4	17.4	27.1	
Children, under 16 years.	\$32, 39, 366	\$2, ${ }_{\text {23, }}^{232}$	28,341	22, 942	${ }^{3}$	(8)	(3).	12.9 70.1	17.3	23.5			
Miscllaneous expenses.......	- $\begin{array}{r}85,285, \\ 821,650 \\ \hline 142 \\ \hline\end{array}$	$\xrightarrow{83,061,935}$		$\left(\begin{array}{l}3 \\ 4\end{array}\right.$	(${ }^{3}$	(3)	(4)	72.6 29.5					
Cost of materials used.	${ }_{\text {\$173, }}^{3171,390}$			\$111, 736, 936	\$57, 285,534			12.0	51.6	18.5	95.1	64.5	
Value of products...........	\$332, 806, 156	\$267, 981, 724	\$192, 090, 110	\$177, 489, 739	8115,681,774	\$61, 869 , 184	[846,350, 453	24.2	5.	8.2	53.4	87.0	33.5
Active spindles, number	$19,008,352$ 450,682	14, 1888,103	10, ${ }_{2253}$ 25, 759	$7,132,415$ 157,310	$5,235,727$ 126,313 1	${ }^{(4)}$	${ }_{\text {2, }}^{\text {2, 284, }}$, 631	34.0 38.7	33.2 43.9	49.4	36.2 24.5		
Cotton consumed, baies	3,639, 495	2,261,600				641, 240	(t)	60.9	44.0				
Cotton consumed, pounds...	1, 814,002, 512	1,117, 945, 776	750,343, 981	398, 308, 257	422, 704,975	${ }^{(t)}$	(4)	62.3	49.0	88.4	¢5.8		

1 Decrease.
${ }_{2}$ Includes proprietors and firm members, with their salaries; number only reported in 1900, but not included in this table. (See Table 24.)
3 Not reported separately.
4 Not reported

The classification of cotton goods applies in all the statistics for the Twelfth Census to results in those establishments only in which the chief industry is the spinning of cotton yarn and the weaving of piece goods-one or both. The designation of cotton small wares applies to establishments chiefly engaged in the manufacture of the following classes of articles: Shoe and corset lacings, lamp and stove wicks, tapes, webbings (other than elastic), lace edgings, dress and upholstery trimmings.

In order to preserve the basis for comparison with statistics of former censuses, Table 5 combines the statistics for cotton manufactures and cotton small wares for 1900 , and shows the percentage that each is of the total.

Table 5 shows that the totals for capital, wages, cost of materials, and value of products for cotton small wares represented about 2 per cent of the totals for the entire cotton manufactures, and for the number of establishments about 8 per cent.

At the census of 1890 the average capital for the 905 establishments, which included both cotton goods and cotton small wares, was $\$ 391,182$. In 1900 for the 1,055 establishments of both classes the average capital was $\$ 442,882$; for the 973 establishments reported as cotton goods only it was $\$ 473,631$; and for the 82 classified as cotton small wares it was $\$ 78,017$.

Table 5.-COMBINED SUMMARY, COTTON GOODS AND COTTON SMALL WARES: 1900, WITH PERCENTAGE THAT EACH ITEM IS OF TOTAL.

	Total.	Cotton goods.	Cotton small wares.	PER CENT OF total.	
				Catton goods.	Cotton small wares.
Number of establish-					
ments...............	1,055	973	82	92.2	7.8
Capital	\$467, 240,157	\$460, 842,772	\$6,397, 385	98.6	1.4
Salaried officials, clerks, etc., number.	4,902	4, 413	- 189	96.1	3.9
Salaries	\$7, 350,199	\$7, 123, 574	\$226,625	96.9	3.1
Wuge-earners, average number.	302,861	297, 929	4,932	98.4	1.6
Total wages.............	\$86,689,752	885, 126,310	\$1,563,442	98.2	1.8
Men, 16 years and over.	135, 721	134, 354	1,367	99.0	1.0
Wages	\$47, 594, 881	\$46, 923, 365	\$671,516	98.6	1.4
Women, 16 years and over	126,882	123,709	3,173	97.5	2.5
Wages	\$33, 746,665	\$32, 917, 933	\$828, 732	97.5	2.5
Children, under 16 years.	40,258	39,866	392	99.0	1.0
Wages	\$5, 348, 206	\$5, 285, 012	\$63,194	98.8	1.2
Miscellaneous expenses	\$22,112,678	\$21,650, 144	\$462,534	97.9	2.1
Cost of materials used.	\$176, 551,527	\$173, 441, 390	\$3,110,137	98.2	1.8
Value of products....	\$339, 200, 320	\$332, 806, 156	\$6, 394, 164	98.1	1.9
Active spindles, number.	19,050,952	19, 008,352	42,600	99.8	0.2
Looms, number.	455,752	450,682	5,070	98.9	1.1
Cotton consumed, bales	3,646,708	3,639, 495	7,213	99.8	0.2
Cotton consumed,	1,817,643,390	1, 814, 002, 512	3,640, 878	99.8	0.2

With this general explanation of the new system of classification, it will be understood that all the tables hereafter given, except Table 23, make the comparison
between cotton goods alone in 1900 and cotton manufactures generally prior to this census. It is believed that the slight difference of 2 per cent will not seriously impair their general usefulness for purposes of comparison or may be allowed for by those who desire more exact figures.

GEOGRAPHICAL DISTRIBUTION OF THE INDUSTRY.

The following tabular statement will bring to light the most interesting and the most important fact relating to the growth of the cotton-manufacturing industry during the decade 1890-1900:

SECTIONAL DISTRIBUTION OF ESTABLISHMENTS.

geographical divisions.	1900	1890	1880
New England states.	332	402	439
Middle states. .	225	239	139
Southern states	400	239	161
Western states	16	25	17
Total.	973	905	756

The decrease in the number of establishments in the New England states is more apparent than real. It results partly from the elimination of certain mills from the classification as "cotton manufactures," already mentioned, and partly from the consolidation of establishments under one management. The same reasons account fully for the decline in the number of establishments in the Middle states: New York, New Jersey, Pennsylvania, Delaware, and Maryland. The manufacture has never existed on a considerable scale in the Western states. Comparative distance and inaccessibility with respect to the supply of raw cotton, distance from the commercial cities which are the headquarters of the dry goods trade, and difficulty in procuring the requisite trained labor-these and other causes have hitherto rendered the West an undesirable location for cotton mills, which need for economical operation cheap transportation of raw material, cheap fuel or unfailing waterpower, and nearness to large markets. The cotton manufacture, moreover, is essentially gregarious, and enjoys the greatest prosperity where it is carried on by large establishments or by large groups of small mills.
The growth of the industry in the South is the one great fact in its history during the past ten years. It will be seen that in 1880 there were, in that part of the country, 161 establishments only which made reports to the census; in 1890 there were only 239 , an increase of 78 , or 48.4 per cent; and in 1900 there were 400 separate establishments, an increase from 1890 of 161, or 67.4 per cent. A scrutiny of the returns by states shows that substantially the whole increase in the South has been in the 4 states of North Carolina, South Carolina, Georgia, and Alabama. The number of establishments in these 4 states was 119 in 1880, 191 in 1890, and 355
in 1900. In the other states of the Southern group the number was 42 in 1880, 48 in 1890, and 45 in 1900.
It would be revealing but a part of the truth to rest the statement of Southern industrial expansion upon the number of establishments; for in the decade 18801890 the number of spindles in the four leading Southern states increased almost twofold, from 422,807 to $1,195,256$; and the average number of spindles to a mill increased from 3,553 to 6,258 . In the decade from 1890 to 1900 the progress has been at an even greater ratio, although the basis of the calculation is larger, for the total number of spindles is $3,791,654$, the numerical increase $2,596,398$, the percentage of increase 217, and the average number of spindles to a mill has become 10,651 . The subsequent tables in this report will give abundant evidence of the expansion of the Southern cotton iudustry in all directions-in capital, consumption of naterial, employment of labor, and quantity and value of product.

Speaking broadly, the cotton manufacturing industry did not exist in the South before the Civil War, and it existed only on the most restricted scale before 1880. There are now single establishments in Massachusetts which pay annually a larger sum in wages than the entire cost of labor in Southern cotton mills in 1880. The mills were small, equipped with antiquated machinery, engaged in spinning the coarsest numbers only, and in producing from cotton grown in the neighborhood the stout fabrics used for clothing by the negroes. It is probably not an exaggeration to say that prior to 1880 there was not a mill south of the latitude of Washington that would be classed as an efficient modern cotton factory, even according to the standard of that time. Before the Civil War the people of the South were almost exclusively engaged in agricultural pursuits. The ruling classes looked with disfavor upon manufactures and discouraged the introduction of the industrial arts save as they were necessary to meet local wants.

After the war closed it was some years before the people had recovered sufficiently from the disaster to undertake manufacturing. There had been attempts in the direction of cotton spinning and weaving before. 1880, but the cotton exposition in Atlanta, in 1881, gave the industry an impetus which it has never since lost. The possibilities of the region were shown when the governor of Georgia appeared at the fair dressed in a suit of clothes made of cottonade manufactured on the grounds from cotton which had been picked from the stalk on the morning of the same day, in the sight of the visitors to the fair. That the local product of cotton could be worked up into finished cloth without transportation to a distant manufacturing town, together with the fact that the region had abundance of unemployed labor of a class similar to that which in the early days operated the mills of Waltham, Lowell, and.

Manchester, brought before the people the vision of a new source of individual and public wealth to which they had previously been blind.

Once the opportunity had been presented to them the chance was eagerly seized, and all who were able to do so contributed to make the new enterprise successful. The press urged it upon those who had capital to invest, hailed joyfully every manufacturing project, and made much of every successful establishment. Municipal aid was given in the shape of exemption from taxation for a term of years. The railroads favored the scheme by arranging their freight schedules so as to encourage Southern manufacturers. The factories first established under the new régime showed large profits, and thus attracted more capital to the new industry. The adrantages of the Southern country for cotton manufacturing began to attract attention in the North; and in many cases corporations already established increased their capital and built new mills in the South Atlantic states.

The earliest Southern enterprises were not in all cases begun as first-class establishments. Some of them were equipped with discarded machinery from Northern mills. But the manufacturers quickly learned the lesson that there is no industry in which profits are more directly proportioned to the perfection and speed of the machinery than in the spinning and weaving of cotton; and the old spindles and looms were speedily replaced with others of the newest pattern. A great proportion of the mills built and started within the past decade have been thoroughly up to date in all respects. In fact some improvements in mill construction are to be found in that section, which are not yet introduced in the manufacturing regions of the North. The first factory operated wholly by electricity, without shafting or belts, was located in the South, and until near the time of the writing of this report it was the only factory so equipped. By the use of electrical power it is possible to place the mill on high ground at a suitable distance from mill race and water wheel, and thus to secure accessibility, the health of operatives, and other benefits which could not be enjoyed when it was necessary to put the foundations of the mill below the foot of the waterfall.
The growth of the manufacturing industry in the South bas been fairly continuous during the past ten years. How large it has been the figures show. For the most part the product of the region has been coarse or medium goods, as is usually the case in the early stages of the industry. But not a few mills have been constructed to make yarns of the higher medinm numbers and cloth which approaches the lower limit of those classed as fine. A considerable part of the product of the region is exported. The industry is now important enough in the 4 states of North Carolina, South Carolina, Georgia, and Alabama to consume nearly one-third
of the crop of cotton grown in those states; and boch North Carolina and South Carolina spin more than half the cotton grown within their limits.

The growth of the industry in the South has been remarkably steady. As is commonly the case with enterprises of this nature, it has been attended with not a little public excitement; more mills have been projected than have been built; some have been erected which their projectors would not have erected had they studied the matter carefully before entering upon the experiment. But the failures have been few, and upon the whole the return upon investment in Southern cotton mills has greatly exceeded that upon factories in the North. The fact that after a phenomenal growth during more than twenty years the expansion of old mills and the erection of new ones are still going on in the South is ample proof of the success of the enterprise.

The following table, made up from files of the New York Commercial and Financial Chronicle, presents a view of the annual increase in the number of spindles in the states south of the District of Columbia during the past twenty years. The Chronicle is recognized as among the best authorities upon the cotton crop and its distribution. Its statements for the first few years of the period covered were admittedly estimates; bat from the year 1888 they are based npon actual returns from the Southern mills made directly to the Chronicle. For the census years, the census figures are substituted.
SPINDLES IN SOUTHERN MILLS, AND THEIR CONSUMP. TION OF COTTON.

	YEARS.	Number of spindles.	Bales of cotton used.
1880-81.		610,000	205, 000
1881-82.		680,000	238,000
188:2-83.		860,000	331, 000
1883-84.		1, 100,000	334,000
1884-85.		1,150,000	266, 000
1885-86.		1,200,000	340, 000
1886-87.		1,225,000	397, 929
1887-88.		1,177,901	443,373
1888-89.		1,344,576	486, 603
1889-90.		1,554,000	526,856
1890-91		1,756, 047	605,916
1891-92.		1,938,524	681, 471
1892-93.		2,082, 197	733, 701
1893-94.		2,167, 242	723, 329
1894-95.		2, 379, 281	853,352
1895-96.		2,770, 284	915,810
1896-97.		3,197,545	1,024, 482
1897-98.		3, 574, 754	1,227,939
1898-99.		3, 832, 201	1,400, 026
1899-1900.		4,298, 188	1,477,775

Although there has been a surprising growth of the industry in the Southern states, yet it still remains true, as it has been true ever since Samuel Slater set in motion the first spindles operated by power in this country at Pawtucket, R. I., in 1791, that the largest and densest concentration of cotton manufacturing in the United States is in southern New England. A list is printed in the American State Papers ${ }^{1}$ of the cotton mills within 30 miles of the town of Providence,

[^99]K. I., in November, 1809. The mills are enumerated in the chronological order of their establishment, beginning with the Pawtucket mill of Almy, Brown \& Slater. Twenty-seven mills are mentioned as having in the aggregate 20,406 spindles "now in operation," but as having, including these, 34,900 spindles " which might be employed." There were also 14 other mills, all established in 1809 , with 23,600 spindles, which were evidently ${ }_{0}$ not yet in operation. One mill, a Titan for those times, contained 10,000 spindles. The average of the 41 factories, counting their greatest capacity, was less than 1,500 spindles, and all combined they did not greatly exceed the average of one Fall River mill of the present time; yet they constituted the greatest concentration of the industry as it existed ninety years before the Twelfth Census was taken. In the year 1900 there were, within the same area, $7,209,235$ spindles, as is shown by the following table:
Table 6.-NUMBER OF SPINDLES IN COTTON MILLS WITHIN 30 MILES OF PROVIDENCE, R. I.

Location of establishments.	
	Producing spindles, not including
twisting, or	
doubling,	
spindles).	

In round numbers one-third of all the spindles in the United States are in the factories within that small area. It was remarked in the report on the Eleventh Census that 29.61 per cent of all the cotton spindles were operated in the two adjoining counties of Bristol, Mass., and Providence, R. I. The percentage has been maintained. It is now 30.3 , and it greatly exceeds that of any other two counties. Indeed, the spindles of Providence county, the smaller of the two, outnumbered those of any Southern state except South Carolina. But the percentage of New England as a whole has suffered a considerable decline. In 1870 these six states had 77 per cent of all the spindles; in 1880 they had 81 per cent; in 1890 there was a decline to 76 per cent; and the percentage in 1900 was but 67.6 .

CAPITAL.

Table 7 is a comparative summary, by geographical divisions, of the capital invested in the cotton manufacture in 1900 , compared with 1890 , with percentages of increase for the decade.

Table 7 shows that the total capital employed has increased 30.2 per cent. Taking the country as a whole, there is a small decrease in the reported value of the land. This is explained by the fact that in a great number of cases the land upon which factories are placed has but a nominal value; indeed, it had scarcely any value before the factories were erected and would be wholly unsalable if the buildings were removed. In these circumstances the officers making returns can only estimate the value, and estimates made at intervals of ten years may be expected to vary. There appears to have been an absolute decrease in the value of land in New England attached to cotton-manufacturing establishments; and the increase in land value in Southern states is 30.8 per cent, although the whole value of the plant has increased 131.4 per cent.

Table 7.-COMPARATIVE SUMMARY, COTTON GOODS, CAPITAL, BY GEOGRAPHICAL DIVISIONS, WITH PERCENTAGES OF INCREASE: 1890 AND 1900.

oegoraphical divisions.	Year.	Total.	Land.	Buildings.	Machinery, tools, and implements.	Cash and sundries.
United States.......... Per cent of increase	1900 1890	$\begin{array}{r} \$ 460,842,772 \\ 354,02,843 \\ 30.2 \end{array}$	$\begin{array}{r} \$ 22,546,549 \\ 23,225,097 \\ \cdot \quad 12.9 \end{array}$	$\begin{array}{r} \$ 91,621,787 \\ 69,742,664 \\ 31.4 \end{array}$	$\begin{array}{r} \$ 181,009,280 \\ 138,025,806 \\ 31.1 \end{array}$	$\begin{array}{r} \$ 165,665,186 \\ 123,027,276 \\ 34.7 \end{array}$
New England states..... Per cent of increase	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 272,668,914 \\ 243,153,249 \\ 12.1 \end{array}$	$\begin{array}{r} 14,820,308 \\ 17,074,774 \\ 313.2 \end{array}$	$\begin{array}{r} 55,523,693 \\ 47,87,383 \\ 16.0 \end{array}$	$\begin{array}{r} 99,093,175 \\ 91,666,375 \\ 8.1 \end{array}$	$\begin{array}{r} 103,231,838 \\ 86,540,717 \\ 19.3 \end{array}$
Middle states.......... Per cent of increase	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 59,078,820 \\ 51,676,249 \\ 14.3 \end{array}$	$\begin{array}{r} 3,277,033 \\ 2,580,935 \\ 27.0 \end{array}$	$\begin{array}{r} 11,327,917 \\ 10,124,364 \\ 11.9 \end{array}$	$\begin{array}{r} 20,779,919 \\ 20,306,650 \\ 2.3 \end{array}$	$\begin{array}{r} 23,693,951 \\ 18,664,400 \\ 26.9 \end{array}$
Southern states........ Per cent of increase	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 124,532,864 \\ 53,827,303 \\ 131.4 \end{array}$	$\begin{array}{r} 4,250,540 \\ 3,248,968 \\ 30.8 \end{array}$	$\begin{array}{r} 23,741,094 \\ 10,590,952 \\ 124.2 \end{array}$	$\begin{array}{r} 59,179,798 \\ 24,079,920 \\ 145.8 \end{array}$	$\begin{array}{r} 37,361,432 \\ 15,907,463 \\ 134.9 \end{array}$
Western states...........	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 4,562,174 \\ 5,364,042 \\ 114.9 \end{array}$	$\begin{array}{r} 198,668 \\ 320,420 \\ 138.0 \end{array}$	$\begin{array}{r} 1,029,153 \\ 1,155,965 \\ 111.0 \end{array}$	$\begin{array}{r} 1,956,388 \\ 1,972,961 \\ 10.8 \end{array}$	$\begin{array}{r} \mathbf{3}, 377,965 \\ 1,914,696 \\ 1,98.0 \end{array}$

${ }^{1}$ Decrease.

In view of the current discussion as to the capitalization of corporations it becomes interesting to note that the objections to the practice of overcapitalization can not justly be urged against cotton-manufacturing establishments. The form of ownership of such establishments is to a remarkable degree the corporate. Of the 973 separate establishments here reported, 708 are classed as corporations, 142 are individual, and 123 are partnerships or firms. Even this does not show the actual situation definitely, since 56 of the individual and 68 of the partnership establishments in Pennsylvania, and most of them in the city of Philadelphia, are weaving factories only, and individually of moderate importance. Outside of Pennsylvania there are 678 corporations, 86 individual, and 55 partnership establishments. With reference to the two latter classes, there can, of course, be no question of overcapitalization. The capital they report is simply tbat employed in their business. But the incorporated companies have a share capital to an amount specified in their respective charters. Table 8 shows, by geographical groups, the capital for corporations as reported at the census of 1900 , compared with the nominal capital of corporations as represented by their capital stock.

Table 8.-COMPARISON OF CAPITAL OF CORPORATIONS, AS REPORTED AT CENSUS, WITH CAPITAL STOCK, BY STATES AND GEOGRAPHICAL DIVISIONS: 1900.

STATES.	Capital as reported at census.	Capital stock.
United States	\$385, 863,827	¢204,157, 914
New England states	238, 502,315	128, 703, 500
Maine	20,974,669	11, 630,000
Vew Hampshire	$28,713,786$ $1,696,331$	$17,725,000$ $1,050,000$
Massachusetts	135, 873,779	71,088,600
Rhode Island	30,466,097	15, 367,000
Connecticut.	20,777,653	11,843,000
Middle states.	33, 521,797	15,205,000
New York	12, 455,548	5,046,000
New Jersey.	12,503, 262	5,145,000
Pennsylvania	$\begin{aligned} & 5,314,968 \\ & 3,248,019 \end{aligned}$	$2,734,000$ 2,28000
Southern states.	109, 589, 031	57, 101, 352
Virginia.	4,338, 206	2,886,700
North Carolina	25, 440,465	14,364,500
South Carolina	36, 375,727	17, ${ }^{1785,200}$
Kentriack	21, $1,8667,605$	10,325, 000
Tennessee	3, 105, 095	1,634,000
Alabama	10,509, 695	$5,300,000$
Mississippi.	2, 199, 24989	1,231, 2000
	- 249,828	${ }_{850}{ }^{200} 0000$
Texas	1,660,109	600,000
Western states.	4, 250,684	3,148,062
Ohio.	56,692	25, 000
1ndiana	1,532,586	800,000
Illinois.	831,047	600,000
Misconsin	165, 500	248, 052
Nebraska	190,819	150,000
Colorado	-647,805	250,000 80000
California	371,000	800,000

Note- - ln the foregolng tahle the nominal capital stock reported of the companies now united in the three industrial combinations is that of the separate companies hefore the amalgamation. The present capital stock is larger by $\$ 15,200,000$, and the total capital stock for the whole country is $\$ 219,357,914$. The addition can not conveniently be shown by states, inasmuch as the plants of two of the three comhinations are located in several states. Moreover, the three industrial combinations have issued an aggregate amount of $\$ 26,500,000$

It appears from Table 8 that not only in the United States as a whole, and in each of the geographical divisions, but in every individual state, except Missouri and California, the actual invested capital exceeds the par value of the share capital. Undoubtedly a considerable amount, many millions of dollars in the aggregate, of the capital reported to the census represents borrowed money; but after making the largest reasonable allowance for this item there must remain an excess of at least 25 per cent of assets over the nominal value of the share capital. Very few cotton-manufacturing establishments have a bonded debt.
In this connection it may be remarked that the system of industrial combination, commonly known as the "trust," has not seriously invaded the cotton-manufacturing industry. There were in 1900 only three such combinations: The New England Cotton Yarn Company, which produces but a small fraction of the yarns made for sale; the Mount Vernon-Woodberry Cotton Duck Company, which produces a considerable part of the sail duck made in the country; and the American Thread Company, which bas combined several of the large establishments which produce sewing thread. The total value of the plants and miscellaneous items of capital of all the establishments controlled by these three industrial combinations is $\$ 31,077,609$. Their combined capital stock is $\$ 33,000,000$, and the total of their bonded debt is $\$ 26,500,000$.

ENPLOYEES AND WAGES.

In 1900 the average number of employees in the cotton industry (excluding cotton small wares), including officers and clerks, was 302,642, an increase of 81,057 , or 36.54 per cent over the total for cotton goods and cotton small wares in 1890. Of this increase more than 60,000 , or three-fourths of the whole, were in the Southern states. The figures which show the number and compensation of officers, clerks, and superintendents require no discussion. They are useful merely for the completion of the statistics and to bring out in its true light the magnitude of the industry. The real interest lies in the facts regarding those who are more strictly classified as wage-earners, the operatives in the mills. The importance of the figures relating to them is enhanced by the circumstance that the cotton-manufacturing industry is typical of the factory system in its highest form and on the largest scale. There is scarcely another industry that approaches it in the numbers of hands employed within mills; and the numbers of men and women employed are more nearly equal than is the case with any other industry of a magnitude to be compared with this.

Table 9 shows the number of wage-earners, men, women, and children, by geographical divisions, at the censuses of 1880,1890 , and 1900 ; and Table 11 shows the percentages of men, women, and children of total wage-earners, by geographical divisions, for 1880, 1890, and 1900 .

Table 9.-COTTON GOODS, WaGE-EARNERS, AVERAGE NUMBER OF MEN, WOMEN, AND CHILDREN, BY GEOGRAPHICAL DIVISIONS: 1880 TO 1900.

gegoraphical divisions.	total.			men, 16 years and over.			WOMEN, 16 Years and over.			CHILDREN, under 16 Years.		
	$1900{ }^{1}$	1890	1880	1900	1890	1880	1900	1890	1880	1900	1890	1880
United States.	297,929	218,876	172,544	134,354	88,837	59,685	123,709	106,607	84, 539	39, 866	23,432	28,320
New England states.	162,294	147,359	125,779	78, 217	63,749	45,521	73, 258	73,445	62,554	10,819	10,165	17,704
Midale states...	34, 843	31, 841	28,118	14,473	11, 580	8,919	16, 056	16,240	13,185	4,314	4,021	6,014
Southern states.	97,494 3,298	36,415 3,261	16,317 2,330	40, 528 1,136	12, ${ }_{991}$	4,633 612	32,528 1,867	15,083 1,839	7,587	24, 438	8,815	4,097
		3,261		1,130	991	612	1,867	1,839	1,213	20		50

${ }^{1}$ Does not include cotton small wares in 1900.

Table 10.-COTTON GOODS, WAGE-EARNERS, PERCENTAGE OF MEN, WOMEN, AND CHILDREN, BY GEOGRAPHICAL DIVISIONS: 1880 TO 1900.

geographicaldrvisions. Divisions.	MEN.			women.			children.		
	Per cent of all wage-earners.			Per cent of all wage-earners.			Per cent of all wage-earners.		
	1900	1890	1880	1900	1890	1880	1900	1890	1880
United States...	45.1	40.6	34.6	41.5	48.7	49.0	13.4	10.7	16.4
New England states..	48.2	43.3	36.2	45.1	49.8	49.7	6.7	6.9	14.1
Middle states ..	41.5	36.4	31.7	46.1	51.0	46.9	12.4	12.6	21.4
Southern states	41.6	34.4	28.4	33.4	41.4	46.5	25.0	24.2	25.1
Western states	34.4	30.4	26.3	56.6	56.4	52.0	9.0	13.2	21.7

Tables 9 and 10 show that of the men, women, and children employed, first, the actual numbers of each class have increased during the past ten years, and, second, the number of men has increased much more rapidly than the number either of women or of children.
In the whole country there has been a numerical increase from 1890 to 1900 of 45,517 men, of 17,102 women, and of 16,434 children. There was an increase in the number of men in every section; a very slight decrease in the number of women in every division except the Southern states, and an increase in the number of children in the South, whereas in the rest of the country the number was nearly stationary. Since, in an expanding industry, the numbers of all classes ought to increase, a better medium for the sociological study of the condition of affairs is afforded by the second table, from which it appears that there is now for the first time a preponderance of the proportion of men employed, over the women. The proportion of men for the whole country increased from 40.6 per cent in 1890 to 45.1 per cent in 1900 ; the proportion of women declined from 48.7 per cent in 1890 to 41.5 per cent in 1900; the proportion of children advanced from 10.7 per cent to 13.4 per cent.
The returns for the Tenth Census afford the means of discovering that with a slight modification the readjustment of labor conditions has been going on for at least twenty years. Between 1880 and 1890 there was an increase of 6 men in every group of 100 mill operatives. The number of women in the group remained unchanged, owing to the partial discontinuance of the practice of employing children in all parts of the coun-
try except the South. In the mills of New England, which then formed a larger fraction of the total than they do now, the number of children in mills was reduced from 14 in every 100 to 7. Between 1890 and 1900 occurred the marvelous expansion of the industry in the South, with the usual result of such an event, a great demand for labor and the employment of whole families. The proportion of children was slightly increased there, by 1 in 100 , but the proportion of women diminished by 8 , and that of men increased by 7 , in each 100. In New England the proportion of men increased 5 , that of women decreased 5 , in each 100 , and the proportion of children remained stationary.

The important fact resulting from an examination of all these proportions is that the tendency is more and more to the employment of men, which, looking at the matter from the social point of view, is highly desirable, in that it diminishes the use of the labor of women in factory service, and doubly desirable in discontinuing the employment of child labor. In this last respect reform has not yet reached the Southern mills; where the supply of labor is not equal to the demand. But the evils of the system of employing children are fully recognized, an agitation for its abandonment is in progress, and no doubt the coming decade will see a substantial diminution of it.
The explanation of the generally increased employment of men is obvious. The chief reasons are two: First, that the operation of some of the modern machines requires the care of men, because it is beyond the physical and nervous capacity of women. For example, the improved high-speed and automatic looms, many of which are put under the charge of one weaver, can be operated most efficiently by men. Moreover, there has undoubtedly been a decrease in the number of women employed as mule spinners. The second cause of the change in the relative proportion of men and women, which, for reasons presently to be stated, is largely influential in the North, is itself a result of a generally improved condition of labor. Whereas formerly it was the custom for an entire family, or, at least, several of its members, to be employed in a mill, the father now earns enough to relieve the mother and some of the children of the necessity of going into the factory; or, perhaps, the mother and the elder daughters find other employment in the shops and offices
which manufacturing industry attracts to a community. It is not suggested that the change is one universally to be observed. Possibly the tendency is so slight that the fact of such a change going on can be discovered only when the statistics are studied in a large way. Nevertheless, the cases are sufficiently numerous to justify the assignment of this as one cause of the gradual change that is taking place in the proportion of men and women in the industry as a whole.

The change has not yet perceptibly affected the South. There the labor conditions are different. The industry is growing at a wonderful rate. The help employed is chiefly local. Whole families in that region enter the factories, because in no other way can the demand for labor be satisfied. Consequently the changes in the proportion of men, women, and children employed are largely fortuitous. Roughly speaking, there were three times as many men, twice as many women, and nearly three times as many children employed in Southern mills in 1900 as there were in 1890. The numerical increase was 28,011 men, 17,445 women, and 15,623 children. Manufacturers took whom they could get for operatives in the new mills. The employment of children was not a matter of choice but of necessity, and, economically, is a losing rather than a profitable system; for more than the saving in the dollars and cents of their wages is lost when the quantity and quality of their work are considered.

SKILLED OPERATIVES.

It was intended to make a complete canvass of the spinners and weavers employed in the cotton mills of the country, classified as men, women, and children. Owing to a defect in the form of the inquiry, which was not discovered in season to make a correction, there is reason to believe that some of the numbers were incorrectly returned, and the full table is not presented. Some facts which are trustworthy were, nevertheless, obtained. It was ascertained that during the census year there were between 5,000 and 6,000 persons employed as mule spinners, of whom about 2,250 were employed in Massachusetts mills, 750 in Rhode Island, 600 in New York, and 350 in Connecticut. About nine-tenths of the mule spinners were men. On the other hand, of about 43,000 frame spinners, only about one-sixth were men, and five-sixths were women and children.
The report of the number of weavers is entitled to more confidence than that of spinners, but it is not sufficiently accurate to be presented in detail. The number of weavers returned was 91,515 , of whom 41,776 were men, 47,941 were women, and 1,798 were children. There are no earlier returns with which to compare these numbers. But it is well known to those conversant with the industry that only a few years ago the weaving of cotton goods was regarded as peculiarly the
work of women. The introduction of improved and fast looms has led more and more to the employment of men as weavers. The tendeucy is so marked that the next enumeration should show the men in a majority.

WAGES.

It is a matter of general experience that wages in cotton mills were higher in 1900 than they were in 1890. It is almost impossible to obtain a true average by applying the rules of arithmetic to magnitudes of such diverse nature as those which represent the numbers of operatives employed and the gross amount paid to them in wages. Moreover the method of ascertaining the average number of persons employed, which was used at the census of 1900 , was quite different from that adopted in 1890 , and the figures for 1890 are exclusively those for skilled labor.

MISCELLANEOUS EXPENSES.

Table 11 is a comparative summary of miscellaneous expenses, showing the per cent that each iten is of the totals for 1890 and 1900.

Table 11.-COMPARATIVE SUMMARY, COTTON GOODS, MISCELLANEOUS EXPENSES, ${ }^{1} 1890$ AND 1900, WITH PER CENT WHICH EACH ITEM FORMS OF TOTAL.

	1900		1899	
	Amount.	Per cent of total.	Amount.	Per cent of total.
Total.	\$20, 057, 190	100.0	\$16,716, 524	100.0
Rent of woriss.	691, 075	3.4	488, 735	2.9
Taxes, not including internal revenue.	3,521,606	17.6	2,689,682	16.1
Rent of offices, interest, insurance, and all sundry expenses not hitherto included	15,844, 509	79.0	13,538, 157	81.0

${ }^{1}$ Exclusive of contract work.
Table 11 shows that the amount paid for rent of works was exceedingly small when the magnitude of the industry is considered. As against the total value of land and buildings owned in 1900 , of $\$ 114,168,306$, and in 1890 , of $\$ 92,967,761$, there was paid for rent of works by manufacturers who did not own all the plant used, in 1900 the sum of $\$ 691,075$, and in 1890 the sum of $\$ 488,735$. Estimating the average rent at 6 per cent, the value of the land and buildings rented would have been $\$ 11,517,917$ in 1900 , and $\$ 8,145,583$ in 1890 , or about one-tenth of the real estate owned at the time of each census.

MATERIALS USED.

COTTON.
The consumption of raw cotton of all kinds, domestic and foreign, in all the textile mills of the country during the census year was $3,872,165$ bales, having an
aggregate weight of $1,923,704,600$ pounds. The use of cotton by the several textile industries was as follows:

	Bales.	Pounds.
In eotton mills proper.	3,639, 495	1,814, 002, 512
In hosiery and knit goods mills	- 99,518	49,451,301
1n woolen mills	80,725	34,967,959
In worsted mills.	12,079	5,276,751
In cotton small wares mills	7,213	3,640,878
In carpet mills-.	3,813	1,943,942
In cordage and twine mills	26,540	13, 022,755
In felt and shoddy mills .	2,782	1, $1,398,502$
Total	3,872, 165	1,923, 704,600

At the Twelfth Census no inquiry was made which reveals the variety of cotton used, save in respect to the cotton manufacturing industry proper, cotton small wares, and cordage and twine. It may nevertheless be assumcd without risk of serious error that in establishments dealing with the wool fiber all the cotton used was the ordinary domestic staple. A certain amount of the cotton consumed in the few hosiery mills which reported spindles was Egyptian, and a small quantity of sea-island cotton was reported by one establishment, which is classified as "cordage and twine," as having been used in the manufacture of sewing thread. Disregarding these exceptions we may make the following classification of the cotton consumed:

The figures in the two preceding tables are those which are to be compared with the commercial and official statistics, in which no discrimination is made between the several classes of factories in which the cotton is consumed. Taking first the greatest item, that of ordinary domestic cotton, the report of the New York Commercial and Financial Chronicle-which is generally accepted by manufacturers as the most thorough and accurate-accounts for the taking of $3,792,618$ bales, by manufacturers North and South during the crop year 1899-1900. The corresponding census number is $3,748,750$ bales. Inasmuch as the commercial returns are for a year beginning September 1, 1899, whereas those of the census are for the year beginning June 1 , 1899 , and in the case of not a few mills some months earlier, the divergence of the two reports is small and easily to be accepted; and the close approximation of the two, especially when it is remembered that there is a not inconsiderable amount of cotton which is used for purposes other than spinning, is a confirmation of the accuracy of both. Against the census return of 47,207 bales of sca-island cotton used in the mills herein reported, the Chronicle reports 49,543 bales of that variety of cotton leftfor consumption in the United States
after deducting the amount exported from the total crop. This is a still closer correspondence between the two sets of figures. The difference between them is no greater than may easily be explained upon the grounds already mentioned. The imports of foreign cotton during the fiscal year ended June 30,1900 , amounted to $67,398,521$ pounds, of which $1,381,463$ pounds was reexported. The importation during the calendar year 1899, with which the consumption during the census year corresponded more nearly, was $62,014,809$ pounds, and the net importation was $61,296,346$ pounds, which exceeded by about 10 per cent the amount reported in the preceding table. It has already been explained that a certain amount-the exact quantity can not be stated-is masked in the returns of cotton-hosiery mills which were not asked to specify the kind of cotton used. Relative to these figures, it should be borne in mind that, whereas, the quantities reported in commercial returns are the gross purchases of material by manufacturers, the census figures are those of cotton which was actually mannfactured and which entered into the merchandise reported under the head of products.

In 1900 the consumption of cotton in cotton mills proper was as follows:

	Bales.	Pounds.
Sea island.	47,207	18,442,634
Other domestic.	3,516,080	1,739,714,946
Egyptian and other foreign	76, 208	55, 844,932
Total	3,639,495	1,814,002,512

"OTHER DOMESTIC" COTTON.
The consumption of domestic cotton, other than sea island, in the cotton mills of the country during the census year was $3,516,080$ bales, as compared with $2,231,385$ bales reported at the census of 1890 , an increase of 58 per cent. The average weight of bales was 494.8 pounds. By geographical divisions the consumption of cotton by bales and pounds, and the average weight of bales, was as follows:

geographical divisions.	Bales.	Pounds.	Average weight of bales.
New England states	1,719,622	874, 011, 2n7	508.3
Middle states.	1,272,947	135,004,971	494.6
Southern states	1,477,775	707, 159, 521	478.5
Western states.	45,736	23, 539,197	514.7
Total.	3,516,080	1,739,714,946	494.8

The variation shown in the weight of bales between the Northern and the Southern sections of the cottonspinning industry is in strict accordance with experience. The bales made up from the crop of the Mississippi valley and of Texas are heavier than those of the Atlantic coast states. Spinners in the Carolinas and in Georgia, therefore, relying largely upon the local supply, make use of lighter bales than manufacturers in
the Eastern states, who draw largely upon the Southwest for their raw material. The average weight of bales of the entire cotton crop of the United States during the crop year ending August 31, 1900, was, according to the commercial reports, 503.69 pounds; but the average weight of bales in the Carolinas and Georgia, from which states the bulk of the cotton con-
sumed in the South was derived, was but 489.91 pounds; whereas, the bales of Louisiana and Texas averaged a weight of 514.8 pounds.
Table 12 presents the facts relating to the cotton crop of the United States for twenty-one years, 1880 to 1900, inclusive, as reported by the United States Treasury Department.

TABle 12.-QUANTITIES OF RAW COTTON PRODUCED, IMPORTED, EXPORTED, AND RETAINED FOR CONSUMPTION, 1880 TO 1900. ${ }^{1}$

YEAR ENDING JUNE 30-	PRODUCTION.		Exports of domestic.	Domestic retained for consumption.	Imports.	Exports of foreign.	Foreign retained for consumption.	Total consumption, domestic and foreign.	Per cent of domestic product exported.
	$\begin{gathered} \text { Annual } \\ \text { crop. } \end{gathered}$	Crop in pounds, gross weight.							
	Balcs.	Pounds.	Pounds.	Pounds.	Pounds.	Pounds.			
1880	5,761, 252	2, 771, 797, 166	1,822, 061, 114	$949,736,042$	$8,547,792$	$234,729$	$\begin{aligned} & \text { Pounds. } \\ & 3,313,063 \end{aligned}$	$953,049,105$	$\begin{array}{r} \text { cent. } . \\ 65.73 \end{array}$
1881	6, 605, 750	3,199, 822,682	2,191, 928,772	1,007, 898,910	4,449,866	1,240, 576	3,209,290	1,011, 103, 200	68.47
1882	5,456, 048	2,588, 240, 050	1,789, 975,961	848,264, 089	4,339, 952	1,843, 490	2,496, 462	850,760,551	67.23
1883	6, 949,756	3,405, 070, 410	2,288, 075, 062	1,116,995, 348	4,081, 945	3, 238, 930	2, 843,015	1, 117, 838,368	67.20
1884	5, 713, 200	2, 757, 544, 422	1, 862,572,530	894,971, 892	7,019,492	1,353, 936	5, 665, 556	1, $900,637,448$	67.52
1885	$5,706,165$ $6,575,691$	$2,742,966,011$ $3,182,305,659$	1, 891, 659,472	851, 306, 539	5,115,680	1,609, 260	3,506, 420	854, 812, 959	68.96
1887	6,505,087	$3,182,305,659$ $3,157,378,443$	$2,058,037$ $2,169,457,330$	$1,124,268,215$ $987,921,113$	5,072, 334	1,276,961	- $8,795,373$	1, 128, 063,588	64. 68
1888	7,046, 833	3, 439, 172, 391	2, $2,264,120,826$	1,175, 051,565	3, 5,424, 497, 592	716,371 203,972	$3,208,160$ $5,293,620$	$991,129,273$ $1,180,345,185$	68.70 65.83
1889	6,938, 290	3,439, 984,799	2,384, 816, 669	1, 055, 118, 130	7,973, 039	187, 959	7,785, 080	1,062,903, 210	69.33
1890	7,311, 322	3, 627, 366, 183	$2,471,799,853$	1, 155, 566, 330	8,606,049	248, 104	8,857, 945	1,168,924, 275	68.15
1891	8,652,597	4, 316, 043, 982	2,907, 358, 795	1,408, 685, 187	20, 908, 817	447,794	20,461, 029	1, 429, 146, 210	67.36
1892	9, 035, 379	4, 506, 575, 984	2,935, 219,811	1, 571, 356,173	28,663, 769	182,777	28,530,992	1,599,887, 165	65. 13
1893	6,700, 365	3, 352, 658, 458	2, 212,115, 126	1, 140, 543,332	48, 367, 952	360,832	43,007, 120	1,182,550, 452	65.99
1894	7,549, 817	3,769,381, 478	$2,683,282,325$	1,086, 099. 153	27, 705, 949	1,029,936	26, 676,013	1,112,775, 166	71.19
1895	9,901, 251	5,036, 964, 409	3, 517, 533,109	1, 519, 431, 300	49,332, 022	771,614	48,560, 408	1,567,991, 708	69.83
1896	7,157, 346	3,592,416, 851	2, 835, 226, 385	1,257, 190, 466	55, 350, 520	1,188,356	54, 162,164	1, $311,352,630$	65.00
1897	8,757,964	4, 397, 177, 704	3, 103, 754,949	1,293, 422, 755	51, 898, 926	1,188, 523	50, 710, 403	1,344, 133, 158	70.59
1898	11,199, 994	5,677,259,827	3, 850, 264, 295	1,826, 995, 532	52, 660, 363	499,684	52, 160, 679	1,879,156, 211	67.82
1899	11, 274, 840	5,794,767,917	$3,773,410,293$	2,021,357, 624	50, 158, 158	293,988	49,864, 170	2, 071,221, 794	65.12
1900	9,436, 416	4,757, 062,942	$3,100,583,188$	1, 655, 479, 754	67, 398, 521	1,381,463	66,017,058	1, 722, 496, 812	65.18

1 Statistical abstract of the United States. U. S. Treasury Department, 1900.
 the New York Commercial and Financial Chronicle, and the New Orleans Cotton Exchange.

Inasmuch as a very large percentage of the cotton supply is of American origin, this statement of the crop by bales and pounds, and of its distribution, furnishes a measure of the annual increase of the cotton manufacturing industry in the United States, as compared with its increase in the rest of the world. It will be seen that the interval of twenty years made hardly any change in the percentage of the domestic products retained and of that which was exported, the difference being merely an increase of six-tenths of 1 per cent in the amount consumed at home. The ratio varies, of course, from year to year, but on the whole the table shows that the rate of increase of domestic
production is equal to that of Great Britain and the continent of Europe.

Table 13 exhibits the quantity, cost, and cost per pound of "other domestic" cotton consumed, by states, in 1880, 1890, and 1900. Inasmuch as the purpose of this table is to show the average cost of cotton, and not to compare quantities consumed-which fact is sufficiently brought out in the preceding tables-the returns for 1900 exclude the consumption in "cotton small wares" establishments, and cover those of cotton mills only, whereas for the two preceding decadal periods " cotton small wares" are included.

Table 13.-COTTON gOODS, QUANTITY, AND COST OF DOMESTIC COTTON, OTHER THAN SEA ISLAND, CONSUMED, BY STATES GEOGRAPHICALLY ARRANGED: 1880 TO 1900.

States.	1900				1890				1880^{1}			
	Bales.	Pounds.	Cost.	$\left.\begin{gathered} \text { Cost } \\ \text { per } \\ \text { pound } \\ (\text { cent }) \end{gathered} \right\rvert\,$	Bales.	Pounds.	Cost.		Bales.	Pounds.	Cost.	Cost per (cents).
United States	3, 516,080	1,739, 714, 946	\$116,108, 879	6. 67	2,231,385	1, 103, 492, 910	\$114, 337, 802	10.36	1, 570,344	750, 343,981	\$86, 945, 725	11.59
New England states	1, 719,622	874,011, 257	58, 329, 174	6.67	1,405,637	704, 792, 220	74,683, 860	10.60	1,129,498	541, 373, 880	63,169, 434	11.67
Maine..........	156, 67i	79, 212, 256	$5,400,379$ 9	${ }_{6}^{6.82}$	132, 504	$65,717,252$ $107,319,124$	$7,053,168$ $11,203,742$	10.73 10.44	112,381 157,673	54, 185, 061	$6,234,901$ $8,629,063$	11.51 11.30
New Hampshire	271, 262	136, 805, 127	$9,394,529$ 385,461	6.87 6.01	214,034 8,954	$107,319,124$ $4,647,889$	11, 203,742	10.44	157,673 7,404	$76,386,499$ $3,562,088$	$8,629,063$ 458,67	11.30 12.87
Massachusetts	1,015,305	517,088,846	33, 771,414	6.53	765, 773	383, 539, 221	40, 206, 887	10.48	574,857	273,718, 889	31, 107, 154	11.36
Rhode 1sland.	170,514	86,712, 235	6, 074, 331	7.01	186,558	94,555,788	10, ${ }_{5} \mathbf{4} 46,155$	11.05 10.76	167,480 109,703	$81,137,172$ $52,384,171$	10, 457, 770	12.89
Connecticut	93, 374	47,782,119	3,303,060	6.91	97, 814	49,012,946	5,275,560		109,703	52, 384, 171	6,281,939	11.99

Table 13.-COTTON GOODS, QUANTITY, AND COST OF DOMESTIC COTTON, OTHER THAN SEA ISLAND, CONSUMED, BY STATES GEOGRAPHICALLY ARRANGED: 1880 TO 1900—Continued.

stateg.	1900				1890				$1880{ }^{1}$			
	Bales.	Ponnds.	Cost.	Cost per pound (cents).	Bales.	Pounds.	Cost.	Cost per pound (cents).	Bales.	Pounds.	Cost.	Cost per pound (cents).
Middle states	272, 947	135,004, 971	89, 327, 774	\$6.91	251. 260	123,630, 916	\$12,917, 244	\$10.45	228, 729	109, 321, 428	\$13, 258, 526	\$12.13
New York	99, 064	50, 464,770	3,513, 661	6.96	78, 171	39, 038, 689	4,192, 105	10.74	64,614	31, 656, 594	3, 981, 106	12. 58
New Jersey	15, 872	8, 183,469	541, 858	6.62	16, 482	8, 231, 147	905, 524	11.00	21,069	9,950,609	1,319,422	13.26 .
Pennsylvania	74,382	35, 083, 214	2,521,768	7.19	92, 705	44,629,588	4, 371, 693	9.80	83, 997	40, 311, 809	4,749, 428	11.78
Delaware	2,675	1,371,563	106,358	7.75	8,876	4, 465, 825	475, 490	10.65	7,512	3, 236,184	427,855	13. 22
Maryland	80,954	39,901, 955	2,644,129	6.63	55,026	27, 265, 667	2,972, 432	10.90	51,537	24, 166, 232	2,780, 715	11.51
Southern states	1,477, 775	707,159, 521	46,988,926	6.64	526,856	250, 837, 646	24,508,776	9.77	182,349	84, 528, 757	8,890,408	10.52:
Virginia	38,118 404,148	$17,832,465$ $189,984,759$	1, 154,215	6.47	22,731	10, 616,206	1,080,773	10.18	11, 461	5,087,519	601, 796	11.83
North Carolina	404,148 485,024	189,984, 759	13,604, 720	7.16	114,371	53, 546,289	$5,396,974$	10.08	27,642	11, 832,641	1, 125, 984	9.52
South Carohna	485, 024	229, 899, 760	14, 909, 520	6.49	133,342	64, 000,600	6,242, 598	9.75	33,624	15, 601,005	1,723, 187	11.05.
Georgia	303, 836	145, 470, 324	9, 665, 464	6.64	145,859	$69,139,410$	6,663, 560	9.64	71,389	33, 757, 199	3,591, 554	10.64
Kentucky	23,982	11,971, 815	770, 363	6.43	11, 980	5,751, 305	554,206	9.64	4,050	1,882, 234	188, 856	10.03
Tennessee	30,234	15,028, 584	982, 146	6.54	33,114	15,779, 360	1,554,851	9.85	10,436	4,944, 279	508, 305	10.28
Alabama.	134, 371	67, 987,299	4, 206,721	6.19	29,962	14,726, 454	1, 372, 658	9.32	14,702	7,271,791	729, 202	10.03
Mississippi	20,962	10,363,458	623,576	6.02	17,366	5, 449,834	793,600	9.39	6,411	2,881, 853	301, 226	10.45
Texas....	18,045	9, 304, 434	566,517	6.09		,	,		246	119,986	11, 280	9.40
All other Sonthern states ${ }^{2}$.	19,055	9,316,623	505,684	5.43	18,131	8,828,188	850,156	9.63	2,388	1,150, 250	109,018	9.48
Western states	45,736	23, 539, 197	1,463,005	6.21	47,632	24, 232, 128	2,227, 922	9.19	29,768	15,119,916	1,627,357	10.76
Ohio					11,023	5,840, 078	383, 556	6.57	5,323	2, 506,182	258, 198	10.30
Indiana	19,884	10,283, 614	608, 822	5.92	16, 306	8,240, 434	798, 178	9.69	11,558	6, 364, 887	679,911	10.68
Itlinois..					6,405	3,267, 188	312, 621	9.57	2,261	1,099,130	110, 969	10.10
Wisconsin---.-.--	4,565	2,316,727	145, 773	6.29	6, 924	3,470,388	359, 117	10.35	3,173	1, 541, 797	180, 072	11.68
All other Western states ${ }^{3}$..	21,287	10,938,856	708,410	6.48	6,974	3, 414,040	374, 450	10.97	7,453	3,607, 920	398,207	11.04

[^100]It will be seen from an examination of Table 13 that the average price of cotton in 1899-1900 was much below that in 1890 , and that the decline was still greater when compared with 1880 . Another fact which has a certain bearing upon the future of cotton manufacturing is that the average price in all parts of the country was fairly uniform. In 1880 the average price in states using a considerable amount of cotton varied between 9.52 cents per pound in North Carolina and 13.26 cents in New Jersey. In 1890 the rariation was between 9.32 cents per pound in Alabama and 11.05 cents in Rhode Island. In 1900 the variation in states using as many as 75,000 bales each was from 6.19 cents in Alabama to 7.16 cents in North Carolina. Of course no general inferences of great value can be drawn from such facts further than that the price of cotton tends, under the influence of a local demand for the local crop and the steady cheapening of transportation charges, to equalize itself over the whole country. Differences in the quality of cotton used in the industry in the several sections of the country, and the season at which cotton is bought-often a mere matter of lucky or unlucky prognostication on the part of manufacturers-these things have too much influence in establishing average prices to allow definite conclusions to be drawn from the figures. It will be interesting to note how far consumption is overtaking production in some of the cotton states.

CROP, 1899-1900.	$\begin{gathered} \text { Production } \\ \text { (NEW YORK CHRONICLE). } \end{gathered}$		CONSUMPTION (Census).	
	Bales.	Pounds.	Bales.	Pounds.
Virginia	413,170	206, 312, 308	38,118	17, 832, 465.
North Carolina.	317, 530	155, 589,700	404,148	189, 984, 759
Sonth Carolina	266, 810	130, 285, 991	485, 024	229, 899, 760
Georgia	1,358,586	665,978,857	303,836	145, 470, 324
Alabama	202, 945	102, 006, 245	134, 371	67, 987, 299

It appears that the crop of South Carolina needed to be supplemented by almost exactly $100,000,000$ pounds, drawn from other states, to supply its spinners; that the North Carolina crop was deficient more than $34,000,000$ pounds; that Alabama made use at home of two-thirds of its crop; that the great cotton-growing state of Georgia consumed more than one-fifth of its crop; and that even Virginia, which had made less progress in the industry than the states farther South, consumed more than one-twelfth of its crop. At the present rate of progress it will not be long before the entire cotton supply of the states on the Atlantic seaboard will be taken at home. More than half of it was taken during the census year here reported; for of the $1,260,000,000$ pounds raised by the 5 states mentioned, their own mills took $651,000,000$ pounds.

SEA-ISLAND COTTON.

The amount of sea-island cotton here reported as consumed in the United States is not only larger than
the amount reported at any previous census, but it is also larger than the commercial report for any previous year. The nearest approach to the current figures are those for the crop year 1896-97 when the American consumption is fixed at 40,670 bales. The New York Chronicle reports are taken for the years intervening between 1890 and 1900.

american consumption of sea-island cotton.

Years.	Bales.	Years.	Bales.
1890	21,283	1896	40,530
1891	26,651	1897	40,670
1892	32,093	1898	34, 140
1893	22,911	1899	38,654
1894	24,345	1900	47,207
1895	34,981		

Notwithstanding an extending use of sea-island cotton, an increase in the crop has caused a decline in the price, which at this census is but 14.8 cents per pound, as compared with 25.1 cents in 1890 . The use of this material is restricted to 5 states-Massachusetts, Rhode Island, Connecticut, New York, and New Jersey-although a small quantity is returned by one establishment in North Carolina.

egyptian cotton.

The use of Egyptian cotton for the manufacture of fine fabrics, but more particularly as the material for knit underwear, has grown greatly during the last decade. The amount imported into the country nearly doubled during the ten years 1881-1890, rising from $4,440,996$ pounds, valued at $\$ 757,352$, to $8,407,160$, valued at $\$ 1,393,071$. But in the ensuing ten years the importations have still further multiplied eightfold. The following statement shows by fiscal years the imports of foreign cotton, which was nearly all Egyptian:

YEARS.	Pounds.	Value.
1890-91.	20, 908, 817	\$2, 825, 004
1891-92.	28,663,769	3,217,521
18992-93-94	27, 705,949	3, 003,888
1894-95.	49,332,022	4,714,375
1895-96	55, 350, 520	6,578,212
1896-97.	51, 898, 926	5,884, 262
1897-98.	52,660, 363	5, 019, 503
1898-99.	50, 158, 158	5,013, 146
1899-1900	67, 398, 521	7,960,945
Total for 10 years	447, 444, 997	48,905,655
Annual average	44, 744, 500	4,890,565

During the census year 1889-90 there was reported a use of $6,560,951$ pounds of Egyptian cotton. The present returns account for a consumption of $55,844,932$ pounds, which should properly be increased by an unknown amount consumed in a few hosiery establish-
ments which spin a part, at least, of their own yarn. Egyptian cotton possesses some peculiarities which adapt it especially to the uses to which it is put. It is especially desirable, on account of its natural silkiness, for the process of mercerization.

YARN PURCHASED.
Although there bas been no perceptible movement during the last ten years in the direction of the English system of treating spinning and weaving as distinct industries-in the sense that both processes are not usually carried on in one factory-yet there has been a large proportionate increase in the number and importance of yarn mills. At the census of 1890 a little less than one-eighth of the value of products reported consisted of " yarns for sale;" at this census almost exactly one-sixth of the product is so classed. Although this increase, as will presently be noted, was demanded largely for consumption in collateral industries, there was an augmented use of cotton yarn in weaving establishments. The return of cotton yarn purchased for use in cotton mills proper, in the census year 1899-1900, was $83,832,216$ pounds, valued at $\$ 15,749,536$, as compared with $48,779,715$ pounds, valued at $\$ 10,853,536$, in 1890, an increase in value of about 50 per cent. Nevertheless, the situation has not changed substantially since it was noted in the report on the Eleventh Census that the establishments classed as "cotton goods," which make use of yarn not spun by themselves, are of three classes: (1) Those which both spin and weave, but do not produce enough yarn to supply their looms; (2) those which purchase fine yarn to be converted into sewing thread; and (3) those which weave only. It is noted elsewhere that the number of spindles in Pennsylvania has diminished during the last ten years. But there are in that state, chiefly in Philadelphia and its suburbs, a great many establishments which operate looms only in the production of the highest class of fancy-woven fabrics. They are by far the largest users of the yarn here reported among materials consumed. During the census year the factories in Pennsylvania took $36,304,919$ pounds of this yarn, valued at $\$ 6,741,518$, about 43.3 per cent of all the yarn so taken by the mills of the United States. Pennsylvania, with but 1.6 per cent of the spindles operated in the United States, has 3.5 per cent of the looms.

yarns other than cotton.

The consumption of raw fibers, other than cotton, in the cotton mills of the country is quite unimportant; but in special mills there is a large use of yarn made of such fibers. The facts relating thereto were, at the census of 1900 , obtained in much greater detail than
heretofore. The following statement makes such comparisons as are possible with the statistics published in 1890:

Materials.	1900		1890	
	Pounds.	Value.	Pounds.	Value.
Silk	298, 716	\$1, 158, 321	32,851	\$154, 336
Spun silk.	208, 403	625,658	18,683	83,064
Worsted.	1, 687,019	415, 904	87, 257	62,514
Woolens	435, 361	176,467	196,874	131,657
Merino..	87,064	21,946
Mobair.	21, 398	21,435		
Jute...	220,507	17,967	99,938	8,976
Mercerized cotton	16, 233	15,752		
Tussur	15,918	19,102		
Other yarn	103,157	10, 221	224, 729	59,312
Total.	3,803,774	2,896,573	677,954	509,682

It appears from the foregoing tabular statement that the use of yarn made from fibers other than cotton has increased more than fivefold in the last ten years. Such yarns are, of course, employed for mixing with cotton. With the exception of jute, and the inconsiderable amount reported indefinitely as "other yarn,"
they are all of higher cost than ordinary cotton yarn; and their use implies not an adulteration, but an improvement of the fabrics into which they enter.

other materials.

Raw cotton and yarn account for 80 per cent of the total value of the materials used. The rest is made up of oil and starch, mill supplies, fuel, and freight. The purity of the goods manufactured in American mills is attested by the fact that no place needs to be reserved in this branch of the statistics for any articles used elsewhere for "loading" fabrics. A careful return was required of the quantity of starch consumed-a necessity in dressing warps-and it appears that it constitutes only 3.7 per cent of the weight of piece goods and yarn produced.

PRODUCTS.

Table 14 exhibits the kinds, quantity, and value of products of cotton mills in 1900, together with such comparison with the corresponding figures for 1890 as the inquiries at the Eleventh Census render possible.

Table 14.-PRODUCTS OF COTTON MILLS IN DETAIL: 1890 and 1900.

kinds.	1900		1890	
	Square yards.	Value.	Square yards.	Value.
Aggregate value.		\$332, 806,156		\$267, 981, 724
Woven goods:				
Plain clotbs for printing or couverting-	4, 509, 750, 616	243, 218, 155	3,004, 320, 473	193, 874, 275
Total ${ }_{\text {Not }}$ finer than No..............	1,581, 613,827	57,780,940	955, 294, 320	43,550,174
Not finer than No. 28 warp.. Finer than No. 28 warp....	1, $0.56,278,952$	$35,616,575$ $22,164,365$	(1) ${ }^{\text {(1) }}$	(1) ${ }^{(1)}$
Brown or bleached sheetings and shirtings	1, 212, 403,048	55, 513, 032	962, 238, 062	55,193,439
Ginghams	278,392, 708	16, 179, 200	268, 996, 715	20, 686, 390
Ticks, denims, and stripes	$171,800,853$ $237,206,549$	16, 446,633	$167,121,426$ $\mathbf{2} 34,020,091$	$16,987,546$ $223,601,239$
Twills and sateens	235, 860,518	14, 301, 302		
Cottonades.	26, 323,947	2, 791, 431	(9)	(3)
Napped fabrics.	268,852,716	18,231, 044	4132,524, 706	${ }^{4} 10,574,924$
Fancy woven tabrics...............	$237,841,603$ $7,961,523$	21,066, 310	$\underset{(8)}{127,373,179}$	
Duck-				
Total	129, 234, 076	14, 263,008	55,192, 538	8,664,395
Other	117,750,151	2, 216, ${ }^{12} \mathbf{0 4 6}$, 6371	(8) 8 8 8	
Bags and bagging	10,039, 616	2,554,192	(8)	(8)
Mosquito and other netting	41, 885, 023	875, 868	(3)	$\left.{ }^{8}\right)$
Upholstery goods-		$8,670,384$		
Tapestries (piece goods and curtains)	10,131, 538	4,123, 600	642,061	
Lace and lace curtains...	36, 880,198	$3,585,138$	$\left(^{8}{ }^{8}\right.$	1, 225 , 364
Chenille curtains..	805, 414	257, 840	666,405	360, 706
Other, including covers	2,517, 459	703, 806	250,970	129, 182
	Pounds.	Value.	Pounds.	Value.
Yarns for sale	332, 186,012	\$ $55,188,663$	166, 397, 003	\$33, 247, 596
Sewing cotton.	15, 741,062	11, 825, 218	13, 868, 309	11, 637, 600
Twine and webbing	11, 132, 250	1, 475, 146	8, 533, 780	1,364,300
Batting and wadding	10, 567, 700	864,016	20,470,556	2,094, 232
Waste for sale	270, 100, 756	5, 552, 234	141, 109, 597	5,679, 701
Other products of cotton All 0 ther products.....		5, 154, 170		${ }^{(3)}$
All other products...		9,199,758		20,084,120
1 No separation of print cloths was made in 1890. 2 Drills, twills, and satecns.			${ }^{3}$ Not separat * Cotton flan	eported.

The total value of the products of all the mills here reported was $\$ 332,806,156$, of which $\$ 243,218,155$, or 73.1 per cent, represented the value of woven goods; $\$ 55,188,663$, or 16.6 per cent, the value of yarn spun
to be used in other mills; $\$ 11,825,218$, or 3.6 per cent, the value of sewing cotton; and $\$ 22,574,120$, or 6.8 per cent, the value of miscellaneous and by-products. The proportion of these several classes of goods varies but
slightly from that indicated in the census returns of 1890. There was a decline of about 1 per cent in the relative value of woven goods, an increase of about 4 per cent in the relative value of yarn for sale, and a decrease in miscellaneous products. It should, nevertheless, be remarked that the more thorough classification of products at this census is responsible for an apparent decline in miscellaneous products which is not real. A large part of the " all other products" reported in 1890 should undoubtedly fall into some of the newly specified classes of woven goods. In respect to the corresponding item in the returns of the present census, a still more detailed classification would have removed from "all other products" a large quantity and value of toweling and other woven products which are not properly classified as piece goods.

An inspection of the table brings out the fact which is known to all persons acquainted with the trade in cotton goods, namely, that the demand for coarse and medium goods is many times that for fine fabrics. The largest single item is that of sheetings and shirtings, $1,212,403,048$ square yards, the whole of which is made from coarse or medium yarns; and the next in point of magnitude is the $1,056,278,952$ square yards of print cloths, not finer than No. 28 warp. Most of the other classes of goods are wholly or mostly woven from medium or coarse yarns. The exceptions are the finerprint cloths, $525,334,875$ yards (which is only one-ninth of the gross yardage of woven goods), a certain portion of the fancy woven fabrics, a part of the twills and sateens, and a small part of the ginghams. The fact that there is a great demand for coarse and medium goods and a limited market for fine goods is pertinent to the suggestion that manufacturers who are unable to compete successfully in the production of standard plain cloths can find their salvation in turning to the spinning of fine yarns and the weaving of fine fabrics.

In comparing the quantities and values of goods in 1890 and in 1900 it will be seen that, taking both classes of print cloths, there was an increase in quantity of more than one-half, and an increase in value of little more than one-third. There was an increase in the quantity of standard sheetings and shirtings of rather more than one-fourth, but the aggregate value was almost the same in 1890 and 1900. A small increase in the quantity of ginghams is accompanied by a reduction of more than one-fifth in the gross value. The same discrepancy is to be noted throughout the list. The explanation-the greatly diminished cost of cotton during the census year 1899-1900-is an interesting illustration of the uutrustworthiness of statistics showing the value of products as a test of the condition of an industry, or for the purpose of comparing one industry with another.

An interesting feature of the details respecting woven
goods is the great increase in the quantity of articles classed as upholstery goods. In 1890 they were reported as of a total value of $\$ 2,070,239$; in 1900 they were returned at $\$ 8,670,384$, consequently, the industry has become more than four times as important as it was ten years ago. Practically the whole of this industry is located in the city of Philadelphia.

An important increase is also to be noted in the production of yarns for sale. The amount, in fact, has almost exactly doubled, and the value is two-thirds greater than in 1890. There is a large and growing demand for yarn in knitting mills and in weaving establishneents which do no spinning, as well as in mills which spin too little for their own consumption. Prior to 1890 there were few yarn mills in the South, but during the last decade there have been many factories of that class put in operation. A large part of the yarn here reported can be traced to its ultimate use. Thus, we find that $83,832,216$ pounds were used in other mills, classed as "cotton goods;" $55,217,994$ pounds in the wool manufactures; $131,820,068$ in the hosiery and knit goods manufactures; $10,860,648$ pounds in cotton small wares establishments; $6,444,208$ pounds in silk manufactures; $3,860,235$ in cordage and twine; 810,957 pounds in linen manufactures; and 301,888 pounds in jute manufactures. This leaves but $39,037,798$ pounds not accounted for, but the consumption of yarn for other purposes is large-for example, in winding wire to insulate it for electrical conduction. The production of sewing cotton has not kept pace, in expansion, with most other branches of the industry. It may be that the consolidation of the producing companies has led to a more close approximation of demand and supply. It will be noted that, in common with other branches of the cotton manufacture, the average price of sewing cotton has declined.

materials and products twice reported.

The gross value at the factory of all the products of cotton mills is reported as $\$ 332,806,156$. This sum is no doubt in excess of the net product, inasmuch as in many cases the finished product of one mill is the material of another. The excess is, nevertheless, far less proportionately than is the case with many other industries, for the reason that, as is elsewhere explained, the great majority of establishments in this branch of textile manufacturing carry through their raw material, cotton, from the baled lint to the woven cloth. In the aggregate, however, there is a large consumption of partially manufactured material consumed by weaving establishments, of which some spin a quantity of yarn insufficient to supply their looms, and others do not spin at all. Following is a statement, as complete as can be made, of the partially manufactured materials con-
sumed which must be eliminated from the total of both naterials and products to show the facts regarding this industry:

articles.	Value.
Yarn:	
Cotton.	\$15, 749, 536
Silk.	1, 158,321
Spun sile	625, 6158
Woolen.	176, 467
Other	520, 223
'Total of yaru.	18,646, 109
Waste of other mills.	1,513,281
Oil..	494, 179
Starch.	1,223, 102
Chemicals and dyestuffs	5,671, 768
Mill supplies	7,664,490
Other materials	4,614, 468
Total	39, 827, 397

Probably a considerable amount of the chemicals and dyestuffs reported consisted either of crude materials of domestic origin, which do not appear any where as a product of manufacture, or of articles imported in a con-
dition for immediate use; but it is impossible to separate the amounts from the total, or even to make a reasonable estimate of their value. The whole is therefore counted as a duplication.

Deducting the total above shown from the total value of materials used, the remainder is $\$ 133,613,993$. Deducting it also from the total value of products, the remainder is $\$ 292,978,759$.

DYEING AND FINISHING.

The dyeing and finishing of cotton yarn and cloth is carried on partly in cotton mills and partly in independent establishments. The statistics of this industry are presented in the reports on combined textiles, and on the dyeing and finishing of textiles. Table 15 shows the additional work done upon the products of mills after spinning or weaving in both classes of establishments, and the additional value reported to have been given to those products by the several processes.

Table 15.-DYEING AND FINISHING IN COTTON MILLS AND IN INDEPENDENT ESTABLISHMENTS: 1900.

Process.	total.		IN COTTON MILLS.		IN INDEPENDENT ESTABLISHMENTS.	
	Quantity, pounds.	Value added.	Quantity, pounds.	Value added.	Quantity, pounds.	Value added.
Yaru:						
Bleached	12,780, 518	8252,635			12,780,518	\$252,635
Dyed......	$205,713,712$ $3,018,573$	$7,691,268$ 487,946	$151,610,157$ $2,149,722$	\$5, 464, 356	54,103,555	2,236,912
Total yarn treated	221, 512,803	8,431, 849	153, 759, 879	5,792,686	67, 752, 924	2,639,163
	Square yards.	Value added.	Square yards.	Value added.	Square yards.	Value added.
Cloth:						
Dyed.....	1,1685, 374,965	$\$ 7,623,875$ $8,923,925$	$197,691,533$ $125,894,626$	$\begin{array}{r}\text { \$932, } 452 \\ 1338 \\ \hline\end{array}$	964, 902, 367	\$6,691,423
Printed	1,233, 191, 438	21, 239, 782	292, 741, 100	5, 242,695	940, 450,338	15,997,087
Mercerized.	7,973,506	400,118			7,973,506	15, 400, 118
Total cloth treated.	3, 089, 133, 809	38, 187, 700	616, 327, 259	7,513,868	2, 472, 806,550	30,673,832
Total value added		46,619, 549		13,306, 554		33,312,995

From Table 15 it appears that $\$ 46,619,549$ was added to the value of goods produced in the cotton mills of the country, by the various processes of dyeing and finishing. Manufacturers were not asked to return the amount of yarn bleached, and the full added value was therefore not ascertained. Even without this amount the returns show that of the yarn treated 69.4 per cent was treated in the cotton mills, and only 30.6 per cent in independent establishments. On the other hand four-fifths of the cloth treated was operated upon in independent establishments. Of the $4,509,750,616$ square yards of woven goods reported in Table 14, 1,233,191,438 square yards were printed; $685,374,965$ square yards were dyed; $278,392,708$
square yards were ginghams, and $171,800,853$ square yards ticks, denims, and stripes, containing dyed yarnsa total of $2,368,759,964$ square yards. This indicates that something more than one-half of the woven goods produced in cotton mills is colored by printing or dyeing before entering into consumption. The figures relating to bleaching are to be considered with full allowance for the fact that bleaching is a necessary preliminary to printing and other processes, so that the same material is twice reported. Many manufacturers in making returns of dyeing or printing did not report separately the amounts bleached, but treated the whole process as one.

FINENESS OF GOODS－AVERAGE NUMBER OF YARN．

The method adopted for ascertaining the average number of yarn spun is the same as that first introduced at the Eleventh Census．The method in use prior to that time was based upon the number of spindles pro－ ducing yarn of a particular fineness．For example，the average number of yarn produced by two mills，each having 10,000 spindles，the one spinning No． 20 ＇s and the other spinning No． 30 ＇s would be No．25．This method was faulty，inasmuch as it assumed the equal speed and efficiency of all spindles，and also because it took no account of the fact that spindles of equal effl－ ciency making coarse yarns spin a greater weight of yarn than those making fine yarn．The new mode of calcu－ lating it is based upon the quantity of yarn produced． The average of 5,000 pounds of No． 20 and 7,000 pounds of No． 36 would be No．29．333．There would be 100,000 hanks（of 840 yards）of No． 20 and 352,000 hanks of No． 36 ，and the average is ascertained by dividing the num－ ber of hanks by the number of pounds．Of course， this method does not give an absolutely accurate result， inasnuch as manufacturers can not in all cases estimate exactly what is the average number of their own pro－ duction，particularly if they make yarn of many degrees of fineness；but it is more nearly correct than the for－ mer system and is the most satisfactory method yet devised．To illustrate the inaccuracy that arises in the use of the present method，there is a mill in the state of New York which has a majority of its spindles pro－ ducing yarn finer than No．40；but a⿱⿱⿰㇒一日夊心 it operates also a comparatively small number of mules making coarse hosiery yarn，it reports its average number as 18 ．
It is，and probably it always will be，true that an overwhelmingly great proportion of the cotton goods demanded for use even in wealthy communities is made of medium or coarse yarns．It will be seen from the table showing the gross spinning of fine，medium， and coarse yarns，that not much more than one－twentieth of the yarn spun is classed as fine．Nevertheless there is a constant tendency toward finer spinning．The de－ mand for cloth classed strictly as fine increases steadily， and，among the users of the heavy goods which repre－ sent the spinning and weaving industries in pioneer times，the desire grows for the standard sheetings and shirtings made of yarn ranging from No． 25 to No． 40. Yet the perversity of averages conceals these tendencies to a great extent，as will become evident upon an ex－ amination of the following statement，showing by states and geographical divisions the average number of yarn spun in 1900 and 1890：

	AVERAGE NUMBEROF YARN．	
	1000	1890
United States．．	21.573	22.93
New England states．	25． 560	26.20
Maine	22.937	22.66
New Hampshire．	19．174	22． 14
Massachusetts．	25.097	26.75
Rhode Island．	36． 541	34.73
Connectieut．	30.373	29． 91
Mlddle states．	19.176	20.45
New York	23.457	27． 69
New Jersey．．	35.370	37．14
Pennsylvania	16． 489	16． 65
Delaware．	23.522	22.33
Southern states．	17.046	14.76
Virginia．	15.287	17.04
North Carolina	18.830	15.30
South Carolina	19.040	15.13
Georgia．	14.371	14.35
Kentucky	13.722	15.75
Tennessee	12.722	12.22
Alabama	14.437	12.67
Mississippi	14.344	14.58
Arkansas．	5.878	
Louisiana	15.876	
Texas	9.580	
Western states．	19.418	15.32
Indiana	18.262	14.66
Illinois	22.000	17.20
Wisconsin	20.879	20.37
Nebraska	27.000	
Missouri．	15． 426	
Colorado	20.000	
California	9.000	

From the foregoing figures it would be natural to conclude that the tendency has been toward coarser spinning．But it will be seen that the average number of yarn in the Southern states，where the largest increase has taken place，has advanced two and a quarter numbers．Yet because the average in that section is still eight and a half numbers below the aver－ age in New England，the general average of the whole country is reduced．In New England there was a large increase in the spinning of coarse，medium，and fine yarns．The proportional increase of fine spinning was 59.3 per cent more than the increase of coarse，and 94.7 per cent more than the increase of medium goods；but since the actual increase in pounds of fine yarn spun was less than the increase in the two other classes，the general average is slightly reduced．Table 16，showing the aggregate amount of yarn spun，by states，geograph－ ically arranged，divided into coarse，medium，and fine， in 1900 and 1890 ，gives a much better idea of the situa－ tion than can be obtained from any calculation of the average number．

Table 16.-YARNS SPÚN, CLASSIFIED BY GRADE, BY STATES, GEOGRAPHICALLY ARRANGED: 1890 AND 1900.

states.	1900					1890			
	$\begin{aligned} & \text { Number of } \\ & \text { hanks of yarn } \\ & \text { spun. } \end{aligned}$	Total.	No. 20 and under.	$\begin{aligned} & \text { No. } 21 \text { to } \\ & \text { No. } 40 . \end{aligned}$	$\begin{array}{\|l\|} \text { No. } 41 \text { and } \\ \text { over. } \end{array}$	Total.	No. 20 and noder.	$\begin{aligned} & \text { No. } 21 \text { to } \\ & \text { No. } 40 . \end{aligned}$	No. 41 and over.
United States	31,660, 042, 486	$\begin{aligned} & \text { Pounds. } \\ & 1,467,565,971 \end{aligned}$	Pounds. 850, 203,953	Pounds. $540,166,147$	$\begin{gathered} \text { Pounds. } \\ 77,195,8 \overline{7} 1 \end{gathered}$	Pounds. 901, 842, 238	Pounds. 480, 273, 239	Pounds. 386, 723, 173	Pounds. 34, 845, 826
New England states	19,067, 774,000	745, 990, 534	304, 842, 149	369, 423, 518	71,724, 867	574, 084, 144	207, 672, 353	331,611,339	34, 800, 452
Maine.	1,536, 8671,865	67, 003, 387	40,530, 149	${ }^{23,608} \times 185$	2,864, 273	54, 963, 253	26,577,650	28,385, 603	
New Hampshire	2, $1889,377,3388$	108,968, ${ }_{5}$	$79,300,869$ $1,525,038$	29,667, 874 $3,907,950$		$91,167,408$ $3,752,391$	54, $1,284,893$	$36,182,517$ $2,508,883$	
Massaehusetts	11, 106, 615,977	442, 538,758	164, 190,352	235, 617,217	42,73i,189	308,797,274	103, 234,514	186, 550,241	18,812,519
Rhode 1sland	2,822, 384,752	77, 238,360	3,661, 667	57,341, 561	16,235, 132	75, 037, 935	8,280,776	55, 640 , 821	11, 116,338
Connecticut	1,360, 984, 324	44, 808, 803	15,634, 079	19, 280, 451	9, 894, 273	40, 365, 883	13,351, 014	22, 143, 274	4, 871,595
Middle states	2, 260,033, 536	117, 856,490	86, 166, 567	27, 105, 119	4,584,804	103, 035,788	62,850, 759	40, 139, 655	45,374
New York.	985, 573, 613	42, 014, 730	25, 241, 091	16,443, 639	330,000	32,083,114	6, 553,540	25, 529, 574	
New Jersey	432, 593,550 $555,394,994$	$12,230,347$ $32,468,390$	$5,366,044$ $25,344,251$	2,979, 499 $6,754,139$	$3,884,804$ 370,000	$6,133,639$ $40,238,918$	- $\begin{array}{r}1,456,672 \\ 32,215,744\end{array}$	4,631,593	45,374
Delaware...	- $24.968,969$	${ }^{32} 1,061,1,74$	${ }^{25,344,261}$			+ ${ }^{40,828,238}$		1, 502,278	
Maryland	281,502,689	30,081, 549	30,081,549			20,751, 879	20, 298, 843	453, 036	
Southern states	9,998,763, 591	586,546, 032	445, 967, 812	139, 691, 990-	886, 200	209, 987, 348	197,443,432	12,543, 916
Virginia	$\begin{array}{r} 230,991,103 \\ 2945,812,639 \\ 3,730,694,191 \end{array}$	$15,110,233$ 156435,539 195,930, 440	13, 457, 870 99, 021, 341	$\begin{array}{r} 1,652,363 \\ 56,527,998 \end{array}$	- 8868.200	7,719, 379	$\begin{gathered} 7,79,379 \\ 41,972,380 \\ 53,275,599 \end{gathered}$	
South Carolina						- $54,5290,363$		3, ${ }^{3}, 244,770$	
Georgia.	1, $1240,4885,417$	116,967, 671	108, 276,364	8, 691, 307			-	6, ${ }^{1}, 241,249$	
Kentuctry.	-124, 14880,316	11,152,567	$\begin{array}{r}5,818,514 \\ 11,152,567 \\ \\ \hline\end{array}$			$\begin{array}{r} 4,248,115 \\ 12,310,343 \\ 11,699,255 \end{array}$	$\begin{array}{r} 2,246,776 \\ 12,310,343 \\ 116999255 \end{array}$	2,001,339
Alabama.	$835,446,399$ $113,456,683$		51,77	6,541,039
Mississippi						$11,699,255$$6,966,959$	$11,699,255$ $6,966,959$		
Arkansas.	$\begin{array}{r} 5,201,508 \\ 111,105,000 \\ 78,650,620 \end{array}$	$\begin{aligned} & 6,999,216 \\ & 8,210,626 \end{aligned}$	$\begin{array}{r} 893,279 \\ 6,998,216 \\ 8,210,626 \end{array}$
Texas....						….............			
All other Southern						$8,641,918$	$8,691,918$		
Western states .	333, 471, 359	17,172,945.	13, 227,425	3,945,520	14,734, 958	12,306, 695	2,428,263
Indiana.	$158,265,234$ $48,345,506$ $30,339,500$ 26,233, 875 1,350,000	8, 666,072 2, 197. 523 1, 318,500 971,625 2,104,097 150, 000	8,666,072 988,756 1,318,500 2,104,097 150,000			6,649, 187 2, 682, 606	$\begin{aligned} & 6,649,187 \\ & \hline, 950,000 \\ & 1,678,474 \end{aligned}$	$\begin{aligned} & \mathbf{i}, 4 \mathbf{4 2 4}, \mathbf{1 3 1} \\ & \mathbf{1}, 04,132 \end{aligned}$	
Wisconsin									
missouri									
Nebraska									
Caliorado									
All other Western						3,029,03i	3,029,034		

POWER.
The returns of power used in the cotton-manufacturing industry present the extraordinary fact, that of the 806,121 horsepower enployed in all the establishments in the United States, only 12,602 horsepower, less than 1.6 per cent, was bired. It should be explained that a large number of corporations whose factories are operated by waterpower do not own the water privileges. That is to say, they pay in one form or another for the water which turns their wheels. This expense is not classed as rent, but as a part of the materials used. It is evidently an expense of the same sort as the fuel which is consumed in supplying steam power.
Although the statistics are lacking for a comparison of the kinds of power in ase during the year 1900 with those employed in previous census years, yet it may be surmised with a degree of confidence that the present returns signalize a culmination of the use of steam as compared with waterpower. In the early days of the industry cotton factories were usually, one might almost say invariably, located upon waterpower. So universally was this the practice that cotton mills which were erected in coast towns, where coal could be procured at a low transportation cost for steam making,
were distinguished in the titles of the corporations as "steam" mills. But the inadequacy of waterpower as the motive force for great groups of factories, and the failures and stoppages caused by drought, flood and ice, led to the addition of steam engines for a supplementary power, and to the erection of mills without reference to waterpower. This change has gone to such an extent that steam power used in the factories is more than double the waterpower employed. The numbers representing the two kinds of power are 527,186 horsepower for steam, and 250,790 horsepower for water. There are, nevertheless, some reasons for believing that there may be a reaction, the importance of which can not be predicted. The development of the use of electricity carries with it the possibility of a cheap transmission of power to a distance without serious loss. In this way it becomes feasible to make available certain waterpowers which, on account of their location or the physical characteristics of the country, have heretofore been useless. The growing importance of electricity as a motor appears in the current returns which show a total of over 18,000 electric horsepower, owned and rented. The application of electricity direct to the machinery, without the use of shafting and belting, is comparatively new, but it is certain that it has a great future, and that here-
after manufacturers will find in the system great benefits, of which a saving in expense will not be the least.

MACHINERY.

Ever since the first application of mechanical power to the movement of the spindle there has been a constant insprovement in the machinery employed in the spinning and weaving of cotton. The foundation of the cotton manufacture was laid in the almost simultaneous invention of the steam engine and the earliest form of spinning machincry. Hargreaves's spinning jenny, invented in 1764 and patented in 1770; Arkwright's water frame, the invention of drawing by rollers, brought out in 1769 and improved in 1775; Crompton's mule-so called because it combined the principles of Hargreaves's and Arkwright's inventions-patented in 1779; these antedated but a short time the introduction of Watts's steam engine, which was invented in 1769, becane a practicable power agent by improvements made in 1781 , and was first applied to the production of cotton yarn in 1785. All of Arkwright's patents, which included inıprovements in carding, drawing, roving, and spinning, were thrown open in 1785 . In the same year Dr. Cartwright invented the power loom, and thus completed the group of fundamental inventions of which all modern spinning and weaving machinery is but an adaptation and a series of improvements.

But there has been another series of inventions directed to the economical, rapid, and thorough preparation of the cotton for spinning, as well as a constant succession of improvements in the final processcs of the manufacture, which have multiplied a hundred if not a thousand fold the efficiency of the industry. In the year 1800 the scutching machine was introduced, the invention of Snodgrass, of Glasgow. The lap machine was introduced in nearly the form it has today by Mr. John Crighton, of Manchester, in 1814. Mr. Crighton also effected an important reform in the processes of opening and scutching. The invention of the carding machine and its gradual cvolution into the almost perfect mechanism of to-day, cover nearly the whole of the Nineteenth century. The first important improvement was made in 1823. The principle of the revolving flat was devised in 1834. After being neglected for more than twenty years it was taken up and improved in 1857 , and about 1880 became, in the hands of the Messrs. Ashworth, substantially the carding nachine of the present day. The combing machine was first exhibited by its inventor, Mr. Josué Heilmann, of Mulhouse, at the Paris Exposition, in 1851.

The mule, as invented by Crompton, was a semimanual machine. Richard Roberts, in 1835, transformed it into the purely automatic machine which we see at this time, so exact and precise in its several successive motions that it seems endowed with almost human intelligence. Since Roberts's time the history of the mule has been one of development in detail and
of better construction, but the changes of this sort have made it vastly more useful in speed, in precision of action, and in the quality of the yarn which it makes. The improvement in frame spinning has been much greater than in the mule. The invention of the ring and the traveler in the third decade of the last century opened a wide field to the genius of mechanicians. Improvement followed improvement in rapid succession until the Rabbeth spinclle reached what seems to be the practical limit of speed, and, therefore, of the production of yarn, at about 10,000 turns a minute. The final improvements, which made ring spinning more economical and profitable than mule spinning, for all except certain special purposes, in mills wherein both spinning and weaving are carried on, were accomplished in the closing decades of the century.

The most important advance in machinery during the past decade has been in the loom. Glancing backward we find that Cartwright invented the power loom in 1785 , as has been already noted. The policy of the British Government at that time and for many years afterwards forbade the exportation of machinery and of patterns for making it. Accordingly, it was necessary to reinvent the power loom for use in the manufacture of cotton in this country. The feat was successfully accomplished by Francis Cabot Lowell, in 1814. Numerous improvements were made during the ensuing threequartcrs of a century. The efforts of inventors are always directed toward the discovery of devices by which the speed of machinery may be increased, of automatic motions which will diminish the amount of care and attention to be bestowed by operatives upon the machincs, and to a reduction of the time during which the machines must be stopped, either after a breakage of the yarn or to replace exhansted shuttles. Stopmotions have been devised for many of the machines used in cotton mills, arrangements by which the breaking of a single thread at any point causes the whole machine to stop instantly.
The problem of the loom, so far as necessary stoppages are concerned, has been most difficult. For spimning, the process, whether on the mule or on the frame, may be said to be almost continuous, the time required for doffing forming but an inappreciable part of the whole. But the eapacity of the shuttle is limited. At the speed at which modern looms are run the yarn in the shuttle box is exhausted in about eight minutes, in the manufacture of medium shirtings or print cloths. If the yarn is coarser and the speed the same, the shuttle needs to be changed still oftener. Inasmuch as the cost of labor in weaving is fully one-half the labor cost of converting a pound of raw cotton into cloth, the importance of reducing or of doing away altogether with the time occupiod in changing shuttles is too evident to be more than stated. Attention was long ago turned in this direction. In 1840 an English patent was taken out for a shuttle-changing device when the weft was broken or
exhausted; but it seems not to have been successful, otherwise it would have been adopted by manufacturers throughout the world. Many inventors have exercised their ingenuity to overcome the mechanical difficulty. Within the last decade the principle so long sought after has been found, but it consists not in a changing of the shuttle while the loom is in motion, but in giving the shuttle a fresh supply of weft without removing it from the loom. The success of the Northrop loom has stimulated inventors to accomplish equally brilliant results by new devices of the shuttle-changing variety. Although there are some machines which effect the change with promising efficiency, they are yet in the experimental stage.
On the other hand, the Northrop loom, which was first brought to the attention of manufacturers in April, 1895 , has such self-evident advantages for the weaving of plain cloth that in less than five years, at the end of the year 1899, the output was more than 42,500 looms. This loom has two fundamental improvements-the filling-changing mechanisms and the warp-stopping devices. By the first, the time of stoppage on account of exhausted shuttles is wholly saved. By the second, the machine is stopped instantly upon the breaking of a single warp thread. In combination they add greatly to the productive capacity of the weaver. A good weaver, operating plain narrow looms, has a capacity of 8 looms. His time is chiefly occupied by replacing empty shuttles and in mending broken warp threads. The first is the more important, inasmuch as the failure to repair warp breaks merely causes an imperfection in the weaving, which is tolerated in many classes of goods; whereas an empty shuttle means a stoppage of the loom. The filling-changing mechanism reduces to a small fraction the time needed to supply looms with weft, and thus leaves most of the weaver's time free to repair warp breaks. His capacity is therefore increased to the number of looms for which he can perform this service, practically, to double or more than double the number of plain looms which he can tend. The saving which is effected is illustrated by the fact that in some cases the weaver, on leaving his work for dinner, has left all his looms running, the filling magazines all full, and on returning at the expiration of the dinner interval has found some of them still running. All those in which there had been a breakage of the warp had of course stopped, and therefore no imperfect cloth had been woven.

The stimulation to the production of a rival to this invention has already been mentioned. But the introduction of the Northrop loom has had an important reflex influence upon other parts of the cotton-manifac-
turing machinery. For example, an appreciable gain of time can be made if the frequency of stoppages for changing the shuttle can be diminished. Heretofore mule filling has not been adapted to the Northrop loom, where a large ring bobbin can be more readily handled than a mule cop on the spindle. Moreover, there has been in the past difficulty in making mule cops of large size that would be proof against breaking in the shuttle, or in being handled about the mill. The waste from mule filling was in many cases so great as to be prohibitive. Weavers preferred to use small cops rather than take the risks of large cops falling apart in weaving. But the problem of spinning large, well-wound mule cops of filling yarn bas now been solved, and the necessary devices can be applied to old mules. A weaver tending 8 looms, and changing shuttles that contain yarn enough to supply the loom eight minutes, has to make an average change of one a minute. The larger mule cops contain enough No. 36 yarn to run twelve minutes, and of course his loom capacity is considerably increased. Many manufacturers prefer mule filling for certain fabrics on account of the soft appearance and "feel" of the cloth, as compared with ring-filling cloth, and the new mills which have been built to make the higher grades of fine cloths are still fully equipped with mules to make filling.

If the mule is being adapted to produce yarns usable where frame-spun yarn has heretofore had full sway, there has been a promising effort to adapt the ringtraveler principle to the production of a slack-twisted yarn, which could formerly be made only on the mule, at the same time winding it on the bare spindle, in cop form. This improvement is as yet only in the experimental stage. At present there seems to be a difficulty in the way of making use of the device for the production of knitting yarns, which constitutes the largest demand for yarns not immediately used by the spinner. Soft-twisted yarns for knitting purposes should be in large cops to avoid frequent piecings in the knitting machine. This does not now seem practicable, for the greater diameter of ring necessary would bring too great a strain upon the yarn. No doubt in time this difficulty can be overcome, as many difficulties greater than this have been surmounted. The attempt to solve the problem is cited as evidence that the age of invention in the marvelously developed cotton-manufacturing industry has not yet closed.
the progress of the industry as indicated by the number of spindles.
Table 17 shows the number of cotton spindles used in textile manufactures, by states, 1890 and 1900.

Table 17.-NUMBER OF ACTIVE COTTON SPINDLES IN THE TEXTILE INDUSTRY, BY STATES, GEOGRAPHICALLY ARRANGED: 1890 AND 1900.

The number of working spindles is the universally accepted measure of the capacity of cotton mills, and of the growth of the industry in any particular state or region. It is admittedly an imperfect measure; but it is not only more accurate than would be any expression in terms of capital employed, number of hands or their wages, quantity or value of materials consumed, or weight or value of product, but it is also a better gauge than is available for most industries. The present nill of 50,000 spindles is a vastly larger factory in all respects than was the mill of 50,000 spindles in 1850 , and the $19,000,000$ spindles of the year 1900 undoubtedly produce five times as great an amount of goods as the $7,000,000$ spindles of 1870 . Nevertheless, the necessity manufacturers are under to adopt improvements in machinery produces such an equalizing effect upon the several establishments at any one time that the percentage of correction needed is not great; and the rate of progress in the efficiency of machinery is so well known that it is easy to make allowance for it in comparisons of one time with another.
The grand total of active producing cotton spindles in all the textile mills of the United States during the
census year 1899-1900 was $19,472,232$, as compared with $14,384,180^{1}$ at the Eleventh Census, a numerical increase of $5,088,052$ spindles, or 35.4 per cent. These spindles were located as follows:

The indicated increase in the number of spindles in mills other than cotton factories is apparent rather than real. A company in New England having 75,000 spindles, which in 1890 made both woven goods and knit goods, and was then classed as operating a cotton factory, now makes hosiery and knit goods exclusively,

[^101]and being classed with that industry swells the total unduly. In many cases, both in 1890 and in 1900 , companies that produce both cotton and woolen or worsted goods, or mixed goods, made divided returns of their operations; some such companies made but one return, being classified according to the relative importance of their cotton or their woolen business. The fact of their making one return or divided returns at one census and not at the other explains partially the apparent increase in 1900 . No doubt a certain part of the increase is real.

Although the gross number of operating spindles in mills of all kinds, $19,472,232$, is to be taken as the true measure of the magnitude of the cotton industry in the United States, the present report deals exclusively with the spindles in cotton mills proper. The percentage of increase in them in the whole country is almost exactly 34 per cent. If we estimate that the average efficiency of spindles has increased 5 per cent during the same period, the ability of Aucrican mills to supply a demand for goods has increased about 40 per cent. Numerically there has been an addition of $2,014,832$ spindles, or 18.6 per cent, in New England; of 13,529 spindles in number, or 0.8 per cent, in the Middle states; of $2,744,188$ spindles in number, or 176.6 per cent, in
the Southern states; and of 47,700 spindles in number, or 29 per cent, in the Western states. Taking account of the spinning capacity of spindles, the growth of the industry in the New England states is probably not greatly above that which is indicated by the actual number of spindles, since the mills in that part of the country were in advance of the South in installing improved spindles. On the other hand, not only has the number of spindles in the Southern states become nearly threefold that reported in 1890 , but the spindles themselves are for the most part of the latest and most efficient types. With respect to one state the test of capacity by the number of spindles wholly fails. The industry in Pennsylvania is largely one of weaving yarn made clsewhere. Although the state ranks fifth in the value of the products of its cotton mills, and fourth among the states in the amount of wages paid to employees, it is only the twelfth according to the number of spindles. It shows a considerable increase of looms, and the industry has in fact expanded during the decade, but the number of spindles has declined.

Table 18 shows the mule and frame spindles in cotton mills, by states, geographically arranged: 1880, 1890, and 1900 .

Table 18.-NUMBER OF SPINDLES IN COTTON MILLS, BY STATES, GEOGRAPHICALLY ARRANGED: 1880, 1890, AND 1900.

states.		1900			1890			1880
		Total.	Mule.	Frame.	Total.	Mule.	Frame.	Total.
United States..		19,008, 352	5, 568, 480	13, 444, 872	14, 188, 103	5, 363, 486	8,824,617	10,653,435
		12, 850,987	4,477, 199	8, 373, 788	10,836, 155	4,391,895	6, 444, 260	8,632, 087
Maine		841,521	256, 948	584,573	885, 762	344, 697	541, 065	695,924
New Hampshir		1, 243, 555	287, 165	956, 390	1, 195, 643	364, 234	831, 409	-. 944, 053
Vermont..--.		-100, 028	- 43, 316	56, 712	1,71,591	42,735	28, 856	$\cdots 55,081$
Massachusetts		7,784,687	2,556,316	5, 223, 371	5, 824, 518	2,430,719	3, 393,749	4,236,084
Rhode Island.		1, 880, 622	940, 328	940, 294	1,924, 486	811,869	1,112,617	1, 764,569
Conneeticut		1,000,574	393,126	607,448	934, 155	397, 641	536,514	1986,376
Middle states		1,647, 251	858,6\%	788,576	1,633, 722	822,613	811,109	1,391,164
New York.		720, 268	367,136	353, 132	606, 796	334, 210	272,586	561,658
New Jersey		431, 730	367, 092	64, 638	374, 442	304, 480	69,962	- 232, 221
Pennsylvania		306, 637	124, 447	182, 190	439,638	175, 687	263,951	425,391
Delaware.		34, 552		34,552	53,916	2,880	51,036	46,188
Maryland.		154, 06¢		154, 064	158,930	5,356	153,574	125, 706
Southern states ${ }^{1}$.		4,298, 188	180,534	4,117, 654	1,554,000	108, 474	1,445, 526	1542,048
		126, 827	2,325	124,502	94, 294	13,198	81,096	44,340
		1, 133, 432	35, 352	1,098,080	337, 786	30, 920	306, 866	92, 385
South Carolina		1,431,349	10,752	1, 420,597	332, 784	4,000	328, 784	82, 384
Georgia..-...		815, 545	84,926	730, 619	445, 452	20,524	424,928	198,656
		66, 633	18,399	48, 234	42,942	8,784	34, 158	9,022
Tennessee Alahama.		411, 328	8,000	403, 328	79,234	21,588 9,460	75,936 69,774	35,736 49,432
Mississippi		75, 122		75,122	57, 004	9,	57,004	18, 568
Arkansas.		9,700		9,700	5,780		5,780	
Louisiana.		55, 600		55,600	46,200		46,200	
		48,756		48,756	15, 000		15,000	
Western states ${ }^{2}$		211, 926	47,072	164, 854	164,226	40,504	123,722	288,136
Ohio					16,560	8,152	8,408	13,328
Indiana..		102, 488	16, 320	86,168	74, 604	16, 320	58,284	13, 396
Wiseonsin		31, 488	16,000	15,488	21, 800	8,000	13,800	38,
		21, 496	2,816	18,680	32, 592	5,632	26,960	
lowa	Missouri	13,654			6,000 6,670		6,000	19.312
Nebraska		15,488	6,272	18,654 9,216	6,670	2,400	4,270	19,312
Colorado. California		17,312	5,664	11,648				
		10,000		10,000	6,000		6,000	

[^102]Attention was called in the report upon the Eleventh Census to the steady substitution of frame spindles for mules. The change has been going on to a marked degree during the past ten years. It would, perhaps, not be accurate to assert that mules have been to any great extent removed from old mills and ring spindles placed in them. The more correct view is that substantially all the new spinning is frame spinning. In New England the increase in mule spindles is less than 100,000 ; of frame spindles, nearly $2,000,000$. In the South ten years ago there were only 108,474 mule spindles; there are now reported 180,534; but as contrasted with this very moderate increase we have an addition of almost $2,700,000$ frame spindles. In the Middle states the mule has more than held its own. Ten years ago there was an excess of about 11,000 mule spindles over ring spindles. By the present count the excess is about 70,000 . It is well known that although for most purposes in cotton manufacturing the yarn made upon ring spindles is altogether satisfactory, there is a demand for slack-twisted yarn chiefly for knit underwear, which has heretofore been produced by the mule only. Moreover, a mechanical difficulty which has not been overcome has been experienced in employing ring spindles for spinning upon cops, where the yarn made in one mill must be transported to another part of the country for consumption in hosiery mills. It is, therefore, not probable that there will be a reduction in the number of mules in use, and there may even be an increase; but the economy in the production of yarn by ring spindles, and the fact that the machinery can be operated by labor not so highly skilled as is required for mule spinning, will doubtless cause the tendency to install frame spindles in new spinning and weaving mills to continue. It will be observed that in Rhode Island there has been an actual decrease of ring spindles and an increase of mules. The mills of that state produce a large amount of fine yarn, and many of them are engaged extensively in spinning yarn for knitting mills. The ascendency of the mule in New Jersey is explained by the fact that the industry in that state is for the most part devoted to the production of fine sewing thread, to which the mule is by far the better adapted.
No radical improvement has been made during the past decade in spinning machinery of either kind, nor do the makers of such machinery anticipate great changes in the future. The mule is already a perfect machine, in the sense that it is automatic in every part and that in none of the various operations which it performs without human guidance does any part act as a drag upon others. Inasmuch as the spindles are now operated at as high a speed as is compatible with the spinning of good yarn, it follows that in order to increase the production sensibly it would be necessary to im-
prove the machine not in one part only but in many parts. With respect to the ring spindle the quantity of yarn it can make of any particular count is directly proportioned to the speed of the spindle itself. Ten thousand turns a minute comes near to being the limit of the ring spindle under present conditions, because at a speed above that the travelers are apt to fly off badly. It it estimated that the average speed of the spindle on No. 28 warp yarn is about 9,000 turns. The production of yarn per spindle varies greatly with the number of yarn spun, and the speed varies in almost like propor-tion-that is, on coarse yarns a spindle running 7,000 turns a minute is running relatively as fast as when it is going 10,000 turns a minute on fine yarns.
During the ten years 1880-1890 the number of frame spindles sold by all manufacturers and placed in the old and new mills was $6,000,193$. The corresponding number for the period $1890-1900$ was $8,901,408$. The total for the period of twenty years exceeds the whole number of ring spindles in the United States, a fact which suggests that substantially all the spindles of older types have been replaced. There were in 1880 in all the Northern states $10,111,387$ spindles. No count was taken of the number of mule and frame spindles; but during the ensuing decade $1,569,589$ new ring spindles were placed in old frames, and $3,561,896$ spindles in new frames were installed, replacing either mules or old-fashioned ring spindles thrown out. At the close of the decade, at the census of 1890 , there were in Northern mills $7,255,369$ ring spindles. In the last ten years $3,520,640$ spindles in new frames have been placed in mills which were built prior to 1890 , in addition to $1,742,120$ spindles in old frames. Thus more than onehalf of the spindles in use ten years ago in Northern mills have since been replaced. The absolute increase of spindles in the South between 1880 and 1890 was $1,011,952$. The number of new spindles installed in that part of the country during the same period was 868,708, which, it will be noticed, was 143,244 less than the total increase. During the early years of the Southern development it was not unusual to equip mills with machinery discarded by Northern mills. But in the last decade the numerical increase of frame spindles in the South has been $2,672,128$, and the number of new spindles has been $3,283,884$, showing that not only were all, or substantially all, the spindles in the new mills of the most modern type, but that about 600,000 old spindles in old mills were replaced by new. Combining the twenty years we find that tbere is a present total of $4,117,654$ frame spindles in the South, and that 4,152,592 new spindles have been supplied to them in that time. The installation of new spindles, by years, and by a geographical division into North and South, is shown by the following table:

Table 19.-NUMBER OF FRAME SPINDLES SOLD, SUMMARY: JANUARY 1, 1890, TO JANUARY 1, 1900.

YEARS.	Aggregate.	NORTHERN STATES.				SOUTHERN STATES.			
		Total.	New frames.		Old frames.	Total.	New frames.		Old frames.
			To new mills.	To old mills.			To new mills.	To old mills.	
Total	8,901,408	5,617, 524	354, 764	3,520,640	1, 742, 120	3,283, 884	1,467,624	1,485,459	330,801
1890.	784, 809	602,890	38,600	356, 225	208, 065	181,919	57,909	108, 260	15,750
1891.	656, 306	499, 999	14, 656	298, 288	187, 055	156, 307	18,697	116,425	21,185
1892.	866,616	691, 510	36, 440	415, 483	239, 587	175, 106	60, 552	97, 282	17,272
1893.	1,042, 268	823, 008	54, 656	493, 435	274, 917	219, 260	48,080	135,524	35,656
1894.	1,552,767	377,423	18,812	241, 397	117,214	175, 344	78, 048	84,040	18, 256
1895.	958, 426	669,075	45, 120	464, 056	159,899	289, 351	113,560	145, 691	30,100
1896.	1,518, 099	832, 027	128, 192	512, 089	191, 746	686,072	309, 060	315,976	61,036
1897.	651,427	278, 439	11,424	154,160	112, 855	372, 988	206, 468	121,252	45, 268
1898.	730,312	339, 226	4,480	231, 063	103, 683	391, 086	205, 491	150, 117	35, 478
1899.	1,140,378	503, 927	2,384	354, 444	147, 099	636, 451	374, 759	210,892	50,800

CONSUMPTION OF COTTON PER SPINDLE.
The length of yaru spun is, in general, directly proportioned to the speed of spindles. The weight of yarn spun upon spindles of equal efficiency is proportioned to the coarseness or fineness of the yarn. Thus it might happen that spindles of an ancient pattern, producing No. 10 yarn, would consume several times as much raw cotton as an equal number of the high-speed modern spindles would convert into No. 50 yarn. Consequently, in studying the table which shows the average consumption of cotton per spindle in the several divisions of the country, it must be borne in mind that the indication is a resultant of two forces acting in opposite directions.

It will be seen that the tendency is, as it was during the preceding decade, to an enlarged average consumption. In the whole country it has gone up from 70.43 pounds in 1880 , to 78.79 pounds in 1890 , and 95.43 pounds in 1900. The increase is due chiefly to the greatly enlarged extent of the industry in the South. For although the average increase per spindle in that section is but little more than 3 pounds, yet the number of spindles which consume more than twice the average of New England spindles is three times as great as in 1890 , and the proportion of the whole is much larger. Although the circumstance of the excessive increase of spinning in the South as compared with the rest of the country masks the actual facts of the case, yet an analysis of the figures by sections gives some useful indications. Thus in New England there has been an increased relative production of fine yarn, and yet the average annual consumption of cotton has increased by 7 pounds, or rather more than 10 per cent. We may, perhaps, infer that the average efficiency of spindles increased somewhere between one-eighth and one-seventh. On the other hand, the average consumption per spindle in the Sonthern states increased but a little more than 3 pounds a year, or about 2 per cent. But there was a notable increase in the number of yarn spun in those states. For example, in North Carolina from No. 15.30 to No. 18.90, and in South Carolina
from No. 15.13 to No. 19.04. It would require spindles averaging from 20 to 25 per cent greater efficiency to accomplish the conversion of an equal weight of cotton into the finer yarn; and since the actual consumption has also increased, we may fairly conclude that the average efficiency of spindles operated in Southern mills has increased by from 25 to 30 per cent, and that they are on the whole quite up to the average of the whole country. The inḑustry, being stationary, or declining, in the Middle and Western states, except as regards the weaving business in Philadelphia, the facts regarding those divisions of the country call for no special comment. The situation presented is to be found in the following statement:

COTTON CONSUMED PER SPINDLE.

geographical divisions.	1900	1890	1880
United States	Pounds. 95.43	Pounds. 78.79	Pounds. 70.43
New England states	72. 94	65.95	62.72
Middle stateg	88.24	78.46	78.58
Southern states	164.65	161.41	155.94

Table 20, which is a continuation of one in the report on the Eleventh Census, is valuable rather in detail and for purposes of comparison than in any general deduction that may legitimately be drawn from it. This will appear from a consideration of the fact that although the number of spindles to each wage-earner has increased 5.64 in New England and 1.42 in the Souththe two sections which combined contain 90 per cent of all the spindles in the country-the number of spindles to each wage-earner in the United States as a whole has decreased 1.02 . The explanation is a simple one, namely, the marvelous increase of the industry in the South, where the number of persons employed by a mill of a given size is much greater than in the great factory towns of the North. As employ ees become more skilled and experienced, a greater average amount of machin ery can be put in charge of each individual. This result is already beginning to appear in the labor returns
of the southern mills; but a great proportionate increase in the number of spindles in the South, and of hands employed, showing, even at the improved condi-
tion, an average number of spindles to hands barely half that in New England, makes the comparison for the whole country, as between 1890 and 1900 , misleading.

Table 20.-COTTON GOODŚ, NUMBER OF SPINDLES TO EACH WAGE-EARNER, AND THE AMOUNT PAID FOR LABOR TO EACH SPINDLE, BY STATES, GEOGRAPHICALLY ARRANGED: 1880 TO 1900.

states.	Year.	wage-earners.		Number of spindles.	Number of spindles to each wageearner.	Labor cost per spindle.
		Average number.	Total wages.			
United States	1900	297, 929	\$85, 126, 310	19, 008, 352	63.80	\$4.48
	1890	218, 876	66,024,538	14, 188, 103	64.82	4. 65
	1880	172,544	42, 040 , 510	10,653, 435	61.74	3.95
New England states.	1900	162, 294	55, 367, 541	12, 850,987	79.18	4.31
	1890	147, 359	47, 832, 943	10,836, 155	73. 54	4.41
	1880	125,779	32, 170, 861	8,632,087	68.63	3.73
Maine.	1900	13,723	4, 330,297	841,521	61.32	5.15 4.76
	1890 1880	13,912 11,759	$4,213,523$ $2,936,640$	885,762 695,924	63.67 59.18 59	4.76 4.22
New Hampshire	1900	20,454	6, 759, 422	1,243,555	60.80	5.44
	18980	19,383	$6,242,204$ $4,290,960$	1, 1944,643	61.69 57.58	5.22 4.55
Vermont....................................	1900	1,015	259,758	100,028	98.65	2.60
	1890 1880	724 721 7	204,538 161,748	71,591 55,081	98.88 76.40	2.86 2.94
Massachusetts..	1900	92,085	32,327,443	7,784,687	84.54	4. 15
	1890	75,544	25,118, 365	5, 824, 518	77.10 69.17	4.31 3.74
	1880	61,246	15, 828, 571	4,236,084	69.17	3.74
Rhode Island.	1900	21, 823		1,880,622	86. 18	
	$\begin{aligned} & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 24,576 \\ & 21,174 \end{aligned}$	$7,814,767$ $\mathbf{5 , 3 2 0}, 303$	1,924,486	78.31 88.34	4. 3.06 3.02
Coneecticut.	1900	13,194	4, 393,502	1,000,574	75.84	4.39
	1890 1880	13,220 14,484	$4,239,546$ $3,632,639$	934,155 936,376	70.66 64.65	4.54 3.88
Middle states	1900	34, 843	11, 396,710	1,647,251	47.28 51.31	6.92 6.93
	1890 1880	31,841 28,118	$10,184,589$ $6,613,260$	1, $1,0391,164$	57.31 43.48	6.23 4.75
New York.	1900	8,659	2, 582, 394	720, 268	83.18	3. 59
	1890 1880	8,316 9,227	$2,448,031$ $1,994,755$	606,796 561,658	72.97 60.87	4.03 3.55
New Jersey	1900	5,518	1,887, 119	431,730	78.24	4.37
	1890 1880	5,632 4,179	1, $1,154,659$	374,442 232,221	66.48 $\mathbf{5 5 . 5 7}$	5.30 4.98
Pennsyivania	1900	15,567	5,602, 339	306,637	19.70	18.27
	1890	12,666		439, 638	34.71 48.06	9.98
	1880	9,879	2, 502,688	425, 391		
Delaware.	1900	372	188,844	34,552	92.88	${ }_{5}^{4.02}$
	$\begin{aligned} & 1890 \\ & 1880 \end{aligned}$	971 791	308, 346 192,727	53,916 46,188	52.88 58.39	5.12 4.17
Mary'and.	1900	4,727	1,186,014	154, 064	32.59	7.70
	1890 1880	4,256 4,042	$1,055,536$ 766,129	158,930 125,706	37.34 31.10	6.64 6.09
Eouthern states		97,494	17, 501,648	4, 298,188	44.09	4.07
	1890	36,415 16,317	$7,116,865$ $2,750,986$	$1,554,000$ 542,048	42.67 33.22	4.58 5.08
	1880					
Virginia.	1900	2,931	668, 556	126, 827	43.27	5.27
	1890	1,990 1,085	373,993 169,789	94,294 44,340	47.38 40.87	3.97 3.83
North Carolina.			5,127,087	1,133,432	37.44	
	18900	30,275 8,615	1, 475,932	1, 337,786	39.67	4.37
	1880	3,232	439,659	92,385	28.58	4.76
Eouth Carolina.	1900	30, 201	5, 066, 840	1, 481, 349	47.39	3.54
	1890 1880	8,071 2,018	$1,510,494$ 380,844	332,784 82,334	41.23 40.80	4. 54 4.63
Georgia			3, 566,951	815,545	44.61	4.37
	1890	10,314	2,167,036	445,452	43.19	4.86
	1880	6,215	1,135, 184	198,656	31.98	5.71
Kentucky	1900	1,351	280,407	66,633	49. 32	4.21
	1890 1880	$\begin{array}{r}1,318 \\ 848 \\ \hline\end{array}$	170,573 63,850	42,942 9,022	52.50 25.93	3.97 7.08
	1880	348	63,850	9,022	25.93	
Tenressee.		2,108	422, 935	123,896	58.77	3.41
	1890	2,124	444, 573	97,524	45.92	4.56
Alatama.	1880	1,015	161,071	35,736	35.21	4.51
			1,482, 226	411,328	49.37	3.60
	1890	2,088	402,908	79, 234	37.95	5.09
	1880	1,448	239,998	49,432	54.14	4.86

Table 20.-COTTON GOODS, NUMBER OF SPINDLES TO EAOH WAGE-EARNER, AND THE AMOUNT PAID FOR LABOR TO EACH SPINDLE, BY STATES, GEOGRAPHICALLY ARRANGED: 1880 TO 1900—Continued.

states.	Year.	WAGE-EARNERS.		Number of spindles.	Number of spindles to each wageearner.	Labor cost per spindle.
		Average number.	Total wages.			
Mississippi ..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	1,675 1,154 695	$\begin{array}{r} \$ 339,546 \\ 263,997 \\ 133,214 \end{array}$	$\begin{aligned} & 75,122 \\ & 57,004 \\ & 18,568 \end{aligned}$	$\begin{aligned} & 44.85 \\ & 49.40 \\ & 26.72 \end{aligned}$	$\begin{array}{r} \$ 4.62 \\ 4.63 \\ 7.17 \end{array}$
Texas	$\begin{array}{r} 1900 \\ 11890 \\ 11880 \end{array}$	984	253,630	48,756	49.55	5.20
All other Southern states ${ }^{2}$	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 1,356 \\ & 1,341 \\ & 261 \end{aligned}$	$\begin{array}{r} 293,470 \\ 307,359 \\ 27,377 \end{array}$	$\begin{gathered} 65,300 \\ 66,980 \\ 11,577 \end{gathered}$	$\begin{aligned} & 48.16 \\ & 49.95 \\ & 44.35 \end{aligned}$	4.49 4.59 2.37
Western states	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	3,298 3,261 2,330	$\begin{aligned} & 860,411 \\ & 890,141 \\ & 505,403 \end{aligned}$	$\begin{array}{r} 211,926 \\ 164,226 \\ 88,136 \end{array}$	$\begin{aligned} & 64.26 \\ & 50.36 \\ & 37.83 \end{aligned}$	$\begin{aligned} & 4.06 \\ & 5.42 \\ & 5.73 \end{aligned}$
Ohio ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	106 554 481 481	$\begin{array}{r} 27,861 \\ 161,613 \\ 104,500 \end{array}$	$\begin{aligned} & 16,560 \\ & 13,328 \end{aligned}$	$\begin{aligned} & 29.89 \\ & 27.71 \end{aligned}$	$\begin{array}{r} \ddot{9} .7 \dot{6} \\ 7.84 \end{array}$
Indiana.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	1,421 1,309 re8	$\begin{aligned} & 323,949 \\ & 310,342 \\ & 162,829 \end{aligned}$	102,488 74,604 33, 396	$\begin{aligned} & 72.12 \\ & 56.99 \\ & 47.17 \end{aligned}$	3.16 4.16 4.88
Illinois....................	$\begin{array}{r} 11900 \\ 18990 \\ { }^{1} 1880 \end{array}$	430	123,986	21,800	50.70	5.69
Wisconsin. .	$\begin{array}{r} 1900 \\ 1890 \\ 11880 \end{array}$	$\begin{aligned} & 347 \\ & 490 \end{aligned}$	$\begin{array}{r} 80,567 \\ \mathbf{1 3 1 ,} 170 \end{array}$	$\begin{aligned} & 21,496 \\ & 32,592 \end{aligned}$	$\begin{aligned} & 61.95 \\ & 66.51 \end{aligned}$	$\begin{aligned} & 3.75 \\ & 4.02 \end{aligned}$
Missonri	$\begin{array}{r} 11900 \\ { }^{1} 1890 \\ 1880 \end{array}$	508	97,680	19,312	38.02	5.06
All other Western states ${ }^{2}$.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 1,424 \\ 478 \\ 633 \end{array}$	$\begin{aligned} & 428,034 \\ & 163,030 \\ & 140,394 \end{aligned}$	$\begin{aligned} & 87,942 \\ & 18,670 \\ & 22,100 \end{aligned}$	$\begin{aligned} & 61.76 \\ & 39.06 \\ & 34.91 \end{aligned}$	$\begin{aligned} & 4.87 \\ & 8.73 \\ & 6.35 \end{aligned}$

1 1ncluded in "All other states."

 Missouri, $1 ; 1880$, 1llinois, 2 ; Michigan, 1 ; Wisconsin, 1 ; Minuesota, 1 ; Uiah, 1.

The figures examined in detail are nevertheless instructive and useful. It will be seen that the number of spindles to each wage-earner has increased in three of the four geographical divisions and in most of the states. The decline in the Middle states is to be ascribed chiefly to the fact mentioned elsewhere-that the industry in Pennsylvania is becoming more and more a weaving industry and that the number of spindles has declined. This feature becomes almost startlingly apparent in the last column of the table, where the labor cost per spindle is correctly reported as more than twice that of any other state. Indeed, the character of the industry in Pennsylvania differs so widely from that of any other state that it is not properly included in any table intended to show averages for the whole country.
With reference to the "labor cost per spindle" it is to be said that it shows upon the whole an increase, by states, by geographical divisions, and for the United States. It thus indicates a certain increase of wages, as the column showing the relation of the number of spindles to that of wage-earners indicates an increase of skill. But even here it is necessary to exercise caution in making deductions, for the problem is complicated by the fact that, premising an equal amount of skill on the part of operatives, a coarse-goods mill requires more
machinery and more hands for a given amount of output than a fine-goods mill. The average spinning in the South is coarser than that in New England, and consequently a larger force is needed. Moreover, the matter of the labor cost per spindle is complicated by considerations of the hours of labor in a working day, of the proportion of women and children, as compared with men, employed, and of other matters of less importance than these. The table invites analysis by students of industrial problems, but it would be hazardous to base any conclusions whatever upon it without a careful weighing of special conditions in each state-in some cases the conditions in individual manufacturing cities.

LOOMS.

Inasmuch as the American cotton manufacturing industry is essentially a weaving as well as a spinning industry, it follows naturally that the number of looms employed keeps pace practically with the corresponding number of spindles. Against an increase of $3 \pm$ per cent in spindles, during the decade, there has been an increase of 38.7 per cent in the number of looms. In both cases, "cotton goods" only in 1900 are compared with all cotton manufactures, including "cotton small wares" in 1890. The total number of looms in 1900
was 450,682 , compared with 324,866 in 1890 . There was a numerical increase of 48,769 in New England, of 1,060 in the Middle states, of 73,744 in the Southern states, and of 2,243 in the Western states.

An analysis of the looms as classified in the following table brings out no important facts which are not deducible from other statistics here presented, but it is confirmatory of the inferences to be drawn from them. For example, it appears from the statement of looms operated upon fancy weaves, that there was an increase of 22,453 in the number of such looms, and that 12,735 of the increase was in New England mills and 7,673 in
mills of the Middle states; which is in accordance with the fact of a large increase in the fine spinning and weaving of the one section and of a wonderful growth of the weaving of upholstery and similar goods in Philadelphia. On the other hand, of the great numerical increase of 73,744 looms in the Southern states, 66,130 represent plain looms of all widths, compared with an increase of 33,621 plain looms in the New England states. It is an interesting fact that the increase in the number of looms in the whole country operated in the weaving of goods more than 36 inches wide exceeds the increase in the number of loons making goods of less width.

Table 21.-COTTON GOODS, NUMBER AND CLASSIFICATION OF LOOMS, BY GEOGRAPHICAL DIVISIONS: 1890 AND 1900.

geggraphical divisions.	Year.	number of looms.								
		Total.	On plain cloths.				$\begin{aligned} & \text { On twills } \\ & \text { and } \\ & \text { sateens. } \end{aligned}$	On fancy weaves.	On tapes and other narrow goods. ${ }^{1}$	On bags and other special fabrics.
			Less than 28 inches wide.	28 to 32 inches wide.	32 to 36 inches wide.	36 inches wide and over.				
United States	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 450,682 \\ & 324,866 \end{aligned}$	$\begin{aligned} & 35,601 \\ & 23,648 \end{aligned}$	$\begin{aligned} & 98,995 \\ & 91,862 \end{aligned}$	$\begin{aligned} & 79,349 \\ & 55,359 \\ & \hline \end{aligned}$	$\begin{array}{r} 126,082 \\ 71,591 \end{array}$	$\begin{aligned} & 58,889 \\ & 53,726 \end{aligned}$	$\begin{aligned} & 45,686 \\ & 23,233 \end{aligned}$	1,709	$\begin{aligned} & 4,421 \\ & 5,450 \end{aligned}$
New Eugland states	1900 1890	$\begin{aligned} & 298,885 \\ & 250,116 \end{aligned}$	16,765 12,609	77,326 72,928	$\begin{aligned} & 37,722 \\ & 35,063 \end{aligned}$	$\begin{aligned} & 84,916 \\ & 62,508 \end{aligned}$	$\begin{aligned} & 47,080 \\ & 46,346 \end{aligned}$	$\begin{aligned} & 31,635 \\ & 18,900 \end{aligned}$	1,586	$\begin{aligned} & 1,855 \\ & 1,762 \end{aligned}$
Middle states......	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{gathered} 36,134 \\ 35,074 \end{gathered}$	$\begin{aligned} & 6,442 \\ & 5,196 \end{aligned}$	$\begin{array}{r} 3,023 \\ 10,601 \end{array}$	$\begin{aligned} & 3,501 \\ & 3,628 \end{aligned}$	$\begin{aligned} & 8,035 \\ & 5,708 \end{aligned}$	$\begin{aligned} & 3,403 \\ & 4,930 \end{aligned}$	10,031 2,358	123	$\underset{2,653}{1,576 .}$
Southern states. .	1900 1890	110,010 36,266	12,374 5,803	17,930 8,309	$\begin{aligned} & 34,446 \\ & 13,956 \end{aligned}$	$\begin{array}{r} 32,323 \\ 2,875 \end{array}$	$\begin{aligned} & 8,356 \\ & 2,442 \end{aligned}$	$\begin{aligned} & 3,856 \\ & 1,975 \end{aligned}$	- .-...........	725 906
Western states...	1900 1890	5,653 $\mathbf{3 , 4 1 0}$	20 40	716 24	$\begin{aligned} & 3,680 \\ & 2,709 \end{aligned}$	$\begin{aligned} & 808 \\ & 500 \end{aligned}$	8	164		265 129

${ }^{1}$ Included with bags and other special fabrics in 1890.

Table 22 presents for 1900 the number and capacity of spinning mills, weaving mills, and mills which do both spinning and weaving, by states, geographically arranged.

Table 22 furnishes a basis for future comparisons, as well as showing the situation with respect to the operations carried on in the cotton mills of the United States. It will be seen from this table that, of the total number of establishments, more than half both spin and weave. In the matter of capacity the proportion is vastly greater, as 83.6 per cent of the spindles, and 96 per cent of the looms, are installed in what may be termed complete mills. Even these large proportions would be increased were the mills of the Middle states eliminated.

More than one-third of all the spindles and looms in those states are in mills which spin only, and more than onethird of the looms in mills which weave only. This circumstance is due to the fact that half the product of New Jersey mills is sewing cotton, and that weaving is the principal feature of the industry in Pennsylvania. Excluding the Middle states, the percentage of spindles in spinning and weaving mills is 85 per cent and that of looms is almost 99 per cent. The figures for the Southern states indicate a tendency to erect yarn mills. In North Carolina more than two-fifths of the spindles are the equipment of such mills, and the proportion is large in some of the other Southern states also.

Table 22.-COTTON GOODS, NUMBER AND CAPACITY OF SPINNING MILLS, WEAVING MILLS, AND MILLS WHICH DO BOTH SPINNING AND WEAVING, BY STATES, GEOGRAPHICALLY ARRANGED: 1900.

MERCERIZATION.
During the past ten years the process known as mercerizing has been introduced, or, more strictly, reintroduced, as an adjunct of the cotton manufacturing industry. The process derives its name from its discoverer, John Mercer, an Englishman, who was born in 1791 and died in 1864. Mercer was a man of humble origin, by trade a handloom weaver, and self-taught. Entering a print works as an ordinary workman, he became interested in chemical processes, was made experimental chemist to the works, and in a short time introduced several new styles in calico printing. He was the first to prepare sulphated oil, which revolutionized the turkey-red industry; was the inventor of the blue-print photographic process, and even devised and improved several pharmaceutical preparations. In 1852 he was elected a Fellow of the Royal Society. About the year 1845 or 1846 appeared the first notice of the mercerizing process, and it was patented in 1850. It excited great attention at the first world's fair, in London, in 1851, and great commercial success
was anticipated for it; but for various reasons it did not become successful in Mercer's lifetime, nor, in its original form, at any time.

The process of mercerizing, proper, consists in treating vegetable fiber, chiefly cotton, in the condition of yarn or of woven goods, to the action of caustic soda dissolved in water, and treating it subsequently with pure water and with dilute sulphuric acid for the purpose of washing out or extracting chemically the soda that remains in the yarn or fabric. The process effectuates both a chemical and a physical change in the constitution of the fiber. The wing of the cottonseed is pure cellulose, the chemical symbol of which is $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{10}$ 12 atoms of carbon, 20 of hydrogen, and 10 of oxygen. The caustic soda and the water in which it is held in solution unite with the cellulose; but the soda is afterward removed by washing with water and by "souring" with acid, and that which remains is lydrated cellulose--that is, cellulose combined with water. It is probably not strictly aecurate to say that the cellulose and water are chemically combined, since the water contained may be removed by drying without restoring the
cellulose to its original condition; but, on the other hand, after the desiccation the mercerized yarn or cloth will reabsorb water from the atmosphere naturally.
The structural change in the fiber is a marked one. The filament of cotton is a flattened tube or band, the sides of which are pressed closely together, leaving a central cavity which is enlarged at each edge of the flattened tube. It is opaque, and the surface is not smooth. The fiber has also a slight natural twist. All these characteristics are modified by the mercerizing process. The tube becomes rounded into cylindrical shape; the cavity is made smaller and the walls of the tube thicker; the surface is made smoother and the opacity is diminished; and the fiber acquires a spiral form. These are not the only physical changes introduced by the process, for there is a perceptible shrinkage in the length of either yarn or cloth treated by Mercer's formula. As will presently be noticed, the modern method overcomes the shrinkage, but as originally introduced the loss in linear dimension varied from 15 to 25 per cent. Moreover, the weight, and consequently the specific gravity, of the yarn or fabric is increased, as is also the strength of the material, this last gain varying from 35 to nearly 70 per cent, according to the conditions under which the mercerizing is done. Another important result of the process is that mercerized cotton has a much greater affinity for certain dyes and mordants than cotton which has not been so treated.

The changes heretofore mentioned were those which Mercer specified in his application for a patent. The chief advantages which he claimed were the greater strength of yarn or cloth and the greater affinity for dyes. These are not the advantages which have caused the reintroduction of the process. Reference has been made to the fact that mercerizing causes a contraction of the fiber and a loss of length. Advantage was taken of the shrinkage to produce crepon effects in cloth, particularly in union cloth, but it was not availed of to any large extent. It has been discovered, however, that if the mercerizing be done under tension-that is, if it be simply held from shrinking, but not stretched, while the material undergoing treatment is immersed in the caustic bath and while the alkali is being removed by water and acid-the fiber becomes more translucent, the surface smoother, and the yarn or woven goods treated acquire a luster similar, and not greatly inferior,
to that of silk. The same result can be produced by stretching the material operated upon to its original length immediately after it has been subjected to the caustic bath, and before it has lost its pliable condition. The acquisition of a glossy appearance by mercerized goods was noticed in the early days of the process, but it is only recently that the increased luster imparted by holding the material from shrinking caused a revival of the manufacture.
The improved process in mercerization while the goods are in a state of tension is the subject of protracted patent litigation which has not yet been brought to a decision. The process itself is a simple one, but must be conducted with great care. As applied to yarn it consists in passing it through the bath between rollers which prevent all contraction, and then through the water bath and a weak solution of sulphuric acid under the same conditions. The rollers serve also the purpose of squeezing out the canstic, the water, and the acid, and so facilitating and rendering complete the removal of all chemicals which might cause a contraction after the tension is relaxed.
The uses to which mercerized material may be put are various. The process has not been applied with success to ordinary upland cotton, but only to Egyptian and sea-island cotton, which are naturally somewhat silky. These are the varieties of cotton which are employed in the production of underwear and the finest of woven goods, which are made much more beautiful by the luster imparted as well as by the brilliancy of the dyeing. It is believed, however, that the fact that mercerized yarn loses something of elasticity in gaining strength, is against its general a vailability in the manufacture of hosiery and knit goods.
The amount of yarn mercerized in cotton mills during the census year was 809,468 pounds. In dyeing and finishing establishments 868,851 pounds of yarn and $7,973,506$ square yards of cloth were mercerized. The total additional value given to yarn and cloth by mercerizing, in all establishments, was $\$ 679,490$.
Table 23 presents a comparative summary of the entire industry, cotton goods and cotton small wares, by states and territories, geographically arranged for the several censuses from 1840 to 1900, inclusive; and Table 24 presents the detailed statistics of cotton goods for 1900.

Table 23.-COMPARATIVE SUMMARY, COTTON GOODS AND COTTON SMALL WARES,

[^103]BY STATES AND TERRITORIES, GEOGRAPHICALLY ARRANGED: 1840 TO 1900.

${ }^{4}$ Not reported.
${ }^{4}$ Not reported.
${ }^{6}$ This item was not fully reported at the census of 1850 .
${ }^{6}$ Includes 1 establishment in the District of Columbia which is not shown separately.

Table 23.-COMPARATIVE SUMMARY, COTTON GOODS AND COTTON SMALL WARES,

${ }^{1}$ Not reported separately.

[^104]BY STATES AND TERRITORIES, GEOGRAPHICALLY ARRANGED: 1840 TO 1900—Continued.

8 Maryland and the District of Columbia are combined in this tahle as Middle states for purposes of comparison.
${ }^{4}$ Included in "All other Southern states."

Table 23.-COMPARATIVE SUMMARY, COTTON GOODS AND COTTON SMALL WARES,

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \multirow{3}{*}{Year.} \& \multirow{3}{*}{Number of estab-lishments.} \& \multirow{3}{*}{Capital.} \& \multicolumn{2}{|l|}{\multirow{2}{*}{salaried officials, CLERKS, ETC.}} \& \multicolumn{5}{|l|}{average number of wage-earners and total wages.} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& \& \& \& Number. \& Salaries. \& Average number. \& Wages. \& over. \& and over. \& years. \\
\hline \multirow{4}{*}{25} \& \multirow{4}{*}{fonthern states-Continued. Louisiana} \& 19001 \& \& \& \& \& \& \& \& \& \\
\hline \& \& 1880
1870 \& \(\stackrel{2}{4}\) \& \(\$ 195,000\)
592,000 \& \& \& 108 \& \(\$ 12,572\)
60,600 \& 43
123 \& 41
57 \& \(\begin{array}{r}24 \\ \hline 66 \\ \hline\end{array}\) \\
\hline \& \& \({ }_{1850}{ }^{1860}\) \& 2 \& 1,000, 000 \& \& \& 360 \& 49,440 \& 220 \& 140 \& \\
\hline \& \& 1840 \& 2 \& 20,000 \& \& \& 23 \& \& \& \& \\
\hline \multirow{4}{*}{26} \& \multirow{4}{*}{Texas.} \& \(\left.\right|_{1890} ^{1901}\) \& 4 \& 2, 227, 184 \& 21 \& \$31,388 \& 984 \& 253,630 \& 497 \& 302 \& 185 \\
\hline \& \& 1880
1870 \& 2
4
4 \& 50,000
496,000 \& \& \& \(7{ }^{71}\) \& \begin{tabular}{|c}
2,466 \\
68,211
\end{tabular} \& - 184 \& \[
\begin{gathered}
70 \\
52
\end{gathered}
\] \& 16
55 \\
\hline \& \& \({ }_{18504}\) \& 1. \& 450, 000 \& \& \& 130 \& 15,600 \& 130 \& , \& \\
\hline \& \& 18404 \& \& \& \& \& \& \& \& \& \\
\hline \multirow{5}{*}{27} \& \multirow{5}{*}{All other Southern states..} \& (1900 \({ }^{5}\) \& 5 \& 1,990,016 \& 19 \& 26,426 \& 1,356 \& 293, 470 \& 329 \& 759 \& 268 \\
\hline \& \& 1890
1880 \& 5
1 \& 2, \(\begin{array}{r}1,067,225 \\ 11,000\end{array}\) \& 15 \& 21,400 \& 1,341 \& 307,
5,000
5, \& 345
21 \& 782
2 \& 214
10 \\
\hline \& \& \(1870{ }^{4}\) \& \& \& \& \& \& \& \& \& \\
\hline \& \& 1860 \& (5) 1 \& 30,000
80,000 \& :-.. \& \& 65
95 \& 7,872 \& \[
\begin{aligned}
\& 70 \\
\& 28 \\
\& 20
\end{aligned}
\] \& \[
\begin{gathered}
25 \\
67
\end{gathered}
\] \& -......... \\
\hline \& \& 1890 1841 \& (5) \& 80,000 \& \& \& 95 \& \& \[
28
\] \& \& \\
\hline \multirow{5}{*}{28} \& \multirow{5}{*}{Western states} \& \(\left(\begin{array}{l}1900 \\ 1890\end{array}\right.\) \& 18 \& \(4,567,943\)
\(5,364,042\) \& 66 \& 107,451 \& 3,308 \& 863, 426 \& 1,140 \& 1,871 \& 297 \\
\hline \& \& 1880 \& 17 \& \(5,135,000\)
3,135 \& 94 \& 109,598 \& 3, 2,366 \& 505, 403 \& 646 \& 1,215 \& \(\begin{array}{r}431 \\ 505 \\ \hline\end{array}\) \\
\hline \& \& 1870 \& 23 \& 1,790, 900 \& , \& \& 1,447 \& 379, 095 \& 481 \& \(\stackrel{516}{ }\) \& 450 \\
\hline \& \& 1860 \& 16 \& 695,700 \& \& \& 1,395 \& 272, 712 \& 648 \& 747 \& \\
\hline \& \& 1850
1840 \& 12 \& 258, 44000 \& \& \& 651
456 \& \& 245 \& 406 \& \\
\hline \multirow{6}{*}{29} \& \multirow{6}{*}{Ohio..} \& \& \& 172,661 \& 13 \& 11,666 \& 109 \& 29,076 \& 27 \& 82 \& \\
\hline \& \& 1890 \& 7 \& 1,213, 217 \& 30 \& 32, 144 \& 554 \& 161,613 \& 235 \& 312 \& 7 \\
\hline \& \& 1880
1870 \& 4 \& 670,000
555,700 \& \& \& 484
462 \& 104,500
113,520
1 \& \({ }_{216}^{126}\) \& 321
147 \& 37
99 \\
\hline \& \& 1860 \& 8 \& 265, 000 \& \& \& 840 \& 151,164 \& 372
372 \& 468 \& \\
\hline \& \& 1850 \& 8 \& 297, 000 \& \& \& 401 \& \& 132 \& 269 \& \\
\hline \& \& 1840 \& 8 \& 113,500 \& \& \& 246 \& \& \& \& \\
\hline \multirow{5}{*}{30} \& \multirow{5}{*}{Indiana} \& 1900 \& 5 \& 1,679,741 \& 19 \& 34,964 \& 1,428 \& 325, 749 \& 377 \& 1,001 \& 50 \\
\hline \& \& 1890 \& 6 \& 1,744, 720 \& 16 \& 22, 334 \& 1,309 \& 310, 342 \& 325 \& -749 \& 235 \\
\hline \& \& \(\left\{\begin{array}{l}1880 \\ 1870\end{array}\right.\) \& 4
4
4 \& 1, 5500,000 \& \& \& \begin{tabular}{l}
720 \\
504 \\
\\
\hline
\end{tabular} \& 162,829
113,200 \& 205
119 \& 391
179 \& \(\begin{array}{r}124 \\ 206 \\ \hline\end{array}\) \\
\hline \& \& 1860 \& 2 \& 251, 000 \& \& \& 367 \& -84,888 \& 177 \& 190 \& 206 \\
\hline \& \& 1850 \& 2 \& 43, 000 \& \& \& 95 \& \& 38 \& 57 \& \\
\hline \multirow{6}{*}{31} \& \multirow{6}{*}{Wisconsin} \& \& \& \& \& \& \& \& \& \& \\
\hline \& \& 1900 \& 3 \& 467, 808 \& 5 \& 5,220 \& 347 \& 80,567 \& 131 \& 191 \& \\
\hline \& \& 1890
1880 \& \begin{tabular}{l}
4 \\
1 \\
\hline
\end{tabular} \& 892,509
200,000 \& 11 \& 11,300 \& 490
271 \& 131,170
67,209 \& 198 \& 239
149 \& 53 \\
\hline \& \& 18704 \& \& \& \& \& \& \& \& \& \\
\hline \& \& 18604 \& \& \& - \& \& \& \& \& \& \\
\hline \& \& \({ }^{1850} 1840\) \& \& \& \& \& \& \& \& \& \\
\hline \multirow{5}{*}{32} \& \multirow{5}{*}{Illinois....................} \& \({ }^{1900}{ }^{8}\) \& \& \& \& \& \& \& \& \& \\
\hline \& \& 1890
1880 \& \begin{tabular}{l}
4 \\
2 \\
\hline
\end{tabular} \& 766, 4005 \& 24 \& 26,400 \& 430 \& 128,986 \& 112 \& 280 \& \\
\hline \& \& \(\left\{\begin{array}{l}1880 \\ 1870\end{array}\right.\) \& \begin{tabular}{l}
2 \\
5 \\
\hline
\end{tabular} \& 240,000
151,000 \& \& \& \(\begin{array}{r}237 \\ 98 \\ \hline\end{array}\) \& 47, 885
25,500 \& 66
26
26 \& 89
31 \& 82
41 \\
\hline \& \& [1860 \& 3 \& 4,700 \& \& \& 11 \& 2,640 \& 10 \& \(\stackrel{1}{1}\) \& \\
\hline \& \& 18854.4. \& \& \& \& \& \& \& \& \& \\
\hline \multirow{5}{*}{33} \& \multirow{5}{*}{Missouri.} \& [19008 \& \& \& \& \& \& \& \& \& \\
\hline \& \& 18908
1880 \& \& \& \& \& \& \& \& \& \\
\hline \& \& \(\{1870\) \& 3 \& \begin{tabular}{l}
490, \\
489 \\
\hline 100
\end{tabular} \& . \& \& \({ }_{361}^{515}\) \& \(\begin{array}{r}97,680 \\ 120,300 \\ \hline\end{array}\) \& 127 \& 207 \& 181 \\
\hline \& \& 1860 \& 2 \& 169, 000 \& \& \& 361
170 \& \& 107
85 \& 154 \& 100 \\
\hline \& \& 1850
18404 \& 2 \& 102,000 \& \& \& 155 \& \& 75 \& 80 \& \\
\hline \multirow{5}{*}{34} \& \multirow{5}{*}{Utah.} \& (19004 \& \& \& \& \& \& \& \& \& \\
\hline \& \& 18904 \& \& \& \& \& \& \& \& \& \\
\hline \& \& 1880 1870 \& \begin{tabular}{l}
1 \\
3 \\
\hline
\end{tabular} \& 20,000
42,000 \& \& \& 29 \& 2,100 \& 16 \& 8 \& 8 \\
\hline \& \& 1860
1850

188 \& 1 \& 6,000 \& \& \& 16
7 \& 6,300
3,420 \& 10
4 \& $\stackrel{2}{3}$ \& 4

\hline \& \& 18404 \& \& \& \& \& \& \& \& \&

\hline \multirow{3}{*}{35} \& \multirow{3}{*}{All other Western states ${ }^{4}$.} \& \& \& \& \& \& \& \& \& \&

\hline \& \& 1890 \& 4 \& -747, 191 \& 13 \& 17, 420 \& 1,478 \& 163,030 \& 121 \& 259 \& 222
98

\hline \& \& 18604 \& \& \& \& \& 6 \& 270 \& 3 \& 3 \&

\hline
\end{tabular}

${ }^{1}$ Included in "All other Sonthern statcs."
${ }^{2}$ Not reported separately.
${ }^{8}$ Not reported.
${ }^{5}$ Inclodes states gronped in order that the operations of individual establishments may not be disclosed. These establishments are distributed as follows: 1900 , Arkansas, 2; Louisiana, 2; West Virginia, 1. 1890, Arkansas, 2; Lonisiana, 2; Texas, 1. 1880, Florida, 1. 1860, Florida, 1 . 1850, Florida, number of establishmenta
not reported.

BY STATES AND TERRITORIES, GEOGRAPHICALLY ARRANGED: 1840 TO 1900-Continued.

[^105]Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900.

[^106]Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900-Continued.

states.	wage-earners, including pieceworkers, and total wages.									
	Greatest number employed at any one time during the year.	Least number employed at any one time during the year.	Average number.	Total wages.	Men, 16 years and over.		Women, 16 years and over.		Children under 16 years.	
					Average number.	Wages.	Average number.	Wages.	Average number.	Wages.
United States. New England states \qquad	323, 913	275, 369	297,929	\$85, 126, 310	134, 354	\$46, 923, 365	123,709	\$32, 917, 933	39,866	\$5, 285, 012
	173,562	149, 814	162,294	55, 367, 541	78,217	31,083, 398	73, 258	22, 236, 019	10,819	2,048, 129
Maine	14,262	13, 378	18, 723	4, 330, 297	6,197	2,342,275	6,760	1,864,335	766	123,687
New Hampshire...........	21,325 1,226	19,542 ${ }^{901}$	20,454	6,759, 422	9,229	3,599,509	10,362	2,996, 626	863	163,287
Massachusetts	99,001	82,991	92,085	32, 327,443	438 45,105	18, 131,465	41,495	114, 375	82 6	13, 918
Rhode Island.	23, 272	20, 484	21, 823	7,297,119	45,103 1030	18,298,457	41,057 9,240	$12,855,112$ $2,813,883$	6,923	$1,173,874$ $420,696$.
Connecticat.	14,476	12,518	13,194	4, 393, 502	6,918	2, 649, 147	5,344	1,591, 688	2, 932	152,667
Middle states..................	38,309	31,912	34,843	11,396, 710	14,473	6,132,776	16,056	4, 589,949	4,314	673,985
New York.	9,341	8,202	8,659	2,682,394	4,094	1,412,902	3,761	1,024,845	804	144,647
New Jersey.	5,980	5,166	5,518	1,887,119	2,088	1, 002,178	2,789	1,792,990	641	91, 951
Pennsylvania	17,328	13,833	15, 567	6,602, 339	6,737	3, 149, 455	7,119	2, 194,413	1,711	258, 471
Delaware-	${ }_{5}^{629}$	204	372	138, 844	108	58,885	22.2	27,700	1,42	12, 259
Maryland	5,031	4,507	4,727	1,186,014	1,446	509, 356	2,165	510,001	1,116	166,657
Southern states...............	108,506	90,528	97,494	17, 501, 648	40,528	9,820,597	32,528	5,669,916	24,438	2,511,135
Virginia.......	3,078	2,746	2,931	668,556	1,280	392, 540	1,000	202,906	651	73, 110
North Carolina.	33,621	28,256	30, 273	5,127,087	12,780	2,765,457	10,364	1,629,036	7,129	732, 594
South Carolina	33,298	27,678	30, 201	$5,066,840$	15,418	2,785, 288	8,673	1, 477, 621	8,110	808, 934
Genrgia...	20,494 9,553	17,023	18,283	3, 566, 951	7,309	1,815,126	6,495	1, 270, 434	4,479	481, 391
Mississippi		7,519	8,332	1, 482,226	$3,1.52$ 526	789,225 153,859	2,743	463,244 128,299	2,437	229,757
Texas ...	1,290	1,094	,984	253, 630	497	164,325	302	124,997	185	57,478
Kentucky	1,431	1,250	1,351	280,407	430	126, 130	591	116,081	330	38,196
Tennessee	2,485	2,190	2,108	422,935	807	214, 140	918	168, 135	383	40,660
All other Southern states ${ }^{1}$.	1,379	1,340	1,356	293, 470	329	114,510	759	149, 253	268	29,707
Western states.	3,536	3,115	3,298	860,411	1,136	386,599	1,867	422,049	295	61,763.
Ohio.	117	80	106	27,861	24	11,482	82	16,379		
1ndiana	1,637	1,358	1,421	323, 949	376	123,259	997	195, 150	48	6,540-
Wisconsin-. ${ }^{-1}$	1,387 1,495	+ 315	347 1,424	80,567 428,034	131 605	39,170 212,688	191 597	38,750 171,770	225	2,647 43,576

WAGE-EARNERS, including PIECEWORKERS, ANO TOTAL WAGES.

states.	Men, 16 years and over.											
	Jannary.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
United States New England states \qquad	134, 941	135,497	136, 254	134,684	136,649	183,099	132,151	129,830	133,139	134,265	135, 622	137, 217
	77,972	78, 428	78,951	78, 674	78,236	77,906	77, 583	75,649	78,042	78,288	78,894	79,977
Maine.	6,212	6,243	6,253	6, 260	6, 186	6,177	6,158	${ }^{6,181}$	6,105	6,165	6,197	6,274
New Hampshire	9, 156	9,219	9,259	9,259	9,096	9,141	9,142	9,125	9,235	9,280	9,407	9,431
Vermont......	421 44,990	45, 219	45, 596	45, 523	45,428	45,138	44,758	42,955	45,110	45,127	45,336	46,082
Massachusetts	44, 10,287	-10,341	10,481	10, 460	10,389	10,279	10,280	10,178	10,214	10,233	10,302	10,510
Connecticut.	6,906	6,949	6,927	6,735	6,719	6,742	6,797	6,835	6,951	7,052	7,194	7,212
Middle states	14,607	14,608	14,719	13,760	14,682	14,384	14,293	14,265	14, 472	14,584	14,694	14,620
New York	4.099	4, 182	4,193	4,155	4,115	4,054	3,934	3,942	3,966	4,134	4, 167	4,192
New Jersey	2,051	1,959	$\stackrel{2}{2} 103$	2, 089	2,116	2,051	2,095	2,082	2,071	2,140	2,159	2,142
Pennsylvania	6,872	6,917	6,813	5,849 189	6,814	6,785 37	6,745 61	6,722 65	6,919 80	6,814 83	$\begin{array}{r}6,847 \\ \hline 94\end{array}$	6,749.
Delaware	129 1,456		158 1,452	1,478	1,446	1,457	1,458	1,454	1,436	1,413	1,427	1,435
Southern states	1,456 41,248	41,327	1,452 41,432	41,115	41,462	39,689	39,161	38,797	39,488	40,254	40,889	41,468.
Virginia			1,254	1,262	1,268	1,283	1,287	1,295	1,304	1,298	1,308	1,305
North Carolina	12, 921	12, 813	12, 813	12,998	13, 186	12,655	12,435	12, 231	12,632	12,752	12,874	13,057
South Carolina	13, 961	13, 810	13,946	13,240	$\begin{array}{r}13,372 \\ 7 \\ 7 \\ \hline 652\end{array}$	12,044 7,226	$\begin{array}{r}13,025 \\ 6 \\ \hline\end{array}$	12,985 6863	12,050 7,007	12, 7,233	13, 7 , 268	13, 802
Georgia..	7,240	7,596	7,516	7,753 3,259	8, 3.658	2,893	2,873	2,949	2,940	3,081	3,290	7,359
Alabama.	3, 520	3, 308	-3,308	3, 507	3,208 498	2,893	2,539	- 550	2,573	${ }^{5} 570$	$\bigcirc 574$	- 576
Mississippi		484	488	488	574	583	474	478	471	474	474	483
Texas....	433	411	442	424	415	430	437	433	432	450	425	427
Kentucky.	844	838	842	853	898	763	766	767	760	781	776	793
Allother Southern statesi.	330	326	331	331	331	329	332	${ }^{3} 26$	313	332	331	332
Western states	1,114	1,134	1,152	1,135	1,169	1,120	1,114	1,119	1,137	1,139	1,145	1,152
	18373124699	$\begin{array}{r} 23 \\ 385 \\ 127 \\ 599 \end{array}$	$\begin{array}{r} 23 \\ 401 \\ 138 \\ 590 \end{array}$			23			25	25		25
Indiana				389	410	360	359	365	366	366	369	369
Wisconsin				136	137 599	140 597	600	602	618	620	622	131 627
All other Western states ${ }^{\text {d }}$.				589								627

[^107]Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900-Continued.

states.	Wage-earners, including pieceworkers, and total wages-continued.											
	Women, 16 years and over.											
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
United StatesNew England states.........	124,486	124,952	125, 805	125,285	124,780	122, 513	121,292	119,108	121, 370	123,746	124,998	126,173
	73,490	73,566	74,295	73,859	73,384	72,920	72,639	70,700	71,964	73,362	74,012	74,909
Maine.	6,793	6,801	6,697	6,791	6,741	6,673	6,687	6,710	6,727	6,781	6,832	6, 892
New Hampshire	10,268	10,375	10,576	10, 418	10,215	10,025	10, 349	10,345	10, 354	10,448	10,483	10, 484
Vermont......	1667 41,344	500 41221	503 41,870	629 41,692	514 41.571	494 41.388	40,706	490 38,742	487 39,819	476 40,894	41, 4984	486 42,057
Rhode Island.	41, ${ }^{\text {, } 228}$	41, 9	$\stackrel{41}{9,291}$	41,698 9,258	41, ${ }^{\mathbf{2}} \mathbf{2} \mathbf{6 0}$	9,163	9,201	9,149	9,191	9,251	9,246	9,417
Connecticut..	5,390	5,44]	5,358	5,171	5,083	5,177	5,192	5,264	5,386	5,512	5,576	5,573
Middle states	16,227	16, 239	16,287	16,258	16,281	15,952	15,655	15,637	15,879	15,999	16,160	16,098
New York.	3,782	3,827	3,847	3,856	3,798	3,798	3,598	8,550	3,580	3,772	3,827	3,891
New Jersey .-	2,805	2,747	2,808	2,757	2,788	2,782	2,775	2,740	2,775	2,807	2,856	2,825
Pennsylvania	7,219	7,215	7,156	7,121	7,175	7,089	6,983	7,014	7,185	7.095	7,147	7,031
	2,170	294 2,156	329 2,147	1245 2,179	1448 2,172	2,185	115 2,184	149 2,184	171 2,168	2,173	2,142	2,145
Southern states..............	32,950	33, 287	33,336	33, 239	33,175	31,823	31,170	30,933	31,658	32,512	32,959	33,277
Virginia.	898	921	942	1,016	1,023	1,028	1,012	1,010	1,028	1,045	1,032	1,042
North Carolina	10,620	10,453	10,638	10,634	10,573	10,289	9,893	9,803	10,081	10,339	10,458	10,589
South Carolina.	8,990	8,920	8,983	8,636	8,606	8,426	8,498	8,301	8,500	8,667	8,707	8,838
Georgia ..	6,405	6,859	6,669	6,806	6,690	6,331	6,078	6,081	6,299	6,525	6,616	6,581
Alabama.	2, 869	2,907	2,931	2,880	2,902	2,508	2,470	2,496	2,553	2,665	2,833	2,903
Mississippi	591	626	626	636	633	617	713	735	743	753	758	759
Texas.....	294	290	286	282	394	388	284	280	275	277	285	284
Kentucky.	585	602	560	604	593	595	603	591	573	579	605	604
Tennessee..............-.	944	952	949	993	995	875	853	874	864	908	905	909
All other Southern states ${ }^{3}$	754	757	752	752	766	766	766	762	742	754	760	768
Western states	1,819	1,860	1,887	1,929	1,940	1,818	1,828	1,838	1,869	1,873	1,867	1,889
Ohio	$\begin{array}{r} 62 \\ 989 \\ \mathbf{9 8 5} \\ 583 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ 1,013 \\ 184 \\ 588 \end{array}$	$\begin{array}{r} 76 \\ 1,035 \\ 193 \\ 583 \end{array}$	$\begin{array}{r} 85 \\ 1,069 \\ 191 \\ 584 \end{array}$	83	80	87	84	88	89	92	89
Indiana...................					1,079	952	955	962	979	980	961	986
Wisconsin All other Western statesi.					186 592	196	190	193	194	193	194	195
All other Western statesl.						59	596	599	608	611	620	619

Wage-karners, including pieceworkers, and total wages-continued.

States.	Children, under 16 years.											
	January.	February.	March.	April.	May.	June.	Jnly.	August.	September.	October.	November.	December.
United States	40,676	40,363	40,646	40,137	40,450	39,229	38,737	38,463	39,046	39,664	40,330	40,651
New England states .	10,972	10,788	10,877	10,744	10,722	10,766	10,768	10,663	10,789	10,780	10,979	10,980
Maine.	765	758	768	761	753	782	790	784	756	749	755	768
New Hampshire	866	867	879	864	849	863	856	859	845	856	873	878
Vermont	79 6,101	82 5,902	92 5,914	80 5,877	87 5,881	87 5,860	79 58	$8{ }^{80}$	85	78	83	78
Rhode Island	2,247	2,250	2,307	-2,237	2,241	2,248	5,842 2,263	2, 21279	5,955 2,223	5,950 2 2,197	6,028 2,278	6,053 2,263
Connecticut.	914	929	917	925	911	926	938	948	925	2,950	2,962	2, 940
Middle states	4,358	4,283	4,343	4,298	4,340	4,218	4,232	4, 270	4,307	4,367	4,415	4,329
New York.	798	807	819	793	794	800	785	767	779	807	859	840
New Jersey .	629	583	625	622	642	643	664	670	662	645	661	651
Pennsylvania	1,751	1,724	1,741	1,704	1,703	1,637	1,641	1,658	1,723	1,782	1,764	1,701
Delaware									20	27	26	32
Maryland.	1,123	1,108	1,098	1,104	1,121	1,118	1,122	1,155	1,123	1,106	1,105	1,105
Southern states .	25,063	25, 008	25,144	24,810	25,104	23,958	23,443	23,236	23,637	24,205	24,624	25,032
Virginia	626	628	644	654	665	672	644	651	648	660	659	659
North Carolina	7, 378	7,269	7,391	7,410	7,463	6,991	6,736	6,644	6,909	7,040	7, 160	7,153
South Carolina.	8,352	8, 224	8,297	7,942	8,043	7,870	7,901	7,878	7,984	8,140	8,273	8,420
Georgia..	4,599	4,723	4,683	4,704	4,730	4,446	4,243	4,124	4,181	4,360	4,459	4,501
Alabama.	2,504	2,531	2,508	2,461	2, 483	2,337	2,325	2,319	2, 306	2,371	2,437	2,662
Mississippi...............	412	443	438	444	442	427	469	489	501	511	507	510
Texas ${ }_{\text {Kentucky }}$......................	178	179	185	168	244	267	186	165	161	156	165	169
Kentucky...................	336	340	317	331	328	318	315	330	341	329	537	332
All other Southern states ${ }^{\text {a }}$	414	405	${ }_{204}^{404}$	${ }_{271}^{425}$	433 273	354 276	353 271	362 27.1	351 255	363 275	365 262	369 257
Western states	283	284	282	$\underline{25}$	284	287	294	294	313	312	312	310
Ohio								48				
Indiana_..................	25	25	25	25	25	25	25	25	25	25	25	48
Wisconsin All other Western states 1	210	211	209	212	211	214	221	221	240	239	239	237

[^108]Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900-Continued.

Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900—Continued.

[^109]Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900-Continued.

[^110] Illinois, 1; Missouri, 2; Nehraska, 1.

Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900-Continued.

states.	Pronucts-continued.									
	Fancy woven fabrics.		Ginghams.		Duck.				Drills.	
			Sail.	Other.						
	Square yards.	Value.			Square yards.	Value.				
United StatesNew England states	237, 841,603	\$21, 066, 310	278,392,708	\$16,179, 200	11, 750, 151	\$2, 216, 371	117,483, 925	\$12, 046, 637	237, 206, 549	911, 862,794
	188,079, 288	15, 536, 137	111, 511, 819	8,007,003	516,874	130,693	31, 039, 438	3,398,436	48, 241, 163	3,002,136
Maine......	6,922, 390	784, 204	9,885, 356	800,819 3092,400					$21,413,342$ $6,330,915$	$1,326,566$ 356,244
New Hampshire	2,019,785	263, 296	44, 760, 333	3,092, 400			8,162,191	991,123		
Massachusetts	137,064, 111	10,995,987	53, 932, 358	3, 949,351	153,328	38,910	17,750, 629	1, 638,320	20,475, 203	1,316,071
Connecticut..	20,518,759	1, 495, 298	$2,983,772$	164, 433	363,546	91, 783	5,126,618	768,993	21,703	3,255
Middle states.................	38,278,513	4,708,095	14, 975, 361	948,769	8,610, 148	1,693,334	19,189,921	2,986,002	186, 932	10,281
New York.							1, 191, 300	365,485		
New Jersey...	$4,455,994$ $30,981,363$	580,577 $3,906,347$	$2,972,723$ $11,792,638$	156,909 623,860			1,369,127			
Delaware			210,000	168, 000						
Maryland	2,841,156	221, 171			8,510,148	1,693,334	16, 629, 494	2,343,269	186, 932	10,281
Southern states...............	11,488, 802	822,078	151,905, 528	7,223,428	2,723,129	392,344	66,813,750	5,632,615	188, 762, 583'	8, 849,672
Virginia ${ }^{\text {North }}$ Carolina.			$27,600,235$	$1,358,195$			2, 508,716 226	140, 834	$4,790,967$ $2,821,238$	242,271 133,110
North Carolina............	$7,770,704$ 213,068	502,123 14,000	$79,531,131$ $16,752,808$	3,799,187	337,944	50,692	$\begin{array}{r}\text { 226, } \\ 6,898 \\ \hline 10\end{array}$	21, 931,297	$\begin{array}{r}\text { 2, } \\ 116,461,238 \\ \hline\end{array}$	133,110 $5,375,017$
Georgia..	965,038	142, 887	25,302, 954	1,117, 529			31,673, 022	2,143,546	36, 378,866	1,801,586
Alabama.					2,084,385	319, 092	13,529, 893	1,390, 108	14, 867,094	607, 927
Mississippi			261, 468	7,842			$1,567,696$ $\mathbf{7 , 6 5 5 ,}$	111, 858	4, $\mathbf{3}, 273,389$	281,240 130,933
Kentucky.....										
Tennessee..................	1,115,399	63,439	2, 456, 932	134, 124	300,800	22,560	1,934,666	$\begin{array}{r} 106,503 \\ 64,613 \end{array}$	$\begin{array}{r} 2,975,075 \\ 2,752,702 \end{array}$	$\begin{aligned} & 163,016 \\ & 114,572 \end{aligned}$
Westernstates.							440, 816	29, 584	15,871	705
Indiana...										
All other Western statesi							440,816	29,584	15,871	705

states.	PRonucts-continued.									
	Ticks, denims, and stripes.		Cottonades.		Napped fabrics.		Corduroy, cotton velvet, and plush.		Mosquito and other netting.	
	Square yards.	Value.								
United States New England states	171, 800, 853	\$16,446,633	26, 323, 947	\$2,791, 431	268,852, 716	\$18, 231,044	7,961,523	\$2,682,017	41, 885, 023	\$875, 868
	108, 420, 059	10,724,795	8,645, 907	570,431	218, 637,011	15, 005, 477	3,653,019	1,129, 243	22, 158, 370	455,119
Maine....................	$\begin{array}{r} 5,243,675 \\ 32,201,176 \end{array}$	$\begin{array}{r} 588,764 \\ 3,226,598 \end{array}$	3, 901, 386	377, 849	$14,190,745$ $62,263,909$	$995,867$				
New Hampshire	$\text { 32, 201, } 176$	3,226,598				4,394,860				
Massacbusetts	63, 794, 395	5,380,689	1,190,555	146, 606	137,199,384	9,328,653	1,087,597	349,343	1,958,116	137,175
Connecticut.	7,180,813	1,528,744	553, 966	46,976	$4,992,973$	286,097			$6,379,307$ $13,820,947$	$\begin{array}{r} 80,238 \\ 287,711 \end{array}$
Middie states	12,947,985	1,165,017	8, 288, 467	1,238,303	5,814, 757	882,836	4,308, 004	1,552,774	19,726, 653	420,749
Pennsylvania	12, 262,848	1,1i0,206	7,004,759	1,134,039	3,718,782	623, 772	$\begin{array}{r} 329,000 \\ 3,95,504 \end{array}$	1,419,574		
Delaware	- 685,137	54, 811	511,268	51,376	$1,026,591$	65,159				
Southern states	50, 432, 809	4,556, 821	12,389, 573	982,697	40,633,116	2,109,572				
Virginia										
North Carolina South Carolina.	$\begin{gathered} 23,228,007 \\ 1,802,138 \end{gathered}$	$\begin{aligned} & 2,521,849 \\ & 199,131 \end{aligned}$	6,289, 031	409,634	$\begin{array}{r} 30,175 ; 177 \\ 840,372 \end{array}$	$\begin{array}{r} 1,555,920 \\ 35,000 \end{array}$			
Georgia......	16, 971, 764	1,048,395			6,044, 140	265, 960				
Alabama.		250,000	$\begin{array}{r} 1,040,307 \\ 886,420 \end{array}$	$\begin{aligned} & 74,990 \\ & 98,52 \end{aligned}$	3,573,427					
Mississippi			886,420	98, 620	3, 573,427	252, 692				
Kentucky										
	$6,701,703$ $1,729,197$	421, 372								
All other Southern states	1,729,197	176,074								
Western states					3,767,832	233,159				
Ohio ...										
Indiana. Wísconsin										
Wisconsin We.lern states ${ }^{\text {a }}$					3,767, 832	233,159				

[^111]Table 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900--Continued.

[^112]TABLE 24.-COTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900—Continued.

states.	Products-continued.				GOODS EXPORTED.				
	Waste for sale.		Other products of cotton.	All other prod-	Exported during the year ending June 30, 1900 .	Weight of products.			
			Piece goods.			Yarns spun and not woven in the mill.	Other products.		
United States.	Pounds. $270,100,756$	Value. $\$ 5,552,234$		Value. $\$ 5,154,170$	Value. $\$ 9,199,753$	Value. $\$ 15,357,502$	Pounds. 1, 124, 224, 687	Pounds. 343, 291, 338	Pounds. $71,753,649$
New England states.	173,315, 267	3, 871,402	1,838,378	7,056,354	5,666,595	576, 231, 680	125, 268. 394	37, 107, 387	
Maine	10,532,399	210,176	177,720	39,763	1,430,000	64, 589, 813	2,769, 987	$5,021,810$	
New Hampshire..........	$\begin{array}{r}18,748,350 \\ 860 \\ \hline 135\end{array}$	395,035 16,752	101,662	$1,093,778$ 3,499		$103,725,761$ $3,900,736$	6,018, 1,53247	5, 01,126	
Massachusetts..............	114, 256, 895	2,609,039	1,182,466	4,829,304	3,489,240	361, 768,746	88, 970, 825	14, 657, 121	
Rhode Island	18,763, 717	386, 250	118,647	521,230	3,761	3,060, 689	17,636, 684	9, 187, 122	
Connecticut.	10,153,771	254,150	257,883	567,079	3,837	39, 185, 935	8,340, 391	3,339, 044	
Middle states.	18,492, 250	388, 496	2,345,009	1,736,524	554, 225	105, 901, 658	42, 275, 212	16,960, 035	
New York.	6,554, 045	126,419	350, 264	213, 309	11,576	25, 940, 718	17, 870, 669	3, 934, 770	
New Jersey.	2,542,061	78, 133	193,279	449,774		6,197, 567	3,727, 865	3,753,052	
Pennsylvania	5, 664, 228	115,142	1,611,074	1,051, 284	29,535	42, 841,943	19, 335, 490	5,589,992	
Delaware..................	3, 20922,428	4,050 64,752	190,392	23,858	513,114	-80, 809, 931	433,632 907,556	3,682,221	
Southern states..	76,290,167	1,261,701	922,313	339, 170	9,088, 240	425, 535, 425	174, 298,711	14, 041, 180	
Virginia.	1,948, 592	25,180			10, 812	15, 438, 367	51,927	68,151	
North Carolina.	22,039,030	335,571	118,341	49,902	145,573	77, 127,435	88, 509, 326	3, 326,766	
South Carolina	25, 582, 434	433, 986	74,309	68,374	6,994,651	173,451,460	25, 359, 616	1,902,797	
Georgia.	15,310,595	286,614	388, 238	205, 167	1,230,856	81, 294, 311	35, 749, 078	3,793,686	
Alabama	6,764,490	101,696	46,355	10,734	641,045	42,523, 657	15, 993, 105	847,979	
Mississippi	1,181,753	14, 366	20,384		36,000	6,827, 632	1,083, 993	292, 797	
Texas .-..................	441, 439	4, 618			29,303	7,922, 226	5 288,400	46,200	
Kentucky	$1,224,276$ $1,150,099$	24,000 22,769	212,100 45,586	3,563 200		$4,062,530$ $9,180,854$	5, 020, 741 $2,000,383$	$1,034,107$ $\mathbf{2}, 271,359$	
All other Southernstates	1,647,459	12,901	17,000	1,230		7,706,953	2, 242,142	$1,271,359$ 457,338	
Western states..	2,103,072	30,635	48,470	67, 705	48,442	16, 555, 924	1,449,021	3,645,047	
Obio...	3,000	45		40,000		392,000	440,000	255,000	
Indiana.................	773,306	11, 163		2,705		7,874,551	791, 521	109,270	
Wisconsin \quad We............. ${ }_{\text {a }}$	$\begin{aligned} & 250,098 \\ & 976,668 \end{aligned}$	11,685 13,742	$\begin{aligned} & 23,800 \\ & 24,670 \end{aligned}$	25,000	48,442	$1,765,128$ $6,524,245$	217,500	26, $3,244,777$	

STATEs.	Printing.			Dyeing.			Bleaching.		Mercerizing.	
	$\begin{gathered} \text { Printing } \\ \text { ma- } \\ \text { chines. } \end{gathered}$	Cloth printed.	Additional value given hy printing.	Cloth dyed.	Yarn dyed.	Additional valuegiven by dyeing.	Cloth hleached.	Additional value given by bleaching.	Yarn mercerized.	Additional value given by mercerizing.
	Number.	Square yards.		Square yards.	Pounds.		Square yards.		Pounds.	
United States ...	104	292, 741, 100	\$5,242,695	125, 894, 626	${ }^{2} 151,610,157$	\$6, 803, 077	${ }^{3} 197,691,533$	\$932,452	2, 149,722	\$328,330
New England states	97	291, 593, 800	5, 191, 214	62, 686, 716	63,496, 281	2, 490,457	125, 235, 506	690, 649	1,647,470	245,017
Maine..					3, 340,491	83,299	6,778, 075	22,831		
New Hampshire	14	47,231, 375	933,716	4, 948, 962	$3,276,720$ 307,252	179, 871	13,842, 238	101,551		
Massachusetts	75	242,057, 665	4,175, 287	41,040,589	241, 690,782	1,551, 298	${ }^{3} 78,693,381$	286, 788	1,340,254	208,674
Rhode Island.	7	2, 270, 000	81, 750	8, 818, 198	4,525,039	403,777	25, 921,612	147, 936		
Connecticut.	1	34, 860		7,878,967	10,455,997	262, 994		31,543	307,216	36,443
Middle states.	6	1,115,808	51,166	55, 965, 346	18,166, 563	1,070,248	46,677,444	194,121	502, 252	83, 313
New York.				5,513,038	106,450	44,888	13, 456, 476	40,604	26,328	3,242
New Jersey	6	1,115,808	51,1660.	$\begin{array}{r}\text { 4, } \\ 5 \\ \hline\end{array}$	15, 476,499	50,813 509,089	$26,426,156$ $6,794,812$	63,410 90,107	$\begin{array}{r}\text { 83, } \\ \text { 309, } \\ \hline\end{array}$	78,548
Delaware				381, 820	581,083	7,636 7,622				
Southern states	1	31,492	315	5, 741, 892	68, 361, 413	3,211, 107	25, 278, 583	142,682		
Virginia					5,727,300	85,909				
North Carolina	1	31,492	315	306,490	$34,850,776$ $2,250,514$	$2,442,144$ 43,647				
Georgia.		,-1.-1.-....		5,435,402	14, ${ }^{2}, 747,021$	43,647 432,654	24,265,583	124, 893		
Alahama. Mississippi				$2,123,809$ $2,394,628$	33, 095				
Texas....					2,394,028	38, 329	713,000	16,289		
Kentucky.					1,556,969	43,139				
Tenuessee ${ }^{\text {All }}$-therSouthernstates					2,710, 396	52, 180				
Western states .				1,500,672	1,585,900	31, 265	500, 000	5,000		
Ohio					320,000	4,300				
Indiana.					675, 900	6,759				
All other Western statesi.				1,500,672	590,000	20,200	500,000	5,000		

[^113]Table 24.-OOTTON GOODS, DETAILED SUMMARY, BY STATES, ARRANGED GEOGRAPHICALLY: 1900—Continued.

COTTON SMALL WARES.

At the census of 1900 for the first time a separate classification was made of the establishments producing cotton small wares, including cotton lace, edgings, boot and shoe lacings, corset lacings, lamp and stove wicks, tapes, webbings, and trimmings.

A small number of these establishments may have been reported at the Eleventh Census under the head of "millinery and lace goods," and some others may have been included in the class of "boot and shoe findings." Most of them, however, were included with cotton goods. Inasmuch as a few only of these establishments make use of raw cotton, or operate spindles, and since their products are quite distinct in character from those of ordinary cotton mills, it seems desirable to group them by themselves, in order to avoid misleading deductions from the statistics of the cotton manufacture proper, to recognize the importance of a rapidly expanding industry, and to lay a basis for future comparisons.
Nevertheless, the following tables do not give an exact view of the magnitude of the industries included in this group. The rule necessarily followed in classifying establishments is to combine those whose chief product, measured by value, is similar. Evidently no rule of classification gives an entirely satisfactory result. In the present instance there are cotton mills that make nothing but sewing cotton, and establishments which must be classed as producing cotton small wares that make a certain quantity of sewing cotton. Although tape and webbings are frequently a minor and incidental product of cotton mills, a small establishment which buys its yarn and makes tape and webbings exclusively may not properly be classed as such a mill.
These considerations will explain why the use of a considerable amount of raw cotton and the operation of a certain number of cotton spindles are reported in a class of mills which, as a rule, do not spin their own yarn. They will also indicate that neither do the following tables disclose the entire product of the articles included under the designation of cotton small wares, nor do all the products of the mills here reported fall properly under that designation. But a fairly accurate statement can be deduced from a comparison with the reports of other textile industries.
Table 25 presents the leading statistics of cotton small wares for 1900 .

Table 25.-COTTON SMALL WARES: SUMMARY, 1900.

Number of establishments.	82
Capital	\$6,397,385
Salaried officials, clerks, etc.,	189
Salaries..	\$226, 625
Wage-earners, average numbe	4,932
Total wages.	\$1, 563,442
Men, 16 years and over	1,367
Wages.	\$671,516
Women, 16 years and over	3,173
Wages	\$828, 732
Children, under 16 years	392
Wages.	\$63, 194
Miscellancous expenses.	\$462, 534
Cost of materials used.	\$3,110,137
Value of products..	86,394, 164
Active spindles, number.	42,600
Looms, number...	5,070
Cotton consumed, bales.	7,213
cotton consumed, pounds	3,640,878

The geographical distribution of the establishments reporting is as follows: New England states, 32; Middle states, 47; Georgia, 1; Obio, 1; Indiana, 1. The several industries are of a class which tends to spring up within cities or in their suburbs, and a large proportion of those here reported are in, or in the immediate vicinity of, New York, Philadelphia, Boston, and Providence. They are for the most part small establishments. The average capital indicated is something less than $\$ 80,000$. There are, however, some large establishments in Rhode Island. The combined capital of three of them is nearly $\$ 2,000,000$, which is almost one-third of the amount reported for the whole country. The elimination of the returns of these three mills would bring the average capital down to about $\$ 56,000$. The average number of hands employed in each establishment was 60 ; outside of Rhode Island, it was but 41. An inspection of the average number employed during each month indicates great steadiness of employment, the slight falling off during the summer months being no greater than is easily explained by the practice of allowing employees to take a vacation.
The chief materials used are shown by the following statement:

Materials.	Ponnds.	Cost.
Raw cotton.	3,640,878	\$264, 541
Cotton yarn	10, 860, 648	1,873,032
Woolen yarn.	274,351	91, $2 \overline{1} 1$
Worsted yarn.	47,308	33, 414
Silk yarn	43,709	134,296
Spun-silk yarn	9,852	25, 394
Other yarn	718,444	139,666
Raw cotton and yarns	15, 595,190	2,561,594
All other materia		548, 543
Total cost		5,671,731

Ninety-three per cent in weight and 83 per cent in value of the raw or spun fiber ased was cotton, but in the aggregate not a little of the product was mixed as to material.
A classification of products can not be made. Manufacturers were not asked to report with exactness the specific character of their goods, and indeed, the variety and the absence of standard units of quantity would have rendered such specification valueless. Neyertheless, from the total value of products reported, $\$ 6,394,164$, the following items should be subtracted as not coming properly under the classification of cotton small wares: Upholstery goods, $\$ 35,000$; yarns for sale, $\$ 27,403$; sewing cotton, $\$ 83,453$; and twine, $\$ 71,465$-a total of $\$ 217,321$. On the other hand, in order to obtain the actual total of cotton small wares produced in all the mills of the country, and not merely of these here reported, it is necessary to add to the remainder the sum of $\$ 328,801$, value of tape and webbings made in cotton mills, and a large but unknown sum out of the item of more than $\$ 5,000,000$ reported in the returns of cotton manufacturing proper, under the head of "All other products of cotton."

Table 26 presents the detailed statistics for the industry for 1900 .

Table 26.-COTTON SMALL WARES, BY STATES: 1900.

	United States,	$\begin{aligned} & \text { Massacbu- } \\ & \text { setts. } \end{aligned}$	New Jersey.	New York.	Pennsylvania.	Rhode Island.	All other states. ${ }^{1}$
Number of establisbments	82	14	5	18	24	16	6
Cbaracter of organization:							
Individual Firm and limited partne..........	30	5	2	10	1	5	2
Firm and limited partnership.	24 28	6	3	6 2	11	3	1
Capital:							
Total...................	\$6, 397,385	\$528, 258	8409, 917	\$550, 938	\%11,945, 844	\$2,876,699	\$85, 729
Land..	\$408, 824	\$19,774	87, 500	812,500	\$107, 500	\$259,000	\$2, 530
Buildings.......	\$863, 128	\$77, 353	\$47, 300	\$42,000	\$215, 500	\$468, 875	\$112, 100
Machinery, tools, and implements	\$2,159,876	\$240,819	\$222,312	\$2003, 455	\$627, 758	\$884, 726	\$80, 806
Cash and sundries..................	\$2, 965, 557	\$190, 312	\$122, 805	\$292, 983		\$1, 314, 098	\$40,273
Proprietors and firm members... salaried officials, clerks, etc.:	-2, 85	11	-1	-22	- 34	-31, 13	4
Total number.............	189	24	16	42	50	48	- ${ }^{9}$
Total salaries	\$226,625	\$32,150	\$18,730	\$36, 449	864,620	\$67,924	\$6,752
Officers of corporationsNumber.		12				11	3
Salaries...................	\$82,660	\$19,000	\$7,560	\$5,400	\$23, 900	\$24,600	\$2,200
General superintendents, managers, clerks, etc.Total number.	146	12	12	38	41	37	6
Total salaries.	\$143,965	813,150	\$11, 170	\$31,049	\$40, 720	843, 324	\$4,552.
Men-							
Number. Salaries..	$\begin{array}{r} 118 \\ \$ 129,788 \end{array}$	$\$ 12, \begin{array}{r} 10 \\ 200 \end{array}$	88,500	$\begin{array}{r} 33 \\ \$ 28,149 \end{array}$	836,805	$\begin{array}{r}\text { 30 } \\ 839 \\ \hline 882\end{array}$	84.552^{6}
Women-							
Number.	28	$\xrightarrow{2}$	8012 670^{4}	820 ${ }^{5}$	${ }_{8}^{10}$	83, $74{ }^{7}$	
Wrearners inalaries..................................	\$14, 177	\$950	\$2,670	32,900	83,915	*3,742	
Wage-earners, including pieceworkers, and total wages: Greatest number employed at any one time during the							
year...	5,504	519	176	684	1,647	2,299	179
Least number employed at any one time during the year.	4, 355	353 430	156 163	489 600	1,211	2,068 2,209	88
Average number..	\$1, $\begin{array}{r}4,932 \\ \hline 142\end{array}$	\$151, ${ }^{435}$	\$43, ${ }^{163}$	\$163,454	\$454,947	\$735,888	\$14, 078
Wages ...	\$1, 563, 442	\$151, 23	30,				
A A verage number...	1,367	140	56	146	337	650	38
Wages	\$671,516.	\$68, 636	\$22, 535	\$70,315	\$149,479	\$351,686	88, 865
Women, 16 years and over-		241	80	447	1,001	1,379	25
Average number.	\$828, 732	874,138	\$18, 059	892,034	8287, 328	\$353, 637	\$3,536
Children, under 16 years-							
Average number..............................	(863,1942 ${ }^{392}$	49 88,480	\$3,227	\$1,105 ${ }^{7}$	$\begin{array}{r} 106 \\ \$ 18,140 \end{array}$	\$30, 565	\$1,677
Wagesà.................	863,194	88,480	43,227	\$1,105	\$18,140		
employed during each month:							
Men, 16 years and over-		148	59	148	352	641	45
February	1,398	143	59	154	357	640	45
March	1,441	148	59	161	375	651	${ }_{3}{ }^{47}$
April....	1,439	145	60 59	167	377 377	649	31
May......	1,408	128	44	118	315	637	38
June...	1,249	123	35	132	272	644	43
August	1,270	132	69	137	271	647	24
September	1,345	148	58	143	309	652	38
October...	1,384	144	58	150	$\begin{array}{r}334 \\ 351 \\ \hline\end{array}$	653	40
November .	1,390	141	69 59	144	351	671	39
December...	1,407	140	59	144	3		
Women, 16 years and over-		239	82	466	1,021	1,366	29
January.............	3, 391	226	$8 \cdot 2$	467	1,021	1,366	29 29
March	3, 3229	253	85	469	1,025	1,368	$\stackrel{29}{29}$
April...	3, 144	247	82	465	945	1,380	26
May......	3, 124	239	${ }_{66} 6$	${ }_{3}$	899	1,382	26
June	2,979	$\stackrel{223}{22}$	66	419	969	1,378	20
July.....	3,114	28.2	80	426	982	1,379	15
August	3,216	251	84	454	1,021	1,384	${ }_{24}$
October .	3,261	249	84	467 456	1,053	1,384	25
November.	3,274	250	88	462	1,063	1,384	24
December..--.-.......	3,266	252					
Cbildren, under 16 years-			29	7	112	169	27
January......	386	49	29	7	111	163	27
March .	409	51	29	8	120	174	20
April...	401	49 39	29	8	115	180	23
May...	${ }_{372}$	35	19	4	110	180	24
June...	${ }_{371}$	41	18	7	103	181	21
July....	${ }_{371}$	42	29	8	100	181	11
August....	386	58	29	8	86	184	21
September	391	54 57	$\begin{array}{r}29 \\ 29 \\ \hline 29\end{array}$	8	98	194	27
November	${ }_{401}^{414}$	5!	29	8	97	192	23
December-..							
Skilled operatives by classes, average number: Spinners, mule-				7		2	2
Men, 16 years and over	11			11			
Women, 16 years and over	4					4	
Children, under 16 years.							1
Spinners, frame- ${ }_{\text {Men, }} 16$ years andover	39		20 20	14	23	60	
Women, 16 years and over	117		12			6	7
Children, under 16 years...................................							
Weavers-	430	20	13	${ }_{6}^{63}$	206	${ }_{278}^{129}$	2
Men, 16 yerrs and over \ldots...	1,186	122	5	63			
Machinery: ${ }^{\text {a }}$,							
Producing spindles, not including twisting and doubing spindles, number-						3,400	900
spinnle ..	4,300 38,300					36,500	1,800
Frame							
Looms, number-							
On plain cloths- Less than 28 inches wide	10			10	38		
- Less than 28 inches wide	38 47			6	41		
From 28 to 32 inches wid 36 inches wide and over.	47 124			103	21		

Table 26.-COTTON SMALL WARES, BY STATES: 1900—Continued.

Twelfth Census of the United States.

Census Bulletin.

manufactures.

PRINTING AND PUBLISHING.

Hon. William R. Merriam, Director of the Census.
SIR: I transmit herewith, for publication in bulletin form, a report on printing and publishing, prepared under my direction by Mr. William S. Rossiter, of New York, acting in the capacity of an expert special agent of the division of manufactures of the Census Office.

This report is divided into two parts: Part I, tables and analysis; Part II, orogress in the printing and publishing industry.

The statistics of the industry are presented in Part I in 19 main tables. Table 1 gives a general summary of the industry by classes for 1900 , and Table 4 a comparative summary for 1890 and 1900. In Table 5 are presented comparative statistics relating to the main division of the industry, newspapers and periodicals, covering the period 1880 to 1900. All tables which follow, with the exception of Table 18, relate to this division of the subject. Table 11 classifies newspapers and periodicals according to period of issue and character of publication, 1880 to 1900 , while Tables 15 and 19 deal with number and circulation, 1850 to 1900, and with average circulation per issue, 1880 to 1900 , respectively, of newspapers and periodicals classified by period of issue. Table 21 gives the number of newspapers and periodicals in 1880, 1890, and 1900, classified according to the language in which printed. Tables

25 and 27 give cost of paper used and value of products, respectively, in 1900. In Table 28 the states and territories are ranked according to the aggregate circulation per issue of newspapers and periodicals in 1900. Table 29 gives statistics relating to daily publications in 50 cities for 1900 , and Table 30 gives similar statistics for 27 cities for 1880,1890 , and 1900. Table 33 presents, by states and territories, the circulation and the number of inhabitants to each copy per issue of all newspapers and periodicals published in 1900. Table 34 is a comparative summary, by states and territories, of the newspaper and periodical industry for the years 1880, 1890 , and 1900. Table 35 is a comparative statement, by states and territories, of the average and aggregate circulation per issue of newspapers and periodicals published in 1880, 1890, and 1900. Table 42 gives, by states and territories, the number of publications in 1880, 1890, and 1900, classified according to period of issue and character of publication. Table 49 gives, by states and territories, for newspapers and periodicals reporting in 1900, the aggregate circulation per issue and the aggregate number of copies issued, classified according to period of issue. Table 54 is a summary, for cities of over 20,000 inhabitants, of book and job printing in 1900 . Table 58 is a detailed summary, by states and territories of the newspaper and periodical industry in 1900.

In addition to these main tables, a number of deriva-
tive tables have been prepared, in order to bring out comparisons of special interest in connection with the topics discussed in the text.
In Part II is presented a detailed description of the principal mechanical improvements and of the changes in news gathering which have marked this industry since 1890 , and in some cases since 1880.
In drafting the schedules of inquiry for the census of 1900 care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the general heads of the inquiry, except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital, that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, was first called for at the census of 1890 . No definite attempt was made, prior to the census of 1890, to secure a return of live capital invested.

Changes were made in the inquiries relating to employees and wages in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishnients were reported as being in operation. At the census of 1900 the greatest and least numbers of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12, the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wage-earners during the entire year may have resulted in a variation in the number. and should be considered in making conparisons.

At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was ascertained, and no salaries were reported for this class. It
is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.

Furthermore, the schedules for 1890 included in the wage-earning class, overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wage-earning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890. With the exception of these and several other changes in the special features of the schedules, which do not affect the value of the statistics for comparative purposes, the investigation has been conducted along the lines followed at the census of 1890 .

In some instances the number of proprietors and firm members, shown in the accompanying tables, falls short of the number of establishments reported. This is accounted for by the fact that no proprietors or firm members are reported for corporations.

The reports show a capital of $\$ 292,517,072$ invested in the 22,312 establishments reporting for the industry. This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, but does not include the capital stock of any of the corporations. The value of the products is returned at $\$ 347,055,050$, to produce which involved an outlay of $\$ 36,090,719$ for salaries of officials, clerks, etc.; $\$ 84,249,889$ for wages; $\$ 55,897,529$ for miscellaneous expenses, including rent, taxes, etc.; and $\$ 86,856,290$ for materials used, nill supplies, freight, and fuel. It is not to be assumed, however, that the difference between the aggregate of these sums and the value of the products is, in any sense, indicative of the profits in the manufacture of the products during the census year. The census schedule takes no cognizance of the cost of selling, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. This statement is necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Chief Statistician for Manufuctures.

PRINTING AND PUBLISHING.

By William S. Rossiter, Expert Special Agent.

The separation of the statistics of printing and publishing into "newspapers and periodicals" and "hook and job printing" is necessarily so difficult that a complete division has not been attempted in the tables and discussion which appear in this report.
In this industry the practice of the large cities differs sharply from that of the smaller communities. In the former, book and miscellaneous printing and the printing and publishing of newspapers and periodicals are separated into two distinct industries. While it is true that type and printing presses are employed in both, the plant of a large city newspaper is adapted solely to its own routine requirements, would be practically useless in a job office, and seldom contains enough job material even to produce its own stationery. In the large communities newspaper proprietors have secured their experience in their own profession, and frequently are unfamiliar with job printing. The city job printer, on the other hand, considers his calling a distinct one, knows little of the mechanical requirements of the daily paper, and does not regard newspapers as competitors in the remotest sense. These are the extremes. Between them are the small publications and the numerous trade periodicals, which seldom own their own plants. Publications of this description patronize job printers to avoid the installation of individual plants, but in any division of the products of the industry they should, of course, be classed with newspapers.

In villages, towns, and cities of less than 20,000 inhabitants, with few exceptions, the newspaper office is the job office, and the accounts of the two ventures are so interwoven that satisfactory separation is impossible.

The newspaper is merely one item of the total product, but generally gives the establishment its name, directs its policy, and often determines the success or failure of the office.

At the Tenth Census newspapers and periodicals were treated in an able and exhaustive report by Mr. S. N. D. North. The job office, however, received no attention, except in the most general way, at either the Tenth or the Eleventh Census. In 1900 the job offices in the large cities were so numerous, represented so great an investment, used such a diversity of materials, and turned out products of so great value, that more than passing reference to this branch of the industry is clearly due.
This report is divided into two parts: Part I, tables and analysis; Part II, progress in the printing and publishing industry. In Part I are presented 55 tables, preceded by a summary. Of these tables, 4 relate to the general subject of printing and publishing, 50 to newspapers and periodicals, and 1 to book and job printing. Of these tables the more important are so constructed as to be comparable with the tables presenting the statistics of this industry at the Eleventh Census. The remaining tables are merely comparisons derived from the 19 main tables, and with a few exceptions contain no original figures.

In Part II is presented a detailed description, also preceded by a summary, of the principal mechanical improvements, and of the changes in news gathering, which have marked this industry since 1890 , and in some cases since 1880.

I. TABLES AND ANALYSIS.

The more important conclusions, which seem justified from careful consideration of the tables appearing in this report, may be thus summed up:

When the two branches of the industry are separatedas far as separation of products so closely related is possible-the total value of all book and job printing products is about equal to the total value of all distinctive newspaper products; the former, including the printing and publishing of music, being $\$ 168,930,707$, or 48.7 per cent of the total, and the latter $\$ 175$,789,610 , or 50.7 per cent of the total.

The capital invested in both branches of this industry
showed a marked increase, while the value of products per establishment declined. The number of establishments in the newspaper and periodical branch, proportionately 83 to every 100 publications in 1890 , remained nearly stationary in 1900, being 84 to every 100 publications.
Of all newspaper and periodical establishments 63.3 per cent were owned by individuals, 19.7 per cent in partnership, and only 17.0 per cent by corporations, indicating that combinations of any consequence are unlikely in this industry.
The total number of wage-earners increased only 10
per cent, but the value of products earned by them increased 24 per cent. There was a much greater relative increase among women than men, suggesting that competition may have led to a search for a less expensive form of labor.

Of the total value of products, advertising formed 43 per cent, subscriptions and sales 35.8 per cent, and book and job printing, including miscellaneous products, 21.2 per cent. The proportion of subscriptions and sales steadily declined from 1880, while the proportion which advertising formed steadily increased until it was over half. This suggests that publications depend more and more upon advertising as their principal source of income.

In 1890 the increase in the number of all publications was greater than the increase in population, but in 1900 the increase in number of publications and in population was about the same. It appears, however, that the per cent of increase in the number of daily newspapers and the per cent of increase in urban population remained about the same for two decades, suggesting a certain degree of relationship between these figures.

During the decade there was an increase in the proportion of daily, triweekly, semiweekly, and monthly publications, indicating that the first three mentioned have attracted support from the weekly, and that the monthly has drawn away support from the quarterly.

There was a marked decline in the proportion of publications devoted to special topics, and an advance only in the classes devoted to news topics and to general reading. The total circulation per issue of dailies was enough to supply one for every five inhabitants. The total circulation per issue of weeklies and monthlies was one to two inhabitants.

Publications printed in English formed 94.3 per cent of all publications reporting for 1900, showing a considerable increase over the corresponding figures for the preceding decade. The figures for publications printed in foreign languages indicate a rather close connection with the movement of immigration. The publications printed in foreign languages appear to depend to a large extent upon recent arrivals speaking the language in which the publication is printed. The increase or decrease is, in general, in proportion with the increase or decrease in immigration. The decrease in the proportion of all publications printed in foreign languages may be compared with the facts brought out in Volume II, Twelfth Census, page cxxv, that in 1900 12.2 per cent, and in 189015.6 per cent of the foreign born white population at least 10 years of age were unable to speak English, suggests that the immigrants reaching the United States during the past decade have been more ignorant and less interested in the perusal of publications than those who preceded.

One and one-quarter billion pounds of paper were used during the census year. Of this amount 77.6 per cent was consumed for newspapers, 16.4 per cent for
books and periodicals, and 6 per cent for job printing, but the proportionate cost was 58.7 per cent, 24.7 per cent, and 16.6 per cent, respectively.

Daily evening newspapers increased more rapidly than daily morning papers. In 1890 there were two evening papers to every morning paper; in 1900 the proportion was about one to three.

The circulation per issue of daily papersin certain large cities, compared with the population, indicates that the inhabitants of certain cities were tributary, in the matter of publication, to certain others. In the circulation of weeklies and monthlies, special publications issued in certain states had a marked effect upon the standing of the product of those states in this industry, as, for example, in Maine and Tennessee.

On analyzing the total circulation reported for each state, it is found that 10 leading states supplied fourfifths of the circulation per issue of all publications. This fact is shown to be true, to a greater or less degree, of all of the principal classes of publications, indicating the concentration of circulation in certain populous states.

However, the influence exerted by 10 states in circulation, is not maintained in number of establishments, capital, or value of products. During the last two decades the number of establishments increased more rapidly in states having a small number of establishments than in those having many. This also suggests, to some extent, concentration of establishments in the nore populous states.
All but 16 states and territories showed an increase in the number of publications to each 1,000 inhabitants, but the per cent of increase in aggregate circulation per issue declined in 39 states.
The proportion of inhabitants to each weekly was far more uniform than the proportion to each daily, ranging in the former case from 2,016 for Nevada to 20,407 for Rhode Island; in the latter from 4,703 for Nevada to 191,474 for South Carolina.

Weekly publications were most numerous in proportion to inhabitants in the West and Northwest. New England ranked high in dailies but low in weeklies, suggesting that in that densely settled region the daily had to some extent supplanted the weekly. During the decade the number of inhabitants to each weekly publication increased in 26 out of 49 states, but in less than half of the states and territories did the increase in the number of weeklies keep pace with the increase in population.

The proportion of inhabitants to dailies decreased in 31 states and territories, showing a marked gain in the number of dailies in proportion to the population. All states bordering upon the Great Lakes, and 15 out of 21 seaboard states, showed an increase in the proportionate number of daily newspapers to the number of inhabitants. The states in which the daily lost
ground were, in general, those in the far Northwest, where the weekly made its principal gain.
Of all the minor geographic divisions, the Southern North Atlantic-New York, New Jersey, and Pennsyl-vania-show the most striking advance in the proportion of the total circulation reported. In circulation of daily newspapers all states and territories showed a decided increase. In circulation of weekly publications the Southern South Atlantic group showed a decrease, but all other groups of states and territories showed a moderate increase. In circulation of monthly publications a decrease was shown in the Southern South Atlantic and the Western South Central groups; elsewhere in the United States the increase was very large.

While circulation was centralized, both for the 10 states mentioned as possessing a preponderance of the circulation, and for geographic divisions, no such centralization existed in number of establishments. New England and the Southern North Atlantic states possessed but 21.6 per cent of all establishments, while all except 4 of the states bordering on the Atlantic and Pacific oceans and the Great Lakes showed a per cent of increase less than the average increase for the United States.
The distribution of cal 1 ital by geographic divisions varied radically from that of the number of establishments. In 8 out of 11 minor geographic divisions the proportion of the total capital reported was less in 1900 than in 1890. The only marked advance was in the Southern North Atlantic group, and this advance was made at the expense of nearly all the others. This fact
suggests that the centralization of the industry made most rapid progress in this group. It should be noted that in all divisions the increase was large. So great, however, was the increase in capital in the group mentioned, that it materially affected the per cent of increase for the United States; this was 52.4 per cent, but for the United States, exclusive of the Southern North Atlantic group, it was only 39.3 per cent.
The value of products, considered by minor geographic divisions, showed greater uniformity than the other items mentioned. All divisions showed advances in 1900 except the Southern North Atlantic group.

Table 1 presents the totals, at the census of 1900 , for the three classes into which this industry is divided. As already explained, complete separation was impracticable. The value of products for newspapers and periodicals includes the value of a large amount of job printing-shown in Table 5 to be $\$ 44,859,226$. If this amount be added to $\$ 124,071,481$, the combined value of products reported for book and job printing and the printing and publishing of music in Table 1, the resulting amount, $\$ 168,930,707$, or 48.7 per cent of the total value of the products of the industry, represents that share which properly may be claimed for book and job printing, as distinguished from newspapers and periodicals; for the latter the value of products amounted to $\$ 175,789,610$, or 50.7 per cent of the total. The remaining six-tenths of 1 per cent is a miscellaneous item which can not be classified.

Table 1.-SUMMARY BY CLASSES of printing and PUblishing, 1900.

classes.	Number of estab-lishments.	Capital.	Salaried officials, Clerks, etc.		wage-earners.		Miscellaneous expenses.	Cost of materials used.	Value of products.
			Number.	Salaries.	Average number.	Total wages.			
Total.	22, 312	\$292, 517, 072	37,799	\$36, 090, 719	162,992	884, 249, 954	\$55, 897, 529	\$86, 856,990	\$347,055,050
Newspapers and periodicals	15,305	192, 443,708	27,579	27,015, 791	94, 604	50.333, 051	38,544, 642	50, 214,904	222, 883,569
Book and job.....	6, 920	97, 759, 398	9, 906	$8,830,413$	67,610	33, 314,701	16,690, 190	36, 191, 712	121, 799, 096
Music	87	2,313,966	314	244,515	778	375, 202	663,097	449, 674	2,272,385

Classing the printing and publishing of music with book and job printing, the totals in Table 1 are divided between the two branches of the industry in the following proportions:
Table 2.-Proportion in which the totals are dirided between the two branches, 1900.

It is here shown that newspapers and periodicals possessed a smaller proportion of capital than of number
of establishments, indicating that the average capital per establishment was lower for that class than for book and job printing. Doubtless this is due to the fact, already explained, that book and job offices are generally located in the larger cities.

A comparison of the average capital, cost of materials, and value of products per establishment in the two main branches of the industry, not including the printing and publishing of music, is presented in Table3.

Table 3.-Compurison of the arerage capital, cost of materials, and value of products in the two main branches of the industry, 1900.

	Newspapers and periodicals.	Book and job printing.
Capital	\$12,574	814,127
Cost of materials used	3,281	5,230
Value of products.	14,569	17,601

From Table 1 it appears that 74.5 per cent of the value of all products of newspapers and periodicals was expended for wages, materials, and other items of expenditure, while the corresponding per cent for book and job printing was 78.2. In the newspaper and periodical class the cost of materials represented 22.5 per cent of the value of products, and in the book and job printing class 29.5 per cent, or about one-third greater. Were it possible to extricate from the statistics for the newspaper and periodical class the figures for book and job work produced in newspaper offices, it is probable the difference in these percentages would be still more significant. Newspapers and periodicals generally use inexpensive raw materials, while the materials required by the book and job printing office are varied and much more expensive.

If the ratio between cost of materials and value of products in the book and job printing class be applied to the value of book and job work produced in newspaper offices, it will appear that, of the total cost of materials shown in Table 5 for newspapers and periodicals, an expenditure of $\$ 36,891,714$ was made for materials for newspapers and periodicals, and of $\$ 13,323,190$ for those for book and job work produced in newspaper offices. According to these figures the cost of materials for newspapers and periodicals was 21 per cent of the value of newspaper products, and for book and job printing it was 29.7 per cent of the hook and job products shown in Tables 1 and 5-indicating that the ratio of cost of materials to value of products was more than 40 per cent greater for book and job printing than for the printing and publishing of newspapers and periodicals.

Table 4 presents a comparative summary for the whole industry for 1890 and 1900. Comparison with the figures for the censuses of 1850 to 1880 , although much to be desired, is impracticable. The figures for the earlier decades, and even some of those for 1880, are not comparable with those of the Eleventh and Twelfth censuses. The difficulty in separating the two parts of the industry, which already has been noted appearss to have resulted in an underestimate of the number of establishments at one or more censuses. This, with other points of difference, renders the figures for 1850 to 1880 , inclusive, practically valueless for purposes of comparison.
Table 4.-Comparative summary of printing and publishing, 1890 and 1900, with per cent of increase.

	1000	1890	Per cent of increase.
Number of establisbments	22,312	16,566	34.7
Capital	\$292, 517,072	\$195, 387, 445	49.7
Salaried officials, clerks, etc., number	-37, 799	1426, 128,391	33.1
Salaries..........................	\$36,090, 719	${ }^{1} \$ 26,272,756$	37.4
Wage-earners, average number	8462, 1692	136,836	19.1
Total wages	$\begin{array}{r}\text { \$84, } \\ \text { 249, } \\ 125,964 \\ \hline\end{array}$	$\begin{array}{r}\$ 78,810,319 \\ 110,434 \\ \hline\end{array}$	6.9 14.1
Men, 16 years and over Wages.	\$74, 1288,984	$\begin{array}{r}\text { \% } \\ \mathbf{8 7 1 , 3 1 0 , 4 3 4 ~} \\ \hline 10\end{array}$	14.1 41
Women, 16 years and over	-18, 28,765	, 19,026	51.2
Wages.	88,878,073	\$6, 604,046	34.4
Children, under 16 years	8,263	7,336	12.0
Wages	\$1,083, 360	\$895, 858	20.9
Miscellaneous expenses	855, 897, 929	\$46, 971, 768	19.0
Cost of materials used	$886,856,290$ $8347,055,050$	\$68, 758,915	26.1
value of products	\$347, 055, 050	\$275, 452, 515	26.0

The figures for all the items appearing in Table 4 have become so great that a small per cent of increase now represents an absolute increase greater than that shown by a relatively high per cent in earlier decades. While the percentages of increase for the several items are very moderate, the absolute increases are gratifyingly large.

For the censuses from 1850 to 1880 , inclusive, the statistics of capital were regarded, even at the time of enumeration, as difficult to secure and of uncertain value. Gen. F. A. Walker, Superintendent of the Ninth Census, expressed this opinion: "No man in business knows what he is worth; far less can he say what portion of his estate is to be treated as capital." ${ }^{1}$ Prior to 1890 the inquiry concerning capital was a general one, different in form from that now employed.

NEWSPAPERS AND PERIODICALS.
A comparative summary of the figures relating to newspapers and periodicals, from 1880 to 1900, inclusive, is presented in Table 5.
To some extent this table also illustrates the diffculty of making satisfactory comparisons prior to 1890. Out of 23 items shown for 1890 and 1900, only 9 were reported in 1880 , the number of establishments, capital, and certain other items being omitted.

Table 5.-Comparative summary of neuspapers and periodicals, 1880 to 1900, with per cent of increase for each decade.

	DATE OF CENSUS.			PER CENT OF INCREASE.	
	1900	1890	1880	$\begin{gathered} 1890 \\ \text { to } \\ \mathbf{1 9 0 0} \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1590 \end{gathered}$
Number of establishments	15,305	12,362	${ }^{2}$)	23.8	
Capital	\$192,443,708	\$126, 269,885	$3853,000,000$	52.4	138.2
Salaried officials, clerks, etc., number \qquad	27,579		(5)	37.1	
Salaries	\$ $27.015,791$	4\$17, 777, 173	(5)	52.0	
Wage-earners, average number	94, 604	85,975	71,615	10.0	20.1
Total wages-	\$50, 333, 051	\$50, 824, 359	\$28, 559, 336	${ }^{6} 1.0$	78.0
Men, 16 years and over.	73,653	70,424	${ }^{5}$)	4.6	
Wages........	344, 961,533	\$46, 960,047	(5)	${ }^{6} 4.3$	
Women, 16 years and over Wages.	14,815 $\$ 4,628,221$	9,587 $43,222,192$	(5) (5)	54.5	
Children, under	\$4, 628,221	\$3, 222, 192	${ }^{5}$)	43.6	
16 years.....	6, 136	5,964	${ }^{5} 5$	2.9	
Wages........	8743, 297	\$642,120	(5)	15.8
Miscellaneous expenses	\$38,544, 642	\$35, 727, 039	(2)	7.9	
Materials used: Total cost	\$50, 214, 904	\$38,955, 322			
Paper, pounds....	1,233, 142, 248	522,876,161	189, 145,048	28.9 123.0	192.3
Products:		52,876,161	180,15,048		
Total value......-	\$222, 983, 569	\$179, 859,750	${ }^{2}$)	24.0	
Newspaper products \qquad	\$175, 789, 610	\$143, 586,448	\$89, 009, 074	22.4	61.3
Advertising ..	\$95, 861, 127	\$71, 243,361	\$39, 136,306	34.6	82.0
Subscriptions and sales.	879, 928, 483	872, 343, 087	\$49,872, 768	10.5	45.1
Book and job printing products	\$44, 859, 226	\$32,812,113	(2)	36.7	
All other products	\$2,384, 733	\$3,461,189	(2)	${ }_{6}{ }^{36.7}$	--.....

[^114]Table 5.- Comparative summary of newspapers and periodicals, 1880 to 1900 , with per cent of increase for each decade-Continued.

	date of census.			PER CENT OF INCREASE.	
	1900	1890	1880	$\begin{aligned} & 1880 \\ & \text { to } \\ & 1900 \end{aligned}$	$\begin{aligned} & 1880 \\ & \text { to } \\ & 1800 \end{aligned}$
Number of publica- tions	18,226	14,901	10,132	22.3	47.1
Aggregate clrculation per issue ${ }^{2}$......	114, 299, 334	69, 138,934	31, 779, 686	65.3	117.6
Aggregate number of copiesissued during the census yeai ${ }^{3}$	8,168, 148,749	$4,681,118,630$	2,067, 848, 209	68.8 74.5	126.4

${ }^{1}$ Does not include certain pnblications which did not report operations as follows: In $1880,1,182 ;$ in 1890, 2,75 ; in $1900,3,046$.
2"Aggregate circulation per issue" is the sum of the totals for the average circulation per issue reported by each establishment.
circulation per issue reportes of each establishment.
O Obtained for eech class of publicatlon by multiplying the aggregate circuobtained for each class of publication by multiplyin
lation per issue by the number of issues during the year.

pUBLICATIONS NOT REPORTING.

In any discussion of the statistics of newspapers and periodicals, early reference should be made to the number of publications from which no report was received.

The numbers reporting and not reporting at the censuses of 1880,1890 , and 1900 were as follows:

Table 6.-Publications reporting and not reporting, 1880 to 1900.

year.	nomber of publications.			
	Total.	$\begin{gathered} \text { Report- } \\ \text { ing. } \end{gathered}$	Not reportiug.	
${ }_{1800}^{190 .}$	$\begin{aligned} & 21,272 \\ & 11,1614 \\ & 11,314 \end{aligned}$	$\begin{aligned} & 18,2962626 \\ & 102 \end{aligned}$	$\begin{aligned} & 3,046 \\ & 2,15 \\ & 1,182 \end{aligned}$	14.315.410.410.4
1880..........				

The number of publications classed as not reporting was ascertained by reference to the standard newspaper directories. By this method of comparison it appears that at the Twelfth Census the number of publications not reporting amounted to 14.3 per cent of the total, a proportion slightly less than that for 1890 . Of the 3,046 publications stated as not reporting, a considerable number undoubtedly had gone out of existence; many others were so small and unimportant that they were in no respect a factor in this enumeration; and still others were doubtless of a class not reported by the census. It is clear, therefore, that the number of unreported publications which, by reason of standing, capital, and value of products, were entitled to consideration, was so small that had the totals been obtained, they would have but slight influence upon the figures presented in this report. Therefore, the publications not reporting in 1900 will be regarded as a negligible quantity.

NUMBER OF ESTABLISHMENTS AND PUBLICATIONS.

As the census of 1880 did not record the number of establishments, the figures relating to this subject can be compared only for 1890 and 1900. The proportion of establishments to publications remained practically stationary during the decade, being 82.9 to every 100
publications in 1890 , and 84 in 1900 . In the absence of information concerning the number of establishments in 1880, it is interesting to observe that if the ratio for 1880 was the mean of those given above, the number of establishments in 1880 was approximately 8,450 , but for obvious reasons no statistical value can be claimed for this figure.
By considering here the details presented in Table 58 concerning number of establishments, it appears that 9,686 , or 63.3 per cent of the total number, were owned and operated by individuals; 3,016 , or 19.7 per cent, were owned and operated by some form of partnership; and 2,603 , or 17.0 per cent, were owned and operated by corporations (including 183 miscellaneous forms of ownership). These figures indicate the complete absence of the extended combinations and consolidations so frequently encountered in other industries.
Comparison of Tables 4 and 5 reveals the fact that the increase in the number of all establishments, 34.7 per cent, was more rapid than in the number in the newspaper and periodical class, which increased 23.8 per cent. This is due to the marked growth in the number of establishments in the book and job printing class, which increased 67.8 per cent.
It appears from Table 5 that the increase in the number of publications was less rapid from 1890 to 1900 than during the previous decade, and that the increase in the total number of copies of newspapers and periodicals issued during the census year, though very large, amounting to 74.5 per cent, was much less than that shown in 1890, which amounted to 126.4 per cent.

CAPITAL.

Analysis of the statistics of capital and products presented in Table 5, is given below:

Table 7.-Average capital, average value of products, and per cent that value of products forms of capital, 1890 and 1900.

year.	A verage capital.	A verage value of products.	Per cent that value of products forms of capital.
$1900 .$.	\$12,574	\$14, 569	
$1890 .$.	10,214	14, 549	142.4

In 1890 the average capital was $\$ 10,214$, and in 1900 it was $\$ 12,574$, an increase of 23.1 per cent. The average value of products, however, was almost stationary; therefore, the per cent of value of products to capital, which was 142.5 in 1890 , fell to 115.9 in 1900. These figures are confirmatory of a change especially characteristic of the last decade, by which increasing capital is required to produce the same or even a smaller value of products.
Comparison of Tables 4 and 5 also shows that the increase in capital in newspaper and periodical estab-
lishments, 52.4 per cent, was more rapid than in all establishments, in which it was 49.8 per cent.

WAGE-EARNERS.

Table 5 shows that during the decade from 1890 to 1900 the total number of employees in the newspaper and periodical class increased 10 per cent. Table δ shows the changes in the proportion of men, women, and children employed.

Table 8.-Total number of wage-earners, and proportion of men, women, and children employed, 1890 and 1900.

y ear.	$\begin{aligned} & \text { Total } \\ & \text { wage- } \\ & \text { earners. } \end{aligned}$	per cent of total.		
		Men.	Women.	Children.
1500.	94, 604	77.8	15.7	6.5
1840.	85, 975	81.9	11.2	6.9

The proportion of women to the total number increased from 11.2 to 15.7 , a difference of 4.5 per cent. This gain was made practically at the expense of male wage-earners, the proportion of whom decreased from 81.9 to 77.9 , a difference of 4.0 per cent. The proportion of children employed for wages remained practically stationary.

It has been explained in Volumes VII and VIII of the Twelfth Census Reports that for comparative purposes the figures for 1890 and 1900 relating to wageearners and wages are less trustworthy than other items reported, because of changes in classification. In the reports mentioned these changes are explained in detail. Should the figures given in Table 5 be accepted as permitting an approximate comparison, it would appear that an increase of 10 per cent in wage-earners secured an increase of 24 per cent in value of products, and that the absolute increase in male wage-earners was but 3,229 , while the absolute increase in female wage-earners was 5,228 . Indeed, the latter figure would have been even larger had the age classification remained the same in 1900 as in 1890.

VALUE OF PRODUCTS.

The total value of all products of newspaper and periodical establishments increased $\$ 43,123,819$, or 24 per cent, between 1890 and 1900. Of the items composing the total value of products, by far the lowest increase, 10.5 per cent, was shown for " subscriptions and sales." This fact, taken in connection with the decided increase in the amount of paper used, illustrates one of the marked features of the development of the industry-the increase in the number of pages issued by almost all newspapers and magazines. The causes of this increase in the size of publications are discussed elsewhere in this report.

Of the total value of products given in Table 5, adver-
tising forms 43 per cent, subscriptions and sales 35.8 per cent, and book and job printing and all other products together 21.2 per cent. Of these three items book and job printing shows the largest per cent of increase during the last decade. Comparison of the percentages of increase in advertising and in subscriptions and sales for the decades from 1880 to 1890 and from 1890 to 1900 shows a shrinkage from 82 per cent to 34.6 per cent in the former and from 45.1 per cent to 10.5 per cent in the latter.

The decline in the relative importance of subscriptions and sales and the advance of advertising are clearly shown for three census year's in Table 9.

Table 9.-Proportion which advertising and subscriptions and sales form of totul value of newspaper products, 1880 to 1900.

Year.	Advertising, per cent.	Subscriptionsand sales, per cent.
1900.	54.5	45.5
1890.	49.6	50.4
1880 .	44.0	56.0

A comparison, for 1890 and 1900 , of the proportion contributed to the total value of all products by the two items referred to above, shows a decline in subscriptions and sales, an advance in advertising, and also a slight advance in book and job printing.

Table 10.-Proportion which adertising, subscriptions and sales, and book and jol printing form of the total value of all products, 1890 and 1900.

YEAR.	Per cent which ad- vertising forms of value of products.	Per cent whicb sub- scriptions and sales form ofalue of products.	Per cent which book and job printing forms
of value of			
products.			

Tables y and 10 establish the important fact that publishers are depending more on advertising and less on subscriptions and sales for financial return. This conclusion is confirmed by the fact that the most notable increases for the past decade, shown in Table 5-except that for paper, already referred to-are in "aggregate circulation per issue" and "aggregate number of copies issued during the census year," suggesting the conclusion that the publishers of newspapers and periodicals, pushed by competition and by the necessity for an increase of circulation to meet the exactions of the advertiser have increased their capital and forced a larger circulation, which has not shown a proportionate increase in the financial return.

PERIOD OF ISSUE AND CHARACTER OF PUBLICATION.

Publications are classified in Table 11 by period of issue and by character.

Table 11.-Classified according to period of issue and character of publication, 1880 to 1900, with per cent of increase for each decade.

	number of pualications REPORTING.			PER CENT OF INCREASE.	
	1900	1890	1880	$\begin{aligned} & 1890 \\ & \text { to } \\ & 1900 \end{aligned}$	$\begin{aligned} & 1880 \\ & \text { to } \\ & 1890 \end{aligned}$
Total	18,226	14,901	111,314	22.3	31.7
Period of issue:					
Triweekily	-62	1,610	73	88.4	253.4
Semiweetly	637	194	133	228.8	45.9
Weekly.	12,979	10,814	8,633	$\bigcirc{ }^{\text {? }} 0$	25.3
Montbly.	1,817	1,734	1,167	$\pm .8$	48.6
Quarterly	237	225	116	5.3	94.0
All other classes..............	268	290	221	27.6	31.2
Character of publication: News, politics, and family reading					
(reading...............	14,867 952	11,326 1,025	8.863 553	${ }_{27}^{31.3}$	27.8 85.4
Agriculture, horticulture. dairying, and stock raising.	307	263	173	16.7	52.0
Commerce, finance, insurance, railroads, and trade	${ }^{3} 710$	671	363	5.8	84.8
General literature, includ-	239				
medicine and aurgery........	123	291	189 114	217.9 29.8	54.0
Law .-.................	62	47	45	31.9	4.4
Science and mechanics	66	83	68	${ }^{2} 20.5$	22.1
Fraternal organizations.....	200	216	149	27.4	45.0
Education and history .	4259	256	248	1.2	3.2
Society, art, music, and fashion	88	152	72	${ }^{2} 42.1$	111.1
Miscellaneous.	${ }^{5} 365$	448	477	${ }^{2} 18.5$	${ }^{2} 6.1$

1 Includes 1,182 publications not reporting operations, as they can not be excluded from the classification.
${ }^{2}$ Decrease.
Includes 520 "trade journals.
${ }^{4}$ lncludes 139 "college and school periodicals."
${ }^{6}$ Includes 72 'Sunday newspapers.
It will be observed from Table 11 that while the triweekly, a class with unimportant totals, suffered a severe decline during the decade from 1880 to 1890, the other classes of publications under "period of issue" increased by percentages ranging from 25.3 to $9 t$. In the decade from 1890 to 1900 there were no decreases, but the increases recorded for the daily, weekly, monthly, and quarterly classes were much smaller than for the same classes during the preceding decade. The most noteworthy increase was in the semiweekly publications, of which there were 133 in 1880, 194 in 1890, and 637 in 1900. The increase shown at the last-named date was 443 publications, or 228.4 per cent. This is in marked contrast to the moderate advances recorded for the other classes, and doubtless reflects an effort, on the part of a considerable number of publishers of weekly newspapers in towns located near large cities, to overcome the injurious effects of competition with city dailies. There have been many instances, during the decade, in which a weekly has been advanced to a semiweekly, thus doubling the number of issues with little or no increase in the subscription price.
As shown by this table, the absolute increase in the number of publications during the decade was 3,325 . For the decade ending in 1890 the per cent of increase in the number of all publications was greater than the per cent of increase in population, the former being 31.7 per cent and the latter 24.9 . In the decade from 1890 to 1900 the percentages for both items decreased,
becoming 22.3 for all publications and 20.7 for popula-tion-a similarity which, while interesting, was doubtless merely a coincidence. It is worthy of note, however, that for two decades the per cent of increase in the number of daily newspapers has been nearly the same as the per cent of increase in urban population. The foregoing facts, together with the number of ininhabitants to cach publication, are presented in Table 12.

Table 12.-Number of inhabitants to each publication, 1880 to 1900, and per cent of increase for erth decade in urban population and in number of daily newspupers.

Year.	Number of inhabitants to each publication.	PER CENT OF INCREASE in precening decade.	
		In urban population.	In number of daily newspapers.
1900.	4,170	36.8	38.3
1890	4, 224	61.4	65.8
1880.	4,433		

The two following tabular comparisons give the percentage which each class forms of the total number of publications for 1880 , 1890, and 1900, when classified by "period of issue" and by "character of publication."

Table 13.-Per cent that euch class, by period of issue, forms of total number of mublications, 1880 to 1900.

PERIOD OF ISSUE.	1900	1890	1880
Daily	12.3	10.8	8.6
Triweekly	0.3	0.2	0.6
Semiweekly	3.5	1.3	1.2
Weekly	71.2	72.6	76.3
Monthly	10.0	11.6	10.3
Quarterly	1.3	1.5	1.0
All other classes	1.5	2.0	2.0

Table 14.-I're cent that euch chuss, by character of publication, forms of total number of publications, 1880 to 1900.

Character of pl'bilication.	1900	1890	1880
News, politics, and family reading.	81.6	76.0	78.3
Religion-	5.2	6.9	4.9
Agriculture, horticulture, dair, ing, and stock raising. -	1.7	1.8	1.5
Commerce, finance, insurance, railroads, and trade....	3.9	4.5	3.2
General literature, including magazines...	1.3	2.0	1.7
Medicine and surgery.	0.6	0.8	1.0
Law.......	0.3	0.3	0.4
Science and mechanics	0.4	0.6	0.6
Fraternal organizations	1.1	1.4	1.3
Education and bistory.	1.4	1.7	2.2
Society, art, music, and fashion	0.5	1.0	0.7
Miscellaneous.	2.0	3.0	4.2

From Table 13 it will be observed that for the twentyyear period from 1880 to 1900 the daily, the semiweekly, and the quarterly show small relative advances, and the weekly and the monthly show small declines. The changes shown for the past decade are of especial interest; the quarterly falls out of the advancing class, but the daily and the semiweekly continue to show mod-
erate advances, made at the expense of the quarterly as well as of the weekly and the monthly. This result is a manifestation of the energetic and impatient spirit of the period.

Examination of the above comparison of character of publications reveals the fact that during the decade from 1880 to 1890 there was a slight decline in the relative importance of publications devoted to news, politics, and general reading, but that publications devoted to religion, to agriculture and kindred pursuits, to business interests, to general literature, to fraternal orders, and to society, art, music, and fashion, benefiting by the decline of the first-named class, showed small advances. The figures for the Twelfth Census show that a marked change took place during the last decade. The advance of publications devoted to special subjects was checked, while those devoted to news, politics, and general reading made a decided relative increase at the expense of all others, except those devoted to law, a relatively insignificant class, which remained stationary. The reason for the change thus indicated is unmistakable. Publications devoted to specialties slowly yielded ground to the large daily newspapers, which invaded every field of journalism.

This noteworthy situation seems to have been clue principally to three causes: The resistless activity of the period, which made the Sunday edition of the daily newspaper a department store of journalism, ransacking all lines of thought and every public interest for material to present; the perfection of the composing machine, by the use of which one competent operator can accomplish the work of from 5 to 10 compositors;
and the development of the inexpensive and satisfactory methods of illustration known as the "line cut" and the "half-tone," which made possible the rapid transference of a photograph to the columns of a newspaper.

It is impossible to measure the effect of the invention of mechanical composition. If it were not for the entirely new situation which it produced, the will and the ability to expand the daily from old-fashioned proportions might have struggled in vain against the bigh cost of hand composition, notwithstanding the mental activity of the period. The daily press and many other periodicals have been prompt to seize upon this advance in the industry, and are now equipped for machine composition. In this manner a revolution has been accomplished in the output of many publications; the number of printed pages has been greatly increased; the freer use of composition has made possible the introduction of departments or columns devoted to periodic or even daily consideration of special subjects, often cleverly treated; and the daily paper, or the Sunday edition of the daily, has to some. extent supplanted publications devoted to specialties. The reading matter now presented is not only satisfying to the reader, but, in amount, often beyond his capacity to assimilate. This is true especially of many of the Sunday publications, which varied in 1900 from 24 to 120 pages, with special departments or supplements devoted to leading subjects, such as literature, art, religion, science, sports, music, the drama, etc.

Table 15 presents the number and circulation of newspapers and periodicals, classified according to period of issue, from 1850 to 1900 .

Table 15.-NUMBER AND CIRCULATION OF NEWSPAPERS AND PERIODICALS, CJASSIFIED ACCORDING TO PERIOD OF ISSUE, 1850 TO 1900.

[^115]By dividing a total circulation oî 100 per cent proportionately among the different classes, for a period of half a century, the following results are obtained:

Table 16.-Per cent that circulation per issue of each class forms of total circulation per issue, 1850 to 1900.

pertod of rssue.	1000	1800	1880	1870	1800	1850
All classes	100.0	100.0	100.0	100.0	100.0	100.0
Daily.....	13.2	12.1	11.2	12.5	10.8	14.7
Triweekly	0.2	6.1	0.2		0.8	1.5
Semiweekly	$\begin{array}{r}2.5 \\ 34.9 \\ \hline\end{array}$	0.8 41.9	1.9 51.2 5	1.8 1.2 50.8	1.8 1.3	1.0
Monthly.	34.6	41.9 28.4	51.2 26.0	50.8 27.1	55.5 25.0	57.3 14.4
Quarterly	9.8	11.7	6.1	1.0	25.0 0.7	14.4 0.5
All other classes.	4.8	5.0	4.4	6.6	5.9	10.6

From Table 16 it will be observed that the daily class, after fluctuating during the period from 1850 to 1880 , advanced from 11.2 per cent in 1880 to 13.2 per cent in 1900; that the weekly declined steadily in relative importance from 57.3 per cent, or more than half of the circulation of all newspapers and periodicals, in 1850 , to 34.9 per cent in 1900 . Of the other classes the most notable change in circulation was shown by the monthlies, which advanced 6.2 per cent during the last decade. It is probable that this change is due to the establishment of inexpensive magazines, which have a large circulation, and which, in. their present perfection, are distinctly a product of the decade from 1890 to 1900. Among the causes which have made them possible are cheapened composition and illustration, and the improvements in the manufacture of printing presses.

Table 17.-Absolute increase in the total circulation per issue of each class, 1850 to 1900.

PERIOD OF 1 SSUE.	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { ta } \\ 1890 \end{gathered}$	$\begin{gathered} 1870 \\ \text { to } \\ 1880 \end{gathered}$	$\begin{aligned} & 1860 \\ & \text { to } \\ & 1870 \end{aligned}$	$\begin{aligned} & 1850 \\ & \text { to } \\ & 1860 \end{aligned}$
All classes.	45, 160,400	37, 359, 248	10,937,211	7,179, 066	8, 521, 232
Daily	6, 714, 968	4.820,793	964, 848	1, 123, 112	719,981
Triweekly	178,543	118,019	181,019	47,935	31, 458
Semiweekly	2, 271,125	296,833	17, 713	72, 032	121,654
Weekly	10,897, 537	12, 687,685	5, 672, 187	3, 012,713	4, 637,301
Monthly	19,895, 859	11, 484, 157	2, 489, 038 $1.732,629$	2, 2388	$\begin{array}{r} 2,671,308 \\ 75,125 \end{array}$
Quarterly All other classes.	3,092,922	$6,180,201$ $2,057,598$	$1,732,629$ 12,185	110,670 573,720	$\begin{array}{r} 75,125 \\ 264,405 \end{array}$

This comparison, drawn from Table 15, throws additional light upon the increase in the circulation of newspapers and periodicals during the past decade. With the exception of the weekly and the quarterly, each class showed a greater absolute increase from 1890 to 1900 than during any other decade of the half century. For both the weekly and the quarterly, the increase during the decade from 1890 to 1900 was exceeded only by that of the preceding decade. This statement emphasizes the rapid growth in the circulation of monthly publications. The normal increase in the circulation of this class of periodicals, which during the twenty years from 1860 to 1880 remained nearly constant at about $2,500,000$, advanced in 1890 to $11,484,157$, and in 1900 this figure was almost doubled, the absolute increase being 19,895,859.

Table 18.-Aggregate circulation per issue of daily, weekly, and monthly mublications, and circulation per 1,000 inhabitants, 1880 to 1900.

PERIOD OF ISSUK.	AgGREOATE CIRCULATION PERISSUE.			CIRCULATION PER 1,000 INHABITANTS.		
	1900	1800	1880	1900	1890	1880
Daily	15, 102, 156	8, 387, 188	3, 566, 395	199	133	71
Weekly	39, 852, 052	28, 954, 515	16, 266, 830	524	460	324
Monthly	39,519,897	19,624, 038	8, 139,881	520	312	162

From Table 18 it appears that the total circulation per issue of daily newspapers was sufficient to supply about one in every five inhabitants, and of weeklies and monthlies each about one in every two inhabitants. In this respect the increase was most marked in the monthly class.

The average circulation per issue of newspapers and periodicals, by period of issue, from 1880 to 1900 , is presented in Table 19.

Table 19.-Average circulation per issue, 1880 to 1900.

PERIOD OF ISSLIE.	average circulation PER ISSUE.		
	1900	1890	1880
All classes.	6, 271	4,640	3,122
Daily.	6,784	5, 209	4,137
Triweekly	3, 687	1,473	1,001
Semiweekly.	4,447	2,896	2,136
Weekly	3, 071	2,678	2,113
Monthly	21750	11,317	7,834
Quarterly	47,331	36,109	16,505
All ather classes	20,695	11,851	6,474

Representing by percentages the fluctuations shown in this table, the movement of circulation for the past two decades was as follows:

Table 20.-Per cent of increase in average circulation, by periods of issue, from 1880 to 1890 and from 1890 to 1900.

PERIOD OF ISSUE.	1890 to 1900	1880 to 1890
All classes.	35.2	48.6
Daily	30.2	25.9
Triweekly.	- 150.3	47.2
Semiweekly	53.6	35.6
Weekly...	14.7	26.7
Monthly.	92.2	44.5
Quarterly	31.1	118.8
All other classes.	74.6	83.1

The tendencies already pointed out appear again in this comparison. Of the important classes, the daily, semiweekly, and monthly show decided advances in the percentage of increase in average circulation during the decade just ended, while the weekly shows a marked decline.

PUBLICATIONS 1N DIFFERENT LANGUAGES.

Table 21 presents an interesting classification of the total number of publications reported, into the languages in which they are published.

Table 21.-Newspapers and periodicals classified according to larguage in which printed, 1880 to 1900.

Language.	number of publications.		
	1900	1890	1880
Total.	18, 226	14,901	${ }^{1} 11,814$
English	17,194	13,848	10,515
Bohemian	28	22	13
Bohemian and English	1	1	
Catalan ..			1
Chinese	5	3	2
Dutch ${ }^{\text {Finnish }}$	12	16	9
French..	27	40	41
French and English	${ }_{4} 4$	5	
Gaelic.....		1	
Gaelic and English	3	3	
German..	613	727	641
German and English.	20	27	
German and Hebrew	3	4	
Hebrew.	13	5	
Indian and English	2 3	1	3
Irish			1
Italian ..	35	13	4
Italian and English			
Lithuanian	9	1	
Polish..	33	18	2
Portuguese....	2	2	
Scandinavian ${ }^{2}$	115	112	49
Slavonic, not specified	4	2	
Spanish	39	29	26
Spamish and Euglish	1	7	
Volapuk and English		1	
Welsh		4	5
Welsh and English.		1	
All other languages.	52	

${ }^{1}$ Includes 1,182 publications not reporting operations, as they can not be excluded from the classification
${ }_{2}$ Includes Danish, Norwegian, and Swedish.
There were 15 different languages or combinations of languages represented in 1880,30 in 1890, and 25 in 1900. The principal languages in which increases in the number of periodicals published were shown in 1900, were English, Bohemian, Hebrew, Italian, Polish, Scandinavian, and Spanish. Decreases were shown in the number of periodicals published in Dutch, French, and German. The languages represented by publications in 1880 or in 1890, but not in 1960, were Armenian, Catalan, Gaelic, Irish, "Volapuk," and Welsh. The proportion of the total number of publications printed in each of the principal languages in 1880, 1890, and 1900 is best shown by percentages, as follows:

Table 22.-Per cent that number of publications in each of the principal languages forms of the total number, 1880 to 1900.

language.	1900	1890	1880
English	94.3	92.9	92.9
Bohemjan	0.2	0.2	0.1
French.	0.2	0.3	0.4
German	3.4	4.9	5.7
Italian	0.2	0.1	
Polish.	0.2	0.1	
Scandinavian	0.6	0.8	0.4
Spanish....	0.2	0.2	0.2

In 1880. 92.9 per cent of all publications were printed in English; in 1890, although the number of languages or combinations represented was doubled, the proportion of periodicals printed in English remained unchanged; but in 1900 it had advanced to 94.3 per cent.

This advance is significant, when considered in connection with the accompanying decrease from 7.1 per cent in 1890 to 5.7 per cent in 1900 in the proportion of publications printed wholly or in part in other languages. On closer examination of Table 22 it will be observed that during the past decade there was an increase in the proportionate number of publications printed in Italian and in Polish; that there was a decline in the relative importance of publications printed in French, German, and the Scandinavian tongues; and that the proportion of publications printed in Bohemian and Spanish remained the same in 1900 as in 1890.

By considering the percentages of increase or decrease in the number of publications printed in the principal languages, in connection with the statistics of population born in the countries in which those languages are spoken, additional light is thrown on the figures presented in Table 21. ${ }^{1}$

Table 23.-Comparison of the per cent of increase or decrease in the number of publications printed wholly or partly in the principal foreign languages, with the per cent of increase or decrease in population born in the countries in which those languages are spoken, from 1880 to 1890 and from 1890 to 1900.

COUNTRY.	PER CENT OF INCREASE OR DECREASE IN NUMBER OF PUBLICATIONS.		PER CENT OF IN CREASE OR DECREASE IN FOREIGN BORN POPULATION.	
	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ \mathbf{1 8 9 0} \end{gathered}$
France.	131.1	9.8	17.8	5.8
Germany	116.0	17.6	14.2	41.6
1taly .-...	150.0	250.0	165.2	312.8
Poland and Russia	85.0	900.0	144.7	291.1
Scandinavia.	2.7	128.6	14.0	112.0

The percentages of increase and decrease in number of publications appearing in Table 23, though based upon figures too small to be of any value in themselves, are of great interest in comparison with the percentages given in the second part of the statement, because they indicate the degree of sympathy existing between the increase or decrease in the number of publications printed in the language and devoted to the interests of any one country, and the movement of emigration from that country. From these figures it is reasonable to conclude that publications of this character depend for support, to a large extent, upon comparatively recent arrivals, and that in general, when emigration from a country decreases, the number of publications printed in the language of that country decreases, and when immigration shows an increase the number of publications also increases. In 1900 the Scandinavian countries furnished the only exception to the conclusion that immigrants, after settling in the United States, soon lose interest in their native land to the extent of ceasing to support publications printed in their mother tongue. The immigration of Scandinavians decreased, while the

[^116]number of publications printed in the Scandinavian languages showed a slight increase:

If the number of residents of the United States in 1900 reporting birth in each of six important foreign countries be divided by the total number of publications printed in the language of their native country, the following figures appear:

Table 24.-Number of residenis of the United States born in specified countries to each publication printed in the languages of those countries, 1880 to 1900.

COUNTRY.	1900	1890	1880
Bohemia	5,413	5,135	6,566
France..	3,366	2,515	2,609
Germany	4,218	3,693	3,068
Holland.	8,754	6,114	6, 404
ltaly.	13,834	13,041	11,058
Scandinavia	9,255	8,333	8,985

It will be recalled that the number of inhabitants to each publication in 1900 has been shown to be 4,169 . From Table 24 it appears that the number of residents of the United States in 1900 born in each of the abovenamed countries, except France and Germany, to each publication printed in their native tongue, was much larger than the average for the United States. In each case, also, the figures for 1900 show an increase over 1890 -that is, a decrease in the proportionate number of publications printed in the language of each of these countries to the number of natives of each residing in the United States.

QUANTITY AND COST OI PAPER USED.

Table 25 shows the quantity and cost of paper used, and the average cost per pound, in 1900.

Table 25.-Quartity, cost, and acerage cost per pound of paper used, 1900.

kino.	Pounds.	Cost.	Average cost per pound (cents).
Total	1,233, 142,248	\$37, 823, 856	3.1
Newa	956,335,921	22,197,060	2.3
Book and periodical	202, 296, 263	9, 356, 490	4.6
Job printing.	74,510,054	6, 270,306	8.4

In this table is presented a division of the paper used in 1900 , according to the several classes of products which, combined, produced the total value of products of newspaper and periodical establishments. Ahout one and a quarter billions of pounds were used during the census year. This large quantily was utilized in the following proportions:

[^117]It is important, however, to observe that these proportions in weight do not by any means hold good in cost. The latter shows the following proportions:
News Per ceat.
Book and periodical 24.7
Job printing 16.6

Table ©6.-Per cent that quantity and cost of paper used form of total, 1890 and 1900.

KıN.	qUantity.		cost	
	1900	1890	1900	1890
Newspapers.	77.6	74.1	58.7	61.1
Books and periodicals Job printing	16.4 6.0	25.9	28.7 16.7	38.9

It is clear that while the quantity of paper used for newspapers far exceeds that consumed in the other branches of the industry, it is proportionately much less expensive.
The average cost per pound shown in Table 25 adds confirmation to the deduction drawn from Table 5, that the cost of materials for book and job work was over 40 per cent greater than that for newspapers and periodicals. If the item of paper alone were considered, this per cent would be increased. The average cost per pound of paper consumed by newspapers and periodicals combined was 2.3 cents. The average cost per pound of paper for books and periodicals and job printing combined was 5.6 cents.

VALUE OF PRODUCTS.

The items composing the total value of products of newspaper and periodical establishments are presented in detail in Table 27.

Table 27. - Value of products, with per cent which each class forms of the total, 1900.

	Value.	Per cent of total.
Total	\$222, 983, 569	100.0
Newspaper products:		
Advertising---...-	95, 861, 127	- 43.0
Subscriptions and sales - -...	79,928,483	35.9
Book and job printing products:		
Sheet music and books of music	544, 802	0.2
Job printing.	22,793,322	10.2
Bookbinding	2,067,450	0.9
Blank books..	2,554,557	0.3
Electrotyping, engraving, ete	491,567	0.2
All other products ...--............	2,334, 733	1. 0

The relative importance of these items was considered at some length under Table 5.

RANK OF STATES AND TERRITORIES ACCORDING TO CIRCULATION.

In Table 28 is shown the rank of the several states and territories, according to aggregate circulation, in each class of newspapers and periodicals, by period of
issue. This table is of interest as showing relative position at the Twelfth Census, but obviously presents nothing of statistical value, since a decline in rank does not necessarily imply a decrease in aggregate circula-
tion, but may be due, on the contrary, to greater increase of population, or greater increase in the circulation of publications of other classes, or in other sections of the country.

TABLE 28.-RANK OF STATES AND TERRITORIES ACCORDING TO AGGREGATE CIRCULATION PER ISSUE OF NEWSPAPERS AND PERIODICALS, 1900.

states and territories.	$\begin{gathered} \text { All } \\ \text { classes. } \end{gathered}$	Daily.	Triweekly.	Semi- weekly.	Weekly.	Monthly.	Quarterly.	All other classes.
Alabama	32	30	16	37	32	- 38		20
Arizona Arkansas....	47	45			48	49		
California	14	3	18	2	16	17	10	39
Colorado	24	18	19	38	23	22	26	${ }_{34}^{14}$
Connecticut.	25	15		18	31	25	25	17
Delaware.............	44	36		41	43	42		
District of Columbia..	20	25		44	21	11	24	10
Florida.	43	37	14	34	40	33		
Georgia...............	23	24		14	19	23	28	21
1daho....	46	47		36	45	46		37
1llinois..	3	3	6	6	2	4	4	- 7
Indiana	11	9		12	10	9	11	12
Indian Territory .	45	49			42	47		
lowa..............	13	13	2	7	8	13	14	11
Kansas ..	16	23	15	22	14	12	15	15
Kentucky	17	17	12	9	17	15		9
Louisíana	28	22	10	15	35	31	18	29
Maine	5	28		23	24	2	16	28
Maryland .	21	11		24	20	20	22	33
Massachusetts...	6	5		16	5		7	
Michigan....	10	8	5	5	12	8	13	18
Minnesota..	12	10	8	11	9	10	21	6
Mississippi.........	37	43	17	43	33	39		35
Montana..		34		28				
Nebraska.	18	20	13	13	15	16	12	26
Nevada....	50	46	21	40	50	48		
New Hampshire.	34	33	7		30	43		
New Jersey.	9	12		39	18	29	8	i
New Mexico.		48						
New York....	1	1	i	1	1	1	29 1	
North Carolina.	29	31		19	25	34	30	27
North Dakota..	39	41		32				
Ohio.	4	4	3	4	4	6	3	3
Oklahoma. .	42	44		46	39	45		
Oregon P . ${ }^{\text {annsylvaia }}$	26	29		25	28	21		31
Phode 1sland.	36	$2{ }_{21}^{2}$	22	3 3 3	3 44	3 4 4	${ }^{2}$	8
South Carolina	38	40	20	21	${ }_{36}$	35		36
South Dakota	31	42		42	34	28		
Tennessee.	8	16		31	7	14	5	${ }_{23}$
Texas	19	19		10	13	24	27	24
Utah	41	39	11	17	46	32	32	19
Vermont.	35.	38		29	37	27	31	22
Virginia..	22	26	9	26	22			
Washington..	27	27	19	30	29	26	19	30
West Virginia.	33	32		35	27	41		38
Wyoming .	18	140	14 19	8 45	11 49	18	12	16
					49	37		

It will be observed that the four most populous states-New York, Pennsylvania, Illinois, and Ohiomaintain the same rank in aggregate circulation that they do in population. At that point uniformity in rank ceases, except in the case of Nevada, which is
last in rank, both in population and in aggregate circulation.
Table 29 presents statistics relating to daily publications in 50 cities, for 1900 ; Table 30 gives the same information for 27 cities, for 1880,1890 , and 1900 .

Table 29.-STATISTICS RELATING TO DAILY PUBLICATIONS IN 50 CITIES, 1900.

cIties.	Population of cities.	naily papers.				Number of inhabitants to each copy per issue.	Rank of cities according to increasing number of inhabitants to each copy per issue.
		Total.	Morning.	Evening.	Aggregate circulation per issue.		
New York, N. Y.	3,437, 202						
Chicago,	$1,698,676$	68 37	16	29	$2,732,089$ $1,099,555$	1.26 1.54	8
St. Louis, Mo.	1,293, 697	21	10	11	1,008,752	1.28	10
Boston, Mass.	575,238 560,892	18	7	${ }_{6}^{6}$	373,030	1. 54	17
Baltimore, Md.			8	8	761,039	0.74	
Cleveland, Ohio..	608, 957	1	6	3	232, 252	2.19	27
Buffalo, N' Y...	381,768 352,387	11	3	8	268,473	1.48	14
Saur Francisco, Cal.	362,387 342,782	${ }_{23}^{12}$	$\begin{array}{r}3 \\ 16 \\ \hline\end{array}$	9 8	217,989	1.62	18
Cincinnati, Ohio.	325, 902	13	16 7	8 6	304,185 616,708	1.13 0.63	${ }_{1}^{6}$
Pittsburg, PR.........							
New Orleaus, La	287, 104	11 9	7 5		421,741 96,360	0.76 2.98	4 39
Detroit, Mich ${ }^{\text {M }}$ Mi-	286, 704	8		$\stackrel{4}{5}$	96,360 207,110	2.98 1.38	39 11
Washington, D. C	285,315 278,718	11	$\stackrel{4}{3}$	7 5	132,805	2.15	25
Newark, N. J.							38
Jersey City, N. ${ }^{\text {J }}$	246,070	3	1	2	71,832	3.43	40
Louisville, Ky.....	206, ${ }^{204,731}$	$\stackrel{2}{8}$	5	2 3	19,680 136,950	10. 54	43
Minneapolis, Minn.	202, 718	8	5	3 3	136,950 137	1.49 1.47	16
Providence, R. I.	175,597	3		${ }_{2}^{3}$	137, 7600	1.47 2.31	31
Indianapolis, Ind	169,164	9			135,698	1.25	
Kansas City, Mo.	163,752	9	4	5	226, 252	0.72	2
${ }_{\text {St. Paul, Minn }}$ Rochester, N . ${ }^{\text {P }}$	163, 065	7	2	5	114,446	1.42	12
Denver, Colo...	162,608 133,859	7	2 2 2	5 5	88,489 104,485	1.84 1.28	21 10
Toledo, Ohio -	131,822	7				1.72	
Columbus, Ohio	125, 560	7	2	5	115, 728	1.08	5
Worcester, Mass.	118, 421	5	2	3	49,440	2.40	32
New Haven, Conn	108,027	$\stackrel{6}{5}$			71,982 42,000	1.51 2.57	${ }_{35}^{16}$
Paterson, N. J.	105, 171		1				
Fall River, Mass.	104, 863	4		4	23,1880	4.55 6.56	42
St. Joseph, Mo.	102, 979	7	3	4	45, 058	2.29	30
Omaha, Nebr....	102, 555	8	4	4	80, 740	1.27	9
Los Angeles, Cal	102,479	6		3	48, 250	2.12	24
Memphis, Tenn.	102, 320	3	2		95, 000	1.08	5
Scranton, Pa	102,026	4			46, 822	2.18	26
Lowell, Mass.	94, 969	7	2	5	45, 160	2.10	23
Albany, N. Y.	94, 151	8	2	6	75,521	1.25	7
Cambridge, Mass	91, 886	1	1		2,000	45.94	44
Portland, Oreg	90.426			1	37,400	2.42	33
Atlanta, Ga....	8.. 372	3	2	1	46,061	1.95	22
Grand Rapids, Mich.	87,565	4	2	2	56,900	1.54	17
Dayton, Ohio..	85, 333	5	1	4	34, 200	2. 50	34
Richmond, Va	85,050	6	4	2	37, 81-	2. 25	29
Nashville, Tenn	80, 865		1	1	30, 000	$\because .70$	37
Seattle, Wash	80,671	5	3	2	44,580	1.81	20
Hartford, Conn.	79,850	4	2	2	33,000	2.42	33
Reading, Pa.	78,961	5	1	4	30, 228	2.59	36
Wilmington, Del.	76,508	6	2	4	34,277	2.23	28

Table 30.-Statistics Relating TO Daily PUBLICations in 27 CITIES, 1880 TO 1900.

cities.	Year.	Population of cities.	daily papers.				Number of inhabitants to each copy per issue.	
			Total.	Morning.	Evening.	Aggregate circulation per issue.		
New York, N. Y. Manhattan and Bronx boroughs	1900	3,437,202	158	29	129	${ }^{12,732,089}$	1.26	
	1900 1890 1880	$2,050,600$ $1,515,301$	47 50 50	28 34 30	19 16 9	$2,632,213$ $1,688,553$	0.78 0.89	5 1 1
	1880	1, 206, 209	29	20	9		1.58	
Brooklyn borough .	1900 1890 1880	$\begin{array}{r} 1,166,582 \\ 86,343 \\ 566663 \end{array}$	6 5 4	1	5 5 4 4	95,476 82,448 48,637	12.22 9.78 11.67	25 27 22
Chicago, Ill .	1900		37	16	21	1,099,555	1.54	
	1890	1, 099,850	27	14	13	1,644, 000	1.71	11
	1880	603, 185	18	10	8	220, 577	2.28	9
Philadelphia, Pa..	1900	1,293, 697	21	10	11.	1, 008,752	1.28	
	1890 1880	1,046, 964	24 24	13 13	11	304,008 375,274	1.30	${ }_{8}^{6}$

Table 30.-Statistics relating to daily publications in 27 Cities, 1880 TO 1900-Continued.

Cities.	Year.	Population. of cities.	daily papers.				Number of inhabitants to each copy per issue.	Rank of cities according to increasing number of inhabitants to each copy per issue.
			Total,	Morning.	Evening.	Aggregate circulation per issue.		
St. Louis, Mo.....-..........-.......-...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 575,238 \\ & 451,770 \\ & 350,518 \end{aligned}$	13 15 9	7 9 8	6 6 1	$\begin{array}{r} 373,030 \\ 238,525 \\ 99,364 \end{array}$	1.54 1.89 3.52	15 13 14
Boston, Mass..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 560,892 \\ & 448,477 \\ & 362,839 \end{aligned}$	16 12 11 11	8 5 6	8 7 5	761,039 466,471 221,315	0.74 0.96 1.64	3 2 4 4
Baltimore, Md...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	508, 957 434, 439 332, 313	9 7 9	6 6 6 6	3 1 3	232,252 133,510 128,643	2.19 3.25 2.58 1.48	19 22 10
Cleveland, Ohio ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 381,768 \\ & 261,353 \\ & 160,146 \end{aligned}$	11 13 8	3 4 2	8 9 6	258,473 133,800 48,730	1.48 1.95 3.29	13 14 12
Buffalo, N. Y ...--	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 352,387 \\ & 255,664 \\ & 155,134 \end{aligned}$	$\begin{array}{r}12 \\ 10 \\ 7 \\ \hline\end{array}$	3 3 2 2	9 7 5	217,989 120,800 26,100	1.62 2.12 5.94	16 17 19
San Fraucisco, Cal...................----......................................	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 342,782 \\ & 298,997 \\ & 233,959 \end{aligned}$	23 21 21	15 14 11	8 7 10	304,185 286,912 143,232	1.13 1.04 1.63	6 5 3
Cincinnati, Ohio..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 325,902 \\ & 296,908 \\ & 255,139 \end{aligned}$	13 14 12	7 10 8	6 4 4 4	516,708 213,500 117,549	0.63 1.39 2.17	1 7 7
Pittsburg, Pa ..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 321,616 \\ & 238,617 \\ & 156,389 \end{aligned}$	11 10 9	7 7 6	4 3 3	421, 741 232,462 111,001	0.76 1.03 1.41	4 4 1. 1.
New Orleans, La..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	287,104 242,039 216,090	9 9 10	5 4 6	4 5 4	96,360 73,90 37,565	2.98 3.28 5.76	22 23 18
Detroit, Mich..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 285,704 \\ & 205,876 \\ & 116,340 \end{aligned}$	8 8 6	3 2 3	5 6 3	207,110 134,388 41,533	1.38 1.53 2.80	10 8 11
Milwaukee, Wis ..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	285,315 204,468 115,587	11 10 7	4 5 4	7 5 3	132,805 63,200 24,300	2.15 3.24 4.76	18 21 16
Washington, D. C.....................--..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 278,718 \\ & 230,392 \\ & 147,293 \end{aligned}$	8 4 5	3 2 3	5 2 2 2	100,848 62,651 34,500	2.76 3.68 4.27	21 25 15
Newark, N. J .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 246,070 \\ & 181,830 \\ & 136,508 \end{aligned}$	3 6 6	1 3 4 4	2 3 2	71,832 50,600 18,300	3.43 3.59 7.46	23 24 20
Jersey City, N. J ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 206,433 \\ & 166,003 \\ & 120,722 \end{aligned}$	2 4 2	1	2 3 2	19,580 28,300 11,176	10.54 5.76 10.80	24 26 21
Louisville, Ky ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	204,731 161,129 123,758	8 5 5	5 3 4	3 2 2 1	18,9 186 95 22,100 22,215	1.49 1.69 5.57	14 10 17
Minneap\&lis, Minn ...	1900 1890 11880	202,718 164,738	9 9	6 4	3 5 5	137,906 92,323	1.47 1.78	12
Providence, R. 1..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	175,597 132,146 101,857	3 3 5	1 1 2	2 2 3	76,000 52,000 29,900	2.31 2.54 3.51	30 20 13
Indianapolis, 1nd...	1900 1890 1880	169,164 105,436 75,056	9 7 4	4 3 3	5 4 1	135,698 64,213 35,587	1.25 1.64 2.11	7 9 6
Kansas City, Mo...	1900 1890 11880	163,752 132,716	9 9	4 6	5 3	226,252 130,700	0.72 1.02	${ }_{3}^{2}$
St. Paul, Minn..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	163,065 138156 41,473	7 7 6	2 3 3	5 4 3	$\begin{array}{r}114,446 \\ 67,850 \\ 19,893 \\ \hline 88\end{array}$	1.42 1.96 2.08	11 15 5
Rochester, N.Y ..	$\begin{array}{r} 1900 \\ 1890 \\ 11880 \end{array}$	$\begin{aligned} & 162,608 \\ & 133,896 \end{aligned}$	7	$\stackrel{2}{2}$	5 5	88,489 65,276	1.84 2.05	17 16
Denver, Colo...............................-...................................	$\begin{array}{r} 1900 \\ 1890 \\ 11880 \end{array}$	$\begin{aligned} & 133,859 \\ & 106,713 \end{aligned}$	7	$\stackrel{2}{3}$	5 2	104,485 48,000	1.28 2.22	9 18
Omaba, Nebr..	$\begin{array}{r} 1900 \\ 1890 \\ 11880 \end{array}$	$\begin{array}{r} 102,555 \\ 140,452 \\ \ldots \ldots \ldots \ldots \ldots \end{array}$	8	4	4	80,740 60,329	1.27 2.33	8 19

${ }^{1}$ Not reported separately.

DAILY NEWSPAPERS IN LARGE CITIES.

Scrutiny of Table 29 reveals the fact that in the 50 largest cities in the United States in 1900 there were published 451 daily newspapers, of which 204 were published in the morning and 247 in the evening, showing an excess of 43 , or 17.4 per cent, for evening publications. The average number of dailies per city was 94.1 for morning and 4.9 for evening newspapers. Six cities reported the same number of morning as of evening newspapers; 14 cities reported more morning than evening newspapers; and 28 cities reported a greater number of evening than morning newspapers. An examination of the data given in Table 30 reveals the following figures:

Table 31.-Number of morning and evening daily neurspapers in 26 cities, with number of cities showing excess in each class, 1880 to 1900.

year.	DAILY NEW8PAPERS.			NUMBER OF CITIES showing excess IN一		Number of cities showing no difference.
	Total.	Morning	Evening.	Morning.	Evening.	
1900.	332	157	175	8	15	
1890	309	163	146	11	12	3
$1880{ }^{1}$.	217	124	93	15	4	

${ }^{1}$ Five cities not separately reported.
Table 31 presents an interesting proof that evening newspapers have been increasing more rapidly than morning newspapers. In 1880, 21 leading cities reported 124 morning dailies and 93 evening dailies. In 1900 the same cities, with 5 new ones added because of increase in population, reported 157 norning newspapers and 175 evening newspapers-an increase of 33 publications in the former class and of 82 in the latter. Considering the cities as units, 15 out of 21 showed, in 1880, an excess of morning dailies, and 4, an excess of evening dailies, while in 2 cities the classes were equal. Out of the 26 largest cities in the United States in 1900, 15 showed an excess of evening publications and 8 an excess of morning publications, and 3 reported the same number in each class.
The tendency here shown for a limited number of large cities is confirmed by the figures for the United States.
In 1890 the total number of daily newspapers was 1,610 , of which 559 were published in the morning and 1,051 in the evening; in 1900 there were 595 morning papers, an increase of 6.4 per cent, and 1,631 evening papers, an increase of 55.2 per cent. This difference appears more striking when it is recalled that the increase, during the decade, in all daily publications was 38.3 per cent. In 1890 the proportion of evening dailies to morning dailies was about 2 to 1 ; in 1900 about 3 to 1.
Intelligent consideration of the figures, for the cities treated in Tables 29 and 30, drawn from a com-
parison of aggregate circulation per issue with population, presupposes knowledge of their limitations. The figures thus secured, while interesting in themselves, possess no especial statistical value, because they are seriously affected by local conditions. It will be observed that the "rank of cities according to number of inhabitants to each copy per issue" bears no relation to the rank of these cities in population. What the aggregate circulation within a city really is, has never been ascertained. Were these statistics obtainable, it would doubtless appear that a fairly constant ratio exists between aggregate circulation and number of inhabitants.

According to figures presented in Tables 29 and 30, the rank of a city depends upon its ability to market, outside of its own limits, its newspaper and periodical products. The most important factors affecting rank as here recorded are the existence of a large adjacent community; of very populous and extended suburbs; and of a large tributary section. Of the first class, New York is the most conspicuous example: Brooklyn, which, although a part of New York city, is given separately in Table 30 for purposes of comparison, depends almost exclusively upon New York for newspaper and periodical service; Jersey City and Hoboken, N. J., are equally dependent; while Newark and Paterson, N. J., both within a radius of 20 miles, rely upon New York, to a great extent, for newspapers and periodicals. In this class, also, should be mentioned Allegheny, Pa., an independent municipality, but virtually a part of Pittsburg. Of the second class, Philadelphia, Pa., and Cincinnati, Ohio, are examples. Boston, Mass., is an example of the third class; the publications of that city not only fulfill most of the requirements of the many near-by cities, but circulate freely throughout all parts of New England.

The effect of these local conditions is twofolc-the rank of the larger city is advanced, and that of the adjacent smaller city is reduced.

TABLE 32.-Comparison of the number of inhabitants to each copy per issue in certain large cities, with that of adjacent smaller cities, 1900

LARGE CITIES.	Rank.	Number ofinhabitants to each copy per issue.	ADJACENT SMALLER. CITIES.	Rank.	Number of inhabitants to eacb copy per issue.
New York (Manhat-	${ }^{15}$	0.73	Brooklyn.	125	12.22
tan and Bronx			Newark	40	3.43
horoughs).			Jersey City	43	10.54
Philadelphia	10	1.28	Paterson	41	4. 55
Boston	3	0.74	Camden . Fa .	42	4. 69
San Francisco	6	1.23	Cambridge	44	45.94
Cineinnati	1	0.63	Oakland..		4.03
Pittsburg	4	0.76	Covington.		13.42
Kansas City, Mo	$コ$	0.72	Kansas City, Kans.		${ }^{(2)} 22.35$

[^118]${ }^{2}$ No daily papers.
Table 32 shows that in 1900 Cambridge, Mass., was a conspicucus example of dependence upon a larger
city for newspapers and periodicals. Cambridge is practically a part.of Boston. While it is a community noted for intelligence and cultivation, and the seat of a famous university, it has patronized the publications of its larger neighbor, thus elevating the rank of the latter and establishing an apparently low record for itself.
Business managers of daily newspapers in the larger cities have been prompt to take advantage of the constantly improving mail service, and of the increased ease and speed of railway communication. The improvements along these lines during the past twenty years are reflected in the changes shown by Table 29. In 1880 no city reported a circulation as great as the number of its i habitants. The five cities having the smallest number of inhabitants to a copy per issue were-

Pittsburg ...-.-.. 1.41
New York .. 1.58
San Francisco .-.. 1.63
Boston ... 1.64
St. Paul... 2.08
The figures here given for Pittsburg would have entitled it to eleventh place in 1900. In 1880 there were but 4 cities with less than 2 inhabitants to a copy; in 1890 there were 15 cities with less than 2 , and 2 cities with less than 1; but the city which ranked first in that year would have been fifth in 1900, when 19 cities had less than 2 inhabitants to a copy, and 4 cities had less than 1 . It is likely that the figures for 1880 approximately reflect local demand, while those for 1900 reflect systematic and elaborate extension.

OIRCULATION.

In Table 33 are presented, for each state and territory, the population, circulation, and number of inhabitants to each copy per issue, in 1900.

Table 33.-Aggregate circulation and number of inhabitants to each copy per issue, by states and territories, 1900.

states and territories.	Population.	Aggregate circulation per issue.	Numaber of inhahitants to each copy per issue.
United States...	${ }^{1} 75,994,575$	114, 299, 334	0.66
Alabama	1,828,697	230,079	7.95
Arizona	122,931	34,054	3.61
Arkansas	1,311,564	262, 903	4.99
Colorado	$1,485,0 \overline{3}$ 639,700	1, 5488,656	1.03 1.04
Connecticut	908, 420	467,622	1.99
Delaware	184,735	85, 900	2.15
District of Columbia	278, 718	820,835	0.34
Florida.	528, 542	112,302	4.71
Georgia....	2, 216,331	549, 493	4.03
Idaho..	161,772	48,795	3.32
Ilinois	4,821,550	10, 429, 368	0.46
Indiana	2,516,462	2,108,805	1.19
Indian Territory	392,060	50, 141	7.82
lowa.	2, 231,853	1,884,875	1.18

${ }^{1}$ Exciusive of Alaska, Hawaii, and persons in the military and naval service of the United States (including civilian employees, etc.) staticned abroad, not credited to any state or territory.

Table 33.-Aggregate circulation and number of inhabitants to each copy per issue, by states and territories, 1900 -Continued.

states and territories.	Population.	Aggregate circulation per issue.	Number of inhabitants to each copy per issue.
Kansas	1,470,495	1,144,320	1.29
Kentucky	2, 147,174	1, 099, 172	1. 95
Louisiana	1,381,625	300,072	4. 60
Maine	694,466	6, 434, 065	0.11
Maryland	1,188,044	679, 867	1.75
Massachusetts.	2, 805,346	6,199,127	0.45
Michigan.	2,420,982	2, 374, 403	1. 02
Minnesota	1,751,394	1, 949, 630	0. 90
Mississippi.	1,551,270	168,942	9.18
Missouri	3, 106, 666	5, 495, 802	0.57
Montana	243, 329	127,148	1.91
Nebraska.	1,066, 300	1,095,538	0.97
Nevada.	42, 335	18,153	2.33
New Hampshire.	411,588	211,819	1.94
New Jersey.	1,883, 669	3, 009, 104	0.63
New Mexico.	195,310	32,420	6.02
New York	7,268,894	37, 626,095	0.19
North Carolina	1,893, 810	287,916	6. 58
North Dakota	319,146	138,890	2.30
Ohio.	4,167,545	7,467,358	0.56
Oklahoma	398,331	120,077	3.32
Oregon.	413, 536	311,950	1.33
Pennsylvania	6,302,115	11,280, 367	0.56
Rhode Island.	428,556	170, 694	2.51
South Carolina	1,340,316	161,988	8.27
South Dakota	401, 570	232, 166	1.73
Tennesse	2,020,616	3,131, 017	0.65
Texas	3,048, 710	1,054,761	2.89
Utah	276,749	123, 279	2.24
Vermont	343,641	188,646	1.82
Virginia	1,854, 184	627,280	2. 96
Washington	518,103	307, 128	1.69
West Virginia	958, 800	226,013	4.24
Wisconsin	2,069,042	1,426,499	1.45
Wyoming.	92,581	32, 687	2.83

The conditions described in connection with Tables 29 and 30 , as to " number of inhabitants to each copy per issue," apply also to this table. The large cities showing heavy circulation in Tables 29 and 30 are important publishing centers, distributing their products far beyond city and state boundaries. This improves the relative standing of the states which produce, as compared with those which consume. The most notable example is New York, which may be termed the national producing center for leading publications of nearly all classes, as it distributes periodical literature over the entire United States, recording the enormous total of $37,626,095$ aggregate circulation per issue of all classes, or more than three times the product of any other state. Another example is Maine, which records the noteworthy aggregate circulation per issue of all classes of $6,434,065$ copies, the number of inhabitants to each copy per issue being a fraction so small that in this particular Maine heads the list of states. It is clear that the market for the products of these centers of commercial activity is a national one. The relation, therefore, of population to aggregate circulation might almost be termed fortuitous. On the other hand, it must not be overlooked that the states which are large exporters are likely to be also large importers of periodical literature.

The aggregate circulation per issue attained by the periodicals of each state, when considered as representing the extent to which the enterprise of citizens markets the product of an industry at home and abroad, possesses much significance. This feature of Table 33 is considered in detail in connection with Tables 34 and 35.

Table 34 presents a comparative summary of the main facts relating to the industry, by states and territories, 1880 to 1900 . Table 35 presents a comparative summary of average and aggregate circulation per issue, classified according to period of issue, by states and territories, 1880 to 1900.

Table 34.-COMPARATIVE SUMMARY OF NEWSPAPERS AND PERIODICALS, BY STATES AND TERRITORIES, 1880 TO 1900.

states and territo-	Year.	number of publicaTIONS.			Aggregate circulation per issue.	Aggregate number of copies issned during tbe census year.	Wage-Earners.		Pounds of paper used.	value of newspaper products.		
		Total.	Reporting.	Not reporting.			Average number.	Total wages.		Total.	Advertising.	Subscriptions and sales.
United States.	$\begin{array}{r} 1900 \\ 1890 \\ 51880 \end{array}$	$\begin{aligned} & 21,272 \\ & 17,616 \\ & 11,314 \end{aligned}$	$\begin{aligned} & 18,226 \\ & 14,901 \\ & 811,314 \end{aligned}$	$\begin{aligned} & 3,046 \\ & 2,715 \end{aligned}$	$\begin{array}{r} 114,299,334 \\ 69,138,934 \\ 31,779,686 \end{array}$	$\begin{array}{r} 28,168,148,749 \\ 4,681,113,530 \\ 2,067,848,209 \end{array}$	$\begin{array}{r} 894,604 \\ { }^{8} 75,437 \\ 71,615 \end{array}$	$\begin{array}{r} \begin{array}{r} \$ \\ 850,330, ~ \\ 833 \\ 840,074,937 \\ 28,559,336 \end{array} \\ \hline \end{array}$	$\begin{array}{r} 1,233,148,248 \\ 652,876,161 \\ 189,145,048 \end{array}$	$\begin{array}{r} \$ 175,789,610 \\ \begin{array}{r} \$ 143,586,448 \\ 89,009,074 \end{array} \end{array}$	$\begin{array}{r} 895,861,127 \\ 71,243,361 \\ 39,136,306 \end{array}$	$\begin{array}{r} 879,928,488 \\ 72,343,087 \\ 49,872,768 \end{array}$
Alabama	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 233 \\ & 177 \\ & 125 \end{aligned}$	$\begin{aligned} & 175 \\ & 136 \\ & 125 \end{aligned}$	58 41	230,079 246,847 93,073	$25,758,633$ $19,277,464$ $6,778,544$	$\begin{aligned} & 543 \\ & 478 \\ & 480 \end{aligned}$	$\begin{aligned} & 241,525 \\ & 225,018 \\ & 110,083 \end{aligned}$	$2,950,889$ $2,007,288$ 480,354	704, 767 698,114 423, 911	$\begin{aligned} & 410,090 \\ & 365,654 \\ & 220,665 \end{aligned}$	$\begin{aligned} & 294,677 \\ & 332,460 \\ & 203,246 \end{aligned}$
Arizona	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 54 \\ & 35 \\ & 17 \end{aligned}$	$\begin{aligned} & 43 \\ & 29 \\ & 17 \end{aligned}$	11	$\begin{aligned} & 34,054 \\ & 22,309 \\ & 13,505 \end{aligned}$	$\begin{aligned} & 5,161,096 \\ & 2,551,928 \\ & 1,413,600 \end{aligned}$	$\begin{gathered} 139 \\ 84 \\ 107 \end{gathered}$	$\begin{aligned} & 73,640 \\ & 51,079 \\ & 45,828 \end{aligned}$	$\begin{aligned} & 548,651 \\ & 189,620 \\ & 105,048 \end{aligned}$	$\begin{aligned} & 170,083 \\ & 114,630 \end{aligned}$ $95,700$	$\begin{array}{r} 110,143 \\ 59,680 \\ 58,000 \end{array}$	$\begin{aligned} & 59,940 \\ & 54,950 \\ & 37,700 \end{aligned}$
Arkansas	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	261 193 117	236 164 117	25 29	$\begin{aligned} & 262,903 \\ & 192,749 \\ & 103,501 \end{aligned}$	$\begin{array}{r} 25,077,996 \\ 13,768,353 \\ 4,990,595 \end{array}$	$\begin{aligned} & 600 \\ & 480 \\ & 488 \end{aligned}$	$\begin{array}{r} 215,410 \\ 214,083 \\ \quad 119,048 \end{array}$	$\begin{array}{r} 2,455,256 \\ 1,083,505 \\ 383,857 \end{array}$	532, 869 461, 261 340, 103	$\begin{aligned} & 268,424 \\ & 232,376 \\ & 182,201 \end{aligned}$	$\begin{aligned} & 264,445 \\ & 228,886 \\ & 157,902 \end{aligned}$
California.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	709 555 565	$\begin{aligned} & 622 \\ & 455 \\ & 361 \end{aligned}$	$\begin{array}{r} 87 \\ 100 \end{array}$	$\begin{array}{r} 1,448,656 \\ 1,151,389 \\ 640,026 \end{array}$	$\begin{array}{r} 205,789,752 \\ 163,716,618 \\ 72,861,836 \end{array}$	$\begin{aligned} & 2,683 \\ & 2,376 \\ & 2,349 \end{aligned}$	$\begin{aligned} & 1,804,619 \\ & 1,681,240 \\ & 1,300,140 \end{aligned}$	$\begin{array}{r} 35,113,672 \\ 20,229,809 \\ 6,375,390 \end{array}$	$\begin{aligned} & 5,801,721 \\ & 5,595,605 \\ & 3,936,238 \end{aligned}$	$\begin{aligned} & 3,437,976 \\ & 3,099,453 \\ & 2,150,917 \end{aligned}$	$\begin{aligned} & 2,363,745 \\ & 2,996,152 \\ & 1,785,321 \end{aligned}$
Colorado .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	329 257 87	248 186 87	81 71	$\begin{array}{r} 521,213 \\ 229,669 \\ 95,744 \end{array}$	$\begin{array}{r} 71,702,076 \\ 30,022,108 \\ 8,877,831 \end{array}$	$\begin{array}{r} 1,303 \\ 868 \\ 617 \end{array}$	$\begin{aligned} & 770,382 \\ & 699,509 \\ & 338,345 \end{aligned}$	$\begin{array}{r} 12,083,992 \\ 4,984,842 \\ 721,305 \end{array}$	$\begin{aligned} & 2,105,892 \\ & 1,804,280 \\ & 1,015,110 \end{aligned}$	$\begin{gathered} 1,289,888 \\ 1,125,634 \\ 567,442 \end{gathered}$	$\begin{aligned} & 816,004 \\ & 678,746 \\ & 447,668 \end{aligned}$
Connecticut.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	207 180 139	155 156 159 139	52 24	$\begin{aligned} & 457,622 \\ & 496,084 \\ & 237,660 \end{aligned}$	$\begin{aligned} & 79,366,409 \\ & 48,253,243 \\ & 20,366,449 \end{aligned}$	$\begin{array}{r} 1,161 \\ 898 \\ 911 \end{array}$	$\begin{aligned} & 703,587 \\ & 530,757 \\ & 378,566 \end{aligned}$	$\begin{array}{r} 10,693,278 \\ 4,676,762 \\ 1,782,060 \end{array}$	$1,755,779$ $1,490,107$ 939,482	$\begin{array}{r} 1,068,998 \\ 766,517 \\ 460,070 \end{array}$	$\begin{aligned} & 686,781 \\ & 723,550 \\ & 479,412 \end{aligned}$
Delaware..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	42 41 26	$\begin{aligned} & 30 \\ & 32 \\ & 26 \end{aligned}$	12 9	$\begin{aligned} & 85,900 \\ & 55,582 \\ & 34,425 \end{aligned}$	$\begin{array}{r} 15,037,901 \\ 8,033,402 \\ 5,172,998 \end{array}$	$\begin{aligned} & 220 \\ & 153 \\ & 190 \end{aligned}$	$\begin{aligned} & 86,208 \\ & 63,634 \\ & 55,279 \end{aligned}$	$\begin{array}{r} 1,299,582 \\ 580,218 \\ 344,864 \end{array}$	$\begin{aligned} & 174,933 \\ & 169,646 \\ & 156,088 \end{aligned}$	$\begin{array}{r} 116,116 \\ 105,316 \\ 91,983 \end{array}$	$\begin{aligned} & 58,817 \\ & 64,130 \\ & 64,105 \end{aligned}$
District of Columbia...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	87 48 44	69 17 44	18 31	$\begin{aligned} & 820,835 \\ & 321,151 \\ & 213,923 \end{aligned}$	$\begin{aligned} & 56,720,860 \\ & 31,715,418 \\ & 15,874,432 \end{aligned}$	$\begin{gathered} 600 \\ 347 \\ 343 \end{gathered}$	$\begin{aligned} & 393,220 \\ & 236,690 \\ & 205,924 \end{aligned}$	$\begin{aligned} & 8,787,333 \\ & 5,357,486 \\ & 1,157,520 \end{aligned}$	$\begin{array}{r} 1,690,643 \\ 1,136,783 \\ 569,657 \end{array}$	$\begin{array}{r} 1,069,480 \\ 582,918 \\ 225,928 \end{array}$	$\begin{aligned} & 621,163 \\ & 653,1656 \\ & 343,729 \end{aligned}$
Florida	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	161 122 45	$\begin{aligned} & 97 \\ & 97 \\ & 45 \end{aligned}$	64 25	$\begin{array}{r} 112,302 \\ 107,257 \\ 27,332 \end{array}$	$\begin{array}{r} 14,454,595 \\ 10,113,301 \\ 2,086,644 \end{array}$	$\begin{aligned} & 305 \\ & 392 \\ & 182 \end{aligned}$	$\begin{array}{r} 134,366 \\ 161,251 \\ 43,253 \end{array}$	$\begin{array}{r} 1,706,343 \\ 1,036,382 \\ 113,891 \end{array}$	$\begin{aligned} & 398,594 \\ & 37,888 \\ & 116,700 \end{aligned}$	$\begin{array}{r} 228,352 \\ 18,589 \\ 66,659 \end{array}$	$\begin{array}{r} 170,242 \\ 18,299 \\ 50,041 \end{array}$
Georgia.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 366 \\ 279 \\ 200 \end{array}$	$\begin{aligned} & 265 \\ & 230 \\ & 200 \\ & 200 \end{aligned}$	101 49	$\begin{aligned} & 549,493 \\ & 73,223 \\ & 269,066 \end{aligned}$	$\begin{aligned} & 67,001,092 \\ & 48,512,208 \\ & 20,994,549 \end{aligned}$	$\begin{aligned} & 1,050 \\ & 1,031 \\ & 1,084 \end{aligned}$	$\begin{aligned} & 450,878 \\ & 478,436 \\ & 331,327 \end{aligned}$	$\begin{aligned} & 7,689,963 \\ & 7,028,445 \\ & 1,630,830 \end{aligned}$	$\begin{array}{r} 1,441,968 \\ 1,633,286 \\ 948,629 \end{array}$	$\begin{aligned} & 808,284 \\ & 838,034 \\ & 468,611 \end{aligned}$	$\begin{aligned} & 633,684 \\ & 795,252 \\ & 480,118 \end{aligned}$
Idaho.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	73 48 40	$\begin{aligned} & 72 \\ & 33 \\ & 10 \end{aligned}$	1 15	$\begin{array}{r} 48,795 \\ 21,270 \\ 6,650 \end{array}$	$\begin{array}{r} 4,170,984 \\ 1,593,500 \\ 367,600 \end{array}$	$\begin{array}{rr} 187 \\ & 187 \\ & 32 \\ & 32 \end{array}$	$\begin{aligned} & 92,819 \\ & 48,467 \\ & 18,000 \end{aligned}$	$\begin{aligned} & 617,790 \\ & 141,176 \end{aligned}$ $23,853$	$\begin{array}{r} 199,948 \\ 117,040 \\ 38,000 \end{array}$	$\begin{array}{r} 110,010 \\ 67,060 \\ 19,190 \end{array}$	$\begin{aligned} & 89,938 \\ & 49,980 \\ & 18,810 \end{aligned}$
Illinois	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 1,755 \\ & 1,416 \\ & 1,017 \end{aligned}$	1,548 1,241 1,017	207 175	$\begin{array}{r} 10,429,368 \\ 7,891,219 \\ 0,891 \end{array}$	$\begin{aligned} & 746,880,247 \\ & 465,924,592 \\ & 174,596,505 \end{aligned}$	$\begin{aligned} & 7,478 \\ & 6,718 \\ & 6.583 \end{aligned}$	$\begin{aligned} & 3,704,341 \\ & 3,712,616 \\ & 2,736,717 \end{aligned}$	$\begin{array}{r} 114,853,569 \\ 60,907,589 \\ 15,649,893 \end{array}$	$\begin{array}{r} 16,386,952 \\ 1,325,573 \\ \mathbf{7 , 2 6 4}, 585 \end{array}$	$\begin{aligned} & 9,029,291 \\ & 7,072,055 \\ & 3,179,954 \end{aligned}$	$\begin{aligned} & 7,357,661 \\ & 6,453,618 \\ & 4,084,631 \end{aligned}$
Indiana.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	887 680 467	$\begin{aligned} & 841 \\ & 620 \\ & 467 \end{aligned}$	$\begin{aligned} & 46 \\ & 60 \end{aligned}$	$\begin{array}{r} 2,108,805 \\ 1,299,418 \\ 661,111 \end{array}$	$\begin{array}{r} 175,432,092 \\ 94,466,572 \\ 44,908,191 \end{array}$	$\begin{aligned} & 4,084 \\ & 2,370 \\ & 2,676 \end{aligned}$	$\begin{array}{r} 1,784,059 \\ 955,094 \\ 745,850 \end{array}$	$\begin{array}{r} 25,646,899 \\ 8,619,064 \\ 3,502,848 \end{array}$	$\begin{aligned} & 3,912,514 \\ & 2,784,087 \\ & 2,036,113 \end{aligned}$	$\begin{aligned} & 2,070,544 \\ & 1,413,047 \\ & 1,057,688 \end{aligned}$	$\begin{array}{r} 1,841,970 \\ 1,371,040 \\ 978,425 \end{array}$
Indian Territory	$\begin{array}{r} 1900 \\ \begin{array}{r} 1890 \\ \text { } \\ \hline \end{array} 8880 \end{array}$	85 13	64 9	21 4	50,141 8,995	$\begin{array}{r} 3,554,882 \\ 480,740 \end{array}$	$\begin{array}{r} 138 \\ 19 \end{array}$	$\begin{array}{r} 48,389 \\ 7,728 \end{array}$	$\begin{array}{r} 396,180 \\ 43,766 \end{array}$	$\begin{array}{r} 110,916 \\ 18,290 \end{array}$	60,394 9,360	50,522 8,930
Iowa	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 1,104 \\ 804 \\ \quad 569 \end{array}$	$\begin{array}{r} 1,045 \\ 703 \\ 569 \end{array}$	- $\begin{array}{r}59 \\ \hline 101\end{array}$	$\begin{array}{r} 1,884,875 \\ 1,088,019 \\ 547,340 \end{array}$	$\begin{array}{r} 158,895,153 \\ 80,780,202 \\ 35.747,302 \end{array}$	$\begin{aligned} & 3,393 \\ & 2,695 \\ & 2,637 \end{aligned}$	$\begin{aligned} & 1,311,179 \\ & 1,101,785 \\ & 647,407 \end{aligned}$	$\begin{array}{r} 20,716,211 \\ 7,809,310 \\ 2,765,927 \end{array}$	$\begin{aligned} & 3,777,690 \\ & 2,770,693 \\ & 2,088,170 \end{aligned}$	$\begin{aligned} & 1,939,852 \\ & 1,371,817 \\ & 1,150,806 \end{aligned}$	$\begin{array}{r} 1,837,838 \\ 1,298,876 \\ 937,364 \end{array}$
Kansas	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 711 \\ & 786 \\ & 347 \end{aligned}$	$\begin{aligned} & 684 \\ & 693 \\ & 347 \end{aligned}$	$\begin{aligned} & 27 \\ & 93 \end{aligned}$	$\begin{array}{r} 1,144,320 \\ 756,746 \\ 280,729 \end{array}$	$\begin{aligned} & 75,387,961 \\ & 57,469,332 \\ & 18,569,223 \end{aligned}$	$\begin{aligned} & 1,766 \\ & 1,865 \\ & 1,499 \end{aligned}$	623, 783 681,404 335,438	$\begin{aligned} & 8,512,671 \\ & 6,276,496 \\ & 1,347,475 \end{aligned}$	$\begin{aligned} & 1,698,656 \\ & 1,881,248 \\ & 1,006,800 \end{aligned}$	$\begin{array}{r} 893,780 \\ 1,907,019 \\ 591,723 \end{array}$	$\begin{aligned} & 804,876 \\ & 874,229 \\ & 415,077 \end{aligned}$
Kentucky	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{gathered} 332 \\ 270 \\ 205 \end{gathered}$	$\begin{aligned} & 281 \\ & 218 \\ & 205 \end{aligned}$	50 62	$\begin{array}{r} 1,099,172 \\ 727,781 \\ 397,564 \end{array}$	$\begin{array}{r} 96,862,156 \\ 71,543,310 \\ 25,332,423 \end{array}$	$\begin{aligned} & 1,154 \\ & 1,350 \\ & 1,356 \end{aligned}$	$\begin{aligned} & 521,739 \\ & 692,959 \\ & 272,136 \end{aligned}$	$\begin{array}{r} 11,416,789 \\ 6,780,580 \\ 2,041,378 \end{array}$	$\begin{aligned} & 1,818,706 \\ & 1,831,485 \\ & 1,468,617 \end{aligned}$	$\begin{aligned} & 942,010 \\ & 953,254 \\ & 671,884 \end{aligned}$	$\begin{aligned} & 876,696 \\ & 878,231 \\ & 796,733 \end{aligned}$
Louisiana	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 195 \\ & 173 \\ & 112 \end{aligned}$	$\begin{aligned} & 160 \\ & 129 \\ & 112 \end{aligned}$	$\begin{aligned} & 35 \\ & 44 \end{aligned}$	$\begin{aligned} & 300,072 \\ & 358,183 \\ & 131,630 \end{aligned}$	$\begin{aligned} & 49,348,430 \\ & 40,145,248 \\ & 15,602,320 \end{aligned}$	$\begin{aligned} & 873 \\ & 634 \\ & 786 \end{aligned}$	$\begin{aligned} & 532,895 \\ & 383,429 \\ & 411,616 \end{aligned}$	$\begin{aligned} & 6,982,314 \\ & 3,906,224 \\ & 1,625,250 \end{aligned}$	$\begin{aligned} & 1,300,338 \\ & 1,281,005 \\ & 1,130,665 \end{aligned}$	751, 304 717,586 617, 262	$\begin{aligned} & 549,034 \\ & 563,419 \\ & 513,393 \end{aligned}$
Maine	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 178 \\ & 172 \\ & 123 \end{aligned}$	$\begin{aligned} & 177 \\ & 146 \\ & 123 \end{aligned}$	$\begin{array}{r} 1 \\ 26 \end{array}$	$\begin{aligned} & 6,434,065 \\ & 2,442,046 \\ & 1,214,460 \end{aligned}$	$\begin{array}{r} 106,420,850 \\ 53,206,443 \\ 25,661,345 \end{array}$	$\begin{aligned} & 1,309 \\ & 853 \\ & 1,036 \end{aligned}$	$\begin{aligned} & 473,026 \\ & 373,407 \\ & 317,006 \end{aligned}$	$\begin{array}{r} 16,055,808 \\ 5,779,649 \\ 2,567,686 \end{array}$	$\begin{aligned} & 1,876,214 \\ & 1,405,150 \\ & 1,236,461 \end{aligned}$	$\begin{array}{r} 1,044,695 \\ 575,122 \\ 214,394 \end{array}$	$\begin{array}{r} 831,519 \\ 830,028 \\ 1,022,067 \end{array}$

[^119]${ }^{4}$ For purposes of comparison the figures for "book and job printing" and "all otber produets" are excluded.
in the totals.
${ }^{6}$ 1neludes 1,182 publications not reporting operations, as they ean not be excluded from tbe classification.

Table 34.-COMPARATIVE SUMMARY OF NEWSPAPERS AND PERIODICALS BY STATES AND TERRITORIES, 1880 TO 1900-Continued.

states and territo-Ries.	Year.	number of publicaTIONS.			Aggregate circulation per issue.	Aggregate number of copies issued during the census year.	wage-earners.		Pounds of paper used.	value of newbpaper products.		
		Total.	Reporting.	$\begin{gathered} \text { Not } \\ \text { report- } \\ \text { ing. }{ }^{1} \end{gathered}$			Average number.	Total wages.		Total.	Advertising.	Subscriptions and sales.
Maryland	1900	213	166	47	679, 867	98, 959, 220	1,529	\$768, 335	16, 464, 816	\$2,263,338	\$1, 490,189	8773, 149
	1890	170	124	46	392,068	66, 855, 415	857	424,666	6, 477, 706	1,739,705	1,089, 291	700,414
	1880	143	143		414,693	60, 115, 182	1,163	486, 958	3,983,128	1,567,893	859,847	708,046
Massachusetts.	1900	627	486	141	6, 199, 127	531, 739, 780	5,432	3, 769, 204	92, 347, 453	13, 170, 875	6,906,320	6,264,555
	1890	668	568	100	4,662,159	261, 440, 450	4,214	2, 473, 531	34, 734, 860	8,649,920	3,970, 820	4, 579,100
	1880	427	427		2, 212,929	149, 319, 973	3,416	2,074,749	15, 118,634	6,367, 760	2,612,522	3,855, 238
Michigan	1900	802	698	104	2, 374,403	200, 457, 376	2,916	1,302,493	24, 267, 484	3, 819,560	2, 137,461	
	1890	657	589	68	1,511,915	122, 904, 401	2,772	1, 122, 366	11,680,577	3, 274,089	1,711, 309	1,662,780
	1880	464	464		620,974	46,659,470	2,439	729,673	4,648, 339	2, 057, 438	1,002,092	1,055,346
Minnesota.............	1900	669	622	47	1,949,630	169, 257,418	2,714	1,304,229	26,663,512	3,981,874	2,295,482	1,686,392
	1890	445	392	63	1,023,006	95, 551,359	1,919	1,045,013	10, 193, 158	3,153,605	1,639,136	1,514, 469
	1880	223	223		222, 074	18,097, 781	1,178	390, 161	1,545,303	947,903	524,540	423, 363
Mississippi.............	1900	223	178	45	168,942	13,398,752	440	164,435	1,660, 884	395, 068	195,133	199,985
	1890	161	119	42	108, 061	7,266,800	272	90,169	493, 593	279,025	139,576	139,449
	1880	123	123		87,904	5,293,418	468	109, 036	426, 012	380,893	211, 934	168,959
Missour	1900	1,052	940	112	5, 495, 802	446, 832, 760	3,758	2,056,148	66, 173, 770	8,144, 216	4, 615,545	3,528,671
	1890	803	707	96	2,615,135	225, 731, 297	3, 831	2,028, 061	27, 462,453	6, 826, 120	3, 465, 701	3, 360, 419
	1880	530	530		965, 285	79, 265, 309	3,215	1,284, 831	9,925, 367	3, 578, 921	1,710, 241	1,868,680
Montana	1900	95	89	6	127, 148	19,012,404	455	310, 802	2,918, 605	705, 229	390, 598	814,631
	1890	61	52	9	68,980	9, 106,770	229	230, 890	783,627	427,744	227, 865	199,879
	1880	18	18		20, 827	1,280, 480	94	66,700	114,990	177,750	84, 130	93,620
Nebraska.	1900	626	638	88	1,095,538	85, 959,730	1,334		11,644,598	1,887,933	1, 002, 462	885, 471
	1890	550	446	104	1,635,605	52,037, 259	1, 331	656, 001	5, 683, 456	2, 007,990	1,091, 110	916,880
	1880	189	189		154, 570	11, 717,103	762	250,732	903,207	712,544	391, 825	320,719
Nevad	1900	36	35	1	18, 153	2,395,582	68	35,024	156,676	93,702	49,272	44,430
	1890	25	16	10	14, 530	3,010, 210	51	46, 121	158, 962	93, 209	51, 835	41, 374
	1880	37	37		27,745	6,820,575	202	162,338	354, 444	338,800	215, 139	123,661
New Hampshire.......	1900	107	88	19	211, 819	22,421,947	571	261, 871	3,445, 068	607,663	274,818	232, 845
	1890	127	111	16	261, 040		527	234, 272	1,911,461	544,786	263,263	281, 533
	1880	87	87		185,968	-9,635,410	412	119,203	581,916	359,859	179,015	180,844
New Jersey............	1900	389	298	. 91	3, 009, 104	103, 924, 361	2,077	1,162,033	17,034, 314	2,663, 899	1,813,518	860, 381
	1890	318	263	65	1, 486, 777	76, 855,311	1,594	857,750	6,447, 571	2, 234, 291	1,201, 280	1,033,01.1
	1880	215	215		249,478	22, 150,096	1,364	454, 633	1,698, 173	1,175,015	694, 167	480, 858
New Mexico.	1900			13	32,420	3, 020,460	142	76, 477	330,587	128,839	76,513	52, 326
	1890	41	34	7	23, 157	2,524, 262	97	55,047 31,292	160,834 56,352	152,480 70,972	78,230 35,883	$\begin{aligned} & 74.250 \\ & 35,089 \end{aligned}$
	1880	18	18		6,355	838,860	79	31, 292	56,352			
New York	1900	2,067	1,477	590	37,626,095	2,324, 952,983	16,460	10,924,755	378, 603, 033		25,369,048	
	1890	1,938	1,627	311	18, 031, 391		11, 838	$7,654,864$ $6,460,071$	$165,413,361$ $57,823,682$	$37,842,822$ $24,266,911$	$17,861,315$ $8,674,173$	19,981, 507
	1880	1,411	1,411		9, 374,134	577, 755, 819	12,402	6, 460,071	57, 823,682	24,266,911	8,674,173	15, 592, 738
North Carolina	1900	261	200	61	287, 916	28,081,732	653			610,418	290, 566	319,852
	1890	176	135	41	178, 077	14, 821, 936	460	161,616	$1,111,101$	440,710	211, 733	228,977
	1880	142	142	41	105,501	6,819,382	502	119,809	460,690	344, 132	178, 324	165, 808
North Dakota		157	139	18	138,890	12,544, 161	326	143,096	1,662,800	420,195	259, 041	161,154
	1890	112	87	25	86, 425	6, 357, 508	260	140, 563	510, 604	307, 392	179, 216	128,176
	${ }^{2} 1880$											
Ohio.				197	7,467, 358	591, 526, 155	6, 360	3, 119,596	73,544, 764	9, 643, 982	4, 863,620	4,780,362
	1890			161	6, 639,781	306, 568, 217	5,407	2,554,436	29,823, 811	8,360, 115	3, 850,306	4, 509, 809
	1880	1,774	774	101	3, 093,931	152, 579,380	5,313	1,761,038	11,065,159	6, 109, 448	2, 460,642	3,648,806
Oklahoma.............					120,077	10, 698, 566	379	139,021	1,407,298	250,681	138,537	112,144
	1890	120	1	9	14,654	1,462, 332	69	25, 183	98,445	45, 495	26,300	19,195
	${ }^{2} 1880$											
Oregon	1900	207	188	19				292,579 346,317	$4,276,251$ $2,150,770$	825,455 951,827	$\begin{aligned} & 463,172 \\ & 544,328 \end{aligned}$	362,283 407,499
	1890	137	126	11	208,855 85,786	$19,159,764$ $8,578,213$	343	128,430	2, 709,836	367, 189	177,095	190, 094
	1880	74	74		85,786	8,578,213		128,40				
Pennsylvania	1900		1,365	79	11,280, 367	923, 178, 870	9,565	5, 094, 769	$155,846,813$ $71,130,406$	18,364, 367	10,741, 028	7, 623,339 9,035
	1890	1,476	1,271	205	9,472,083	$\begin{array}{r}633,014,599 \\ 297 \\ \hline 59592\end{array}$	7,687	3,841, 2,913	$71,130,406$ $28,026,402$	$16,380,582$ $9,319,497$	$7,345,234$ $4,218,770$	$9,035,348$ $5,100,727$
	1880	1,973	${ }^{1} 973$		5,031, 061	297, 569, 892	7,238	2, 913,162				
Rhode Island.		61	40	21	170, 594	43,692, 180	488	318, 219	5,564,505	866,401 727	555, 503	310,898
	1890	72	64	18	148,868	$26,228,741$ $14,496,498$	432 443	238,611 206,526	$3,135,927$ 123,745	455,'726	244,155	
	1880	44	44		97,121	14, 496, 498	443	206,526	123,745		244,155	
South Carolina	1900	134	117	17	161,988	15, 355, 730	413	156,924	1, 849,953	416,594	198,422 212,081	218,172 238,58
	1890	100	84	16	121,672	11,248,784	330 393		1,432, 478	309,238	145, 907	163, 331
	1880	81	81		69, 902	5,74, 41						
South Dakota					232,166	14,597, 255	422	164, 456	1,569, $\mathbf{1 6 9}$	475,668	245,737	229,931
	1890	227	174		142, 362	10, 336, 238	416	192,575	813, 714			200,982
	${ }^{2} 1880$											
Tennessee.............			251	47	3,131, 017	124, 423, 368	951	456, 418	9, 786,819	1,715, 886	761,785	954, 101
	1890	254	219	35	1,450, 118	72,094,743	965	489,948	5, 188, 720	1, 784,768	737,741 373,450	742,026 410,631
	1880	193	193		1, 293, 288	18, 293, 872	901	265,456	1, 423,483	784,081	373,450	410,631
Texas.....-............								916, 029	11, 075, 808	2, 864, 387	1,600,616	1,263, 771
	1900					55, 640, 136	1, 455	761,824	5, 345, 193	2, 212,990	1,263,338	949,652
	1890	512	437	75		19,883, 792	1, 457	772,059	1,791,588	1,100,295	570,089	530,206
	1880	280			263, 289							

${ }_{2}$ Publications which were in existence, but from which no returns were received. In Dorth Dakota and South Dakota as Dakota; the 1880 figures are included only in the totals.

Table 34.-COMPARATIVE SUMMARY OF NEWSPAPERS AND PERIODICALS BY STATES AND TERRITORIES, 1880 TO 1900-Continued.

states and territo-	Year.	nomber of publications.			Aggregate circulation per issue.	Aggregate number of copies issued during the census year.	Wage-earners.		Pounds of paper used.	Value of newspaper products.		
		Total.	Report ing.	$\underset{\substack{\text { Neport } \\ \text { nog. }}}{ }$			Average number.	Total wages.		Total.	Advertising.	Subscriptions and sales.
Utah.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 80 \\ & 39 \\ & 22 \end{aligned}$	72 28 22	88	$\begin{array}{r} 123,279 \\ 68,000 \\ 36,175 \end{array}$	$\begin{array}{r} 14,304,587 \\ 9,626,740 \\ 3,867,500 \end{array}$	$\begin{aligned} & 431 \\ & 294 \\ & 168 \end{aligned}$	$\begin{array}{r} \$ 235,174 \\ 183,651 \\ 88,589 \end{array}$	$\begin{array}{r} 2,424,121 \\ 1,206,050 \\ 321,039 \end{array}$	$\begin{array}{r} \$ 455,498 \\ 483,555 \\ 177,058 \end{array}$	$\begin{array}{r} \$ 234,087 \\ 271,770 \\ 81,270 \end{array}$	$\begin{array}{r} \$ 221,411 \\ 211,785 \\ 95,788 \end{array}$
Vermont	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 89 \\ & 76 \\ & 82 \end{aligned}$	79 70 82	1.	$\begin{aligned} & 188,646 \\ & 297,565 \\ & 130,192 \end{aligned}$	$\begin{array}{r} 15,281,431 \\ 9,189,590 \\ 5,681,464 \end{array}$	436 307 371	176,748 134,386 92,959	$\begin{array}{r} 1,943,599 \\ 996,377 \\ 638,391 \end{array}$	$\begin{aligned} & 371,110 \\ & 322,160 \\ & 262,719 \end{aligned}$	$\begin{aligned} & 200,307 \\ & 141,027 \\ & 102,619 \end{aligned}$	$\begin{aligned} & 170,803 \\ & 181,133 \\ & 160,100 \end{aligned}$
Virginia..	$\begin{aligned} & 1990 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 255 \\ & 231 \\ & 194 \end{aligned}$	$\begin{aligned} & 204 \\ & 185 \\ & 194 \end{aligned}$	51 46	$\begin{aligned} & 627,280 \\ & 346,056 \\ & 256,471 \end{aligned}$	$\begin{aligned} & 51,213,030 \\ & 28,17,077 \\ & 18,422,845 \end{aligned}$	$\begin{aligned} & 761 \\ & 652 \\ & 961 \end{aligned}$	$\begin{aligned} & 338,618 \\ & 272,634 \\ & 261,362 \end{aligned}$	$\begin{aligned} & 4,581,295 \\ & 1,977,387 \\ & 1,352,930 \end{aligned}$	$\begin{aligned} & 907,025 \\ & 818,073 \\ & 698,826 \end{aligned}$	510, 729 424, 255 356, 204	$\begin{aligned} & 396,296 \\ & 393,818 \\ & 342,622 \end{aligned}$
Washington............	$\begin{aligned} & 1900 \\ & 1890 \\ & 1889 \end{aligned}$	223 172 29	199 144 29	$\stackrel{24}{28}$	307,128 204,488 16,751	$38,239,106$ $23,547,244$ $1,962,193$	626 569 109	315,509 434,719 34,975	$\begin{array}{r} 4,505,969 \\ 2,615,931 \\ 76,968 \end{array}$	$\begin{array}{r} 1,178,721 \\ 1,149,285 \\ 87,400 \end{array}$	$\begin{array}{r} 772,517 \\ 759,784 \\ 48,840 \end{array}$	$\begin{array}{r} 406,204 \\ 389,501 \\ 38,560 \end{array}$
West Virginia	$\begin{aligned} & 1900 \\ & 1890 \\ & 1889 \end{aligned}$	$\begin{aligned} & 192 \\ & 144 \\ & 109 \end{aligned}$	176 112 199	16 32	$\begin{array}{r} 226,013 \\ 130,328 \\ 85,958 \end{array}$	$\begin{array}{r} 24,453,873 \\ 12,428,686 \\ 4,903,466 \end{array}$	$\begin{aligned} & 797 \\ & 491 \\ & 511 \end{aligned}$	$\begin{array}{r} 295,413 \\ 135,312 \\ 99,671 \end{array}$	$\begin{array}{r} 2,916,238 \\ 1,080,543 \\ 378,670 \end{array}$	$\begin{aligned} & 576,493 \\ & 389,257 \\ & 301,411 \end{aligned}$	$\begin{aligned} & 282,845 \\ & 188,351 \\ & 169,280 \end{aligned}$	$\begin{aligned} & 293,648 \\ & 200,906 \\ & 132,131 \end{aligned}$
Wisconsin .	$\begin{aligned} & 1909 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 654 \\ & 521 \\ & 340 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 995 \\ 456 \\ 346 \end{array} \end{aligned}$	$\begin{aligned} & 59 \\ & 65 \end{aligned}$	$\begin{array}{r} 1,426,499 \\ 1,053,389 \\ 436,576 \end{array}$	$\begin{array}{r} 132,510,954 \\ 86,422,737 \\ 27,901,051 \end{array}$	$\begin{aligned} & 2,679 \\ & 2,049 \\ & 1,980 \end{aligned}$	$\begin{array}{r} 1,174,242 \\ 769,046 \\ 531,903 \end{array}$	$\begin{array}{r} 17,383,974 \\ 7,574,249 \\ 2,428,546 \end{array}$	$\begin{aligned} & \mathbf{2}, 900,231 \\ & 2,354,825 \\ & 1,589,725 \end{aligned}$	$\begin{array}{r} 1,414,475 \\ 1,015,423 \\ 754,920 \end{array}$	$\begin{array}{r} 1,485,756 \\ 1,439,402 \\ 834,805 \end{array}$
Wyoming	$\begin{aligned} & 1909 \\ & 1890 \\ & 1880 \end{aligned}$	44 31 11	42 25 11	2 6	$\begin{array}{r} 32,687 \\ 24,370 \\ 5,686 \end{array}$	$\begin{array}{r} 2,446,644 \\ 2,473,860 \\ 803,260 \end{array}$	$\begin{aligned} & 86 \\ & 62 \\ & 46 \end{aligned}$	$\begin{aligned} & 47,846 \\ & 48,942 \\ & 25,940 \end{aligned}$	$\begin{array}{r} 302,462 \\ 172,995 \\ 77,506 \end{array}$	$\begin{array}{r} 108,851 \\ 149,242 \\ 47,300 \end{array}$	$\begin{aligned} & 62,150 \\ & 88,028 \\ & 32,950 \end{aligned}$	$\begin{aligned} & 46,701 \\ & 61,214 \\ & 14,350 \end{aligned}$

${ }^{1}$ Publications which were in existence, but from which no returas were received.

Table 35.-COMPaRative statement of newspapers and periodicals, average and aggregate circu-

	8tates and territories.	Year.	average circulation per issug.							
			All classes.	Daily.	Triweekly.	$\begin{aligned} & \text { Semi. } \\ & \text { weekly. } \end{aligned}$	Weekly.	Monthly.	Quarterly.	All ather classes.
1	United States.	$\left\{\begin{array}{l}1900 \\ 1880 \\ 1880\end{array}\right.$	$\begin{aligned} & 6,271 \\ & 4,640 \\ & 3,122 \end{aligned}$	$\begin{aligned} & 6,784 \\ & 8,209 \\ & 4,137 \end{aligned}$	$\begin{aligned} & 3.687 \\ & 1,473 \\ & 1,001 \end{aligned}$	$\begin{aligned} & 4,447 \\ & 2,896 \\ & 2,136 \end{aligned}$	$\begin{aligned} & 3,071 \\ & 2,678 \\ & 2,113 \end{aligned}$	21,750 11,317 7,834	$\begin{aligned} & 47,331 \\ & 33,109 \\ & 16,505 \end{aligned}$	20,695 rer 11, 51 6,474
2	Alabama	$\left\{\begin{array}{l}1980 \\ 1890 \\ 1880\end{array}\right.$	$\begin{aligned} & 1,355 \\ & 1,85 \\ & 862 \end{aligned}$	$\begin{aligned} & 2,660 \\ & 2,267 \\ & 1,942 \\ & 1,932 \end{aligned}$	700 200 20	2,170 1,500	1,086 11,606 778	$\begin{aligned} & 1,700 \\ & 974 \\ & 1,175 \end{aligned}$	14,500	$\begin{aligned} & 2,392 \\ & 1,575 \\ & 1,500 \end{aligned}$
3	Arizona.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{gathered} 799 \\ 769 \\ 968 \end{gathered}$	$\begin{array}{r} 1,146 \\ \begin{array}{r} 651 \\ 720 \end{array} \end{array}$			$\begin{array}{r} 700 \\ 814 \\ 1,106 \end{array}$	206:	
4	Arkansas.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	1,114 1,175 1,067	1,907 1,137 1,006	1,000	2,821 1,500	$\begin{array}{r}\text { \% } \\ \begin{array}{r}943 \\ 1,172 \\ 927\end{array} \\ \hline 1597\end{array}$	2,363 1,393 500 50	5,000	$\begin{array}{r}333 \\ \text { 500 } \\ 5,283 \\ \hline 8\end{array}$
8	California	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{gathered} 2,329 \\ 2,531 \\ 2,006 \end{gathered}$	$\begin{aligned} & 4,065 \\ & 4,591 \\ & 3,288 \end{aligned}$	$\begin{array}{r} 480 \\ 375 \\ 2,750 \end{array}$	$\begin{aligned} & 1,061 \\ & 619 \\ & 2,071 \end{aligned}$	$\begin{aligned} & 1,557 \\ & 1,942 \\ & 1,580 \end{aligned}$	$\begin{aligned} & 2,744 \\ & \begin{array}{l} 2,746 \\ 3,064 \\ 3,064 \end{array} \end{aligned}$	$\begin{gathered} 18,760 \\ 7,700 \\ 1,725 \end{gathered}$	2,975 1,650 1,425
6	Colorado.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	2,102 1,235 1,294 1,2	$\begin{aligned} & 3,738 \\ & 2,963 \\ & 1,884 \end{aligned}$	500 1,300	667 720 600	$\begin{aligned} & 1,595 \\ & 842 \\ & 1,070 \end{aligned}$	$\begin{aligned} & 3,888 \\ & 4,875 \\ & 2,475 \end{aligned}$	1,250	692
7	Connecticut	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{gathered} 2,952 \\ 3,180 \\ 1,917 \end{gathered}$			$\begin{array}{r} 1,333 \\ 745 \\ 850 \end{array}$	2, 101 1,921 1,737	4,931 9,264 2,583	$\begin{array}{r} 900 \\ 4,600 \\ 400 \end{array}$	4,450 1,275 794
8	Delaware	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	2,863 $\left.\begin{aligned} & 1,737 \\ & 1,434\end{aligned} \right\rvert\,$	$\begin{aligned} & 6,713 \\ & 4,790 \\ & 3,950 \end{aligned}$		1,700	2,084 1,310 928 9	3,075 1,250 1,200	
9	District of Columbia.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{array}{r} 11,896 \\ 18,891 \\ 6,485 \end{array}$	$\begin{gathered} 12,666 \\ 15,663 \\ 9,125 \end{gathered}$	1,000		$\begin{array}{r} 16,093 \\ 7,500 \\ 4,747 \end{array}$	1,380 1,050	11,628
10	Florida	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 1,158 \\ & 1,106 \\ & 739 \end{aligned}$	$\begin{aligned} & 2,537 \\ & 1,384 \\ & 1,800 \end{aligned}$	1,000 500	5,000 $\times 300$ 500	$\begin{array}{r} 872 \\ 1,088 \\ 719 \end{array}$	2,513		300
1i	Georgia.	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 2,074 \\ & 3,188 \\ & 1,259 \end{aligned}$	3,810 3,718 2,141 1,02	600	$\begin{aligned} & 3,771 \\ & 2,000 \\ & 1,100 \end{aligned}$	$\begin{aligned} & 1,619 \\ & 2,499 \\ & 1,069 \end{aligned}$	$\begin{aligned} & 3,966 \\ & 6,166 \\ & 3,706 \end{aligned}$	1,000 3,000	2,058 12,200 700
12	Idaho	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 678 \\ & 645 \\ & 628 \end{aligned}$	1,020	500	$\begin{aligned} & 929 \\ & 440 \\ & 500 \end{aligned}$	$\begin{aligned} & 615 \\ & 668 \\ & 664 \end{aligned}$	1,500		625
13	Illinois	$\left\{\begin{array}{l} 1890 \\ 1880 \\ 1880 \end{array}\right.$	$\begin{aligned} & 6,737 \\ & 6,359 \\ & 6,551 \end{aligned}$	$\begin{aligned} & 7,356 \\ & 6,401 \\ & 3,955 \end{aligned}$	$\begin{aligned} & 1,335 \\ & 450 \\ & 1,085 \end{aligned}$	2,371 $\left.\begin{array}{l}1,341 \\ 1,713\end{array}\right)$	$\begin{aligned} & 3,867 \\ & 4,007 \\ & 2,269 \end{aligned}$	$\begin{gathered} 14,032 \\ 8,941 \\ 4,463 \end{gathered}$	$\begin{array}{r} 73,193 \\ 64,407 \\ 1,500 \end{array}$	
14	Indiana	$\left\{\begin{array}{c} 1990 \\ 1890 \\ 1880 \end{array}\right.$	2,507 $\left.\begin{array}{l}2,096 \\ 1,552 \\ 1,52\end{array}\right)$	$\begin{aligned} & 2,814 \\ & 1,818 \\ & 1,913 \end{aligned}$	858	$\begin{aligned} & 1,883 \\ & 1,420 \\ & 2,250 \end{aligned}$	$\begin{aligned} & 1,530 \\ & 1,504 \\ & 1,464 \end{aligned}$	$\begin{gathered} 11,176 \\ 6,097 \\ 2,410 \end{gathered}$	7,770 4,867	3,867 ${ }^{3}, 8076$ 979
16	Indian Territory	$\left\{\begin{array}{l} 1990 \\ 1890 \\ 68880 \end{array}\right.$	$\begin{aligned} & 783 \\ & 999 \end{aligned}$	$\begin{array}{r} 558 \\ .500 \end{array}$			$\begin{array}{r} 819 \\ 1,062 \end{array}$	450		
16	Iowa	$\left\{\begin{array}{l} 1980 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 1,804 \\ & 1,548 \\ & 1,071 \end{aligned}$	$\begin{aligned} & 3,447 \\ & 2,404 \\ & 1,479 \end{aligned}$	$\begin{array}{r}2,746 \\ 2,400 \\ \hline 200\end{array}$	$\begin{aligned} & 2,908 \\ & 1,028 \\ & 633 \end{aligned}$	$\begin{array}{r}1,331 \\ 1,341 \\ 997 \\ \hline 1\end{array}$	$\begin{aligned} & 4,706 \\ & \begin{array}{l} \text { s,411 } \\ 1,4190 \end{array} \end{aligned}$	$\begin{aligned} & 3,441 \\ & 3,188 \\ & 3,000 \end{aligned}$	3,749 3,480 882
17	Kansas	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{array}{r}1,673 \\ 1,092 \\ \hline 961\end{array}$	$\begin{aligned} & 1,988 \\ & 1,913 \\ & 1,528 \end{aligned}$	800	$\begin{array}{r} 6,680 \\ 887 \\ 1,800 \end{array}$	$\begin{array}{r} 1,161 \\ 960 \\ 878 \\ 888 \end{array}$	6,296 $\begin{array}{l}\text {,317 } \\ 1,371 \\ 1,811\end{array}$	4,260 700	2,722 743 1,200
18	Kentucky	$\left\{\begin{array}{l} 1990 \\ 1890 \\ 1880 \end{array}\right.$	3,898 3,338 3,184 2,184	$\begin{aligned} & 6,097 \\ & \begin{array}{l} 5,406 \\ 3,045 \end{array} \end{aligned}$	$\begin{array}{r} 1,800 \\ 3,300 \\ 900 \end{array}$	$\begin{aligned} & 5,232 \\ & 2,886 \\ & 1,141 \end{aligned}$	$\begin{aligned} & 2,239 \\ & 2,700 \\ & 1,743 \end{aligned}$	8, 202 $\begin{array}{l}8,265 \\ 1,262\end{array}$ 1	2,167	$\begin{aligned} & 22,680 \\ & 13,456 \\ & 42,850 \end{aligned}$
19	Louisiana	$\left\{\begin{array}{l} 1990 \\ 1880 \\ 1880 \end{array}\right.$	1,875 $\begin{aligned} & 2,777 \\ & 1,330 \\ & 1,300\end{aligned}$	$\begin{aligned} & 4,652 \\ & \begin{array}{l} 6,550 \\ 3,460 \end{array} \end{aligned}$	1,200 1,000	$\begin{aligned} & 5,450 \\ & 5,200 \\ & 8,000 \end{aligned}$	1,227 2,282 669	$\begin{array}{r} 983 \\ 3,{ }_{423} \\ 475 \end{array}$	1,700	2,900 2,065 2,200
20	Maine .	$\left\{\begin{array}{l} 1980 \\ 1890 \\ 1880 \end{array}\right.$		$\begin{aligned} & 3,989 \\ & 2,770 \\ & 1,894 \end{aligned}$	480	$\begin{aligned} & 3,546 \\ & 1,350 \end{aligned}$	2,208 2,621 1,662	$\begin{gathered} 136,011 \\ 54 \\ 50,94 \\ 60,953 \end{gathered}$	881 11,000 1,500	2,050 50,463 400
21	Maryland	$\left\{\begin{array}{l} 1990 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 4,096 \\ & 3,162 \\ & 3,166 \end{aligned}$	$\begin{gathered} 13,753 \\ 12,42 \\ 9,472 \end{gathered}$		8,680	$\begin{aligned} & 2,492 \\ & 2,062 \\ & 2,508 \end{aligned}$	$\begin{aligned} & 6,217 \\ & 3,679 \\ & 1,976 \end{aligned}$	3,000 6,905 900	767 ${ }^{7,96}$ 1,413
22	Massachusetts	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{gathered} 12,755 \\ 8,208 \\ 5,122 \end{gathered}$	$\begin{gathered} 11,539 \\ 7,596 \\ 7,789 \end{gathered}$	400	$\begin{aligned} & 4,621 \\ & 3,634 \\ & 2,671 \end{aligned}$	$\begin{aligned} & 7,569 \\ & 5,368 \\ & 4,273 \end{aligned}$	$\begin{gathered} 26,555 \\ 10,795 \\ 7,870 \end{gathered}$	$\begin{gathered} \begin{array}{c} 24,206 \\ 25,223 \\ 3,157 \end{array} \end{gathered}$	13,669 18 18,611 1,406
23	Michigan.	$\left\{\begin{array}{l} 1990 \\ 1880 \\ 1880 \end{array}\right.$	$\begin{aligned} & 3,402 \\ & 2,567 \\ & 1,465 \end{aligned}$	$\begin{aligned} & 6,298 \\ & 4,046 \\ & 2,167 \end{aligned}$	$\begin{aligned} & 1,595 \\ & 1,790 \\ & 2,083 \end{aligned}$	8,352 1,388 1,322	$\begin{aligned} & 1,441 \\ & 1,843 \\ & 1,847 \end{aligned}$	$\begin{array}{r} 15,139 \\ 7,709 \\ 1,958 \end{array}$	10,080 10,52 6,875	a, 2, 128 3,611 1,707
24	Minnesota.	$\left\{\begin{array}{l} 1990 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 3,134 \\ & 2,610 \\ & 1,116 \end{aligned}$	$\begin{aligned} & 6,824 \\ & 6,014 \\ & 3, j 622 \end{aligned}$		10,629 15,000	$\begin{array}{r} 1,843 \\ 1,667 \\ 909 \\ \hline 909 \end{array}$	$\begin{aligned} & 7,539 \\ & 3,546 \\ & 5,030 \end{aligned}$	$\begin{aligned} & 2,275 \\ & 1,000 \end{aligned}$	$\begin{aligned} & 14,104 \\ & 26,346 \\ & \hline 475 \end{aligned}$
25	Mississippi.	$\left\{\begin{array}{c} 1990 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 949 \\ & 988 \\ & 906 \end{aligned}$	$\begin{aligned} & 1,258 \\ & 1,225 \\ & 840 \end{aligned}$	$\begin{aligned} & 602 \\ & 500 \\ & 733 \end{aligned}$	540 400 40	$\begin{aligned} & 914 \\ & 894 \\ & 873 \end{aligned}$	$\begin{aligned} & 1,663 \\ & 850 \\ & 2.033 \end{aligned}$		$\begin{array}{r} 105 \\ 1,50 \\ 1,018 \end{array}$

[^120]${ }^{\circ}$ Jnclndes 50,000 circulation for 1 weekly, 1 semimonthly, and 1 monthly not separately returned. 1 ; Michigan, 1 ; New York, 3 ; Pennsylvania, 1 .

Lation PER ISSUE, CLASSIFIED ACCORDING TO PERIOD OF ISSUE, BY STATES AND TERRITORIES, 1880 TO 1900.

4 Includes 100,000 circulatiou for 4 weeklies, 13 monthlies, and 12 quarterlies, not . Arerage circulation, all classes, 2,030; weekly, 2,030. Aggregate circulation, all Includes 1 semiannual.
${ }^{6}$ Indian Territory and
sses, 4,060 ; weekly, 4,060 .

Table 35.-COMPARATIVE STATEMENT OF NEWSPAPERS AND PERIODICALS, AVERAGE AND AGGREGATE CIRCULA-

26	States and territories.	Year.	average circulation per issur.							
			All classes.	Daily.	Triweekly.	$\begin{gathered} \text { Semi- } \\ \text { weekly. } \end{gathered}$	Weekly.	Monthly.	Quarterly.	All other classes.
	Missouri	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	6,847 3,699 2,041	8,810 6,285 3,228	r 1,300 1,265	$\begin{array}{r} 23,511 \\ 4,100 \\ 1,100 \end{array}$	$\begin{aligned} & \mathbf{2 , 6 8 0} \\ & \mathbf{2}, 610 \\ & 1,760 \end{aligned}$	$\begin{array}{r} 13,649 \\ 8,558 \\ 3,418 \end{array}$	$\begin{array}{r} 63,932 \\ 15,056 \\ 800 \end{array}$	$\begin{aligned} & 9,542 \\ & 2,566 \\ & 2,823 \end{aligned}$
27	Montana	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	1,429 1,327 1,388	3,833 2,130 $\mathbf{3 0 4}$	960	2,345 1,250	$\begin{array}{r} 887 \\ 1,209 \\ 1,660 \end{array}$	2, 165	7,000	1,000
28	Nebraska..	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	2,036 1,425 888	3,825 2 2,732 1,553	1,200	$\begin{array}{r} 3,313 \\ 450 \\ 600 \end{array}$	1,433 1,134 791	$\begin{aligned} & 9,141 \\ & 7,623 \\ & 2,173 \end{aligned}$	983	2,421 2,614 600
29	Nevada.	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	$\begin{aligned} & 619 \\ & 969 \\ & 841 \end{aligned}$	$\begin{array}{r} 581 \\ 1,450 \\ 1,225 \end{array}$	160	583	601 648 561	500 600		
30	New Hampshire	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	2, 407 2,352 2,296	$\begin{aligned} & 3,030 \\ & 2,369 \\ & 907 \end{aligned}$	2,625	725	2,372 2,481 1,800	$\begin{aligned} & 1,050 \\ & 1,994 \\ & 6,614 \end{aligned}$		7,400
31	New Jersey.	$\cdot\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	10,098 5,653 1,306	4, 556 8,420 $\mathbf{2 , 1 1 6}$	650 750	950 $\mathbf{2 , 2 0 0}$ 900	1,681 1,499 1,112	1,703 49,348 1,811	$\begin{array}{r} 34,126 \\ 1,042 \\ 6,000 \end{array}$	$\begin{array}{r} 2,251,500 \\ 1,433 \\ 517 \end{array}$
32	New Mexico.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	772 681 530	1,278 1,284 667			$\begin{aligned} & 714 \\ & 604 \\ & 484 \end{aligned}$	509	800	1,160 600
33	New York	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	25,475 11,083 7,222	$\begin{array}{r} 18,826 \\ 13,081 \\ 9,059 \end{array}$	18,272 3,638 1,128	$\begin{aligned} & 8,863 \\ & 3,256 \\ & 4,371 \end{aligned}$	$\begin{array}{r} 14,458 \\ 6,848 \\ 5,265 \end{array}$	$\begin{aligned} & 62,232 \\ & 17,697 \\ & 11,040 \end{aligned}$	$\begin{aligned} & 65,046 \\ & 34,943 \\ & 19,736 \end{aligned}$	$\begin{array}{r} 42,300 \\ 12,689 \\ E, 840 \end{array}$
34	North Carolina.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{array}{r}1,440 \\ 1,319 \\ 894 \\ \hline\end{array}$	1,716 1,166 793	375	$\begin{array}{r} 1,633 \\ 667 \\ 700 \end{array}$	$\begin{aligned} & 1,392 \\ & 1,371 \\ & 878 \end{aligned}$	$\begin{aligned} & 1,205 \\ & 1,810 \\ & 1,125 \end{aligned}$	$\begin{aligned} & 700 \\ & 500 \end{aligned}$	$\begin{aligned} & 1,392 \\ & 1,275 \\ & 1,308 \end{aligned}$
35	North Dakota	$\left(\begin{array}{l}1900 \\ 1890 \\ 21880\end{array}\right.$	999 993	2,002 1,317	3,550 1,000	843 897	2,775		
36	Ohio..	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	7,187 6,051 4,345	7,204 4,130 4,507	$\begin{array}{r}1,663 \\ 1,404 \\ \hline 838\end{array}$	$\begin{aligned} & 3,984 \\ & \mathbf{2 , 3 2 8} \\ & 1,563 \end{aligned}$	$\begin{aligned} & 3,484 \\ & 3,144 \\ & 2,460 \end{aligned}$	$\begin{array}{r} 15,788 \\ 9,024 \\ 7,880 \end{array}$	$\begin{array}{r} 119,707 \\ 58,720 \\ 51,109 \end{array}$	$\begin{aligned} & \mathbf{3 5}, 536 \\ & 41,684 \\ & 17,689 \end{aligned}$
37	Oklahoma.	$\left\{\begin{array}{l} 1900 \\ 1890 \\ s_{1880} \end{array}\right.$	1,092 698	1,630		800	1,041	1,383		600
38	Oregon	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	1,659 1,658 1,320	2,438 2,046 1,581	1,058 1,400	1,343 1,542 1,133	$\begin{aligned} & \mathbf{2 , 7 7 9} \\ & 2,500 \\ & 2,665 \end{aligned}$	1,600	2,200 500
39	Pennsylvania	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	8,264 7,462 6,628	9,783 8,682 6,285	$\begin{aligned} & \mathbf{1}, 641 \\ & 1,900 \\ & 1,500 \end{aligned}$	$\begin{aligned} & 6,003 \\ & 6,006 \\ & 4,600 \end{aligned}$	$\begin{aligned} & \mathbf{4 , 1 8 1} \\ & \mathbf{4 , 0 6 7} \\ & 3,265 \end{aligned}$	$\begin{aligned} & 18,240 \\ & 10,390 \\ & 10,926 \end{aligned}$	$\begin{aligned} & 47,424 \\ & 43,912 \\ & 29,180 \end{aligned}$	$\begin{aligned} & 10,146 \\ & 16,726 \\ & 20,096 \end{aligned}$
40	Rhode Island.	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	4, 266 2,767 2,490	9,904 7,551 6,176	100	$\begin{array}{r} 2,251 \\ \begin{array}{r} 426 \\ 700 \end{array} \end{array}$	$\begin{aligned} & 1,794 \\ & 1,989 \\ & 1,984 \end{aligned}$	$\begin{aligned} & 2,112 \\ & \mathbf{1 , 5 7 4} \\ & \mathbf{1}, 013 \end{aligned}$	3,000	400
41	South Carolina.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{array}{r}1,384 \\ 1,448 \\ \hline 971\end{array}$	$\begin{aligned} & 2,693 \\ & 2,854 \\ & 1,937 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 450 \end{aligned}$	$\begin{array}{r} 1,655 \\ 463 \\ 500 \end{array}$	$\begin{array}{r}1,327 \\ 1,341 \\ \hline 969\end{array}$	800 566	$\begin{array}{r} 3,500 \\ 700 \end{array}$	1,500
42	South Dakota	$\left\{\begin{array}{r} 1980 \\ 1890 \\ 21880 \end{array}\right.$	1,066 818	1,029		1,600 800	801 745	3,822 1,715		9,422 4,000
43	Tennessee.	$\left\{\begin{array}{l}1900 \\ 1880 \\ 1880\end{array}\right.$	$\begin{array}{r}12,474 \\ 6,622 \\ 1,822 \\ \hline\end{array}$	$\begin{array}{r} 10,357 \\ 4,608 \\ 3,099 \end{array}$		1,283 2,070 850	6,076 4,474 1,714	$\begin{aligned} & 9,644 \\ & 4,929 \\ & 2,385 \end{aligned}$	$\begin{array}{r} 154,090 \\ 82,583 \\ 2,450 \end{array}$	$\begin{aligned} & 2,588 \\ & 3,213 \\ & 1,223 \end{aligned}$
44	Texas	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{aligned} & 1,461 \\ & 1,506 \\ & 1,145 \end{aligned}$	$\begin{aligned} & 1,778 \\ & 2,074 \\ & 1,262 \end{aligned}$	$\begin{array}{r} 480 \\ 600 \end{array}$	$\begin{array}{r}4,609 \\ 1,207 \\ \hline 725\end{array}$	$\begin{array}{r}1,266 \\ 1,358 \\ 938 \\ \hline\end{array}$	1,861 2,831 5,504	$\begin{aligned} & 1,250 \\ & 1,000 \end{aligned}$	$\begin{array}{r} 2,563 \\ 10,000 \\ 650 \end{array}$
45	Utah	$\left\{\begin{array}{l} 1900 \\ 1890 \\ 1880 \end{array}\right.$	1,712 2,429 1,904	$\begin{aligned} & 4,027 \\ & 2,281 \\ & 1,987 \end{aligned}$	2,000	$\begin{aligned} & \mathbf{4}, 376 \\ & \mathbf{2}, 868 \\ & \mathbf{2}, 0.50 \end{aligned}$	735 1,367 1,707	$\begin{aligned} & 3,450 \\ & 3,000 \\ & 1,525 \end{aligned}$	75	$\begin{aligned} & 5,500 \\ & 3,600 \\ & 3,500 \end{aligned}$
46	Vermont	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{aligned} & 2,388 \\ & 2,965 \\ & 2,245 \end{aligned}$	$\begin{aligned} & 2,967 \\ & 2,140 \\ & 1,050 \end{aligned}$		4, 200	$\begin{aligned} & 2,080 \\ & 1,729 \\ & 1,492 \end{aligned}$	$\begin{array}{r} 3,525 \\ 13,800 \\ 17,167 \end{array}$	300 1,100	2,600 286
47	Virginia..	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	3,075 1,871 1,449	$\begin{aligned} & 2,496 \\ & 2,243 \\ & 1,892 \end{aligned}$	$\begin{array}{r} 1,033 \\ 192 \\ 740 \end{array}$	$\begin{array}{r} 2,172 \\ 620 \\ 699 \end{array}$	$\begin{aligned} & 2,315 \\ & 1,682 \\ & 1,073 \end{aligned}$	4,213 3,127 2,363	$\begin{array}{r} 20,083 \\ 5,833 \\ 1,767 \end{array}$	$\begin{aligned} & \mathbf{3 , 2 3 3} \\ & 1,250 \\ & 6,308 \end{aligned}$
48	Washington	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{array}{r}1,643 \\ 1,420 \\ \hline 698\end{array}$	$\begin{array}{r}6,638 \\ 2,720 \\ \hline 367\end{array}$	500	2,617	1,052 1,179 745	1,972 2,279	2,650	1,838 450
49	West Virginir	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	1,284 1,164 868	$\begin{aligned} & \mathbf{2 , 2 9 4} \\ & 2,511 \\ & 2,050 \end{aligned}$	600	$\begin{array}{r}1,225 \\ 250 \\ 625 \\ \hline 7\end{array}$	$\begin{array}{r} 1,205 \\ 1,065 \\ 852 \end{array}$	582 1,100 961	1,000	$\begin{array}{r} 1,200 \\ 425 \\ 150 \end{array}$
50	Wisconsin.	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{aligned} & 2,397 \\ & 2,310 \\ & 1,404 \end{aligned}$	$\begin{aligned} & 3,565 \\ & \mathbf{2 , 2 8 9} \\ & 1,856 \end{aligned}$	1,000 1,267	$\begin{array}{r} 7,714 \\ 44,368 \\ 700 \end{array}$	$\begin{aligned} & 1,686 \\ & 1,762 \\ & 1,230 \end{aligned}$	$\begin{aligned} & 4,523 \\ & 2,586 \\ & 1,814 \end{aligned}$	13,920 6,875	$\begin{aligned} & 6,167 \\ & 8,305 \\ & 4,138 \end{aligned}$
1	Wyoming..	$\left\{\begin{array}{l}1900 \\ 1890 \\ 1880\end{array}\right.$	$\begin{aligned} & 798 \\ & 975 \\ & 632 \end{aligned}$	$\begin{aligned} & 825 \\ & 924 \\ & 662 \end{aligned}$	600	493	$\begin{aligned} & 653 \\ & 988 \\ & 617 \end{aligned}$	2,333		

TION PER ISSUE, CLASSIFIED ACCORDING TO PERIOD OF ISSUE, BY STATES AND TERRITORIES, 1880 TO 1900-Cont'd.

${ }^{3}$ Indian Territory and Oklahoma were reported as Indian Territory in 1880. Average circulation, all classes, 2,030; weekly, 2,030. Aggregate circulation, all classes, 4,060; weekly, 4,060.
${ }^{4}$ Includes 1 semiannual

Consideration of Tables 33, 34, and 35 permits a significant grouping of facts relating to aggregate circulation and to the circulation of daily, weekly, and monthly publications. Of a total of $114,299,334$ aggregate circulation per issue for all newspapers and periodicals, 10 states--New York, Pennsylvania, Illinois, Ohio, Maine, Massachusetts, Missouri, Tennessee, New Jersey, and Michigan, ranking in the order given-supplied 79.5 per cent in $1880,79.8$ per cent in 1890 , and 81.8 per cent in 1900. Of a total of $15,102,156$ aggregate circulation per issue for all daily newspapers, 10 statesNew York, Pennsylvania, Illinois, Ohio, Massachusetts, Missouri, California, Indiana, Michigan, and Minnesota, ranking in the foregoing order-supplied 78.1 per cent in 1880, 77.1 per cent in 1890, and 78.9 per cent in 1900 . Of a total of $39,852,052$ aggregate circulation per issue for all weekly newspapers and periodicals, 10 states-New York, Illinois, Pennsylvania, Ohio, Massachusetts, Missouri, Tennessee, Iowa, Minnesota, and Indiana, ranking in the order given-supplied 75.1 per cent in 1880, 71.9 per cent in 1890, and 76.6 per cent in 1900 . Of a total of $39,519,897$ aggregate circulation per issue of monthly newspapers and periodicals, 10 states-New York, Maine, Pennsylvania, Illinois, Massachusetts, Ohio, Missouri, Michigan, Indiana, and Minnesota, ranking in the order named-supplied 91 per cent in 1880, 87.4 per cent in 1890, and 92.5 per cent in 1900 . These facts are shown in Tables $36,37,38$, and 39.
Table 36.-Aggregate circulation per issue of all classes in 10 states, and per cent that aggregate circulation in each forms of the total, 1880 to 1900.

STATES.	agGregate circulation perissue.			PER CENT AGGREGATE CIRCULATION IN EACH - STATE FORMS OF TOTAL FOR THE UNITED states.		
	1900	1890	1880	1900	1890	1880
Total.	93, 446, 706	55, 202, 624	25, 276, 815	81.8	79.8	79.5
New York..	37,626, 095	18,031, 991	9, 374, 134	32.9	26.1	29.5
Pennsylvania	11, 280, 367	9,472, 083	5, 031, 061	9.9	13.7	15.8
Illinois.	10, 429, 368	7, 891, 219	2,421, 275	9.1	11.4	7.6
Ohio	7, 467, 358	5,639,781	3,093,981	6.5	8.2	9.7
Maine	6,484, 065	2, 442,046	1,214, 460	5.6	3.5	3.8
Massachusetts	6, 199, 127	4,662,159	2,012,929	5.4	6.7	6.3
Missouri	5, 495, 802	2, 615, 135	965,285	4.8	3.8	3.0
Tennessee.	3, 131,017	1, 450, 118	293, 288	2.7	2.1	0.9
New Jersey	3,099, 104	1,486,777	249, 478	2.6	2.2	0.8
Michigan	2, 374, 403	1,511,915	620,974	2.1	2.2	2.0

Table 37.-Aggregate circulation per issue of daily newspapers in 10 states, and per cent that aggregate circulation in each forms of the total, 1880 to 1900.

states.	aggregate circulation per			per cent aggregate circulation in each STATE FORMS OF TO TAI, FOR THE UNITED states.		
	1900	1890	1880	1900	1890	1880
Total.	11,921, 621	6, 467, 601	2,786,950	78.9	77.1	78.1
New York.	3, 896, 967	2,119, 101	996,561	25.8	25.3	27.9
Pennsylvania	1,917,426	1,241,514	578, 227	12.7	14.8	16.2
	1,449,087	774,486 499,712	270, 923	9.6	9.2	7.6
Massachusetts	1, 130,820	445, 781	216,336 280,399	8.15	6.0 5.3	6.1 7
Missouri	810,492	428,094	122, 660	5.5	5.3 5.1	3.9
California.	475, 596	399, 454	157, 814	${ }_{3.1}$	4.8	4.4
Indiana.	345, 404	166, 051	72, 698	2.3	2.0	2.0
Michigan	370, 848	212,975	62, 839	2.5	2.5	1.8
Minnesota	300, 266	180, 433	28,493	2.0	2.2	0.8

Table 38.-Aggregate circulation per issue of weekly newspapers and periodicals in 10 states, and per cent that aggregate circulation in each forms of the total, 1880 to 1900.

states.	aggregate clrculation perissue.			PER CENT AGGREGATE CIRCULATION IN EACH state forms of total For the united STATES.		
	1900	1890	1880	1900	1890	1880
Total.	30,515, 200	20, 809, 936	12, 202, 266	76.6	71.9	75.1
New York	12,607,099	6,347, 827	4, 253, 908	31.6	21.9	26.2
Illinois.	3, 866, 983	3, 437, 663	1,527,042	9.7	11.9	9.4
Pennsylvania	3,691, 954	3,135, 664	1,998,340	9.3	10.8	12.3
Ohio .	2,411, 172	1,996,400	1,328, 133	6.1	6.9	8.2
Massachusetts	2, 066, 369	1,802, 125	1,089,515	5.2	6.2	6.7
Missouri	1,862,856	1,346,714	645, 747	4.7	4.7	4.0
Tennessee	1,136,199	756, 105	224,503	2.9	2.6	1.4
Iowa	1,105,666	795,077	449, 550	2.8	2.7	2.8
Minnesota	908, 478	518,563	167,206	2.3	1.8	1.0
Indiana.	858,424	673,798	518,322	2.2	2.3	3.2

Table 39.-Aggregate circulation per issue of monthly publications in 10 states, and per cent that aggregate circulation in each forms of the total, 1880 to 1900.

STATES.	agGregate circulation perISSUE.			PER CENT AGGREGATE GIRCULATION IN EACH STATE FORMS OF TOTAL FOR THE UNITED states.		
	1900	1890	1880	1900	1890	1880
Total.	36,575, 138	17, 153, 712	7,417,008	92.5	87.4	91.0
New York	16,927, 062	6,990,400	2, 903,527	42.8	35.6	35.7
Maine.	$6,120,490$	1,964, 659	1,036,200	15.5	10.0	12.7
Pennsylvania	3,246, 779	2, 763, 798	1,606,073	8.2	14.1	19.7
Illinois...	3,072,932	1,627, 250	401,646	7.8	8.3	4.9
Massachusetts	2,257,142	1, 327, 740	574,538	5.7	6.8	7.1
Ohio	1,420,501	956,522	622,531	3.6	4.9	7.6
Missouri	1, 378,586	624, 767	153,800	3.5	3.2	19
Michigau	984,025	377, 734	33, 293	2.5	1.9	0.4
Indiana.	715,292	371,909	60,250	1.8	1.9	0.7
Minnesota	452,329	148, 933	25,150	1.1	0.8	0.3

Caktogram 1.-Ten states possessing 81.8 per cent of aggregate circulation per issue of all publications, 1900.

By reference to cartogram 1, the geographic relation of the preponderance exerted by the 10 leading states is clearly perceived. The 10 states which possess 81.8 per cent of the aggregate circulation of all publications form a belt beginning at the eastern border of Kansas, and extending-with a break at Indianathrough Massachusetts, Maine, New York, and New. Jersey to the Atlantic Ocean. From this belt Michigan is an offshoot northward and Tennessee southward. The 10 states leading in circulation of dailies form almost the same belt, made more marked by the addition
of Indiana; California and Minnesota, also, are added, and Maine, New Jersey, and Tennessee omitted. The 10 states possessing the largest weekly and monthly circulation per issue are similar in general. location, showing a band which extends from the Kansas border to Maine-Maine and Minnesota being isolated in the monthly class.
The tabular statements relating to this subject show that the production of monthlies is centralized in a few states to a greater degree than that of any other class of periodicals, 10 states possessing 92.5 per cent of the aggregate circulation. The production of weekly periodicals is most decentralized, perhaps because the weekly is the publication of the average community, and as a class is less the particular product of any state, or group of states, than any other class of publications.

While the figures presented in the foregoing comparisons indicate clearly the great importance of a small number of states in the aggregate circulation per issue, as well as in the circulation per issue for different classes, the fact is important that in number of establishments, capital, and value of products this preponderance is not so clear'y maintained. The states already shown to possess more than four-fifths of the aggregate circulation of all newspapers and periodicals, reported but 45.4 per cent of all establishments, namely, 8,279 out of a total of 18,226 . Moreover, these states showed a steady and considerable decrease in the proportionate number of establishments, having 54.2 per cent of the total in $1880,50.7$ per cent in 1890 , and 45.4 per cent in 1900. They were not the 10 states having the largest numbers of establishments. The 10 states having the largest number of establishments reported but 60.4 per cent of the whole number in the United States in 1880, 59.2 per cent in 1890, and 56.8 per cent in 1900. Thus the relation which the number of establishments in the states selected bore to the whole number in 1880, 1890, and 1900 was also a declining one. It is clear, therefore, that in the last two decades the number of establishments has increased more rapidly in some states with a comparatively small number of establishments than in those possessing the largest number. In the latter class of states there appears to have been an actual decrease in number of establishments, though, as previously shown, not in actual circulation-an evidence, possibly, of consolidation.

Of the total capital, the 10 states possessing the largest circulation per issue of all publications, reported 65.6 per cent in 1890 and 68.9 per cent in 1900 . Of the total value of products, they reported 69.8 per cent in $1880,69.6$ per cent in 1890, and 71.1 per cent in 1900.

THE RELATION OF CIRCULATION TO POPULATION.
It has been pointed out, in connection with Tables 29, 30 , and.33, that the circulation of newspapers and periodicals reported by each state and by each large city,
is in reality a product not governed by local consumption, but intended for distribution regardless of state lines, distances being limited only by the ability and energy of the producers in securing patronage. While the circulation reported by each state is of great inıportance as representing a product, it is difficult to dissociate this product from the state's own requirement, and to remember that of the total circulation reported, the state itself may use but a fraction. In some respects the number of publications forms a more reliable basis of comparison than circulation-the latter being often so exceptional as to make the standing of the state or territory appear very different from what it really is. In Table 40 the number of publications has been used as a basis, except in the last two columns, which are inserted because they furnish several interesting conclusions.

Table 40.-Number of publications to each 1,000 inhabitants, by states, per cent that number of publications in each stote forms of total number, and per cent of increase in aggregate circulation per issue, 1890 and 1900.

states.	Number of publications to each 1,000 inhabitants.		PER CENT THAT NUMBER OF PUBLICATIONS in Each state FORMS OF TOTAL NUMBER.		PER GENT OF INCREASE IN AGOREGATE CIRCULATION PER ISSUE.	
	1900	1890	1900	1890	$\begin{aligned} & \mathbf{1 8 9 0} \\ & \text { to } \\ & 19000 \end{aligned}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$
Alabama	0.10	0.09	1.0	0.9	16.8	165.2
Arizona	0.35	0.49	0.2	0.2	52.6	64.6
Arkansas	0.18	0.15	1.3	1.1	36.4	86.2
Callfornia	0.42	0.38	3.4	3.1	25.8	79.9
Colorado	0.46	0.45	1.4	1.2	126.9	139.9
Connecticu	0.17	0.21	0.8	1.0	17.8	108.7
Delaware.	0.16	0.19	0.2	0.2	54.5	61.5
District of Columb	0.25	0.07	0.4	0.1	155.6	50.1
Florida	0.18	0.25	0.5	0.7	4.7	292.4
Georgia.	0.12	0.13	1.5	1.5	${ }^{125.1}$	172.5
Idaho	0.45	0.39	0.4	0.2	129.4	276.5
llinois	0.32	0.32	8.5	8.3	32.2	225.9
Indiana	0.33	0.28	4.6	4.2	62.3	96.6
Indian Territory	0.16	0.05	0.3	0.1	457.4	
Iowa.	0.47	0.37	5.7	4.7	73.2	98.8
Kansas	0.47	0.49	3.8	4.7	51.2	169.6
Kentucky	0.13	0.12	1.5	1.5	51.0	83.1
Louisiana	0.12	0.12	0.9	0.9	${ }^{116.2}$	172.1
Maine	0.25	0.22	1.0	1.0	163.5	101.1
Maryland	0.14	0.12	0.9	0.8	73.4	15.5
Massachusetts	0.17	0.25	2.7	3.8	33.0	131.6
Michigan..	0.29	0.28	3.8	4.0	57.0	143.5
Minnesota	0.36	0.30	3.4	2.6	90.6	360.7
Mississippi	0.11	0.09	1.0	0.8	56.3	22.9
Missonri..	0.30	0.26	5.2	4.7	110.2	170.9
Montana	0.37	0.39	0.5	0.3	84.3	231.2
Nebraska	0.50	0.42	2.9	3.0	72.4	311.1
Nevada..	0.83	0.33	0.2	0.1	24.9	${ }^{147.6}$
New Hampshire	0.21	0.29	0.5	0.7	118.9	40,4
New Jersey .	0.16	0.18	1.6	1.8	102.4	496.0
New Mexico.	0.22	0.22	0.2	0.2	40.0	264.4
New York	0.20	0.27	8.1	10.9	108.7	92.4
North Carolina	0.11	0.08	1.1	0.9	61.7	68.8
North Dakota	0.44	0.48	0.8	0.6	60.7	
Ohlo.......	0.25	0.25	5.7	6.3	32.4	82.3
Oklahoma	0.28	0.34	0.6	0.1	719.4	
Oregon	0.45	0.40	1.0	0.8	49.4	143.5
Pennsylvania	0.22	0.24	7.5	8.5	19.1	88.3
Rhode sland.	0.09	0.16	0.2	0.4	14.6	53.3
South Carolina	0.09	0.07	0.6	0.6	33.1	74.1
South Dakota	0.54	0.53	1.2	1.2	63.1	
Tennessee.	0.12	0.12	1.4	1.5	115.9	394.4
Texas	0.24	0.20	4.0	2.9	60.3	150.0
Utah	0.26	0.13	0.4	0.2	41.3	88.0
Vermont	0.23	0.21	0.4	0.5	19.1	59.4
Virginia.	0.11	0.11	1.1	1.2	81.3	34.9
Washington.	0.38	0.41	1.1	1.0	50.2	1,120.8
West Virginia	0.18	0.15	1.0	0.8	73.4	$\stackrel{51.6}{ }$
Wisconsin.	0.29	0.27 0.41	3.3 0.2		35.4 34.1	141.3 328.6
Wyoming	0.45	0.41	0.2	0.2	34.1	328.6

[^121]All but 16 states and territories showed an increase, luring the past decade, in the number of publications to each 1,000 inhabitants, but in the majority of cases the increase was slight.

The number of publications to each 1,000 inhabitants was greatest in Nevada, where there was a marked decline in population-showing that the decreasing communities in that state retained local publications already in existence.

The states and territories showing, in 1900, an increase of more than 100 per cent in aggregate circulation per issue, were Colorado, the District of Columbia, Idaho, Indian Territory, Maine, Missouri, New Jersey, New York, Oklahoma, and Tennessee. Of these, Colorado, Idaho, Indian Territory, and Oklahoma doubtless owed their increase to the influx of population during the decade, and Maine and New Jersey to special publications producing a condition which is to some extent misleading for comparative purposes. The decline in the per cent of increase in aggregate circulation per issue, as compared with that shown in 1890 , is very marked, appearing in no less than 39 states and territories. Upon this fact, however, the greater accuracy of enumeration in 1890, as compared with 1880 , has an important bearing.

Table 41 presents the figures for the 16 states and territories showing a decrease in the number of publications to each 1,000 inhabitants.

Table 41.-Comparison of increase in aggregate circulation per issue with increase in population, for the 16 states and territories showing decrease in number of publications per 1,000 inhabitants, 1900.

STATES AND TERRITORIES.	Per cent of increase in aggregate circulation per issue.	Per cent of increase in population.
Arizona	52.6	68.0
Connecticut	17.8	21.7
Delaware.	54.5	9.6
Florida .	4.7	35.0
Georgia.	125.1	20.6
Kansas.	90.9	2.9
Massachusetts	33.0	25.3
Montana	84.3	75.2
New Hampshire.	118.9	9.3
New Jersey.	102.4	30.4
New York....	108.7	21.1
North Dakota	60.7	70.9
Oklahoma.	719.4	518.2
Pernsylvania	19.1	19.9
Rhode Island.	14.6	24.0
Washington.	50.2	46.5

It appears that in 8 of these 16 states and territories in which the number of publications per 1,000 inhabitants decreased, the circulation of existing publications nevertheless increased more rapidly than the population. These were Delaware, Kansas, Massachusetts, Montana, New Jersey, New York, Oklahoma, and Washington. This fact indicates clearly an extension of the circulation of existing publications, rather than the establishment of new ones. This tendency is not confined to the 7 states and the territory mentioned, but is characteristic of many of the states, especially the older ones.
Table 42 shows the total number of publications classified according to period of issue and character, by states and territories, from 1880 to 1900.

Table 42.-COMPARATIVE STATEMENT OF NEWSPAPERS AND PERIODICALS, NUMBER OF PUBLICATIONS

BY PERIOD OF ISSUE AND CHARACTER OF PUBLICATION, BY STATES AND TERRITORIES, 1880 TO 1900.

Table 42.-COMPARATIVE STATEMENT OF NEWSPAPERS AND PERIODICALS, NUMBER OF PUBLICATIONS BY

North Dakota and South Dakota reported as Dakota in 1880.

PERIOD OF ISSUE AND CHARACTER OF PUBLICATION, BY STATES AND TERRITORIES, 1880 TO 1900—Continued.

Table 42.-COMPARATIVE STATEMENT OF NEWSPAPERS AND PERIODICALS, NUMBER OF PUBLICATIONS BY

	States and territories.	Year.	Total number.	PERIOD OF Isgue.								
					Daily.							
				Total.	Morning.	Evening.						
49		[1900	176	19	6	13		4	141	11		1
	West Virginia	$\left\{\begin{array}{l}1890 \\ 1880\end{array}\right.$	112	9 2	$\stackrel{4}{2}$		\cdots	1 2	95 96	6	$\cdots{ }^{1}$	1
50	Wisconsin	$\left\{\begin{array}{l}1900 \\ 1890\end{array}\right.$	695 456	60 47	15 14	45 33	. $\begin{gathered}1 \\\end{gathered}$	21 3	463 373	42 20	5 3	3 10
		1880	340	21	9	12	3	2	283	20	11
51	Wyoming	$\left\{\begin{array}{l}1900 \\ 1890\end{array}\right.$	42 25	4 5	1	3 3	1	2	32 20	3		
		(1880	11	3	2	1			8			

PERIOD OF ISSUE AND CHARACTER OF PUBLICATION, BY STATES AND TERRITORIES, 1880 TO 1900—Continued.

RELATION OF WEEKLY AND DAILY NEWSPAPERS TO POPULATION.

From Table 42 may be derived a comparison of the relation of weekly and daily newspapers to population, by states and territories, as follows:

Table 43.-COMPARISON OF THE NUMBER OF INHABITANTS TO EACH WEEKLY AND DAILY PUBLICATION, BY STATES AND TERRITORIES, 1890 AND 1900.

States and territories.	POPULATION.		Weekly publications.				daily publications.			
			Number.		Population to each.		Number.		Population to each.	
	1900	1890	1900	1890	1900	1890	1900	1890	1900	1890
United States.										
Alahama.	1, 828,697	1, 513, 017	143	108	12,788	14,009	19	14	96, 247	108, 073
Arizona.	122,931	59,620	32	21	3, 842	2, 839	10	8	12,293	7,452
Arkansas.	1,311,564	1,128, 179	199	142	6,591	7,945	20	14	65,578	80,584
California.	1,485,053	1, 208,130	397	311	3,741	3,885	117	87	12,693	13,887
Colorado.	539, 700	412,198	179	153	3,015	2,694	42	${ }^{23}$	12,850	17,922
Connecticut	908, 420	746, 258	74	95	12, 276	7,855	44	34	20,646	21,949
Delaware...........	184, 735	168,493	21	23	8,797	7,320	${ }_{6}^{6}$	5	30,789	33,699
District of Columbia.	278,718 528,542	230,392 391,422	31 76	11 80	8,991 $\mathbf{6 , 9 5 5}$	20,945 4,893	8 11	+ 4	34,840 48,049	57,598 32,618
Georgia	2,216,331	1.837,353	205	177						
Idaho..	2, 161,772	1,84, 385	59	128	10,742	10,381 3,014	5	19 3	-32, 354	96,128
Illinois.	4, 821,550	3,826, 351	1,000	858	4, 822	4,460	197	121	24,475	31,623
Indiana.	2,516,462	2, 192, 404	${ }^{1} 561$	448	4,486	4,894	156	92	16,131	23, 830
Indian Territory..	392, 060		56	,	7,001		6	1	65, 343	
10wa.	2,231,853	1,911,896	831	593	2,686	3,224	65	46	34, 336	41, 263
Kansas.	1,470, 495	1,427,096	563	621	2,612	2,298	53	43	27,745	33,188
Kentucky.	2,147, 174	1, 858, 635	190	165	11, 301	11, 264	27	25	79,525	74, 345
Louisiana.	1,381,625	1,118,587	112	99	12,336	11,299	23	12	60,071	93, 216
Maine..	694,466	661, 086	100	88	6,945	7,512	15	15	46, 298	44,072
Maryland.	1,188,044	1,042, 390	127	102	9,355	10, 220	18	11	66, 002	94,763
Massachusetts	2, 805, 346	2, 238, 943	273	336	10, 276	6,664	98	56	28, 626	39,981
Michigan	2, 420, 982	2,093, 889	522	472	4,638	4,436	70	52	34, 585	40, 267
Minnesota	1,751,394	1,301, 826	493	311	3,553	4,186	44	30	39, 804	43, 394
Mississippi	1,551,270	1,289, 600	156	102	9,944	12,643	13	6	119,328	214,933
Missouri. .	3, 106, 665	2, 679, 184	695	516	4, 470	5,192	92	81	33, 768	33, 076
Montana	243,329 $1,066,300$	2, 132, 159	70	37 395	3,476	3,572	11 32	9 31	22,121	14,684
Nehraska.	$1,066,300$ 42,335	1,058,910	454 21	395 9	2,349 2,016	2,681 5,086	32 9	31	33, 322	34, 158
New Jersey......	1,883, 669	1,444, 933	225	8	6,143	4, 537	14	16	29,399	23, 533
New Mexico	1, 195, 310	1,453,593	35	189 29	5,580	5,296	$\stackrel{1}{3}$	47 4	38,142 65,103	30,743
New York.	7, 268,894	5,997, 853	872	927	8,336	6, 470	207	162	65,103 35,115	38,398 37
North Carolina	1,893, 810	1,617,947	142	102	13,337	15, 862	26	20	72,839	80, 897
North Dakota.	319, 146	182, 719	126	74	2,533	2,469	9	7	35,461	
Ohio......	4,157,545	3,672,316	692	635	6,008	5,783	170	121	24,456	30, 350
Oklahoma	398, 331	61,834	96	14	4,149	4,417	9	6	44, 269	10,306
Oregon $\mathrm{Pennsyivania}$.	413,536	313,767	124	100	3,335	3,138	21	16	19,692	19,610
Pennsylvania.	6,302, 115	5, 258, 014	883	771	7,137	6,820	196	143	32,154	36, 769
Rhode Island .	428,556	345,506	${ }_{29} 21$	30	20, 407	11,517	12	9	35,713	38,390
South Carolina	1, 340,316	1,151, 149	83	73	16,148	15,769	7	6	191,474	191, 858
South Dakota.	401,570	- 328, 808	189	141	2, 125	2,332	16	19	25,098	17,306
Tennessee.	2,020,616	1,767,518	187	169	10,805	10,459	16	18	126, 288	98,195
Texas.	3,048, 710	2, 235, 523	679	367	5,265	6,091	83	42	36,731	53,227
Utah.....	276,749	207, 905	49	${ }^{6}$	5,648	34,651	6	9	46, 125	23, 101
Virginia	343, 641	332, 422	53	58	6,484	5,731	9	5	38,182	66,484
Virginia	1,854,184	1,655,980	126	134	14,716	12,358	37	21	50.113	78,856
Washington.	518, 103	349,390	154	118	3,364	2,961	15	18		
West Virginia	9588, 800	762,794	141	95	6,800	8,029	19	9	60. 463	84,755
Wisconsin..	2, 069,042	1,686, 880	463	373	4,469	4,522	60	47	34, 484	35, 891
Wyoming	92, 531	60,705	32	20	-2,892	3,035	4	5	23,133	12,141

Upon rearranging the states and territories in the order of increasing number of inhabitants to each publication in 1900, the following comparisons result:

Table 44. -States and territories arranged in order of number of inhabitants to each weekly publication, 1900.

2,016
2,124
2,349
2,538
2,612
2,686
2,742
2,892
$\mathbf{3}, 015$
3,335
3,364
3,476
3,553
3,741
3,842
4,149
4,469
4,470
4,486
4,638
4,822
5,265
5

	New Hampshire..
	Vermont
	Arkansas
	West Virginia.
	Maine
	Florida.
	Indian Territory
	Pennsylvania
	New York
	New Jersey
	Delaware.
	District of Columbia
	Maryland.
	Mississippi
	Massachusetts
	Tennessee
	Georgia.
	Kentucky
	Connecticut
	Louisiana.
	Alabama
	North Carolina.
	Virginia
	Somth Carolina.
	Khode Island.

6,484
6,591
6,800
6,945
6,954
7,001
7,137
8,336
8,372
8,797
8,991
9,355
9,944
10,276
10,805
10,811
11,301
12,276
12,336
12,788
13,337
14,716
16,148
20,407

Table 45.-States and territories arranged in order of number of inhabitants to each daily publication, 1900.

From the rearrangement of states and territories given in Tables 44 and 45 , it will be observed that in 1900 the proportion of inhabitants to each weekly publication was far more uniform than that to each daily. The range of number of inhabitants to each weekly publication is shown to be between 2,016 , for Nevada, and 20,407 , for Rhode Island.

On dividing the entire list of states and territories, arranged by rank according to the number of inhabitants to each weekly publication, into four groups, it appears that the first group is composed of the states and territorities having from 2,000 to 3,500 inhabitants to each weekly publication; the second, from 3,500 to 6,000 ; the third, from 6,000 to 9,500 ; and the fourth, from 9,500 upward. The geographic relations of the states and territories composing these groups are clearly illustrated in cartogram 2, in which the United States is divided into irregular but practically contiguous sections. The smallest numbers of inhabitants to each weekly publication are shown in the middle West and Northwest. The next class forms an irregular section begınning with California, and extending, with practi-
cally no break, through Texas, Oklahomá, and Missouri to Lake Michigan and Minnesota. It is clear that the inhabitants of the states shown in this class depend less
Cartogram 2.-Number of inhabitants to each weekly publication, by states and territories, 1900.

upon weekly publications than do those of the preceding class. The third class appears principally in the group of populous states beginning with Ohio and extending northeast to Maine. The fourth class is composed of Massachusetts, Rhode Island, Connecticut, Kentucky, Tennessee, and all the Southern states except Florida.
It is evident that the high ratio of inhabitants to weekly periodicals indicates either a low percentage of publications, in general, to number of inhabitants, or else the substitution, for weekly newspapers, of publications issued more frequently. In the case of the three New England states above mentioned it appears, by reference, in the comparative table, to the column relating to the number of inhabitants to each daily publication, that Massachusetts and Connecticut are shown in the two classes having the largest proportion of daily publications to inhabitants. In the case of Rhode Island, 81.2 per cent of the population resides in cities of over 8,000 inhabitants. Considering this exceptional rate and the small area, there is little probability of success in the publication of weekly newspapers in Rhode Island. The proportion or dailies to population is higher than that of weeklies, but proximity to New York and to the large cities of Massachusetts and Connecticut, has led to considerable dependence on those centers for daily newspapers, thus producing a comparatively low rank for dailies also.
By referring to page 68 it will be observed that the sections which are the most liberal patrons of the "patent insides" method of publishing weekly newspapers are the Eastern and Western North Central groups of states. Of the "patent insides" used in the United States, over 60 per cent were sent to these states. It will be noted by cartogram 2 that this section is the chief stronghold of the weekly.

When the number of inhabitants to each daily newspaper is made the basis of classification, the proportion varies from 4,704, for Nevada, to 191,474, for South Carolina. In the populous states the proportion of population to each daily publication varies from 20,000 to 40,000 . On dividing the states and territories, as in the case of weekly publications, into 4 groups or classes, it appears that the proportion of population to each daily newspaper ranges, in the first class, from 4,000 to 27,000 ; in the second, from 27,000 to 35,000 ; in the third, from 35,000 to 60,000 ; and in the fourth, from 60,000 upward.
The conditions which surround the publication of daily newspapers are so complex-depending largely upou locality, character of the population, ambition of the community, proximity to large cities, and especially upon ability to be an active producer of circulation rather than a receiver of it from elsewhere-that it is not surprising to find that the comparison is less significant than that for weeklies. The proportions of inhabitants to daily publications are shown geographically in cartogram 3.

Cartogram 2.-Number of inhahitants to each daily publication, by states and territories, 1900.

In general, the far Western states, which showed high averages in the proportion of population to weekly publications, showed a similar proportion for daily publications. Obviously, this is due to the ambition and energy of isolated communities, which by reason of distance must produce their own daily publication or go without one.
The region in which, with respect to population, both daily and weekly papers are least numerous, is in general the group of states east of the Mississippi and south of the Ohio and Potomac, where there is less than 1 daily to every 60,000 people, and less than 1 weekly to every 9,500 . The region in which they are most numerous is in general the states of the Western division, in most of which there is more than 1 daily to evéry 35,000 people, and more than 1 weekly to every 3,500 . In other words, publications of this character are most numerous in the western and northwestern
parts of the country, and least numerous in the southeastern part.

The fact that the New England states owith largest population are in the highest or next to the highest class in number of inhabitants to each daily newspaper, but rank low in number of inhabitants to each weekly publication suggests that in that densely peopled region, with highly developed facilities for rapid distribution to a numerous public, the daily has in some measure supplanted the weekly.

During the last decade the number of inhabitants to each weekly publication increased in 26 out of 49 states and territories, from which fact it appears that in more than half the states and territories the increase in the number of weekly publications failed to keep pace with the increase in population.

In the case of the daily newspaper the changes wrought during the decade from 1890 to 1900 are more striking. Out of 49 states and territories it appears that in 31 the proportion of inhabitants to each daily publication decreased, while in the other 18 the increase in number of publications failed to keep pace with the increase in population. The marked advance of the daily in proportion to population, shown in a majority of the states, is represented in cartogram 4.

Cartogram 4.-States ana territories in which there was a gain in number of daily newspapers in proportion to population.

It will be observed that those states and territories which showed a gain in the number of inhabitants to each daily newspaper were, for the most part, those containing large cities, which acted as purveyors of news to adjacent states or territories. Massachusetts, for example, supplied portions of New England; New York and Pennsylvania supplied New Jersey; Ohio supplied Kentucky; the large cities of Minnesota formed centers of distribution for North Dakota and South Dakota; and on the Pacific coast California was the center for publications of the daily class. All the states bordering upon the Great Lakes, and 15 out of 21 seaboard states, showed an increase in the proportionate number of daily newspapers to inhabitants. In this group are found all but 9 of the states and territories showing an increase in the number of daily publications to inhabitants. In general, the states in which the daily
lost ground during the decade ending in 1900 were those in the far Northwest, and in that section were recorded the most marked gains made by the weekly.
DISTRIBUTION, BY GEOGRAPHIC DIVISIONS, OF CIROULATION, NUMBER OF ESTABLISHMENTS, CAPITAL, AND VALUE OF PRODUCTS.
The consideration of the geographic distribution of circulation, number of establishments, capital, and value of products which follows, employs the following grouping of the states and territories by minor geographic divisions:

NORTH ATLANTIC DIVISION.
New England.-Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut.

Southern North Atlantic.-New York, New Jersey, Pennsylvania.
south atlantic division.
Northern South Atlantic.-Delaware, Maryland, District of Columbia, Virginia, West Virginia.

Southern South Atlantic.-North Carolina, South Carolina, Georgia, Florida.

NORTH CENTRAL DIVISION.
Eastern North Central.-Ohio, Indiana Illinois, Michigan, Wisconsin.

Western North Central.-Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, Kansas.
south central division.
Eastern South Central.-Kentucky, Tennessee, Alabama, Mississippi.

Western South Central.-Louisiana, Arkansas, Indian Territory, Oklahoma, Texas.
western division.
Rocky Mountain.-Montana, Idaho, W yoming, Colorado, New Mexico.

Basin and Plateau.-Arizona, Utah, Nevada.
Pacific.-Washington, Oregon, California.
Circulation.-The preponderance of certain states in circulation, before noted, is again indicated upon examining aggregate circulation by geographic divisions.

Table 46.-Aggregate circulation per issue of all classes of piblications, by main geographic divisions, with per cent which circulation in each division forms of total, 1890 and 1900.

division.	agGregate circulation FOR ALL CLASSES.		per cent of total.		Per cent of increase, 1890 to 1900.
	1900	1890	1900	1890	
United States	114, 299,334	69, 138,934	100.0	100.0	65.8
North Atladtic.	65,577, 439	37, 208, 013	57.4	53.9	76.2
South Atlantic.	3,551,594	2, 385, 414	3.1	3.5 34 3	48.9
North Central	35, 647,654	$23,742,919$ $3,765,571$	31.3 5.6	34.3 5.4	60.6 70.4
Western.......	3, 005,483	2,037,017	2.6	2.9	47.5

The North Atlantic and North Central divisions combined possessed 88.2 per cent of the aggregate circulation per issue in 1890, and 88.7 per cent in 1900. The North Atlantic division advanced 3.5 per cent, while the North Central declined 3 per cent, during the decade.

In Table 47 the circulation per issue of all classes, and of dailies, weeklies, and monthlies, in 1890 and 1900, with the per cent of increase, is shown by minor geographic divisions, together with the per cent of the total circulation for the United States, in 1890 and in 1900, reported for each division.

Table 47.-Aggregate circulation per issue of all classes, by minor geographic divisions, with per cent which circulation for each division forms of total, 1890 and 1900.

DIYISION.	Per cent which population of each division forms of total, 1900.	aggregate circulation of all CLASSES.			PER CENT WHICH CIRCU Lation In EACH DrviSION FORMS of TOTAL.	
		1900	1800	Per cent of increase		
					1900	1890
Uuited States...	100.0	114, 299, 334	69, 138,934	65.3	100.0	100.0
New England Southern North At-	7.4	13, 661,873	8, 217, 762	66. 2	12.0	11.9
lantic...............	20.3	51, 915, 566	28, 990, 251	79.1	45.4	41.9
Northern South Atlantic.................	5.9	2, 439, 895	1,245, 185	95.9	2.1	1.8
Southern South Atlantic	7.9	1,111,699	1,140, 229	12.5	1.0	1.6
Eastern North Central.	21.0	$23,806,433$	17, 395, 722	36.9	20.8	25.2
Western NorthCentral	13.6	11,941, 221	6, 347, 197	88.1	10.4	9.2
Eastern South Central.	9.9	4,629, 210	2,532, 807	82.8	4.0	8.7
Western South Central	8.6	1,787,954	1, 232, 764	45.0	1.6	1.8
Rocky Mountain......	1.6	-762, 263	367, 446	107.4	0.7	0.5
Basin and Platean	0.6	175, 486	104, 839	67.4	0.2	0.1
Pacific.	3.2	2, 067, 734	1,564, 732	32.1	1.8	2.3

1 Decrease.
A.-DAILIES.

DIVISION.	Per cent which popnlation of each division forms of total, 1900.	aggregate daily circulaTYON.			per cent Which circt. lation in EACH DIVIsIon Forms of total.	
		1900	1890	Per $\begin{gathered}\text { Per } \\ \text { cent } \\ \text { in- } \\ \text { crease. }\end{gathered}$	1800	1890
United States ..-	100.0	15,102,156	8,387, 188	80.1	100.0	100.0
New England.........	7.4	1, 587, 435	721,131	120.1	10.5	8.6
Southern North At- lantic	20.3	6,037,626	3,521,361	71.5	40.0	42.0
Northern South Atlantic	5.9	518,624	289,892	78.9	3.4	3.5
Southern South Atlantic	7.9	194,249	127,386	52.5	1.3	1.5
Eastern North Central	21.0	3,603,936	1,760, 818	104.7	23.9	21.0
Western North Central	13.6	1,590,593	909,086	75.0	10.5	10.8
Eastern South Central	9.9	395, 335	257, 695	53.5	2.6	3.1
Western South Central	8.6	310,756	185, 590	67.4	2.1	2.2
Rocky Mountain......	1.6	211, 400	98,774	114.0	1.4	1.2
Basin and Plateau	0.6	40,845	34, 435	18.6	0.3	0.4
Pacific..........-......	3.2	611,357	481,120	27.1	4.0	5.7

Table 47.-Aggregate circulation per issue ofall classes, by minor geographic divisions, with per cent which circulation for each division forms of total, 1890 and 1900-Continued.
B.-WEEKLIES.

DIVISION.	Percent which population of each division forms of total, 1900.	AGGREGATE WEERLY CIRCULA-TION.			PER CENT WHICH CIRCUlation in Each diyrsion forms of total.	
		1900	1890	Per cent of increase.		
					1900	1890
United States...	100.0	39, 852, 052	28,954,515	37.6	100.0	100.0
New England.	7.4	2, 746, 803	2, 576, 922	6.6	6.9	8.9
Bonthern North Atlantic.	20.3	16, 666,074	9, 762, 282	70.7	41.8	33.7
Northern Sonth At- lantic	5.9	1,125,941	803,818	40.1	2.8	2.8
Southern South Atlantic \qquad	7.9	706,017	767,091	18.0	18	2.6
Eastern North Central	21.0	8,660,185	7,634,925	13.4	21.7	26.4
Western North Central	13.6	5,438,513	3,875,605	40.3	13.6	13.4
Eastern South Central.	9.9	1,859,468	1,466,273	26.8	4.7	5.1
Western South Central	8.6	1,203,723	909,521	32.3	3.0	3.1
Rocky Monntain..--.	1.6	429,736	229,52\%	87.2	1.1	0.8
Basin and Platean.	0.6	68,945	31, 129	121.5	0.2	0.1
Pacific ..	3.2	946,647	897,427	5.5	2.4	3.1

${ }^{1}$ Decrease.
C.-MONTHLIES.

DIVISION.		aggregate monthly cir-culation.			PER CENT WHICH CIRCULation in EACH DIVJBION FORMS of total.	
		1900	1890	Per cent of increase.		
					1900	1890
Unlted States	100.0	39,519, 877	19, 624, 038	101.3	100.0	100.0
New England.	7.4	8, 466, 732	3,614,681	134.2	21.4	18.4
Southern North Atlantic	20.3	20,202,791	10,790,513	87.2	51.1	55.0
Northern South Atlantic.	5.9	556, 740	103, 865.	436.0	1.3	0.5
Southern South Atlantic.	7.9	99, 575	189,877	147.6	0.3	1.0
Eastern North Central	21.0	6, 382, 698	3, 385, 130	88.6	16.2	17.2
Western North Central	13.6	2,751,055	1,089,515	152.5	7.0	5.6
Eastern South Central	9.9	546,010	142, 749	282.5	1.4	0.7
Western South Central	8.6	100,100	105, 233	14.9	0.3	0.5
Rocky Mountain.......	1.6	88, 422	31, 100	184.4	0.2	0.2
Basin and Platean	0.6	14,506	12,000	20.9		0.1
Pacific	3.2	311,248	159,375	95.3	0.8	0.8

${ }^{1}$ Decrease.

${ }^{2}$ Less than one-tenth of 1 per cent.
Cartogram 5.-Minor geographic divisions in which the rate of increase in circulation per issue of all classes was more rapid than the rate of increase for the United Slates, 1900.

Cartogram 6.-Minor geographic divisions in which the rate of in crease in circulation per issue of dailies was more rapid than the rate of increase for the United States, 1900.

Cartogram 7.-Minor geographic divisions in which the rate of increase in circulation per issue of weeklies was more rapid than the rate of increase for the Inited States, 1900.

Cartogram 8.-Minor geographic divisions in which the rute of increase in circulation per issue of monthlies was more rapid than the rate of increase for the United Slates, 1900.

Table 47, in connection with cartograms $5,6,7$, and 8 , shows that in circulation of all classes there was a large increase in each division except the Southern South Atlantic. The most striking advance in the proportion of the total circulation reported was in the Southern North Atlantic group-New York, Pennsylvania,
and New Jersey. The Western North Central groupMinnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, and Kansas-also showed a decided advance. In daily circulation all divisions showed a large increase, though but three showed a greater proportion of the total circulation of daily newspapers for the United States than in 1890; of these the New England states and the Eastern North Central group-Ohio, Indiana, Illinois, Michigan, and Wisconsin-showed the most decided advance. In the circulation of weekly newspapers and periodicals the Southern South Atlantic group showed a slight decrease, while the remaining groups all showed a moderate increase. The most striking advance in the proportion of the total circulation of weekly publications reported was in the Southern North Atlantic group. In monthly circulation a decrease was shown in the Southern South Atlantic and Western South Central groups. In the other divisions a large increase was shown. The greatest advance in the proportion of the total circulation of monthly publications reported was shown for New England and the Western North Central gronp.

In Table 48 is presented a comparison of the aggregate number of copies issued during the census years 1890 and 1900 , by main geographic divisions, with the per cent which the number of copies for each
division forms of the total. The proportions in 1900 agree substantially with those for the circulation per issue of all publications for the same geographic divisions, the greatest difference being 6.6 per cent in the North Atlantic division.

Table 48.-Aggregate number of copies issued during the census year, by main geographic divisions, with per cent which number for each division forms of total, 1890 and 1900.

Table 49 is of interest principally as showing the relation between the distribution of aggregate circulation per issue and that of the aggregate number of copies issued during the census year.

Table 49.-CIRCULATION OF NEWSPAPERS AND PERIODICALS CLASSIFIED

	States and territories.	Total number cations.	aggregate circulation per issue.								
								-			
			clas	Including Sunday.	Except Sunday.		weekly.				classes.
1	United States...	18,226	114, 299, 334	8,645,586	6, 456, 620	228,610	2,832, 868	39, 852, 052	39,519,897	11, 217, 422	5,546, 329
2	Alabama	175	230,079	30,450	18,195	700	4, 340	155, 244	6,800		14,350
3	Arizona.	43	34,054	7,856	3,600			22,392	206		
4	Arkansas .	236	262,903	34,340	3,800	1,000	11, 285	187,578	18,900	5,000	1,000
5	California	622	1, 448, 656	367, 280	108, 316	480	23,342	618,146	194,792	112,500	23,800
6	Colorado	248	5<1, 213	125, 477	31,539	500	2,000	285, 425	72,947	1,250	2,075
799	Connecticut.	155	457,622	39,400	. 169,415		29,325	155, 507	44,375	1,800	17,800
	Delaware.	30	85,900	34, 277			1,700	43,773	6,150		
9	District of Columbia.	69	820,835	69,606	31, 242		1,000	304, 037	354, 050	2,760	58, 140
10	Florida.....	97	112, 302	27,907		1,000	5,000	66,295	12, 100		
11	Georgia.	265	549, 493	55,841	47,031		33, 941	331,905	67, 425	1,000	12,350
12	Idaho.	72	48,795	3,000	2,100		4,645	36,300	1,500		1,250
13	1linois	1,548	10, 429, 368	500, 673	948,414	5,338	170, 720	3,866,983	3,072,932	1,683,434	180, 874
14	Indiana	841	2, 108,805	96,599	248,805		77,185	858, 424	715,292	77,700	34, 800
1516	1ndian Territory	64	50,141	2,100	1,250			45,891	900		
	Iowa	1,045	1,884,875	125, 473	92,116	19,224	168,672	1, 105, 666	301, 205	27, 529	44,990
17	Kansas	684	1,144, 820	36,619	68,729	800	20,040	653, 507	321, 050	21,800	21,775
18	Kentucky	282	1,099,172	77, 124	87, 500	1,800	125,575	425,323	262, 450	6,500	112,900
19	Louisiana	160	300, 072	88,900	18,090	2,400	32,698	137,434	14,750		5,800
20	Maine	177	6,434, 065	14, 298	45,540		17,728	220,759	6,120,490	7,050	8,200
	Maryland.	166	679, 867	39, 172	208, 380		17,360	316,505	93, 250	3,000	2,200
22	Massachusetts	486	6,199, 127	581, 097	549, 723		32,350	2, 066, 369	2,257, 142	363,096	349,350
23	Michigan	698	2,374, 403	224,798	146, 050	7,975	192,098	752,032	984,025	50,400	17,025
24	Minnesota	622	1,949,630	144, 119	156, 147	5,000	95,660	908,478	452, 329	4,550	183,347
	Mississippi.	178	168,942	5,586	10,762	502	1,080	142,702	6,610		1,700
26	Missourl.	940	5, 495, 802	718, 004	97, 488	200	329, 153	1, 862,856	1,378,586	895,050	219,465
27	Montana	89	127,148	28, 922	13, 242		9,380	62,109	6,495	7,000	
28	Nebraska	538	1,095,538	92,615	29,799	1,200	53, 008	650,349	255, 985	2,950	9,682
	Nevada.	35	18,153		5,226	160	1,750	10,517	500		
3031	New Hampshire.	88	211, 819		42,419	5,250		158,900	5,250		
	New Jersey.	298	3, 009, 104	6,545	216,688		1,900	367,021	28,950	136,600	2,251,500
	New Mexico.	42	32,420		3,820			25,000	500	800	2,300
32	New York	1,477	37, 626, 095	3,006, 426	890,541	146, 175	460, 867	12,607,099	16,927,062	2, 276, 625	1, 311,300
34	North Carolina	200	287,916	18,150	26, 470		24,490	197, 706	12,050	700	8,350
3536	North Dakota	139	138, 890	10,600	7,421		7,100	106, 219	7,550		
	Ohio..............................	1,039	7,467,358	494,512	730, 203	13,300	211,161	2, 411, 172	1,420,501	1,795,609	390,900
37	Oklahoma......................	110	120,077	14,674			- 800	99,953	4,150		600
	Oregon	188	311,950	42,433	8,758		14,810	166,511	75,038		4,400
38	Pennsylvania Rhode Island. .	1,365	11, 280, 367	987, 931	929,495	8,206	282, 142	3,691,954	3,246,779	1, 991,819	142,041
40	Rhode Island.	40	170,694	72, 200	46,644	100	6,754	37,671	4,225	3,000	
	South Carolina	117	161,988	13,600	5,250	200	23,327	110,111	8,000		1,500
42	South Dakota	218	232,166	6,000	10,463		1,600	151, 438	34,400		28, 265
	Tennessee	251	3,131, 017	58,168	107, 550		7,700	1,136,199	270,150	1,540,900	10,350
43	Texas	722	1,054, 761	96,989	50,618		101,392	732,867	61,400	1,250	10,250
45	Utah	72	123,279	15,538	8,625	2,000	30,630	36,036	13, 800	150	16,500
	Vermont	79	188, 646		26,699		8,400	107, 597	35, 250	300	10,400
47	Virginia....	204	627,280	67,995	24, 375	3,100	13,030	291, 690	96,890	120,500	9, 700
48	Weshington	199	307, 128	35,250	49,320	500	7,850	161,990	41,418	5,300	6,500
49	West Virginia	176	226, 013	26, 200	17,377		4,900	169, 936	6,400		1,200
50	Wisconsin.	695	1, 426,499	104, 592	109,290	1,000	161,995	771, 574	189,948	69,600	18,500
61	Wyoming .	42	32,687	1,200	2,100	500	985	20, 902	7,000		18,500

ACCORDING TO PERIOD OF ISSUE, BY STATES AND TERRITORIES: 1900.

aggregate nomber of copies isgukd durine tee census year.									
All classes.	Daily. .		Triweekly.	Semiweekly.	Weekly.	Monthly.	Quarterly.	All other classes.	
	Including Sunday.	Except Sunday.							
8,168,148,749	3,155,620,640	2,020,922,060	35,663, 160	294, 618, 272	2,072,306,704	474, 238, 764	44, 869,688	69, 909, 461	1
25, 768,633	11,114, 250	5, 695,035	109, 200	451,360	8,072, 688	81, 600		234,500	2
5,161, 096	2,867,440	1,126,800			1, 164,384	2,472			3
25, 077, 996	12,534, 100	1,189, 400	156,000	1,173,640	9,764,056	226,800	20,000	24,000	4
205, 789, 752	134, 057, 200	33, 902, 908	74,880	2, 427,568	32,143, 592	2, 387,504	450,000	396, 100	6
71,702,076	45, 799,106	9,871,707	78,000	208,000	14, 842, 100	875, 364	5,000	22,800	6
79, 366,409	14, 381,000	53, 026, 895		3,049,800	8,086,364	632, 500	7, 200	282, 650	7
15, 087, 901	12,511, 105			176,800	2,276,196	73,800			8
$56,720,860$	25,406, 190	9, 778,746		104,000	15,809,924	4,248,600	11,040	1,362,360	9
14, 454,595	10,186,055		156, 000	520,000	3, 447, 340	145, 200			10
57, 001, 092	20, 381, 965	14, 720,703		3,529,864	17, 259,060	809, 100	4,000	296,400	11
4,170,980	1,095,000	657,300		483, 080	1,887,600	18,000		30, 000	12
746, 880, 247	182, 745, 645	296, 853, 582	832, 728	17,754,880	201, 083, 116	36,875, 184	6,733,736	4, 001, 376	13
175, 432, 092	35, 258,635	77, 875, 965		8,027, 240	44,638,048	8,583,504	310,800	737, 900	14
3, 554, 882	766,500	391, 250			2, 386, 332	10,800			15
158, 895, 153	45,797, 645	28, 832, 308	2,998,944	17,541,888	57,494,632	3,614,460	110,116	2, 505, 160	16
75, 387, 961	13, 365, 935	21,512,177	124,800	2,084,160	33, 982, 364	3,852,600	87, 200	378, 725	17
96, 862, 156	28,150, 260	27, 387, 500	280, 800	13,059, 800	22,116,796	3,149, 400	26,000	2,691,600	18
49,348, 430	32,448,500	5,662, 170	374,400	3,400,592	7,146,568	177,000		139, 200	19
106, 420, 850	6,218,770	14,254, 020		1,843,712	11, 474, 468	73, 445, 880	28, 200	150,800	20
98, 959, 220	14, 297, 780	65, 222, 940		1,805,440	16,458, 260	1,119,000	12,000	43,800	21
531, 739, 780	212,100, 405	172,063,299		3, 364, 400	107,451,188	27, 085, 704	1,452,384	8, 222,400	22
200, 457, 376	82, 051, 270	45, 713, 650	1,244,100	19, 978,192	39, 105, 664	11,808,300	201,600	354,600	23
169, 257, 418	52,603, 435	48, 874, 011	780,000	9,948, 640	47, 240, 856	5, 427, 948	18,200	4, 364,328	
13, 398,752	2, 088, 890	3, 368,506	78, 312	112, 320	7,420,504	$\begin{array}{r}79,320 \\ \hline 10.543,032\end{array}$		300,900 $4,817,700$	25 26
446, 832, 760	260, 246, 460	30,513, 744	31,200	34, 231, 912	96, 868,512	16,543, 032	3,580,200	4,817,700	26
19,012,404	10, 556, 530	4,144,746		975,520	3, 229, 668	77,940	28,000		27
85, 959, 730	33, 804, 475	.9,327,087	187,200	5,512,832	33, 818,148	3,071,220	11,800	226, 968	28
2,395, 582		1,685,738	24, 960	182,000	$\begin{array}{r}646,884 \\ 8,262,800 \\ \hline\end{array}$	6,000 63,000			30
22, 421, 947		13, 277, 147	819,000		8, 262, 800	63,000 347,400			
103, 924, 361	2,388, 925	67, 823, 344		197, 600	19,085,092	347,400	546, 000	13,536, 000	31
3,020,460		1,195,660			1,300, 000	6,000	3,200	516,600	32
2, 324, 952,983	1,097, 345, 490	278,739, 333	22, 803,300	47, 930, 168	655, 569, 148	203, 124,744	9, 106,600	$10,334,300$ 196,800	33
28, 281,732	6,624,750	8, 285, 110		2, 546,960	10, 280, 712	144, 600	2,800	196, 800	34 35
12, 544, 161	3,869,000	2,322,773		738,400	6,523, 388	90,600 $17,046,012$		8,830,800	36
591, 526,155	180, 496, 880	228, 553, 539	2, 074, 800	21, 960, 744	125,380, 944	17,046,012	7, 182, 436	8,830,800	30
	5, 356, 010			83, 200	5,197, 556	49,800		12,000 105,600	37 38
$10,698,566$ $29,434,167$	$6,356,010$ $15,488,045$	2,741, 254		1,540,240	8,658,572	900,456 38		105,600 $2,118,984$	38 39
923,178,870	360,594, 815	290, 931, 935	1, 280,136	29,342,788	191, 981,608	38,961,348	7,967,276	2, 118,984	39 40
43,692, 180	26,353,000	14,599, 572	15,600	702, 416	1,958,892	50,700	12,000	469,500	41
15, 355, 730	4,964,000	1,643,250	31,200	2, 426,008	5,725,772	96,000		46,	
		3, 274, 919		166,400	7,874,776	412,800		678, 360	42
$14,597,255$ $124,423,368$	21, 231,320	$3,274,919$ $33,663,150$		800, 800	59, 082, 348	3,241,800	6, 163,600	240,350 172,500	43
100, 811,006	35,400, 985	15,841, 869		10,544,768	38, 109, 084	736,800 165,600	5,000 600	172, 3900	45
14, 304, 587	5,671, 370	2,699, 625	312,000	$3,185,520$ 873,600	$1,873,872$ $5,595,044$	163,000 423,000	1,200	31,800	46
15, 281, 431		8, 356, 787		878,60	5,50, 0				
51, 213, 030	24, 818, 175	7,629, 375	483,600	1,355, 120	$15,167,880$ $8,423,480$	$1,162,680$ 497,016	482,000 21,200	114,200 99,600	47 48
38, 239, 106	12, 866, 250	15,437, 160	78,000	816,400 509,600	$8,423,480$ $8,886,672$	76,800		28,800	49
24,453,873	9,563,000	5,439,001		r $\begin{array}{r}509,847,480\end{array}$	40,121,848	2, 279, 376	278,400	444,000	50
132, 510,954	38,176,080	$\begin{array}{r} 34,207,770 \\ 657,300 \end{array}$	156,000 78,000	$10,847,480$ 102,440	1,086,904	84,000			51
2,446, 644	438,000	657,300	78,000	102,440	1,06, 0				

Number of establishments.-It has already appeared that the circulation of newspapers and periodicals is largely centralized in certain states. Table 50 indicates that if the industry be measured by number of establishments, rather than by output, no such centralization exists.
Table 50.-Number of establishments, by minor geographic divisions, with per cent which number in each forms of total, 1890 and 1900.

DIVISION.	NUMBEB OF ESTABLISHMENTS.		PER CENT WHICH NUMRERIN EACH DIVISION FORMS OF TOTAL.		$\begin{gathered} \text { Per cent } \\ \text { of in- } \\ \text { crease, } \\ 1890 \text { to } \\ 1900 . \end{gathered}$
	1000	1890	1900	1890	
United States	15,305	12,362	100.0	100.0	23.8
New England.	800	815	5.2	6.6	11.8
Southern North Atlantic	2,509	2,479	16.4	20.1	1.2
Northern South Atlantic	536	412	3.5	3.3	30.1
Southern South Atlantic	582	483	3.8	3.9	20.5
Eastern North Central..	3,820	3,110	25.0	25.2	22.8
Western North Central	3,700	2,846	24.2	23.0	30.0
Eastern South Central.	786	597	5.1	4.8	31.7
Western South Central.	1, 161	674	7.6	5.5	72.3
Rocky Mountsin.	429	281	2.8	2.3	52.7
Basin and Plateau	123	53	0:8	0.4	132.1
Pacific.	859	848	5.6	6.9	1.3

${ }^{1}$ Decrease.
From Table 50 it appears that of the total number of establishments in 1900, New England-already shown to be an important factor in the publishing industry-possessed only 5.2 per cent, and that the Southern North Atlantic states-a group immensely influential in the production of periodicals-showed only 16.4 per cent. Thus, these two groups combined represented but 21.6 per cent of the total number of establishments. The changes in relative importance from 1890 to 1900 were not marked; 5 divisions showed declines, and in but 2 was the advance sufficiently great to be worthy of notice. Cartogram 9 presents those

Cartogram 9.-Minor geographic divisions in which the rate of increase in the number of establishments was greater than the rate of increase for the United Slates, 1900.

minor geographic divisions showing a per cent of increase in number of establishments exceeding the per cent of increase for the United States. From this cartogram it appears that in all of the states bordering on the Atlantic and Pacific oceans, except Delaware, Maryland, and Virginia, and in all of the states bordering on
the Great Lakes, except Minnesota, the per cent of increase in number of establishments is less than that for the United States. The states showing these relatively low percentages of increase contain most of the large cities, and are the ones in which consolidation of establishments is most likely to occur.

Capital.-The distribution of capital by minor geographic divisions is shown, in Table 51 and by reference to cartogram 10, to vary in a marked degree from the distribution of the number of establishments.

Table 51.-Capital, by minor geographic divisions, with per cent which capital in each forms of total, 1890 and 1900.

DIVIEION.	capital.		PER CENT WHICH CAPITAL IN EACH DIVISION FORMS of TOTAL CAPITAL.		$\begin{aligned} & \text { Per } \\ & \text { cent of } \\ & \text { in- } \\ & \text { crease, } \\ & 1890 \text { to } \\ & 1900 . \end{aligned}$
	1900	1890	1900	1890	
United States.......	8192, 443, 708	\$126, 269,885	100.0	100.0	52.4
New England.	16, 800, 780	11, 827, 874	8.7	9.4	42.0
Southern North Atlantic..	83, 648, 876	48,159, 589	43.5	38.1	73.7
Northern South Atlantic..	7, 159, 175	3,358, 169	3.7	2.7	113.2
Southern South Atlantic..	3,332, 721	2,580,365	1.7	2.0	29.2
Eastern North Central...	36,885,321	26,041,005	19.2	20.6	41.6
Western North Central.	22,957,056	17,301, 266	11.9	13.7	32.7
Eastern South Central.	6,332,991	5,070,293	3.3	4.0	24.9
Western South Central.	4,764,265	3,056,304	2.5	2.4	55.9
Rocky Mountain -----....	3,055,318	2,129,833	1.6	1.7	43.5
Basin and Plateau -	958,226	710,986	0.5	0.6	34.8.
Pacific	6,548,979	6,034, 201	3.4	4.8	8.5

In 8 out of the 11 divisions the per cent which the capital invested formed of the total capital was less in

Cartogram 10.-Minor geographic divisions in which the rate of increase in capitcl was more rapid than the rate of increase for the United: States, 1900.

1900 than in 1890. The only marked advance was: made in the Southern North Atlantic group-New York, Pennsylvania, and New Jersey-which increased its lead at the expense of nearly all of the other divisions. In other words, during the decade just ended, the centralization of this industry, as measured by capital invested therein, has made most rapid progress in the Southern North Atlantic group, and this in spite of the fact that in each division the absolute increase in capital was large. The very high per cent of increase for the United States was of course due, to some extent, to the enormous advance shown in the group.
mentioned. The per cent of increase for the remainder of the United States was only 39.3 per cent.

Value of newspaper and periodical products.-In Table 52 is presented, by geographic divisions the combined value of advertising, and subscriptions and sales. These figures show greater uniformity in relative importance than any other figures for this industry. The advance is greatest in New England, and there it is but' 1.5 per cent; in 3 divisions it is fractional; 1 presents the same proportion as in 1890; and 6 show declines, all of which are insignificant. In every division except the Southern South Atlantic there was an increase in the value of such products.
Table 52.-Value of products, by minor geographic divisions, with per cent which value of products for each forms of total, 1890 and 1900.

DIVISION.	VALUE OF PRODUCTS.		PER CENT WHICH VALUE OF PRODUCTSIN EACH DIVISION FORMS OF total.		$\begin{gathered} \text { Per } \\ \text { cent of } \\ \text { in- } \\ \text { crease, } \\ 1890 \text { to } \\ 1900 . \end{gathered}$
	1900	1890	1900	1890	
United States	\$175, 789, 610	\$143, 586, 547	100.0	100.0	24.0
New England.............	18, 54¢, 042	13, 039, 163	10.6	9.1	42.2
Southern North Atlantic..	70, 244, 534	56, 457, 695	40.0	39.3	24.4
Northern South Atlantic.-	5,612,432	4,253, 464	3.2	3.0	31.9
Southern South Atlantic..	2, 867,574	2, 893, 545	1.6	2.0	${ }^{1} 0.9$
Eastern North Central....	36, 663, 239	30, 298, 789	20.9	21.1	21.0
Western North Central.	20, 386, 232	17, 297, 463	11.6	12.0	17.9
Eastern South Central.	4,634,427	4,288,391	2.6	3.0	8.1
Western South Central ...	5, 059, 191	4,019,041	2.9	2.8	25.9
Rocky Mountain...........	3, 248,759	2, 650, 786	1.8	1.8	22.6
Basin and Plateau	719, 283	691,498	0.4	0.5	4.0
Pacific	7, 805,897	7,696, 717	4.4	5.4	1.4

1 Decrease.
Cartogram 11.-Minor geographic divisions on which the rate of increase in value of product was more rapid than the rate of increase for the I'mated States, 1900.

In cartogram 11 are indicated the minor geographic divisions showing a per cent of increase in value of
products greater than the per cent for the United States.
It will be observed, from cartograms 9,10 , and 11, that the Western South Central group has exceeded the percentage for the United States in all three particu-lars-number of establishments, capital, and value of products-doubtless because of the influence of Texas.

Consideration of the proportions, which each minor geographic division contributed to the totals for number of establishments, capital, and value of products, shows that 8 divisions ranked higher in number of establishments than in capital or value of products; that 1, the Southern North Atlantic, ranked highest in capital; and 1, New England, ranked highest in value of products. It is shown by Table 53 that the North Atlantic division, comprising New England, New York, New Jersey, and Pennsylvania, although having only 21.6 per cent of all establishments, possessed 52.2 per cent of all the capital, and produced 50.6 per cent of the total value of products; that 6 divisions possessed substantially the same proportion of each item, and that 3 possessed a decidedly greater proportion of the total number of establishments than of capital or value. of products.

Table 53.-Per cent of number of establishments, capital, and value. of products in each minor geographic division, 1900.

division.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { establish- } \\ \text { ments. } \end{gathered}$	Capital.	Vaine of products.
Unitel States	100.0	100.0	100.0
New England.	5.2	8.7	10.6
Southern North Atlantic.	16.4	43.5	40.0
Northern South Atlantic	3.5	3.7	3.2
Southern South Atlantic.	3.8	1.7	1.6
Eastern North Central.	25.0	19.2	20.9
Western North Central.	24.2	11.9	11.6
Eastern South Central	5.1	3.3	2.6
Western South Central.	7.6	2.5	2.9
Rocky Mountain.	2.8	1.6	1.8
Basin and Plateau	0.8	0.5	0.4
Pacific	5.6	3.4	4.4

The detailed statistics for newspapers and periodicals are given in Table 58, which appears at the end of this. report

BOOK AND JOB PRINTING.

Table 54 presents the number of establishments, capital, value of products, and wage statistics for this branch of the industry in 1890 and 1900, for cities containing 20,000 inhabitants and over.

Table 54.-SUMMary of book and job printing For cities having a population of 20,000 or over, 1900.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{cities.} \& \multirow{2}{*}{Population.} \& \multirow[t]{2}{*}{Num-estabments.} \& \multirow{2}{*}{Capital.} \& \multicolumn{2}{|l|}{salaried offictais, CLERKS, ETC} \& \multicolumn{2}{|l|}{Wage-marners.} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Miscel- } \\
\& \text { laneous } \\
\& \text { expenses. }
\end{aligned}
\]} \& \multirow{2}{*}{Cost of material used.} \& \multirow{2}{*}{Value of products.} \\
\hline \& \& \& \& Number. \& Salaries. \& Average number \& Total wages. \& \& \& \\
\hline New York N. Y. \& 3,437, 202 \& \({ }_{596}^{996}\) \& \$19, 107,954 \& 1,552 \& 81, 689, 166 \& 12,857 \& \$7,730,477 \& \$4,404,740 \& 87, 206, 921 \& \$26,484, 933 \\
\hline \& 1, \(1,698,2785\) \& 594
401
401 \& \begin{tabular}{l}
\(12,540,430\) \\
\(11,539,483\) \\
\hline
\end{tabular} \& 1,816 \& 1,750, 718 \& \& \begin{tabular}{l}
\(4,674,796\) \\
\hline
\end{tabular} \& - \(\begin{array}{r}2,947,234 \\ 1,626,292\end{array}\) \& \begin{tabular}{l}
\(4,955,114\) \\
\hline \\
2 \\
2948 \\
\hline 999
\end{tabular} \& \begin{tabular}{l}
\(18,536,364\) \\
\(10,066,740\) \\
\hline
\end{tabular} \\
\hline St.Louis, Mo.... \& 1, \({ }_{575 \%}\),238 \& \({ }_{173}\) \& \({ }_{3}\) \& \({ }_{524}\) \& -781, \& \begin{tabular}{|c}
2, \\
2 \\
2 \\
3
\end{tabular} \& 2, \& 1,626, \({ }^{1}\) \& - 2,01686 \& \(10,066,740\)
\(4,420,147\) \\
\hline Boston, Mass. \& 560, 892 \& 280 \& 6,870,499 \& 708 \& 582, 807 \& 3,077 \& 1,663,282 \& 1,723,336 \& 1,752, 274 \& 8, 188,215 \\
\hline Baltimore, Md. \& 508,957 \& 142 \& 1,285, 980 \& 148 \& 133, 600 \& 1,178 \& 505,903 \& 196,111 \& 690, 446 \& 2,0377,037 \\
\hline Cleveland, Ohio . \& \begin{tabular}{l}
381,768 \\
352,387 \\
\hline
\end{tabular} \& 69
87
87 \& \& 150
101
101 \& 141,306 \& 1,981 \& \& 117,084 \& 700,052
475,302 \& -1,787, 106 \\
\hline San Francisco, Cai \& 342, 782 \& 105 \& 1,370, 577 \& 104 \& 109, 514 \& 1,183 \& \& -137,789 \& - 656,344 \& 2, \(2,022,649\) \\
\hline Cincinnatt, Ohio.. \& 325,902 \& 115 \& 1,630, 554 \& 127 \& 127, 762 \& 1, 617 \& 784, 122 \& 177, 234 \& 866,618 \& 2,513,458 \\
\hline Pittsburg, Pa \& 321,616 \& 67 \& 100, 015 \& 90 \& 75, 076 \& 886 \& 434, 481 \& 116, 728 \& 513,223 \& 1,396, 292 \\
\hline New Orieans, Lis \& \({ }_{285}^{287,104}\) \& \({ }_{91}^{51}\) \& 507, 670 \& 61 \& 57, 218 \& 452 \& 183,062 \& 48,889 \& 150,577 \& 1,573,987 \\
\hline Milwaukee, Wis \& 285, 315 \& \(\stackrel{91}{58}\) \& 746, 978 \& \(\stackrel{426}{59}\) \& 165,476
57,924 \& \begin{tabular}{l}
831 \\
562 \\
\hline
\end{tabular} \& \({ }_{225,622}^{394,301}\) \& 1288,950 \& - \({ }_{2423,633}\) \& 1,417,275 \\
\hline Washington, D. C \& 278,718 \& 76 \& 3, 339,046 \& 164 \& 211, 227 \& 4, 101 \& 3,236,730 \& 113, 880 \& 1,367, \({ }^{2468}\) \& 5,107,905 \\
\hline Newark, N. J. \& 246,070 \& 54 \& 524, 712 \& 104 \& 89,403 \& \& 203, 380 \& \& 185,153 \& 674,321 \\
\hline Jersey City, N. J . \& 206, 433 \& 18 \& 454, 023 \& \& 29, 004 \& 442 \& 175, 166 \& 22, 195 \& 206,977 \& \\
\hline Minneapolis Mini \& \begin{tabular}{l}
204,731 \\
202,718 \\
\hline
\end{tabular} \& \({ }_{73}^{45}\) \& 631,577 \& - 600 \& \begin{tabular}{l}
60,257 \\
57296 \\
\hline 8.298
\end{tabular} \& \begin{tabular}{l}
601 \\
548 \\
\hline
\end{tabular} \& 235,
2535
2535
200 \& 59,249
68,706
82 \& \begin{tabular}{l}
319,998 \\
209 \\
\hline 844
\end{tabular} \& 804,547
770 839 \\
\hline Providence, R. I. \& 175,597 \& 47 \& 421, 297 \& 48 \& 53, 539 \& 446 \& 201, 182 \& 52,091 \& 250, 706 \& 667,328 \\
\hline Indiauapolis, 1 ln d \& 169,1 \& 47 \& 911,693 \& 159 \& 119,842 \& 746 \& 351, 393 \& 472, 194 \& \& 586,652 \\
\hline Kansas City, M \& 163,752 \& 63 \& 720,010 \& \& 114,805 \& 804 \& 419, 784 \& 102,835 \& 333,089 \& 1,187, 253 \\
\hline \({ }_{\text {Sochester, }}\) N. Y \& \begin{tabular}{l}
163,065 \\
162,608 \\
\hline
\end{tabular} \& \begin{tabular}{l}
47 \\
52 \\
\hline
\end{tabular} \& - \({ }^{5776,989}\) \& \({ }_{47}^{195}\) \& 127,902 \& \begin{tabular}{c}
395 \\
362 \\
\hline
\end{tabular} \& 188, 808 \& \({ }^{163,324}\) \& 239,164 \& 923,909 \\
\hline Denver, Colo. \& 133, 859 \& 52 \& 604, 486 \& 56 \& 89, 274 \& 390
390 \& - 251,561 \& \({ }_{92,676}^{80,06}\) \& \begin{tabular}{l}
183,866 \\
183 \\
\hline 1806
\end{tabular} \& 808, 895 \\
\hline Toledo, Ohio - \& 131,822 \& 24 \& 248, 690 \& 36 \& 23,257 \& 208 \& 96,746 \& 30,551 \& 100,109 \& 337, 239 \\
\hline Columbus, Ohio \& +129, 896 \& \({ }_{22}^{16}\) \& -79,566 \& 7
29 \& 4,728 \& \(\stackrel{87}{206}\) \& 40,394 \& 10,800 \& \({ }_{97}^{4,482}\) \& -129, 289 \\
\hline Worcester, Mass \& 118,421 \& 31 \& 190, 851 \& 7 \& 13,018 \& 148 \& \({ }_{84} 8,552\) \& 35,'614 \& \({ }_{84,629}\) \& 271,625 \\
\hline syracuse, N. Y . \& 108, 374 \& 29 \& 346, 280 \& 24 \& 17,672 \& 212 \& 94,890 \& 26,816 \& 136,567 \& 336, 384 \\
\hline New Haven, Conn \& 108, 027 \& 35 \& 513,982 \& 47 \& 31,474 \& 285 \& 127, 832 \& 132,459 \& 184,999 \& 583, 889 \\
\hline Patierson, River, Mass. \& 105, 17818 \& \({ }_{9}^{12}\) \& \& 2 \& 1.018 \& \({ }_{37}^{29}\) \& 11,756 \& \({ }_{5}^{6,110}\) \& 22, 11.14 \& \({ }_{66,584}^{43,465}\) \\
\hline St. Joseph, Mo. \& 102,979 \& 9 \& 169, 150 \& 20 \& 14, 420 \& 240 \& 121,529 \& 12,374 \& \& 302, 660 \\
\hline Omaha, Nebr. \& 102,556 \& 38 \& 459, 714 \& 59 \& 55,737 \& 395 \& 196,739 \& 65,326 \& 228,717 \& 668,567 \\
\hline Los Angeles, CaI \& 102,479 \& 47 \& 182, 626 \& 18 \& 18,168 \& 230 \& 114,143 \& 30, 807 \& 106,470 \& 391, 370 \\
\hline Scranton, Pa .. \& 102, 122 \& 17
13 \& 225, \({ }_{\text {74, } 898}\) \& 15
3 \& 23,529 \& 215
50 \& 92, 375 \& 16,589 \& 118,849 \& 354, 6, 7 \\
\hline Lowell, Mass \& 94,969 \& 16 \& 64,932 \& \(\stackrel{3}{8}\) \& 1,280 \& 530 \& - 22,715 \& 5,715 \& 21, \({ }_{294}^{294}\) \& 66, 717 \\
\hline Albany, N. Y \& 94,151 \& 29 \& 1, 253,446 \& 77 \& 68, 202 \& 685
685 \& 347, 876 \& 181,168 \& 32,

323 \& 1, 244,810

\hline Cambridge, Mass. \& 91, 886 \& \& \& \& 54, 371 \& \& 468,527 \& \& \&

\hline Portland, Oreg \& 90, 426 \& 32 \& 285,',972 \& 25 \& 24,515 \& 140 \& 76,753 \& 25,945 \& - ${ }^{405,500}$ \& ${ }_{315,506}$

\hline Atrant ${ }^{\text {Raplds, Mioh }}$ \& 89,872
87565
88 \& ${ }_{22}^{17}$ \& - 3650,085 \& 31 \& ${ }^{28,160}$ \& 409 \& 150,562 \& ${ }^{26,613}$ \& 143,149 \& 405, 964

\hline Dayton, ohio... \& 85,333 \& 18 \& \[
$$
\begin{gathered}
199,437 \\
277,477
\end{gathered}
$$

\] \& 59 \& \& | 244 |
| :--- |
| 186 | \& 88,789

85,500 \& 26,651
55,415 \& 84,
1789
1735 \& 278,431
431,840

\hline Richmond, Va. \& 85, 050 \& \& 1,048,768 \& \& \& \& \& \& \&

\hline Nashvilie, Tenn \& ${ }_{80,866}$ \& ${ }_{22}^{18}$ \& 595, 143 \& ${ }_{25}^{55}$ \& 57, 216 \& 371 \& 186, 294 \& 34, 893 \& 224, 399 \& 613, 439

\hline Hartford, Conin \& 80,671
79,850 \& 22
38 \& $1,164,738$
1,238 \& 23
49 \& 20,149
55,293 \& ${ }_{442}^{161}$ \& -98, 230 \& 23, 231
151,533 \& -81,969 \& 285, 688

\hline Reading, Ha . \& 78, 961 \& 17 \& 1,121, 607 \& \& \& ${ }_{63}$ \& 27,485 \& 10,062 \& ${ }_{35}{ }^{232}, 2020$ \& 99,447

\hline Wilmingtan, Del \& 76,508 \& \& \& \& 8,644 \& \& 39,589 \& 7,475 \& \&

\hline Camden, $\mathrm{N} \cdot \mathrm{J}$ \& 75, 935 \& 14 \& 68,357 \& 5 \& 2,866 \& 37 \& 13,696 \& 3,544 \& 19,195 \& 58,252

\hline Trenton, N.J. \& 73,307

7096 \& 10 \& | 155,888 |
| :---: |
| 72,672 | \& 6

10 \& 4,016

8,180 \& 75 \& 38,401 \& 7,127 \& | 31,22 |
| :--- |
| |
| 25 |
| 1 | \& 109, 724

\hline Lynn. Mass.... \& 68,513 \& 14 \& 104, 141 \& 18 \& 6,050 \& ${ }_{83}$ \& ${ }_{41,751}^{24,92}$ \& 7,381

7 \& | 25, |
| :--- |
| 44,829 |
| 18 | \& - 141,452

\hline Oakland, Cal \& \& \& \& \& \& \& \& \& \&

\hline Lawrence, Mass. \& | 62,659 |
| :--- |
| 62,42 |
| 2.42 | \& ${ }_{8}^{6}$ \& 20,470

29

29 \& ${ }_{4}^{1}$ \& ${ }^{3}, 750$ \& | 14 |
| :--- |
| 14 | \& ${ }_{5}^{5,625}$ \& ${ }_{1}^{1,673}$ \& 8,794 \& 22, 199

\hline Des Moines, Iowa. \& 62, 139 \& 22 \& 313,060 \& 40 \& 36,164 \& 357 \& 156, 160 \& - ${ }^{27,579}$ \& $\begin{array}{r}15,458 \\ 1080 \\ \hline 13\end{array}$ \& - 46,550

\hline Springfield, Mass \& 62, 059 \& 22 \& 565,986 \& 121 \& 120,686 \& 189 \& 103, 890 \& 214, 165 \& -132,963 \& - 750,710

\hline Somerville, Mass \& 61,643 \& \& 7,200 \& \& \& \& \& 820 \& \&

\hline Troy, N.Y ${ }_{\text {Hober }}$ \& -60, 651 \& 14 \& 123, 073 \& 10 \& 6,630 \& 8_{4}^{84} \& 39, 045 \& 10,612 \& 26, ${ }^{2}$, 56 \& 127,467

\hline Evansvilie, Ind. \& 59,007 \& 7 \& \& 10 \& 7,721 \& ${ }_{94}^{20}$ \& $\begin{array}{r}\text { 31, } \\ \hline 34696 \\ \hline 1\end{array}$ \& 2,249
7,064 \& 13, 441 \& 44,799

\hline Manchester, $\mathrm{N} . \mathrm{H}$. \& 56,987 \& 13 \& 29, 125 \& 1 \& ,21 \& 30 \& 14,100 \& 2,951 \& $$
\begin{aligned}
& 44,147 \\
& 11,439
\end{aligned}
$$ \& 109,815

38,639

\hline Utlea, $\mathrm{N} . \mathrm{Y}$. \& \& \& \& \& \& \& \& \& \&

\hline Peoria, H \& 55, 500 \& 12 \& 148, 340 \& 14 \& 12,016 \& 169 \& 72, 666 \& ${ }_{9} 9244$ \& 88,758 \& -226,676

\hline Charreston, S.C \& ${ }_{5}^{55,807}$ \& $\stackrel{7}{7}$ \& \& $\stackrel{22}{3}$ \& 15,993 \& 121 \& 49, 542 \& 11,145 \& 72, 390 \& 203,,032

\hline Salt Lake City, U̇tah \& 54, 531 \& 10 \& 117, 273 \& 16 \& 3,696 \& 75 \& 32,961 \& 6,896 \& 34,800 \& 91,430

\hline \& \& \& \& \& 14,082 \& 96 \& 44,689 \& 13,082 \& 52,795 \& 144, 644

\hline San Antonio, \& - ${ }_{5}^{53,321}$ \& \& 123, 757 \& 11. \& \& 191 \& \& 8,665 \& \&

\hline Erie, Pa'... \& 52, 733 \& 10 \& ${ }_{106,512}^{82,26}$ \& $\stackrel{9}{2}$ \& 7,317 \& ${ }_{7} 9$ \& 49,193 \& 10, 376 \& 31,057 \& ${ }^{133,} 614$

\hline Elizabeth, N.J. \& 52,130 \& 5 \& 291, 350 \& 15 \& 17,885 \& 195 \& 98, ${ }^{350}$ \& + $\begin{array}{r}3,644 \\ 18,096 \\ \hline 8,\end{array}$ \& | 28,180 |
| :--- |
| 92,844 |
| 18 | \& 108,904

\hline Wilkesbarre, Pa \& 51,721 \& 11 \& 147, 857 \& 8 \& 5, 604 \& ${ }_{80}$ \& 40,594 \& 6,031 \& - ${ }_{31}$ \& - ${ }_{\text {103, }}$

\hline Kansas City, Kans \& \& \& \& \& \& \& \& \& \&

\hline Harrisburg, Pa. \& | 50,167 |
| :--- |
| 50,145 | \& 14

22 \& 219, ${ }^{2921}$ \& 9 \& 80,009 \& 198 \& 89,891 \& 24,047 \& 57,336 \& 210, 5155

\hline Yonlsers, $\mathrm{N} . \mathrm{Y}$ \& 47,931 \& ${ }^{22}$ \& 188, \& 20 \& 14, 884 \& 159 \& 78, 727 \& 19,711 \& 79, 218 \& 244, 789

\hline Norfolk, Va.... \& 46, 624 \& 15 \& 75,618 \& 7 \& 4,010 \& 73 \& 4,462
32,884 \& 1,493
11,693 \& 3,437 \& 14,500
108,381

\hline Waterhury, Conn. \& 45,859 \& 7 \& 58,077 \& \& \& \& \& \& \&

\hline Fort Wayne. Ind \& 45,712 \& 12 \& $\begin{array}{r}139,844 \\ 80 \\ \hline 182\end{array}$ \& 29 \& 27,642 \& 158 \& 62,716 \& 81, 858 \& 23,551
80,087 \& 65,202

237

\hline Youngstown, Obio \& 44,885 \& 4 \& ${ }_{44,185}^{80,43}$ \& $\stackrel{8}{5}$ \& 8,492
4,700 \& (59 \& 23,435 \& ${ }^{3}, 762$ \& 54, 550 \& 88, 380

\hline Houston, Tex.. \& 44, 633 \& 16 \& 153,783 \& 14 \& 9,860 \& 103 \& 53,781 \& \& 6,761
48,815 \& 44,160

\hline
\end{tabular}

Table 54.-SUMMARY of book and job Printing for cities having a population of 20,000 or over, 1900-Continued.

oities.	Population,	Number of estah-lishments.	Capital.	salabied officials, cleris, etc.		Wage-earners.		Miscel- laneous expenses.	$\begin{aligned} & \text { Cost of } \\ & \text { materials } \\ & \text { used. } \end{aligned}$	Value of products.
				Number.	Salaries.	Average number.	Total wages.			
Covington, Ky	42, 938	${ }^{6}$	\$16,325			13	\$5,527	81,682	\$7,178	\$19,145
Akron, Ohio...	42, 728	13	2, 195, 040	111	\$98,611	903	431,763	375, 444	535, 907	1,821,296
Dallas, Tex-...	42,638 42,345	20 11	207, 207	21	16,080	146	78, 226	27,870	74,247 27,096	$\begin{array}{r}284,178 \\ 81,078 \\ \hline\end{array}$
Lancaster, Pa	41,459	- 9	149,110	3	3,500	71	31,265	6,237 51	17,546	73, 075
Lincoln, Nebr	40,169	10	94, 270	10	7,610	109	42,935	11,197	58,883	143,920
Brockton, Mase	40, 063	9	100, 140	8	6,750	78	44,707	13, 427	71, 243	180, 390
Binghamton, N .	39,647	11	32, 400	1	1,000	18	6,656	2, 030	19,195	28,582
Augusta, Ga...	39,441 39,231	$\begin{array}{r}6 \\ 8 \\ \hline\end{array}$	82,600 151,100	${ }_{18}^{2}$	2,560 13,500	$\begin{array}{r}212 \\ 89 \\ \hline\end{array}$	25,427 35,354	3,595 7,303	19,186 74,810	70,132 154,500
Wheeling, W. Va.	38,878	6	21, 721	1	960	22	7,280	1,669	10,958	24,767
Mohile, Ala	38,469	9	54, 205			66	24,948	4,941	20,949	71,730
Birmingham, Ala	38, 415	6	87, 643	14	14,544	99	52,685	6, 094	63, 410	148,699
Little Rock, Ark	38,307	5	80, 510	11	10, 332	59	35, 810	6,945	47,230	129,000
Springfield, Ohio.	38, 253	8	87,140		6,250	106	44, 591	4,606	61,571	130,239
Galveston, Tex.	37,789	7	48,725	7	6,810	36	16,510	3,954	8,189	44,225
Tacoma, Wash.	37,714	12	56, 053	3	3,380	48	22,916	5,185	17,886	73,487
Haverhill, Mass	37,175	12	44, 625	4	2,680	49	26,251	3,644	14,457	71,550
Spokaue, Wash.	36,848	11	86,961	9	10,630	72	49,122	8,956	28,989 34,138	128,541 114,660
Terre Haute, Ind	36,673	9	54,960	19	7,900	85	32,301	7,601	34, 138	114,660
Dubuque, Iowa.	36, 297	5	44,883	5	3,280	46	21,906	8, 606	22,127	70,396 135,461
Quincy $111 .$.	36, 252	12	103, 004	11	10, 876	122	41,958	6,598	61,631 19,315	135,461 55,561
South Bend, 1nd	35,999	7	30,800	2 3	1,561 900	39 32	12,878	3,423 3,966	13,707	- 41,330
$\xrightarrow{\text { Salem, Mass }}$ Johnstown,	35,956 35,936	7 5	23,300 14,500			32 16	3,327	1,123	7,117	19,497
Elmira, N. Y	35,672	11	44,635	2	660	27	8,344	2,335	19, 662	43,876
Allentown, Pa	35, 416	8	66,048	${ }_{3}^{3}$	1,118	30	11,303	5,116	15,195 40.683	44,885 133,673
Davenport, Iowa	35, 254	11	104, 828	12 14	12,508 11,030	- 118	59, 347	110,644	34,076	129, 602
Springfield, 111 Chelsea, Mass.	34,159 34,072	9	124,625 17,545	14	11,030	118 21	80,022	10,640 2,011	5,678	23, 296
Chester, Pa.	33,988	4	14,250			5	1,800	746	3,548	16,900
York, Pa...	33,708	11	39, 040			14	6,195	1,370	8,949	27,675
Malden, Mass	33, 664	7	21, 845			23	9,966	3,191	8, 447	28,957
Topeka, Kans	33,608	13	372,594	24	23,140	204 17	109,650 8,300	30,578		369,180
Newton, Mass	33,587	3	8,940			17	8,300	525	3,844	18,100
Sioux City, Iowa	33,111	9	179, 421	12	12,420	78	28,143	15,119	40, 532	118,232
Knoxville, Tenn	32,637	6	79, 690	7	7,450	108	37,493 3,518		32,335 3,706	13, ${ }^{180}$
Schenectady, N, Y	31,682	6	31, 150	1	150	11	3,518 6,770	2, ${ }^{2}, 283$	3,706	19,338 19
Fitchburg, Mass.	31,531 31,051	${ }_{6}$	13,275 53,533	5	4,835	65	-65,246	1, ${ }^{1,956}$	26,942	72, 356
Rockford, 111.	31,051	7	53,533	5	4,835	6.	25,240	3, 5		
Canton, Ohio	30,667	7	31, 875			23	10,329	1,544	7,111	26,382
Butte, Mont.	30, 470	3	5,625	1	1,500	2	14,096	${ }^{627}$	16,066	-48,929
Montgomery, Ala	30,346 30,345	6 6	39,401 23,350	2 1	2, 400	56 21	14,287 6,338	3,251 1,361	8,099	25,325
Auburn, N. Y	30,345 30,154	${ }_{10}^{6}$	23,350 51,060	19	13,250	100	37,310	5,645	48,064	129,425
					1,680	14	4,092	1,550	5,903	16,466
Joliet, $111 . .$.	29, 358		142,062		3,000	27	22,247	5,083	12,721	54, 391
Sacramento, Cal.	29,282 29	3	16, 200	${ }_{1}^{3}$	-672	21	8,500 8,500	1,071	9,116	22,550
Racine, Wis....		4		1	400	8	2,600	964	4,768	12, 250
La Crosse, Wis.	28,895 28,757	4	29,955	2	1,830	27	12, 186	2,043	19,160	44, 277
Whamsport,								5,613	25,850	95, 342
Jacksonville, Fla.	28,429	9 3	96,392 18,950	6 1	5,050 150	88	36,150 3,15	-887	5,172	17,929
Newcastle, Pa .	28,339	3 6	18,9067	1	150	31	12,003	2,837	12,289	33,325
Oshkosh, Wis.... Whonsocket B	28,284	6 4	30,850	2	1,050	25	12,180	1,864	13,024	33, 880
Woonsocket, R. I Pueblo, Colo......	28, 157	4	24,000	3	3,520	21	11,354	2,241	13,359	42,100
							12,155	3,712	10,858	42,917
Bay City, Mich.	27,628	7	60,793	11	10,339	50	23,993	9,380	29,087	85, 224
Fort Worth, Tex. Lexington Ky	26,369	10	41,550	$\begin{array}{r}7 \\ \hline\end{array}$	2,168	54	18,531	4,523 1,277	$\begin{array}{r}23,469 \\ 7,044 \\ \hline\end{array}$	63,300 19,817
Lexington, Ky ${ }^{\text {deitain, }}$ Conn	25,998	3	18,734	2	1,214	13 11	5, 4,859 4,854	1,277 1,226	4, 240	19,817 15,560
Council Blufis, Iowa.	25, 802	4	10,950							
		6	42,614	3	3,028	54	21,898	4,417	23,563 5,677	71,803 21,935
Cedar Rapids, Iowa	25, 180	3	14, 286	7	5,915	15 54	- 7,997	4,958	5, 39,846	96, 237
Wichita, Kans..	24, 671	$\begin{array}{r}10 \\ 4 \\ \hline\end{array}$	68,817 9,200	7	5,915	$\stackrel{+}{7}$	2, 25.54	4,436	1,738	9, 400
Kingston, N. Y.	24,635	${ }_{10}^{4}$	9,200 203,239	26	14,114	158	55, 738	15,125	75,055	194,448
Kalamazoo, Mich	24,404									51,955
Meriden, Conn	24, 296	5	69, 659	8	6,364 600	${ }_{24} 8$	12,182	1, 865	5,590	25,868
North Adams, Mass	24, 200	4	24,460 22,150			31	11, 200	1, 428	13, 199	38, 200
Aurora, 111.	24,147 24,029	4	61, 360	2	2,100	60	26, 496	3,809	16,057	75,449
Poughkeepsie, N. Y .	-24,029	3	11, 535			15	4,806	1,074	7,475	20,950
Hamilton, Ohio.....						29	12,480	1,322	8,797	
Cohoes, N. Y	23, 910	3	35,985 8,100			9	- 3 , 525	, 863	3,743	13, 000
Nashua, N. H	23, 898	4	-86,227			18	8, 574	1,722	6,657	22,960
Lewiston, Me....		6	9,700			10	3,106 5,162	1,040 1,400	2,821 9,195	19,940
Zanesville, Ohio.	23, ${ }^{231}$	6	14,625			10	5,162	1,400	9,195	25, 421
Waltham, Mass..						122	44,830	5,744	61,946	147,383
Bloomington, Ill .	23, 286	7	90, 4200	18	15,510 2,400	35	11, 523	3,967	14,535	43,350
Macon, Ga.......	23, 272	8	27, 150			17	6,846	5,030	10,063	41,600
Springfield, Mo.	23, 201	5	63, 362	20	14, 694	60	16,791 1	4,645	22,243 1,909	71, 7,100
Burlington, Iowa..	23, 094		4,415			2				7,134

Table 54.-SUMMARY OF book and Job PRINTING FOR CITIES HAVING A POPULATION OF 20,000 OR OVER, 1900-Continued.

citirs.	Population.	$\begin{aligned} & \text { Num } \\ & \begin{array}{l} \text { bertor } \\ \text { eetro. } \\ \text { jish. } \\ \text { ment. } \end{array} \end{aligned}$	Capital.			wagerearners.		$\begin{aligned} & \text { Miscel- } \\ & \text { Mane } \\ & \text { expenseses. } \end{aligned}$	$\begin{gathered} \text { Cost of } \\ \text { cmaterials } \\ \text { nsed. } \end{gathered}$	$\underset{\substack{\text { Value of } \\ \text { products. }}}{ }$
				Number.	Salaries.	Average	Total wages.			
Jamestown, N. Y		${ }_{5}$				15 15 94 94 36				
Ciliton, Cowa -.................				${ }_{6}^{3}$	${ }_{\substack{4,475 \\ 4,000}}$					
				8	2,782					
gor, Me		944333				$\begin{gathered} 39 \\ 27 \\ 6 \\ 54 \\ 54 \end{gathered}$				
Petersburg , , -........					1,200					
Watertown, N. Y..				7	0,229					
Sar Jose, Cal ,		15 6 6 6			¢,5,020 6,608	50 $\begin{array}{l}74 \\ 64 \\ 61 \\ 17 \\ 32\end{array}{ }^{1}$				77,5009,0649,5002,5048,567
Columbia, s. C .				5	3,100					
Muncie, Ind......				5	2,200					
Amsterdam, , X. Y...	$\begin{aligned} & 20,929 \\ & 20,929 \\ & 20,754 \\ & 20,686 \end{aligned}$	[$\begin{array}{r}\text { b } \\ 4 \\ 10\end{array}$				$\begin{array}{r}9 \\ \begin{array}{l}16 \\ 38 \\ 47\end{array} \\ \hline\end{array}$	$\begin{gathered} 3,068 \\ \text {, }, 696 \\ 1,950 \\ 23,550 \end{gathered}$	$\begin{gathered} 6,69 \\ \begin{array}{l} 2,709 \\ 7,714 \\ 4,877 \end{array} \\ 4,88 \end{gathered}$		$\begin{aligned} & 12,400 \\ & \begin{array}{c} 27,50 \\ \text { and.500 } \\ 59,208 \end{array} \end{aligned}$
				5	4, ${ }_{4}^{2,809}$					
								$\begin{gathered} 482 \\ 1,885 \\ 10,707 \\ 10,051 \end{gathered}$		
New Albany, Ind	$\begin{aligned} & 20,688 \\ & 20,288 \\ & 20,106 \end{aligned}$	$\begin{array}{r} 5 \\ 51 \\ 31 \end{array}$		8	1,600	$\begin{array}{r} 3 \\ 7 \\ 18 \\ 119 \end{array}$	$\begin{gathered} 5,150 \\ \text { s, } 1,50 \\ 60,599 \end{gathered}$		$\begin{aligned} & 1,937 \\ & 10,9727 \\ & 0,921 \\ & 50,623 \end{aligned}$	
				7	4,328					

${ }^{1 I n c l u d e s}$ Bayonne, N. J., 2; Easton, Pa., 2; East St. Louis, 111., 2; Everett, Mass., 1; Gloucester, Mass., 2; Joplin, Mo., 2; McKeesport, Pa., 2; Muskegon, Mich., 2; Newburg, N. Y., 2; Newport, Ky., 2; Norristown, Pa., 1; Orange, N. J., 2; Passaic, N. J., 1; Quincy, Mass., 2; Sheboygan, Wis., 1; South Omaha, Nehr., 1; Superior, Wis., 2; Taunton, Mass., 2.

In 1900, cities of 20,000 inhabitants and over contained 79.0 per cent of the separate job printing establishments of the country, with 95.8 per cent of the capital invested in such establishments, and 97.7 per cent of the value of products.

Table 55 compares the totals for cities of 20,000 and over with those for all other localities.

Table 55.-Number of establishments, capital, and total and average value of products shown for cities of 20,000 or more inhabitants, and for other localities, 1890 and 1900.

locality.	Year.	Number of estabments.	Capital.	Value of products.	Average value of products per estab- lishment.
Cities of 20,000 or over..	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 5,466 \\ & 3,491 \end{aligned}$	$\begin{array}{r} 992,850,506 \\ 64,053,816 \end{array}$	$\begin{array}{r} \$ 118,943,242 \\ 90,034,844 \end{array}$	$\begin{array}{r} \$ 21,761 \\ 25,791 \end{array}$
Other localities........	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	1,454	$\begin{aligned} & 4,045,672 \\ & 3,092,629 \end{aligned}$	$\begin{aligned} & 2,855,854 \\ & 3,505,987 \end{aligned}$	$\begin{aligned} & 1,964 \\ & 5,776 \end{aligned}$

Between 1890 and 1900 the number of establishments in cities increased 56.6 per cent, but the value of prod-
ucts increased only 32.1 per cent, showing a decrease in the average value of products per establishment.

While the per cent of increase, between 1890 and 1900, in number of establishments outside of the cities was very large, in the value of products a decrease was shown, resulting in a much lower value of products per establishment in 1900 than in 1890. To some extent this change may be due to a more careful enumeration in 1900, by which were included certain small establishments that escaped notice in 1890.

Table 54 shows wide variations in number of establishments, capital, and value of products, in relation both to one another and to population. Large job printing establishments are often attracted to a given city by special causes quite distinct from population, as in the case of a state capital, in which a large amount of official printing is required. Of this class Albany, N. Y., Richmond, Va., and Hartford, Conn., are examples.

II. PROGRESS IN THE PRINTING AND PUBLISHING INDUSTRY.

When judged by modern ideas of progress, the art of printing was nearly stationary for four hundred years. Printing has been the most generous contributor to human progress, the handmaiden of all the arts and industries, and perhaps the most powerful factor in making the Nineteenth century the leader of all centuries in genius and invention; but it has been reserved for the last two decades to record the most substantial advances in the many and exacting details connected with the satisfactory production of a printed
page. The invention of the 10 -cylinder press, by Robert Hoe, in 1853, was declared by the lords of the privy council of England to be "one of the greatest steps ever made in printing." But in the far more difficult field of machine composition, inventors made no appreciable progress during the greater portion of the Nineteenth century; as late as 1880 the extended report of the Tenth Census upon this industry, after presenting evidence of the activity and progress of the period, declared: "While all these improvements have
been following each other in the printing and delivery of newspapers, the ingenuity of man has not yet invented a substitute for the setting of type by hand, the method of composition remaining precisely the same as it was when printing was first invented." ${ }^{1}$

The first step toward the solution of this problem was taken in 1886, by Ottmar Mergenthaler, who invented the linotype machine, which shortly afterwards came into general use, and has been followed by several ingenious and successful inventions similar in purpose. Although only beginning to be felt, the effect of these inventions is already significant, and in them doubtless may be found the cause of many of the abrupt changes which are shown on contrasting the figures given for 1890 and 1900 in the tables for newspapers and periodicals. These remarkable inventions can not fail to affect more and more the future progress of the industry.

Types have no existence in the product of the linotype machine; the unit is the line, which is known as a "slug." By pressing keys the operator assembles brass matrices, and upon the completion of a line these are pressed forward against a bar of molten type metal, casting the line, or slug, in condition for printing. By continuation of this process the matrices return automatically to their receptacles.

Other inventors also attacked the problem of mechanical composition, and there have been placed upon the market the Lanston monotype, a combination of a keyboard by which a strip of paper is punched, and a machine casting individual types from matrices indicated by the passage of compressed air through the holes in the punched paper strip; the Goodson graphotype, also a combination of two machines, operated by electricity, and casting individual types; and the Scudder monoline, a Canadian machine somewhat like the linotype, except that the matrices are located upon a disk. The monoline machine has not been placed upon the American market.

Mechanical composition and distribution of foundry type are accomplished successfully by the Dow, Simplex, Empire, and other machines.
The question of wages has been somewhat affected by the introduction of these radical departures in composition. In 1850 a compositor in New York city received $\$ 1.50$ per day, or $\$ 9$ per week. Ordinary job compositors now receive $\$ 18$, and operators upon machines receive considerably more. It is the opinion of many large employers of labor in this industry, that the invention of labor-saving machines has merely served to increase the demand for labor in new channels, so that the number of wage-earners employed has actually increased rather than diminished. The introduction of machine composition has been of decided benefit to the employee, offering a new field of employment at high wages. This fact is illustrated by the experience of the Typographical Union of New York city, in 1900, when called

[^122]upon hastily to supply 150 men for a special piece of work in connection with city printing. Every effort was made to secure them, but in that great center of population and labor it was impossible to obtain, at short notice, more than 100 men fitted for the work.
During the decade type founding made marked progress in several of its branches. The Benton punch cutter and the Barth type-casting machine enabled the founder to dispense with much of the laborious and expensive detail connected with his calling, and to reduce materially the cost of type to the printer. To some extent the use of these machines offset the inroads which the use of machine composition made into the business of the type founder, and permitted him to increase greatly the output of special faces and artistic display type.
In the measurement of type bodies a revolution was effected. A uniform series of sizes, known as the "point system," was introduced about 1890 , supplanting everywhere the earlier method, by which each foundry used a different size of "body." This radical change permitted the use of the type of one foundry with that of any other, and meant as much to the printer as the change from local to national currency meant to the nation.
In stereotyping, a device known as the autoplate was invented in 1900, by means of which the time required for casting plates was considerably reduced, and in electrotyping the value and efficiency of the foundry were enormously increased by the use of a strong current of electricity to hasten the deposit of copper, so that the time required by the process may now be controlled by the electrotyper to suit his customer.
The greatest advances in press building since 1880 have been made in perfecting presses. These machines are now constructed of such enormous size and with such great capacity that it is possible to obtain, at short notice, a newspaper press which will produce 100,000 impressions per hour, printed in 12 colors. The greatest advance in printing presses, however, was the construction of perfecting presses capable of producing the finest type and cut work as rapidly as though printing newspapers. Such machines, which were an impossibility in 1880 , and an experiment in 1890 , are now in general use, and are necessary to the production of the large number of inexpensive magazines and newspaper special supplements, profusely illustrated, which have become an important feature of current literature.
The great advance in the direction of printing in colors from plates, by means of which the printer has invaded the business of the lithographer, created a demand which the press maker met with a machine capable of printing the three primary colors and producing several more by combination at one impression, so that a complete picture in many colors may be the product of one impression.
In the field of illustration the decade has witnessed advances second only to the invention and commercial
success of composing machines. The art of steel engraving, carried to great perfection about the middle of the century, has become practically a lost art, and by 1900 wood engraving was neglected and unprofitable, being replaced by the "line cut" and the " half tone."

These two classes of illustration are obtained by a combination of photography and etching. In producing the line cut the drawing is photographed and the negative printed upon a zinc plate. The lines of the photograph are then protected and acid is permitted to eat away the exposed portions, producing a relief. The mechanical details of the half tone resemble to some extent those of the line cat, but the process is much more delicate, and the element of individual skill plays a more important part. The relief upon the plate is secured by small dots obtained by photographing the drawing through two glass plates which have been closely ruled. The negative is then printed upon a copper plate, which is subsequently etched.

The effect of the extraordinary activity in invention and improvement, sketched above as characteristic of this great industry since 1880 , has been twofold: To the printer himself it has been injurious rather than helpful; to the public it has been of incalculable advan-tage-a potent factor in elevating the standards of good taste.

It has already been pointed out that by the introduction of labor-saving devices in this industry, the wageearner has doubtless benefited both in employment aud in higher wages. As a matter of fact, the employing printer and not the wage-earner, suffered from new inventions and improvements ir machinery. The type founder and the press maker secure protection from the ills of competition by consolidation, but no such relief is afforded to the printer. Indeed, from the nature of his calling, no effective combination could be organized. Extraordinary activity in mechanical invention and improvement, added to increasing competition, forced the printer to sacrifice to the interests of his business a large share of his narrow margin of profit. It is unlikely that there is any other industry in which there is so small a financial return for so much labor and uncertainty. Printers have seldom grown rich from their calling; their recompense has been generally in the character of their product. So far as wealth from his occupation is concerned, the printer of to-day, like his predecessor of. centuries ago, lives entirely in the future.

Of far greater consequence, however, is the consideration of the quality of the product. There has been a remarkable advance, since 1880 , in artistic composition and in artistic results in all classes of printing. The styles of printing employed during the last two or three decades may be divided into threc general periods. The first period was that in which a great number of type faces were employed in all display work and title pages, apparently with the idea that several kinds of
shaded and display type were necessary for effective presentation. This style of composition was accompanied by elaborate ornamentation, such as rule work, scroll work, impossible cranes, birds, frogs, and conventional designs. Such work was not artistic in any sense, and could be regarded as interesting and commendable only from the standpoint of ingenuity.

The second period was marked by the imitation of alleged ancient designs and type faces. In the Seventeenth century printing was placed under very great restrictions in England. In consequence of this, a large number of small printing shops sprang up in obscure places, being generally known as "holes." These shops often used secondhand and worn-out dresses of type, and, operating secretly, produced pamphlets and small books of a very poor grade. Where ornamentation or special letters were necessary, the printer himself cut them, generally in crude and barbarous fashion. Thus there was a distinct decline in the printing of that period, due to the product of this multitude of interdicted shops. Certain artists of the present day, coming across this class of work, endeavored to imitate what was not really a subject for imitation, for it did not represent the best work of the period. Advertisers seized upon these oddities with avidity, and for a time there was a considerable movement toward such extreme results; but this fashion appears to be already on the wane. It obtained little foothold on the title pages or in the ornamentation of standard books. ${ }^{1}$

The third period was one of better taste, the simplest types being used in the preparation of titles and display. At no period in the history of the industry has more beautiful work been produced in the combination of types and paper than during the decade which has just ended. Indeed, in the progress of this industry paper is a factor which should not be overlooked.
In 1862 the kind of news paper ordinarily used was made of cotton rags. It was imperfect, poor in color, and manufactured in the crudest manner. The price was 24 cents per pound. In 1900 stock of the same quality could not have been marketed for 2 cents per pound. The extensive use of wood pulp, and the great variety of qualities, weights, and surfaces made possible by increased skill and by improved papermaking machinery, are factors which must not be neglected in any careful survey of the advance of printing.

The volume of advertising circulars and pamphlet literature was never before so large or of such mechanical excellence as during the last decade. The educational effect upon the public at large of presenting in the most attractive and artistic form the ordinary details concerning commercial wares, can not be overestimated.
The underlying cause of this advance, however, is the fact that the untiring search for improvement

[^123]has not been confined to the printing industry; other lines of commercial activity, scoring their triumphs, turned to the printer for exploitation by combinations of types, cuts, and paper so original and artistic as to compel attention and merit preservation. To this demand the printer was quick to respond. He became in many cases a designer, and firms were organized, with and without plants, to make a specialty of designing artistic combinations of types and material. This class of designing printers was practically a product of the last decade.

Leaping beyond the narrow limits of the modest and ugly circulars, leaflets, and handbills of two generations ago, the business community thus educated itself, through the activity of the period, to demand, for advertising purposes, the most beautiful products of the press.

In the realm of bookmaking no striking changes were recorded, but the advance in good taste and in artistic beauty of product was a marked characteristic of this branch of the industry. Fashions in bindings changed annually, but a widening range of materials and patterns, more daring use of designs and inks, and the invention and general use of automatic binding machinery supplemented improvements in printing, permitting lower prices for books and promoting phenomenal sales. It is a significant coincidence that the decade which witnessed extraordinary advance in all details of mechanical production in this industry, should be characterized also by the most noteworthy advance in the good taste and appreciation of the general public.

In connection with daily newspapers the beneficial results of the use of composing machines and of improvements in plate making, in presses, and in methods of illustration, are so obvious that they need not be discussed in detail. Many of the advances in mechanical construction, which already have been sketched, profoundly affected this class of publications.

The growth of the Sunday edition of the daily newspaper is worthy of notice. In 1900, 7 morning daily newspapers in New York published Sunday editions, aggregating nearly 400 pages. These enormous publications were composed of sections of 8,12 , or 16 pages devoted to news, literature, advertising, and comic illustrations in colors. The last-mentioned feature-madc possible by the advance in color printing on perfecting presses-though carried to extremes, showed no sign of reaction.

There was no radical change in the gathering of news or in the management and scope of daily papers. One characteristic of the decade, however, was the great increase in the quantity of news published. Partly
because of the ambitious and progressive spirit of the period, and partly because of the lavish expenditures of capital made by reorganized or newly established publications in order to break into the patronage of prosperous competitors and secure a foothold, the dailies of the great cities became the purveyors of the news of the world to an extent never before attempted. In many cases-especially in New York city, where the daily newspapers are of national repute-it was freely admitted that this expenditure was carried beyond the bounds of business prudence.

In 1886 the New York World reported the battle of Majuba Hill in six lines, but so rapid was the extension of news gathering that, fourteen years later, events in the same quarter of the globe were reported to the great American dailies by cable as fully as though close at hand. The destruction of St. Pierre, Martinique, in 1902, by an eruption of Mont Pelee, may be mentioned as an illustration of this tendency. Cablegrams concerning that great disaster reached American newspapers by way of Brazil, the Azores, and Great Britain, costing the recipients from $\$ 2$ to $\$ 4$ per word, with fees for precedence.

To some extent this outlay for increased news service has been met by organizing groups of newspapers in different cities to receive and publish duplicates of expensive cables or dispatches, but in ferr cases has this arrangement lifted more than half the burden. During the greater part of the decade the most stirring current events occurred on the other side of the globe; the war between China and Japan, the conquest of the Philippines, the war in South Africa, and the campaign of the Allies in the Far East required in turn costly presentation, while the operations of the Spanish War off Cuba, followed with wonderful efficiency by the American newspapers, involved immense expenditure. Many of the larger dailies maintained special yacht service between the scene of the conflict and Jamaica or Key West.

Upon the public the effect of such extensive news gathering was very marked; there was a decided increase in human interest; the world became a great neighborhood.
In the revenues of newspapers, however, there was no corresponding increase to offset the drain of increased expenditures for news.
The recent public sale of the Philadelphia Record, which may be regarded as representative of large and prosperous publications, adds confirmation to the foregoing statements. An accurate analysis of the business of the Record for most of the decade under consideration shows the following:

Table 56.-SUMMARY OF RECEIPTS AND EXPENDITURES OF THE PHILADELPHIA RECORD, WITH INCOME PER COLUMN FROM ADVERTISING: 1893 TO 1900. ${ }^{1}$

${ }^{1}$ Prospectus of the sale of the Philadelphia Record, Exhibit 1.

It will be observed from this summary that the proportion of expenditure for news gathering rose from 46.4 per cent in 1894 to 53.2 per cent in 1900, a difference of 6.8 per cent, and the earning power of a column of advertising fell from $\$ 62$ to $\$ 55$, a difference of $\$ 7$ per column, or more than 10 per cent.
In connection with increase in expenditures it should be noted that toward the close of the decade there appeared a perceptible bardening in the price of paper. Urgency of demand had made such inroads into the supply of lumber available for wood pulp, that it was clear that unless more liberal laws were enacted the price of paper was likely to rise rather than become lower.

Because of competition, many newspapers cut the price of their issue to 1 cent per copy, and in spite of increasing circulation, there was thus an actual decrease in revenue from sales.

In the meantime, advertising, the other source of newspaper income, showed no marked increase. The department store, though a liberal advertiser, did not compensate for the multitude of smaller retailers whom it supplanted. Taking advantage of the concentration effected in advertising, as elsewhere, the department store advertising agent offered contracts for as much as a thousand columns at a time, and these huge figures extorted from the publisher the lowest possible price.

By 1900 it had become customary for large advertisers to form combinations; it is said that the patronage of fewer than twenty advertisers forms more than half the total quantity of advertising appearing in the daily newspapers of New York city. The only new source of income in the field of advertising was found in new-comers-principally tobaccos, whiskies, cereals, and books. Of these interests the publisher, formerly the most conservative advertiser, became the most daring. The professional advertising agent might be termed another cause of loss to the daily paper, to the amount of the commissions exacted. Between the opposing perplexities of competition and combinations of the advertisers there has been a decline in the advertising earning power of leading newspapers.

After passing 300,000 circulation, the value of advertising becomes a race between the receipts from that
source and the cost of white paper. The advertising in one of the New York evening papers with circulation much exceeding 300,000 was recently declared to entail a cost of 21 cents per line for white paper. Evidently the publisher who secures a circulation of huge proportions confronts the necessity of securing from his advertising patrons a return of the cost of the paper space which they occupy, with a margin of profit. For reasons already noted, the profit is in many cases uncertain, and, as the decade drew to a close, for certain newspapers in the great cities a new problem arose.
The population had become so vast, and means of communication with surrounding territory so easy, that systematic search for circulation had been rewarded by enormous sales, the penalty for which was reduction or complete wiping out of profit on advertising. The circulation ball, once in motion, is not easy to stop, and the serious nature of this problem appeared when the cost of white paper occupied threatened to exceed the return from the advertiser. At the close of the decade such a possibility confronted several American daily newspapers. Overcirculation necessitated also an increase in capital invested in plant, with the added burden of interest which it represented. It may be said, therefore, that at the close of the decade from 1890 to 1900 the daily newspaper was more of a public institution than ever before, because it sacrificed an increased share of its revenue for the public benefit, obtaining no compensating financial return from either purchaser or advertiser. This was a condition very much to the advantage of the public, but one which tended to periods of reduced dividends in those establishments appearing to be most prosperous. Daily publications suffered from the rage for enlarged business and narrow profits so characteristic of all industries during the decade, but the relief which other callings found in combinations was not open to the publishers of daily newspapers, because the inequalities of circulation forever make combinations of newspapers impossible. Prosperity for the daily newspaper clearly lies in a middle course, if conditions permit, with respect to both news and circulation.

The changes which occurred in weekly publications
during the last decade were not such as to merit more than passing consideration.

In weekly publications of general circulation devoted primarily to news, a distinct decline set in, doubtless as a result of circumstances which have been referred to in connection with the tables. Many such publications were discontinued; for example, the New York Times and the New York Sun abandoned the weekly editions long published by those papers, and the widely-known New York Weekly Tribune was saved from the same fate only by being made an agricultural paper. It should be mentioned, also, as indicating the tendency of the period, that the semiweekly Tribune was made a triweekly.
Notable additions to the class of important weeklies, devoted to literary subjects or illustrated matter, and possessing large national circulation, were the Saturday Evening Post, of Philadelphia, and Collier's Weekly, of New York. Other publications, devoted to the subjects mentioned, and national in scope, maintained a prosperous circulation.

In the field of monthly magazines the most notable change which occurred during the decade was the creation of the 10 -cent magazine. The leading publications in this class were Munsey's Magazine, established as a 25 -cent publication in October, 1891, and reduced to 10 cents in October, 1893; and Mc Clure's Magazine, established as a 15 -cent magazine in June, 1893, and reduced to 10 cents in July, 1895. The Cosmopolitan, which had long existed as a 25 -cent publication, varied its price to $12 \frac{1}{2}$ cents and 15 cents, reducing to 10 cents in 1895.

The immediate effect of the reduction in price of Munsey's Magazine to 10 cents was to increase the circulation to such an extent that it was difficult to supply the orders, and the production of the first edition at the reduced rate was stopped in order to begin work upon the next issue. In the case of McClure's Magazine, reduction to 10 cents caused the circulation to double, and before the end of the first year it had reached about 150,000 .

When the reduction of price to 10 cents was made, it was generally regarded as a foolhardy proceeding. The opposition of the news companies made it necessary to handle independently the distribution of Munsey's Magazine. It was not realized by many well-informed publishers that the time was ripe for such a change. Improvements in mechanical production had progressed so far that it was at length possible for a daring manager to produce an excellent magazine at a trifling cost per copy. Moreover, the public, accustomed to cuts in prices in other directions, were in a frame of mind to welcome such a change. It should be remarked that advances in machine composition and in making illustrations, while of much importance, represented but a part of the initial cost, and were, moreover, a fixed figure, regardless of the size of the edition. These items,
therefore, were not of much consequence in producing a great number of copies. The principal factors were the improvements in presses and in machines for stitching and covering, which greatly reduced the cost per copy.
Publications of this class may be regarded as a variation of the old-established and more expensive magazine. They at once supplied an evident want, and have attained to an enormous aggregate circulation. Possessing different characteristics, they reached a different class of readers, circulating not only in the United States, but in Canada as well.
Munsey's Magazine is noted for the large number of illustrations employed, and for the use of material that deals with people and timely topics, avoiding descriptions. This magazine averages 160 pages of reading matter and 80 pages of advertising, or a total of about 240 pages and cover.
The leading characteristic of Mc Clure's Magazine, in addition to articles by well-known writers, is the presentation of subjects of current interest, completely worked out in all their details as soon as the topic has actually been completed. In character of material used, the Cosmopolitan follows a little more closely the policy of the older magazines. In all magazines of this class, except the Argosy, illustrations are freely used. There is unquestionably an evolution of daily newspapers, through their Sunday publications, toward the field occupied by the inexpensive magazine, which, before the completion of another clecade, may have some decisive result. Meantime the importance of the inexpensive magaziae, and its educating force in the community, must be given due weight. The combined circulation of the monthlies published by F. A. Munsey, the Ladies' Home Journal, Mo '̌lure's Magazine, and the Cosmopolitan, in 1900, was 2,483,000 copies per issue.

type founding.

There has been no material change during the past two decades in the manner of designing types, but the process of executing the design is different from that formerly employed.

For the laborious and delicate task of punch cutting, a machine known as the Benton punch cutter came into general use about 1885. This consists of a light framework a little over 5 feet high, occupying a floor space of 22 by 28 inches. About three feet from the floor a table is set in the machine. The preparation of a model for the Benton punch cutter begins with a pencil sketch, on paper, of letters 12 inches high. The drawing is reproduced by a pantograph, in the form of a model letter 3 inches high, with raised outline. An electrotype of this letter is then prepared, and is fixed firmly upon the platforn or table of the machine, beneath a tracing needle or index. To the head plate of this index are attached the four rods holding the cut-
ting mechanism, which is at the top of the machine, and consists of a rapidly revolving horer, fixed in a stationary position and in a movable framework, in which is set the bar of steel or other metal which is to be cut. The leverage of the machine is capable of various adjustments, so that from the same model letter any body of type, from 2-point to 72 -point, can be cut with equal facility and exactness.

The operator moves the index over the model letter on the platform, hearing down upon the lower parts and pressing against the sides of parts in high relief. The direction given to the index, at the will of the operator, upon the outlines of the model letter, is faithfully repeated by the tools cutting the punch. The cutting tools, of which two or three kinds are used in succession, are made with the utmost care. Being very highly tempered and being operated at very high speed, by steam power, they cut into the steel along the lines indicated by the movement of the guide over the model letter. The punches which are produced by this machine are finished in all points, requiring no band work. Besides being produced more rapidly than those made by hand, these punches are more accurate, the counters are deeper, and the bevels are truer and always of uniform slope. This machine may be arranged to reproduce model letters in either direct or reverse order.

Where the punch is to be employed in making matrices by the driving process, as is necessary for small characters, hard steel is used. The matrices for the larger characters are made from soft metal by the electrolysis process.

The automatic type-casting machine was invented by Mr. Henry Barth, of Cincinnati, and patented in 1886. The machine is now in general use in type foundries, both in the United States and in England, and has been largely instrumental in reducing the price of type. It delivers completely cast type, perfect in all respects and ready for use. In the office of the London Times a new dress of type is cast daily by an automatic typecasting machine, which, though seemingly deliberate in its operation, casts 1,000 types a minute. The old dress of the Times goes daily into the melting pot, and a new one takes its place. In that otfice this system is preferred to the use of the linotype or other composing machine.
The first practical attempt at uniformity in type bodies was made in France, by the type founder Fournier, in 1737. His system, which was quite complicated, did not come into general use, but after his death it was improved by Didot, a type founder of Paris. The systems of Fournier and Didot are still followed to some extent by French type founders.

In America the first practical attempt to establish correct proportions between different types was made by George Bruce, a New York type founder, in 1822, but his method was not adopted by other American founders. After the Chicago fire a firm of type found-.
ers in that city-Marder, Luse \& Co.-planned a system of bodies based on 6 picas to the inch. Later they took as their standard the pica made by the MacKellar, Smiths \& Jordan Company, as the one which the majority of American founders and printers would prefer, and regraded the other sizes according to the methods of Fournier. In 1878 they placed on sale type made on what they called the American system of interchangeable type bodies.

At a meeting of the American Type Founders' Association, in 1886, a committee was appointed to examine into and report upon the new system. There was some objection to the pica as a standard, but the majority of founders finally agreed to accept it as the basis of the point system. The twelfth part of a pica, called a point, was taken as a unit, and all bodies of type were placed on multiples of this point and called by numerical names: pica became 12 -point; long primer, 10-point; brevier, 8 -point; nonpareil, 6 -point, etc.

The American system follows the system of Fournier and Didot, except in the unit of measure employed. The following statement shows the names of the principal bodies or sizes of type in use in England and in America, with the names of these sizes under the point system:

Names of type bodies. ${ }^{1}$

${ }^{1}$ From Theodore L. DeVinne's Practice of Typography; Plain Printing Types, page 54.
In the autumn of 1892 the American Type Founders' Company was established. The majority of the type foundries of the United States became branches of this organization, which now practically controls this branch of the industry.

COMPOSING AND TYPESETTING MACHINES.

The Mergenthaler Linotype.-The linotype machine, invented by Ottmar Mergenthaler, of Baltimore, Md., became commercially successful during the early part
of the decade. This machine is less than 5 feet square, and weighs about 2,000 pounds. It consists of a bank of keys connected with a magazine containing about 1,500 brass matrices-small plates about an inch high and half an inch wide, the thickness varying with the type character. On one edge is the die from which is cast the letter, and at the upper end are a series of nicks or teeth for distributing purposes, every character possessing a different combination. Each magazine contains a number of matrices for each letter, and all the usual characters required by a complete font of type, together with spaces, quads, etc., of varying thicknesses. In addition there are also flat, elongated, wedge-shaped spaces which are inserted between words and employed for justifying each line as it is cast. The magazine containing the matrices is an inclined receptacle 2 feet 6 inches high, the top being about 6 feet from the floor. Within this magazine are channels in which the matrices for the different letters are stored, and through which they pass. The machine is so adjusted that as the keyboard is manipulated the matrices are selected in the order in which they are to appear in the slug or casting. When a key is depressed, the matrix to which it corresponds emerges from its channel, is caught upon an inclined traveling belt, and is then carried to the assembler, or stick. As each word is completed, a stroke of the space key inserts the wedge-shaped space used between each two words. When the line is completed the operator can correct errors by extracting matrices or substituting others for those which are in the line. The wedge-shaped spaces are now pushed up through the line, securing instantaneous and complete justification. The completed line is then transferred automatically to the front of a mold extending through a mold wheel at the left. Behind the mold is a melting pot, heated by gas or gasoline, and containing molten metal. Within the pot is a pump plunger leading to a perforated mouth arranged to close the rear of the mold. When the matrix line is in position the automatic operation of the plunger forces the metal into the mold and against the line of matrix letters, where it instantly solidifies in the form of a slug. The mold wheel then makes a partial revolution, bringing the mold in front of a blade which pushes the slug into a receiving galley, ready for the proof press.
In order to insure accuracy in height and thickness of the slugs, knives are arranged to act upon them during their progress to the galley. The slugs thus prepared are type-high, and when arranged in order look exactly like a type-high, metal-backed stereotyped plate cut into slices one line deep.
Having served their purpose in front of the mold, the matrices are returned to the magazine to be utilized in new combinations. The distribution is accomplished automatically. The line is lifted from the mold by a long arm, and shifted laterally until the teeth at the tops of the matrices engage the teeth of a bar which is
lowered to receive them. This bar then rises, lifting the matrices to the distributor at the top of the machine, but leaving the wedge-shaped spaces behind to be shifted to their magazine, which is to the left of the matrix magazine, and about on a line with its foot. The matrices, having been lifted to the top of their magazine, are pushed along a distributor bar by con-tinually-moving longitudinal screws beneath. The distributor bar, which is made in a single piece, is fixed horizontally over the upper end of the magazine, and is supplied with longitudinal ribs or teeth adapted to engage the teeth of the matrices and to hold the latter in suspension as they are carried along the bar. The teeth of the bar are cut away to produce a different number or arrangement over each of the channels. Each matrix remains engaged and travels over the mouths of the channels until it arrives at the point where its teeth bear such relation to those of the bar that it is permitted to disengage itself and fall into its own channel. It is thus clear that the operation of the machine permits the composition of one line, the casting of a second, and the distribution of a third to be carried on simultaneously. The casting operation can also be arranged to work independently of the rest of the machine. It is said that this machine is capable of a speed greater than that at which the most skillful expert can operate the keys. The average product of a good operator is $4,000 \mathrm{ems}$ per hour. Many operators, however, can produce from 5,000 to 6,000 per hour, and a speed of 13,000 is on record. There are three styles of mold-the first from 30 ems to 19 ems pica, the second for any measure between 24 and 13 ems pica, and the third for measures from 14 ems to 5 ems pica, inclusive. Each magazine contains matrices for any face of type, and the usual range of type faces is now from ruby to pica, or 12-point, though some matrices have been made for 14-point. Various faces of letters, and the alphabets of different languages, can be supplied with this machine. There are also combinations such as casting a 6 -point face on a 7 -point body, or a 7 -point face on an 8 -point body, in order to secure the effect of leading. The machines are equipped to permit an exchange of matrices or molds, and they can now be adapted to produce any practical face or any desired body, provided the line does not exceed 5 inches in width.

The Linotype company makes all the matrices required for its machines, employing the Benton punch cutter extensively in the preparation of the characters. Until 1899 it was impossible to employ in this machine more than one face of type at a time-the use of italics, for example, was impossible with body letters; but in the year mentioned one of the officers of the linotype company invented a two-letter matrix. The principal letter is a body character, and is placed above the other, which is italic, small capital, or bold face. To utilize the two-letter device, a special finger key is provided, which moves a small slide into or out of the assembler.

When the slide is drawn forward, the matrices entering the assembler assume the customary height and are delivered to the mold in position to produce the upper or body characters. If italics or small capitals are desired, it is necessary only to draw out the lower end of the finger key, causing the slide to move inward, so that the matrices added to the line will be arrested and sustained at a higher level than the others, causing their lower or secondary characters to be presented in casting position. By the operation of the finger key the line may be made to consist wholly of body face, italics, or small capitals, or of any combination of these faces required. The field of operation of the linotype machine has been much extended by the introduction of the two-letter device. It is stated that about 8,000 machines are in use in the United States, perhaps half that number in Great Britain, and a large number in Germany, France, and other parts of Europe. About one thousand new machines are put in operation each year. They are now in general use in the large newspaper offices in the United States. In addition to greatly cheapening the cost of composition, they possess the added advantage of supplying what is in effect a new font of type with every issue, the slugs being returned to the melting pot after each use. Another advantage is the ease with which the slugs can be handled. As they represent lines instead of individual letters, they can be manipulated with great rapidity.

The Scudder Monoline.-The Scudder monoline machine manufactures a solic line of type, or type bar. It is automatic in all of its functions, and is operated by one man, by the manipulation of a keyboard. The different parts of the working mechanism are attached to a solid, three-legged cast frame, and are in full view and within easy reach of the operator. The machine is 3 feet 6 inches high, 4 feet long, and 3 feet 6 inches wide, occupying about as much floor space as a printer's three-quarter case frame.
The principle governing the operations of the monoline is much the same as for the linotype, the main difference being in the construction of the matrix bars; those for the linotype carry a single intaglio, while the monoline uses matrix bars, each having 12 characters indented on the front edge. These matrix bars, of which there are 500 , are stored one behind another in a magazine about the size of an ordinary photographic camera. As the keys are struck on the keyboard the matrices and spacers descend into the assembling box, traveling a distance of about four inches, and the bars are dropped more or less, according to the position of the letter to be brought in line to be cast. When the line has been completed to approximately its full length, the operator strikes a lever at the right of the keyboard and begins the composition of the second line, while at the same time the machine automatically justifies the first line, carries it to the casting pot, delivers it upon
the galley, and returns the matrices and spacers to their respective receptacles in the magazine. The machine will not cast a line which has not been properly justified. After being once brought into use, a matrix bar or spacer is not employed again until all others of the same kind stored in the magazine have been used in turn.

The Lanston Monotype Machine.-The Lanston monotype machine was invented by Tolbert Lanston, in 1886, but was not placed upon the market until the latter part of the last decade. The principle upon which it is constructed differs radically from that of the linotype. The monotype produces single types cast in the order of their use, and set in automatically justified lines. It consists of two machines-a perforating device operated by a keyboard, and a casting machine. The keyboard differs from that of the typewriter only in the much greater number of characters, of which there are 225 , comprising a complete font, including italics and small capitals. The keys are arranged in 15 columns of 15 rows each, with 2 extra rows at the top to secure justification. For each series of characters in the font a different color is used, so as to distinguish italic from roman, etc. The keyboard is between 3 and 4 feet from the floor and is supported by an iron bar upon a base 1 foot square. At the top of the machine is a roll of paper which unwinds from one spool and winds on another as the keys are struck, and also a paper scale for registering the body size of the type.

Before beginning his task, the keyboard operator sets an index of the number of ems required per line. Each stroke of a key perforates the paper ribbon in such a combination as to control the matrix of the proper letter in the casting machine, and causes the registering scale to charge to the line an amount equal to the body width of the type just selected. In this way a line of matter is progressively perforated and charged until, as the end is approached, the line scale shows that the next word or syllable can not go into that line, while another portion of the registering scale indicates the amount of unfilled space in the line just perforated if it should be cast with its spaces of normal body size. Still another portion of the scale bas been keeping account of the number of spaces used between words of the line which may be varied in the process of justification. The machine thus mechanically notes for the operator the amount of space to be added and the number of space types among which the variation from the normal body width may be apportioned. At the completion of each line the operator, by merely noticing the figures shown by the pointer on the justifying scale, knows at once what additional holes to perforate in the record in order to secure perfect justification. When he has touched the justifying keys the registering scale recedes to zero, advancing again as the new line progresses. These operations are all automatic.

From the perforator the spool passes to the casting
and setting machine, an intricate piece of mechanism about 4 feet high and slightly less in width, weighing about 1,200 pounds. On being placed in the casting machine the ribbon is unwound in reverse order, the operation of casting and setting proceeding in like manner. The control of the casting machine by the perforations in the ribbon is effected by the pressure of air passing through the holes as the ribbon moves over a rounded plate. Within this plate are 32 air tubes, and, as different perforations appear, different connections are made through these tubes with the working parts of the casting machine, a pressure of 8 pounds being maintained. The 225 matrices are contained in a die case measuring about 3 inches square. The matrix case shifts its position according to the combination of perforations passing over the air tubes. The perforations for justification regulate the casting of space types between words, causing the mold to be opened in the degree indicated by the justifying holes, in order that the space types may be cast of the proper size. Thus, from the record ribbon made at the keyboard, the casting machines cast type and insert mathematically correct spaces at constant speed, which may be kept up up to the limit of cooling metal. It is the work of only a few moments to remove one matrix case and substitute another. Moreover, the molds in which the bodies of the types are cast, also, may be exchanged at short notice. At one side of the casting machine is a melting pot, in which an automatic plunger forces the hot metal into a nozzle leading directly to the mold upon which the matrix rests. The metal is forced against the matrix, which is filled first, and then instantly occupies the body of the mold under pressure, insuring a good cast. When chilled the types are ejected through the mold into the carrier, which carries them to the line in the galley. As each line is completed, it is advanced automatically to make room for the next. The correction of matter set on the Lanston machine is the same as in hand composition; it is not necessary to recast a line, as in the slug machines. In the operation of the Lanston machine it is customary first to cast a font of type to be used in making alterations by hand.
It should be observed that the keyboard and casting machine have no connection whatever, and that each part can be operated independently. A keyboard operator can set matter as rapidly as he can read the copy and strike the keys, a speed of $5,000 \mathrm{ems}$ per hour being regarded as a moderate average. The type-casting machine casts and produces, according to the body size, from 75 to 125 ems per minute, or from 4,000 to 5,000 per hour. It can be adjusted to cast type on bodies ranging from $5 \frac{1}{2}$-point to 12 -point, with various faces.

The advantages claimed for this machine are perfect justification, the convenience of being able to operate the two parts separately, the employment of matter set from single types, and therefore easily and quickly cor-
rected, and the ability to produce a font of type at every operation. Although they have not been long in practical operation, many of these machines are in commercial use.

The Goodson Graphotype.-The Goodson graphotype machine was first placed upon the market in 1899, by J. H. Goodson, and depends upon electricity for its successful operation. It is composed of two parts: a small table about the size of a typewriter desk, containing an ordinaly typewriter, a perforating machine, and a small dial similar to a clock; and a caster and setter. The typewriter is in all respects unaffected as far as facility in writing is concerned. The operator is required, in addition to the execution of ordinary typewriting, to notice, when the end of the line is reached, the dial which controls the spacing, and to touch the key indicated by the dial, thus automatically spacing and justifying the line.

Each time a key is touched, not only is the proper letter written on paper, but an electrical communication is made with the perforator, which perforates a narrow paper ribbon in series of round holes so arranged that when the ribbon is placed in the casting and setting machine a similar electrical connection is made through this perforation, by indicating the letter or space to be cast and set. The advantage of a visible, typewritten sheet is obvious. It is accessible to the operator for reference, and it may be read by the proof reader instead of the first proof, as the type and the typewritten page are identical so far as the orthography is concerned. The ribbon, together with the corrected typewritten sheets, may be put away indefinitely for reprint or for possible use in the future, without expense for retaining metal. The same perforated ribbon and corrected first proof can be used in the casting machine to set from $5 \frac{1}{2}$ to 12 point type, the size or style of type required being determined at the caster, not the perforator.
The caster and setter resembles a sewing machine, being but little larger. It is operated automatically, and controlled by the perforated ribbon already mentioned. It casts and sets type continuously at a speed of $5,500 \mathrm{ems}$ per hour, and has reached a speed of $8,000 \mathrm{ems}$ per hour. The metal pot is more than a foot from the mold, making it possible to cool the types rapidly, thus overcoming a difficulty which has heretofore limited the efficiency of casting machines. It is possible, therefore, to maintain the maximum speed mentioned. The molten metal is conveyed to the mold by means of an electrically heated tube insuring uniform temperature for type casting. The mold is also water-jacketed, to counteract the heat which the small jet of metal gives out in casting type. By this means the mold is kept at a temperature at which the type is immediately chilled throughout an indefinite run, insuring a perfect and well-cut face. The type itself is in all respects
equal to foundry type, and can be distributed into the case and reset with the same facility. The size or style of type and the measure can be changed as rapidly as this could be done by hand. It is claimed that the advantages of this machine for setting tabular matter are very great-that it can be set at the same speed as straight matter, the rules being put in by hand.

The Dow Composing Machine.-The Dow system of composition, patented November 28, 1899, requires the use of two machines-a composing machine, which sets individual foundry types and delivers them automatically justified on the galley; and a distributing machine.
The composing machine is a little over 6 feet high, weighs 2,000 pounds, and occupies about 17 feet of floor space. It is operated by means of a keyboard similar to that of a typewriter, but with 90 characters. The keys descend only three thirty-seconds of an inch, and are used simply to release certain parts, the driving power of the machine accomplishing the rest of the work. For greater ease in handling, the main type magazine is divided into two parts. In the type channels, which are 4 feet in length, the types lie with their faces in sight, resting on their sides in order that a large number may be placed in one channel. For further increase of capacity, additional channels are devoted to letters in frequent use.

At each touch of the keyboard a single type is pushed from the magazine and advanced to a type raceway in front of and parallel with the magazine. This raceway, which is in a continuous horizontal line, widens at one end, so that as the type enters and is pushed along by a rapidly reciprocating type driver it is stopped at the center by the narrowing of the raceway. From this position it is conveyed, by a blade operating in harmony with the type drivers, into an upright channel or "stick," each type forcing down the preceding one. To set a line of quads the operator simply keeps his finger on the quad key, and the quads are set in the stick at the rate of 10 per second until the line is filled. As the types enter the stick their faces are presented directly in view of the operator, who can read and correct them at will. A bell gives warning when a line is approaching completion, and a gauge at the side of the channel in which the line of type is formed, shows how much the line is short or how far the operator has overrun the standard measure he is setting. When the line is full the operator touches the line key, and then, without further attention on his part, and without delaying the composition of the next succeeding line, the stick of type turns halfway round and the line of characters is thrust by a blade to a point on the raceway called the "bridge," where the process of justification begins.

During the process of composition plain, type-high, rectangular bits of brass are used temporarily to separate the words; at the bridge each word is removed from the forward end of the line and carried to the
galley, where the temporary space is extracted and returned to the setting case, the proper justifying space being substituted. The justification is accomplished by means of an automatic calculating device placed at the back of the machine. This calculator registers the shortage in the line and the number of spaces among which this must be divided, divides the shortage as equally as possible among the number of spaces indicated, and sets in motion another mechanism which ejects the required spaces and places them between the words as they pass in succession along the raceway to the galley.

Safety devices are provided to protect the machine from accident or carelessness. Should anything get into the raceway at the foot of the channels, the sliding shoe on the type driver unlatches from the driving mechanism, so that the reciprocating parts go on working, clear of stoppage. If by any chance the stick becomes choked, so that it can not turn at the proper time, the ejector blade is stopped, thus preventing injury to the stick. All movements of the machine are positive, there being no dependence whatever on gravity, centrifugal force, magnetism, air pressure, or the like, and the operative force used is only one-half horsepower.

When one of the sorts is exhausted, if it be one of the duplicated channels the next channel is brought into action by means of one of a series of levers over the keyboard; if the type sort be entirely exhausted it is replenished from the distributor. When the magazine requires refilling, it is let down by a hand crank, lifted out by the handles, and taken to the distributor.

The Dow distributor is entirely separate from the composing machine, but its mechanism is of the same positive character. The operation by which it distributes the various types in their respective channels is automatic, and allows a normal speed sufficient to supply three composing machines with type. For purposes of distribution the body of each type character has a special identifying nick. The distributor, which lies flat, consists of a central disk joined to a set of channels radiating like a fan. Upon the periphery of the disk are supported 36 type carriers, and as these are rotated past the galley channel on one side, each receives a single type, which is carried round until it is opposite the proper channel, when it is pushed out of the carrier into the channel, the distributor continuing. its rotation.

The Simplex One-man Type Setter.-The simplex machine is a combination of the Cox typesetting machine and the Thorne machine. It performs the two operations of composition and distribution, either simultaneously or one at a time, as the operator chooses. It occupies less space than a printer's stand, weighs 800 pounds, and requires less than one-fourth horse-
power to drive it. The body of the machine is formed of two cylinders about $1 \frac{1}{2}$ feet in diameter, one directly above the other. The lower, which is about 2 feet high, is stationary, but the upper, whose height is about 9 inches, rotates in the common axis. In each cylinder, extending vertically their full length, there are 90 parallel channels, slightly wider than the body of the type which the machine is made to set; those of the lower form a magazine into which type is distributed from the channels of the upper cylinder, to be stored for resetting.

Each key on the keyboard is connected by levers and wires with a small plunger at the bottom of its particular channel. When the key is depressed the plunger is moved forward and ejects one type on to the flat surface of a rapidly moving disk encircling the bottom of the cylinder. The type is conveyed quickly to the right-hand side of thle machine, collisions of type on the way being prevented by the scimitar-shaped guards between each two channels, which prevent the types from interfering with one another and guide them as they start on their run on the disk. A switch deflects the type from the disk to a flat traveling belt which runs parallel with the disk at this point, and which conveys the type to the "separator"-two rolls with just enough space between to permit the passage of a single type, so that if the operator has played two types which are traveling side by side they are separated before proceeding farther. The types are now guided, one by one, to the packer, where they run on a cam, are lifted, and are then carried forward to proper position. Types succeed each other in the packer with 3 -em space between the words, until a continuous line is formed extending across the back of the keyboard, with the face in view. At this point the operator, who is on a seat attached to the body of the machine, swings himself to a place at the left, where the justifying mechanism is situated, separates from the long line about enough matter to fill a line of the width of the column being set, and justifies and corrects it by hand; he then touches a thumb lever beside the galley, releasing a pawl which engages with a ratchet on a rotating wheel under the keyboard. In one revolution of this wheel, the rule which stands behind the type line is drawn down below it, while a line pusher comes up in front of the line and carries it into the galley which rests on a support behind the rule. For "leading" matter automatically there is a receptacle-which the operator can easily keep supplied with leads-out of which, by the action of a small lever, a lead can be delivered behind each line as the line pusher carries it into the galley; if more than one lead is desired, the thumb lever is held out until the needed number of leads has been supplied.
The distributing mechanism is at the rear of the upper cylinder. The galley of dead type to be dis-
tributed is placed sidewise (the lines of type being vertical) on a bracket, upon a solid upright fastened to the body of the machine. In each channel of the distributing cylinder there is a weight which rests on top of the column of type. When an empty channel, in its revolution, reaches the loading point, its weight, being low, trips a trigger attached to the releasing mechanism and the vertical lifter and plunger cam shaft is started, making a complete revolution. The lifter arm carries up the weight, thus leaving the channel clear while the "plunger" is moved forward and a line is pushed from the galley into the channel. After one line has been extracted from the galley, a spring moves the column forward so that the next line is in position to be loaded into the distributing cylinder. As the shaft continues its revolution, the lifter arm is dropped and the weight is lowered upon the line of type where it rests, aiding the force of gravity in making each type drop into its proper channel in the magazine cylinder. For this system of distribution each type character in a font is given a combination of nicks, and the channels are so grooved that they are closed to all type not fitted, by the combination of nicks, to pass.

All the channels in the upper cylinder are filled in turn. The cylinder revolves with a step-by-step motion, each of its channels being brought in turn over each channel in the stationary magazine cylinder below and held rigidly a moment to permit the dropping of each type as it comes to its proper channel.

In the practical operation of this machine it is not necessary to keep the distributor working without interruption, since it supplies type faster than the operator can set it up. With every channel in the upper cylinder empty, the replenishing can be done in three-quarters of a minute.

The sorts in the different channels distribute in about the proportion required by the operator, but provision is made for removing quickly any sorts which distribute faster than is required, and for replenishing the supply of sorts which do not distribute rapidly enough.

STEREOTYPING AND ELECTROTYPING.

The process of duplicating type surfaces by stereotyping has remained practically unchanged since its application to the requirements of newspapers in 1861. This process has been a necessary adjunct to the perfecting press, which prints from curved stereotype or electrotype plates. Advances in this form of press construction created a necessity for the rapid casting of stereotypes, and for many recent models, the duplication of pages. This demand led to considerable improvement in the direction of rapidity of production and ease of handling in stereotype plate casting.

The most notable improvements in the stereotyping process during the last two decades have been a matrixrolling machine, constructed for making a specially
prepared matrix, which is ready for the casting box when it leaves the press; improved drying tables; automatic casting boxes; combined sawers and trimmers; combined planers and shavers; improved machines for routing and beveling; and an improved half-tone beveling machine.
The autoplate, an invention of Henry A. Wise Wood, is a mechanical device for stereotyping. It is a solidly constructed mechanism, 4 feet high, 7 feet long, and 3 feet wide. The matrix is placed, face up, in a concave receiver, which slides forward into the casting box when the machine is set in motion. The bottom of the box rises and lifts the matrix close to a fluted cylinder, while at the same time a pump begins to draw molten metal from a caldron and force it into the casting chamber, under an elastic pressure, which follows the shrinkage of the plate with fresh metal. Sprays of water are used to cool rapidly the casting box and the cylinder. When the plate is completed the casting box falls, stripping off the matrix, and the plate is brought by the cylinder to the top of the machine, where a metal arm seizes it and carries it along toward the back, trimming and finishing it automatically on the way. Then the plate moves out upon a long arm, where a workman gives it the final preparation for the press.
The great advantage of the use of the autoplate over other methods of stereotyping is that much less time is required. At highest speed, hand work will produce but one plate per minute; the autoplate will produce three or four in the same time, and the quality of its work is pronounced superior to that of hand work. Another consideration of advantage to the printer is that fewer workmen are required to attend to the working of the autoplate than are necessary for hand work.
Stereotyping is still in general use in newspaper offices, because of speed. With respect to fineness and finish, electrotyping is far in advance of stereotyping, and is now used almost exclusively for book, magazine, and job printing.

In electrotyping the principal improvements are these: An important invention to stimulate the action of electro-deposition by the use of a dynamo; a blackleading machine which utilizes a blast of air; a combined metal kettle, wax-heating table, and case-filling table; a power wax-shaving machine; a hydraulic molding press; and improved saw and routing machines, including curved routing machines for use on both electrotype and stereotype plates. Process engraving, or the half tone, has developed new possibilities for the electrotyping process. The Muller patent half-softening hammers and punchers, and the Richards improved ruling machine, are inventions used in this work.

PRESSES.

Prior to 1870 printing presses were largely of two types: the platen or job press, in which the impression was made by direct pressure; and the cylinder
press, consisting of a flat bed which held the type form in a horizontal position, and oscillated beneath a large revolving drum or cylinder carrying upon a segment of its surface the sheet to be printed.

Attempts had been made to construct a press which would permit the type to be placed upon a cylinder, utilizing the rotary principle that bas been brought to a high degree of perfection in the modern web press. In 1846-47 Hoe \& Co. produced a machine of this class. The type was locked on the surface of the cylinder, the curvature being assisted by V-shaped column rules. The sheets were fed separately to impression cylinders, and delivered by a sheet flier. This form of press was soon found incapable of meeting the demands of the larger newspapers.

The discovery, about this time, of the possibility of casting stereotype plates on a curve, from papier-maché matrices, was the key that opened the way to the ingenious and complicated printing presses of the period.

Job Presses.-The improvements in job presses consist largely in details relating to the various classes of work for which they are intended. In the general construction of this class of presses few radical changes have been made, and standard patterns long in use need not be described here. The most radical departure within the last few years has been the employment of the rotary 1 :inciple, as exemplified in the Harris automatic press. In this press the printing surface is a curved electrotype plate, though separate types can be fitted into a type box adjusted to the printing cylinder. The press prints upon separate sheets which can be fed either by hand or by an automatic arrangement; the automatic feeder carries several thousand sheets of paper, which are fed from the bottom by an ingenious device permitting the renewal of the pile without stopping the press. The speed of this press is from 5,000 to 14,000 impressions per hour, according to the class of work.
The Kidder Press Company manufactures job presses which feed automatically from a roll.

Oylinder Prosses.-Until the close of the last decade the cylinder press was the main reliance of publishers for larger work, such as books, posters, and all large forms. It was in general use also for papers of small circulation and for all high-class work. Improvement in perfecting presses has to some extent caused the displacement of the cylinder press, but it is still generally used.

There are four kinds of cylinder presses in use-the drum cylinder, the double cylinder, the stop cylinder, and the two-revolution cylinder. Of these, the last named is now regarded with the greatest favor.

The past twenty years have witnessed numerous improvements in the three styles of presses last mentioned. From the old, cumbersome drum cylinder, still in operation in many country newspaper offices, with a speed
of 1,200 to 1,500 per hour, to the modern, rapid tworevolution press, with all its delicate adjustments and labor-saving devices, is a very great advance.

From the old-fashioned drum-cylinder press was evolved the double cylinder, a duplication of the cylinder, by which the capacity of the press was doubled. The cylinders were fed alternately. The stop-cylinder press was so named because the cylinder stops at a certain point in its revolution, thus permitting greater accuracy in feeding. Owing to the exactness with which the sheet was printed-technically called "regis-ter"-this press was used where fine grades of work, such as half-tone or color work, were required. It attained great popularity, but has been supplanted by the two-revolution press, because the latter possesses much greater speed and nearly equal accuracy. In this press the cylinder is smaller, and revolves twice at each impression, once in contact with the type and again in a slightly elevated position while the sheet is being released and the form returned to its former position.

In 1885 Robert Miehle made a number of improvements in the two-revolution press, which increased its capacity and brought it into more general use. Since then this type of press has been subject to continuous improvement. The Century two-revolution press is one of the most perfect machines of this class. The constant aim of improvements in this field has been to increase speed and accuracy, and to give the utmost facility in adjustment and operation. Among recent improvements in the two-revolution press are the substitution, for cam gears, of a crank movement of the bed; an adaptation of the stop-cylinder principle; and perfected methods of ink distribution.

Perfecting Presses.-In the web perfecting press occurred the most noteworthy development of the past two or three decades. While modern presses of this class possess remarkable capacity, they are the result of improvement, rather than a radical departure from the earlier form of rotary presses. Various mechanical problems, resulting from high speed, were met and solved; among these were the questions of combining the printed sheets, cutting, folding, and preventing the offsetting of ink. Although attempts were made before 1870, in this country as well as in England and France, to build presses embodying this principle, the machine constructed, in 1871, by Hoe \& Co., of New York, may be said to be the first successful perfecting press. This press printed 15,000 papers per hour from one set of plates. In 1876 this firm brought out the rotary folder. The development of folding mechanisms has naturally kept pace with that of the press proper, until at the present time papers consisting of any even number of pages from 4 to 32 are turned out, cut, pasted, folded, and counted, in lots of 25 or 50 , at rates of speed varying from 12,000 to 150,000 per hour.

The term "web perfecting" exactly describes the process employed; a roll, or "web," of paper passes
into the press and is printed, or "perfected," on both sides before being cut and folded. The early form of rotary press was the "single." Then the length of the cylinder was donbled, thus doubling the capacity of the press-that is, printing a paper of the same size at twice the speed, or a paper double the size at the same speed, as the "single rotary." Then came the doublesupplement press, with a set of single cylinders at one side, permitting the printing of 10 -page and 12 -page papers. The next step was to double the supplementary press, forming the quadruple press-a style in common use to-day-with a capacity of from 48,000 4 -page papers to 12,00024 -page papers per hour. Instead of being arranged side by side, the presses were often constructed with the supplementary press on top, making a "double decker." The quadruple press was then converted into a sextuple press by the addition of a supplementary double press placed at one side. It was a simple matter to convert this into an octuple, a type of press now in use on such papers as the New York Sournal and the Chicago Tribune. The octuple is sometimes constructed by piling four double presses one above another. One style of press, designed for the New York Journal, consists of two sextuples working side by side. This is a three-decker machine, equivalent to six double presses. In these presses each double-cylinder machine is fed from a separate roll of paper. The folding and cutting mechanism can be adjusted to assemble the pages in any desired combination within the limits of the press.

The illustrated colored supplements of the large city journals have been made possible by the adaptation of these presses to color printing, permitting the use of one, two, or three colors besides black. This principle has been carried still further in a rotary multicolor and half-tone machine, which prints in as many as eleven colors, and has a capacity 48,000 full-sized 8-page papers per hour.
Two general classes of the web press are made. In one, what is called the "angle bar" is utilized to turn the sheets in order to assemble them from the different webs. The other is designated the "straight line," the sheet being run through the press without being diverted from a straight course, and was invented by Joseph L. Firur, of Jersey City, N. J., who associated himself with the Goss Company, of Chicago, in 1890. By means of this invention greater accuracy in register was obtained, with less danger of tearing the running sheet in rapid work.

The ScottCompany has produced an "all-size" rotary web press, by which pages of different sizes can be printed, the adjustment being graduated to quarter inches.

Another type of perfecting press is shown in the flatbed "multipress" of the Campbell Company, and the Cox duplex press, in which the type beds are stationary, the cylinders rolling back and forth upon them. These are adapted to small country dailies.

Many variations in the perfecting press are made to order to satisfy individual requirements. Some of these even place colored covers upon their products and stitch or staple them. The colored supplements of newspapers are often printed in colors on one side and black on the other, and half-tones often occur on the same page in different colors. Music is printed on heavier paper and folded in with the supplement. All this is accomplished without marring the product. A space is often reserved also for a type column of late news, to avoid stereotyping another set of plates.

The presses of the Goss Company are fitted with an ingenious arrangement to prevent offsetting. Rollers made of molasses and glue pass over the freshly printed paper, absorbing the excess of ink, which is then transferred to a polished metal cylinder, from which it is removed by a cylindrical cotton wiper.

Toward the latter part of the last decade the product of the perfecting press was greatly improved, so that it became a competitor for the finer grades of magazine work, for which it is being utilized more and more.

Lithographic Presses.-Few changes of consequence were recorded in this branch of the industry during the decade. Aluminum plates have been employed with considerable success as a substitute for stones, but the notable feature in their employment is that they permit the use of the rotary principle. Special presses, constructed with great care to meet the exacting requirements of lithographic work, are manufactured for this process, and have attained some success.

patent blankets and mechanical overlays.

There were many attempts to substitute mechanical processes for the laborious task of "making ready" by hand. Among the inventions of this class were the Savary, Dittman, De Vinne-Bierstadt, and Humphrey and Upham methods, all of which must be regarded, so far as general use is concerned, as still more or less in the experimental stage.
The Savary device is a blanket composed of a collection of very short wires. This blanket is mounted on a cylinder, and by equalizing the pressure serves to correct irregularities in the height of type and cuts. Another invention substituted a blanket of woven wire for that of pointed wires.
The Dittman process utilizes the expansion which occurs in wheat flour when dusted onto a fully inked impression.

The De Vinne-Bierstadt process utilizes the action of light upon gelatin in combination with other substances. A print taken on a thin sheet of transparent celluloid is dusted with plumbago to thicken the lines, and exposed in a photographer's printing frame over a film of gelatin. This film is afterwards swelled in those parts not made insoluble by the action of light, and from it a plaster of paris mold is made. From the latter a flexible reverse in gutta-percha is formed, and the
gutta-percha, backed, becomes the overlay, being thickest in the darkest parts of the illustration.

The Humphrey and Upham process is of use only for duplicating overlays. This duplication is made by rubber or gutta-percha impressions of a reversed overlay.

ILLUSTRATING AND ENGRAVING.

The introduction of photoengraving, about the year 1875 , marked a new era in the history of illustrating and engraving.

Wood and steel engraving were unable to fulfill the increasing demand of the public for large quantities of good, inexpensive pictorial work. Proper production of this work by hand was impossible, save by an artist of no mean ability. Accordingly, if illustration was cheap, it was poor; if good, it was expensive.

Half-tone Engraving and Zinc Etching.-The halftone process is a method of making cuts suitable for use upon ordinary printing presses. The first step is the taking of a photograph on a wet sensitive plate, in front of which, in the camera, a fine screen is placed. These screens are an essential feature of the process, as they permit the accurate reproduction of the half tones in the object. They are made by mechanically cutting or scratching lines on two glass plates; these lines are then filled with some opaque substance, and the two plates are placed together, face to face, with the lines of one plate crossing those of the other. They are made in varying degrees of fineness, the lines ranging from 40 to 400 to the inch. The coarser screens are placed farther from the sensitive plate than the finer ones. The finer screens cut off about nine-tenths of the light; therefore, the negative is often exposed for eight or ten minutes.
After the negative is developed the film is stripped from the plate, reversed, and placed on another, called a turning glass, thus becoming a positive. This is placed in contact with a copper plate coated with a sensitized solution, and exposed to the light for about two minutes. After being developed, this plate is enameled and "burned in" over a flame. It is then etched with a solution of perchloride of iron. In this process the portions of the coated copper plate which have been exposed to the light in the printing process-in other words, the lines that were formed by the screen in the original negative-are etched away, producing a printing surface composed of dots which vary in size according to the lights and shadows of the object. Further processes pertain mainly to finishing and mounting. A certain amount of expert hand work is required for the finishing of the half-tone plate and its final preparation for the press. In this field many artists who were formerly engravers have found work.

Half tones are of three classes, considered according to the treatment of their background-the silhouette, the square-etched, and the vignette. The silhouette is an effect of sharply defined edges; the square-etched is
an exact reproduction as to background, of the original picture; and the vignette is a production of softened, gradually-fading background, without definite termination.
Zinc etching is practically the same process, except that the copy must be a pen-and-ink or line drawing, and no screen is used. In the etching process, in place of perchloride of iron, muriatic acid is employed. This gives a plate which is cut deeper, but is less durable than the copper half-tone plate.

Three-color Process.-The attempt to print in colors from half-tone plates by means of photographic processes was partially solved by Frederick Ives, of Philadelphia, in 1888. Since that date the process has been improved with gratifying results. The principle upon which it is based is that by a combination of the three primary colors-red, yellow, and blue-almost any shade of color can be produced. Photographic plates that are specially sensitive to color are used. As in the half-tone process, a glass screen is placed in the camera. Three photographic negatives, each of which is to produce a separate printing plate, are made of the object. In each case a colored glass screen, excluding certain color rays of light, is used in front of the leus. In the production of the plate which is to print the blue ink, a red color screen is employed; to produce the plate for yellow ink, a blue-violet screen is used; and to produce the plate which is to print red ink, a green screen is used.

In printing from these plates great exactness, technically called " register," is required, in order that the colors may be laid on in proper place as the three impressions are consecutively made.
One serious problem which confronted the inventor was the difficulty experienced in so arranging the line screens that the diagonal lines would not form geometric patterns in the finished picture. This was solved by the discovery that by varying in certain ways the directions of the lines used for the three negatives, the pattern effect could be avoided.
Lithographic Color Printing.--A widespread but unsuccessful attempt was made, about 1880 , to substitute zinc for stone in lithographic work. After this failure, zinc was generally abandoned as a factor in the lithographic problem, but one firm has continued to make experiments along this line with considerable success.
In 1898 the great superiority of aluminum over lithographic stone was demonstrated. Aluminum is far lighter, requires less space for storage, is cheaper, is almost noncorrosive, can be used in sheets upon rotary presses, can be used for longer runs without reproduction of the design, and after some manipulation possesses all the desirable qualities of stone.
The methods of manipulation are two. By the first, the surface of a sheet of fine-rolled aluminum is ground off, producing a porous surface. The second method is the formation of an aluminum surface by electrodeposition.

To prevent the ink from spreading over the limits of the design, phosphoric acid is used; this is removed from the plate by the application of nitric acid.
About four-fifths of present-day lithographic work is done on stone, but the number of printing machines constructed to use aluminum is rapidly increasing.

BOOKBINDING.

Recent advances in the bookbinding department of the printing and publishing business have been numerous, but not revolutionary.
Automatic feeding devices for folding machines, as well as for printing presses, are a product of the last decade. Of these there are many variations, but as the problem which they solve is comparatively simple they need not be described in detail. Three-fourths of the folding machines of the present day are supplied with automatic feeders. Folding machines have been greatly improved also by parallel-fold arrangements and by automatic pointing.

Many improvements have been made in wire-stitching machines. One of these machines will stitch anything from two sheets to a book 2 inches thick, and with several of them either round or flat wire may be used. There has been introduced recently a noteworthy combination folding and wire-stitshing machine, which by a continuous and automatic operation takes the sheets from the feeders, and folds, gathers, collates, covers, and wire-stitches copies of magazines and pamphlets, delivering them ready for distribution.

Paper-cutting machines have been improved by the introduction of automatic clamps, indicators, and gauges.

The invention of a steam rounding and backing machine, increasing a capacity of from 500 to 1,000 books per day to a capacity of from 5,000 to 6,000 in the same time, should be noted. The latest case-making machine feeds itself from a roll of cloth which it automatically cuts into pieces of proper size for use. The cloth is first covered with glue by contact with a cylinder revolving in a pot of glue. it is then cut by the machine and nicked in corner sections; boards are supplied from a holder and a back lining from a roll, both receptacles forming parts of the machine. This process completed, the nearly finished product drops a little, the cloth is folded over the boards and back lining, and the binding, after passing through a case smoother, is delivered in a finished state. This automatic process is very satisfactory. Another interesting invention in this line is a machine for covering paper books and magazines, which has been known to cover 22,000 books in a day.

Among late inventions are a casting-in machine, for putting the body of a book into its cover, and a gathering machine.

During the next ten years the principal advance in bookbinding doubtless will be in those branches of the industry which are concerned with casting-in, gathering, smashing, folding, and sewing.

NEWS-GATHERING ORGANIZATIONS.

The only changes in news gathering since 1880 have been those of detail.
In 1880 the leading news-gathering association was the body then known as the Associated Press, which was furnishing news to 30 per cent of the dailies of the United States. This organization, composed of New York papers, gathered news for its own members on the cooperative plan, but exchanged news with other associations on terms that made the exchange practically a sale, a large cash bonus being asked from associations receiving their news.
These methods caused much dissatisfaction among the tributary associations. The claim was made that the parent organization, having absolute control of the news gathered, was selling it at a price covering the entire cost of collection, giving the news to its members practically for nothing.

The principal complaints came from the Western Associated Press, which in 1882 was paying a bonus amounting to $\$ 3,000$ per month. The outcome of this controversy was an amalgamation of the Associated Press and the Westerin Associated Press into one organization, under the former title.

The next great conflict was thau between the new Associated Press and the organization afterwards known as the United Press, which was founded in 1882. In 1884 the Associated Press and the United Press made a secret agreement for an exchange of services, by which a practical union of the two organizations was effected. It was claimed that the exchange was most unequal, the United Press getting the benefit of the wide field covered by the stronger organization, and giving poor and inadequate service in return. In 1891 the arrangement was discontinued; but in 1892 the eastern branch of the Associated Press-the original New York organizationtransferred its affairs to the United Press, while the western branch-the former W estern Associated Presscontinued in business, with headquarters in Chicago, as the Associated Press. The new Associated Press, like the United Press and other proprietary bodies, followed the plan of selling its news to papers whose proprietors were not stockholders or members of the organization.

At the time of 1ts organization the western association had contract relations with the eastern one. In 1893 the contract expired; the western association refused to renew it, and there followed a bitter war between the two associations, which was very disturbing and expensive to the newspapers of the country, some being compelled to receive news from both associations to insure a complete service. Strong efforts were made to bring about an agreement between the two organizations, but all failed because of fundamental differences in their plan of organization. In 1897 the United Press made an assignment, with large liabilities and no assets.

The victory of the Associated Press was not, however, the end of newspaper difficulties. This organization could not, under its regulations, admit to membership all the newspapers which were left without service by the failure of the United Press. Moreover, the associations which were organized to supply the needs of the papers not provided with a news service were declared to be antagonistic, and members of the Associated Press were forbidden to make contracts with them.
The Chicago Inter-Ocean, having received news from a bureau thus proscribed, and being threatened with suspension of the Associated Press service, applied for an injunction to restrain such action.
The circuit court and appellate court successively dismissed the bill, but the supreme court of the state (184 Illinois Reports, 438-455) reversed the previous decision on the ground that the corporation had a virtual monopoly of a commodity of vast importance to the public, had used its franchise in such a manner as to injure the public interests, and could not be allowed to deprive the public of the services of a newspaper.

This decision did not, however, break up the monopoly held by the Associated Press, but merely caused removal of that organization to New York state, where it was reincorporated on May 22, 1900, with practically all of its former 600 members and subscribers.

Under its new charter the Associated Press is simply a mutual and cooperative organization of newspaper proprietors. A distinction existing in the old organization between voting stockholders and ordinary members was abrogated in the new charter, and all newspaper owners who receive the news service of the Associated Press are now members of the organization on equal terms.

The certificate of membership designates in detail the name of the newspaper entitled to receive the news of the Associated Press, the language in which it is printed, its place of publication, whether it is a morning or an evening newspaper, and whether the member is to receive a day or a night report. A certificate of membership in the Associated Press is not transferable except in special cases.

Each and every member of the Associated Press is entitled to receive a service of news for the purpose of publication in the newspaper specified in his certificate of membership, and for that purpose only. Special regulations forbid, in detail, publishing news in any other newspaper than that specified, furnishing it in advance of publication to any person not a member, or anticipating the publication of documents of public concern confided to the corporation for use on a stipulated date, however the document may have been secured.

The Associated Press, as now organized, has four divi-sions-Eastern, Central, Southern, and Western-with headquarters at New York, Chicago, Washington, and San Francisco, respectively.

Domestic news is collected from all parts of these four divisions at the division offices, and exchanged between the several divisions, items being enlarged or condensed according to the territory in which they are to be circulated.

For gathering foreign news the Associated Press has contract relations with various news agencies, with which it exchanges news. Of these the most important are the Reuter agency, covering Great Britain and her colonies; the Agence Havas, covering France, Belgium, Switzerland, Portugal, and some parts of South America; and the Wolf agency, of Berlin, covering Germany, Hungary, Austria, and to some extent northern Europe and Russia. In the New York office of the Associated Press the Reuter agency has a representative who looks over the dispatches and sends abroad whatever American news may be of interest to Europeans. For Canadian news the Associated Press has exchange arrangements with the Canadian Pacific Railway, by which that company gathers all the news on its line and delivers it at Bangor, Buffalo, Detroit, and Seattle, receiving at those points the news of the United States, for use in Canada. Other agencies supplying news to the Associated Press are the Steffanie, covering Italy; the Nordischer Telegram Bureau, covering Russia; the Norsky Telegram Bureau, covering Norway; the Svenska Telegram Bureau, covering Sweden; and the Agence de Constantinople, covering Turkey.

While, as has been noted, each newspaper connected with the Associated Press contributes its quota of news to the general fund, the organization has regular correspondents of its own at places where it has no member. It also sends out its own reporters, when the occasion is of sufficient importance, to cover specific events, and employs special men to cover special classes of news-as, for instance, the Wall street market reports, and the arrival and departure of steamers at principal ports. It also has emergency men whose names are kept on file, and who can be called on at any time to gather news for the organization. At important points are stationed representatives whose duty it is to put the news into shape and file it for circulation throughout the country.

Besides the full reports delivered to large papers, the Associated Press distributes what are called "pony" reports-condensations of the full reports, sold at a cheaper rate. It also sells news to an organization known as the American Press Association, for distribution to papers not members of the Associated Press, with the proviso that the news thus sold is not to be printed for twelve hours after it has been sentover the wires to newspapers receiving the regular service of the Associated Press.
The Associated Press now has about 700 members, more than half of which are afternoon dailies, and serves, under the arrangement with the American Press Association described above, about 2,500 daily and
weekly papers in addition. Most of the papers served are in the United States, but there are 50 or more in Canada, Mexico, Cuba, and Porto Rico. In its regular news service the Associated Press now uses 9,345 miles of leased wire by day and 20,467 miles by night.
The annual revenues derived from assessments levied on the newspapers served exceed $\$ 1,900,000$, and the number of words daily received and transmitted at each of the more important offices is now over 50,000 , or the equivalent of 35 columns of an average newspaper.

Among other news-gathering associations now in the field are the Publishers' Press, and the Scripps-McRae Press Association, which work together, the former operating principally in the eastern part of the country, the latter in the western.
The Publishers' Press was started April 8, 1897, the day after the failure of the United Press, to fill the gap left by that association. Unlike the Associated Press, it is not a cooperative organization, but a stock company whose business it is to buy news and sell it again; nor is it, like the Associated Press, under limitations as to the number of papers it may serve in one place. Again, unlike the Associated Press, the Publishers' Press does not receive news from the papers it serves, but has its own correspondents at the various centers where news can be collected. The foreign news of the Publishers' Press is gathered through a main office in London and branch offices in Paris, Berlin, Rome, and other European news centers.
The Publishers' Press controls several thousand miles of wire in the United States-one, which carries news to a Seattle paper, being 3,260 miles long.
Another news-gathering organization, which may be regarded as simply the news-gathering department of the New York Sun, is the Laffan News Bureau. This organization has regular correspondents at all news centers, foreign as well as domestic, maintaining, besides, "sleeping correspondents" who are paid in accordance with the news they send in; serves 30 or 40 newspapers in different parts of the country; and maintains, like the other bureaus, a system of leased wires.
Besides the regular press bureaus, some leading newspapers engage in the business of selling news. Among these are the New York Herald, the Chicago Record, and the Hearst papers. Such arrangements as these can hardly be said, however, to compete with the news service of the Associated Press, which is far in the lead of the news-gathering organizations of the United States.

Newspaper Syndicates.-An extension of the scope of the newspaper, during the last twenty years, to include subjects of more lasting interest, led to the creation and extension of the so-called "syndicate," which furnishes papers with miscellaneous reading matter, as the newsgathering association furnishes them with news. The syndicate was introduced about 1884, for the purchase
and sale of stories, but has since extended its field to all sorts of reading matter. While the news-gathering associations are largely cooperative, the syndicate is purely a proprietary affair, buying articles from authors and selling them outright to the different newspapers on their list of customers.
Some syndicate matter is sent out in matrix form, but most of it is supplied in the shape of galley proof, to be set up in the office of the newspaper purchasing it, in the general style of the paper.
Most of the syndicate material is prepared especially for the Sunday supplement or magazine part of a newspaper, but the syndicates will furnish almost any class of articles found in daily papers. In making sales, the syndicate has a fixed price for articles, and although it disposes of the same stories or other matter to a number of papers, only one in each city or field of publication may receive a given story or article.
The syndicate is enabled, by its sales of the same article to many customers, to purchase matter quite out of the reach of the individual newspaper, and to sell it on terms that each can afford. The scheme is found to be so advantageous that to-day practically all the newspapers of the country, except some in a few of the largest cities, use syndicate matter to a considerable extent.

Besides the firms engaged primarily in the syndicate business, certain leading metropolitan newspapers dispose of their owl matter to papers published elsewhere.
In the last decade no important changes have taken place in the syndicate field. The material now supplied may be rather better in quality than that supplied at first, but the business arrangements and the extent of syndicate operations have remained about the same for several years.

the cooperative plan of printing papers.

There has been little development, for several decades, of the "patent insides" system described in the special report of the Tenth Census on the Newspaper and Periodical Press. The general advance in printing has led to some progress in methods, and the number of papers served has increased with the growth of the newspaper industry in general, but growth in this line has been relatively slow.

The following table shows, by states and territories arranged geographically, the number of newspapers, printed on the cooperative plan:
Table 57.-Newspapers printed on the cooperative plan, by states and territories: 1900.

State or territory.	Number of newsрapers.
United States	7,749
North Atlantic division.	728
New England.	177
New Hampshire	13 30
Vermont.......	10
Massachusetts.	90
Connecticut..	16

Table 57.-Newspapers printed on the cooperative plan, by states and territories: 1900-Continued.

State or territory.	Number of newspapers.
North Atlantic division-Continued.	
Southern North Atlantic.	551
New York.....	196 79
New Jersey	376
South Atlantic division.	511
Northern South Atlantic	185
Delaware	4
Maryland	49
District of Columbia	6
Virginia	62
West Virginia.	64
Southern South Atlantic......	326 81
North Carolina.	51
South Carolina.	135
Florida	59
North Central division	4,725
Eastern North Central	2,110
Ohio	
Indiana......	358
1llinois....	703
Michigan	365
Wisconsin..........	
Western Norta Central	409
10wa...	619
Missouri	376
North Dakota.	122
Sonth Dakota	${ }_{4} 24$
Nebraska	403
South Central division.	1,179
Eastern South Central	476
Kentucky.........	
Tennessee.	114
Alabama...	134
Mississippi	169
Western South Central	703
Louisiana..........	94
Arkansas........	143
Indian Territory.	62
Texas	251
Western division.	606
Rocky Mountain..	285
Montana.	32
Idaho	40
Wyoming	20
Colorado..	177
New Mexico...	16
Utah ...	35
Nevada	4
Pacific	278
Washington.	95
Oregon.-.	+65

It will be seen from this statement that over 60 per cent of the papers printed on the cooperative plan are found in the North Central division. The number in Illinois alone (the highest number for any single state) nearly equals the number shown for the entire North Atlantic division, and Iowa (next in rank) surpasses both the Western and South Atlantic divisions.

Many of the newspapers of this class are the only ones in their respective towns-this being the case with 60 per cent of those sent out by one concern. At the present time most of the newspapers printed in this way are weeklies, and these form about half of the total number of weeklies in the United States. Many semiweeklies and triweeklies, also, are issued in this way, and some dailies adopt the method. These dailies are
printed at a distributing center, sent out by express in the morning, and finished at the local office in the afternoon.

Some concerns endeavor to avoid the sameness of appearance in "patent insides" by issuing the material in the form of stereotyped plates ready for printing, instead of in printed sheets. They first send out proof sheets, showing what articles they have on hand, and from these the local editor selects what he chooses. On receiving the plates he cuts them up as he likes, for arrangement in his page, even cutting off the headings and supplying headlines of his own, to secure greater individuality.

The American Press Association, of New York, organized about 1880, controls much of the business in plate matter, and has already been referred to as the association supplied by the Associated Press with telegraphic news for use twelve hours after the regular service. The news received by this association in the morning is set up in plate form, and distributed to some 2,500 dailies for use the same afternoon. This organization serves a large number of newspapers, including many dailies, with electrotype or stereotype plates of miscellaneous matter, and also sells type uniform with that used in making the plates, so that the papers supplied may be made to appear the same throughout.

There appears to be a growing tendency toward the use of plate matter in preference to the half-printed sheets. Country journals are beginning to demand telegraphic
news, and this the plate-matter concerns can supply fresher than the "patent insides."

Newspaper Combinations.-By the close of the last decade there was noted a slight tendency toward consolidation, under one ownership or management, of newspapers published in different places. This plan has thus far been adopted only among certain large metropolitan dailies. Examples of common ownership of this general character are shown in the Galveston News and the Dallas News, essentially the same paper in both cities; the New York Herald, the Evening Telegram (New York), and the European edition of the Herald; the New York Times and the Philadelphia Times; the Washington Times and the New York Daily News; and the group of papers owned and published by William R. Hearst-the San Francisco Examiner, the Journal and American (formerly the New York Journal), the Evening Journal (New York), and the Chicago Amevican. In small places the newspapers are in such close contact with the people they serve that it is a distinct advantage for the proprietor to be personally known to his subscribers, and to be identified exclusively with his locality. In small places not only the reading public but the advertisers seem to prefer newspapers owned and published in the place of circulation. Furthermore, it is only in large cities that the opportunities for economy through combination are great enough to warrant the attempt, practically the same results being secured more easily in country districts by making use of the syndicate and the "patent insides."

Table 58.-NEWSPAPERS AND PERIODICALS,

		United States.	Alabama.	Arizona.	Arkansas.	California.	Colorado.
1	Number of establishments	15,305	156	32	217	512	212
2	Cbaracter of organization: Individual	9,686	109	22	154	328	118
3	Firm and limited partnership.	3,016	129	$\stackrel{3}{3}$	144	$\stackrel{31}{98}$	134
4	1ncorporated company	2,420	16		19	86	60
5	Miscellaneous.	183	2			7	
6	Established during the decade....	5,881	73	18	11	207	100
7	Established during the census year.	526	8	3	8	22	11
8	Capital: Total	\$192, 443, 708	\$621, 852	\$186,573	\$648,883	\$4,440,602	\$1,751, 487
9	Land	\$13, 361, 249	\$13, 845	\$77,050	\$13,610	*161,215	\$ $\$ 51,155$
10	Buildings.	\$19,497, 604	\$37, 580	\$12, 475	\$29, 343	\$239, 835	\$93, 070
11	Machinery, tools, and implements	877, 362,342	\$362, 741	\$118, 602	\$396,693	\$2,464,724	\$1,009, 797
12	Casb and sundries..................	\$82, 222, 513	\$207, 586	\$48,446	\$210,337	\$1,574, 828	\$ 4597,415
13	Proprietors and firm members.	15,976	178	28	248	538	186
	Salaried officials, clerks, etc.: Total number						
15	Total salaries..........	827, 015,791	\$79,809	\$17,727	\$44,905	\$840,650	\$262, ${ }^{2864}$
17	Salaries.-	84, 990, 706	\$41, 220	\$6,350	\$10,600	894,664	\$ $\$ 56,130$.
18	General superintendents, managers, clerks, and salesmenTotal number	24,963	58	11	50	799	249
19	Total salaries.....................	\$22,025,086	\$38, 589	\$11, 377	\$34, 305	\$745, 986	\$206, 844
20	Men-	19,814	64	9	46	702	225
21	Salaries.	819, 892, 882	\$37, 140	89,477	833, 146	\$701,520	\$195, 378
22	Women-	5,139	4			97	, 24
	Salaries...........	\$2,132, 204	\$1,449	\$1,900	\$1,160	\$44,466	\$11,466
	Wage-earners, including pieceworkers, and total wages:						
25	Least number employed at any one time during the year	107,123 89,074	518	128	748 560	2,173 2,518	1,608 1,196
$\stackrel{26}{ }$	Average number ..	94, 604	543	139	600	2,683	1,303
27	Wages.	\$50,333,051	\$241,525	\$73,640	\$215, 410	\$1, 804, 619	\$770, 382
	Men, 16 years and over-						
$\begin{aligned} & 28 \\ & 29 \end{aligned}$	Average number ...	73,653	459	109	384	2,158	1,168 8730,362
	Women, 16 years and over-.	\$44, 961, 533	8229, 549	\$66,807	\$179,932	\$1,650,777	8730, 362
30	Average number....	14,815	21	17	69	344	95
31	Wages.......	\$4, 628, 221	85, 368	\$6,685	817,855	\$128,979	\$33,884
32	Children, under 16 yearsAverage number	6,136	63	13		181	
33		\$743, 297	\$6,608	\$1,148	817,623	\$24, 863	\$6,136
	Average number of wage-earners, including pieceworkers, employed during						
	Men, 16 years and over-						
34	January...	74, 702	459	114	400	2, 191	1,164
35 36	February.	74, 148	458	114	399	2,171	1,159
36 37	March..	74,559	474	111	394	2,181	1,153
37 38	April	74, 287	472	109	387	2,170	1,158
${ }_{39} 38$	May -	74, 103	467	109	378	2,199	1,166
${ }_{40} 39$	June	72,566	446	108	360	2,124	1,162
40	July	71,167	436	104	353	2,102	1,127
41	August....	71,106	427	102	347	2,091	1,134
42	September.	72,445	442	100	370	2, 128	1,166
43 44	October	74,110	464	110	404	2,160	1,195
45	November.	74, 905	481	116	408	2,174	1,216
	December	75,738	478	116	405	2,210	1,223
	Women, 16 years and overJanuary	15, 218					
47	February.	15, 250	19	17	72	351	89 88
48	March...	15, 375	20	17	69	344	93
49	April..	15, 196	21	16	7	348	
50	May .	14,944	21	17	72	344	105
51	June .	14,471	20	17	68	336	${ }_{93}$
52	July ...	13, 827	20	17	63	331	94
53	August....	14,019	21	16	67	327	94
54	September	14,296	22	16	70	338	97
55 56	October	14,865	28	18	69	349	97
56 57 58	November	16,068	22	18	67	352	99
57	December	15,251	23	18	67	354	98
58	Children, under 16 year-						
59	February	6, 264	69	13	157	187	43
60	Mareh.	6, 272	68	13	156	188	41
61	April...	6,281	66.	13	156	189	
62	May .	6,245	63	13	161	185	42
63	June...	6,042	59	13	142	178	38
64	July...	6,934	59	13	132	170	38
65	August -...	5,888	61	13	133	168	36
66 67	September.	5,978	63	13	135	174	40
67 68	October	6,112	59	13	142	179	36
69	November.	6,141	56	9	146	178	39
	December	6,219	61	13	149	187	41
70	Compositors (inciuded in wage-earners)- Men, 16 years and over..............	39,599	276	57			
71	Women, 16 years and over	7,608	20	11	${ }_{34} 2$	${ }^{1,176}$	
72	Children, under 16 years	2,104	10		118	16	$\stackrel{5}{4}$
73	Compositors operating type-casting or typesetting macbines-						
74	Men	4,946	37	9	5	199	88
75	Type-casting and typesetting machines used, number	857 3,988	12	6	1	70 150	2
	Miscellaneous expenses:	3,988		6		100	68
76 77	Total	\$38, 544,642	\$84,887	\$17,968	879, 261	\$637, 302	8323, 599
78	Rent of works.	\$4,134, 995	\$16, 498	\$5,873	\$19,725	\$147, 817	\$53, 555
79	Newspaper and periodical postage	\$4,260,681	$\$ 4,313$ $\$ 9,847$	\$1,814	$\$ 8,974$ $\$ 5,991$	826, 246	\$10,475
80	Rent of offices, interest, insurance, and all sundry expenses not	\$18, 121,131	\$41,390	\$9,082		\$ $\$ 250,452$	845, $\mathbf{8 1 5 9}$ $\mathbf{8 1 5 6 5}$
80	bitherto included.	-18,121,131	\$1,	89,082	\$43, 211	\$255, 402	8151,565
81	Contract work.........................	\$11, 066, 687	\$12,883		\$6,360	\$127, 133	\$62, 855

BY STATES AND TERRITORIES: 1900.

Connecticut.	Delaware.	District of Columbia.	Florida.	Georgia.	Idaho.	Illinois.	Indiana.	Indian Territory.	Iowa.	Kansas.	
116	26	60	86	233	66	1,259	638	58	910	595	1
57	12	21	68	135	47	764	432	36	593	436	2
15	12	14	17	48	14	232	123	15	243	130	4
44	12	21	11	48	5	249 14	71	7	72 2	23 6	5
29	6	31	40	95	39	510	220	48	350	211	6
2	2	8	4	14	4	48	11	9	35	17	7
\$2,289,658	\$275,298	\$2,233,897	\$400, 221	\$1, 852, 813	\$280, 804	\$12,259,569	\$4,792, 139	\$115,003	\$4, 708,049	\$1,920, 586	8
- \$199,600	\$ $\$ 20,650$	\$290, 300	\$11, 110		\$22, 855	\$893, 231	\$207, 450	88, 920	\$239,560	\$63, 700	9
\$309, 243	\$90, 550	\$576,812	\$28,250	\$166, 112	\$25, 376	\$1,524,023	\$558,068	87,356	\$405, 976	\$222, 375	10
\$1,098, 895	\$153, 705	\$843,029	\$252, 538	\$1,249, 133	\$154, 123	84, 847, 496	\$2, 670, 216	\$778, 326	\$2,451,255	\$1,131,989	11
\$681, 920	\$70, 393	\$523, 756	\$108, 323	$\$ 324,933$ 234	878, 441	$\$ 4,994,820$ 1,239	$\$ 1,356,405$ 680	825,403 69	\$1, 606,268 1,083	\$502, 701	12
$\begin{array}{r} 238 \\ \$ 235,655 \end{array}$	$\begin{array}{r} 45 \\ \$ 29,656 \end{array}$	$\begin{array}{r} 301 \\ \$ 289,566 \end{array}$	$\begin{array}{r} 55 \\ 849,096 \end{array}$	\$177, ${ }^{196}$	\$ $\begin{array}{r}11,600\end{array}$	$\begin{array}{r} 2,894 \\ \$ 2,420,322 \end{array}$	665 $\mathbf{8 6 1 5 , 0 3 6}$	\% $\begin{array}{r}5 \\ \$ 1,900\end{array}$	$\begin{array}{r} 623 \\ \$ 398,966 \end{array}$	169 $\$ 107,369$	14 15
$\begin{array}{r} 63 \\ 883,892 \end{array}$	6 87,100	\$94,040	87,100	$\begin{array}{r} 32 \\ \$ 49,123 \end{array}$	\$8, ${ }^{6}$	$\begin{array}{r} 285 \\ \$ 488,489 \end{array}$	$\begin{array}{r} 110 \\ \$ 176,298 \end{array}$	\$1,300	69 $\$ 88,872$	24 $\$ 23,329$	16 17
$\begin{array}{r} 175 \\ 8151,763 \end{array}$	$\begin{array}{r} 40 \\ \$ 22,556 \end{array}$	$\begin{array}{r} 269 \\ 8195,526 \end{array}$	61 $\$ 41,996$	$\begin{aligned} & 164 \\ & \$: 28.202 \end{aligned}$	\$8,300	$\begin{array}{r} 2,609 \\ \$ 1,931,833 \end{array}$	655 $\$ 438,738$	1 $\$ 600$	464 $\mathbf{\$} 310,093$	145 $\$ 84,040$	18 19
147 $\mathbf{8 1 3 6}, 261$	37 $\$ 20,996$	\$172, ${ }^{1985}$	r $\mathbf{4 3}$ $\mathbf{8 3 9}, 691$	145 $\mathbf{8 1 2 0 , 9 3 0}$	11 $\$ 8,300$	\% $\begin{array}{r}1,841 \\ \$ 1,639,983\end{array}$	431 $\mathbf{8 3 8 4 , 9 8 7}$	1 $\$ 600$	370 $\$ 275,967$	120 876,310	20 21
$\begin{array}{r} 28 \\ \$ 15,502 \end{array}$	\$1,560 ${ }^{\mathbf{3}}$	($\begin{array}{r}\text { 723, } 241\end{array}$	\$2,305	\% $\begin{array}{r}19 \\ 87 \\ \hline\end{array}$		$\begin{array}{r} 768 \\ \$ 291,850 \end{array}$	$\begin{array}{r} 124 \\ \mathbf{8 5 8}, 761 \end{array}$		84 $\$ 34,136$	25 87,730	22
1,268	248	${ }_{6}^{678}$	384	1,149	246	8,449 6,999	4,708 3,888	190	4,046 3,264	2,194 1,700	24
1,123		650 600			178 187	6,999 7,478	3,888 4,084	121 138	3,264 3,393	1,760 1,766	26 26
\% $\begin{array}{r}1,151 \\ \$ 703,587\end{array}$	\$86, 208	$\begin{array}{r}600 \\ \$ 393,220 \\ \hline\end{array}$	\$134,366	\$460, 878	\$92,819	\$3,704, 341	81,784,059	848, 389	\$1,311,179	\$623,783	27
$\begin{array}{r} 956 \\ \$ 640,227 \end{array}$	\$78,560	$\begin{array}{r} 477 \\ \$ 363,083 \end{array}$	\$126, ${ }^{2543}$	$\begin{array}{r}\text { \% } \\ \hline 406,365 \\ \hline\end{array}$	150 885,696	$\begin{array}{r} 6,071 \\ \$ 3,317,615 \end{array}$	$\begin{array}{r} 2,793 \\ \$ 1,490,847 \end{array}$	\$44, ${ }^{116}$	$\begin{array}{r} 2,324 \\ \$ 1,107,349 \end{array}$	1,144 $\$ 502,408$	28
162 860,393	\$5, 816	106 $\$ 27,229$	[$\begin{array}{r}16 \\ 85,084\end{array}$	$\begin{aligned} & 110 \\ & \$ 27,190 \end{aligned}$	$\begin{array}{r} 19 \\ 85,674 \end{array}$	$\begin{aligned} & 972 \\ & \$ 333,076 \end{aligned}$	\$256,180	83, ${ }^{14} \mathbf{2 2 1}$	596 $\$ 148,477$	364 $\mathbf{\$ 8 9}$, 439	30 31
$\begin{array}{r} 31 \\ \$ 2,967 \end{array}$	$\$ 1,832$	$\begin{array}{r} 18 \\ \$ 2,908 \end{array}$	$\begin{array}{r} 33 \\ 83,239 \end{array}$	$\begin{array}{r} 166 \\ \$ 17,323 \end{array}$	$\begin{aligned} & 18 \\ & \$ 1,549 \end{aligned}$	$\begin{array}{r} 435 \\ \$ 53,660 \end{array}$	303 $\mathbf{\$ 3 7 , 0 3 2}$	8 8749	$\begin{array}{r} 473 \\ \$ 65,353 \end{array}$	$\begin{array}{r} 258 \\ \$ 31,936 \end{array}$	32 33
				774	147	6,101	2,900	118	2,378	1,152	34
963	173	492	272	780	144	6, 072	2,888	119	2,354	1,126	35
962	177	486	264	787	146	6,119	2,910	110	2,354	1,157	37
961	180	492	258	803	151	6,108	2,888	113	2, 2,303	1,159	38
953	179	469	254	800 753			2,671	106	- 2,263	1,117	39
949	184	461.	237 233	753 746	146 140	6, 9686	$\stackrel{2,671}{2,626}$	107	2,215 2	1,110	40
949	171	458	235	746	143	6,843	2,631	112	2,225	1,106	41
965	166	479	236	763	148	6,990	2,694	117	2, 281	1,133	42
959	171	471	267	771	165	6,170	2,725 2,740	124	2, 407	1,166	44
${ }_{968}^{965}$	174 176	482	${ }_{271}^{266}$	775 782	169 167	6,313	2,959	132	2,419	1,175	45
							995		611	370	
163	23	116		109	20	966	992	14	616	356	47
167	${ }_{2}^{23}$	114	14 16	109	18	988	1,000	14	618	357	48
162.	${ }_{24}^{22}$	113.	16 17	118	18	962	1,985	14	606	373	49
168 167	$\stackrel{24}{25}$	120.	16	117	18	977	984	14	607	361	50
167	$\stackrel{29}{29}$	94	18	105	19	953	965	14	580	357	51
152	25	87	15	106	19	926	956	12	668	345 344	${ }_{53}^{52}$
158	26	91	15	109	19	921	953 983	12	${ }_{673}^{567}$	342	64
169	25	103	15	107	-19	996	997	13	590	875	55
165	25	105		108			1,014	14	607	379	56
162	${ }_{26}^{25}$	113	17 15	107	20	1,038 1,014	1,030	14	611	393	57
160	26	114	15	107	20	1,014					
32		18	37.	172	18	440	308 310	9	484	261	${ }_{59}$
32	22	18	33	172	18	4439	310 307	8	483	261	50
32	23	18	34	176	18 18	442	${ }_{306}$	9	485	270	61
31	22	18	33 33	176	18	438	306	9	482	270	62
31	${ }^{23}$		33 33	170	18	433	298	8	456	253	63
31	${ }_{21}^{22}$	18 18	33 31	170	18	422	294	8	456	260	64
31	$\stackrel{21}{20}$	18	30	166	18	424	291	8	465	248	${ }^{65}$
31	19	18	30	157	18	424	296	7	464	251	65 67
31	21	18	32	161	18	432	301	8	478	243	68
29	18	13	36	161	13	435 442	314	8	476	239	69
31	20	18	37	162	18	442					
				405		3,002	1,393	92	1,605	790	70
471	113	229 13	161			554	400	14	446	299	71
93 6	20	13	${ }_{3}$	${ }_{26}$	3	151	140	1	11	214	72
							146		121	37	73
112		60	22	69	6	245	14		16	2	74
31	11	2	10	39	2	267	115		94	24	75
							8677,187	\$10,467	8444, 690	\$195,520	76
8294, 604	\$17,201	\$411,696	\$811,775	\$248, 417	${ }_{86,067}$	\$397, 302	\$97,512	\$5,028	\$101, 133	\$50,562	77
\$33,094	\$3, 870	\$23,626	\$11,018	\$23,483	\$ 82,198	\$688,972	\$27,720	\$774	\$22, 154	\$12,714	78
\$12,215		$\begin{array}{r}\$ 3,751 \\ \mathbf{8 3 2} \\ \hline 099\end{array}$	82,053	$\$ 13,364$ $\$ 38,485$	\$1,662	\$545,022	\$63, 973	${ }^{\mathbf{8} 595}$	887,116	\$30,420	79
$\mathbf{8 1 6 , 0 5 7}$ $\mathbf{8 1 9 4}, 473$	$\$ 1,704$ $\mathbf{8 1 0 , 8 6 9}$	$\mathbf{8 3 2}, \mathbf{9 9 9}$ $\$ 284,553$	\$11,197	\$129,184	\$9,037	\$1,634, 394	\$229, 995	83, 950	\$199,315	\$83, 089	80
19,		\$66,767	\$1,166	\$38,901	\$1,300	\$1, 122,355	\$157,987	$\$ 20$	\$34, 972	\$18,745	81

Table 58.-NEWSPAPERS AND PERIODICALS,

BY STATES AND TERRITORIES: 1900-Continued.

Connecticut.	Delaware.	District of Columbia.	Florida.	Georgia.	Idaho.	Illinois.	Indiana.	Indian Territory.	Iowa.	Kansas.	
\$432, 772	\$56,047	\$288,491	\$120,627	\$370,920	\$67,022	\$4,138, 134	\$1,442, 214	\$31,872	\$1,082,549	\$533,452	82
10,693,278	1,299, 882	8,787,333	1,706,343	7,689,963	617,790	114, 853,569	25,546,899	396, 180	20, 716, 211	8,512,671	83
\$311,939	\$44,143	\$227, 287	\$76,318	\$254,880	\$44, 888	\$3,263,149	\$908, 617	\$23, 503	\$823, 192	\$391, 252	84
9,400,729	1,143, 268	7,523, 221	1,307,823	6, 824, 398	325, 769	92, 016,473	18, 304,963	233,539	17,097, 376	6, 008, 311	85
\$213, 034	\$31, 918	\$163,988	\$41, 392	\$178, 889	\$16, 299	\$2, 076, 730	\$471,067	\$9, 219	\$516, 538	\$203, 502	86
34,412 52,403	9,965	457, 240	$\begin{array}{r}13,920 \\ \hline 878\end{array}$	102,680 84,767	14, 2931	12, 3330,387	1,975, 968	6,050	341,156 814,905	603,459 $\$ 21,930$	87 88
605,710	20,084	\$22,521	114,400	$\$ 4,767$ 42,970	19,5900	4,145, 642	2, 386 , 327	30,251	326, 378	272, 410	89
\$83, 621	81,034	\$17,312	\$66,991	83, 341	\$11,413	\$204,936	\% \$92, 167	\$1,486	\$18,532	\$12,674	90
652,427	126,276	253, 324	270, 200	719,915	258, 300	6,361,067	2, 880,141	126, 340	2,951, 302	1,628,491	91
\$56, 881	\$10, 680	\$23,466	\$27,057	\$67, 893	\$27, 240	\$451, 755	\$276, 999	812,462	\$273, 217	\$153,246	92
125, 319	12,710	92,055	19, 8344	113, 460	7,480 $\mathbf{\$ 1} 480$	1,017,603	263,565 $\$ 52,803$	$\begin{array}{r}6,650 \\ \$ 1 \\ \$ 1 \\ \hline 189\end{array}$	207,731 $\$ 29,496$	\$16, 938	94
\$20, 711	82,311	\$6,147	\$2, 150	\$11, 724	\$1,445	\$891, 353	\$36, 846	\$1, 266	\$49, 180	\$23, 763	95
\$13,863	\$2, 369	\$5, 610	\$2,322	\$9,908	81,458	\$64,637	\$21,005	, $\$ 67$	\$18,542	\$6, 670	96
\$9,910	\$2, 276	\$15,406	\$5, 886	\$9, 984	\$3,691	\$200,273	\$49,221	\$1, 601	\$32, 480	\$18,543	97
\$57, 277	\$2,746	\$24,786	\$24,456	\$62, 923	\$4, 266	\$351,736	\$338, 554	\$1, 852	\$77,544	$\$ 36,690$ $\$ 39,696$	98 98
87,990	\$1,233	81,934	\$6,165	\$11, 219	\$7,894	\$55,976	\$35, 268	\$2,644	\$59,115	\$39,696	
\$2,129,073	\$219,184	\$1,846,535	\$480, 368	\$1,687,049	\$299, 805	\$19, 404, 955	86, 093, 191	\$174,069	\$4, 935, 453	\$2,348, 453	100
\$1,765,779	\$174, 933	\$1,690,643	8398,594	\$1,441, 968	\$199,948	\$16, 386, 952	83, 912,514	\$110,916	\$3,777, 690	\$1, 698, 656	101
\$1,068, 998	\$116, 116	\$1,069,480	\$228,352	\$808, 284	\$110,010	\$9,029, 291	\$2,070,544	\$860,394	\$1,939, 852	$\$ 893,780$ 8804,876	102
\$686, 781	858, 817	8621, 163	\$170, 242	\$633, 684	\$89,938	\$7,357,661	\$1,841,970	\$ $\$ 620,143$	$\$ 1,837,838$ $\$ 1,086,713$	\$804,876	104
$\$ 333,368$ $\$ 48,980$	$\$ 43,289$ $\$ 450$	$\begin{array}{r}\text { \$131, } \\ \mathbf{\$ 3 8}, 103 \\ \hline\end{array}$	881,349 88,750	8230,163 $\$ 4,593$	896,622	$\begin{array}{r}\text { \$2, 865, } \\ 8974,821 \\ \hline\end{array}$	\$2,131,603	\$62,143 $\$ 1,404$	\$1,0867, 8783	- 829,576	105
				\$5,000	\$2,800	\$153, 175	\$4,765		81,050	813, 888	106
§273,707	\$41,947	\$76,475	\$72,324	\$185, 477	\$91,307	\$1,647, 454	\$940, 935	\$57,654	\$949,667	\$534,924	107
\$6,678	\$842		\$200	811, 185	\$1,400	854, 827	\$621, ${ }^{\mathbf{\$ 1 5}, 781}$	$\begin{array}{r}\text { P110 } \\ \hline 85\end{array}$	821,062 849	\$26, 365	109
81,106 $\$ 3,898$	\$50	$\$ 4,800$ 812,000	\$76	\$13,908 $\$ 10,000$	\$1,040	$\$ 31,977$ $\$ 8,276$	\$16,771		\$ $\$ 7,279$	\$8,130	110
\$ $\$ 39,926$	$\$ 962$	\$24,514	\$25	\$14, 918	83,235	\$162,473	\$49,174	\$1,010	\$71,050	\$21, 789	111
238,815	34,277	100,848	27,907	102,872	5,100	1,449,087	345, 404	3,350	217,589	106,348	112
39,400	34, 277	69,606	27,907	65, 841	3,000	500, 673	96,599	2,100	125, 473	36,619	113
169,415		31,242		47,081	2,100	948, 414	248,805	1,250	92,116	68,729	114
29,325	1,700	1,000	5,000	33,941	4,645	170,720	777,185		168,672	20,040	116
155,507	43,773	304, 037	66,295	331,905	36,300	3, 866,983	858, 424	45,891	1, 105,666	${ }_{321}^{653} 505$	${ }_{118}^{117}$
44,375	6,150	354, 050	12,100	67, 425	1,500	3,072, 932	715, 292	900	301,205 27,529	321,050 21,800	119
17,800		2,760 68,140		12,350	1,250	1, 1808,874	73, 800		44,990	21, 775	120
155	30	69	97	265	72	1,548	841	64	1,045	684	121
						197	156	6			122
$\stackrel{44}{3}$	${ }_{6}^{6}$	7	11	13	1	143	23	4	39		123
${ }_{1}$	2	3	4	12	1	25	22	1	14		124
2	4	4	7	1		18	1	3	25		126
41		1		14	4	154	138	2	26	1	127
12		1			$\stackrel{2}{2}$	135	129	2	24	44	128
29			1			1			7	1	129
	1	1	1	9	5	72	41		58		130
74	21	31	76	205	59	1,000	561	56	831		132
9	2	22	8	17	1	219	64		8	5	133
2		2		6	$\stackrel{-}{2}$	${ }_{33}^{23}$	9		12	8	134
										608	135
130	28	32	86		69	1,141	$\begin{array}{r}730 \\ 36 \\ \hline 10\end{array}$	1	39	16	136
6				10	\cdots				14	16	137
2		1		1		17	3		2	2	138
1		3	5	1	101	14		4	2	13140
		5	2	2		28	3		1	2	141
3 2		2				12	4				142
2-	1		1	.	8			1		143
		5				9			1		144
		2		.	1	18	13-			146
3	1	1				17	3	1	${ }_{3}^{3}$	1	147
		1		1		10	8		9	7	148
		7		3		39	5		9	9	149
						11			3		150
											151
									5		153
				264	72	1,415	814	64	976	668	154
145	29										${ }_{156}^{155}$
						1					167
											158
		2		1		68	24		46	12	159 160
5							2				161
											162
1						3					163
										-..--	164
1						5	-				165
						$\stackrel{2}{10}$	1				167
											168
-................						30			15	1	169
2											171
											172
											173
											174
								28	653	413	175
103				158				\$83, 279	\$4, 067, 777	\$1,938, 818	176
\$2,037, 255	\$142,259	\$1, 819,560	\$363,726	\$1, 162, 212	\$217, 900	\$16, 371,047 $814,608,718$	$\stackrel{84,063,399}{83,648,737}$	\$65,716	\$3,594, 407	\$1,591, 326	
\$1,857,312	\$130,049	\$1,612,374	\$356,947	\$1,074, 676	\$199,631	\$14, 608,718	\$3,64, 737	10,			

Table 58.-NEWSPAPERS AND PERIODICALS,

BY STATES AND TERRITORIES: 1900-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Connecticut. \& Delaware. \& District of Columbia. \& Florida. \& Georgia. \& Idaho. \& 1llinois. \& Indiana. \& Indian Territory. \& Iowa. \& Kansas. \& \\
\hline 89
1,341 \& 178 \& 16
390 \& 22
149 \& \(\begin{array}{r}41 \\ \hline 988\end{array}\) \& 16
43 \& 531
\(\mathbf{6 , 1 2 1}\) \& 325
2,695 \& 13
41 \& 442
2,283 \& 173
971 \& 178
179 \\
\hline 56 \& 4 \& 6 \& 4 \& 16 \& 1 \& 121 \& 68 \& 1 \& 88 \& 41 \& 180 \\
\hline 750 \& 38 \& 195 \& 39 \& 316 \& 2 \& 2,009 \& 795 \& 8 \& 705 \& 356 \& 181 \\
\hline 6
63 \& 7
24 \& [5 \& 13
66 \& \begin{tabular}{l}
13 \\
87 \\
\hline
\end{tabular} \& \begin{tabular}{l}
3 \\
8 \\
8 \\
\hline
\end{tabular} \& 271
959 \& 217
917 \& 12
33 \& 284
888 \& 97
316 \& 188 \\
\hline 11 \& 1 \& \& 1 \& 6 \& 10 \& 18 \& 9 \& \& \(\begin{array}{r}28 \\ 28 \\ \hline\end{array}\) \& 11 \& 184 \\
\hline 35 \& 2 \& \& 6 \& 79 \& 27 \& 136 \& 47 \& \& 77 \& 61 \& 185 \\
\hline 3
23 \& \& \& \& 1
10 \& \& 46
427 \& 33
168 \& \& 10 \& \(\frac{1}{3}\) \& \({ }_{187}^{186}\) \\
\hline 6 \& \& \& 2 \& \& \& 11 \& 10 \& \& \& 18 \& 188 \\
\hline 13 \& \& \& 6 \& \& \& 25 \& 48 \& \& 5 \& 78 \& 189 \\
\hline 457 \& 66 \& 100 \& 44 \& 202 \& 6 \& 1,151 \& 685 \& \& 564 \& 167 \& 190 \\
\hline 43 \& \& 10 \& 1 \& 4 \& \& 414
256 \& 35
5 \& \& 34 \& 4 \& 191 \\
\hline 116 \& 26 \& 60 \& 86 \& 233 \& 66 \& 1,269 \& 638 \& 58 \& 910 \& 595 \& 193 \\
\hline \& \& 4 \& 5 \& 36 \& 9 \& 79 \& 30 \& 9 \& 71 \& 68 \& 194 \\
\hline 38 \& 13 \& 20 \& 48 \& 131 \& 40 \& 704 \& 365 \& 37 \& 558 \& 382 \& 195 \\
\hline 52 \& \& 25 \& 27 \& 55 \& 16
1 \& 396 \& 210
24 \& 12 \& \(\begin{array}{r}239 \\ 27 \\ \hline\end{array}\) \& 181 \& 196 \\
\hline 19 \& 6 \& 7 \& 6
1 \& 5
4 \& 1 \& 66
14 \& \({ }^{24} 5\) \& \& 27
15 \& 10 \& 198 \\
\hline \& \& 3 \& \& 3 \& \& 4 \& 3 \& \& \& \& 199 \\
\hline \& \& \& \& \& \& 2 \& \& \& \& \& 201 \\
\hline \& \& \& \& \& \& \& 1 \& \& \& \& 202 \\
\hline Minnesota. \& Mississippi. \& Missouri. \& Moutana. \& Nebraska. \& Nevada. \& New Hampshire. \& New Jersey. \& New Mexico. \& New York. \& North Caro-
lina. \& \\
\hline 660 \& 165 \& 814 \& 78 \& 492 \& 29 \& 76 \& 261 \& 35 \& 1,206 \& 165 \& 1 \\
\hline 379 \& 124 \& 524 \& 45 \& 382 \& 14 \& 43 \& 169 \& 23 \& 68.2 \& 101 \& 2 \\
\hline 116
60 \& 27
14 \& 164 \& 11
22 \& 64
41 \& 12 \& 16
16 \& 31
60 \& \({ }_{6}^{6}\) \& \({ }_{323}^{186}\) \& 30 \& 3
4
5 \\
\hline 5 \& \& 9 \& \& 5 \& \& 16 \& \({ }_{73}^{1}\) \& 17 \& 15 \& 82 \& 5 \\
\hline 252
17 \& 77 \& 352
19 \& 47
6 \& 204 \& 1 \& 16
1 \& 73
8 \& 17 \& \({ }_{23}\) \& \(\stackrel{7}{7}\) \& 7 \\
\hline \& \$405,042 \& \$6,507,800 \& \$715, 985 \& \$2, 252, 656 \& \$92,372 \& \$1,018,753 \& \$4,210, 267 \& 8163,472 \& \$55. 486, 474 \& \$646,432 \& 8 \\
\hline \[
\$ 369,400
\] \& \$13,055 \& - \$192,115 \& \begin{tabular}{l}
\(\$ 54,885\) \\
\(\$ 88\) \\
\hline 802
\end{tabular} \& \& \& \(\$ 103,179\)
\(\$ 103,700\) \& \(\mathbf{8 4 4 0 , 9 1 5}\)
\(\$ 468,162\) \& \(\$ 1,650\)
86,850 \& \[
\begin{array}{r}
83,977,982 \\
83,944,294
\end{array}
\] \& \(\mathbf{8 3 5}, 155\)
862,675 \& 9
10 \\
\hline \$778,
\(\mathbf{\$ 1}{ }^{\text {948,091 }}\) \& \(\$ 129,450\)
\(\$ 250,031\) \& \(\$ 867,565\)
\(\$ 2,706,241\) \& \% \(\$ 888,402\) \& \(\$ 154,865\)
\(\$ 1,118,389\) \& \$818, \({ }^{\mathbf{8 4 6}, 104}\) \& \(\$ 103,700\)
\(\$ 467,622\) \& \$ \(\$ 2468,311,640\) \& \& \(83,944,294\)
815, 564,120 \& \(\mathbf{8} 62,675\)
\(\mathbf{\$ 3 6 6}, 463\) \& 111 \\
\hline \(\$ 1,948,076\)
\(\$ 3,286,558\) \& \begin{tabular}{|c}
\(\$ 250,031\) \\
\(\$ 112,506\)
\end{tabular} \& \(82,706,241\)
\(82,941,879\) \& \$839,111 \& \(\$ 1,918,389\)
\(\$ 916,531\) \& \$ \(\$ 23,104\) \& \$8344, \(\mathbf{2 6 2}\) \& \(\$ 2,361,540\)
\(\$ 969,540\) \& \$35, 431 \& \$ \(\$ 32,000,078\) \& \$191, 139 \& 12 \\
\hline \$3, 286, 617 \& 112, 180 \& - \({ }^{260}\) \& \& -506 \& \& 74 \& 240 \& 36 \& 1,107 \& 170 \& 13 \\
\hline \[
\begin{array}{r}
933 \\
8750,386
\end{array}
\] \& \$22,965 \& \[
\begin{array}{r}
1,264 \\
\$ 1,130,265
\end{array}
\] \& 8134, 788 \& \(\begin{array}{r}\text { 242,814 } \\ \hline 277\end{array}\) \& -
8
82,400 \& \%
\(\mathbf{6 5}\)
\(\mathbf{8 6 3}, 084\) \& 354
8344,461 \& 17
\(\$ 18,790\) \& 7,415
\(\mathbf{6 9 , 0 9 6 , 4 2 0}\) \& \$887, \(\begin{array}{r}145 \\ \hline 85\end{array}\) \& 14 \\
\hline \[
\begin{array}{r}
62 \\
\text { §99, } 882
\end{array}
\] \& 86,460 \({ }^{5}\) \& 155
\(\$ 271,545\) \& \$23,930 \& 39
859,951 \& \& \$25, 284 \& 880, \(\begin{array}{r}525 \\ \hline 84\end{array}\) \& \% 85 \& \& \$17, \({ }^{289}\) \& 17 \\
\hline \[
\begin{array}{r}
871 \\
\mathbf{9 6 5 0 , 5 0 4}
\end{array}
\] \& \[
\begin{array}{r}
23 \\
\$ 16,505
\end{array}
\] \& 1.109
8858,720 \& 8110,858 \({ }^{76}\) \& 238
\(\mathbf{8 1 8 2 , 8 6 3}\) \& \$2,400 \& 45
\(\$ 37,800\) \& 300
\(\mathbf{8 2 6 4 , 1 3 6}\) \& 13
\(\$ 13,500\) \& 6,957
\(87,749,897\) \& \$70,762 \& 18 \\
\hline 9550, \(\begin{array}{r}611\end{array}\) \& \$16, \({ }^{21}\) \& 902

$\mathbf{\$ 7 6 5 , 4 7 2}$ \& \[
$$
\begin{array}{r}
70 \\
\$ 106,618
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\stackrel{202}{ } \mathbf{8 1 6 7 , 7 8 9}
\end{array}
$$

\] \& 82,400 ${ }^{3}$ \& \& \$247, ${ }^{257}$ \& 813,500 \& \[

$$
\begin{array}{r}
6,578 \\
\$ 7,102,814
\end{array}
$$
\] \& \$ $\begin{array}{r}167,875\end{array}$ \& ${ }_{21}^{20}$

\hline \%
899,
\%93 \& \$468 \& \$93,248 \& \$4,240 ${ }^{6}$ \& ($\begin{array}{r}36 \\ 816,074\end{array}$ \& \& \$ $\begin{array}{r}14 \\ \hline 647\end{array}$ \& 43

817,089 \& \& $$
\begin{array}{r}
1,379 \\
\$ 647,083
\end{array}
$$ \& \$2, ${ }^{7} 87$ \& 22

\hline \& 551 \& \& 499 \& 1,628 \& 80 \& 673 \& 2,359 \& 178 \& 18,071 \& 733 \& 24

\hline 2,483 \& 416 \& 8,597 \& 426 \& 1, 1185 \& 67
68 \& 620
571 \& 1,907
2,077 \& 124
142 \& 15,317
16,460 \& \& ${ }_{26}^{25}$

\hline 2,714 \& 440 \& 3, $\begin{array}{r}3,758 \\ \hline 8.058\end{array}$ \& 455
8310,802 \& 1,334
$\mathbf{\$ 6 2 6}, 697$ \& \& $\begin{array}{r}\text { r } \\ \text { 8261, } \\ \hline 81\end{array}$ \& \$1, 162,033 \& \$76, 477 \& \$10,924, 755 \& \$230, 941 \& 27

\hline \$1, 304, 229 \& 8164,435 \& \$2, 056,148 \& 8310, 802 \& \$626, 697 \& 835, 024 \& 8261,871 \& \$1,162,033 \& *\%, 4 \& 10, 32,15 \& \$30, 34 \& 2

\hline $$
\begin{array}{r}
2,187 \\
\$ 1,195,120
\end{array}
$$ \& \[

$$
\begin{array}{r}
315 \\
8144,891
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
2,747 \\
\$ 1,839,571
\end{array}
$$
\] \& \$295, ${ }^{395}$ \& 9947

$\$ 542,826$ \& 48
831,434 \& 395

$\$ 196,346$ \& 81, $\begin{array}{r}1,775 \\ 81,989\end{array}$ \& \[
$$
\begin{array}{r}
114 \\
\mathbf{8 6 9 , 4 1 6}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
13,304 \\
\$ 9,861,947
\end{array}
$$
\] \& $\begin{array}{r}\$ 210,492 \\ \hline 186\end{array}$ \& 28

\hline 313
$\$ 90,564$ \& 35
$\$ 9,066$ \& 567

$\mathbf{8 1 6 1 , 5 2 8}$ \& \[
$$
\begin{array}{r}
27 \\
\$ 10,625
\end{array}
$$

\] \& 8588, ${ }^{212}$ \& \[

$$
\begin{array}{r}
3 \\
\$ 1,303
\end{array}
$$
\] \& 170

864,548 \& $$
\begin{array}{r}
201 \\
\$ 64,633
\end{array}
$$ \& 12

$\$ 4,025$ \& $$
\begin{array}{r}
2,849 \\
\$ 1,018,564
\end{array}
$$ \& \%

$\mathbf{4 8}, 580$ \& 30
31

\hline $$
\begin{array}{r}
214 \\
\$ 18,545
\end{array}
$$ \& \[

$$
\begin{array}{r}
90 \\
\$ 10,478
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
444 \\
\$ 55,049
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
33 \\
\$ 4,664
\end{array}
$$

\] \& \$25,050 \& \[

$$
\begin{array}{r}
17 \\
82,287
\end{array}
$$
\] \& ${ }_{8977}^{6}$ \& 101

$\$ 14,461$ \& \[
$$
\begin{array}{r}
16 \\
\mathbf{8 2 , 0 3 6}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
307 \\
\$ 44,244
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
120 \\
812,005
\end{array}
$$
\] \& 32

33

\hline \& \& \& 393 \& 967 \& 48 \& 398 \& 1,782 \& 118 \& 13, 509 \& 600 \& 34

\hline 2,196
2,186 \& 3347 \& 2,804
2,717 \& 390 \& 961 \& 48 \& 391 \& 1,776
1,814 \& 116 \& 13,417
13,362 \& 494 \& 35
36

\hline 2,247 \& 320 \& 2,835 \& 387 \& 952 \& 48 \& 404 \& 1,815 \& 111 \& 13,254 \& 491 \& 37

\hline 2,218 \& 304 \& 2,830
$\mathbf{2} 738$ \& 389
392 \& 947
989 \& 47 \& 401 \& 1,804 \& 113 \& 13,453 \& 487 \& 38

\hline 2,213
2,178 \& 310
303 \& 2,778

$\mathbf{2}, 727$ \& | 392 |
| :--- |
| 392 | \& 909 \& 47 \& 412 \& 1,763 \& 115

102 \& 13,280
12,966 \& 600
483 \& 39
40

\hline 2,178
2,108 \& 303
303 \& 2,727
$\mathbf{2 , 6 3 8}$ \& 392

380 \& 904 \& | 47 |
| :--- |
| 48 | \& 389

389 \& 1,741
1,712 \& 102
102 \& 12,966
12,925 \& 483
487 \& ${ }_{4}^{40}$

\hline 2,119 \& 297 \& 2,586 \& 388 \& 903 \& 48 \& 389
388 \& 1,707 \& 111 \& 13, 048 \& 486 \& 42

\hline 2,165 \& 302 \& 2, 676 \& 402 \& 929
988 \& 4 \& 390 \& 1,782 \& 116 \& 13, 267 \& 491 \& 43

\hline 2,208 \& 317 \& 2,747 \& 405 \& ${ }_{986}^{988}$ \& 49 \& 389 \& 1,800 \& 117 \& 13,502 \& 494 \& 44

\hline 2,226 \& 323 \& \& 417 \& ${ }_{986}^{986}$ \& 47 \& 386 \& 1,800 \& 119 \& 13,669 \& 498 \& 45

\hline 2,193 \& 324 \& 2,854 \& 410 \& 980 \& \& \& 215 \& 12 \& 3,013 \& \&

\hline 306 \& 35 \& 582 \& 27
27 \& 203
209 \& 4 \& 166 \& 211 \& 13 \& 3,071 \& 39 \& 47

\hline 300 \& 35 \& 578 \& 27
26 \& 214 \& 4 \& 184 \& 219 \& 12 \& 3,041 \& 40 \& 48

\hline 314 \& | 33 |
| :--- |
| 32 | \& 575

670 \& \& \& 4 \& 171 \& 220 \& 12 \& 2,962 \& 39 \& 49

\hline 316
311 \& 32
33 \& 670
661 \& 26
26 \& 212 \& 4 \& 169
172
1 \& 192 \& 12 \& 2,877
2,820 \& 45
44 \& 50
51
51

\hline 311
314 \& 33
29 \& ${ }_{566}^{661}$ \& 26 \& 209 \& 4
3 \& 172
167 \& 182
180 \& 11 \& 2,820
2,519 \& 4 \& 51
52

\hline 310 \& 29 \& 547 \& 27 \& 204 \& \& \& \& \& \& \&

\hline
\end{tabular}

Tarle 58.-NEWSPAPERS aND PERIODICALS,

BY STATES AND TERRITORIES: 1900-Continued.

Minnesota.	Mississippi.	Missouri.	Montana.	Nebraska.	Nevada.	New Hampshire.	New Jersey.	New Mexico.	New York.	North Carolina.	
311	31	538	27	209	3	158	179	11	2, 724	41	53
319	32	563	27	220	3	164	186	12	2,634	43	54
324	42	571	30	220	3	171	209	12	2,805	38	55
316 312	44 44	565	30	$\stackrel{212}{216}$	3 4	173 177	${ }_{213}^{208}$	11	2,848 2,869	38 33	56 57
2	44	588	30	216	4	177	213	12	2,869	33	
229	94	436	85	182	17	7	100	17	309	120	58
227	93	433	35	181	17	7	102	16	316	123	59
231 230	94 88 88	$\begin{array}{r}437 \\ 453 \\ \hline\end{array}$	33 33	177 174	17 17 17	7	103	16 16	315 307	121	60
233	90	451	${ }_{33}$	176	17	7	101	16	308	121	62
206	86	446	33	177	17	8	101	18	302	118	63
200	83	446	33	173	17	6	99	16	296	113	64
194	81	432	33	171	17	4	99	16	294	117	65
198	82	437	33	166	17	5	97	16	303	117	${ }^{66}$
203	95	448	33	174	17	${ }_{6}^{6}$	101	16	315	123	67
204 211	97 97	447 457	33 33	174 176	17 17	6 6	101	16 17	309 311	123	68
211											
1,252	223	1, 525	224	647	37	204	1,081	85	6,026	350	70
1,149 101	85 65	298 165	7	187	4 6	128 4	159 37	9	704 80	27 93	71 72
101	65	165		119	6	4	37		80	93	72
186	10	156	43	61	2	26	115	6	962	22	73
114		105	$\begin{array}{r}1 \\ 27 \\ \hline\end{array}$	$6{ }_{6}^{2}$	3	12	108	4	56 799	21	74 75
\$1, 219, 343	\$31, 372	\$1, 385, 340	\$96,453	\$377,666	86, 570	\$63, 072	\$289, 011	\$11,947	\$15, 178, 916	\$73, 777	76
\%131, 267	\$11, 906	\$182,613	\$20,186	\$60, 354	\$2,929	\$16,517	856,443	85, 969	81, 175,060	\$15, 188	77
\$29, 669	\%2,691	\$25,351	85,240	\$9,719	\$934	${ }_{85}^{85}, 285$	818, 142	\$1,064	- \$241, 097	\$1,424	78
\$146, 792	\$8,684	\$347,346	87,616	$\begin{array}{r}\mathbf{8 4 9 , 8 8 7} \\ \mathbf{8 1 9 8} \\ \hline 891\end{array}$	$\mathbf{8}$ 81807 800	$\$ 7,941$ $\$ 30,904$	\$158,209	$\$ 1,318$ $\$ 3,686$	\$1, 211, 274	\$13, 640 $\$ 35,395$	79 80
\$670,008	\$9,733	\$401, 178	858,525	\$198,691	81,800	\$30,904	\$158, 209	\$3,666	\$6,666, 362	\$35, 395	
\$241, 607	\$3,358	\$428,952	\$4,887	\$69,015		\$2,425	\$43, 620	\$30	\$5, 885, 123	\$5,130	81
\$1, 073, 934	\$114, 325	\$2, 204, 785	8173,570	\$624,472	\$17,669	\$166, 624	\$892,690	\$33, 622	814,511, 890	\$156,944	82
26, 663, 512	1,560, 884	66,173, 770	2,918, 505	11, 544,598	166, 576	3,445,068	17,034, 314	330,587 $\$ 23,173$	$378,603,033$ $811,109,993$	$2,562,834$ 8123,379	83 84
8803,873	\%93, 298	\$1,681, 103	$\begin{array}{r}\text { \$102, } 746 \\ 2399 \\ \hline\end{array}$	$\begin{array}{r}\text { \$495, } \\ 7982 \\ 7980 \\ \hline\end{array}$	89,049 109,020						
21,724, 809	$\mathbf{9 9 6}, 379$ $\mathbf{4 4 2 , 6 0 0}$	$60,058,571$ $\$ 1,287,382$	2, 399,006 858	$\begin{array}{r}7,980,338 \\ \mathbf{\$ 2 3 1} \\ \mathbf{3} \\ \hline\end{array}$	109,020 85,089	2, 769,676	$11,912,651$ $\$ 328,647$	177,522 87,716	$\begin{array}{r}\text { 261, } \\ \mathbf{8 5}, 428,46,535 \\ \hline\end{array}$	$\begin{array}{r}1,838,139 \\ \$ 84,325 \\ \hline\end{array}$	86 86
$1,083,806$	-54, 706	2, 599,118		917,007	1,000	34, 400	842, 126		61,190, 338	76,420	87
1, 852,222	\$2, 794	\$ \$116, 697	\$40	853, 462	\$76	\$2, 542	\$43, 580		\$2, 863, 185	83,723	88
2,065, 634	38,585	1,382,977	28,759	718, 617	6, 000	${ }^{231}$ 23,977	521, 932	800	46, 386, 675	19,000	99
882,856	\$2,077	884,940	\$82, 677	-\$41,261	+ $\$ 375$	$\$ 11,826$ 408,016	3 $\begin{array}{r}\mathbf{7 6 7} \text {, } \\ \hline 805 \\ \hline\end{array}$	152, ${ }_{\text {265 }}^{864}$	$\$ 2,135,900$ $9,167,607$	629, 275	${ }_{91}^{9}$
1,789, 263	471, 214	2,133,104	$\begin{array}{r}489,881 \\ 841 \\ \hline 98\end{array}$	$1,928,636$ $\mathbf{\$ 1 6 9 , 3 6 0}$	40,656 $\$ 3,510$	\$ 808,657	- 3820,924	\$15,394	\$ 8684,373	\$53, 700	92
$\begin{array}{r}\text { 9176, } \\ \mathbf{3 1 6}, 426 \\ \hline 182\end{array}$	- 446,106	- 7951966	28,755	114,479	-1,808	-34,660	202,703	3,612	3,944, 417	27, 736	93
\$829, 488	\$8,868	854, 414	\$3,758	812, 915	\$347	\$ $\$ 5,072$	\$24,937	\$799	\$375,549	\$4,116	94
\$43, 776	\$3, 280	850, 602	\$5,725	\$27,084	\$2, 127	85, 561	825, 826	\$1,675	\$262,041	- $\$ 3,1643$	95 96
\$14,924	\$695	\$18, 167	88,926	\$4, 353	91 $\$ 620$	\%8,561	$\mathbf{8 1 5 , 3 6 9}$ $\$ 33,812$	81,030 $\$ 1,306$	\$298,966	- $\$ 86,008$	97
849,484 8109	$\$ 4,027$ $\$ 2,683$ 8	\$ $\$ 2932,921$	$\$ 4,012$ $\$ 12,476$	\$18,961	\$ 81,408	\$13, ${ }^{(125}$	\$ $\$ 61,519$	81,366	\$1,897, 405	\$8,005	98
$\$ 109,968$ $\$ 22,421$	\$2, $\mathbf{\$ 6}, 474$	$\$ 292,490$ $\$ 44,088$	\$ $\$ 185,927$	- $\$ 29,664$	\$1,833	+ 83,250	\$11, 675	\$4, 273	\$49,746	\$8,408	99
					\$111,052	\$752,560	83, 731, 068	\$197, 621	862,965, 076	\$827, 425	100
\$ $83,981,874$	\$ $\$ 39500,068$	\$8, 144, 216	\$705, 229	81,887, 933	\$993, 702	\% 8076 7,663	\$2, 663, 899	8128,839	\$49, 216, 268	\$610,418	101
\$ $\$ 2,295,482$	\$195,133	\$4, 615,545	8390, 598	\$1,002, 462	\$49, 272	\$274, 818	\$1, 813, 518	876, 513	\$25, 369, $\mathbf{8 4 8}$	\$290, 5666	102
\$1,686, 392	\$199, 985	\$3,528,671	\$314, 631	8885, 471	841,430	\$232,846	\$8850,381	8552, 326 868,632	$823,847,220$ $\$ 13,286,016$	$\mathbf{\$ 3 1 9 , 8 5 2}$ $\mathbf{8 2 0 6 , 3 9 9}$	104
\$1, 625,001	\$164, 442	\$1,016,109	\$204, 5373	$\begin{array}{r}\$ 655,127 \\ \$ 37 \\ \hline 884\end{array}$	$\$ 17,300$ $\$ 1,650$	$\$ 238,266$ $\$ 16,244$	$\$ 1,045,021$ $\$ 103,794$	$\$ 68,632$ $\$ 1,600$	813,286, $\$ 9$ 986	\$206,369	105
\$897, 254	89, 560	\$261, 204	\$3, 600	$\$ 37,984$ $\$ 3,625$	\$1,650	\$16, 244	\$1031,600	11,600	- 94,953		106
$\$ 2,775$ $\$ 614,669$		86,630 $\$ 678,114$		\$505, 195	\$15, 550	\$195,959	\$921,838	\% 99,904	\$2,896,680	\$178,506	107
\$ $\$ 14,566$	\$146,050	\$ $\$ 51,429$	810,886	\$26, 622	8100	\$12, 013	§8,867	\$3, 300	\$271,429	\$14,508	108
\$64, 861	\$2,085	\$13, 569	\$14,489	877, 586		\$5,050	\$2, 828	\$2,050	$\begin{array}{r}\mathbf{8 2 1}, 254 \\ \mathbf{8 1 0 5} \\ \hline 148\end{array}$	812,725	1109
\$ \$31, 876	. $8 . .$.	895,163	850 81,866	$\$ 4,115$ 89,991		\$10,000 $\$ 6,681$	- 822,148	1,178 $\mathbf{8 5 0}$	\$462, 792	\$10,668	111
\$183,273	9587	893,772	\$1,866	89, 991	450	+6,681	822,148				
300, 266	16,348	810,492	42,164	122, 414	5,226	42, 419	223,233 6,545	3,820	$3,896,967$ $3,006,426$	44,620 18,150	112 113
144, 119	5,586 10,762	713,004 97,488	28,922	92,615 29			216,688	3,820	-890, 511	26,470	114
156, 147	10,762	97, 488	13,242	29, 1200	, 160	5,250			146, 175		115
5,000 95,660		329,153	9,380	53,008	1,760		1,900		460, 867	24,490	117
908,478	142,702	1,862, 856	62,109	650,349	10,517	158,900	367,021 28,950	25,000 600	$12,607,099$ $16,927,062$	197,706 12,050	117 118
452,329	6,610	1,378,586	6,495	255, 935	500	5,250	28,950 136,500	800	- $2,276,625$	12,700	118 119
4,550		895,050	7,000	2,950 $\mathbf{9}, 682$			2,251,500	2,300	1,311, 300	8,350	120
183, 347	1,700	219, 465	9,682				42	1,477	200	121
622	178	940	89	538	35	88	298	42	1,47		
				32	9	14	49	3	207	26	122
49 9	${ }_{18}^{3}$	33	6	9			4		49 26		123
5	3	16	5	5			2		${ }_{23}^{26}$	1	125
4		17	1	4			45	3	158	18	126
35	10	59	5	23 2	3	2	5		37	1	127
7				21	6	12	40	3	121	17	128
28	10	51	5	1		2			8		129
1	1	14	4	16	3		2		52	15	130
9		14 695	70	454	21	67	225	35	872	142	131
493	156			28	1	5	17	1	272	10	132
60	4	101	1	3			4	1	35	1	133
$\stackrel{2}{13}$	$\ddot{2}$	23		4			1	2	31	6	134
					34		274	36	1,004	168	135
516	169	789		14		2	6	4	79	22	136
20	5	4	$\stackrel{2}{5}$	9		2	1	1	25	4	137
11	1	22	5	2			1		56	2	138
5		11		9		1	5		111	1	139
21	.	12		3		1	1		51		140
		2							19	2	141
4	18							19		142

Table 58.-NEWSPAPERS AND PERIODICALS,

BY STATES AND TERRITORIES: 1900-Continued.

Minnesota.	Mississippi.	Missouri.	Montana.	Nebraska.	Nevada.	New Hampshire.	New Jersey.	New Mexico.	New York.	North Carolina.	
4		7		1					9		143
2		7		1					15		144
12		7		7	1		1		12		145
6		5					2		16		146
$\frac{1}{5}$		5		1			1	1	18	1	147
9	1	16	2	7	2	5	49	149
		1							2	150
											151
							1				153
564 1	178	897	86	508	35	86	272	31	1,379 2	200	154
1				2			3		156
.................											158
20	31	$\stackrel{7}{ }$	18		...	19		48		159
1	1							3		160 161
		1					.		6		162
.................		.							3		164
							4		10		165
1	2	.-........	-			2		167
											168
34		1		4					1		169
		4					2	10	5		171
				.				1			172
									1		173
				8					10		174
					\$70, ${ }^{1664}$	60 $\$ 670,037$	(83, 239,273	8160, $\begin{array}{r}20 \\ 844\end{array}$	\$558, ${ }^{981,182}$	$\begin{array}{r}114 \\ \$ 6850,368 \\ \hline\end{array}$	175 176
\$35, 364,445 $\mathbf{\$ 4 , 7 5 6 , 5 3 1}$	\$376, $\$ 353$ $\$ 319,758$	\$77,859,426	\$764,378 $\$ 702,688$	\$2, $\$ 2$ $\mathbf{1}, 740,612$	\$864, 430	\$653, $\mathbf{8 1 9}$	\$2, 954,946	\$140, 991		\$596, 545	177
203 2,211	${ }_{111}^{21}$	3, ${ }^{238}$	$\begin{array}{r}39 \\ 299 \\ \hline\end{array}$	144 921	11 66	60 615	181 1,731	7 4	610 16,565	40 250	178 179
41	8	66	19	${ }^{27}$	5				308 7,176		180 181
896	47	1,546	78	335	29 3	188	932 49	16 4	$\begin{array}{r}7,176 \\ \hline 139\end{array}$		${ }_{182}^{181}$
118	10 34	152	${ }_{18}^{6}$	-94	3 8	.$_{23}^{7}$	49 198	12	686	72	183
310 12	34 2 1	511	18 1	276 4	8	13	19	2	61		184
42	12	9	2	11	29	46	26	9	406 169		185
17		25		71.			${ }_{3}^{6}$		2,277		187
157		371		5			10		116		188
8		24		10			32	407		189
798	18	556	160	1		229	510		3,937	85	190
		9	41	218		29		8	1,667	21	191
79	7	6	5	4						
		814		492	29		261		1,206	165	193
43	16	69	10	53	2 2 2	${ }_{3}^{2}$	111	${ }_{2}^{2}$	$\begin{array}{r}64 \\ 521 \\ \hline\end{array}$		195
389	121	527	47	366 62	22 6	33 33	115	$\stackrel{1}{22}$	434	45	196
104	24 4	176 28		62 6		$\begin{array}{r}38 \\ 4 \\ 4 \\ \hline\end{array}$	22	3	100	7	197 198
4		6	2	2		3	${ }_{1}^{6}$		35 37		199
3		${ }_{6}^{6}$							10		200
									3		201
									2		202
South Carolina.	South Dakota.	Tennessee.	Texas.	Utah.	Vermont.	Virginia.	Washington.	West Vinginia.	Wisconsin.	Wyoming.	
98	198	217	654	62	61	162	188	147	495	38	1
	155	128	466	32	37	105	107	99	322	20 12	${ }_{3}^{2}$
22	${ }^{151}$	51	146	17	8 8	27 21	40 31 1	26 21	$\stackrel{98}{73}$	12	4
19	11	29	36	13	14	$\stackrel{21}{9}$	31 10	1	2		5
	${ }_{64}$	114	352		17	53	107	57	177	21	${ }_{7}^{6}$
	64 7	114 5	352 30				16	4	9	2	7
						\$1, 126,736	\$796, 114	$31,050,150$	\$4,390,988	\$143,620	8
$\$ 434,255$ $\$ 22,550$	$\$ 637,839$ $\$ 83,760$	$\$ 2,622,242$ $\$ 119,386$	\$2,479,038	\$86, 850	\$25,987	\$ $\$ 34,000$		$\$ 60,325$ $\$ 77,725$ 80,58	$\$ 374,395$ $\$ 814,413$	$\$ 3,960$ $\$ 7,900$	${ }^{9}$
-822,550	\$75,135	\$411,482	\$266, 930	\$663,445	\$552,208	\$75,525	- \$23,565	- $\begin{array}{r}\text { \$7,7,723 } \\ \text { ? } 506,580\end{array}$	\$17814, 815		11
\$226,582	\$333, 177	\$1,066,170	\$1,364, 515		$\$ 283,029$ $\$ 139,474$	$\mathbf{\$ 6 2 5 , 5 3 4}$ $\mathbf{8 3 9 1}, 677$	\$ $\$ 238,711$	\$405,520	\$1, 354,624	\$40,710	12
\$147,573	\$195, 767	\$1,025, 204	\$737, 590 775	\$302, 842	$\$ 139,474$ 54	$\$ 391,677$ 160	\$230, 192	- 151	- ${ }^{1} 122$		13
							${ }^{217}$	${ }^{92}$	${ }^{231819}$		14
56 $\$ 42,631$	\$30, $\begin{array}{r}\text { 476 }\end{array}$	\$329, ${ }_{140}^{403}$	\$275,910 ${ }^{263}$	\$67,769	\$50, 135	\$107,831	\$175,974	\$78, 207	\$349,073	\$5,644	16
										2	16
$\begin{array}{r} 17 \\ \$ 8,885 \end{array}$	$\$ 6,110^{6}$	$\begin{array}{r} 54 \\ \mathbf{8 7 3}, 552 \end{array}$	$\begin{array}{r} 31 \\ \$ 61,125 \end{array}$	$\$ 14,060$	\$10,461	\$21,798	\$27,080	\$ $\$ 21,330$	\$105,145	\$2,500	17
							205	\% 76	332	4	18
$\begin{array}{r} 39 \\ \$ 33,746 \end{array}$	$\begin{array}{r} 37 \\ \$ 24,236 \end{array}$	$\begin{array}{r} 349 \\ \mathbf{\$ 2 5 5}, \mathbf{8 8 8} \end{array}$	$\begin{array}{r} 232 \\ \$ 214,785 \end{array}$	$\$ 53,709$	\$39, 674	\$86, 033	\$143, 894	- \$51,877	\$243,928	\$3,144	19
									267		20
$\begin{array}{r} 34 \\ \mathbf{\$ 3 1}, 186 \end{array}$	$\begin{array}{r} 30 \\ \$ 21,374 \end{array}$	$\begin{array}{r} 284 \\ \$ 230,037 \end{array}$	$\begin{array}{r} 199 \\ \$ 197,957 \end{array}$	$\$ 50,193$	$\begin{array}{r} 49 \\ \$ 35,304 \end{array}$	\$80, 785	. $\$ 138,178$	\$ \$47,981	\$223,149	\$3,144	21
$\begin{array}{r} 5 \\ \$ 2,560 \end{array}$	$\begin{array}{r} 7 \\ \$ 2,892 \end{array}$	$\begin{array}{r} 65 \\ \$ 25,551 \end{array}$	$\begin{array}{r} 33 \\ \$ 16,828 \end{array}$	$\begin{array}{r} 12 \\ \$ 3,526 \end{array}$	$\begin{array}{r} 12 \\ \$ 4,370 \end{array}$	$\begin{array}{r} 23 \\ \$ 5,243 \end{array}$	$\begin{array}{r} 17 \\ \$ 10,716 \end{array}$	$\begin{array}{r} 9 \\ 93,896 \end{array}$	$\begin{array}{r} 65 \\ \$ 20,779 \end{array}$		22

Table 58.-NEWSPAPERS AND PERIODICALS,

		North Dakota	Ohio.	Oblahoma.	Oregon.	$\begin{aligned} & \text { Pennsylva- } \\ & \text { nia. } \end{aligned}$	Rhode lsland.
$\begin{aligned} & 245 \\ & 25 \\ & 26 \\ & 27 \end{aligned}$	Wage-earners, including pieceworkers, and total wages:						
	Greatest number employed at any one time during the year. Least number employed at any one time during tbe year.......................	$\begin{aligned} & 392 \\ & 295 \end{aligned}$	$\begin{aligned} & 7,068 \\ & 6,011 \end{aligned}$	$\begin{aligned} & 500 \\ & 327 \end{aligned}$	$\begin{aligned} & 7185 \\ & 485 \end{aligned}$	$\begin{array}{r} 10,478 \\ 9,022 \\ 0,62 \end{array}$	519 478
	Average number.....	\$143,096		a \$139,021		\$5,094, 769	\$318, 219
$\begin{aligned} & 28 \\ & 29 \end{aligned}$	Men, 16 years and over-		-,				
	Average number..........	$\begin{aligned} & \$ 128,683 \\ & \hline 263 \end{aligned}$	$\begin{aligned} & \$ 2,784,987 \\ & \hline, 907 \end{aligned}$	$\begin{array}{r} 313 \\ \$ 127,978 \end{array}$	$\begin{array}{r}8237,151 \\ \hline 17\end{array}$	$\begin{array}{r} 7,841 \\ \$ 4,677,768 \end{array}$	
	Women, 16 years and over-						
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	Average number	$\begin{array}{r} 37 \\ \$ 11,707 \end{array}$	$\begin{array}{r} 1,149 \\ \$ 300,146 \end{array}$	$\begin{aligned} & 44 \\ & \$ 8,238 \end{aligned}$	$\begin{array}{r} 142 \\ \$ 48,743 \end{array}$	$\$ 345,945$	$\begin{array}{r} 39 \\ \$ 15,245 \end{array}$
	Children, under 16 years-						
${ }_{33}^{32}$	Wages	82, 706	\$34, 463	\$2, 80.5	86,685	\$71,056	\$1,045
	Average number of wage-earners, including pieceworkers, employed during each montb: Men 16 years and over-						
	January \qquad	261	4,957	319	425	8,002	439
$\begin{aligned} & 35 \\ & 36 \end{aligned}$	February ..	262 267	4,958 4,959	${ }_{332}^{327}$	${ }_{420}^{412}$	7,831 7882	443 439
37	April ...	${ }_{268}^{268}$	4,996	${ }_{312}^{332}$	422	7,890	445
${ }^{38}$	May	265	4,955	305	446	7,799	444
39	June.	${ }_{265}^{265}$	4,825	279	${ }_{4}^{417}$	7,682	443
${ }_{41}^{40}$	August	244	${ }_{4}^{4,752}$	304	385 385	7,613	$\stackrel{443}{443}$
42	September	267	4, 828	318	399	7,764	440
43 44 4	October..	${ }^{276}$	4, 4 , 936	310	${ }_{434}^{404}$	7,956	439
${ }_{44}$	December	272	5,009		${ }_{447}$	88,063	$\stackrel{441}{4}$
	Women, 16 years and over-						
${ }_{46}^{46}$	January	${ }_{43}^{43}$	1,214	${ }_{45}^{46}$	149	1,157	
48	March ...	${ }_{35}$	${ }_{1}^{1}, 212$	47	150	1,185	41
49	April	${ }^{35}$	1,166	43	138	1,181	40
501	Jaye.	${ }_{37}^{37}$	1,138	${ }_{38}^{45}$	149 139	1,1056	${ }_{38}^{40}$
52	July ..	36	1,063	42	136	1,060	38
5	August	${ }_{35}^{35}$	1,061	${ }_{41}$	$\begin{array}{r}132 \\ 135 \\ \hline 1\end{array}$	1,059	38
	Oetober..	${ }_{34}^{35}$	1,094	${ }_{47}^{40}$	135 147 1	1, 109	${ }_{39}^{38}$
5657	November	35	1,167	44	146	1,131	39
	Dcember	33	1,225	44	155	1,152	39
	Children, under						
	February	25	315			605	
60	March .	26	314	26	58	608	7
${ }_{62}^{61}$	${ }_{\text {April }}$	${ }_{27}^{27}$	314	24	${ }_{5}^{56}$	${ }_{5}^{617}$	7
63	June...	26	300	${ }_{26}^{25}$	${ }_{51}^{56}$	593 593 108	7
$\begin{aligned} & 64 \\ & 65 \\ & 65 \end{aligned}$	July	25	${ }_{292}^{293}$	$\begin{aligned} & 22 \\ & 20 \end{aligned}$	49	586	7
66	${ }_{\text {A }}$ August,	${ }_{25}^{25}$	$\begin{array}{r}292 \\ 296 \\ \hline\end{array}$	$\begin{aligned} & 21 \\ & 18 \end{aligned}$	4	583 590	7
$\begin{aligned} & 67 \\ & 68 \\ & 69 \end{aligned}$	October..		302	21	46	597	7
	November.	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	308 294 1	${ }_{22}^{22}$	${ }_{51}^{47}$	606 608	7
	Compositors (included in wage-earners)-						
70	Men, 16 years and over...	202	2,609	161	262	4,160	159
72	Women, 66 years and over.	17	716	${ }_{2}^{23}$	105	${ }_{187}$	${ }_{62}^{24}$
	Compositors operating type-casting or typeseting machines						
73747575	Men ...	17	336	15	29	606	
	e-asting and typesetio...........................	11				${ }^{26}$	${ }_{34}^{4}$
	Type-casting and typesetting machines used, number Miscellaneous expenses:				17		
76	Total	\$50, 920	\$1,733, 296	\$20, 732	\$140, 280	3,621, 281	8122, 974
778	Rent of	814,221	\$ 8884,766	86, 875	\$18,415	888,907	\$15,72
789	Tewspaper and periodicai postage	-8, ${ }^{83}, 098$	- ${ }^{\mathbf{8 2 4 0 , 6 2 , 6 7 3}}$	- ${ }_{83,337}$	-115, 316	\$840,953	- ${ }_{\text {4 } 4,099}$
80	Rent of offices, interest, insurance, and ali sundry expenses not	\$24,028	\$910, 646	\$7,696	\$68, 380	\$1,860, 480	\$ 67 7, 263
81	Contract work......	\$3,684	\$334,606		\$31, 139	8951,530	\$10,492
	Materials used:						
82	Aggregate cost	\$119,002	\$2, 888, 006	\$113, 193	\$240, 113	\$5,969, 788	\$166,091
	$\xrightarrow[\text { Paper- }]{\text { Total pounds }}$						
$\begin{aligned} & 84 \\ & 85 \\ & 85 \end{aligned}$	Total cost.....	, 8788,122	82, 179, 374	(891, 516	\$178, 040	84, 645 , 709	\$129, 360
	News, pour	1,265, 271	57,482, 155	658, 606	3,326, 432	125, 627,046	5,311,776
	Periodical, pounds	\$42, 145	61, 7288,585	\$27, 141	\$100,777	\$2,726,880	\$111, 322
	Perrodical, pounds Cost	25, 512	${ }_{\text {\% }}^{2989}$	7,622	183,299	14,311,777	42,
899090	Book and periodical, pounds.	- ${ }_{6}^{1,920}$	$2,811,845$	112,980	+189,640	7,941,000	58, 307
	Cost	${ }_{\$ 412}$	\$120,440	\$6,092	811, 741	\$448,785	\$4, 270
${ }_{92}^{91}$	Job printing, pounds	364,609	5,462,201	627, 890	576,880	8,066,990	133, 259
		\$34,367	\$436,373	857,779	\$54,495	8673,018	811,461
93 94 95 98	lnk, pounds	14,076	767,257	8,601		1,958,268	59, 2
		${ }^{33,551}$	\$92, 325	\$2,558	89,115	\$175, 657	\$3, 555
	Rent of power and		\$688,717	\$4,264	87, 132	8130,909	84, 187
989898	Office supplies....	\$4,677	\$128, 590				
	All other materials	\$15,876	\$338, 196	84,947	\$22, 030	\%544, 211	\$18, 400
	Products ${ }^{\text {Freight }}$	\$8,882	\$10,979	85, 499	\$6,476	\$50, 413	\$1, 486
100							
101	Total value	\$820, 195	${ }_{89}{ }^{12,1893,648}$	\% 44881,663	\$1,078, 387	${ }_{818}^{823,249,080}$	8940, 806
	Advertising	8259,041	84, 863, 620	\$138, 537	\$463, 172	810,741, 028	
	Subscriptions and sales	\$161,154	84, 780, 362	8112,144	\$362,283	\$7,623,339	\$310, 898
1041051065	Book and job printing products.	\$150,605	\$2,441, 414	\$225, 377	\$226,327	84,679, 371	\$72,255
	Book and pamphiet publications	\$5, 052	\$702, 351	87,594	\$13,223	\$2, 129, 5688	\$10,611
10	Job printing	\$133,458	81, 490, 116	\$17\% 912	\$180,883	${ }_{82}{ }^{32} 26,684$	
	Bookbinding	${ }^{84,860}$	\$108,799	814,341	85, 776	-2, 873 255	, 8100
	Blank books	\$7, 225	85,945	\$27,530	\$26,165	\$19, 319	
	Electrotyping, engraving,		876, 112			\$56, 537	
11	All other products..	\$17,089	\$104,017	\$5,605	\$26,555	\$205, 342	\$2,150

BY STATES AND TERRITORIES: 1900-Continued.

Souih Carolina	$\begin{aligned} & \text { South } \\ & \text { Dekota. } \end{aligned}$	Temessee.	Texas.	Utah.	Vermont.	Virginia.	Washington.	$\begin{gathered} \text { Wcst } \\ \text { Virginil. } \end{gathered}$	Wisconsin.	Wyoming.	
464	511	1,055	2,139								
398 413	${ }_{4}^{414}$	1,890 850 951	2, 1 1,802 829		509 405 405						${ }_{25}^{24}$
8156 , 924	8164,456	$8.156,415$	\% $\begin{array}{r}1,8629 \\ 8029\end{array}$	\$235, ${ }^{431}$	\$176,748	8338,771	[$\begin{array}{r}626 \\ \hline 8315,500\end{array}$		(2, $\begin{array}{r}2,23 \\ \hline 129 \\ \hline\end{array}$		26
	8133,544			80216, ${ }^{3494}$				501	81, $\begin{array}{r}174,242 \\ 1,954\end{array}$	\$47, 840	27
\$149,400	\$133,544	8395, 18\%	\$852, 56.1	8216, 9994	\$133, 532	\$3315,928	$\begin{gathered} 5291,235 \\ 5316 \end{gathered}$	\$220, $\begin{array}{r}501 \\ \$ 206\end{array}$	$\mathrm{s}_{1,018,}^{1,954}$	\$42, ${ }_{4}^{69}$	${ }_{29}^{28}$
\$6, ${ }^{2728}$	\$16,928	\& $817,{ }_{8}^{132}$	$\begin{gathered} 99 \\ 829,8 y y \end{gathered}$	82, 814,496	144 841,445	\$13,065	[18,921	($\begin{array}{r}140 \\ 837,812\end{array}$	\$135,228	\% 110	${ }_{31}^{30}$
18 81,396	$\begin{array}{r} 98 \\ \$ 13,984 \end{array}$	$\begin{array}{r} 102 \\ \$ 13,343 \end{array}$	${ }_{\$ 33,566}^{277}$	\% $\$ 35$ $\$ 8.68$	91,781	$\begin{array}{r} 88 \\ 99,625 \end{array}$	$85,412$	($\begin{array}{r}66 \\ 87,49 \overline{5} \\ \hline\end{array}$	\$20, ${ }^{2060}$	- 88	${ }_{33}^{32}$
383	278	70.1	1,472	347	287						
${ }_{375}^{376}$	274 274	705 709	1,470 1,463	341 362	${ }_{290}^{290}$	644	539 530	${ }_{508}^{501}$	1,969	72 69	${ }_{35}^{34}$
375 372	277	709	1,452	336	288	643 662	653 550 50	501	1,975	68	36 37 3
${ }_{355}$	${ }_{279}^{278}$	709	1,444	${ }^{351}$	286	648	548	507	1,967	$\begin{aligned} & 69 \\ & 69 \end{aligned}$	${ }_{38}^{37}$
355	${ }_{27}^{27}$	689	${ }^{1,373}$	347 326 3	281 271	612 603	53.4 5123	501 498 0	1,947	70	${ }^{39}$
356 358 58	265 272 ${ }_{2}$	656	1,389	${ }_{322}$	${ }_{267}^{261}$	603 605	523 520 54	493 493	1,901 1,890	${ }_{6}^{66}$	$\begin{array}{r}50 \\ 41 \\ \hline\end{array}$
368 365	$\begin{array}{r}278 \\ 278 \\ \hline\end{array}$	672 705	1,445 1,497	338 348	${ }_{275}^{272}$	630 636 68		499 499	$1,1,990$ 1,97	${ }_{70}^{65}$	${ }_{42}^{41}$
369 375	279 284 284	${ }_{701}^{702}$	1,517	348 344 360	280	636 650	519 518	497 499	${ }_{1}^{1,945}$	67 69	${ }_{4}^{43}$
375	284	701	1,550	360	275	662	556	499 497	1,994	${ }_{70}^{69}$	${ }_{45}^{44}$
${ }_{27}^{27}$	51	150			144		49		528		
27	${ }_{47}^{48}$	149	100 100	52 57	151	51 51	48	${ }_{136}^{139}$	${ }_{5}^{526}$		47
27 27	48 47	160 160	99	59	152	51 49	54 54	137 142	525	${ }_{10}^{9}$	48 49
27	48.	159	${ }_{95}$	57 51	149 149	47	51 49	145	519	10	50
26 28	46 45	161 146	93 90 98	47	137	43	49	146	$\begin{array}{r}511 \\ 498 \\ \hline\end{array}$	$\stackrel{9}{9}$	${ }_{52}^{51}$
${ }_{28}^{28}$	49	146 142 18	94	4	139 140	4	50 50	$\begin{array}{r}136 \\ 137 \\ \hline 1\end{array}$	500 509	10	${ }_{5}^{53}$
28 27	48 49	1154	${ }^{99}$	50	137 138 188	47	50	137 139	509 520	10 10	$\stackrel{54}{55}$
26	48	145	107	54 55	138 148	47	50 49	142 142	531 533 58	10	56 57
	$10 \overline{3}$										
19 19	${ }_{102}^{105}$	102	${ }_{282}^{285}$	36	13	86	4	${ }_{66}^{65}$	${ }_{207}^{207}$		${ }_{59}^{58}$
18	${ }_{98}$	101	279	${ }_{35}$	12	${ }_{97}^{87}$	${ }_{42}^{42}$	66 66	206 204 204		60 61
18 18 18	96	98 96	${ }_{266}^{230}$	35 32	13 12 12	${ }_{86}^{97}$	${ }_{41}^{43}$	66	204	7	${ }_{62}$
18	92	96	263	33	12	${ }_{84}^{86}$	${ }_{41}^{41}$	${ }_{64}^{67}$	200 201	7	63 64
18 18 18	${ }_{95}^{94}$	$\begin{array}{r}96 \\ 104 \\ \hline 10\end{array}$	${ }_{275}^{267}$	33 36 36	12 12 12	84 85 88	41 40	64 65 64	201	7	65
18	${ }_{96}$	107	277	35	${ }_{12}^{12}$	85	4	65 67	208 206	7	${ }_{6}^{66}$
18 18 18	100 99	109 112	283 284 8	36 38 38	12 13	93 92 9	41	69	${ }_{210}^{210}$	7	68
22	2	${ }_{4}$	${ }_{94} 9$	${ }_{23}^{134}$	105	311	$\begin{array}{r}322 \\ 38 \\ \hline\end{array}$	276 93	1,144	51 10	${ }_{71}^{70}$
	12	59	136						13		
		$\stackrel{60}{15}$	90	25 3	12 5		50		119	9	73
16	7	59	is	21	10	43	33	29	61	6	75
\$40,367	\$55,504	\$300, 890	\$391, $32 \bar{\square}$	892,129	853,113	\$167, 482	\$202,906	\$75, 561	S462, 784	\$12,806	76
	\$13,580	826, 212	\$67,211	\$11, 147	899,717	\$23, 169	\$32,246	\$16, 674	872, 108	\$5,230	77
93,631 887,101	- ${ }^{94} \mathbf{4 , 6 4 4}$	- $\begin{array}{r}\$ 9,698 \\ \$ 46,941\end{array}$		(\$3,068			84,518 815,576 815	+84,065	+821,502	\$1, ${ }_{\text {\% }}$	${ }_{79}^{78}$
\$17,800	\$26, 163	\$131,747	\$190, 631	857, 144	\$25, 331	\$75, 830	\$95, 642	\$40,261	\$205,531	\$3,934	${ }_{80}$
\$2,545	85, 266	\$86, 292	\$65, 203	\$6,6.44	¢5,600	\$43, 428	\$055, 124	\$1,433	\$68,433	\$1,343	81
897,776	8127,066	\$446,540	\$631,382	\$138,290	8115, 235	\$212, 821	\$206,540	\$187,513	\$902,588	\$32, 308	82
1,849,953	1,569,169	9, 786,819	$\begin{array}{r}11,075,808 \\ \hline 8469,005\end{array}$	2, ${ }^{494} \mathbf{8 9 3 , 8 0 3}$	1, ${ }^{943} \mathbf{9 8 5 , 5 9 9}$			2,916, 238 $\$ 146,307$ ¢	17, 8333,974	302,462 820,542	${ }_{84}^{83}$
1,431. 464	1,144,559	$7 \mathrm{O}, 029,904$	9, 315, 392	2,050, 961	1,295, 780	3,651,782	4,016, 411	2,023,297	12,747, 208	173, ${ }^{32}$	
- $\begin{array}{r}\text { 942, } \\ 6644 \\ \hline 140\end{array}$	(\$45, ${ }^{43,585}$			\$991,260	$\$ 39,013$ 6,940	+1105,628		- ${ }^{\$ 66,497}$	($\$ 336,153$	\$7, 5850	${ }_{87}^{86}$
\$2, 897	${ }_{\$ 2,311}$	1, ${ }_{663,420}$	\$15, 296	\$6,647	${ }_{\text {\% }} 830$	${ }_{813}{ }^{\text {a }}$ 051	95\%,447	\$4, ${ }^{\text {d }}$, 95	\$42, 172	${ }_{\text {¢ }}^{193}$	${ }_{88}^{87}$
105,764	${ }_{81}^{32,713}$	459, 580	${ }_{8}^{82,635}$	78,015	55, 334	- 169,860	37, 828	136, 725	400, 603	20, 600	${ }^{89}$
- $\begin{array}{r}\text { \%6, } \\ 246,290 \\ \hline 285\end{array}$	- $\begin{array}{r}8,1,901 \\ 348,312\end{array}$	- ${ }_{854,}^{\mathbf{8 2 3}} \mathbf{8 6 1}$	8,371 $1,373,200$	($\begin{array}{r}\$ 5,922 \\ 195,885\end{array}$	r $\begin{array}{r}83,005 \\ 585,545\end{array}$	- 88,602	- $\begin{array}{r}\text { S2, } \\ 36782 \\ 36789\end{array}$	$\begin{array}{r}86,499 \\ \hline 662,580 \\ \hline 8 .\end{array}$	$\begin{array}{r}\text { 821,778 } \\ \text { 3, } 408,475 \\ \hline\end{array}$	81, 10600 1000	${ }_{91}^{90}$
\$22,823	\$33, 060	\$79, 523	\$127, 395	\$19,692	\$43, 557	\$12,984	\$34,421	868, 357	\$233,617	\$11, 469	92
24,643	18,073	121, 600	111,911	${ }^{22,981}$	${ }^{27,520}$	$\stackrel{52}{50,50}$	49, ${ }^{498}$	${ }^{29,513}$	210, 381	3,235	${ }_{93}$
$\begin{array}{r}8,3,659 \\ 83,594 \\ \hline 8 .\end{array}$	\% $\begin{gathered}4,090 \\ 89,462\end{gathered}$	\$814, 0737	\$ ${ }_{\$ 20,037}^{16,058}$		$8,8,372$ 84,043	S5,772 $\mathbf{8 7 , 3 8 0}$	\$5, 627 44,808 808	-		\$3,175	${ }_{95}^{94}$
\% 88,812	\$82, $\mathbf{8}$	-85, 787	\$11, 604	\$85, 192	行,		${ }_{\$ 111}^{\$ 9,050}$	881, 876	${ }_{821,174}{ }^{82}$	\$ 248	${ }_{96}$
83,123 84,224	- 85.889			-	8,889 88,634	\$9, ${ }_{\text {\$67 }}$	\$11, 360	\$13, 438	- 899,214		${ }_{98}^{97}$
\$6,010	\$11, 198	810, 370	\$25, 217	\$8, 492	85, 099	\$5, 703	\$7,769	\$88,811	825,549	\$3,623	99
83519.529	${ }^{\$ 633,125}$	\$2, ${ }^{\text {¢ }}$, 205, 112	\$8, 387,410	\$593,562	\$7446,991	\$1, 1465	$81,321,044$ 811781821	- $\begin{array}{r}\$ 907,156 \\ 80766.493\end{array}$	$84,103,415$ 882 800 1231	${ }_{8157,789}^{81089}$	100
$\underset{3198,422}{ }$	\$245, 737	\$761,785	\$1, 6000,616	\$234,087	${ }_{8200} 307$	8510,729	- 8772,517	\$282, 845	\$1,414, 475	\$62, 150	102
${ }_{\text {\$ }}^{\$ 218,172}$				\$221, 411 8133,283	$\$ 170,803$ $\$ 171,554$ 18.5	$\mathbf{8 3 9 6}, 296$ $\mathbf{8 2 2 7}, 975$	8406,204 81317	- $\begin{array}{r}\$ 293,618 \\ \$ 318,122\end{array}$		- ${ }^{\$ 46,701}$	${ }_{104}^{103}$
\$15, 852	-155,245	\$886,982	-816,986	\$442,378	\$51,950	\$58, 354	${ }_{\$ 2,609}$	\$11, 921	${ }_{\text {\$ } 207,574}$	\$11,70	105
	\%1,125	814.000			888792				\% 81,637		106
\$2, 500	- 85.225	- 8811,090	${ }^{8482,9220}$	\$815, 089	\$118, 442	${ }_{85,810}$	${ }_{8} 250$		- 889,889	\$36, 888	107
\$2,000	\$3, 850	\$ $\$ 3,1115$	\$8500	\$2, 639	\$40	\$280	${ }_{8}^{8166}$	87, 777	86,579		109
\$100	\$11,020	974, 753	\$36,851	84,781	84, ${ }^{\text {427 }}$	810,577	\$10,586	\$12, 541	\$86, 697	8840	111

No. 216-6

Table 58.-NEWSPAPERS AND PERIODICALS,

BY STATES AND TERRITORIES: 1900-Continued.

South Carolina.	$\begin{aligned} & \text { sonth } \\ & \text { Bakota. } \end{aligned}$	Tennessee.	Texas.	Utah.	Vermont.	Virginia.	Washington.	$\begin{gathered} \text { West } \\ \text { Virginia. } \end{gathered}$	Wisconsin.	Wyoming.	
18,850 13,600	$\begin{array}{r}16,463 \\ 6,000 \\ \hline\end{array}$	165,718	147,602	${ }^{34}, 163$	26,699	92,370	84,570	43,577	213,882	3,300	112
13,60 5,250	10,463	107,550	96, 989 50,613	15,538	26,699	67,995 24,375	35,250 49,320	-26, 200	104, 592	${ }_{1}^{1,200}$	1113
${ }_{23,}^{200}$				2,000	$\begin{array}{r}24,375 \\ 3,100 \\ \hline\end{array}$	49,320 500	17,37\%	109,290 1,000	2,100 500	114 115
110, 1111	151,438	1,136, ${ }^{7,799}$	732, 10178	30,630 36,036 8	-8,400	13,030 291690	\% 7 7, 8000	4,900	161, 995	${ }_{985}^{500}$	116
8,000	34, 400	1,270, 150	61, 400	13, ${ }^{3600}$	107,597 35,250	291,690 96880	1611,990 41,418	169,936 6,400	771, 574	20,902	117
1,500	28,265	1,540, 10.900	1.250	150		120, 500	5,300	6,400	189,948 69600	7,000	118
	28,205	10,300	10, 250	16, 300	10, 400	9,700	5,500	1,200	18,500		120
117	218	251	\% 2	72	79	204	199	176	595	42	121
7 3 3	16 3 3	16 7 7	83 34 20	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	9	37 16 13		${ }^{19}$	60 13 13	4	${ }_{123}^{122}$
				2		13	6	,	11	1	124
4	13		49	4		21	${ }_{8}^{1}$	13	${ }_{47}^{2}$	3	126
	12	$\frac{2}{7}$	47	4	${ }_{7}^{2}$	$\begin{array}{r}19 \\ 19 \\ \hline\end{array}$,	112	4	.	127
15		\cdots	22	7		3 6	${ }_{3}^{1}$		${ }_{21}^{1}$	1	1139
	189 9	188	579	49	53	126	154	141	463	32	${ }_{131}^{130}$
		10	${ }^{3}$	4	10	$\stackrel{23}{4}$	21	11	42	3	132
1	3	4	4	3	4	3	3	1	${ }_{3}$		${ }_{134}^{133}$
100	203	198	648				152	165	527	40	135
${ }_{3}$	$\stackrel{3}{3}$	${ }^{32}$	${ }_{12}^{25}$	${ }_{3}^{6}$	3 4 4	32 4	${ }_{5}^{8}$	${ }_{3}^{5}$	17	1	${ }_{137}^{136}$
1	$\frac{1}{2}$					3	9		1		${ }^{138}$
	1	1	1		2	3	1		7	1	${ }_{140}^{139}$
		3	1		1	${ }_{2}^{2}$	1		3 2 2	${ }_{142}^{141}$
				3		1	1		1		143
	3	3		2		1	9	2	3	145
..................	4.	2				1.			7		${ }_{147}^{146}$
4	${ }_{1}^{3}$,	${ }_{1}^{2}$	${ }_{2}^{3}$	5	$\stackrel{3}{3}$	i	3		1148
		1				5	150
										${ }_{152}^{151}$
116	211	249	692	70	99	201	196	171	486	…… 42	${ }_{154}^{153}$
	-		-	${ }_{157}^{156}$
				,	${ }_{158}^{158}$
i	5	$\cdots{ }_{2}$	19	i		3	2	5	79		${ }^{159}$
-					,	-				${ }_{161}$
-.....						.					162
\ldots		,				,		164
--..						-	,		${ }^{165}$
										${ }_{167}^{166}$
	2			1			1	.	2		${ }^{168}$
									2		${ }_{170}^{169}$
............		6		.						171
			1								174
${ }^{8318,322}$	\%444, 867	${ }_{81}^{81,6: 44,398}$	82, ${ }^{82}$, 442,924			\$9977,089	$81,054,091$ 8923,466	8696,829 8811,712	$\underset{88,108,786}{83,454}$	\$111, 7980	176 177
\$262, 440	8387, 758	\$1,400, 336	82, 444, 512								
27 137	$\begin{array}{r}55 \\ 228 \\ \hline\end{array}$	50 851	$\begin{array}{r} 157 \\ 1,132 \end{array}$	13 163	45 263	61 369	57 380	$\begin{array}{r}59 \\ 407 \\ \hline\end{array}$	269 1,850	14 57	178
						19		28	58		
52	${ }^{55}$	436	$\overline{5} \overline{2}$	60	51	174	47	${ }_{21}^{170}$	781		${ }_{182}^{181}$
15 48	103 103	${ }_{51}^{14}$	274	3	$\underline{2}$	${ }_{35}^{12}$	33	149	394	31	${ }_{183}$
	17	${ }_{11}^{3}$			62 28	5 22	${ }_{69}$	${ }_{62}^{14}$	62		184 185
		11					1	1	10		186
		146	44	.			2 2	$\frac{7}{5}$	${ }_{15}^{38}$		188
	4	${ }_{1}^{1}$			${ }_{53} 1$	11	7	18	29	13	189
37	45	184	242	100	111	127	222	1	526	7	190
									40		192
	15	28		8		9 98 98	45 113 11	8 98 9	29 295 295	5 25	194 195
$\begin{array}{r}63 \\ \hline 88 \\ \hline 8\end{array}$	152 29	143 31	${ }_{121}^{452}$	36 13 13		98 44	113 26	35	148	28	${ }_{196}^{195}$
${ }_{2}$	2	6		1			1		15		197
								3		199
									1	200
						.					
											202

Twelfth Census of the United States.

Census Bulletin.

JUNE 30, 1902.

MANUFACTURES.

SLAUGHTERING AND MEAT PACKING.

Hon. William R. Merriam,
Director of the Census.
SIr: I transmit herewith, for publication in bulletin form, the statistics of the slaughtering and meat packing industry in the United States for the census year 1900, prepared under my direction by Mr. Harry C. McCarty, of the Census Office.
The statistics included in the report were collected, as at the Eleventh Census in 1890, upon a special schedule. The returns made on this schedule were tabulated under two classifications-Slaughtering, Wholesale, not including Meat Packing; and Slaughtering and Meat Packing, Wholesale. The figures of these two classifications are united in all the tables of this bulletin, except in Tables 5 and 6, which present the figures for the several states, separately for each classification.
Although slaughtering and meat packing has been treated as a manufacturing industry at each census since 1850 , it is closely allied with the agricultural features of the raising of live stock.
The statistics are presented in 12 tables. Table 1 shows the growth of the industry for the half century which terminated with the Twelfth Census; Table 2 shows a comparative summary of the industry as between 1890 and 1900 for the several states; Table 3 presents the percentage of capital invested and of value of products for the 13 states leading in value of products in 1900, as compared with the total capital invested and value of products for the United States; Table 4 is a comparative table of the statistics for 1880, 1890, and

1900 of those cities that, in 1900 , reported a production to the value of $\$ 1,000,000$ and over; Table 5 shows the detailed statistics for slaughtering operations as conducted by establishments not engaged in meat packing; Table 6 shows the detailed statistics for the establishments engaged in meat packing, including such slaughtering as was carried on by the packing establishments; Table 7 is a comparative statement between 1890 and 1900 of the quantity and cost of the materials used, with the percentage of increase; Table 8 shows the quantity and value of the products reported in 1890 and 1900, with the percentage of increase; Table 9 shows the detailed statistics of production in these cities showing in 1900 a value of products of $\$ 1,000,000$ and over. From this table the figures for several cities are omitted, for the reason that their publication would reveal the operations of individual establishments; Table 10 is a statement of live stock imports and exports during the fiscal years from 1890 to 1900 , both inclusive, which ended June 30, one month later than the census year; Table 11 presents the statistics of exports and imports of animal products also for the same fiscal years; Table 12 is a detailed summary of the industry as a whole, as it existed at the taking of the Twelfth Census. These tables are supplemented by four small tables, showing the receipts, shipments, and number of live stock slaughtered in Chicago, Kansas City, Omaha, and St. Louis, respectively. A diagram, which shows the relative order of the 12 cities leading in 1900 in value of products, accompanies Table 9.

Owing to changes in the method of taking the census, comparisons between the earlier and later decades, represented in Table 1, should be drawn only in the most general way. The manufacturing statistics of the censuses prior to 1850 were too imperfect and fragmentary in character to make it proper to reproduce them in such a table as a measure of industrial growth in the first half of the century.

In drafting the schedules of inquiry for the census of 1900 care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the items of inquiry except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital-that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries-was first called for at the census of 1890 . No definite attempt was made, prior to the census of 1890 , to secure a return of live capital invested.

Changes were made in the inquiries relating to employees and wages in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1890 the greatest and least numbers of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12 , the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wageearners during the entire year may have resulted in a variation in the number, and should be considered in making comparisons.

At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was
ascertained, and no salaries were reported for this class. It is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.

Furthermore, the schedules for 1890 included in the wage-earning class overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wageearning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890.

In some instances the number of proprietors and firm members, shown in the accompanying tables, falls short of the number of establishments reported. This is accounted for by the fact that no proprietors or firm members are reported for corporations or cooperative establishments.

The reports show a capital of $\$ 189,198,264$ invested in this industry. This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, but does not include the capital stock of any of the establishments conducting business under a corporate form of organization. The value of products is returned at $\$ 785,562,433$, to produce which involved an outlay of $\$ 10,123,247$ for salaries of officials, clerks, etc.; $\$ 33,457,013$ for wages; $\$ 24,060,412$ for miscellaneous expenses, including rent, taxes, etc.; and $\$ 683,583,577$ for material used, mill supplies, freight, and fuel. It is not to be assumed, however, that the difference between the aggregate of these sums and the value of the products is, in any sense, indicative of the profits in the manufacture of the products during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. The value of the product given is the value as obtained or fixed at the shop or factory. This statement is necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Chief Statistician for Manufactures.

SLAUGHTERING AND MEAT PACKING.

By Harry C. McCarty.

The process of converting live stock into food for human consumption is an industry that, directly and indirectly, furnishes employment to a considerable portion of the population of the United States, and sustenance to all. The Census Office recognizes two classifications of this process-one, slaughtering, wholesale, not including meat packing, which involves the preparation of fresh meat; the other, slaughtering and
meat packing, wholesale, which comprehends the packing of meat and the preparation of the various other animal products and by-products. Up to the census of 1890 these two branches were reported together under various names, but at that time the classification was subdivided as indicated above. This classification was also adopted at the Twelfth Census in 1900. The figures of these subdivisions are united in Table 1.

Table 1.-COMBINED SLAUGHTERING AND MEAT PACKING: COMPARATIVE SUMMARY, 1850 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	date of census.						per cent of increase.				
	1900	1890	1880	1870	1860	1850	$\begin{gathered} \mathbf{1 8 9 0} \\ \text { to } \\ \mathbf{1 9 0 0} \end{gathered}$	$\begin{aligned} & \mathbf{1 8 8 0} \\ & \text { to } \\ & \mathbf{1 8 9 0} \end{aligned}$	$\begin{gathered} 1870 \\ \text { to } \\ 1880 \end{gathered}$	$\begin{gathered} \mathbf{1 8 6 0} \\ \text { to } \\ 1870 \end{gathered}$	$\begin{gathered} \mathbf{1 8 5 0} \\ \text { to } \\ \mathbf{1 8 6 0} \end{gathered}$
Number of establishments.	921	1,118	572	768	259	185	${ }^{1} 17.6$	28.2	13.5	196.5	40.0
Capital........-.........	\$189, 198,264	\$116, 887, 504	\$49,419,213	\$24, 224,692	\$10, 158, 362	\$3,482,500	61.9	136.5	104.0	138.5	191.7
Salaried officials, clerks, etc.,	810, 10, 2247	293,971			(3)	$\left.{ }_{(3}^{3}\right)$	157.5				
Salaries	\$10, 123, 684		(${ }_{2}^{37}$, 297	$\stackrel{(3)}{8,366}$	${ }^{(3)} 5,058$	${ }^{(3)}{ }_{3,276}$	123.1 55.8	61.1	226.3	- 65.4	54.4
Total wages..................	\$33, 457,013	\$24,304, 976	\$10,508, 530	\$2, 553,447	\$1,019,266	\$1, 231,636	37.7	131.3	311.6	${ }^{150.5}$	${ }^{1} 17.2$
Men, 16 years and over	63,922	42, 285	${ }_{(3)}^{26,113}$	(3) 7 ,906		${ }_{(3)}{ }^{3,267}$	51.2	61.9	230.3	56.9	54.2
Wages...----.............	\$32, 239,847 2,945	\$23, 887, 8990	${ }^{3}$)			${ }^{(3)} 9$	35.0 197.5		1100.0	963.2	111.1
Wages.......-.......	\$853, 813	\$285, 654		${ }^{(3)}$		(8)	199.0				
Cbildren, under 16 years	1,667	700	1,184		(3)	(3)	138.1	140.9	358.9		
Wages..	\$363, 353	${ }_{\text {816 }}$ \$131,532 ${ }^{\text {832 }}$	$\left(\begin{array}{l} 8 \\ 4 \\ 4 \end{array}\right)$	${ }_{(3)}^{4}$	$\left(\begin{array}{l}3 \\ 4 \\ 4\end{array}\right.$	(8)	176.3				
Miscellaneous expenses	824, 060, 412	$\$ 16,716,735$ $\$ 480,962,211$	\$267, ${ }^{(4388,902}$	\% ${ }_{\text {861, }}^{(4)}$) 674,024	${ }_{\text {222, }}(464,433$	$\stackrel{(4)}{\$ 9,451,096}$					
Cost of materials used Value of products....	$\$ 683,583,677$ $\$ 785,562,433$	\$480, $\$ 561,611,211$ $\$ 868$	$\stackrel{\$ 267,738,902}{\$ 303,562,413}$			\% $\begin{array}{r}\text { \$9, } \\ \mathbf{\$ 1 1}, 981, ~ \\ \hline\end{array}$	42.1 39.9	79.6 85.0	334.1 300.3	151.7	149.3 145.7
Value of products..	\$785,562,433	\$561,611,668	\$303, 562, 413	\$75, 826, 500	\$29,441,770		39.9	85.0			

1 Decrease.
${ }^{1}$ Decrease.
a Not reported separately.
4 Not reported.

The development of this industry during the half century covered by the table has been almost phenomenal. The settlement of the Western country and the consequent expansion of territory devoted to stock raising; the extension of railroads and the increased facility of communication; the methods devised to insure preservation of meats, such as improved methods of curing, and the introduction and improvement of mechanical and chemical processes of refrigeration, rendering summer packing possible; the utilization of every part of the animal; and the adoption of laborsaving devices, are among the factors that have contributed to its growth. In the fifty years the number of establishments increased from 185 to 921 ; the capital invested, from $\$ 3,482,500$ to $\$ 189,198,264$; the number of wage-earners, from 3,276 to 68,534; the wages paid,
from $\$ 1,231,536$ to $\$ 33,457,013$; the cost of materials used, from $\$ 9,451,096$ to $\$ 683,583,577$; and the value of products, from $\$ 11,981,642$ to $\$ 785,562,433$. The average amount of capital invested per establishment grew from $\$ 18,824$ in 1850 to $\$ 205,427$ in 1900 ; the average yearly earnings of the wage-earners grew from $\$ 376$ to $\$ 488$; and the average value of products per establishment rose from $\$ 64,766$ to $\$ 852,945$. The growth was steady.
During the ten years covered by the Eighth Census, taken in 1860, the center of the meat industry was at Cincinnati and in the Ohio Valley. The average amount of capital invested per establishment increased from $\$ 18,824$ to $\$ 39,221$, or 108.4 per cent, while the average value of products per establishment increased from $\$ 64,766$ to $\$ 113,675$, or 75.5 per cent. From that time
concentration in definite centers was a marked feature of the growth. The effects of the industrial crisis of 1857, with its wholesale reduction of wages, is seen by the difference in the average yearly wage paid in 1850 and 1860 . In 1850 it was $\$ 376$, which decreased to $\$ 202$ in 1860 , a decrease of 46.3 per cent. The winter packing in eight principal Western centers grew from 720,500 hogs in 1850 to 992,310 hogs in 1860 .

In the following decade, from 1860 to 1870 , a still greater relative growth is shown. The number of establishments increased 509 , or 196.5 per cent, the largest increase in this item recorded in the half century. The sum of $\$ 14,066,330$ was added to the capital invested; 3,308 wage-earners more than formerly found employment, and the benefit to the stock raiser is shown approximately in the increase of $\$ 38,109,591$, or 161.7 per cent paid for materials used. The value of the product increased $\$ 46,384,724$, or 157.5 per cent. It should be remembered, however, that these values were expressed in a currency which was at a discount in gold, and should therefore be reduced about one-fifth for purposes of comparison with the other census years. This decade saw the beginning of the dressed-beef trade. The refrigerator car was invented, and in September, 1869, the first cargo of dressed beef was shipped from Chicago to Boston. The capital invested per establishment decreased from $\$ 39,221$ to $\$ 31,543$, or 19.6 per cent. This decrease was due principally to the large increase in the number of small establishments. The average value of products per establishment decreased from $\$ 113,675$ to $\$ 98,732$, or 13.1 per cent.

The development in the decade from 1870 to 1880 was due primarily to the improvement in various refrigerating processes, and the consequent inauguration of summer packing on a large scale. Up to 1872 , in the pork-packing branch of the industry, summer slaughtering and packing had not assumed large proportions, but in the packing year 1872-1873, 505,500 hogs were killed during the summer season. The increase was steady until the summer season of 1879-1880, when $4,051,248$ hogs were killed and packed. In 1872-1873 summer packing amounted to 8.5 per cent of the pack for the entire year, while in 1879-1880 it had grown to 37.7 per cent. During the same period, winter packing grew from $5,410,314$ hogs in 1872-1873 to $6,950,451$ hogs in 1879-1880. Winter packing increased 28.5 per cent, while summer packing increased 701.6 per cent. This latter growth affords an illustration of the influence that refrigeration had on the growth of the meat trade. The yearly pack increased from $5,915,814$ hogs in 18721873 to $11,001,699$ in $1879-1880$, or 86 per cent. The dressed-beef trade, too, was given an impetus by the introduction of the refrigerating processes. Up to 1875
this trade had been of minor importance except for local consumption, but with the introduction of the refrigerator car, allowing shipment to markets at a distance from the place of slaughtering, it assumed large proportions. The beginning of the export of fresh beef dates from 1876. The canning of beef was attempted in Chicago in the sixties, and had some growth, but it was not until 1879 that it was taken up on a large scale. The decrease in the number of women employed, and the increase in the number of children, is a noticeable feature. The table shows, however, a large increase in all other items.

In the ninth decade (1880-1890), the capital invested and the wages had very nearly the same growth per cent, although the total amount of wages was a little more than one-fifth the amount of capital invested. The value of products increased $\$ 258,049,255$, or 85 per cent. The number of establishments increased faster than in the preceding decade. Theaverage amount of the capital invested per establishment increased from $\$ 56,673$ in 1880 to $\$ 104,551$ in 1890 ; the average value of products per establishment increased from $\$ 348,122$ to $\$ 502,336$, an increase of 44.3 per cent. This decade is the only one in which the growth per cent of the value of products exceeded the growth per cent of the cost of materials used. This was due to the fact that the packer. began to utilize the waste that was formerly thrown away, thus giving an increased value to the product, while the value of the stock, as purchased from the stock raiser, did not increase in corresponding ratio.

In the tenth decade (1890-1900), the progress of concentration went steadily on. In 1900 there were 921 establishments, with an invested capital of $\$ 189,198,264$, an average capital of $\$ 205,427$, as against 1,118 establishments in 1890 , with a capital of $\$ 116,887,504$, and an average of $\$ 104,551$ invested per establishment, or an increase in the individual establishment in the ten years of 96.5 per cent. These figures show this period to be the most rapid in its tendency toward concentration. The more extended use and consequent increased operating expenses of the refrigerator car system, owned by the packers, explains part of the increase in the miscellaneous expenses. In 1890 the miscellaneous expenses were 2.8 per cent of the value of the product, and 3.1 per cent in 1900. The largest percentage of increase appears in the number of women and children employed and the wages paid them. The number of women employed increased 197.5 per cent, and their wages 199 per cent; the number of children employed increased 138.1 per cent, and their wages 176.3 per cent.

A reference to Table 2, showing the comparative summary, by states, is instructive as indicating the geographical location of this industry, and, roughly, its movement during the decade 1890-1900.

Table 2.-COMBINED SLAUGHTERING AND MEAT PACKING: COMPARATIVE SUMMARY, BY STATES, 1890 AND 1900.

STATES.	Year.	Num. ber of estab-lishments.	Capital.	SALARIED OFFICLALS, CLERKA, ETC.		average number of wage-eakners and total wagds.								$\begin{gathered} \text { Miscella- } \\ \text { neous } \\ \text { expenses. } \end{gathered}$	Cost of materials used.	Value of products.
						Total.		Men, 16 years and over.		Women, 16 years and over.		Children, under 16 years.				
				Num-	Salaries.	Average number.	Wages.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { num- } \\ \text { ber. } \end{gathered}$	Wages.	Average number.	Wages.	Average number.	Wages.			
Uuited States ...	18890	$\begin{array}{r} 9219 \\ 1.118 \end{array}$					$\$ 33,457,013$	$68,922$	$\$ 82,239,847$	2,945	\$853, 813	1,667				
		$1,118$	$116,887,604$	$13,971$	$14,686,600$	$43,975$	$24,304,976$	$\|42,285\|$	$28,887,890$	990	285, 554	700	$131,532$	$15,716,735$	$480,962,211$	$661,611,668$
California.........	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 58 \\ & 50 \end{aligned}$	$\begin{aligned} & 3,913,081 \\ & 2,220,536 \end{aligned}$	$\begin{aligned} & 180 \\ & 144 \end{aligned}$	$\begin{aligned} & 254,567 \\ & 190,430 \end{aligned}$	$\begin{aligned} & 925 \\ & 436 \end{aligned}$	$\begin{aligned} & 544,669 \\ & 333,697 \end{aligned}$	$\begin{aligned} & 915 \\ & 435 \end{aligned}$	$\begin{aligned} & 638,611 \\ & 338,467 \end{aligned} .$	10	6,048	$\cdots \cdots i$	240	$\begin{aligned} & 441,210 \\ & 290,208 \end{aligned}$	$\begin{array}{r} 13,555,445 \\ 8,075,060 \end{array}$	$\begin{array}{r} 15,717,712 \\ 9,768,858 \end{array}$
Colorado..........	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	14	$\begin{array}{r} 1,380,518 \\ 348,650 \end{array}$	$\begin{aligned} & 48 \\ & 14 \end{aligned}$	$\begin{aligned} & 60,896 \\ & 21,668 \end{aligned}$	$\begin{array}{r} 261 \\ 81 \end{array}$	$\begin{array}{r} 170,744 \\ 58,424 \end{array}$	259 81	$\begin{array}{r} 170,244 \\ 58,424 \end{array}$	2	200		$\begin{aligned} & 56,384 \\ & 29,665 \end{aligned}$	$\begin{aligned} & 3,721,610 \\ & 1,872,349 \end{aligned}$	$\begin{aligned} & 4,343,983 \\ & 2,184,680 \end{aligned}$
Connecticut	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	12 15	,	37 42	$\begin{aligned} & 36,662 \\ & 46,627 \end{aligned}$	$\begin{aligned} & 380 \\ & 384 \end{aligned}$	$\begin{aligned} & 174,239 \\ & 190,559 \end{aligned}$	$\begin{aligned} & 378 \\ & 383 \end{aligned}$	$\begin{aligned} & 173,829 \\ & 190,089 \end{aligned}$	2 1	$\begin{aligned} & 410 \\ & 620 \end{aligned}$	--11	$-\cdots 6$ 156	$\begin{aligned} & 76,721 \\ & 42,365 \end{aligned}$	$\begin{aligned} & 3,143,590 \\ & 3,428,072 \end{aligned}$	$\begin{aligned} & 3,663,393 \\ & 4,153,378 \end{aligned}$
Delaware	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 234,420 \\ & 149,400 \end{aligned}$	22 6	$\begin{array}{r} 13,610 \\ 4,840 \end{array}$	$\begin{aligned} & 37 \\ & 40 \end{aligned}$	$\begin{aligned} & 20,398 \\ & 20,210 \end{aligned}$	36 40	20,242 20,210					9,899 3,522	442,389 250,750	521,076 320
Dist. Columbia....	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	24	$\begin{aligned} & 248,200 \\ & 118,230 \end{aligned}$	$\begin{aligned} & 32 \\ & 27 \end{aligned}$	$\begin{aligned} & 15,784 \\ & 19,970 \end{aligned}$	$\begin{array}{r} 116 \\ 82 \end{array}$	$\begin{aligned} & 63,607 \\ & 37,113 \end{aligned}$	$\begin{array}{r} 114 \\ 80 \end{array}$	$\begin{aligned} & 62,931 \\ & 36,697 \end{aligned}$	2	676	2	416	19,935 11,029	$\begin{array}{r} 2,013,827 \\ 664,753 \end{array}$	$\begin{array}{r} 2,210,860 \\ 858,439 \end{array}$
Georgia............	1900 21890	7	115,827	34	20,235	104	32,440	102	32,115	1	75	1	250	11,234	483,695	591, 227
Illinois............	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 64 \\ & 81 \end{aligned}$	$\begin{aligned} & 71,229,262 \\ & 40,807,115 \end{aligned}$	4,226984	$\begin{aligned} & \mathbf{4}, 424,285 \\ & 1,087,367 \end{aligned}$	$\begin{array}{\|} 27,861 \\ 17,932 \end{array}$	$\left\lvert\, \begin{aligned} & 14,044,838 \\ & 10,500,038 \end{aligned}\right.$	$\left\|\begin{array}{\|c} 25,792 \\ 17,022 \end{array}\right\|$	$\begin{aligned} & 13,462,377 \\ & 10,271,345 \end{aligned}$	$\begin{array}{r} 1,473 \\ 502 \end{array}$	$\begin{aligned} & 427,203 \\ & 152,412 \end{aligned}$	596408	$155,258$	$\begin{array}{r} 14,211,396 \\ 6,463,616 \end{array}$	$\begin{aligned} & 246,713,309 \\ & 180,903,912 \end{aligned}$	$\begin{aligned} & 287,922,277 \\ & 212,291,382 \end{aligned}$
													$76^{\prime}, 281$			
Indiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	3621	$\begin{aligned} & 8,860,284 \\ & 5,346,255 \end{aligned}$	$\begin{aligned} & 303 \\ & 142 \end{aligned}$	$\begin{aligned} & 314,608 \\ & 139,559 \end{aligned}$	$\begin{aligned} & 3,597 \\ & 2,107 \end{aligned}$	$\begin{aligned} & 1,565,752 \\ & 1,018,104 \end{aligned}$	$\begin{aligned} & 3,157 \\ & 1,956 \end{aligned}$	$\begin{array}{r} 1,455,428 \\ 983,724 \end{array}$	$\begin{aligned} & 387 \\ & 117 \end{aligned}$	$\begin{array}{r} 101,499 \\ 29,196 \end{array}$	5334	$\begin{aligned} & 8,825 \\ & 5,184 \end{aligned}$	$\begin{array}{r} 530,956 \\ 1,368,238 \end{array}$	$\begin{aligned} & 38,608,841 \\ & 24,425,470 \end{aligned}$	$\begin{aligned} & 48,862,273 \\ & 27,913,840 \end{aligned}$
Iowa.....	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	2729		193153	$\begin{aligned} & 197,376 \\ & 189,262 \end{aligned}$	$\begin{aligned} & 2,887 \\ & 2,575 \end{aligned}$	$\begin{aligned} & 1,208,167 \\ & 1,122,695 \end{aligned}$	$\begin{aligned} & 2,643 \\ & 2,518 \end{aligned}$	$\begin{aligned} & 1,168,421 \\ & 1,108,755 \end{aligned}$	297	$\begin{aligned} & 9,906 \\ & 2,100 \end{aligned}$	$\begin{array}{r} 215 \\ 50 \\ 286 \\ 108 \end{array}$	34,84011,840	$\begin{aligned} & 441,986 \\ & 526,765 \end{aligned}$	$\begin{aligned} & 21,556,644 \\ & 20,655,223 \end{aligned}$	$\begin{aligned} & 25,695,044 \\ & 23,426,576 \end{aligned}$
			$4,485,020$													
Kansas............	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	1418	4 $16,486,177$ $11,086,058$	$\begin{array}{r} 1,841 \\ 205 \end{array}$	$\begin{array}{r} 1,631,866 \\ 269,356 \end{array}$	$\begin{aligned} & 8,117 \\ & 5,018 \end{aligned}$	$\begin{aligned} & 3,575,049 \\ & 2,646,309 \end{aligned}$	$\begin{aligned} & 7,170 \\ & 4,698 \end{aligned}$	$\begin{aligned} & 3,330,681 \\ & 2,554,568 \end{aligned}$	661217	$\left.\begin{array}{r} 190,802 \\ 69,581 \end{array} \right\rvert\,$		53,616	2,003,771	66, 320,014	77,411,883
													22, 160	3,322, 200		44, 696,077
Kentucky	1900	- 28	1,326,976	62	51,799	511	214, 271	1507	213,711	4	560			105,694 136,116	$4,444,621$ $2,604,664$	$5,177,167$ $3,374,011$
	1890	26	1, 447,945	55	49,617	414	130, 767	413	130,663			1	104	136, 116	2, 604,664	
Maine.	1900	11	132,680 70,875	6 10	2,840 6,450	38 28	17,900 15,238	37 23	$\begin{aligned} & 17,600 \\ & 15,238 \end{aligned}$. 1	300			6,819 6,057	$\begin{aligned} & 457,031 \\ & 354,607 \end{aligned}$	$\begin{aligned} & 553,742 \\ & 418,811 \end{aligned}$
Maryland	1900	82 17	1,548,488	68 65	$\begin{aligned} & 48,804 \\ & 55,724 \end{aligned}$	697 389	$\begin{aligned} & 276,418 \\ & 182,568 \end{aligned}$	684 382	$\begin{aligned} & 273,819 \\ & 181,312 \end{aligned}$	10	$2,118$	[$\begin{aligned} & 3 \\ & 4\end{aligned}$	476 606	109, 76	$\begin{aligned} & 7,109,079 \\ & \mathbf{3}, 969,663 \end{aligned}$	$\begin{aligned} & 8,046,359 \\ & 4,670,690 \end{aligned}$
Massachusett	1900	- 22	11,314,075	220	250,296	2,748	1,318,077	2,724	1,311,396	13	3,582	11	3,100	591, 102	28,040, 069	31, 633,483
-	1890	24	7,187,735	113	136, 806	1,779	826, 409	1,769	824, 277	10	2,182			497, 382	16,372, 177	
Michigan	1900	- 29	1,438,351	71	66,661	456	230,637	453	230, 137	2	450	1	50	87, 291	4, 770,640	$5,337,417$ $3,998,978$
Micbigan	1890	- 30	1,026, 223	87	76, 209	329	168,089	326	167,408					58,738	3,446,164	
Minnesota	1900	20	1,355,011	125	102, 709	668	308, 9777	650	299, 105	${ }_{1}^{9}$	3,000 300	5	$\text { 1, } 878$	$\begin{aligned} & 90,796 \\ & 60,453 \end{aligned}$	$\begin{aligned} & 6,823,255 \\ & 2,062,954 \end{aligned}$	$\begin{aligned} & 7,810,555 \\ & 2,510,431 \end{aligned}$
	1890	-18	741,346	41	43,064	222	119,792	216								
Missouri	1900	- 37	7 7,944,083	- 242	253,775	3,102	1,440,742	2,977	1,416, 457	788	2,160 12,620	117 2	22, 125	364,267 386,743	$39,108,137$ $15,142,352$	$\begin{aligned} & 43,040,885 \\ & 18,320,193 \end{aligned}$
Montana.	1890 1900	68	5 $\begin{array}{r}4,986,780 \\ \hline 241,826 \\ \hline\end{array}$	175 9	223,696 12,600	1,264 37	645,322 33,693	1,189 35	632,202 32,493		- $\begin{array}{r}12,620 \\ 1,200\end{array}$			386,743 7,798	$15,142,352$ 821,070	$18,320,193$ 934,640
Nebraska	1900	12	16,524,895	721	684, 240		2, 990, 863	5,602	2,862,441	173	57,425	315	70,997	1,591,516	63,048, 186	71, 280,366
N	1890		7 5, 069, 499	146	142,935	2, 144	1,191,595	2,075	1,178, 895	16	4,800	53	7,900	525,518	26, 296, 950	28, 941, 144
N	1900	41	1,588,389	100		558	331,825	556	331,565			2	260	164,281 157,625	$12,849,902$ $16,233,681$	$14,046,217$ $17,813,166$
	1890	50	1,825,650	136	188,566	610	437, 322	610	437, 322					157,625	16, 233, 681	
New York.	1900	110	15,357,075	602	584,386	3,099	1,846, 434	3,009	1,820,954	79	23,636	11	1,844	1,274,534	50, 523,186	57, 431,293
New York.	1890	181	1 12, 605,460) 559	739, 026	3,744	2, 434, 142	3,725	2, 430, 284	16	3,462			960,083	67, 560, 780	
North Dakota.	1900	3	3 104,371	18	8,760	34	15,977	38	15,677	1	300			8,975	198,175	256,160
										29	8,656	19	4,228	639,008	17, 927 , 958	20,660,780
Obio	1900	(188	$\begin{aligned} & 5,365,626 \\ & 3,582,540 \end{aligned}$	- 287	$\begin{aligned} & 200,001 \\ & 801,369 \end{aligned}$	1,346	$682,581$	1,335	$679,825$	6	6 2,300			234, 983	14,341, 520	17,012,198
			9 760,448	41	47,130	172		166					$5 \quad 900$	35,768	1,359,361	1,638,480
Oregon.	1890	- 7	$1,587,600$	21	39,500	107	91, 500	105	$9 \mathrm{I}, 150$	1	100	1	1250	37,648	1,552,760	1,978,625
Pennsylvania	1900	111	6,548,577	776	317,153	1,669	920, 190	1,646	914, 467	13	3,895	10	1,828	526,972	21,601,810	25,238,772
Pennsylvania.	1890	242	6,180,789	388	396, 826	1,682	772,422	I, 568	768,524	11	3,100			316,572	18,575,330	21, 991,604
Rhode Island.	1900	- 7	7 759,850	16	17,636	209	107,104	206	106, 268			3	$3 \quad 836$	44, 736	2,246,780 $4,213,329$	$2,503,466$ $4,627,366$
	1890	-10	753,100	49	50,680	242	135, 329	239	134,579				0	45,14		
Tennessee	1900	8	8 651,740	15	17,365	156	60, 945	152	-60,775		170			25,268 1,782	$\begin{array}{r} 1,453,128 \\ 124.090 \end{array}$	$1,671,218$ 150,742
	1890		3 54,500		6,120		11,700	26 394	11,730	19	9 5,867		1200	66,749	3,170,536	3, 904, 491
Texas.............	1900	12	2 1,232, 267	79	61,797	414	179,505	394	173,438							
														5,940	385, 353	3 453,456
Utah..............	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$		8 117,027 4 302,134	4 - 12		42 62	$\begin{aligned} & 18,653 \\ & 45,984 \end{aligned}$	42 61	$\begin{array}{r} 18,653 \\ +45,840 \end{array}$					16,096	457,064	4 545, 200
Virginia	$\begin{array}{r} 1900 \\ 21890 \end{array}$		4 169,500	19	14,340	65	28,884		28,884					3,988	8 637,730	0 748,620

1 Includes proprietors and firm members, with their salaries; number only reported in 1900 but not included in this table. (See Table 12.)
2 Included in "all other states."
2 None reported in 1890 .

Table 2.-COMBINED SLAUGHTERING AND MEAT PACKING: COMPARATIVE SUMMARY, BY STATES, 1890 AND 1900-Continued.

STATES.	Year.	Number of estab-lishments.	Capital.	SALARIED OFFICIALS, CLERKS, ETC.		average number of wage-earners and total wages.								Miscellaneous expenses.	Cost of materials used.	Value of products.
						Total.		Men, 16 years and over.		Women, 16 years and over.		Children, under 16 years.				
				Number.	Salaries.	Aver- age num- ber.	Wages.	$\begin{array}{\|c\|} \text { Aver- } \\ \text { age } \\ \text { num- } \\ \text { ber. } \end{array}$	Wages.	Aver- age num- ber.	Wages.	Aver- age num- ber.	Wages.			
Washington	$\begin{array}{r} 1900 \\ 11890 \end{array}$	18	\$1,014, 086	88	\$81, 116	231	\$156,531	229	\$155, 631	2	\$900			\$80,008	\$4, 252,435	\$4, 892, 857
West Virginia.....	$\begin{array}{r} 1900 \\ 11890 \end{array}$	3	313,000	16	11,800	84	42,646	76	40,642		1,620		\$384	4,623	1,133, 954	1,335,578
Wisconsin.........	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	13	$\begin{aligned} & 3,811,616 \\ & 2,622,821 \end{aligned}$	123	$\begin{array}{r} 145,333 \\ 69,179 \end{array}$	$\begin{array}{r} 1,367 \\ 860 \end{array}$	563,208 392,683	$\begin{array}{r} 1,365 \\ 842 \end{array}$	$\begin{aligned} & 562,833 \\ & 389,033 \end{aligned}$		375 1,400	15	2,250	408,991 108,512	$\begin{array}{r} 11,889,524 \\ 9,176,673 \end{array}$	$\begin{aligned} & 13,649,750 \\ & 10,346,398 \end{aligned}$
All other states and texritories. ${ }^{2}$	1900 1890	14 16	216,671 625,277	15 49	10,270 43,084	137 177	59,426 94,384	131	58,118 93,709		- 4000	6 4	1,308 275	12,779 44,616	$\begin{aligned} & 1,183,352 \\ & 2,082,050 \end{aligned}$	$\begin{aligned} & 1,374,953 \\ & 2,435,979 \end{aligned}$

${ }^{1}$ Included in "'All other states."
${ }_{2}$ Includes establishments distributed as follows: 1890-Florida, 2; Georgia, 1; New Hampshire, 2; North Carolina, 1; South Dakota, 2; Vermont, 1; Virginia, 1; Washington, 4; West Virginia, 2; 1900-Alabama, 2; Arkansas, 2; North Carolina, 1; New Hampsbire, 1; New Mexico, 2; Oklahoma, 2; South Carolina, 1; South Dakota, 1; Wyoming, 2.

In value of products Mlinois was the leading state in both years. As between the two census years it is seen that Kansas advanced from third place to second, New York dropped from second place to fourth, Nebraska advanced from fourth to third, Indiana occupied fifth place in both years, Iowa fell from sixth to eighth, Massachusetts advanced from eighth to seventh, and California from thirteenth to eleventh. The list of the leading 13 states, in their order, in 1890 is as follows: Illinois, New York, Kansas, Nebraska, Indiana, Iowa, Pennsylvania, Massachusetts, Missouri, New Jersey, Ohio, Wisconsin, and California; in 1900 the order was: Illinois, Kansas, Nebraska, New York, Indiana, Missouri, Massachusetts, Iowa, Pennsylvania, Ohio, California, New Jersey, and Wisconsin. The falling off in the value of products in New York and New Jersey is noteworthy. Of these 13 states the greatest gain per cent was made by Nebraska, with 146.3 per cent, followed by Missouri, with 134.9 per cent. During the decade Illinois made by far the greatest absolute gain, $\$ 75,630,895$, an amount nearly equal to the entire value of products for Kansas, the second state in 1900. In absolute gain, Nebraska, with $\$ 42,339,222$, held second place; Kansas, with $\$ 32,715,806$, third; and Missouri, with $\$ 24,720,692$, fourth; Indiana came next with $\$ 15,948,433$. In these 5 states the number of establishments decreased from 195 to 163; their capitalization increased by $\$ 53,748,944$, of which Illinois was credited with $\$ 30,422,147$, or more than the increase of the other four put together. The products of the leading thirteen states increased $\$ 191,355,048$, which was 85.4 per cent of the total increase of $\$ 223,950,765$ reported for the country.
Table 2 shows the expansion that has taken place in this industry in the Middle West. Illinois is far in the lead. This state in 1900 had 6.9 per cent of the establishments, 37.6 per cent of the capital, 40.7 per cent of the wage-earners, paid 42 per cent of the wages, and
produced 36.7 per cent of the products. The industry in the Southern states can hardly be said to exist in an industrial sense, except as a so-called "neighborhood" industry. The Northeastern states are coming more and more to rely upon the West as the source of their meat supply. The decline in New York of 25.1 per cent in the value of products, and in New Jersey of 21.1 per cent, shows that the Western dressed meat is supplying much of the demand that was formerly filled by the Eastern dressed article.

In the extreme West the fact that the production of Oregon decreased ${ }_{i}$ from $\$ 1,978,625$ to $\$ 1,638,480$, or 17.2 per cent, while that of California increased from $\$ 9,768,858$ to $\$ 15,717,712$, or 60.9 per cent, is noteworthy. No comparison can be made for the state of Washington, owing to the fact that the figures for 1890 can not be shown without disclosing the operations of individual establishments. The table shows a growth of 65 establishments in Maryland. Minnesota shows a growth of $\$ 5,300,124$, or 211.1 per cent, in the value of products. Texas reported no establishments in 1890, but in 1900 returned 12 establishments, with a capital invested of $\$ 1,232,267$, employing 414 wage-earners, who earned $\$ 179,505$ during the census year, and produced a product valued at $\$ 3,904,491$. Utah, although reporting an increase of 4 establishments (from 4 to 8), shows a decrease of $\$ 91,744$, or 16.8 per cent, in the value of products. The progress of concentration is shown in Pennsylvania, where the number of establishments decreased from 242 to 111 , or 54.1 per cent. Delaware shows a loss of 1 establishment, but an increase in the value of products from $\$ 320,206$ to $\$ 521,076$, an increase of $\$ 200,870$, or 62.7 per cent. The number of establishments in the District of Columbia decreased from 24 to 7 , but the value of products increased $\$ 1,352,421$, or 157.5 per cent. Connecticut lost 3 establishments and $\$ 489,985$ in value of products, or 11.8 per cent.

In consulting Table 3 it should be borne in mind that these figures do not represent an actual increase or decrease in amounts, but a change as compared with the figures for the industry for the entire country.
Table 3.-COMbINED SLAUGHTERING AND MEAT PACKING: PERCENTAGES OF CAPITAL AND PRODUCTS FOR THIRTEEN STATES LEADING IN 1900 IN VALUE OF PRODUCTS TO TOTAL CAPITAL AND TOTAL VALUE OF PRODUCTS, 1890 AND 1900.

| |
| :--- | :--- | :--- | :--- | :--- |

This table presents the percentage of capital invested and of value of products in the 13 states leading in
value of products in 1890 and 1900 , as compared with the totals of these items for the United States. It shows the figures of Table 2 in this regard, expressed to make clearer the relative importance of these states. Illinois gained 2.7 per cent in capital invested, but lost 1.1 per cent in value of products. A large decrease is shown in New York, where the capital invested fell off 2.7 per cent and the products 6.3 per cent. Kansas shows a loss of 0.8 per cent in capital invested, but a gain of 1.9 per cent in value of products. Nebraska shows a gain of 4.4 per cent in capital and 3.9 per cent in value of products. Massachusetts shows a falling off of 0.1 per cent in capital invested, but a gain of 0.4 per cent in value of products. The gain in California indicates a normal and steady growth, due to increase of population and of export demand. Missouri shows a slight loss per cent in capital invested, but a considerable gain in value of products. New Jersey suffered a loss in both items. In connection with this table it should be noticed that although in 1900 Iowa led in the production of hogs, and stood second in the number of cattle raised, it was eighth, as shown by Table 3, in the value of meat products. This indicates the tendency for slaughtering and packing operations to concentrate in well-defined centers, as shown in Table 4.

Table 4.-COMBINED SLAUGHTERING AND MEAT PACKING: COMPARATIVE SUMMARY OF CITIES HAVING A PRODUCT VALUED AT OVER $\$ 1,000,000,1880$ TO $1900 .{ }^{1}$

crties.	Year.	Number of estab-lishments.	Capital.	salaried offictals, CLERKS, ETC.		Wage-Earners.		Miscellaneous expenser.	$\underset{\substack{\text { Cost of } \\ \text { materials } \\ \text { used }}}{\text { Con }}$ used.	Value of products.
				Number.	Salaries.	Average number.	Total wages.			
Allegheny, Pa.	$\begin{array}{r} 1900 \\ \\ \\ \mathrm{~s} 1890 \end{array}$	8	$\$ 1,497,666$ 140,860	52 213	857,800 29,750	438 42	$\begin{array}{r} \$ 233,028 \\ 17,390 \end{array}$	$\begin{array}{r} 8111,546 \\ 7,104 \end{array}$	$\begin{array}{r} \$ 3,338,806 \\ 233,876 \end{array}$	$\begin{array}{r} \$ 3,996,807 \\ 294,066 \end{array}$
Baltimore, Md.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 73 \\ 14 \\ 6 \end{array}$	$\begin{array}{r} 1,344,953 \\ 958,521 \\ 705,000 \end{array}$	${ }_{\left({ }^{3}\right)} \begin{array}{r}57 \\ 253\end{array}$	$\begin{aligned} & 44,724 \\ & 263,904 \\ & \left(^{8}\right) \end{aligned}$	$\begin{gathered} 508 \\ 368 \\ 194 \end{gathered}$	$\begin{array}{r} 233,898 \\ 171,208 \\ 86,300 \end{array}$	$\begin{aligned} & 99,546 \\ & 76,232 \\ & (4) \end{aligned}$	$\begin{aligned} & 6,257,658 \\ & 3,668,147 \\ & 2,659,662 \end{aligned}$	$\begin{aligned} & 7,066,461 \\ & 4,311,412 \\ & 2,742,645 \end{aligned}$
Boston, Mass .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 6 \\ 3 \\ 21 \end{array}$	$\begin{array}{r} 40,915 \\ 452,087 \\ 918,000 \end{array}$	$\begin{array}{r} 14 \\ { }^{2} 19 \\ \left({ }^{2}\right) \end{array}$	$\begin{array}{r} 8,996 \\ 234,507 \\ \left({ }^{3}\right) \end{array}$	$\begin{array}{r} 34 \\ 199 \\ 211 \end{array}$	$\begin{array}{r} 23,030 \\ 140,466 \\ 153,263 \end{array}$		$\begin{aligned} & 1,144,276 \\ & 2,624,447 \\ & 6,609,139 \end{aligned}$	$\begin{aligned} & 1,329,010 \\ & 2,782,823 \\ & 7,096,777 \end{aligned}$
Brooklyn Borough, N. Y	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 10 \\ & 37 \\ & 28 \end{aligned}$	$\begin{array}{r} 618,825 \\ 1,672,528 \\ 1,125,000 \end{array}$	$\begin{array}{r} 35 \\ 2^{395} \\ \left({ }^{3}\right) \end{array}$	$\begin{array}{r} 32,660 \\ 2155,268 \\ \left({ }^{3}\right) \end{array}$	$\begin{aligned} & 227 \\ & 449 \\ & 260 \end{aligned}$	$\begin{aligned} & 136,777 \\ & 335,959 \\ & 194,568 \end{aligned}$	$\begin{gathered} 59,293 \\ 120,002 \\ \left({ }^{4}\right) \end{gathered}$	$\begin{array}{r} 3,783,042 \\ 11,640,449 \\ 7,340,450 \end{array}$	$\begin{array}{r} 4,126,632 \\ 13,087,354 \\ 8,010,492 \end{array}$
Buffalo, N. Y .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{gathered} 24 \\ 34 \\ 64 \end{gathered}$	$\begin{array}{r} 6,173,694 \\ 2,915,280 \\ 872,500 \end{array}$	$\begin{array}{r} 203 \\ 2^{290} \\ \left({ }^{3}\right) \end{array}$	$\begin{aligned} & 146,523 \\ & 296,374 \\ & { }^{(3)} \end{aligned}$	$\begin{aligned} & 928 \\ & 766 \\ & 289 \end{aligned}$	$\begin{aligned} & 436,869 \\ & 377,849 \\ & 170,433 \end{aligned}$	$\begin{gathered} 342,878 \\ { }_{(428}^{128}, 844 \\ \left({ }^{4}\right) \end{gathered}$	$\begin{array}{r} 10,026,676 \\ 8,437,164 \\ 3,023,924 \end{array}$	$\begin{array}{r} 11,601,167 \\ 9,951,044 \\ 3,441,280 \end{array}$
Chicago, 111	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 38 \\ & 57 \\ & 70 \end{aligned}$	$\begin{array}{r} 67,137,569 \\ 39,222,195 \\ 8,455,200 \end{array}$	$\begin{aligned} & 4,010 \\ & 2,900 \\ & { }^{(3)} \end{aligned}$	4, 233,994 2 $1,003,668$ (3)	25,346 16,976 7,478	$\begin{array}{r} 12,875,676 \\ 10,002,573 \\ 3,392,748 \end{array}$	$\begin{gathered} 13,829,826 \\ 6,218,026 \\ (4) \end{gathered}$	$\begin{array}{r} 218,241,331 \\ 173,568,3365 \\ 74,546,319 \end{array}$	$\begin{gathered} 256,527,949 \\ 203,606,402 \\ 85,324,371 \end{gathered}$
Cincinnati, Obio	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 27 \\ & 83 \\ & 49 \end{aligned}$	$\begin{aligned} & 2,893,064 \\ & 2,215,490 \\ & 4,074,682 \end{aligned}$	$\begin{array}{r} 98 \\ 2149 \\ \left({ }^{3}\right) \end{array}$	$\begin{gathered} 103,830 \\ 2173,404 \\ { }^{(8)} \end{gathered}$	$\begin{array}{r} 856 \\ 676 \\ 1,143 \end{array}$	$\begin{aligned} & 414,621 \\ & 37,, 859 \\ & 338,302 \end{aligned}$	$\begin{gathered} 437,889 \\ \substack{152,462 \\ \left({ }^{(}\right)} \end{gathered}$	$\begin{array}{r} 8,806,662 \\ 7,873,703 \\ 10,454,991 \end{array}$	$\begin{array}{r} 10,370,177 \\ 9,511,188 \\ 11,614,810 \end{array}$
Cleveland, Ohio.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 . \\ & 12 \end{aligned}$	$\begin{array}{r} 1,827,288 \\ 744,465 \\ 447,000 \end{array}$		$\begin{aligned} & 136,886 \\ & 279,080 \\ & \text { (3) }^{3} \end{aligned}$	$\begin{aligned} & 577 \\ & 382 \\ & 416 \end{aligned}$	$\begin{aligned} & 235,023 \\ & 200,981 \\ & 192,892 \end{aligned}$	$\begin{gathered} 175,132 \\ 30,670 \\ \left({ }^{(}\right) \end{gathered}$	$\begin{aligned} & 6,769,023 \\ & 4,983,627 \\ & 4,886,771 \end{aligned}$	7,514, 470 5, 682, 666 5, 427, 938
Dayton, Ohio.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 10 \\ 4 \\ 5 \end{array}$	$\begin{array}{r} 242,925 \\ 63,750 \\ 50,500 \end{array}$	$\begin{array}{r} 12 \\ \left({ }^{2}\right) \end{array}$	$\begin{aligned} & 9,900 \\ & 214,500 \\ & { }^{(3)} \text {) } \end{aligned}$	$\begin{array}{r} 147 \\ 42 \\ 29 \end{array}$	$\begin{aligned} & 75,881 \\ & 23,700 \\ & 20,980 \end{aligned}$	$\begin{aligned} & 10,332 \\ & 3,842 \\ & (4) \end{aligned}$	$\begin{aligned} & 959,661 \\ & 266,436 \\ & 178,136 \end{aligned}$	$\begin{array}{r} 1,097,525 \\ 336,928 \\ 236,318 \end{array}$
Denver, Colo	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	7 3 4	$\begin{array}{r} 833,618 \\ 200,150 \\ 49,000 \end{array}$	$\begin{array}{r} 27 \\ { }^{27}{ }^{29} \end{array}$	$\begin{aligned} & 36,496 \\ & { }^{313,920} \\ & \left({ }^{(3)}\right) \end{aligned}$	$\begin{array}{r} 171 \\ 59 \\ 40 \end{array}$	$\begin{array}{r} 103,274 \\ 44,322 \\ 15,990 \end{array}$	$\begin{aligned} & \begin{array}{l} 33,184 \\ 23,946 \\ (4) \end{array} \end{aligned}$	$\begin{array}{r} 2,404,458 \\ 1,415,849 \\ 586,920 \end{array}$	$2,858,947$ $1,625,711$ 690, 945
Detroit, Mich.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 16 \\ 19 \\ 7 \end{array}$	$\begin{array}{r} 1,184,776 \\ 818,023 \\ 486,000 \end{array}$	$\begin{array}{r} 61 \\ { }^{2} 878 \\ \left({ }^{2}\right) \end{array}$	$\begin{aligned} & 59,581 \\ & 270,526 \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & 328 \\ & 280 \\ & 147 \end{aligned}$	$\begin{array}{r} 177,856 \\ 145,288 \\ 79,067 \end{array}$	$\begin{aligned} & 70,687 \\ & 46,009 \\ & \left(^{(4)}\right. \end{aligned}$	$\begin{aligned} & 3,628,440 \\ & 2,953,987 \\ & 1,413,426 \end{aligned}$	$\begin{aligned} & 4,047,749 \\ & 3,404,424 \\ & 1,721,231 \end{aligned}$

[^124]Table 4.-COMBINED SLAUGHTERING AND MEAT PACKING: COMPARATIVE SUMMARY OF CITIES HAVING A PRODUCT VALUED AT OVER $\$ 1,000,000,1880$ TO 1900^{1}-Continued.

cities.	Year.	Number of estab-lishments.	Capital.	salaried officials, CLERES, ETC.		wage-earners.		Miscellaneous expenses.	Cost of materials used.	Value of products.
				Number.	Salaries.	Average number.	Total wages.			
East St. Louis, 111.	$\begin{array}{r} 1900 \\ 21890 \end{array}$	3	\$3,183, 288	156	\$138, 259	2,159	\$985,497	\$305,594	\$25, 370, 543	\$27,676, 818
	1880	3	1,550,000	(2)	(2)	2,540	530,019	${ }^{(3)}$	6,104,019	7,950,000
Indianapolis, Ind.	1900 1890	$\begin{array}{r}7 \\ 8 \\ \hline\end{array}$	3, 807, 246 990,220 1	136 451	128,834 448,000	1,943	783,226 386,472	218,989 108,015	$\begin{array}{r} 17,400,330 \\ 6,408,053 \end{array}$	$\begin{gathered} 18,781,442 \\ 6,295,975 \end{gathered}$
	1880	7	1,618,000	${ }^{(2)}$		892	345, 236		$7,890,208$	$9,014,422$
Jersey City, N. J...................................	1900	13	473,485	27	26,882	188	130, 707	58,342	5, 872, 946	6,243,217
	1890 1880	18	$\begin{array}{r} 697,640 \\ 1,272,200 \end{array}$	$(2)^{4}{ }^{4} 7$	${ }^{4} 88,382$	240 433	197,304 303,800	${ }_{(9)}^{51,295}$	$\begin{aligned} & 10,712,166 \\ & 17,404,689 \end{aligned}$	$\begin{aligned} & 11,356,511 \\ & 18,551,783 \end{aligned}$
Kansas City, Kans	1900	8	15, 114, 601	1,771	1,679,436	7,713	3,381,510	1,919,411	65, 082, 581	73, 787,771
	1890	${ }_{3}^{6}$	$8,964,586$ 437,500	$\begin{aligned} & 159 \\ & \left({ }^{2}\right) \end{aligned}$	${ }^{18} 180,373$	$\begin{array}{r}4,458 \\ \hline 288\end{array}$	$2,378,153$ 166,500	3, ${ }_{(3)}$	$32,284,123$ 739,071	$39,927,192$ 965,000
Louisville, Ky......................................	1900	12	1, 218,426	52	45,739	449	189, 417	100,312	3, 828, 486	4,444,978
	1890 1880	12	$1,272,415$ $2,144,500$	${ }^{433}$	${ }^{4} 22,967$	327	101, 328	$\underset{(3)}{124,475}$	$2,023,501$ $3,438,459$	$\begin{aligned} & 2,55,154 \\ & 4 \end{aligned}$
Milwaukee, Wis	¢1900	7	3,578,690	116	140,333	1,293	530, 483	385, 102	11,405, 186	13, 045, 979
	1890	9	2, 291,971	${ }_{443}$	456,728	1, 742	358, 830	-96,989	8, 635,671	9, 704, 966
	1880	7	789,000	$\left.{ }^{2}\right)$		953	187, 596		5,529, 618	6,099, 486
Newark, N. J.......................................	1900	10	363, 777	39	32,708	176	94,993			
	1890 1880	14 7	541,910 232,000	${ }_{(2)}^{434}$	$\begin{aligned} & 456,640 \\ & (9) \end{aligned}$	107 88	141,144 53,822	$\begin{aligned} & 80,032 \\ & \left.{ }^{(3)}\right) \end{aligned}$	$\begin{aligned} & 0,20,074 \\ & 3,20,374 \\ & 1,368,288 \end{aligned}$	$\begin{aligned} & 3,06,030 \\ & 3,66,696 \\ & 1,527,660 \end{aligned}$
New York (Manhattan and Bronx boroughs)...	1900	42	$8,648,436$	320	378, 194	1,705	1,166,749	829,740	34, 230, 835	38, 752, 586
	1890 1880	56 58	$7,143,468$ $1,801,000$	${ }_{(2)}^{4282}$	$\begin{gathered} 4 \\ 418,226 \\ \hline \end{gathered}$	2,165	1,677, 2388	${ }_{(8)}^{639,388}$	$\begin{aligned} & 44,761,606 \\ & 27,763,577 \end{aligned}$	$\begin{aligned} & 50,251,204 \\ & 29,297.527 \end{aligned}$
Pawtucket, R. I	1900	3	501,430			84	47,280	12,129	1,045,754	1,134,946
	${ }_{2}^{1880} 180$	3	495, 000	${ }^{4} 23$	430,262	102	56,650	31,253	2, 670,000	2, 895, 191
Philadelphia, Pa...................................	1900	58	1,882,732	141	111, 925	617	372, 610	221,674	10, 321, 065	12,020,462
	1890	202	3,722, 207	${ }^{4} 264$	4291,776	908	514,177	207,080	13, 674,466	16,094,498
	1880					359	165, 353		7,042, 781	7,869,114
Pittsburg, Pa.......................................	1900	5	786, 810	47	42,713	150	93, 950	28,001	1,779,600	2,054,521
	1890	4	321,500	418	421,600	61	33,012	37,261	1,149,965	1,341, 900
	1880	9	693,000	$\left({ }^{2}\right)$		110	41,379	$\left({ }^{3}\right)$	1,302,167	1,451,816
Portland, Oreg	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	4 5	$\begin{aligned} & 604,282 \\ & 439,600 \end{aligned}$	34 118	39,790 435,100	$\begin{array}{r}121 \\ 82 \\ \hline\end{array}$	54,025 73,300	$\begin{aligned} & 29,700 \\ & 16,718 \end{aligned}$	$\begin{aligned} & 1,109,939 \\ & 1,222,330 \end{aligned}$	1, 306, 996 1,570,935
	${ }_{2}^{1890}$				${ }^{4} 35,100$	82	73,300	$16,718$	$1,222,330$	$1,570,935$
Providence, R. I	1900		252,720					30,597	1,155,026	1,316,220
	1890	6	245, 500	${ }^{4} 26$	420,418	136	76,636	13,641	1,520,940	1, 695,105
	1880	6	273, 000	${ }^{(2)}$		89	44, 362		1,318,116	1, 458, 740
St. Joseph (including South St. Joseph), Mo....	1900 21890	5	6, 200, 899	131	106,001	2,216	980, 749	190,550	27,645,318	29,704, 973
	${ }^{1} 1880$	5	134, 500	(2)	(2)	204	37,290	(3)	1,224,208	1,439, 443
St. Louis, Mo	1900	25			142,673	841	448,287	171,902	11,120, 325	12,943,376
	1890	60	3, 216,571	${ }^{4129}$	$4170,226$	631	366,011	98,639	9,864,639	12,048,114
	1880		1,243,000			584	269,763		7,085,909	8,424,064
St. Paul, Minn	1900		250,998	${ }_{4} 16$	11, 390	84	42,252,	21,097	989, 749	1,288, 364
	1890	6	448,600	${ }^{416}$	${ }^{4} 15,700$	62	35,476	14, 067	659, 636	-788, 370
	1880		165,000			33	17,100		371, 050	429,747
San Francisco, Cal..................................	1900	26	2, 305, 362	114	177, 490	532	323,931			
	1890 1880	25 24	1, 591, 779	$\left.{ }^{2}\right)^{486}$	$\begin{aligned} & { }^{4} 122,090 \\ & \hline \end{aligned}$	249 309	198,637 239,868	226, 259	$5,576,801$	$6,670,474$
Sioux City, Iowa.........,.........................										6,01. 02
		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$1,209,695$ $1,662,736$	$\begin{array}{r} 21 \\ 4 \\ 4 \end{array}$	24,250 443	892	471, 944	165,222	6, 856, 684	8,982,896
	$\begin{array}{r} 1890 \\ { }_{21880} \end{array}$	3	1,662,736		443,340	694	283, 155	192, 373	6,872, 132	7,589,228
Somervilie, Mass..................................	1900 29890	4	6, 801,141	46	70,618	1,435	692, 999	314,036	14, 233,788	15,692, 242
	1880	3	$7760,870^{\circ}$	(2) ${ }^{\text {a }}$	(2)	263	122,889	${ }^{(3)}$	3, 368,396	$3,702,601$
Soutb Omaha, Nebr	1900 21890	6	15, 657, 418	712	677, 256	5,940	2,915, 732	1,475, 848	60, 159, 430	67,889,749
	${ }_{2} 1880$									
Washington, D. C	$\begin{array}{r} 1900 \\ \\ \\ 21890 \\ 21880 \end{array}$	$\begin{array}{r} 7 \\ 24 \end{array}$	$\begin{aligned} & 248,200 \\ & 118,230 \end{aligned}$	32 427	$\begin{array}{r} 15,784 \\ 419,970 \end{array}$	$\begin{array}{r}116 \\ 82 \\ \hline\end{array}$	$\begin{array}{r} 63,607 \\ 37,113 \end{array}$	$\begin{aligned} & 19,935 \\ & 10,274 \end{aligned}$	$\begin{array}{r} 2,013,827 \\ 664,754 \end{array}$	$\begin{array}{r} 2,210,860 \\ 858,439 \end{array}$

[^125]Table 4 is a comparative summary for 1880,1890 , and 1900 , of those cities that, in 1900 , showed a production to the value of $\$ 1,000,000$ and over. The product of Chicago alone reached a value of $\$ 256,527,949$ in 1900, or 32.7 per cent of the total value for the United States; in 1890, this ratio was 36.3 per cent, a net loss during the decade of 3.6 per cent. Chicago's adrance in value of products during these ten years was $\$ 52,921,547$, or 26 per cent. The number of establishments steadily decreased, falling from 70 ir 1880 to 57 in 1890 and 38 in 1900. Kansas City stood second in value of products, in 1900 , gaining during the decade, $\$ 33,860,579$, or 84.8 per cent. Of the total value of products in the United States, Kansas City furuished 9.4 per cent in 1900 and 7.1 per cent in 1890, a gain of 2.3 per cent. Unfortunately the figures upon which to base such a comparison for South Omaha are not available. The industry had no existence there in 1880, and the figures for 1890 were not published separately. The total production for the state of Nebraska for 1890, however, of which South Omaha constituted a part, was $\$ 28,9 \neq 1,144$, which was exceeded in 1900 by $\$ 38,948,605$ by South Omaha alone. In 1900 South Omaha produced 8.6 per cent of the total value of the product of the United States.

At the Twelfth Census New York city (boroughs of Manhattan and Bronx) stood fourth in value of products, showing a decrease between 1890 and 1900 of $\$ 11,498,918$. Brooklyn in the same time fell off $\$ 8,960$,722. Jersey City and Newark also show a decrease.

This was not due to any decrease in the amount of local consumption, but to the growing importance of the western dressed meat in the eastern markets. Boston shows a continuous and steady decrease in the value of products. Baltimore, on the other hand, steadily gained in number of establishments and in value of products. Philadelphia shows a gain from 1880 to 1890 , but a decrease from 1890 to 1900. South St. Joseph, Mo., sprang into prominence between 1890 and 1900, and in 1900, with St. Joseph, produced 3.8 per cent of the total value of the product for the United States. The product of St. Louis, Mo., remained about the same. The figures for East St. Louis, Ill., for 1890 were not reported separately, so that no comparison can be made. In the extreme West, San Francisco gained 58.8 per cent in production between 1890 and 1900, while Portland, Oreg., fell off 16.8 per cent in the same period.

This table as a whole indicates a growth of the average establishment. While in many cases a considerable decrease is shown in the number of establishments, vet a large increase is shown in the average capital invested, and in the average value of the product of the single establishment.

The statistics of slaughtering as conducted separately from packing operations was not included in the census returns prior to the taking of the Eleventh Census, in 1890. Tables 5 and 6 should be consuited together, in order to arrive at the relative importance of the two branches for the several states.

Table 5.-SLAUGHTERING, WHOLESALE, NOT INCLUDING

MEAT PACKING: BY STATES AND TERRITORIES, 1900.

1 Includes establishments distributed as follows: Alabama, 1; Arkansas, 1; Delaware, 1; District of Columbia, 1; New Mexico, 2; North Carolina, 1; Oklahoma, 2; Rhode Island, 1; Soutb Carolina, 1; Virginia, 1; Wisconsin, 2; Wyoming, 1.

Table 5.-SLAUGHTERING, WHOLESALE, NOT INCLUDING

		United States.	California.	Colorado.	Connecticut.	Georgia.	Illinois.	Indiana.	lowa.	Kansas.	Kentucky.
	Materials used-Continued. Slaughtered-Continued.	31	20,380	1,330	11,620	50	10,136	4,455	3,039	1,150	3,910
79 80	Calves, Cost	\$4,344, 125	8204,753	\$12, 100	\$92, 792	\$200	\$75, 698	\$35,700	\$19,657	86,200	826, 664
81	All other animals, cost	\$297, 555	\$128,769	\$1, 695	\$8,080				\$250.		\$3,064
82 83	Dressed meat, purchased, fresh or partly cured, cost.	$\$ 502,869$ $\$ 172,728$	$\$ 4,615$ 86,015	$\$ 54,670$ $\$ 2,401$					\$1,050	\$2,540	$\mathbf{8 1 0}, 400$ $\$ 1,595$
83 84 84	Fuel ..	$\$ 172,728$ $\$ 14,824$	\$6,015	\$2, 401	\$310.		\$11,493	\$4,820	\$1,050	\$2,540	\$1,595
85	Mill supplies	\$ \$28, 398	\$460	\$220	\$ $\$ 100$		82, 185	\$164	85, 770	$\$ 275$ 3,500	\$2, ${ }^{\$ 60}$
86	All other mater	\$1, 646,668	${ }^{896,074}$	\$1. $\$ 20$	\$24, 697		\$ $\$ 11,521$	\$5,305	85,770	\$3,500	\$2, 370
87	Freigbt.	\$1, 840, 265	\$412,604	\$1,000							
88	Products: Total value	\$87, 355, 885	\$7,485, 032	8781, 626	\$283, 281	\$33, 396	\$8, 079, 442	\$971,030	\$398, 526	\$582, 744	\$635,685
89	Beef- ${ }_{\text {Sold }}$ fresh	528, 557,864	62, 012,890	6,625,500	224,000	426,000	40, 914, 263	6,971,100	3,278,544	6, 482,000	4,212,668
90	Value	\$40, 430, 090	\$3, 818, 322	\$450, 900	\$15, 825	\$28,380	\$3,101, 784	\$487, 375	8225,960	8407,100	\$316, 248
91	Salted or cured, pounds	4, 605, 268	17,000	14,400							
92	Value ${ }_{\text {a }}$ Mutton sold fresh, pound	$\$ 238,032$ $140,132,565$	$\$ 1,360$ $20,269,980$		745, 252	4,000	2,548,800	579, 600	78,700	51,600	339,740
93 94	Mutton, sold fresh, pound Value	140, ${ }^{11} 132,750,405$	20, $91,472,794$	1, $\$ 123,353$	\$885, 899	\$ $\$ 360$	\$228, 125	\$37, 769	\$6, 856	\$23, 056	\$27, 069
95	Veal, sold fresh, poun	48,611,311	2,940,280	138,000	929, 650	5,000	904, 266	422, 075	259, 780	116,000	298, 419
96	Value	$\$ 4,596,518$	\$229, 721	\$12,420	\$103, 008	\$350	\$86, 880	\$39, 866	\$21, 957	\$8,600	826, 960
97	$\stackrel{\text { Pork- }}{\text { Sold }}$ fresh	241,029,567	9,160,456	1,584,000	10,510	6,000	54, 928,000	4, 806,010	1,547, 120	1,090,000	2, 081, 220
98	Value	\$16,280, 295	\$680, 924	\$97, 473	\$717	\$360	\$3,910,508	\$282, 846	899,784	\$87,700	\$161, 102
99	Salted, pounds	369,200	56,000.								
100	Value	\$29, 482	\$5,7000.								
101	Hams, ${ }^{\text {Value }}$	\% 823,226	\$1,160								
103	smoked bacon, sides and shoulders, pounds.	250,563	10,000.								
104	Value .	$\begin{array}{r}\$ 21,724 \\ 1,039 \\ \hline 184\end{array}$	$\begin{aligned} & \$ 81,280 \\ & 22,150 \end{aligned}$							31,300	227,475
105 106	Sausage, fresh or cured, pounds	1,039, 8754	- 22,150	177,374						\$1,878	\$19, 218
107	All otber meat, sold fresh, pounds	2,851,930	1,550,000	60,000.					5,000		
108	Value	8230, 113	\$131, 500	\$4,200					\$300		
109	Refined lard, pound	$5,302,974$	$63,000$.				577,000	3,000		17,000	452, 300
110	Value	\$335, 729	\$6, 200				\$41, 432	\$200		\$1,200	\$31, 946
111	Neutral lard, pound	364, 000	10,000 $\$ 6,000$							\$200	
114	Oleomargarine oin, gat.	1, 9968,069									
115	Other oils, gallons	150, 817						600	7,200		
116	Value	\$65, 609						\$240	\$3,240.		
117	Fertilizers, tons	$\begin{array}{r}8,381 \\ \hline 129\end{array}$		\$750	8780		\$7,765	${ }_{84} 200$			12
118	Hides, number	1,3122, 680	131,587	11,344	12,028	1,420	102,922	18,587	9,565	19,970	13, 130
119 120	Hides, number	58, 040,274	6,689, 886	576, 630	130, 756	58,400	5,393,221	851, 290	370, 883	745, 200	491, 470
121	Value	\$5, 215, 936	\$599, 813	\$48, 787	\$16,973	\$3,871	\$529,217	\$79,611	\$32, 657	\$59,500	\$40, 407
122	Wool, pounds...............................	4,351,776	18,000	18,000							
123	Value	\$17, 296,894	853,800	\$31,080							
124	All other products, value.....-.	\$5, 583,478	\$524,135	\$33, 214	\$60,099	\$75	$\begin{array}{r} \$ 166,663 \\ \$ 7,259 \end{array}$	$\$ 38,873$ $\$ 250$	\$7,632	\$13,510	\$12, 552
125	Custom work, value	\$64,831		81,211			87,259	\$250			
	Weight of animals slaughtered:										
126	Beeves- Gross weight, on hoof	975, 022, 741	122, 650, 350	10, 558, 850	347,200	998,000	79, 633, 384	13, 877,040	6,492,000	12,914,000	8,020,200
127	Net weight, dressed	529,463, 512	62, 507, 290	5,710,820	224,000	471,000	42, 162, 403	7,211,400	3,278,544	6,482, 000	4,384, 168
128	Sheep-	278, 400, 726	43, 219, 520	2,845,685	1,242,520	8,000	5, 583, 000	1, 159,000	141,400	748,600	594, 700
129	Net weight, dressed	142, 734, 289	21, 665,980	1,512,390	745,252	4,000	2,667, 000	579,600	78,700	376, 120	308, 100
130	$\underset{\text { Hogs- }}{\text { Gross weight on hoof }}$	310, 159,355	12, 117,400	2,128,500	13,730	10,000	67, 548,000	6,053,400	1,910,200	1, 427, 500	
131	Net weight, dressed.	243, 554, 789	9,337, 455	1, 704, 300	10,510	6,800	54, 944,640	4, 735, 420	1, 547, 120	1,142,000	2, 494, 520
	Calves-		5,870,400	252, 700	1,388,750	7,500	1,546,120	701,500	396,995	147,500	517,935
133	Net weight, dressed.	46,988, 793	2,939, 525	138, 000	948,650	3,750	1,904,226	422, 200	262,525	115, 950	298,685
	Comparison of products:										
134	Number of establishments reporting for both years.						12	${ }^{10}$			12
135	Value for census year .-......................	\$71, 672,421	85, 421, 968	\$500, 496	\$269, 386	\$9,510	87, 955, 271	\$922,046	\$253, 171	\$180,794	\$616, 955
136	Value for preceding husiness year	\$67,529,770	\% $5,265,463$	\$474,500	\$258, 490	\$7,000	\$7, 183, 763	\$867,307	\$288,819	\$200,000	\$579,000
137	Power: Number of estahlishments reporting.										6
138	Total borsepower	4,616	177	227	25		423	81	120	125	91
	Owned-										
139	Engines-	129	3	7			14	6	4	3	7
140	Horsepower	4,027	110	222	25		398	76	120	125	1
141	Gas or gasoline, number	10									1
142	Horsepower	10									10
143	Water wheels, number										
144	Horsepower	8		,							
145	Electric motors, number	8					,				
146	Horsepower	140					10				
147	Electric, horsepower	93	60								
148	Other kiud, horsepower	341					15	5			
149	Furnished to other establishmentsHorsepower	23							10		
	Establishments classified by number of persons employed, not including proprietors and firm members:										
150	Total number of establishments.	348	35				13	11	\%	3	13
151	No employees	\% ${ }^{7}$									
152	Under $5 .$.	168				3		1.			10
153	5 to 20	130						5	1		3
154	21 to 50	29	- ${ }_{1}$	1							
156	101 to 250		,								
157	251 to 500										
158	501 to 1,000.		2								

MEAT PACKING: BY STATES AND TERRITORIES, 1900-Continued.

1 Includes establishments distributed as follows: Alabama, 1; Arkansas,
Rhode Island, 1; South Carolina, 1; Virginia, 1 ; Wisconsin, 2; Wyoming, 1 .

Table 6.-SLAUGHtering and meat

PACKING, WHOLESALE: BY STATES, 1900.

Table 6.-SLaUGHTERING AND MEAT

PACKING, WHOLESALE: BY STATES, 1900-Continued.

No. 217 - 3

Table 6.-SLAUGHTERING AND MEAT

		Missouri.	Nebraska.	New Jersey.	New York.	North Da-	Ohio.
1	Number of establishments.	21	8	22	53	3	60
	Cbaracter of organization:						
	Individual............	15	1	10	31	1	18
	Firm and limited partnership ...	5		9	15	1	25 17
	1ncorporated company Capital:	11	7	3	7	1	17
5	Total...................	\$7,844,054	\$16, 488, 845	\$1, 033,847	87, 309, 162	\$104, 371	\$5, 224, 226
6	Land.	\$392,756	\$823,209	\$110,000	8725,365	810,500	\$274,665
7	Buildings.	\$1,663, 141	\$4,060,054	\$253, 000	\$1, 213, 555	\$30, 750	\$588, 071
8	Machinery, tools, and implement	\$1,059,749	\$1, ${ }^{\text {d27, }} 895$	\$182, 421	\$800,888	\$11,900	\$482, 606
${ }^{9}$	Cash and sundries	\$4, 728, 408	810,277, 687	\$488, 426	\$4,569, 353	\$51,221	\$3,778, 884
10	Proprietors and firm members.		1	30		3	76
	Salaried officials, clerks, etc.:	2	721				313
12	Total salaries	\$244,475	8684, 240	\$72, 226	\$260, 774	\$8,760	\$266,001
	Ofilicers of corporations-						
14	Number....	$\begin{array}{r} 21 \\ 951,080 \end{array}$	\$27, 816	$\begin{array}{r} \mathbf{3} \\ \$ 9,500 \end{array}$	$\begin{array}{r} 14 \\ \$ 32,380 \end{array}$	\$2, $\begin{array}{r}1 \\ \hline 00\end{array}$	$\begin{array}{r} 47 \\ \$ 71,926 \end{array}$
	General superintendents, managers, clerks, etc.-						
15	Total number....................................	211	713	79	317	7	266
16	Total salaries	\$193,395	8656,424	862, 725	\$228,394	86, 360	\$194, 076
17	Men-	194	677	74		6	249
18	Salaries.	\$185, 824	\$632, 867	\$60, 622	\$194, 457	85,860	\$187, 189
	Women-						
1920	Numbers.	17	36	5	83	1	17
	Wage-earners, including pieceworkers, and total wages:	\$7,571	\$23, 557	\$2,104	\$33, 937	\$500	\$6,88b
2	Greatest number employed at any one time during the year	4,036	6, y97	394	1,719	35	1,959
22	Least number employed at any one time during the year...	2,454	6,344	330	1,374	33	1,551
23	Average number...	3,043	6,083	352	1, ${ }^{1}$, ${ }^{\text {a }}$	${ }_{34}$	1,700
2	Wages . 10.	\$1, 416, 680	\$2,985, 828	\$186, 737	\$777, 738	\$15,977	\$775,288
	Men, 16 years and over-						
26	Average number.......	81 $\begin{array}{r}2,920 \\ \hline \text { 2, }\end{array}$	5,596	350	1,442	33	$\begin{array}{r} 1,652 \\ \$ 762,404 \end{array}$
	women, i6 years and over-	\$1,392,645	\$2, 858,466	\$186, 477	\$752, 662	\$15,677	
27	Average number......		173		78	1	29
28	Wages............	\$2, 160	\$57, 425		\$23,332	\$300	- 88,856
	Children, under 16 years-						
2930	Average number Wages	$\begin{array}{r} 115 \\ \$ 21,876 \end{array}$	$\begin{array}{r} 314 \\ \$ 70,987 \end{array}$	\$260	81, $\begin{array}{r}10 \\ \hline 84\end{array}$		$\begin{array}{r} 19 \\ \$ 4,228 \end{array}$
	Average number of wage-earners, including pieceworkers, employed						
	Men, 16 years and over-						
31	January ...	2,677	5,112	381	1,496	34	1,798
32	February.	2,690	5,100	378	1,457	34	1,737
33	March...	3, 521	5, 235	374	1,458	34	1,655
34	April ..	2,691	5,299	359	1, 417	32	1,692
35	May ...	2,550	5,612	334	1,387	32	1,632
36	June .	2,639	5,852	311	1,390	32	1,685
37	July ...	3,122	5,883	309	1,377	32	1,554
38	August.	3,250	5,776	310	1,373	32	1,515
39	September	3,037	5,735	344	1,401	32	1,583
40	October..	2,888	6,980	350	1,481	34	1,599
41	Nuvember.	2,863	5,876	364	1,521	34	1,742
42	December	3,110	5,688	373	1,542	34	1,832
	Women, 16 years and over-						
43	Jannary .	7	138		57		29
4	February.	7	139		58	1	29
45	March...	7	165		69	1	29
46	April ..	14	170		69		29
47	May...	8	146		70	,	29
48	June.	10	152		92	1	29
49	July....	10	171		88	1	29
50	August.	17	156		89	1	29
61	September	16	187		90	1	29
52	October.	3	245		82	1	29
53	November		193		83	1	24
54	December..................		215		67	1	29
	Children, under 16 y ears-	109					
66	February	115	282	$\stackrel{3}{3}$	10		${ }_{24}^{24}$
67	March .	130	286	${ }_{3}^{3}$	10		20
68	April...	119	315	3	10		16
69	May...	107	316	2	10		15
60	June..	116	369	2	10		19
61	July.....	122	321	2	10		19
62	August....	123	363	2	10		16
63	September	116	336	2	10		16
64	October...	104	304		10		15
${ }_{66}^{65}$	November	114	304	2	10		24
66	December..........	107	300	3	10		24
	Miscellaneous expenses:						
68	Rent of works	\$88,005	\$1,691, $\mathbf{8} 18,708$	897, 274 87,585	\$520,208	\$8,975	\$619, ${ }^{\mathbf{6} 28}$
69	Taxes, not including internal revenue.....................................	\$14,742	\$43, 862	\$6,097	\$ $\$ 29,843$	\$430	\$24,262
70	Rent of offices, insurance, interest, and all sundry expenses not hitherto included.	8327, 352	\$1,528, 508	\$83, 592	\$452, 697	\$7,026	\$569,246
71	Contract work	\$500			\$1,680	\$800	
72	Materials used:						
72	Total cost	\$38,391, 243	\$62,838, 752	\$5,448,255	\$16, 980,708	\$198, 175	817,006, 794
73	Beeves, number	334,562	525, 545				
74	Cost..	\$14, 589,993	\$24,418, 087	§207,600	\$2, 005, 655	\$65, 000	\$2,994,655
76 76	Sheep, number	-245,407	-723, 355	55,449	33, 683	-900	-38,337
77	Hogs, number	\$1, 008,852	\$3,075, 686	\$277,466	\$137, 231	\$8,400	\$142,703
78	Hogs, number	\%1,828,753	2,732,074	255,858	1,695, 543	12,500	1,273,822
79	Calves, number.	\$18,816, ${ }^{17} 686$	\$27,833, 464	\$2, 381, 151	88, 564,588	\$121, 400	\$11, 100, 887
80	Cost.....	\$120,856	857,678	874,514	20,771	400	17,891
81	All other animals, cost	-11, 725	\$5,674	\$4, 12.173	\$164,020	\$4,000	\$146, 460
82	Dressed meat, purchased, frest or partly cured, cost.	\$1, 842, 384	84, 426, 618	\$2, 266,059	85, 294, 941		81, 141, 902
83	Fuel	\$155, 874	\$354, 495	\$23, 919	\$73, 298	8875	\$883, 854

PACKING, WHOLESALE: BY STATES, 1900-Continued.

Oregon.	Pennsylvania.	Rhode Island.	Tennessee.	Texas.	Utah.	Virginia.	Washington.	West Vir- ginia.	Wisconsin.	All other states and territories. ${ }^{1}$	
9	68	6	8	12	5	3	14	3	11	5	1
3	28 81		2	1 3	1	1	${ }_{6}^{2}$	1	${ }_{5}^{2}$	1	${ }_{3}^{2}$
4	9	2	4	8	4	1	,	1	4	3	4
	6, 009,347 $\$ 700,563$	$\$ 727,850$ $\$ 9,800$	$\$ 851,740$ 845,300	\$1,232,267	883, 902 $\$ 822,369$	$\$ 156,500$ $\$ 34,000$	\$941,785	$\$ 313,000$ $\$ 22,000$	83, 784, $\$ 268,882$	$\$ 121,721$ 84,000	5
\$238,500	\$1,291,502	\$17,400	\$119,589	\$ \$244, 329	\$ $\$ 7,000$	\$23,000	\$127,500	\$55,000	\$525, 152	\$26, 803	7
8115, 356	\$ $\$ 675,700$	\$25,700	\$129,227	\$222,952	\$10, 772	\$21,500	\$125,942	\$33,000	\$425, 330	846, 372	8
\$217,571 ${ }^{\text {¢ }}$	\$3, 341, 582	\$674, 950	\$857, 624	\$711, 115	\$43, 761	\$78,000	$\$ 650,244$ 15	8203, 000	\$2, 564, 85.2	\$44, 546	${ }^{9}$
\$47, ${ }^{4130}$	$\begin{array}{r} 349 \\ \$ 289,165 \end{array}$	16 817,636	\$17, 365	861, 797	\$2, $472{ }^{6}$	\$13, 140	79 875,328	16 811,800	(\$144, ${ }^{122} 8$	12 $\$ 7,270$	112
9 816,400	\$19, $200{ }^{9}$	\% $\begin{array}{r}5 \\ \$ 8,000\end{array}$	\$12,500 ${ }^{9}$	\$20, 800		[$\begin{array}{r}3 \\ \$ 4,940\end{array}$	3 86 $\$ 6$	\$6,000	$\begin{array}{r} 10 \\ \$ 35,000 \end{array}$	[$\begin{array}{r}3 \\ 83,000\end{array}$	13 14
$\begin{array}{r} 32 \\ \$ 30,730 \end{array}$	$\begin{array}{r} 340 \\ \$ 269,965 \end{array}$	[$\begin{array}{r}11 \\ \mathbf{4 9}, 636\end{array}$	\% $\begin{array}{r}6 \\ \$ 4,865\end{array}$	39 $\$ 40,997$	\$2, 472	\$8, 200	76 867,203	\$5, $\begin{array}{r}11 \\ \hline 800\end{array}$	112 $\$ 109,833$	\$4, $27{ }^{9}$	15 16
\$29,930	323 $\mathbf{\$ 2 6 4 , 0 5 3}$	\$9,686	\$4, $86{ }^{6}$	\$40, $\begin{array}{r}387 \\ \hline\end{array}$	\$2, 172	\$8,200	72 $\$ 65,438$	\$6,800	105 $\$ 105,735$	84, 270	17 18
\$800	$\begin{array}{r} 17 \\ \$ 5,912 \end{array}$			1 $\$ 540$	\$300		81, 770		7 84,098		19
219	7,457	211	349	535	40	57	253	92	1,672	149	21
145	1,261	183	109	345	31	30	195	75	1,119	117	${ }_{23}^{22}$
172	1,383	199	156	414	34	42	209	84	1,351	\$34,688	$\xrightarrow{23}$
\$87, 821	\$733,932	\$102, 424	\$60,945	\$179,505	\$14,978	\$17, 884	\$135,896	\$42,646	8560, 808	\$34,688	24
$\begin{array}{r} 166 \\ \$ 86,441 \end{array}$	$\begin{array}{r} 1,364 \\ \$ 728,961 \end{array}$	$\begin{array}{r} 196 \\ \$ 101,588 \end{array}$	$\begin{aligned} & 152 \\ & \$ 60,776 \end{aligned}$	394 \$173, 438	$\begin{array}{r} 34 \\ \$ 14,978 \end{array}$	\$17,884	\$134, ${ }^{2076}$	$\begin{array}{r} 76 \\ 840,642 \end{array}$	$\begin{array}{r} 1,359 \\ \$ 560,433 \end{array}$	$\begin{array}{r} 75 \\ \mathbf{\$ 3 4 , 6 8 8} \end{array}$	25 26
\$480	\$3, ${ }^{12}$		\$170	\$5, 867			\$900	\$1,620 ${ }^{6}$	$\begin{array}{r}2 \\ \$ 375\end{array}$		27 28
5 $\$ 900$	\$1,576	3 $\$ 836$		\$200				\$884			${ }_{30}^{29}$
		188	197	457		57	216	83	1,552	73	31
166	1,386	188	180	483	33	52	214	73	1,407	64	
150	1,377	191	139	473	32	42	216	73 69	1,339	6	${ }_{34}^{33}$
136	1,320	194	118	447	34 34	$\stackrel{42}{42}$	$\stackrel{210}{230}$	69 77	1, 1,271		
136 166	1,319 1,292	196 193	122	408	34	34 34	207	77	1,305	52	36
166 185	1,292	193	137	349	34	30	196	77	1,287	122	37
185	1,339	199	76	326	35	32	198	77	1,172	126	
162	1,368	199	90	352	33	32	199	69	1,176	73	49
172	1,388	204	118	357	$\stackrel{33}{31}$	37 61	198	74 84	1,545	61	41
191	1,409	200 201	247 278	370 366	31 38	61 56	201	84	1,649	75	42
				22					1		43
1	10			21			2	6	1	-............	44
1	11			23		.-........	2	6	1		45
1	11			19			2	6	2		47
1	15			18			2	6	2		48
1	14			17			2	6	2		49
1	14			17		2	6	2		50
1	16			18			2	6	1		52
1	10		$\stackrel{3}{23}$	19			2	6	1		${ }_{63}$
1	11		26	24			2	6	1		54
	7	3		1				2			
5	7	3						2			57
5	6	3 3						2			58
5 5	7	3 3 3		1				2			59 60
5	6	3		1				2			61
5	7	3		1				2			62
5 5	7 6	4		2				2	…........		63
5	6	4		1				2			65
5	7	4						2			66
5	7	4									
\$35,768	\$372,368	843,794	\$25, 268	\$66,749	85, 075	\$2,588	$\begin{array}{r}866,156 \\ 89 \\ \hline 803\end{array}$	\$4,623	* ${ }_{\text {\$21,362 }}$	\$916	68
\$33,026	\$34, 842	810,373	\$ $\begin{array}{r}\$ 347 \\ \$ 1,513\end{array}$	$\stackrel{\$ 5,120}{\$ 5,070}$	\$1\%800	-9888	\$ $\$ 3,804$	\$1,575	\$10,015	${ }_{64} 85833$	${ }_{70}^{69}$
84,754 827,988	$\$ 25,167$ $\$ 309,074$	\$82,619	\$23,258	\$56,559	\$2,664	\$1,600	853,319	83,048	\$374,212	84,990	70
											71
						\$477, 230	\$3,736,658	81,133,954	\$11, 850, 136	\$524,500	72
\$1,359, 361	\$15, 128, 096	82, 164, 400	\$1, 453, 128	\$3,170,536	\$291,47\%	\$47,200					
14,451	40,916		8,988 $\$ 243,015$	24,375 599 514	4,777 $\$ 160,418$	1,800 $\$ 36,000$	33,197 $\$ 1,454,260$	4,670 $\$ 200,200$	r $\mathbf{4 5 , 4 7 0}$ $\mathbf{\$ 1}, 720,361$	7,490 182,120	73 74
\$549,650	\$1,945, ${ }^{\text {5 }}$, 238	-...............	$\$ 243,015$ 4,200	599,649	-9,9,104		106,676	2,560	-36,502	4,510 $\$ 1620$	75
47, 819	(85, $\begin{array}{r}835 \\ \$ 333,228\end{array}$		4, $\mathbf{8 1 2}, 700$	\$18, ${ }^{611}$	\$35,092	\$150	\$357, 647	88,460	\$140,047 ${ }_{\text {947 }}$	\$16,270	76
$\$ 158,520$ $\mathbf{2 1}, 862$	8333, 751,057		115, 572	208, 270	1,750	32,000	$\begin{array}{r}61,284 \\ 8660 \\ \hline 888\end{array}$	79,120 $\mathbf{8 7 8 5}, 010$	88, 627,543	\$257,550	78
\$213, 040	\$6,443, 115	\$1,459,300	\$1,060, 324	\$1,886, 067	\$15,000	$\$ 271,200$ 300	$\begin{array}{r}8660, \\ 6,085 \\ \hline\end{array}$	\$780, 760	28, 2121,323	\$207,460	79
1,661	限 $\begin{array}{r}31,927 \\ \$ 294,746\end{array}$		1,900 $\$ 10,900$	7,544 $\$ 60,205$	$\begin{array}{r}\text { 85, } \\ \hline 80\end{array}$	\$1,600	\$65, 095	\&4,404	\$137, 298	\$2,200	80
\$12,470	($\quad \begin{aligned} & \$ 294,746 \\ & \$ 20\end{aligned}$		- ${ }^{10,960}$	\$0, $\$ 21$			\$5,691		\$14, 161 167	\$21,000	81
\$10, $\mathbf{\$ 2 9 4}, 621$	\$5,286,548	\$559,300	\$73, 757	$\$ 178,738$	$\$ 59,099$	$\begin{array}{r} \$ 130,000 \\ \$ 2,210 \end{array}$	861,088 $\$ 10,160$	$\begin{array}{r} \$ 11,950 \\ \mathbf{8 4}, 200 \end{array}$	161,402 $\$ 54,025$	$\$ 13,150$	\| 82
\$12,639	- \$76,731	\$8,625	\$14, 145	$\$ 53,858$	$\$ 800$	$\$ 2,210$			-6,020		

IInciudes establishments distributed as follows: Alabama, 1; Arkansas, 1; New Hampshire, 1; South Dakota, 1; Wyoming, 1.

Table 6.-SLAUGHTERING AND MEAT

		Missouri.	Nebraska.	New Jersey.	New York.	North Da-	Obio.
	Materials used-Continued.						
	Rent of power and be	0		\$720	\$1,602		\$585
	Mill gupplies.	\$20,197	\$2 818,172	\$83,067	\$11,874	\$200	\$1 \$14,793
	All other materials	\$1,726,119	\$2, 414, 452	\$133,794	\$529,110	\$3,000	\$1,131,764
	Freight	\$98,797	\$183, 436	\$62,790	\$95, 889	\$300	\$249, 171
8889	ts: Total value	\$42, 229, 127	\$71, 018, 339	\$6,199,795	\$19, 624, 187	\$256, 160	\$19, 609, 304
	Beef- Sold fresh, pounds	160, 844, 314	305, 918, 049	2,517,020	21, 923, 500	1,055,000	35, 044,020
90	Value...........	\$11, 630,514	\$22, 509, 745	\$184,536	\$1,512,187	\$62, 625	\$2,530, 900
91	Canned, pounds	2,220,000	10,156, 391		577,980		1,200, 000
92	Value.	\$140, 000	\$564, 854		\$42, 430		878,500
93	Salted or cured, pounds	17,978,683	11,945, 633	245, 600	6,266, 142		4, 692, 000
94	Value	\$1,076,431	\$773, 966	\$32,540	\$574, 825		\$240, 740
95	Mutton, sold fresh, pou	9,960, 098	32,979, 157	3,451,000	1 695, 180	43, 500	1,341, 055
97	Value	\$758,171	\$2, 696, 984	\$261, 285	\$161,828	\$3, 915	\$138, 546
98	Veal, sold fresh, po	$1,312,989$ $\$ 184,121$	$\begin{aligned} & 812,589 \\ & \$ 67,029 \end{aligned}$	$\begin{aligned} & 729,160 \\ & \$ 74,616 \end{aligned}$	$1,854,640$ $\$ 161,963$	51,000 $\$ 4,590$	$1,473,318$ $\$ 137,784$
	Pork-						
99	Sold fresh, poun	101, 936,224	84, 101, 389	10, 2583,710	43, 203, 960	380,000 $\$ 24,400$	44,603,599
101	Sailed, pounds	93,266, 664	201, 807,678	7,776,468	25, 931,082	100,000	23,135, 649
102	Value	\$4, 869, 923	\$11, 958,021	\$522,538	\$1, 688, 843	\$9,000	\$1,589, 237
103	Hams, pounds	33,844, 254	66,273, 113	15,008, 818	44, 533, 108	400, 000	38,046, 139
104	Value	\$2,986, 608	\$6,321, 300	\$1, 463, 123	\$4, 354, 399	\$42,250	\$3, 638,830
105	Smoked bacon, sides, and shoulder, pounds	52, 392, 149	78, 409, 619	18, 868, 525	$51,749,929$	400, 000	53,168,262
106	Value	\$3,810,491	\$5, 894, 728	\$1, 557, 289	\$3,830, 833	\$39, 650	\$4,173, 926
107	Sausage, fresh or cured, pounds	10, 285, 213	-21, 323,639	6,258,444	15, 899, 263	166,000	14,391,065
108 109	All value other meat, sold fresh, poun	\$593, 989	\$1,483, 558	\$461,033	$11,222,909$ 520,000	\$11,500	81, 218,000 218,080
110	Value...................				\$54,700		\$19, 308
111	Refined lard, pounds	40,548,889	79,188, 586	8,567,664	26,519, 781	135,000	29,513, 654
112	Value.	\$2,310,669	\$4, 889, 132	\$533,536	\$1,745, 221	\$8,250	\$1, 892,866
113	Neutral lard, pounds	11, 425, 617	15, 612, 418	1, 450, 833	2,747,900		2, 863, 300
114	Value.	\$610,124	\$986, 368	\$87, 050	\$162, 346		\$210, 850
116	Oleomargarine oil, galions.	1,434,787	2,302, 914		34,490		76,000
116	Value.	\$857,419	\$1, 382, 115		\$17,245		\$38, 000
117	Other oils, gallons	367,529	419, 004		31, 448		
118	Value..	\$158, 736	\$128, 998		\$15, 846		
119	Fertilizers, tons	18,695	15,369	2,486	2,160		4,004
121	Hides, numb	$\$ 347,309$ 352,142	\$250, 808	\$57, 815	\$32,730		\$58, 630
122	Pounds	19,191,547	520, 469	11,660	66,757	2,100	95, 204
123	Yalue.	\$2,101,925	\$2, 903,001	\$32, 002	2, $\$ 258,129$	\$11,770	+ $\mathbf{\$ 4 2 6 , 7 0 9}$
124	Wool, pound			134, 000			
125	Value.			\$41,700			
127	All other products, val	\$3,262, 270	\$2,603, 360	\$87, 158	\$774, 292	\$37, 210	\$266, 717
					\$260	\$1,000	\$1,500
	Weight of animals slaughtered:						
128	Gross weight, on hoof	334, 627,509	592, 062, 734	4,618,000	49,369,500	1,965,000	74,660,494
	Net weight, dressed Sheep-	181, 543, 627	333, 771,242	2,517, 020	27, 377,550	1,055,000	41, 334, 495
131	Gross weight, on hoo	19, 621, 258	65,415,617	4, 670,729	3,308,550	81,000	2,832,662
	Net weight, dressed	9, 956, 592	31, 577, 511	2, 451,787	1,685,580	43, 500	1,436, 055
132	$\xrightarrow[\text { Hogs- }]{\text { Gross weight, on hoof }}$	418, 360, 473	688, 491,252	46, 423, 868	207, 408, 826	3, 100,000	257, 312, 059
133	Net weight, dressed	336, 661, 166	521, 602,090	36, 904, 312	164,681,514	2, 395, 000	202, 425, 850
18	Calves- ${ }_{\text {Gross weight }}$ on ho						
	Net weight, dressed.	1,218, 468	1,681, 349	1,729,692	1, 2900,520	66,000	2,608,550
	Comparison of products:	1, 218,46					1,473,816
136	Number of establishments reporting for both years	27	- 707	18	45	3	47
		\$39, 063,955	\$60, 570, 054	\$5,548, 500	\$17,884, 235	\$256, 160	\$18, 148, 971
	Power:	\$33, 240, 844	\$50,667, 334	\$5, 250,024	\$16, 262,682	\$238,612	\$16,549,564
139140	Number of establishments reporting	27		19	45		54
	Total horsepower .. Owned-	6,210	8,379	766	2,481	26	3,305
	Engines-						
141	Steam, number		39	27	68	2	90
142	Horsepower	4,980	7,160	738	2,276	26	3,152
143	Gas or gasoline, number						
144	Horsepower				39		
145	Electric motors, number	129	49		6		9
146	Horsepower	1,230	1,219		135		128
148	Other power, number						
	Rented- Horsepower						
149	Electric, borsepower.			28	30		5
1515	Otber kind, borsepower				1		25
	Furnished to other establishments, borsepower				12		
	Establishments classified by number of persons employed, not including proprietors and firm members: Total number of establishments						
152		31	8	22	53	3	60
153	No employees.						
154	Under 5.	8	1	3		1	
155	5 to 20.	14		10	25	1	22
156	21 to 60.	6	1	7	9	1	14
157	51 to 100.	2		2	8		6
159	251 to 500.	$\stackrel{2}{2}$					3
160	501 to 1,000	1	2		1		
16	Over 1,000.	1	3				1

PACKING, WHOLESALE: BY STATES, 1900-Continued.

[^126]In connection with these tables, the fact should be noted that in New York, Pennsylvania, and New Jersey, states showing a decrease in value of products for the last decade, the value of products of establishments engaged in slaughtering only considerably exceeded, in 1900 , the value of products of the establishments conducting packing operations. On the other hand, in Illinois, Kansas, Nebraska, Missouri, and Indiana, the packing industry led the slaughtering industry by a large margin. The figures are significant. They illus_ trate the importance of the demand of the market, in the large eastern cities, for fresh meat for local consumption, although a considerable proportion of the meat from eastern establishments is exported. The immense proportion of the western packing trade shows the local demand was inconsiderable as compared with the amounts necessary to supply the demand in other states and foreign countries.

Table 7.-COMBINED SLAUGHTERING AND MEAT PACK. ING: QUANTITY AND COST OF MATERIALS USED, 1890 AND 1900, WITH PER CENT OF INOREASE.

	1900	1890	Per cent of increase.
Total cost.	\$683, 583,577	\$480, 962, 211	42.1
Beeves slaughtered:	5,530, 911	5,422,044	
Cost	\$247, 365, 812	\$193, 348,810	27.9
Sheep slaughtered:	\$2,	-1,3,34,810	
Number	9,190, 490	6, 178,449	48.8
Cost	\$37, 137, 542	\$24, 358, 179	52.5
Hogs slaughtered: Number	30,654,333	22, 349, 451	37.2
Cost	\$278, 736,961	\$207, 228, 609	34.5
All other animals slaughtered: Cost	87,916, 399	\$5, 246, 661	50.9
Dressed meat:			
cost	\$54, 715, 496	\$25, 674, 343	113.1
Fuel -	\$2, 747, 606	\$1, 569,396	75.1
Reat of power and heat..........i......	\$30, 946	\$25, 240	22.6
plies and freight	\$574, 932,815	\$23,510, 973	133.6

A comparative summary between 1890 and 1900 , of quantities and cost of materials used, is presented in Table 7. The value of "all other animals slaughtered" shows an increase of 50.9 per cent. This item consisted almost wholly of poultry, and affords evidence of the extent to which this phase of slaughtering has increased among the concerns engaged in the slaughtering of cattle, hogs, and sheep. The total for the value of hogs killed amounted to $\$ 278,736,961$, an increase of 34.5 per cent in the decade. During the same period, the number of hogs killed increased in a greater ratio than their value, showing a decreased value for the single hog. The number of cattle killed increased only 2 per cent, while the cost increased 27.9 per cent. The number of sheep killed increased 48.8 per cent, while the value increased 52.5 per cent, showing an increase in the cost of the single sheep. The value of dressed meat purchased increased from $\$ 25,674,343$ to $\$ 54,715,496$, or 113.1 per cent, showing the extent to which establishments engaged in packing only increased. This item is largely a duplication of the
value reported of the animals slaughtered. The increase in the cost of fuel of 75.1 per cent was due principally to the more general use and improvement of the cold storage and refrigeratory processes, and the introduction of electric transportation in plants of some of the larger concerns. The increase of 133.6 per cent in the cost of all other materials was caused in part by the cost of materials needed in the more extended utilization of the "waste" materials, and the materials used in box factories, plants for the manufacture of tin cans and cases, etc., the increasing pressure of competition forcing the establishments to manufacture many of the articles previously purchased from outside concerns. This table shows that the cost of cattle per animal increased from $\$ 35.66$ to $\$ 44.72$, and the cost of the single sheep from $\$ 3.94$ to $\$ 4.05$, while that of the single hog decreased from $\$ 9.27$ to $\$ 9.09$.

Table 8 is a comparative summary between 1890 and 1900 , of the quantities and value of products, with the percentage of increase.

Table 8.-COMBINED SLAUGHTERING AND MEAT PACKING: QUANTITY AND VALUE OF PRODUCTS, 1890 AND 1900, WITH PER CENT OF INCREASE.

	1900	1890	Per cent of increase.
Total value.	\$785, 562, 433	\$561, 611, 668	39.9
Beef, sold fresh:			
Pounds	2, 920,458, 297	2, 708, 319,960	7.8
Value	\$211, 068, 934	\$152, 591, 963	38.3
Pounds...	112, 449, 021	133,428,456	115.7
Value	\$9,167, 531	\$8, 950, 582	2.4
Pounds	137,589, 303	576, 289,731	${ }^{176.1}$
		\$23,318, 414	± 58.6
Pounds	404, 183, 601	267, 353, 788	51.2
Pounds.	1,223, 038,988	1,125,648, 341	8.7
Value.	\$84,019, 387	\$66,719,585	25. 9
Pork, salted: 20.9			
Pounds.	1,375,524,758	1,264, 956, 237	8.7
Hams:		\$77, 737, 470	14.1
Pounds.	787, 526,973	529,387,213	48.8
Value	\$73, 793, 012	\$48, 732, 908	51.4
Smoked bacon, sides, and shoulders:			
Pounds	985, 722, 212	666, 229, 376	48.0
Value	$292,164,075$ $821,472,413$	$149,281,545$ $\$ 99298,335$	95.7 130.9
Refined lard: 130.9			
Pounds	891, 438, 417	536, 485, 829	66.2
Neutral lard:			
Pounds	129, 345, 282	104, 986, 465	23.2
Oleomargarine oll: 26.4			
Galuons.-	19,111, 120	16, 600,652	15.1
Other oils: ${ }^{\text {or }}$			15.9
Gallons.	8,245,569		86.2
Value	\$3, 440, 368	83, 590, 012	14.2
Tons..	168,510	115, 400	46.0
Value	\$3, 300, 132	\$2, 343, 777	40.8
Hides: ${ }^{\text {a }}$ (${ }^{\text {a }}$			
Pounds	336, 527, 907	5, 346, 384, 481,326	17.5
Value	\$33,925,911		59.7
All other products, including custom WOrk.	\$3, 335, 824	\$2,009,133	66.0
	\$63, 174, 775	\$26,067, 717	142.8

Two notable features of this table are the decrease in the quantity and value of the salted and cured beef,
and the increase in the value of "all other products," due to the increase in the production and value of the the so-called by-products. Salted beef, while it has decreased both in quantity and in total value, yet has increased in value per pound, as is indicated by the fact that the percentage of value did not fall so fast as did the percentage of quantity produced. The value of " all other products" has increased from $\$ 26,067,717$ to $\$ 63,174,775$, or 142.3 per cent. Compared with the rate of increase in the total value of all products of 39.9 per cent, it increased very nearly three and one-half times as fast. Of the increase of $\$ 223,950,765$ in the value of all products, the increase of $\$ 37,107,058$ in the value of "all other products" constituted 16.6 per cent, or very nearly one-sixth. The production of beef, sold fresh, is so large as to be almost incomprehensible$2,920,458,297$ pounds were produced in 1900 , an increase of $212,138,337$ pounds, or 7.8 per cent, over 1890 . The value of this beef increased in greater proportion, advancing from an average price of 5.6 cents per pound in 1890 to 7.2 cents per pound in 1900 , or 28.6 per cent. Of canned beef, $20,979,435$ fewer pounds were canned in 1900 than in 1890 , while the value increased by $\$ 216,949$. Beef, salted or cured, suffered a decline in production of $438,700,428$ pounds, falling from $576,289,731$ pounds to $137,589,303$ pounds, or 76.1 per cent. The decrease in value was $\$ 13,656,580$, or 58.6 per cent. Of mutton sold fresh, there was a gain of $136,829,813$ pounds, or 51.2 per cent. The value of the fresh mutton increased $\$ 10,965,196$, or 49.8 per cent. The quantity of pork sold fresh and of pork salted each increased 8.7 percent. The values of these items, however, show considerable variation, the value of the fresh pork increasing 25.9 per cent, and of the pork salted 14.1 per cent. Both show an increased value per pound.
The production of hams increased $258,139,760$ pounds, or 48.8 per cent, while the increase in value was $\$ 25,060,104$, or 51.4 per cent. The production of smoked bacon, sides, and shoulders in-
creased 48 per cent, and the value 67.6 per cent. In 1900 both the production of these and their value exceeded the production and value of hams. The production of sausage, fresh and cured, almost doubled in quantity during the decade, increasing 95.7 per cent, while the gain in value was 130.9 per cent. The quantity of both refined and neutral lard shows a large percentage of increase, indicating, when compared with the production of fresh and salt pork, that a greater portion of the carcass was being devoted to lard than formerly. This is due probably to the fact that lard is considered one of the most valuable products of the hog. The production of oleo oil increased 15.1 per cent in quantity, but fell 5.9 per cent in value. While this decrease in value was largely due to increased production, caused by improved methods of production, yet it is not possible to ascribe the whole decrease to this fact, since the price of this oil is fixed in Rotterdam, the greatest oleo market in the world, where American oleo oil is brought into competition with that from Germany, the Netherlands, and other nations. Under "other oils" the production increased 86.2 per cent, while the value fell 4.2 per cent. The value of fertilizers also fell, while the quantity of production increased. The number of hides increased, although their total weight fell off, showing a decrease in the weight of the average hide, while their value increased 59.7 per cent. The value of the wool increased in a much larger proportion than did the quantity, the value increasing 66 per cent and the quantity 18.5 per cent. This product of $13,182,146$ pounds of pulled wool amounted to 35.6 per cent of the $37,000,000$ pounds of pulled wool produced in the United States during the calendar year of 1900, as estimated by the National Association of Wool Manufacturers.
Table 9 is interesting in showing the extent to which this industry has tended to group itself about certain centers, and the relative importance of these centers.

Table 9.-SUMMARY, CITIES HAVING A PRODUCT VALUED AT $\$ 1,000,000$ AND OVER: 1900.

Table 9.-SUMMARY, CITIES HAVING A PRODUCT VALUED AT $\$ 1,000,000$ AND OVER: 1900-Continued.

	$\begin{aligned} & \text { Allegheny, } \\ & \text { Pa. } \end{aligned}$	$\begin{aligned} & \text { Baltimore, } \\ & \text { Md. } \end{aligned}$	Boston, Mass.	$\begin{aligned} & \text { Ruffalo, } \\ & \text { N. Y. } \end{aligned}$	$\begin{gathered} \text { Chicago, } \\ \text { Ill. } \end{gathered}$	$\begin{gathered} \text { Cincinnati, } \\ \text { Ohio. } \end{gathered}$	Cleveland, Ohio.	Dayton, Ohio.
cts								
otal valu	\$3,996, 807	\$7,066,461	\$1, 329, 010	811, 601, 167	\$256, 527, 949	810, 370, 177	\$7,514, 470	\$1,097, 525
Sold fresh, pounds	258,977	6,984, $\mathbf{8} 50$	6, 214, 5600	30,504, 150	${ }^{843,262,243}$	23, ${ }^{2988,890}$	8,141,940	4,335, 220
Salted or cured, poun	59,700	\$307,820		+1,500,	${ }_{617,660,743}$	+1,650,000		32,000
Salted value	${ }_{88,150}$	\$24,959		\$105, 000	${ }_{\text {¢ }}{ }^{6}$			\$4, ${ }^{32}$
Canned, pounds				500,000 $\$ 35,000$	$76,296,560$ $86,446,283$	$\begin{aligned} & 1,200,000 \\ & \$ 78,500 \end{aligned}$		
tton-								
Sold fresh, pounds	1,369,520	$\begin{gathered} 6,966,000 \\ \$ 768,860 \end{gathered}$	703,200 858,614	9, 379, 720 \$770,826	$137,228,651$ $\$ 11,053,224$	$1,460,850$ $\$ 125,965$	626,318 \$62, 631	${ }_{189}^{123,915}$
Pork-								
Sold fresh,	6, $\mathbf{8} 511,068182$	$\begin{array}{r}10,276,713 \\ \hline 8995 \\ \hline 807\end{array}$		$24,843,910$ $81,737,751$	$345,967,335$ $824,416,666$	24,732, 702	$\begin{array}{r}15,814,790 \\ \$ 1 \\ \hline 1223,916\end{array}$	1, 181, 89000
Salted, pou	2,507, 806	7,694, 909		12, 939,640	464, 500, 797	${ }_{9} 9,248,127$	13, 380,522	97,000
Value	\$165,385	\$ $\$ 550$, 783		\$813,946	832, 293, 588	\$618,446	\$939,101	86, 965
Hams, pounds	6,868,842	10,969, 344	2,000,000	15,253, 572	215, 263, 955	23, 137,011	11,631,435	1,756,120
Smoked bacon, sides, and shoulders, pounds.	- ${ }^{869505,134} 4$		\$8180,000	\$1, $81,399,099$				8168,050
Value.	\$500,763	\$1, 371,110	\$40,000	82,008,615	${ }_{\$ 12,688,911}$		82,082, 889	\$178,907
Sausage fresh or	4,698,460	9,455, 752	780,000	6,556,300	91, 766,941	6,133, 780	5,452,045	619, 100
Refined lard, pounds		8647,538 $4.440,261$	$\$ 51,000$ 100,000	+443, ${ }^{* 315}$	877,588, ${ }^{\text {3 }}$	\%4822, 669 $17,786,463$	$\begin{array}{r}\text { P418,747 } \\ 7160 \\ 743 \\ \hline 188\end{array}$	- 9350,661
Veutral Value.	\$363,805	4289, 882	\$70, 000	\$917, 459	\$18, 124,463	\$1,099, ${ }^{\text {che }}$	\$4844,693	\$, $\$ 140,057$
Neutral lard, pounds				2, 3479	$44,785,883$ $83,53,183$	633,300 $\$ 38,000$	$2,000,000$ $\$ 160,000$	150,000 $\$ 7,500$
Oleo oil, Value....	494, 372	\$319,666		\$141, 346 34,490		\$88,000	\$160,000	\$7,500
Oeo oil, galue.	\$244,687			817, 845	\%85, ${ }^{827,763}$	\$88, 000		
Other oils, gallo	3,100	6,000		27, 648	4, 335, 991			
Value.	\$1,550	\$2,000		\$14, 726	\$1,990, 360			
Fertilizers, tor	+ $\begin{array}{r}2,520 \\ 879297 \\ \hline 8.297\end{array}$	\% 6900	\$2 ${ }^{2500}$	- ${ }^{2,312} \mathbf{3 1 2}$	\$8998,452	\$33, ${ }^{2,206}$	${ }^{1,623,307}$	125
Hides, number.	23, ${ }^{3} 7$	66, 237	88, ${ }^{823}$	100,898	1,779,578	${ }_{87,038}$	16,725	${ }_{9}^{11,580}$
Pounds	833, 530	1,167,330	873, 230	3,968,057	104, 873,510	3,479, 270	797, 817	${ }^{561.950}$
Wool pounde	\$90, 843	893, 860	\$78,820	\$353,460	\$10, 738, 897	\$328,692	\$79, 551	840,771
Wool, pounl		81, 385		8103,765	\$1,935, ${ }^{8,37}$			
All other products, including custom work..	\$21i, 131	8486, 664	\$209,501	\$646, 094	\$30, 966 , 762	\$334, 388	\$119,050	\$121,774
	Denver, Colo.	Detroit, Mich.	East St. Louis, Ill.	Indianapolis, Ind.	Jersey City, N.J.	Kansas City, Kans.	$\begin{gathered} \text { LouisviIle, } \\ \text { Ky. } \end{gathered}$	$\begin{aligned} & \text { Milwaukee } \\ & \text { and Cudahy, } \\ & \text { Cis. } \end{aligned}$
Number of estahlishmen								
Capital Salaried officials, clerks, etc.	\$833, 618	$\$ 1,184,776$	\$3, 183, 288	$\$ 3,807,246$	$\begin{aligned} & \$ 473,485 \\ & 27 \\ & \hline 18 \end{aligned}$	815, 114, 601	$\$ 1,218,426$	\$3,578, 690
Salaries................	836, 496	\$59, 681	\$138, 259	128,834	\$26, 882	\$1, 679,436	845, 739	\$140, 333
Wagesearn	\$103, 274		- ${ }^{2,159}$	$\begin{array}{r}1,943 \\ \hline 788,296\end{array}$		7,713		${ }_{\text {c30 }}{ }^{1,293}$
Misceilianeousexpen	\$33, 184	\$70,587	\$305, 694	\$218, 889	$\begin{aligned} 1200,707 \\ 858,342 \end{aligned}$	\$1, 919,411	\$100,312	\$885,102
Materials used: Total cost.	82, 400, 458	\$3,628,440	\$25, 370, 643	\$17,400,330	\$5, 872, 946	\$65, 082,581	\$3,828,486	\$11, 405, 186
Beeves slaught	26,715		361, 873		17,530	918,206	13,088	45,442
Sheep slaughte	\$1,095, 4175		\$13, 242,581	$\$ 3,825,688$ 22,607	${ }^{8690} \mathbf{2 6 9 , 5 4 0}$	\$37, 811,089	\$482,242	\$1,720, 449
Cost.	\$204, 363	\$124,845	${ }_{8929,861}$	\$72, ${ }^{203}$	\$1,065, 717	\$2, 294, 33	\$19, 996	\$138,363
Hogs slaughter	${ }^{911,866}$	295,728	1,134,662	1,221,748	490, 607	2,599,841	474, 915	899, 374
Cost.	8888,452	\$2,554, 729	\$9,212, 483	\$11,088, 874	\$2, 861, 244	\$21, 402, 061	\$3,157, 874	8,217,533
Dressed meat,			- ${ }_{\text {\$271, }} \mathbf{2 6 4}$		- \$316,543	\$289,385	\$12,058	
All other materials	${ }_{\$ 30,536}$	${ }_{\$ 8137,771}$	\$8816,131	-8,4915,929	\$174,222	\$2,760, 886	\$106,816	\$1,088, 303
Tucts:								
Total $\begin{gathered}\text { Beef } \\ \text { Bal }\end{gathered}$	947	84, 047, 749	\$27,676, 818	\$18,781,442	\$6, 243, 217	\$73,787,771	\$4, 444, 978	\$13, 045, 979
Sold fresh, poun	16,000, 250	9,241, 600	185, 903, 693	44, 889, 495	11, 9991,650	447, 087, 633	5, 142,439	23,682,779
Salted or cured,	\$1,090, 31800		\$11,301,659	82,775,363	\$932,505	\$80, 892,151	\$8362, $\mathbf{4 8 2}$	81, 5275,321
Value.	81, 250			8124,098		\$6536,280	- ${ }_{839,086}$	\$85, 267
Canued, po				86,976		14,034, 996		
Mutton-				\$8,722		\$1,341, 215		\$5,445
Sold fresh, poun	2,146,245	$\begin{aligned} & 1,381,000 \\ & 8116,088 \end{aligned}$	$\begin{array}{r} 10,229,819 \\ \mathbf{\$ 7 4 0 , 3 1 9} \end{array}$	960,360 ¢69 979	11,290,773	24, 260, 625	260,276	1,532,303
Pork-							\$20,	\$127,259
Sold fresh, pound	$\begin{array}{r}6,240,000 \\ \$ 382 \\ \hline 200\end{array}$	$\begin{array}{r} \mathbf{i} 0,237,200 \\ \mathbf{S} 693,282 \end{array}$	58, 281,492	8,518,426	48,273, 81	79, 695, 358	4,043, 610	23,632,494
Salted, pound	8,358,000	11,630,000	\% $65,682,697$	22,180, 134	1, $1,000,000$	\%1,72, ${ }^{\text {\%76 }}$	- $21,180,738$	\%1,987,711
Value	\$345,000	8772,400	\$3,764,849	81,317,137	\$800,000	\$4, 375,466	81,077, 335	\$4,242,598
Hams, pounds	2,360,000	${ }^{7} 83860000$	8,417,044	32,365, 820	1, 6000000	53,040, 207	10,490, 435	24, 687,987
Smoked bacon, sides, and sh	1,950, 000	13,790,000	16,827,969	+106, 327,000	- 813835,175		- 9957,501	
Vausage Value.	\$122,000	8968,200	\$1, 884,579	\$87,357, 196	\$179, 454	\$8,575, 144	- ${ }_{\text {\$760, }, 282}$	\$ ${ }^{\text {5 } 585,053}$
Sausage tresh or cured,	$2,057,800$ $\$ 123,624$ 180	$\begin{array}{r}2,462,600 \\ \$ 167 \\ \hline 1000\end{array}$	$2,641,619$ 8158,694 8		500, 000	21, 2770,287	3,859,556	7,219,189
Refined lard, po	4,950,000	790,000	36657,723	38,759,536	2, 2344,682	- $81,279,985$	- \$271, 8 87	\$526,134
Neutral Vard po	\$235,000	860, 300	\$195, 627	82,061, 668	\$, 8128,105	\$4,766, 10	$6,306,946$ $\$ 332,528$	$17,799,281$ $\$ 972,153$
Neutral lard, pounds			669,645 8859	3,576,980		23, 675, 733	1,881, 570	2,690, 051
Oleo oil, gallon			1,089,041	24,800		1, 928,813	\$0, 050	\$152,544
other Yalue			3679, 809	947, 745		\$1, 204, 905		824,048
Other ons, V , gailue			49, 200	100,000		1,268,691		3,931
Fertilizers, tons	160	360	13,257	4,464		11,775	75°	${ }_{3,157}$
Hides, number	81,710	\$5, 400	\$309, 074	\$66, 623		\$225, 317	\$23,256	847, 324
Hides,		22,578	890, 801	83,507	48,093	890, 963	15, 019	66, 448
Value	$1,700,680$ $\$ 8120,812$	1, ${ }_{866,065}$	$23,118,317$ $\$ 2,170,981$	5,301,425 $\mathbf{\$} 561,279$	$1,472,980$ $\$ 127,357$	49,935, 865	798,677 $\$ 82,063$	2,828, 135
Wool, pounds			\$2,17, 981		\$27,357	\$5, $\begin{array}{r}14,648 \\ 2,000\end{array}$	\$82,063	\$243,954
All other products, including custom work..	\$78,754	866,765	82,557,037	\$586,048	8682,102	82, 521,297		
			-			\$2, 521, 297	\$128,465	\$955, 212

Table 9.-SUMMARY, CITIES HAVING A PRODUCT VALUED AT $\$ 1,000,000$ AND OVER: 1900—Continued.

Table 9.-SUMMARY, CITIES HAVING A PRODUCT VALUED AT $\$ 1,000,000$ AND OVER: 1900 -Continued.

	St. Louis, Mo.	St. Paul, Minn.	San Francisco, Cal.	Seattle, Wash.	Sioux City, Iowa.	Somerville, Mass.	South Omaha, Nebr.	Washington, D. C.
Products-Continued. Total value-Continued.								
Sausage, fresh or cured, pounds	9,146,940	505,000	702,375	604, 500	3,031,639	9,004,900	21, 321, 139	2,141,500
Value......................................	\$5527, 498	\$42, 300	\$57, 257	\$47, 595	\$180, 902	\$720, 390	\$1, 483,458	\$191, 330
Refined lard, pounds	13,973, 689	1,000,000	1,652,687	1,287,000	18,451,414	40,000,000	75, 228, 106	1,404, 000
Neutral Value....................................	\$865, 689	\$70,000	\$124, 168	\$126, 825		\$2, 400,000	\$4,671,699	\$106,780
Neutral lard, pounds .-..	$2,953,516$ $\$ 177,212$				5,410, ${ }^{\mathbf{\$} 351,677}$		$15,612,418$ $\$ 986,368$	$\mathbf{2 6 , 0 0 0}$ $\$ 1,820$
Oleo oil, gallons.	350,000				175, 708	82,021	2, 302,914	
Value.	\$210, 000				\$87, 854	\$31, 250	\$1, 382, 115	
Other oils, gallons	15,300	600	3,710	4,200			419,004	
Fertilizers tons	\$4, 590	\$192	\$2, 188	\$2,480			\$128, 998	
Fertilizers, tons	7, 318	370	1,002	3, 600	2,247	3,542	14, 394	120
Hides, number.	\$142, 186	\$3,900	118, 135	\$90,000	85, 51.067	\$66,600 61	$\$ 239,114$ 526,484	\$2,160
Pounds	6, 385, 531	509, 750	5,960,608	1,208, 580	2,908,140	1,607,480	31,337, 139	988, 250
Value	\$666, 130	\$36, 655	\$582,876	\$120,987	\$288, 668	\$149,117	\$2,917, 953	\$83,977
ool, pound			18,000 $\$ 3,800$			1,450,000		
All other products, including custom work..	\$453,690	\$334,534	\$1,064, 122	\$108,605	\$21, 917	\$1,164, 645	\$2, 103,407	\$97,412

Chicago led in value of products, as is shown in the diagram accompanying the table. After Chicago came Kansas City, then South Omaha, New York city, St. Joseph and South St. Joseph, Mo., East St. Louis,

Indianapolis, Milwaukee and Cudahy, Wis., St. Louis, Philadelphia, Buffalo, and Cincinnati, in the order named. The relative importance of these cities, in the value of products, is shown in the following diagram:

VALUE OF PRODUCT
Millions of DoZlars

In number of establishments Baltimore ranked first, with 73 establishments, followed by Philadelphia with 58, and New York city with 52 , while Chicago, with 38, stood fourth. In the order of capital invested, wages paid, and number of wage-earners, the relative rank of the cities followed closely the same rank as under the value of production. The widest variations occurred in the average amount of capital invested and average
value of product per establishment in the different cities. South Omaha had the largest average single establishment, with an average investment of $\$ 2,609,570$, Kansas City's average capitalization per establishment was $\$ 1,889,325$; Chicago's, $\$ 1,766,788$; South St. Joseph's (with St. Joseph), $\$ 1,040,180$. In the average value of products per establishment, South Omaha led with $\$ 11,314,958$; Kansas City had $\$ 9,223,471$; Chicago,
$\$ 6,750,736$; and South St. Joseph (with St. Joseph), $\$ 5,940,995$.
Table 10 presents the statistics of exports of live stock, and Table 11 the figures for the exports of meat products, as shown by the tables of the Bureau of Sta-
tistics for the fiscal years from 1890 to 1900, both inclusive. A comparison of Table 11 with Table 8, on page 22, shows the proportion of the total product that is sent abroad.

Table 10.--QUANTiTY AND VALUES OF ANIMALS IMPORTED, AND OF DOMESTIC AND FOREIGN ANIMALS EXPORTED: 1890-1900. ${ }^{1}$

${ }^{1}$ Statistical Abstract of the United States Treasury Department, 1899-1900.
Table 11.-QUANTITY AND VALUE OF SLAUGHTERING AND MEAT PRODUCTS IMPORTED, AND OF DOMESTIC AND FOREIGN SLAUGHTERING AND MEAT PRODUCTS EXPORTED: 1890-1900. ${ }^{1}$

Table 11.-QUANTITY AND VALUE OF SLAUUGHTERING AND MEAT PRODUCTS IMPORTED, AND OF DOMESTIC AND

ARTICLES.	1900	1899	1898	1897	1896	1895	1894	1893	1892	1891	1890
Exports of domestic-Contin											
Meat products:											
Beef, canned, pounds ..	55,553,745	38, 385,472	37, 109, 670	54, 019,772	63, 698, 180	64, 102, 268	55, 974, 910	79, 089, 493	87, 028, 084	109, 585, 727	82, 638. 507
Value	\$5, 233, 982	83, 503, 293	\$3,279, 657	\$4,656, 308	\$5, 636,953	\$5,720,933	\$5,120,851	\$7, 222, 824	\$7, 876, 454	\$9,068,906	\$6, 787, 193
Beef, fresh, pounds	329,078,609	282, 139,974	274,768,074	290, 395,936	224, 783, 225	191, 338, 487	$193,891,824$	206, 294, 724	220, 554, 617	194, 045, 638	173, 237, 596
Value Beef, salted or pickled,	\$29, 643, 830	\$23, 545, 185	\$22,966,556	\$22, 653, 742	\$18,974, 107	\$16, 832, 860	\$16, 700, 163	\$17,754, 041	818, 058, 732	\$15, 322, 054	\$12,862, 384
pounds	47, 306,513	46,564, 876	44, 314, 479	67, 712,940	70, 709, 209	62,473, 325	62, 682,667	58, 423, 963	70,204,736	90, 286, 979	97,508,419
Value-	\$2, 697, 340	\$2, 525,784	\$2,368,467	\$3, 514, 126	\$3, 976,113	\$3, 558, 230	\$3, 572, 054	\$3, 185, 321	\$83,987, 829	\$5, 048, 788	85, 250,068
Beef, other, cured, pounds	2,319,165	1,579,313	1,589, 052	939,448	514, 303	821,673	1,218, 334	898,920	953, 712	1,621,833	102,110
Value	\$197, 051	\$145,996	\$ \$150, 051	\$83, 701	\$59,371	\$73,569	1, \$100, 631	887,776	\$92, 524	\$147,518	199,223
Tallow, pounds..........	89,030,943	107, 361, 009	81,744, 809	75, 108, 834	52, 759, 212	25,864,300	54, 661, 524	61, 819,153	89,780, 010	111, 689,251	112,745,370
Value	84, 398,204	\$4,367, 356	\$3,141,653	\$2, 782, 595	\$2, 323, 764	\$1,293,059	\$2, 766, 164	\$83,129, 059	\$4, 425, 680	\$5, 501, 049	455,242,158
Bacen, pounds	512,153, 729	562, 651, 480	650, 108, 983	500, 399, 448	425, 352, 187	452, 549, 976	416,657, 577	391, 758, 175	507, 919,830	514, 675, 557	531, 899, 677
Value .--	\$38,975, 915	\$41, 657, 067	\$46,380,918	\$34, 187, 147	\$835,442, 847	\$37, 776, 293	\$38, 358, 843	\$35, 781, 470	\$39, 334, 933	\$37, 404, 989	\$39,149, 635
Hams, poun	196, 414, 412	225, 846, 750	200, 185, 861	165,247, 302	129, 036, 351	105, 494, 123	86,970.571	82,178, 154	76,856,559	84, 410,108	76,591, 279
Vork canned pounde-	820, 416, 367	\$20, 774, 084	\$18, 987, 525	\$15, 970, 021	\$12,669, 763	\$10, 960, 567	\$9,845, 062	\$9,933,096	\$7, 757, 717	\$8,245, 685	\$7, 907, 125
Pork, canned, pounds.. Value......---	$8,496,074$ $\$ 658,402$	${ }^{(2)}{ }^{2}$	$\xrightarrow{(2)}$	(2)	(2)	$\xrightarrow{(2)}{ }^{2}$	${ }_{(2)}^{(2)}$	(2)	*(${ }_{(0)}$	\$0, ${ }_{(2)}$	\$7, ${ }^{(2)}$
Pork, fresh, pounds...	25,946,906		12, 224,285	1,306, 424	744, 656	$\stackrel{(2)}{818,581}$	1, 168, ${ }^{(2)}$	${ }^{(2)} 912,644$	(2) 746	(2) 875	(2)
Value	\$1, 925, 772	\$2, 722, 661	12, \$815,075	$1,306,424$ 494,816	744, 656	818,581 $\$ 60,660$	$1,168,647$ 892,095	912,644 $\$ 79,317$	377,746 $\$ 30,246$	818,875 $\$ 56,358$	279, 463 $\$ 16,406$
Pork, salted or pickled, pounds.	183, 199, 683	137, 197, 200	88,138, 078	66, 768,920	69,498, 373	58,266,893	63,576, 881	62,459, 722	80,336,481	81, 317,364	79, 788,868
Value...---..........	\$8,243,797	\$7, 917, 066	84, 906,961	\$3, 297, 214	\$3, 975, 461	\$4, 138,400	85, 967,773	62, 459, $\$ 4.116,946$	$80,336,481$ $\$ 4,792,049$	$81,317,364$ $\$ 4,787,343$	79,788, 868 \$4,753,488
Lard, pound	661, 813, 663	711, 259, 851	709, 344, 045	568, 315, 640	509, 534, 256	474, 895, 274	447, 566, 867	365, ${ }^{4} 938,501$	¢4, $460,045,776$	- $\begin{array}{r}\text { 84, } \\ 498,343,927\end{array}$	$\begin{array}{r} \$ 4,753,488 \\ 471,083,598 \end{array}$
Value	\$41, 939, 164	\$42, 208, 465	\$39, 710, 672	\$29, 126, 485	\$33,589,851	\$36,821, 508	\$40, 089, 809	\$34, 643, 993	\$33, 201, 621	\$34,414, 323	\$33, 455, 520
Lard compounds and substitutes for (cottolene,							-10,08,809	,	,4,201,621	+1, 14, 32	น38, 465,520
lardine, etc.), pounds...-	25, 852, 685	22, 144, 717	21, 343, 028	16,261,991	1,649,923	444, 045	524,390	(2)	$\left.{ }^{3}\right)$	$\left.{ }^{8}\right)$	${ }^{(3)}$
Value	\$1, 475, 064	\$1, 200, 231	\$1, 118, 659	8857, 708	\$102,279	834,309	\$39,693	\$44,832	(3)	(8)	(a)
Casings for sausages	\$2, 307, 571	\$1, 671, 052	\$1, 821,519	\$1, 514, 651	\$1, 771, 680	\$1,581, 891	\$1,280, 514	\$1, 409, 280	\$878,675	\$841,075	\$697,772
Mutton, pounds	773,760 \$64,313	- $\begin{array}{r}379,110 \\ \$ 29,427\end{array}$	329,169 $\$ 27,961$	361,955 - $\$ 28,341$	422,950 $\$ 31,793$	51 51,449 $\$ 47,832$	$1,197,900$ $\mathbf{2 , 1 7 4} 404$	108,214	101, 463	$\begin{array}{r}199,395 \\ \hline 1889\end{array}$	+256,711
			132, ${ }^{\$ 279,961}$	113, ${ }^{\$ 28,341} 506,152$	103, ${ }^{\$ 31,793}$	78, 847,832	123, \$174, 404	113, 989,175	- 99.022	\$18,969	- \$21,793
Value .-. ---	146, $\$ 10,503,856$	$142,390,492$ $\$ 9,183,659$	$132,579,277$ $\$ 7,904,413$	113,506, 152	103, $88.087,756$	78, 098,878	123, 295, 895	113, 939,363	91,581,703	80,231, 085	68,218,098
Oleomargarine (imitation	\$10,503, 856	\$9, 183, 659	\$7, 904, 413	\$6,742, 061	\$8,087,905	\$7, 107,018	\$11, 942, 842	\$11, 207, 250	\$9,011,889	87, 859, 130	\$6,476, 258
butter), pounds	4, 256, 067	5,549, 322	4,328,586	4, 864,351	6, 063, 699	10,100,897	3,898,950	3,479,322	1,610,837	1,986,743	
All other meat products-	\$416, 544	\$509, 703	\$386,297	\$472, 866	\$587, 269	\$992,464	\$475,003	\$416, 386	\$195, 687	1 \$255, 024	$\begin{aligned} & 2,080,520 \\ & \$ 297,264 \end{aligned}$
Canned.	\$1,724, 064	${ }^{(2)}$	$\left.{ }^{2}\right)$	$\left.{ }^{2}\right)$	${ }^{2}$)	$\left.{ }^{2}\right)$	(2)	$\left.{ }^{2}\right)$	(2)	(2)	
All other .-.	\$3, 941, 394	${ }^{(2)}$	(2)	(2)	(2)	(2)	(2)	$\begin{aligned} & (2) \\ & (2) \end{aligned}$		$\left(\begin{array}{l} 2 \\ 2 \\ 2 \end{array}\right.$	(2)
, Stearin, pounds	$\left.{ }^{4}\right)^{\prime}$	1,174, 167	3,987, 258	1,388, 555	668,585	36, 429	321,898	${ }^{2} 2^{2}$	$1,360,513$	$1, \stackrel{(2)}{2}_{1}^{347}, 386$	$2,520,142$
Valuc	(4)	1, \$55,821	-\$188,579	1,870,534	\$34,289	\$2,157	821,898	$\$ 14,669$	$\begin{array}{r} 1,360,510 \\ \$ 66,470 \end{array}$	$\begin{array}{r} 1,347,386 \\ \$ 62,194 \end{array}$	$\begin{array}{r} 2,520,142 \\ \$ 103,043 \end{array}$
Exports of foreign.	,										
Bones, crude	${ }^{(2)}$	\$4,168	\$5,861	\$91	(2)	\$13,454	\$4,007	\$1,910	\$1,908	\$1,681	\$1,053
Bristles, crude, not sorted, bunched, orprepared, pounds.	446	4,321	40 40	(2)	(2)	3,593	${ }^{(2)}$	(2)	(8)	(2)	(2) 1,053
Value	\$220	\$2,740	\$18	(2)	(2)	3,098 $\$ 974$	(2)	(2)	$\binom{2}{2}$	$\left(\begin{array}{l}\text { (2) } \\ (2)\end{array}\right.$	$\binom{2}{2}$
Bristles, sorted, bunched, or prepared, pounds.	42,154	46,366	25, 481	36, 268	33, 015	23, 317	60,880	26,046	36,153		
Value...	\$21,952	819,150	\$21, 571	\$36, 096	\$21, 465	\$16, 468	\$41,381	\$24,092	36,103 $\$ 28,643$	8834, 608	47,226 $\$ 39,473$
Glue, pounds Value	3,359	7,216	23,109	16,247	65,484	- 8,971	40,148	29, 748	(2)	634,608	5, 5, ,
Value Grease	\$ \$245	$\$ \$ 579$	\$2, 809	\$1,486	\$6,615	\$ $\$ 865$	\$3, 035	\$1,908	$\$ 1,570$	\$706	\$521
	$\$ 3,699$ $\$ 1,408$	$\$ 20,650$ $\$ 2,477$	\$4, (2)	\$1,138	\$4, 807 $\$ 440$	\$1,525	\$8,578	\$8,691	\$678	\$1,033	\$2,556
Hoofs, norns, and parts of, unmanufactured	$\$ 1,408$ $\$ 1,315$	$\$ 2,477$ (2)	(2) (2)	(1,367	\$440	\$602	$\begin{array}{r}\$ 96 \\ \\ \hline 129\end{array}$	$\left.{ }^{2}\right)$	${ }^{2}$)	${ }^{2}$)	(2)
Sausages, bologna.	\$1,828	${ }^{(2)} \$ 15$	${ }^{(2)} \$ 24$	\$892	$\$ 147$ $\$ 234$	$\$ 438$ $\$ 36$	\$129 $\$ 54$	${ }^{(2)} \$ 81$	(2)	$\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right.$	(2)
Meat products:			, 24		\$234	\$36	\$04	\$81	(2)	${ }^{2}$	(1)
Meats and meat extracts .--	\$2,834	\$15,464	\#6, 662	86,963	82,387	\$1,980	\$1,745	84,012			
All other-	\$4,545	861,075	*8, 132	\$1,304	$\$ 310$	\$205	\$978	\$116	\$ $\$$	\$4, 360	$\begin{aligned} & \$ 891 \\ & \$ 277 \end{aligned}$
Hides and skins, other than fur: Cattle hides, pounds	2,330, 290	3, 548, 455	7,057, 057	$\left.{ }^{2}\right)$	(2)						
Value	\$296, 478	\$432, 460	\$678, 167	(2)	(2)	(2)	(2)	(2)	${ }^{(2)}$	$\left(\begin{array}{l}2 \\ (2)\end{array}\right.$	(2) (2)

1 Statistical Abstract of the United States Treasury Department, 1899-1900.
${ }^{3}$ Included with "lard."
${ }^{4}$ Included with "lard compounds."

HISTORICAL AND DESCRIPTIVE. ${ }^{1}$

The year 1493 witnessed the first importation of cattle to America, when it is said Columbus brought cattle, sheep, and hogs with him on his second voyage. The Portuguese took cattle to Newfoundland and Nova Scotia in 1553, where they increased rapidly. ${ }^{2}$ Black cattle, swine, and sheep were introduced into Florida

[^127]about 1565, and neat cattle into Canada by the French in 1608. In 1609 the English colony at Jamestown possessed between 500 and 600 hogs and some sheep. They were killed or carried off by the natives or eaten by the colonists in their destitution. Sir Ralph Lane brought cattle from the West Indies to Virginia in 1610, the slaughter of which was forbidden on pain of death. In 1611 Sir Thomas Gates arrived with a hundred or more cows and some swine. To this stock were added in 1613 a few obtained by a raid on the French settlements in Arcadia. In 1620 the cattle had increased to 500 and in 1649 to 20,000 . They were early exported to New England, and many were killed to supply the
shipping from London, Bristol, Holland, and New England. By 1656 the sale of beef, pork, and bacon to the shipping and to the West Indies was a source of much profit.
In New England the first neat cattle, consisting of three heifers and a bull, were introduced into the Plymouth Colony by Edward Winslow in the spring of 1624. The number grew to about 200 iu 1629. ${ }^{1}$

From that time cattle increased rapidly in number and rose in value. During the Indian wars live stock was a precarious property, but nevertheless continued to increase and furnished articles for exportation. The continued arrival of new settlers kept up the demand for cattle and maintained their price at from $£ 20$ to $£ 30$ a head. Their number increased rapidly, but they were too valuable for slaughter. As emigration decreased, stock was well diffused through New England, and the colonists became consumers and exporters of beef in considerable quantity. The West India Company imported domestic cattle for breeding into New Netherlands in 1625 . In 1678, 400 cattle were killed in the city of New York, and in 1694 the number reached nearly $4,000 .^{2}$ Stock raising and the production of beef for the New York and Philadelphia markets, furnished a profitable industry for the settlers in New Jersey. In 1627 the Swedes were supplied with neat cattle by the Swedish West India Company. ${ }^{3}$ In 1697 an Englishman, residing in Pennsylvania, stated that 20 fat bullocks besides many sheep, calves, and hogs were killed each week in Philadelphia, even in midsummer. A fat cow could be bought for $£ 3$ and salted beef and pork were regularly exported. ${ }^{*}$ Before the Revolution great numbers of cattle were raised in Georgia, North Carolina, and South Carolina. They were raised at small cost, being allowed to run wild in the woods. Many farmers owned from 500 to 1,500 head each. Little beef was exported. The cattle were sold in the lean state and driven to Pennsylvania where they were fattened for market.*

The cattle of the Northern colonies were fewer in number, but owing to the severe climate received more attention, and greater care was bestowed in the selection of animals for breeding. On the frontier stock raising was an important factor, the cattle furnishing food and other necessities for the rough life of the pioneer. These herds of the colonies, with those brought to Spanish America, were the chief progenitors of the American cattle of to-day. Cattle raising followed the settlement of the country, and crossed the Alleghenies with the pioneers into the fertile valley of the Ohio.
The rise of slaughtering, and packing of meat in the

[^128]United States as a distinct industry, dates back to 1818, when a packer is reported as conducting packing operations at Cincinnati. Slaughtering operations at Chicago began in 1823, but packing was not instituted until 1827. In that year a Chicago establishment packed some pork for a firm in Detroit, but the pucking statistics of Chicago were of small account until 1850. It is said that 9,600 hogs were packed there in 1834, but it was not until 1861-62 that Chicago attained preeminence as a packing center. In the winter season of 1832-33, there were several establishments at Cincinnati, and in that season it is claimed that 85,000 hogs were slaughtered there. The development of the agricultural resources of the Ohio Valley cheapened the cost of raising stock, and the demands of the Southern and Eastern markets caused an increased production, particularly of hogs. These facilities for stock raising naturally caused the inauguration of packing operations, and small plants sprang up in the more important towns. At first these centers were confined closely to the towns upon the rivers, owing to the greater facility of transportation by water.
In those days the packing was confined almost exclusively to the curing and packing of hog products. Much of the slaughtering was done by farmers in the winter, who, after supplying their own demands, sold the remainder of the carcass to some neighboring storekeeper or small packer, who, in turn, cured the carcass for market. Curing operations were sometimes conducted on flatboats that floated down the rivers after the spring breakup to the larger cities on the Mississippi, particularly New Orleans, where the cured product was exchanged for sugar, molasses, rice, and other products of the Southern states. A large proportion of the pork, hams, etc., reaching New Orleans, was shipped to Baltimore, Philadelphia, New York, Boston, and other cities along the Atlantic coast. Cincinnati at this time was the chief center of the packing industry, owing toits location in the stock-raising region, and to its superior banking facilities, for the packing industry demanded that large sums be paid in ready cash. Again, it was often necessary to employ large gangs of laborers and coopers at short notice, thus making the location of a packing plant most advantageons where these demands could be most readily supplied. The necessities of the trade also demanded an ample supply of salt, and this could be obtained readily only at Cincinnati. An added advantage was found in the denser population that afforded a market for the surplus product. In 1844 there were 26 packing houses at Cincinnati; in 1853-54 the number had increased to 41, and in 1855-56, was 42. A large packing plant had been established at Louisville, Ky., prior to 1844. Other important packing places during the period were Columbus, Chillicothe, Circleville, and Hamilton, in

Ohio; Lafayette, Lawrenceburg, Madison, Terre Haute, and Vincennes, in Indiana; Alton, Beardstown, Pekin, Peoria, and Quincy, in Illinois, and many places of lesser importance. ${ }^{1}$ The volume of packing at Cincinnati during the decade prior to $1851-52$ was 27 per cent of the total for the West. Cincinnati slaughtered 475,000 hogs in the packing year 1848-49. As settlement moved westward, the extension of the cornfields gave an impetus to stock raising, and the Western cities assumed increasing importance as slaughtering and packing centers.

About 20,000 hogs were killed at Chicago in 1850-51, and from that time the amount of business done in Chicago increased rapidly. The early fifties saw the beginning of railroad operations in the West. Naturally, this had a great influence on the packing business, and to this cause much of Chicago's prominence as a packing center may be traced. Up to this time St. Louis was unimportant as a packing center, and other prominent packing cities of to-day, such as Kansas City, South Omaha, and South St. Joseph, were unknown to the packing world. These cities did not assume importance until later. Cincinnati was the leading packing center in the United States until 1861-62, when Chicago took the lead, which it has retained. With its $\$ 256,527,949$ worth of products during the census year of 1900 , the city of Chicago stands as the chief center of the slaughtering and meat-packing industry of the United States. The preparation of animal food prod ucts at this point has come to be one of the greatest

[^129]industrial and commercial enterprises that has been evolved by the American people. This has not been due to accident nor wholly to the alert and businesslike qualities of her citizens. It has been chiefly because of Chicago's location. Nature located Chicago. As early as 1673 , Joliet saw that if a canal were cut through half a league of prairie, boats could pass from the lake of Illinois (Lake Michigan) into the St: Louis River (the Illinois, including the Des Plaines). A city possessing such a location, between the lakes and the great West, was naturally early seen to be a gateway of commerce, and Chicago became the center for the vast systems of transportation that converge there to-day and that include more than one-half of the railroad systems of the United States. The Union Stock Yards was founded in 1865 , when 320 acres of land were purchased, and the yard opened in December, 1865. This plant is now worth at least $\$ 10,000,000$, and on the square mile of land upon which the yards are located are the slaughtering and packing houses that, in 1900 , reported a capital invested of over $\$ 67,000,000$. More than 50,000 men found employment in and about the stock yards in 1900, in the packing establishments, and in the service necessary to the handling of the stock. Within the stock yards are 200 acres of yardage, 20 miles of street, 20 miles of water troughs, 75 miles of drainage and water pipes, and 150 miles of railroad track, which is the property of the stock-yards company, which also owns and operates the locomotives. The table below shows the number of cattle, hogs, and sheep, received, shipped, and slaughtered at Chicago, from 1870 to 1900 , inclusive.

LIVE STOCK RECEIVED, SHIPPED, AND SLAUGHTERED IN CHICAGO, ILL.: 1870 TO 1900. ${ }^{1}$

${ }^{2}$ Compiled from data furnished by Cincinnati Price Current.

With the development of the country west of the Mississippi, St. Louis took its rise as a packing center. Covered with corn fields, the territory adjoining St.

Louis is devoted largely to the live-stock industry, particularly the rising of hogs. The following table shows the growth of the slaughtering industry at St. Louis:

LIVE STOCK RECEIVED, SHIPPED, AND SLAUGHTERED IN ST. LOUIS, MO.: 1868 TO 1900. ${ }^{1}$

years.	ноes.			cattle.			SHEEP.		
	Received.	Shipped.	Slaughtered.	Received.	Shipped.	Slaughtered.	Received.	shipped.	Slaughtered.
1868.	301,560	16,277	285, 283	115, 352	97,277	78,075	79,315	6,415	72,900
	844,848	39,076	305, 772	124, 665	59, 867	64,698	96,626	12,416	84,210
1871.	310,850 633,370	17,156	293,694 519	201, 422	129, 748	71,674	94,477	11,649	82, 828
1872.	759,076	188, 700	570, 376	263, 404	164, 870	98, 534	116, 904	29,540	81,434 86,364
1873.	973,512	224, 878	748,639	279, 678	180,662	99,016	86, 434	18,902	67, 332
1874.	1,126,586	453, 710	672, 876	360, 925	226, 678	134, 247	114, 913	35, 577	79, 336
1875.	628,569	126, 729	501, 840	335, 742	216, 701	119,041	125, 679	37,784	87, 895
1876.	877, 160	232,876	644, 284	349, 043	220, 430	128,613	167,831	67,886	89,945
1877.	896, 319	314, 287	582,032	411,969	251,566	160,403	200,502	87,569	112, 933
1878.	1,451,634	628,627	923,007	406, 235	261,723	144,512	168,095	74,433	93, 662
1880	1,762,724	686,099	1,076,625	420, 654	226, 265	194, 399	182, 648	88, 083	94, 665
1881.	1,672, 153	889, 909	1,782, 244	603, 862	293, 092	210, 770	334,426	170,395	112,447
1882.	846, 228	264, 584	681,644	443, 169	188, 486	254,683	443,120	245,071	198,049
1883	1,151,785	609, 388	542, 397	405, 090	249, 523	155,567	398,612	217, 370	181, 242
1884.	1,474, 475	678,874	795,601	450,717	315, 433	135,284	380, 822	248,646	132,277
1885.	1,455, 535	789, 487	666, 048	386, 320	233, 249	163,071	362,858	233,391	129,467
1886.	1,264, 471	620,362	744, 109	377, 650	212,958	164,692	328, 985	202,728	126,257
1887	1,052,240	324,735	727,505	464, 828	277,406	187,422	417,425	287,018	130,407
1888	1929,230	294, 869	634, 361	546,875	336, 206	210,669	456, 669	316,676	139,993
1889.	1,120, 930	420,930	700, 000	608, 190	297, 879	210,311	858, 495	255, 375	103, 120
1890	1,359, 791	665, 471	694, 320	639, 014	361,705	277, 309	358, 496	251,728	106, 768
1891.	1, 380, 569	704, 378	${ }^{676}, 191$	779, 449	464,794	314, 655	402, 989	277, 886	125, 103
1892	1,310,311	715,969	594, 342	801, 811	465, 328	336,483	376,922	248,035	128, 887
1893.	1,105, 108	576,846	529,262	903,257	473,966	429,291	397, 725	231,476	166, 249
1894.	1,489, 856	642,699	847,157	773, 671	281,260	492,311	359,895	90, 526	269,369
1895.	1,440,342	605,480	834, 862	851,275	272, 856	578,419	510,660	119,148	391,512
1896.	1,997,895	885462	1,112,433	955, 613	350, 036	605,577	632, 872	254,602	378, 270
1897.	2,065,283	837, 895	1,227,388	960, 763	366, 127	594, 636	660,380	212, 243	448, 137
1898.	2,136, 328	573, 516	1,562, 812	795, 611	254,619	540,992	477, 091	127, 184	349,907
1899.	2,147, 144	678, 067	1,569,077	7666032	224,177	541,835	432, 566	97, 722	334,844
1900.	2,166,972	513,561	1,643, 411	795, 800	207, 998	587,802	434, 133	65, 199	368,934

${ }^{1}$ Compiled from data furnished hy Cincmanati Price Current.

Up to 1870 slaughtering at Kansas City was of relatively small importance. Cattle were driven overland from the Southwest, the journey often consuming as much as three months. At Kansas City they were loaded on cars for shipment to Eastern markets or driven overland to markets in the interior. In 1870 the Kansas City stock yards had their inception in a movement to afford better facilities for handling live stock at that point. As far back as 1873 , three small packing houses were located at Kansas City, and in 1875, 48,492 cattle, 47,560 hogs, and 7,585 sheep were
slaughtered there. In 1886, of the total number of animals received, 24.6 per cent of the cattle, 76.2 per cent of the hogs, and 51.8 per cent of the sheep were slaughtered; in 1900 these figures had grown to 56.7 per cent for cattle, 92.8 per cent for hogs, and 75.2 per cent for sheep. The stock yards are situated close to the business center of the city and occupy about 200 acres. The following figures show the number of animals slaughtered at Kansas City each year from 1875 to 1900 , inclusive:

LIVE STOCK RECEIVED, SHIPPED, AND SLAUGHTERED IN KANSAS CITY, MO.: 1875 TO 1900. ${ }^{1}$

The rise of South Omaha as a slaughtering and packing center dates from 1884. The figures below show the development of the industry at this point:

LIVE STOCK RECEIVED, SHIPPED, AND SLAUGHTERED IN OMAHA, NEBR.: 1884 TO $1900 .{ }^{1}$

Years. ${ }^{2}$	Hogs.			cattie.			SHEEP.		
	Received.	Shipped.	Slaughtered.	Received.	Shipped.	Slaughtered.	Received.	Shipped.	Slaughtered.
1884.	1,863	500	1,363	86, 898	81,955	4,943	4,188	1,273	2,915
1885.	130, 867	71,919	58,948	114, 163	83, 233	30, 930	18, 985	8, 408	10,577
1886.	390,487	187,369	203, 118	144,457	73, 120	71,337	40,195	17,728	22, 467
1887.	1, 1211,706	140, 726	870, 980	235,723 340,469	151,419 206,064	84,304 134,405	76,014 158,503	$\begin{array}{r}\text { 56, } \\ \text { 1184 } \\ \hline 18208\end{array}$	19,570 40,295
1888	$1,283,600$ $1,206,605$	333,228 179,916	950,372 $1,026,689$	340,469 467,340	206,064 227,921	134,405 239,419	158,503 159,503	118,208	40,295
1890.	1, 673,314	275,638	1, 397, 676	606, 699	283, 880	322, 819	156, 186	94, 464	61,722
1891.	1,462,423	245,046	1,217, 377	593,044	267, 730	325, 314	170, 849	89,416	81, 433
1892.	1,705,687	381,723	1,323, 964	738, 186	282, 092	456, 094	185, 457	83,445	102,012
1893.	1, 435, 271	363,116	1,072, 155	852, 642	309,776	542, 866	242, 581	91, 814	150,767
1894.	1,904,238	400,640	1,503, 698	829, 171	311,627	517, 544	252, 218	115,764	136, 454
1895.	1,188,421	100,705	1,087, 716	602,222	287, 910	314, 312	208, 633	113,793	94, 840
1896.	1,197, 638	78,790	1,118, 848	570,515	235,421	335, 094	333, 332	131,454	201, 878
1897.	1, 610, 981	83, 061	1, 527, 9200	810,949	355, 175	455, 774	627, 160	205, 617	421,543
1898.	2, 101,387	172, 024	1,929, 363	812,244	322, 194	490, 050	1,085, 136	483, 171	601, 965
1899.	2,216, 482	25, 999	2, 190, 483	837,563	288, 474	549,089	1,086, 319	342, 247	744, 072
1900.	2, 200, 926	36,996	2,163, 930	828, 204	274,479	553, 725	1,276,775	652, 234	724,541

${ }^{1}$ Compiled from data furnished by Cincinnati Price Current.
The prominence that has been attained by South St. Joseph, Mo., in the slaughtering and packing industry was the result of a remarkable development between 1897 and 1900. The receipts at South St. Joseph for 1898, 1899, and 1900 were as follows:

Years.	Cattle.	Hogs.	Sbeep.
1898	232,074	1,034, 035	121,407
1899	294, 950	1,401,794	258,432
1900	390, 361	1, 678, 521	390,308

About eighty years ago, when packing was begun at Cincinnati, and even until the late sixties, packing was confined to the curing and salting of pork products and some barreling of beef. The barreling of beef was carried on in the West to a considerable extent and the products sent to the Eastern markets. Beef barreled in the Eastern cities was sent all over the world on board ship. The development in the packing of beef on a large scale has been due to the adoption of the various systems of artificial refrigeration within the last thirty years. No other one factor has had so much influence upon the meat industry. All meat curing depends for its success upon thorough chilling, properly conducted, of the carcass. Artificial refrigeration has practically lengthened the packing year from four months to twelve months, by rendering summer slaughtering possible. The importance of artificial refrigeration to the meat trade would be hard to overestimate. The most important step in the development of American beef as an article of commerce, was the invention of the refrigerator car by William Davis of Detroit. The patents were issued in 1868, and in September, 1869, the first cargo of fresh beef was shipped from Chicago to Boston. This was the commencement of a great industry in the United States, and the initial step toward the foreign trade. The cars now used by the great meat packers of the West are founded on the Davis patent of 1868. ${ }^{1}$

[^130]${ }^{2}$ Previous to 1897 the movement represents years ending with November.
The object of chilling and freezing meat is not only that it shall be preserved, but also that it be so frozen that it can be thawed, fresh and sweet, with its nutritive qualities intact. To attain this end, the problem is to chill the meat without driving the animal heat inward and thereby causing decay of the marrow and bone. With proper treatment in freezing, however, the quality of the meat need not be impaired. For fifteen to eighteen hours the temperature of the meat is kept at $36^{\circ} \mathrm{F}$., and it is then chilled or refrigerated for twenty-four to thirty hours.
The canning of beef was attempted in Chicago in the sixties and enjoyed some growth, but the packers did not take it up on a large scale until 1879. Of late years the production of canned beef has fallen from $133,428,456$ pounds in 1890 to $123,249,021$ pounds in 1900, and the exports from $82,638,507$ pounds in 1890 to $55,553,745$ pounds in 1900.

Prior to 1875 the dressed beef trade was not of much importance. The invention of the refrigerator car and its improvement gave a great impetus to the industry. The exportation of fresh beef began in 1876 in a small way. In the early days of cattle raising in the West they were brought East on the hoof and slaughtered in local abattoirs. The journey of 1,500 to 2,000 miles East affected the physical condition of the animal to the extent that it caused the quality of the beef to deteriorate. The adoption of the refrigerator car made it possible to slaughter these cattle in the West, and the Western packers were quick to fill the demand created for the slaughter of these cattle, and ship the product East, thus preserving all the good qualities of the beef. To-day the Western packer competes with the local producer in the Eastern market, and his beef is in far better condition than when it came East on the hoof to be slaughtered at the end of a long, tiresome journey.

Until within comparatively late years little attempt was made to utilize the waste products of the abattoir. The blood was allowed to drain away, and the disposal
of heads, feet, tankage, and other waste material was a source of expense, men being hired to cart it away and bury it. After a time industries grew up in the vicinity of the slaughtering establishments, using as their raw materials the waste product of the abattoir. Glue, tallow, soap, and fertilizers were among the articles so produced from the waste. With increasing competition the packing house gradually absorbed these industries, until the utilization of "waste" materials constituted a source of no little profit. The aim is that nothing shall be wasted. The large packing houses utilize the horns, hoofs, bones, sinews, hide trimmings, and the other so-called waste materials. From these are manufactured glue, gelatin, brewers' isinglass, curled hair, bristles, wool felt, hair felt, laundry soap and soap powders, toilet soaps, glycerin, anhydrous ammonia, fertilizers, dried blood (after the albumen is extracted), bone meal, cut bones, poultry food, albumen, neat's-foot oil, pepsin, knife handles, and many other things. Each large establishment has its chemical laboratory, where expert chemists are constantly seeking for new combinations to render more valuable and extensive the already long list of by-products.

It is obvious to even the most casual observer, that an industry putting out a product in a single year of over $\$ 785,000,000$ is of the utmost importance to the people of the United States. It is essentially Western in its location and growth. The largest establishments are located in the Mississippi Valley. The states leading in the production of live stock for slaughter are west of the Mississippi. Indeed, a large part of the industrial welfare of the West may be said to be based upon the live-stock industry. The territory devoted to the raising of hogs on a large scale is coextensive with the corn belt. The corn crop, the hay crop, and the grasses take on an added value when converted into the form of meat products. The corn crop is the foundation upon which depends the live-stock industry, and this industry is coming more and more to be a question of corn supply. Sheep raising is confined chiefly to the upper Rocky Mountain states, owing to the fact that the successful raising of sheep depends upon the availability of pasturage. From this western stock-raising territory, the movement is northward and eastward to Chicago, Kansas City, South Omaba, St. Louis, South St. Joseph, and the other great slaughtering centers. The geographical movement of the slaughtering and packing area furnishes a view of the settlement and development of the West.
The advantages of the transportation facilities possessed by Chicago, backed with the wide area devoted to stock raising, spreading westward from Lake Michigan to the Rocky Mountains, give that city the lead in this industry. The tendency, however, is for the slaughtering centers to move still nearer the corn belt. The rise within recent years of Kansas City and South Omaha, and more lately of South St. Joseph, may be traced directly
to this factor, and to the improved railroad facilities that followed any enlargement of the territory devoted to corn production. Within recent years, overpasturage on many of the Western grazing lands has caused the number of cattle to decrease. Increasing attention devoted to sheep raising, too, has caused a crowding of the cattle, and settlers have been crowding in and fencing the ranges. The place of the large herds that formerly ranged the plains during the entire year is being taken by the small herds that range the free grazing lands in the summer and arc carefully pastured and fed during the winter. A loss of one-third of the herd from exposure was a common thing under the old conditions, but under the new system this element of loss is almost wholly removed. Greater attention is being paid to breeding, and almost fabulous prices bave been paid for high-class animals for breeding purposes. Another comparatively new development is the extension of the feeding or fattening operations for market. The conversion of the surplus corn into beef, pork, and mutton, yields a large profit to the feeder. Poor-grade stock is bought in the fall, fattened during the winter, and later is sent back to market to be sold at a considerable advance.

The Union Stock Yards at Chicago present a monument to the opportunity and good business sense of the American people. To the stranger entering the yards. for the first time, the scene is novel. He enters the main entrance beneath an iron arch bearing an inscription that informs him that the territory within is the "Union Stock Yards, chartered 1865." Once within, factories, pens, and riaducts surround him on every side. Noise and confusion reign everywhere, but the apparent confusion is well ordered; and, considering the immense number of animals that are constantly being bandled, the wonder is that they are handled with so much facility. On every hand is heard the "hi-yah" of the drovers and the deep lowing of the cattle. Everywhere is movement.
The stock arrives at the yard in the night or early morning, often after a long, hard ride of hundreds of miles. The company owning the stock yards owns also the transportation facilities within the yards, and, as the animals come in, they are given into charge of the company, which become responsible for both the cargo and the freight, attending to all matters of ownership, consignment, and fees. The company remains responsible for the stock until all charges are paid and the stock delivered to the broker or buyer. The live-stock broker has become a necessity: he is the medium of understanding between the buyer and the seller, and by him all difficulties are adjusted. Through him the seller knows exactly what it will cost to have his stock shipped, fed, watered, and sold. As soon as possible after the arrival at the yard, the herds are driven to pens, fed, and watered, and after that the selling begins. Owners, buyers, sellers, agents of the packing
houses, and commission men mingle in the excitement of the market. The examination and weighing of the animals follow the sale. An official statement of the weight is given the seller. The animals are then driven to the slaughterhouse. The worry and exhaustion of the cattle, occasioned by the long ride, have heated them so much that a period, generally of about twentyfour hours, is given to allow their temperature to cool to the normal point. Hogs, however, are not allowed this respite, but are sprinkled and immediately driven to a large solid wheel, with chains fastened at intervals along the rim. With these chains the hog is shackled by one hind leg. The wheel revolves, slowly raising the squealing porker. As he gets near the top, the hog is detached automatically from the wheel, and a hook attached to a sloping rail carries the victim to the butcher. With a swift motion, almost mechanical because of its long practice, the throat is cut lengthways, and the carcass is run along a short distance to allow the blood to drain out, which is drawn off and used largely in the manufacture of fertilizers. After a short time has been allowed for this draining, the carcass is plunged into a bath of scalding water. It is then brought automatically to a table, across which it is dragged through a scraping machine by an endless chain. This machine does the work better than it could be done by hand, leaving the bristles in much better condition. It does its work very thoroughly, its blades being mounted on cylinders coming in contact with every part of the body. To insure perfect results, the body is then gone over by hand scrapers, after which the carcass is thoroughly washed with a hose. Next the head is nearly severed, the gambrels are cut, and the body suspended by them from the rail.
The body is then opened and dressed, the leaf lard is removed, the head is taken off, the tongue removed, and, lastly, the body is split in two. All this is done at the rate of 20 hogs per minute. Thence the two halves go to the chill room, where they remain about twenty-four hours, until after the animal heat has left the body and it is thoroughly chilled. After this the sides are run to the cutting tables. In the cutting, too, many changes bave taken place since the early days. Formerly the only cuts were hams, sides, shoulders, and cuts for barreled pork. In this connection Mr. Philip D. Armour said: "To-day (1895) the variety of cuts is bewildering to an outsider. The world to-day is the packer's market, and he has to study the peculiarities and preferences of each country, and even each county. The idiosyncrasies in the cutting and curing of home-killed bacon is reflected to-day in our cuts. Wiltshires, Cumberlands, Staffordshires, Yorkshires, etc., are only a few of such distinguishing styles." ${ }^{1}$ A hog dresses about 80 per cent of its live weight, about 20 per cent being offal. Fresh meat comprises about 10 per cent of the dressed hog, and the other 90 per cent is cured.

[^131]From the cutting room the various parts intended for curing are sent by chutes to the curing rooms, where some cuts lie for at least sixty days in dry salt, and the shoulders, sides, hams, etc., intended for smoking lie for a like period in vats of sweet pickle. After these pieces intended for smoking have lain in pickle for five to eight weeks (the time required and the strength of the pickle varying according to the size of the cut), they are removed to the soaking tank and soaked for about twenty-four hours, in order that the heavier salting toward the surface of the cut may be brought to a uniformity with the center. From here the hams go to the trimming table, whence they are taken to the smokehouse, where they are smoked for about twentyfour hours. They then go to the storeroom, or the department where the hams and bacon are branded and labeled, and some are covered with canvas.
The manufacture of sausage brings to the packer greater profit for the amount of meat used than any other part of the hog. Sausage is made of trimmings which are the remnants of everything. Material for sausage comes from the ham-trimming department, from the butcher's bench at the market stall, from the killing room, and from the beef houses, particularly where the heads and hoofs are trimmed. The meat is chopped, mixed, and stuffed by machinery. The spices, such as sage, pepper, salt, ginger, and mustard, are mixed with the meat prior to its passage through the chopping machine, in order that it may be more thoroughly mixed. The ginger and mustard are added to counteract the action of the fatty greases on the stomach. From the chopping table the meat goes to a mixing trough to be mixed with large quantities of water necessary to make the mass sufficiently pliable that the casings may be filled with little difficulty. Here potato flour is also added to give consistency to the material. At this point the constituent parts are 40 per cent meat and spice, 40 per cent potato flour, and 20 per cent water. The potato meal neutralizes the taste of the pork, and the spices keep the stomach right.

The intestines, from which the casings are made, are one of the most valuable products of the hog. The labor involved in preparing them for commercial use is much greater than that demanded in the preparation of any other part of the hog. In some packing houses the old plan of doing the work entirely by hand, cleaning the intestines by turning them inside out and scraping with knife blades, still obtains, but in all the larger houses this work is done by a machine of marvelous rapidity, and it does its work more thoroughly than is possible by hand. Stuffing is done by a machine composed of two large cylinders, one a steam cylinder, the other a sausage-stuffing cylinder, and a piston rod directly connected with the piston rod of the large cylinder. The steam cylinder is of such an area that with 80 pounds steam pressure we have 190 pounds of pressure to the square inch in the stuffing cylinder. This causes sufficient pressure to force the sausage from
the small orifice at the bottom of the cylinder, to which is attached a tube over which the sausage casings are slipped, and the pressure when the cylinder is tilled is sufficient to fill the skins at a speed of a mile a minute. From this machine the sausages are delivered at a table at which stand several men who tie them in links. This process done, the sausage is ready for marketing.

Lard is another important product of the hog. The packer divides it into two kinds-leaf lard and steam lard. Leaf lard comes from the surplus fat that accumulates in the hog, incased in a skin somewhat similar to that inclosing the intestines, only of frailer fabric. From the hog this leaf is washed and then goes to the rendering kettle. The leaf is cutinto strips about three inches wide which is again cut into squares about three inches long. This cutting has to be done with much care, for mangling the leaf is detrimental to the production of good lard. The kettle is generally an openjacketed one with a space for steam between the two parts of the kettle. A heavy shaft suspended through the kettle horizontally has arms attached which pass close to the bottom. This shaft in revolving keeps the mass in constant motion. This kettle holds about 10 tierces, and is kept constantly full, the steam being turned on in the jacketed space at a pressure of about 15 pounds and a temperature of about $222^{\circ} \mathrm{F}$. The water taken on in washing the leaf first arises as vapor, and continues to vaporize as long as any water is left. After a time the surface begins to sink, showing that some of the leaf has melted, and the shaft and stirrers are started and the temperature is raised to about $250^{\circ} \mathrm{F}$. Cut leaf is added from time to time to keep the kettle full, so that it is full of lard to the brim when the rendering is completed. After about five hours the cooking is finished, and the steam is turned off. A small amount of salt is thrown in to the kettle, and after an hour of settling the lard is drawn off from the bottom through an opening over which there is a fine screen of wire cloth. From here the lard is run to an open tank where it cools to a temperature of $160^{\circ} \mathrm{F}$., when it is drawn into tin pails of about 20 quarts each, and from these filled into packages of wood or tin, and placed in a room where a blast of air of a temperature of about 40° to 45° is blown over it. The rapid cooling causes a shrinkage on the surface and gives a crinkled effect that was formerly believed to be an indication of its purity. The color of leaf lard is creamy. Nearly everything to-day enters into leaf lard from leaf to belly trimmings. Much leaf lard is made into neutral oil. This oil is free from animal smell and taste.
Stock for making steam lard comes from all sources and every grade of hog products, from the feet trimmings, or feet themselves, to the skull or head bones. The rendering is done in tightiron cylinders from 30 to 72 inches in diameter and from 6 to 16 feet deep, generally suspended through one floor with a discharge at
the bottom of about 12 inches in diameter, and an inle opening on the top of about 16 inches in diameter. Both these openings are covered. The pressure of steam used varies. After the rendering is completed and the steam pressure removed, the tank is allowed to settle. The refuse, such as bones and flesh tissue, sinks to the bottom of the tank, and is used in making fertilizers; above appears a layer of water, and above this, in turn, is the lard. The lard is drawn off into large steam jacketed kettles holding 20 to 30 tierces each. These kettles are then heated to above the boiling point of water. This is the refining process, and is continued until the water in the lard ceases to rise as vapor from. the kettle. As soon as the water is eraporated the lard settles and is pumped into a large cooler before it is prepared for shipment. The failure to remove all the water in this process of refining is the cause of rancid or spoiled lard.

In the manufacture of fertilizers it is a serious question to reduce the offensiveness of the odorarising from the gases to the smallest possible degree. The odors penetrate every crack and corner, and leave their characteristic taste and smell everywhere. For this reason the building in which the fertilizer operations are conducted is situated at a distance from the other buildings of the plant. The material from which fertilizer is made is derived from various sources, chiefly from the rendering and cooking tanks. Fertilizer is a compound, and contains large amounts of ammonia and nitrates, and. its value depends upon the amount of these constituents. Fertilizer material is generally cooked on the top floor of the building, and after being thoroughly cooked it is passed through a drying press. The material is pressed in order to reduce the water and save steam in drying, and to secure any grease possible, which adds nothing to the fertilizing properties. The drying presses are usually square boxes, about 16 inches long, 12 inches wide, and 3 inches deep, and are operated either by hydraulic power or by a screw press. After pressing, a rapid drying is given the material at a temperature of over $260^{\circ} \mathrm{F}$., a revolving rapidly being necessary to prevent burning. Several different kinds of drying machines are in use. After drying, the fertilizer is put in bags, in which condition it is shipped to the manufacturer of fertilizer compounds.

In killing cattle, a day is generally allowed them to recover their normal temperature after the excitements of their journey. After they have cooled, the cattle are driven up an incline to the top of a 4 or 5 story building, into a long, narrow lane of a width sufficient to allow only two cattle to stand abreast. As the two animals in the lead reach the end of the lane, a partition is lowered behind them. This process is repeated for the next pair, and so on to the end of the lane. As soon as the line is secured, a man wielding a heary hammer traverses a platform that runs along outside near the top of the lane, and with a swinging blow,
which strikes the animal between and above the eyes, fells the cattle. The side of the lane is then raised, the floor of the lane tilted, and the carcasses are precipitated upon the slaughtering floor. Next the body is shackled by the hind legs, hoisted and hooked to a rail, along which it slides to the butcher, who, with a quick thrust, severs the large vein of the neck. A pan is quickly shoved in to collect the blood, and the floor is arranged so that whatever quantity of the blood may escape the pan is drained into a large tank. Next the carcass is headed, lowered to the floor, and adjusted in such manner that the hide may be remored most easily. In this operation, in the larger establishments, the division of labor is carried to a high degree. Each workman engaged in removing the bide cuts only a certain portion, and the anount done by each is surprisingly small, but this is compensated for in the additional quickness with which the work is accomplished. Next the beef is sent to the chill room, where it is refrigerated about forty-eight hours, when that which is intended for sale as fresh meat is run to the loading platforms, divided into fore and hind quarters, and loaded into refrigerator cars for shipment to all points of the United States and to foreign countries. The killing of sheep differs little from the killing of cattle.
The meat used in canning is generally cow beef, and of an inferior grade. It is cooked in huge kettles and is handled with pitchforks. As soon as cooked, it is pressed into cans, which are capped, soldered, sealed, and inspected by steaming to ascertain if any air holes remain. These holes are closed, and the cans are washed, painted, and labeled, when they are ready for shipment to any climate, since, being airtight, they are proof against climatic changes.

Not the least interesting features of the large packing house are the auxiliary plants that have grown up, such as the tin shop where the cans are made, the box factory where boxes for shipment are manufactured, and the car shops where the refrigerator cars are built and repaired.

MEAT INSPECTION.

The reputation of American meats in the markets of the world depends upon the care and thoroughness with which the meat is inspected. This inspection is conducted by the Bureau of Animal Industry of the Department of Agriculture, and the cost of the work is borne by the Government.

On arrival at the stock yards all animals intended for slaughter are subjected to an ante-mortem examination by a Government inspector. Any animal that is found to be diseased, or not fit for human food, is condenined and marked by having a metal tag, stamped "U. S.-Condemned," placed in its ear". These condemned animals are killed under the supervision of an employee of the Bureau of Animal Industry, whose duty it is to see that the products of such animals are rendered in such manner that they shall not be fit for human food. At the time of slaughter all animals are again examined, and if found to be diseased, the carcass is marked with a yellow condemnation tag, and removed and rendered so that no part of it can be placed on sale for food. Provision is made to insure the proper rendering of the condemned carcasses by requiring the return to the inspector of a numbered stub removed from the tag of condemnation at the time the rendering is done. This insures the proper rendering of the carcasses. Only those carcasses and meats are inspected that are intended for interstate or export trade.

Each article of food made from inspected carcasses must bear a label on which appears the official number by which the establishment is known to the Department of Agriculture, and a statement to the effect that the article has been inspected according to law. A copy of this label is filed with the Department of Agriculture at Washington to serve as a mark of identification that the products to which it has been attached were properly inspected. Each package shipped has stenciled upon it "For export" or "Interstate trade," as the case may be, and, further, the official number of the establishment, the number of pieces or pounds in the package, and the trade-mark of the firm. Upon such packages the official of the Department pastes meatinspection stamps, which are immediately canceled, certifying to the wholesomeness of the product, and its fitness for food. These stamps must be obliterated as soon as the package is opened.

Live stock intended for export are examined at certain designated stock yards, and again at the ports of export. The Department of Agriculture has also representatives at certain foreign ports.

The importance that meat inspection has attained is showu in the table below. The work began in 1891 and has grown steadily since that time. The following table illustrates the growth:

NUMBER OF ANIMALS INSPECTED AT SLAUGHTER FOR ABATTOIRS HAVING INSPECTION, FISCAL YEARS 1891 TO 1900.

FISCAL Year.	Number of abattoirs.	Number of cities.	Cattle.	Calves.	Sheep.	Hogs.	Horses.	Total.
1891	9	6	83, 889					83,889
1892	28	12	3, 167, 009	59,089	583.361			3, 809,459
1893	37	16	3, 922, 079	92, 947	870,512			4,885,538
1894	46	17	3, 861, 594	96, 331	1,020,764	7,648,146		12,626,835
1896.	$\stackrel{65}{102}$	19 26	3, 3 3, 985,4842	116,093	1,428,601	13,616,539		18, 865, 275
1897	128	33	4,242, 216	273, 124	5, 209, 161	16, 808, 771		26, 533,272
1898	135	35	4, 418,738	244,330	5, 496, 904	20,893,199		31,053,171
1899	138	41	4, 382,020	246, 184	5,603, 096	23,836, 943	3,332	34,071, 575
1900	148	45	4,841,166	315, 693	6,119, 886	23, 336,884	5,559	34,619, 188

In 1881 Germany, France, and other continental nations of Europe forbade the importation of American pork, alleging that it was unhealthful, being infected with trichinæ. By these measures the trade was crushed, and for ten years afterwards nearly every market on the Continent was closed to American pork. Notwithstanding considerable opposition to governmental inspection, the work was undertaken in 1892, when $38,152,874$ pounds for export were inspected. The amount inspected has constantly increased. The microscopic inspection of pork is performed largely by women. The following extract from the regulations of the Bureau of Animal Industry shows the method of operation:

When the slaughtered hog is passed into the cooling room of said establishment, the inspector in charge, or his assistants, will take from each carcass three samples of muscle-one from the "pillar of the diaphragm," one from the psoas muscle, and the other from the inner aspect of the shoulder, and also from the hase of the tongue when that organ is retained for exportation; and said samples will be placed in small tin boxes, and a numbered tag will be placed upon the carcass from which said samples have been taken, and a dnplicate of said tag will be placed in the hox with said samples. The small boxes will be placed in a large tin box provided with a lock. The boxes containing the samples from the hogs in the cooling room so tagged will be taken to the microscopist for such establishment, who shall thereupon cause a microscopic examination of the contents of each box containing samples to be made, and shall furnish a written report to the inspector, giving
the result of said microscopic examination, together with the numbers of all carcasses affected with trichinæ. The samples of pork microscopically examined shall be classified as follows:

Class A. Samples in which there are no signs of trichinæ, living or dead, calcified cysts, or other bodies or suhstances having any resemblance to trichinæ or trichinæ cysts.

Class B. Samples in which there are disintegrated trichinæ or trichinæ cysts, calcified trichinæ or trichinæ cysts, or bodies having any resemblance thereto.

Class C. Samples in which there are living or dead trichinæ bodies not disintegrated.

All carcasses coming within Class C are removed from the cooling room and disposed of by tanking, or they may be rendered into edible lard at a temperature of $150^{\circ} \mathrm{F}$., or made into cooked meat products if the temperature is raised to the boiling point a sufficient time to cook thoroughly the interior of the pieces. Carcasses belonging to Class B are rejected for shipment to countries requiring inspection and certification. In all this work (the microscopic examination, the cutting up of carcasses, the marking of parts, and the keeping of records) the most careful and painstaking efforts are maintained. The result is that the pork exported to countries which require inspection, is not only absolutely free from trichinse, but has never been affected by these parasites. The amount of affected pork under Class B and Class C is less than 2 per cent of the whole amount examined microscopically. ${ }^{1}$

Table 12 presents the detailed combined statistics for slaughtering, wholesale, not including meat packing; and slaughtering and meat packing, wholesale, as reported at the Twelfth Census.

[^132]Table 12.-COMBINED SLAUGHTERING AND MEAT

		United States.	California.	Colorado.	Connecticut.	Delaware.	District of Columbia.
1	Number of establishments	921	58	14	12	4	7
	Cbaracter of organization:	416	22	3	5	2	5
${ }_{3}^{2}$	Firm and limited partnership.	286	20	2	4	2	2
4	Incorporated company Capital:	219	16	9	3		
5	Total	\$189, 198, 264	\$3, 913,081	\$1,380,518	\$562,564	\$234,420	\$248, 200
6	Land	\$12, 135,034	\$497,074	\$162, 800	\$77,000	\$23, 000	\$49,000
7	Buildings	\$34, 504, 130	7780,960	\$509, 700	\$156, 385	\$35, 000	\$38,000
8	Machinery, tools, and implements.	\$20, 139, 843	\$501, 711	\$104, 000	\$65, 710	\$41,760	\$67, 800
9	Casb and sundries	\$122, 419,257	\$2,133, 336	\$604,018	\$263,469	\$134, 660	\$93,400
10	Proprietors and firm members	1,052		7	13	7	9
11	Salaried officials, clerks, ete.: Total number	10,227	180	48	37	22	32
12	Total salaries............	\$10, 123,247	\$254,567	\$60, 896	\$36,662	\$13,610	\$15,784
13	Officers of corporationsNumber		17	16			
14	Salaries......	\$1,064, 686	\$40,920	\$28, 236	\$5,000		
15	General superintendents, managers, clerks, etc.- Total number	, 856	163	32		22	2
16	Total salaries..	\$9, 058, 561	\$213, 647	\$32,660	\$31,662	\$13, 610	315,784
	Men-						
17	Number	8,913	156	31	31	19	32
18	Salaries	\$8, 530, 484	\$209, 897	\$32,540	\$29,582	\$12, 420	815,784
19	Number.	943		1	4	3	
20	Salaries ...	\$528, 077	\$3,750	\$120	\$2,080	\$1, 190	
	Wage-earners, including pieceworkers, and total wages:						
21	Greatest number employed at any one time during the year	86,215	1,058	295	400	37	127
${ }_{23}^{21}$		61,035 68,534	870 925	243	370 380	37 37	116
24	Wages................	\$33, 457,013	\$544,659	§170, 744	\$174, 239	\$20,398	\$63, 607
25	Men, 16 years and overAverage number	63,922	915				
26	Wages...........	\$32,239,847	\$538,611	\$170,244	\$173,829	\$20,242	\$62,931
	Women, 16 years and over-						
27	Average number.	2,945	10	2	2		2
8	Wages	\$853, 81.3	86,048	\$500	$\$ 410$		$\$ 676$
	Average number..	1,667				1	
30	Wages ..	8363, 353				\$156	.
	Average number of wage-earners, including pieceworkers, employed during each month: Men, 16 years and over-						
31	Jamuary	64,917	917	270	393		119
32	February	63,735	906	267	393	36	112
33	March..	63,111	919	280	385	36	115
34	April..	61,151	920	272	364	36	112
35	May.	62,240	932	258	360	36	111
36	June..	61, 800	900	243	362	36	111
37	July .	62, 515	899	241	364	36	111
38	August	62, 872	905	246	364	36	111
39	September	62,998	912	249	379	36	114
40	, October....	65, 752	934	252	388	36	113
41	November	67, 393	912	265	388	36	118
42	December	68,586	927	262	392	36	115
43	January	2,964			2		
44	February	2,892	8	2	2		
45	March.	2,768	7	2	2		${ }_{2}^{2}$
46	April	2,678	7	2	1		2
47	May.	2,605	8	2	1		2
48 49	June	2,431	7	2	1		2
49	July ...	2,725	8	2			2
50	August...	2, 990	10	2	2		2
51 52	September	3,177	17 19	$\stackrel{2}{2}$	2		2
53	November.	3, 412	15	2			$\stackrel{2}{2}$
54	December	3,373	8	2	1		2
55	Cuidren, Jary . . .	1,591					
56	February	1,595				1	
57	March	1,620				1	
58 59	April...	1,531				1	
60	June......	1,660				1	
61	July .	1,739				1	
62	August	1,774				1	
63	September.	1,751				1	
64	October	1,673				1	
65 66	November.	1,814				1	
	MisceIIaneous expenses.	1,793				1	
67	Total	\$24, 060, 412	\$441,210	\$56,384		\$9,899	
68	Rent of works	8614,430	\$32,482'	\$4,115	\%1,240	\$3,120	\$19,935
69 70	Taxes, not including internal revenuc.	\$827, 450	\$17,032	\$6,925	\$6,747	\$685	\$ ${ }^{\mathbf{8} 50}$
70	Rent of offices, insurance, interest, and all sundry expenses not hitherto included.	\$22,606,910	\$390,046	\$45, 344	\$68,734	\$6,094	\$11,785
71	Contract work........	\$11, 622	\$1,650				
	Materials used:						\$1,800
72	Total cost........... Slaughtered	\$683, 583, 577	\$13, 555, 445	83, 721,610	\$3, 143, 590	\$442,389	\$2, 013, 827
	Beeves, number Cost	5, 530, 911	174,113	34, 934	408	5,105	
$\begin{aligned} & 74 \\ & 75 \end{aligned}$	Sheep, number	\$247, 365, 812	\$6,017,762	\$1,429, 817	\$16,240	\$102,500	8763,275
76	Sheep, number Cost	$9,190,490$ $\$ 37,137,542$	695,058 $\mathbf{8 2}, 197,362$	65, 088	20, 707	2,050	17,850
77	Hogs, number	\$30,654, 333	\$2, 197, 228,675	$\$ 287,843$ 160,210	$\begin{array}{r}\text { 874, } \\ 284 \\ 285 \\ \hline 881\end{array}$	$\$ 4,200$ 17,800	$\$ 88,675$ $\mathbf{1 2 7 , 3 0 0}$
78 79	Cost......	\$278, 736, 961	\$1,939, 208	\$1, 504, 397	\$2,548,174	17,800 $\$ 229,440$	127,300 $\$ 914,000$
80	Calves, number	-899,748	28,531	3,770	- 21.620	8229,440	$\$ 914,000$ 6,240
81		§7,356, 560	\$280,958	\$38,440	\$92, 792	\$1,636	\$53,600
	Dressed meat, purchased frexh or partly cured, cost	\$ $\$ 559,839$	\$165,021	\$55,895	\&8,080		
83	Fucl -..	$\$ 54,715,496$ $82,747,606$	\$1, 897, 969	\$363,870	\$132, 000	\$98, 300	\$145,200
84	Rent of power and heat	$82,747,606$ 830,946	$\begin{array}{r}\$ 69,305 \\ \$ 8,228 \\ \hline 8.62\end{array}$	\$18,013	819, 410	82, 061	\$9,058
86	Mill supplies....	\$337, 456	$\$ 3,228$ 83,672	\$2, ${ }_{1}^{\text {\$375 }}$			
88	All other materials.	\$448,373,654	\$416,019	\$43, 820	\$169, $\begin{gathered}\$ 1,585 \\ \$ 1\end{gathered}$	${ }^{\$ 113}$	
	Freight.	\$6,221,705	\$514,951	\$27, 460	\$81, 427	\$2,714	$\begin{array}{r} 86,395 \\ \$ 32,782 \end{array}$

PACKING, BY STATES AND TERRITORIES: 1900.

Georgia.	Illinois.	Indiana.	Iowa.	Kansas.	Kentucky.	Maine.	Maryland.	$\begin{aligned} & \text { Massachu- } \\ & \text { setts. } \end{aligned}$	Michigan.	Minnesota.	
7	64	36	27	14	28	11	82	22	29	20	1
4	929	15 12	10 5	3 2	21 4	7 2	64 16	11	16 10	11 7	2 3
1	33	,	12	9	3	2	2	7	3	2	4
\$116, 827	\$71, 229, 262	88, 860, 284	86, 851,353	\$16,486, 177	\$1,326,976	\$132,680	\$1,548, 488	\$11, 314, 075	$81,438,351$	\$1,355, 011	5
\$16,700	\$ $\$ 3,418,355$	\$ $\$ 476,886$	\%178,050	-8793, 228	\$ \$100,460	\$ $\$ 8,100$	- 8163,315	\$1, 182,832	\$164,695	- $\$ 71,160$	6
\$29, 026	\$10,560, 418	\$1,767, 647	\$1,232, 053	\$2,668,200	\$171, 850	\$34, 750	\$402, 500	\$2, 377,016	\$207, 065	\$246, 940	7
\$24, 802 $\$ 45,300$	\%6, 945, 234 $850,805,255$	$\$ 1,451,377$ $\$ 5,164,474$	8515,075 $\$ 4,426,175$	\$ $\begin{array}{r}\$ 1,678,762 \\ \$ 11,355,987\end{array}$	\$216,133	$\begin{aligned} & \$ 8,530 \\ & \$ 8,000 \end{aligned}$	$\$ 218,835$ $\$ 763,838$ $\$ 8$	$\$ 1,323,138$ $\$ 6,431,090$	$\mathbf{8 1 1 9 , 3 9 6}$ $\$ 957,195$	\$8132, 192	8
\$45,300	450, 305, 25.25	\$5, 164, 474	\$ 4 4, 426, 175	\$11, 355, 987	$\begin{array}{r} \$ 838,533 \\ 31 \end{array}$	$\begin{array}{r} \$ 84,000 \\ 12 \end{array}$	$\begin{array}{r}\text { \$763, } \\ 1088 \\ \hline\end{array}$	\$6,431, 090	\% \%	\$904, 729	10
$\begin{array}{r} 34 \\ \$ 20,235 \end{array}$	$\begin{array}{r} 4,226 \\ \$ 4,424,285 \end{array}$	$\begin{array}{r} 303 \\ \mathbf{9} 314,603 \end{array}$	$\begin{array}{r} 193 \\ \$ 197,376 \end{array}$	$\begin{array}{r} 1,841 \\ \$ 1,631,866 \end{array}$	$\begin{array}{r} 62 \\ 851,799 \end{array}$	6 $\$ 2,840$	$\begin{array}{r} 68 \\ 848,804 \end{array}$	$\begin{array}{r} 220 \\ \$ 250,296 \end{array}$	71 $\$ 66,661$	125 $\$ 102,709$	112
$\$ 4,000$	$\begin{array}{r} 79 \\ \$ 362,440 \end{array}$	$\begin{array}{r} 22 \\ \$ 80,200 \end{array}$	$\$ 36,720$	$\begin{array}{r} 12 \\ 853,690 \end{array}$	5 810,500		2 $\$ 700$	$\begin{array}{r} 5 \\ \$ 25,500 \end{array}$	\$20,500 ${ }^{9}$		13 14
$\begin{array}{r} 30 \\ \$ 16,235 \end{array}$	$\begin{array}{r} 4,147 \\ \$ 4,061,845 \end{array}$	- $\$ 234,403$	179 $\mathbf{8 1 6 0 , 6 5 6}$	$\begin{array}{r} 1,829 \\ \$ 1,578,176 \end{array}$	$\begin{array}{r} 57 \\ \$ 41,299 \end{array}$	6 $\$ 2,840$	$\begin{array}{r} 66 \\ \$ 48,104 \end{array}$	$\begin{array}{r} 215 \\ \$ 224,796 \end{array}$	$\begin{array}{r} 62 \\ \$ 46,161 \end{array}$	$\begin{array}{r} 125 \\ 8102,709 \end{array}$	16 16
$\begin{array}{r} 30 \\ \$ 16,235 \end{array}$	$\begin{array}{r} 3,825 \\ \S 3,855,511 \end{array}$	\$224, $\begin{array}{r}260 \\ \hline\end{array}$	$\begin{array}{r} 167 \\ \$ 155,619 \end{array}$	$\begin{array}{r} 1,523 \\ \$ 1,402,816 \end{array}$	$\begin{array}{r} 67 \\ 341,299 \end{array}$	\$2,416 ${ }^{4}$	847, ${ }^{64}$	\$214, 1922	65 842,601	$\begin{array}{r} 109 \\ \$ 96,269 \end{array}$	17
	$\begin{array}{r} 822 \\ \$ 206,334 \end{array}$	$\begin{array}{r} 21 \\ \$ 9,959 \end{array}$	$\$ 5,037$	$\begin{array}{r} 306 \\ 8175,360 \end{array}$		2 8425	\$920	$\begin{array}{r} 19 \\ \$ 10,374 \end{array}$	\$3, 660	[$\begin{array}{r}16 \\ \mathbf{8 7} 40\end{array}$	19 20
143	31,946	4,004	3,470	9,505	594	95	649	3,014	530	1,060	21
82	24,594	3,271	2,449	7,030	494	36	549	$\begin{array}{r}2,507 \\ \hline\end{array}$	414	578 668	22
104	27,861	- 3,697	2,887	8, 8177	-511	$\begin{array}{r}38 \\ \hline 17.900\end{array}$	597 8276,413	81 $\begin{array}{r}2,748 \\ 818,077\end{array}$	456 $\mathbf{\$ 2 3 0 , 6 3 7}$	668 $\mathbf{8 3 0 3 , 9 7 7}$	$\stackrel{23}{24}$
\$32, 440	\$14, 044,838	\$1, 565752	\$1, 208, 167	83, 575, 049	\$214,271	\$17,900	8276,413	\$1,318,077	\$230,637	\$303, 977	24
102 832,115	$\begin{array}{r} 25,792 \\ \mathbf{\$ 1 3 , 4 6 2 ,} 377 \end{array}$	3,157 $81,455,428$	\$1, $\begin{array}{r}2,643 \\ \hline 121\end{array}$	7,170 $83,330,631$	507 $\$ 213,711$	37 $\$ 17,600$	584 $\mathbf{8 2 7 3 , 8 1 9}$	\$1,811, 293	453 8230,137	650 $\$ 299,105$	${ }_{26}^{25}$
875	1,473 $\mathbf{\$ 4 2 7}, 203$	¢101,499 $\mathbf{3 8 7}$	$\begin{aligned} & 29 \\ & 89,906 \end{aligned}$	$\begin{array}{r} { }_{6}^{661} \\ \mathbf{8} 190,802 \end{array}$	4 8560	1 $\$ 300$	52, 110	\$3,582	\$450 ${ }^{2}$	83, 000	${ }_{27}^{27}$
\$250	$\begin{array}{r} 696 \\ \mathbf{\$ 1 5 5 , 2 5 8} \end{array}$	$\begin{array}{r} 53 \\ 88,825 \end{array}$	$\begin{array}{r} 216 \\ \$ 34,840 \end{array}$	$\begin{array}{r} 286 \\ \$ 58,616 \end{array}$			3 $\$ 476$	$\begin{array}{r} 11 \\ 83,100 \end{array}$	\$50	\$ $\$ 1,872$	29 30
125	26,359	3,290	2,966	6,846	575	35	605	2,910	612	717	31
125	26,270	3,188	2,649	6,778	${ }_{6}^{623}$	35 35	605 684	2,793 2,742	4452	647	32 33
123	25,595	2,994	2,585	6,614	494 479	35 31	684 577	2,742	442	687	34
94	24,818	2,977	2,536 2,641	6,656	480	${ }_{31} 1$	571	2,571	422	604	35
90 91	25,012	2,999 3,122	2,641 $\mathbf{2 , 7 4 2}$	6,842	480 479	31 19	571 576	2,554	424	611	${ }_{36}$
81	24,654 24,714	3,122 3,182	2,742 2,632	7,033	492	62	554	2,653	412	601	87
83	25, 154	3,146	2,484	7,261	492	76	658	2,651	451	592	${ }_{89}^{38}$
81	25,003	3, 143	2,371	7,676	474	42 39	573 595	2,683 2,763	4	672	40
114	26,522	3, 360	2,433	7,925			614	2, 2,811	486	704	41
109 111	27,412 27,996	3,217 3,265	2, $\mathbf{2}, 977$	7,878 7 7,686	647 669	18	605	2,869	485	819	42
	1,543	366					11	13	2		44
1	1,534	358 344	25 25	685 513	6	$\stackrel{2}{2}$	11	13	2	3	45
1	1,621	344 346	25 26	5	1	2	11	12	2		46
1	1,409 1,303	$\begin{array}{r}346 \\ 362 \\ \hline\end{array}$	${ }_{32}$	549	1	2	10	12	2	3	47
1	1,050	401	33	572	1	1	10	14	2	8	48
	1,209	472	34	616	1	1	10	14	2	11	50
	1,454	459	83	${ }^{652}$	1	1	10	14	2	10	51
	1,510	409	31	795 810	1	1	10	14	2	14	62
			31 27	88	11	1	10	14	2	24	53
	1,736 1,767	374 367	25	854	11	,	10	14	2	23	54
										7	55
$\stackrel{2}{2}$	570	42 39	281	200			3	11	1	8	56
3 2 2	682 690	39	167	221			3 3	11	1	8	67 58
1	564	37	172	239			3 3 3	10	1	11	59
	551	45	180	281			3	12	1	15	60
	530	53	181	320			3	11	1	14	61
	611	62	182	356			3	10	1		64
	634	65	172	318			${ }_{3}^{3}$	11	1	4	65
	653	54	287 297	314			3	9	1	6	66
4	681	48	297	267							
				\$2, 008, 771	\$105, 694	\$6, 819	\$109,017	$\begin{array}{r}\$ 591,102 \\ \$ 10,508 \\ \hline 17\end{array}$	$\$ 87,291$ $\$ 1,421$	$\begin{array}{r}890 \\ \mathbf{8 4}, 790 \\ \hline 8\end{array}$	67 68
\$1 \$920	$873,264$	* $\$ 3,636$	\$4,130	\$45,180	\$2, 660 87272	\$802	$\$ 13,757$ $\$ 10,130$	- \$77,877	811,362	\$7,386	69
\$1,389	\$ \$276,440	\$48,402	$\mathbf{8 2 0 , 1 7 6}$ $\mathbf{8 4 1 7} 630$	$\$ 108,870$ $81,849,721$	87,272 \$95,	\$5,356	\$83,630	\$502,687	\$74,508	\$78,009	70
\$8,925	\$13, 861,692	\$478,918	\$417,650		\$3,		\$1,500	\$30		\$500	71
	\$246, 713,	\$38, 608, 841	\$21,556,644	\$67, 908, 960	\$4,444, 621	\$457,031	\$7, 109,079	\$28,040, 069	84,770,640	\$6,823, 255	72
					20,698	2,790	19,837	33,244	33,299	52,700	73
10,606	2, ${ }_{\text {2, }}$	\$19,305, ${ }^{3505}$	§2, 512,385	\$38,165, 053	\$744,682	\$107, 060	\$811, 472	81, 305,157	\$1,223, 256	\$1, 900,341	74
$\$ 225,140$ 2,800	\$ 93, $3,139,160$	\$19, 363,837	*2, 13, 686	6836, 832	11,807	48,565 8161,853	\$8792,120	\$1,493, 278	§177, 838	8412, 120	76
\$55,450	\$18, 558, 698	\$1, 623,135	\$60, 106	\$2, 297, 746	$\$ 31,051$ 502,856	$\$ 161,853$ 2,925	*665,735	\$1,876,245	341,815	422, 325	77
25,995	8,291, 706	1,950, 370	1,922, 698	2, 849, 648	502,856 $83,449,723$	2,920 $\$ 30,250$	\$4.065, 829	\$19,854, 761	\$2,991,475	\$3,623, 396	78
\$165,000	\$82, 979, 678	\$13, 705, 362	817, 521,295	823, 530,278	\$3,449, 5 , 207	-3,469	-39,532	73, 788	6,884	6, 219	79
1,725	81 1478,450	12,943 $\$ 107,327$	¢ $\mathbf{4} 0,093$	\$294,454	835, 800	\$24,139	\$267, 600	\$462,634	\$54,220	\$50,589	80
\$6,140	\$1,378, ${ }^{\text {P70,959 }}$	\$107 $\$ 100$	\$ $\$ 250$,291,	\$3,064	\$870,080				- 9500,293	8
$\$ 2,420$ $\$ 60,800$	\$21, 373,908	\$2, 646,377	\$415,891	8683, 879	\$ 864,900	\$ $\mathbf{5 1 , 0 7 6}$		\$ \$ \$149,510	\$23, 095	\$ $\$ 42,440$	83
\$22,400	\$715, 397	\$84, 948	\$141,866	\$338, 467	\$28,330	\$1,076	\$ ${ }^{(1860}$	\$4, 876		\$400	84
	\$7,520			913, 785	\%1,200		$\uparrow 5,007$	\$15,135	\$1,660	\$3,490	85
\$1, 200	-8134,849		\$851, 190	\$2, 55t, 042	885,771	83,513	\$153,239	\$1, 209,763	\$120, 301	\$270,475	-86
81,790 813,350	$832,664,66$ $\$ 599$	\$247, 215	\$81,536	\$-, $\$ 30,956$	\$ 850	\$5,000	\$133, 530	\$1,390,209	\$17, 320	\$11,631	

/ Table 12.-COMBINED SLAUGHTERING AND MEAT

PACKING, BY STATES AND TERRITORIES: 1900-Continued.

Georgia.	Illinois.	Indiana.	Iowa.	Kansas.	Kentucky.	Maine.	Maryland.	Massachusetts.	Michigan.	Minnesota.	
8591, 227	\$287, 922, 277	\$43, 862, 273	\$26, 695, 044	\$77, 411,883	\$5, 177, 167	\$553,742	\$8,046, 359	\$31,633,483	85, 337,417	\$7,810,555	88
3, 726, 000	1, 042, 234,306	219, 166,574	30, 5788,342	451, 975, 433	8,429,607	1,658,500	8,956, 180	17,960,150	.16, 467,625	26,659,666	89
\$238,380	\$74, 321, 711	\$16, 476,761	82,125, 028	\$31,030,096	\$614,540	\$112, 370	\$724, 664	\$1, 365, 198	\$1,184, 398	\$1,682, 902	90
- 312	76, $96.446,283$	$\begin{array}{r}5,343,207 \\ \mathbf{8} 995 \\ \hline\end{array}$	1,627, ${ }^{885}, 466$	14,034,995		1,800 $\mathbf{8 1 8 0}$	6,000 $\$ 600$				91
56,000	67,917,743	1, 538,988	1,305, 205	8,967, 600	601,334		308, 620	1,116,500	17,285	807,115	93
\$4,800	\$5,066, 362	\$172,930	1, 884,838	\$540, 960	\$40, 036		\$26, 039	1, $\$ 62,000$	\$1,185	856, 449	94
122,000	148,003,635	15,911, 670	1,169, 736	24, 309,545	440,016	2,643, 664	7,026, 200	16,207, 400	1,925,618	4, 585, 842	95
88,990	\$11, 842, 741	\$1, 413, 522	\$98,094	\$1,894,220	\$36, 164	\$219, 789	\$7774,885	\$1,311,978	\$159, 952	\$859, 455	96
115,000 $\$ 9,30$	$17,673,896$ $\mathbf{\$ 1}, 489,318$	$1,155,508$ $\$ 107,383$	457, 581 839,972	$3,869,293$ $\$ 282,981$	388,102 $\$ 36,009$	279,660	2,521,000	6,173,540	674,400	640,910 855,439	97 98
1,414,000	411,										
1 \$107, 800	\$28,774,48	\$1,985,	31	242, 48	6, 822,730	493, 333	12,019,713	44, 507,608	12,036,427	17, 354,988	${ }^{99}$
782,000	522, 096,382	30, 704, 461	135,513,117	78,884,690	21,371,238	202, 600	8,799,909	67, 884, 374	12,496,900	23, 819,650	101
\$53, 740	\$86, 179, 893	\$1, 819, 740	\$9, 403, 836	\$4,814,529	\$1,091,135	\$12,600	\$628, 383	83,785,017	\$780,964	\$1, 362, 540	102
230,000	228, 284, 156	42,658, 638	39, 741,810	67, 996,957	10, 662,435	220,000	12,830,500	67,134, 534	8,388, 230	5,920, 898	103
\$23, 900	\$22,746, 703	88,552,687	\$3, 665,663	\$4,940,298	\$974, 201	\$23, 200	\$1, 316, 703	\$4, 719,658	\$632,490	\$667,570	104
220,000	185, 240, 920	117,787, 185	30, 781, 171	138,485, 250	10,680,870	140,000	20, 184, 869	92, 227, 868	15,069, 779	7,713,147	105
\$17,800	\$14, 434, 769	\$8, 2222,656	\$2, 399, 670	\$9,657, 119	\%791, 864	\$10,400	\$1,527,278	\$8, 108, 673	\$1,056,797	\$571, 336	106
647, 000	96, 536, 421	8, 532, 981	8, 917,759	24, 936, 703	4, 316, 631	65, ${ }_{4} 4,000$	10,310,052	22, 800, 805	3,670,757	3,579,898	107
\$42, 187 832,000	\$7, 881, $57,936,886$	$\begin{array}{r}\text { \%579, } \\ \text { 5,760 } \\ \hline 732,510\end{array}$	8562,596 6,800	$\$ 1,469,400$ $6,489,044$	$\$ 309,149$ 42,684	\$4,450	$\$ 709,038$ 52,000	\$1, 674,512 21,086	$\$ 212,985$ 160,000	$\$ 275,740$ $\mathbf{2} 456,636$	108
\$45, 840	\$6, 159,827	\$ ${ }^{\text {P373, }} \mathbf{3 5 1}$	\$390	\$412, 267	81,779		\$5, 021	81, 265	1610, 000	2, $\$ 271,634$	110
92,000	326,707, 241	45,091, 290	63,086,918	91,966,141	7,276, 846	173,000	6,965, 261	68, 843,633	2,146,566	8,248, 174	111
\$5,840	\$18,699, 882	\$2, 777, 373	\$3,590,506	\$4, 970, 291	\$401, 670	\$11, 300	\$456, 922	\$4,220,098	\$152, 203	\$507,922	112
25,400	45, 455, 528	3,583, 150	7, 354, 874	24, 037, 743	1,381,570		5, 396, 552	1,000,000	138, 317		113
\$1,512	\$3,596, 474	\$260,829	\$491, 049	\$1,255, 208	\$90, 050		\$331,666	\$60,000	\$9,682		114
	9,760,701	1,146,483	175, 708	1,928, 813				$\begin{array}{r}82,021 \\ 831 \\ \hline 250\end{array}$			
	\$5,907, 572	\$750,628	\$87, 854					\$31, 250			117
	$\begin{array}{r} 4,385.191 \\ \$ 2,010,394 \end{array}$	176,583 $\$ 84,906$	273,709 898,517	1,268,691			5,000 $\$ 2,000$			\$76, 821	117
176	\$2,010, 394	\$84, 8,906 8,909	\$98,517	\$586, 487	1,687		\$2,000	5,099	430	$\begin{gathered} \$ 76,821 \\ 1,465 \end{gathered}$	118 119
\$2,840	\$1,212, 619	\$143,011	\$84, 279	\$504,080	\$23, 376		\$8,690	\$88, 810	86,245	\$21, 306	120
11,081	2,206, 337	371,538	81, 820	900, 732	26,905	6, 925	61,169	106,492	40,243	59, 269	121
438, 840	128, 702, 573	23, 550,614	4,278, 686	50,421, 335	1,238,773	182,900	1,414, 620	2,609,300	1,897, 918	3,051, 526	122
\$28, 189	\$13,092, 560	\$2, 645, 605	\$420,183	\$6, 556, 196	\$114,571	816,056	\$113, 220	\$237,662	\$165, 857	\$294,762	123
3,600	8,389,307			2,000	1,800	121,240	$\begin{array}{r} 5,460 \\ 81.385 \end{array}$	1,450,000			
81, 200	\$1,935, 373			${ }^{\$ 1}{ }^{\$ 375}$	18200 $\$ 129.025$	\$27,810	81, \$185 $\mathbf{1 8 9}$, 823				126
\$2, 817 $\mathbf{\$ 7 5 0}$	$\begin{array}{r} \mathbf{8 2 6}, 116,008 \\ \$ 7,559 \end{array}$	$\$ 2,100,769$ $\$ 250$	$\begin{array}{r} \$ 218,657 \\ \$ 1,325 \end{array}$	$\begin{array}{r} \$ 1,868,672 \\ \$ 13,578 \end{array}$	\$129,025	\$49,519	$\$ 189,823$ $\$ 45,450$	$\$ 1,576,606$ $\$ 13,983$	$\$ 81,299$ $\$ 1,000$	$\begin{array}{r} \$ 558,068 \\ \$ 1,515 \end{array}$	127
8,788,000	2,179, 139,406	409,620,551	81,066, 710	974, 623, 827	18, 909, 167	2,760,100	18,995,400	32,181, 970	41, 458, 810	54,989,920	128
4,276,750	1,176,549, 166	229, 999, 021	44,422,716	529, 936, 771	10,137,047	1,658,600	10,351, 730	17,773,762	16,623,895	28,207,859	129
210,500	265, 267, 321	31,625,196	1,242,240	81,608, 236	752,827	6,330, 200	14,035,600	32, 319,320	3, 892, 700	7,180,032	130
99, 700	135, 918, 174	16,166,213	610,803	25,937, 180	386, 310	2,581, 470	7,024,000	16, 236, 680	1, 923,793	4, 876,464	131
4, 027, 500	1,980,965,755	341, 722, 941	453, 457,689	653,215,874	88, 560,586	639, 375	85, 858, 321	431, 041, 694	70,282,690	91,098,995	132
2,882, 730	1,544, 636, 373	274, 352, 718	324, 005, 185	505, 648, 235	69, 597,001	502, 500	66, 752, 723	343, 634, 967	55, 816,500	70,732,130	
187,000	23,488,788	2,012,100	596,402	6,005,180	669,428	468, 460	4,216,840	7,716,310	953, 100	908,870	134
103, 950	14,968,146	1, 227, 473	393, 354	3,731,492	388, 368	279,665	2,520,640	5,187, 290	674,600	633, 988	135
8264, 449	$\begin{array}{r} 54 \\ 8286,427,878 \end{array}$	$\begin{array}{r} 35 \\ 843,813,289 \end{array}$	$\begin{array}{r} 19 \\ \$ 24,077,217 \end{array}$	$\$ 76,372,001$	$85,009,849$	\$366,066 ${ }^{6}$	72 $84,984,298$	881, $\begin{array}{r}163 \\ \hline 89\end{array}$	84,633, 770	86, 663, ${ }^{12} 1{ }^{12}$	136
\$265,700	$\begin{aligned} & 8280,427,818 \\ & \$ 261,506,516 \end{aligned}$	\$41,570,488	824,902, 235	\$72,811,901	\$4,419, 179	\$343,137	\$4,855,508	\$34, 466, 061	\$4,019, 306	85, 343, 611	138
127	$\begin{array}{r} 68 \\ 28,293 \end{array}$	4,29 4,949	19 4,219	$\begin{array}{r} 12 \\ 12,927 \end{array}$	19 626	$\begin{array}{r}3 \\ 62 \\ \hline\end{array}$	$\begin{array}{r} 43 \\ 1,663 \end{array}$	12 3,022	12 683	$\begin{array}{r} 15 \\ 965 \end{array}$	139 140
6 119		$\begin{array}{r}64 \\ 4,540 \\ \hline\end{array}$	47 3,198	69 10,903	30 506	$\begin{array}{r}3 \\ 62 \\ \hline\end{array}$	49 1,662	29 2,874	18 648	921	141
				10	1				$\frac{1}{35}$		143
			16	209	10						145
											146
		36	40	83			1	16			147
8	3,613	404	1,005	1,715	10		1	105		5	148
										6	149
								18		10	
	15	5		10				25 30			162 163
	145	1	10					30			
7	64	36	27	14	28		82	22	29	20	154
						2	50	7	12	5	156
	24	11	6	4	7	5	21	4	7	12	167
	15	7	5	3	4	2	7	4	6	1	158
2	6		$\stackrel{2}{2}$	2				2	2		160
	2			1	1			1		1	${ }_{162}^{161}$
	4		1					1			163
			1	3							

Table 12.-COMBINED SLAUGHTERING AND MEAT

PACKING, BY STATES AND TERRITORIES: 1900-Continued.

Ohio.	Oregon.	Pennsylvenia.	Rhode Island.	Tennessee.	Texas.	Utah.	Virginia.	Washington.	West Virginia.	Wisconsin.	All other states and territories. ${ }^{1}$	
71	9	111	7	8	12	8	4	18	3	13	14	1
26 28	$\stackrel{2}{3}$	66 44	1	$\stackrel{2}{2}$	1 3	3 6	1	3	1	3 6	${ }_{5}^{3}$	$\stackrel{2}{3}$
17	4	11	2	4	8			8	1	4	6	4
\$5,355, 626	\$760,448	\$6,548, 577	8769,850	\$651,740	\$1,232,267	\$117,027	\$159,500	\$1,014,086	8313,000	\$3,811,616	\$216,671	6
\$296, 840	\$189,021	\$764, 863	\$16,800	845, 300	853, 871	\$26,969	\$34, 000	\$50,200	\$22,000	\$269,082	\$16, 750	6
\$720, 621	\$238,500	\$1, 441, 202	\$22, 400	\$119, 589	\$244,329	\$16, 000	\$23,000	\$141, 400	\$55,000	\$531, 652	\$40, 803	7
\$504,781	\$115,356	\$728, 684	\$35, 700	\$129, 227	9222, 952	\$15, 297	\$22,000	\$131,242	\$33,000	\$4426, 430	\$57,272	8
83, 833, 380	\$217, 671	\$3,613, 828	\$684,950 10	\$357, 624	8711, 115	\$58,761	\$80,500	\$691, 244	\$203,000	\$2,684, 452	$\$ 108,046$ 12	9 10
313 8266,001	41 $\$ 47,130$	\$317, ${ }^{3763}$	16 $\$ 17,636$	15 $\$ 17,365$	49 $\$ 81,797$	\$2, 472	19 $\$ 14,340$	88 881,116	16 $\$ 11,800$	123 $\$ 145,333$	\$ $\begin{array}{r}15 \\ \$ 10,270\end{array}$	11 12
$\begin{array}{r} 47 \\ \$ 71,926 \end{array}$	$\begin{array}{r} 9 \\ \$ 16,400 \end{array}$	\$19, 200	$\begin{array}{r} 5 \\ \$ 8,000 \end{array}$	\$12,500	$\begin{array}{r} 10 \\ \$ 20,800 \end{array}$		84, ${ }^{3} 40^{3}$	3 $\$ 6,120$	80, 5	$\begin{array}{r} 10 \\ 835,000 \end{array}$	\$ $\begin{array}{r}4 \\ 4 \\ 500\end{array}$	13 14
$\begin{array}{r} 266 \\ \$ 194,076 \end{array}$	$\begin{array}{r} 32 \\ 830,730 \end{array}$	- $\begin{array}{r}367 \\ 8297,953\end{array}$	[99,636	\% $\begin{array}{r}6 \\ 84,865\end{array}$	39 840,997	\$2,472 ${ }^{6}$	\$ $\begin{array}{r}16 \\ \hline 900\end{array}$	86 \$74, 996	\$5,800	$\begin{aligned} & 110,{ }_{333}^{13} \end{aligned}$	\$5,770	15 16
$\begin{array}{r} 249 \\ \$ 187,189 \end{array}$	$\begin{array}{r} 30 \\ \$ 29,930 \end{array}$	$\begin{array}{r} 348 \\ \$ 290,973 \end{array}$	$\begin{array}{r} 11 \\ \$ 9,636 \end{array}$	\$4, 865	38 $\$ 40,457$	\$2, $\begin{array}{r}5 \\ \hline\end{array}$	16 89,400	80 $\$ 72,566$	11 $\$ 5,800$	106 $\$ 106,235$	11 85,770	17 18
\$ $\begin{array}{r}17 \\ \$ 886\end{array}$	\$820	19 $\$ 6,980$			$\begin{array}{r} 1 \\ 8540 \end{array}$	\$300		\% ${ }^{5}$		7 84,098		19 20
2, 029	219	7,754	221	349	535	52	80	281	92	1,678	224	21
1,613	145	1,530	191	109	345	42	63	214	75	1,125	165	22
1,765	172	1,669	209	156	414	42	65	231	84	1,367	137	23
8811,398	\$87,821	\$920, 190	8107,104	\$60,945	§179, 505	\$18, 653	\$28,884	\$156, 631	\$42,646	8563,208	\$59, 426	24
1,717 $\mathbf{8 7 9 8 , 5 1 4}$	166 $\$ 86,441$	1,646 $\$ 914,467$	($\begin{array}{r}206 \\ \$ 108,268\end{array}$	152 $\$ 60,776$	394 8173,438	[$\begin{array}{r}42 \\ \hline 653\end{array}$	65 $\$ 28,884$	\$155, 6291	76 $\$ 40,642$	1,365 $\$ 562,833$	- $\begin{array}{r}131 \\ 858,118\end{array}$	25 26
$\begin{array}{r} 29 \\ 88,666 \end{array}$	8480	$\begin{aligned} & 13 \\ & 83,895 \end{aligned}$		4 $\$ 170$	$\begin{array}{r} 19 \\ \$ 5,867 \end{array}$			\% 2	81,620 ${ }^{6}$	2 $\$ 375$		27 28
19 $\$ 4,228$	\$8900	$\begin{array}{r} 10 \\ \$ 1,828 \end{array}$	\% $\begin{array}{r}3 \\ \$ 836\end{array}$		1 $\$ 200$				\$384 ${ }^{2}$		81, ${ }^{6} 8$	$\begin{aligned} & 29 \\ & 30 \end{aligned}$
			196	197	457	40	80	238	83	1,558	182	31
1,799	166	1, 669	198	180	483	39	75	236	73	1,413	123	32
1,717	150	1,657	201	139	473	39	65	241	73	1,345	114	${ }_{34}$
1,654	136	1,600	204	118	447	46	65	${ }_{253}^{233}$	69 77	1,274	114	${ }_{35}$
1,694	136	1,604	206	122	408 349	46	57	229	77	1, 811	102	86
1,649	156	1,578	203	122	349 341	41	58	216	77	1,293	178	37
1,618	185	1,680	205	137 76	341 326	42	55	218	77	1,178	176	38
1,579	185	1,618 1,653	209	76 90	326 352 3	40	${ }_{55}$	220	69	1,182	129	39
1,647 $\mathbf{1}, 669$	162	1,653	214	115	357	40	80	219	74	1,345	124	${ }_{41}^{40}$
1, 811	191	1,691	210	247	370 366	38 45	74 85	225	84 84	1,561	134	${ }_{42}^{41}$
1,901	187	1,755	209	278	366	45	85	223				
29		12			22						
29	1	11			21			2 2 2	6 6	1		45
29	1	12						2	6	2		46
29	1	12			18			2	6	2		47
29 29	1	17			17			2	6	2		48
29	1	15			17			2	6	2		50
29	1	15			17			2	6	2		51
29 29	1	17		3	14			2	6	1		62
29 24	1	12		23	19			2	6	1		54
29	1	12		26	24			2	6	1		5
	5	10	3		1				2		7	${ }_{56}^{55}$
24	5	10							2		7	67
20	5	9	3						2		4	58
16	6	10	3		1						4	
16 19	5	9	3		1				2		4	${ }_{61}^{60}$
19	5	10	3		1				2		5	62
16	6	10	3		2				2		7	63
16	5	9	4		2				2		7	64
16	5	9	4						2		7	66 66
24	5	10	4						2		7	66
24	5	10										
\$639,008		\$526,972	\$44,736	\$26, 268	866, 749	\$8,940	$\begin{array}{r} \$ 3,988 \\ \mathbf{8} 800 \end{array}$	\$80, $\mathbf{\$ 1 0}, 423$	\$4,623	\$21, 902	\$81,711	68
\$ $\$ 26,900$	88, 026	\$131, 365	$\begin{array}{r}\text { \$10, } \\ \mathbf{\$ 1}, 014 \\ \hline 183\end{array}$	81,513	\$\$5,120		\$1,088	\$4,284	\$1, 575	\$10,197	\$1, 878	69 70
- 825,192 $\$ 886,916$	$\$ 4,754$ $\$ 27,988$	$\$ 29,401$ $\$ 363,921$	\$83, 349	\$23,258	\$56, 559	\$3,179	82,100	\$65, 301	\$3,048	8376,892		7
												71
							9637, 730	\$4, 252,435	\$1, 133, 954	\$11, 889, 624	\$1,183, 352	72
\$17, 927, 953	\$1, 359, 361	\$21, 601, 810	\$2,246, 780	\$1,453,128	83, 170,536	8385,353						73
98,636	14,461	130,073	1,000	$\begin{array}{r}8,988 \\ \mathbf{8} 43 \\ \hline 1015\end{array}$	24,376 $\$ 599,514$	6,920 $\mathbf{\$ 2 3 0 , 0 4 0}$	4,800 $\$ 111,000$	39,869 $\$ 1,713,165$	4,670 $\$ 200,200$	\$1,761, 321	8701, 314	74
\$3,629, 833	\$549,650	85,497,257	\$85,000	$\$ 243,015$ 4,200	$\$ 59,514$ 6,649	\$ 12,809	6,050	132,756	2, 660	$\begin{array}{r}36,787 \\ \mathbf{\$ 1 4 0} \\ \hline\end{array}$	- 1444,912	75 76
$\begin{array}{r}70,739 \\ \hline 899\end{array}$	47,819 8158,520	\$971,583		\$12,700	\$18,311	\$48, 134	\$21,150	$\begin{array}{r}8459,307 \\ 78 \\ \hline\end{array}$	48,460 79,120	$\$ 140,925$ 947,614	844,465 85,726	76 77
$\$ 224,559$ $\mathbf{1}, 283,597$	8158,520 21,862	881, 821	$\cdots \cdots 138,200$	115, 672	208,270	2,370	37,000 8298200	72,149 $\$ 782,828$	\%785,010	88,630,609	\$336, 332	78
\$11,189,787	\$213, 040	\$6,977, 465	\$1,469,300	\$1,060, 324	\$1, 886,067	\$21, 673	$\$ 298,200$ 6,300	$\$ 72,828$ 7,271	\$785, 760	-21,973	-3,047	79
*1, 31, 971	1,661	5145, 810		1,900 $\mathbf{\$ 1 0} 900$	860,205	\$10,194	\$36,500	\$75, 669	\$4,404	\$140,548	\$16, 235	80
\$247,280	\$12,470	\$445,811	\$2,800	\$10, 900	\$60, ${ }_{821}$	10,194		\$7,283		\$14,467	\$1, $\$ 1,300$	81 82
- ${ }^{\$ 900}$	- $\$ 294,621$	\$5,518,048	\$ $8 \mathbf{5 9} 9,300$	\$73,757	\$178,738	\$89,099	\$130,000	\$861,168	$\$ 117,950$ $\$ 4,200$	\$161, $\mathbf{8} 4,225$	\$29, ${ }^{\mathbf{2}} \mathbf{2 9 0}$	83
\$1,143, 887	\$ $\$ 284,689$	\$5,886,801	\$9,825	\$14,146	\$53,858	\$1,090	\$2,210	\$12625	\$, 200	${ }^{81}$ \% ${ }_{84}$	-16,290	84
\$6621	\$ 8409	\$15,550			\$8100	\$113		\$2,295	\$ 8530	\$8,645	\$2,151	85
\$15, 135	\$1,259	\% $\$ 13,225$	81,420	\$3925	$\$ 3,330$ $\$ 855944$	\$14.040	\$23,050	\$39,295	\$13,200	\$607,458	\$18,276	86
\$1,132, 956	- $\begin{array}{r}\$ 9,691 \\ \$ 96,698\end{array}$	\$504, $\mathbf{\$ 4 9 3}, 613$	$\$ 990,635$ $\$ 88,500$	$\$ 32,865$ $\$ 4,447$	\$ \$14,448	\$250	\$15,400	\$298,634		\$384,870	\$18,500	87

[^133]Table 12.-COMBINED SLAUGHTERING AND MEAT

PACKING, BY STATES AND TERRITORIES: 1900—Continued.

Ohio.	Oregon.	Pennsylvania.	Rhode Island.	Tennessee.	Texas.	Utah.	Virginia.	Washington.	West Virginia.	Wisconsin.	All other states and territories. ${ }^{1}$	
\$20, 660,780	\$1,638, 480	\$25, 238, 772	\$2, 303,466	\$1,671,218	\$3, 904, 491	\$453, 456	\$748,620	\$4, 892, 857	\$1,357, 578	\$13,649, 750	\$1, 374, 953	88
$43,652,450$ $83,116,193$	$7,583,840$ $\mathbf{\$ 5 5 2 , 5 0 7}$	84, 181, 747 87, 069,719	$\begin{aligned} & 500,000 \\ & \$ 33,600 \end{aligned}$	$\begin{array}{r}3,681,960 \\ \$ 255, \\ \hline 887\end{array}$	$10,795,352$ $\mathbf{\$} 588,996$	$\begin{array}{r} 3,670,450 \\ \$ 244,269 \end{array}$	$1,785,000$ $\$ 106,300$	21,418,889	$2,540,000$ $\$ 186,700$	24, 282, 329	$10,348,100$ $\mathbf{8 7 3 4}, 170$	89 90
1,200,000		- 42,400						-1,61,064		\$1, 522,186		90 91
\$78,500		\$4, 240								\$5, 445		92
4, 692,000	502,500	2,515,208		14,400	2,000	144,210	6,000	1, 921, 250		851,296	8,500	93
\$240, 740	838, 175	\$191, 168		8720	\$300	\$11, 409	\$250	\$139, 825		\$ 959,317	\$560	94
2,277, 155	2,300, 600	9 904,293		217,000	266,414	696, 830	303, 000	6,298, 881	88,500	1,564, 703	670,667	95
\$212, 592	\$164,780	\$979,064		\$14,000	\$22, 040	\$48,594	827, 210	\$4779,529	87, 965	\$129, 923	\$49,966	96
$2,464,318$ $\$ 2234,817$	198,410 818,210	$4,371,144$ $\mathbf{\$ 4 6 5 , 3 8 6}$	$\begin{aligned} & 24,000 \\ & \$ 1,680 \end{aligned}$	217,500 811,850	973,612 $\$ 67,542$	259,040 $\$ 25,917$	418,000 $\$ 36,720$	936,150 $\mathbf{8 8 2 , 9 0}$	48,100 84,173	1,806,612	234,939 $\$ 16,753$	97 98
46,226, 099	781,520	45, 896, 941	10,352, 400	2,535,511	6, 133, 863	499,034	918,000	6,887,071	2,368,500	24, 797, 944	2,368,600	99
88, 354, 714	\$62,897	\$8, 488, 370	\$699, 970	\$158,931	\$333,968	\$33, 835	\$69, 620	\$612,120	\$166, 196	\$1,463,007	\$181, 107	100
23,136, 649	1, 467, 400	12,184,548	$7,434,000$	7.581, 817	5, 806,344	34, 800	2,783,000	646,400	530,000	73, 657,159	450,500	101
\$1,589, 237	\$102, 322	\$898,910	\$439, 660	\$525, 719	\$8396, 894	82, 828	8195, 810	\% \$55,440	\% 837,100	84, 337,065	\$37, 810	102 103
38,046, 139	1,501, 564	44, 629, 801	4,628,350	2,981, 400	6, 289, 601	36, 280	1, 0444,560	6,412,300	5,122,400	25, 775,477	756, 901	103
\$3, 638,830	\$162, 564	\$4, 207,412	\$8419,027	- \$280,816	$\begin{array}{r}\text { \$481,106 } \\ \hline 11849398\end{array}$	$\begin{array}{r}\text { \$4, } \\ 17685 \\ \hline 1600\end{array}$	\% $\begin{array}{r}\text { \% } 101,460 \\ \hline 15000\end{array}$	$\begin{array}{r}\mathbf{8 1 4 ,} \\ 5,2298 \\ \hline\end{array}$	3,651,610	$\$ 2,228,503$ $9,448,637$	877,000 $1,003,056$	104
$63,168,262$ $\$ 4,173,926$	$2,094,147$ $\$ 190,720$	$36,610,835$ $\$ 2,800,348$	5,637,075	$2,813,863$ $\$ 198,096$	$11,849,398$ $\$ 833,340$	\$17, 259	$1,150,000$ $\$ 97,000$	5, $\$ 4979,665$	3,6266, 812	9, $\$ 6768,487$	$\begin{array}{r}1,083,006 \\ \hline 87,100\end{array}$	106
14, 397,065	404, 891	15, 412, 150	2,183, 700	281, 600	2,085, 953	154, 709	330,000	973,905	427,000	7,630,689	424, 450	107
\$1,026, 540	\$33,265	\$1,233, 816	\$158, 048	\$16,243	\$123, 939	\$12,805	\$25,000	\$76,451	\$24, 870	\$554, 324	\$33, 260	108
242,080	46,000	1,634, 720	374,500	17,000	539,400	32,375		30,000	100, 000	200, 983	91,000	109
\$21,408	\$5,400	\$128,603	\$26, 215	\$800	\$30,580	\%4, 775		\% ${ }^{\mathbf{2} 2,552}$	$\begin{array}{r}\text { \$5, } \\ \hline\end{array}$	\$18, 467	\$5,688	111
29, 535, 529	1,018, 732	26, 805,932	3,936,200	1,804,200	4,334,111	60,504 85	910,000 859	1,657,000	$1,846,000$ $\$ 110,900$	191, ${ }^{19} 183,302$	\$742, 100	112
\$1, 894, 541	\$95, 752	\$1, 733,624	\$245,625	18105,801 636,900	$\$ 282,661$ $2,141,216$	\$5, 290	\$ $\mathbf{4} \mathbf{3}, 140$	- 25,000	\$1.0,900	-2,690,051	13,333	113
$2,823,300$ $\$ 210,850$	2,500 $\$ 150$	52200		\$44,572	\$133, 993		\$2, 600	\$1,500		\$152,544	\$800	114
76,000		494, 372								48, 322		115
\$38,000		\$244, 687								\$24, 048		116
	3,085	16,933			976,840			4,200		3, 931	22,750	117
	\$1,446	\$8, 500			\$195,548			$\$ 2,480$ 3,780 $\mathbf{3}$		$\$ 1,651$ 3,237	87,300 160	118 119
4,006 $\$ 58,646$	\% 85 81,615	3,108 888,099		380 $\mathbf{8 5}, 785$	563 $\mathbf{8 6 , 4 2 4}$			3,780 $\$ 92,400$	\$3,000	3,237 888,324	\% $\$ 2,050$	119 120
\$58, 646 130,595	$\$ 5,615$ $\mathbf{1 9 , 9 8 3}$	$\$ 88,099$ 181,533	$\$ 4,500$ 1,400	85,785 12,518	\$6,424 31	8,086	$\$ 3,000$ 11,100	\$92, 47,140	\$3, 430	888, 872	19, 892	121
5,728,737	861, 140	8, 203, 766	65,000	467, 400	1,379, 101	355, 400	284,000	2,510,962	248, 400	2, 892, 706	838,220	122
\$514,759	\$79,301	\$725,637	84, 550	\$36, 803	\$118,067	\$32,790	\$18,412	\$232, 968	\$22, 032	8299, 906	863, 427	124
	200,000	33,400						5,000		\$110		
	240,000 $\mathbf{8 8 5}, 376$	\% $\$ 7,600$ $\$ 964,814$	\$110,486	\$15,495	\$289, 103	\$11,307	\$6,238	\$132,995	\$1,215	\$798,423	\$31,101	126
$\$ 1,500$		\$10,575	ه10,	15,				\$2,000		\$150	\$4,761	127
91, 445,994	15,089, 880	145, 774, 881	1,000,000	7,308,000	21, 258, 700	7, 081, 450	3,760,000	45, 111, 700	4, 670,000	45, 006, 397	$20,415,000$	128
49,942,925	8,002,690	82, 466,657	1,500,000	3,696,360	10,670, 800	3,798,225	1,790,000	24,240,640	2,540,000	25, 130, 728	10, 857, 000	
4, 564, 862	4,673,340	18, 392, 144		420,000	555,995	1,273,290	605, 000	13,130,595	164, 000	3, 141, 084 $1,586,895$	$1,348,520$ 672,020	130 131
2,372, 155	2,327,550	9,188, 267		217,000	288, 554	680, 766	303,000	6,374, 671				
	4,823,560	152, 253, 593	33,300,000	22, 699,650	41, 569,304	643,160	6, 440,000	14, 757,380	17, 339, 000	218,728, 230	$6,790,544$ 5 , 204,533	132
204,072, 350	3, 830, 992	120,725, 044	27, 212,000	17,419,640	32, 959, 805	423, 750	5,188, 000	12,003,909	13, 834,000	175, 778, 422	5, 204, 533	
	297, 854	6, 987, 046	48,000	360,000	1,697,621	164, 724	330,000	1,303, 820	77,300 48,100	$2,473,520$	373,050 240,125	${ }_{135}^{134}$
1,572, 916	198, 410	4,197, 992	24,000	217,500	987, 234	116,350	418,000	914, 822	48,100	$1,844,004$		
	-	93									$\begin{array}{r} 9697,998 \\ \hline 899 \end{array}$	136 137
\$19, 200, 447	\$852,453	$\$ 23,168,503$ $\$ 21,024,890$	$\$ 2,503,466$ $\mathbf{8 2}, 313,878$	$\$ 1,423,838$ $\$ 1,130,553$	$\$ 2,163,097$ $\$ 1,846,478$		$\$ 436,620$ $\$ 395,380$	$84,049,557$ $88,321,256$	$\begin{aligned} & \$ 1,294,263 \\ & \$ 1,246,905 \end{aligned}$	$\$ 14,792,474$	$8584,293$	138
\$17,610, 819	8749,963	\$21,024, 890	\$2, 313,878	\$1,130,553	\$1,846,478	W 346,12	\$35, 30	6,321,26				
						7	2	10	3	11	9	139
3,418	299	4,605	273	560	1,795	69	185	474	376	2,071	619	140
	9	106	10	5	22	6	5	52	9	27	16 619	141
3,262	267	4,188	273	550	1, 689	54	185	432	-29			143
		34			49				27			144
										1		147
9		11		10	155				20	25		148
128	30	198										149
								42		5		151
28	2	25			2	15						162
		160										153
							4	18	3	13	14	154
71	9	111	7	8	12	8						155
					2	3		$\stackrel{2}{9}$	1	2 3	8	156
27		39			4			6	1	2	1	158
		22			2			1	1	2	1	159
		1								1		160
		1								1		162
1												163

1 Includes estahlishments distrihuted as follows: Alahama, 2; Arkansas, 2; New Hampshire, 1; North Carolina, 1; New Mexico, 2; Oklahoma, 2; South Dakota, 1; South Carolina, 1; Wyoming, 2.

Twelfth Census of the United States.

Census Bulletin.

No. 218.
WASHINGTON, D. C.
July 1, 1902.

AGRICULTURE.

WISCONSIN.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for pubplication in bulletin form, the statistics of agriculture for the state of Wisconsin, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of differdent products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.
A "farm," as defined by the Twelfth Census, includes all the land under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.
The farms of Wisconsin June 1, 1900, numbered 169,795 and were valued at $\$ 686,147,660$. Of this amount, $\$ 155,604,970$, or 22.7 per cent, represents the value of buildings, and $\$ 530,542,690$, or 77.3 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 29,237,010$, and of live stock $\$ 96,327,649$. These values, added to that of farms, give $\$ 811,712,319$, the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal products." The total value of such products, together with the value of all crops, is termed "total
value of farm products." This value for 1899 was $\$ 157,445,713$, of which amount $\$ 69,303,364$, or 44.0 per cent, represents the value of animal products, and $\$ 88,142,349$, or 56.0 per cent, the value of crops, including forest products cut or produced on farms. The "total value of farm products" for 1899 exceeds that for 1889 , by $\$ 86,455,068$, or a gain of 121.8 per cent, but a part of this increase is doubtless due to a more detailed enumeration in 1900 than in 1890.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 41,583,750$, leaving $\$ 115,861,963$ as the gross farm income for that year. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Wisconsin, in 1899, it was 14.3 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.
The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Wisconsin.

Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN WISCONSIN.

GENERAL STATISTICS.

Wisconsin has a total land area of 54,450 square miles, or $34,848,000$ acres, of which $19,862,727$ acres, or 57.0 per cent, are included in farms.

The general surface is that of a swell of land between three notable depressions, Lake Michigan, Lake Superior, and the Mississippi River. The summit of the swell lies about 30 miles from Lake Superior and from this point there is a rapid descent northward. To the southeast and southwest there are gentler declines separated by a low swell extending southward into Illinois.

The soils of the state are varied. In the northern and western parts there is a sandy loam or loamy clay, permanent and fertile. In the southwest the decomposition of underlying limestone forms a soil highly fertile and easily tilled. From considerable deposits of Potsdam sandstone in the central portion, a soil of relatively low fertility is derived.

NUMBER AND SIZE OF FARMS

Table 1 gives, by decades since 1850 , the number of farms, the total and average acreage, and the percentage of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	Number of farms.	mber of acres in farms.				Per cent of farm land improved.
		Total.	Improved.	Unimproved.	Average.	
1900.	169,795	19, 862, 727	11,246, 972	8, 615, 755	117.0	56. 6
1890.	146, 409	16,787, 988	9,793, 931	6,994, 057	114.7	58.3
1880.	134, 322	15, 353,118	${ }^{9}, 162,528$		114.3	59.7
1870.	102, 904	11,715, 321	5, 899, 343	5, 815, 978	113.8	50.4
1860.	69, 270	7,893, 587	3,746, 167	4, 147, 420	113.9	47.5
1850.	20,177	2,976, 658	1,045, 499	1,931,159	147.5	35.1

The number of farms reported June 1, 1900, was more than eight times as great as the number reported in 1850 , and 16.0 per cent greater than in 1890 . The total acreage in farm land is nearly seven times as great as fifty years ago. Owing to the fact that from 1850 to 1870 the number of farms ircreased more rapidly than the total farm area, the average size of farms decreased; since 1870 there has been a slight increase.

The percentage of farm land improved, which previous to 1880 reported a steady gain, has decreased since thåt date, but the loss between 1890 and 1900 is doubtless the result of the use of a more strict definition of the term "improved land" by the Twelfth than by any preceding census.

FARM PROPERTY AND PRODUCTS.
Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF PRODUCTS: 1850 TO 1900.

YEAR.	Total value of farm property.	Land, improvements, and buildings.	Implements and machinery.	Live stock.	Farm prodncts. ${ }^{1}$
1900.	\$811, 712, 319	\$686, 147,660	\$29, 237,010	\$96, 327,649	\$157, 445, 713
1890.	560, 475, 894	477,524,507	19, 167, 010	63, 784, 377	70,990,645
1880.	419, 865, 346	357, 709, 507	15, 647, 196	46,508, 643	72,779,496
18702	359, 964, 310	300,414, 064	14, 239, 364	45, 310, 882	${ }^{3} 78,027,032$
1860	154, 683, 386	131, 117, 164	5, 758,847	17, 807, 375	
1850.	35, 067,516	28,528,563	1,641,568	4, 897, 385	

${ }^{1}$ For the year preceding that designated
${ }^{2}$ Values for 1870 were reported in depreciated currency; to reduce to specie basis of other years they must be diminished one-fifth.
${ }_{3}$ Includes betterments and additions to live stock.
Since 1850 the total value of farm property has increased $\$ 776,644,803$, and in the last ten years $\$ 251,236,425$, or 44.8 per cent. The increase in the value of land, improvements, and buildings, in the last decade, was $\$ 208,623,153$, or ± 3.7 per cent; in that of implements and machinery, $\$ 10,070,000$, or 52.5 per cent; in that of live stock, $\$ 32,543,272$, or 51.0 per cent. The value of farm products for 1899 exceeds that reported for 1889 by $\$ 86,455,068$, or 121.8 per cent. Part of this increase, and of that in implements and machinery, is doubtless the result of a more detailed enumeration in 1900 than in previous census years.

COUNTY STATISTICS.

Table 3 gives an exhibit of general agricultural statistics by counties.

Table 3.-NUMBER AND ACREAGE OF FARMS AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

${ }^{1}$ Indiau reservation.

The number of farms increased in the last decade in nearly all counties, Dodge, Kewaunee, Manitowoc, and Ozaukee, however, reporting slight decreases. Aside from the counties undergoing territorial changes, only one, Waukesha, shows a decreased area of farming land. Decreases in improved acreage are reported for a few counties in the southern part of the state, but this decrease is probably due to a more strict definition of the term "improved land" by the Twelfth than by any preceding census. The average size of farms for the state is 117.0 acres, and varies from 48.7 acres in Milwaukee county to 184.0 acres in Iowa county. The largest farms are, as a rule, in the western part of the state, in the counties devoted to cereal and stock raising, and the smallest in the eastern counties, where dairying and diversified farming prevail.

All counties, except one, show marked increases since 1890 in the total value of farms. Ozaukee county alone reports a decrease in the value of implements and machinery. The increase in the value of live stock was general, all counties reporting considerable gains.

FARM TENURE.

Table \pm gives a comparative exhibit of farm tenure for 1880, 1890, and 1900. Tenants are divided into two groups: "Cash tenants," who pay a rental in cash or a stated anmount of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.
The farms operated by owners are subdivided in Table 5 into groups designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

YEAR.	Total number of farms.	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPERATED BY-		
		Owners. ${ }^{1}$	Cash tenants.	Share tenants.	Owners. 1	Cash tenants.	Share tenants.
1900	169,795	146,799	10,249	12,747	86.5	6.0	7.5
1890	146, 409	129,681	7,209	9,519	88.6	4.9	6.5
1880	134, 322	122, 163	3,719	8,440	90.9	2.8	6.3

[^134]Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-Number of farms of specified tenures.

Race.	Total number of farms.	Owners.	$\left\|\begin{array}{c} \text { Part } \\ \text { owners. } \end{array}\right\|$	Owners and tenants.	Managers.	Cash tenants.	Share tenants.
The State.White.........Colored.........	169, 795	136, 820	7,733	855	1,391	10,249	12,747
	169,275 520	136,335 485	7,723 10	852 3	1,391	10,243	12,731 16
Indian. Negro.	462 58	447 38	5 5	1		4	7 9

Part 2.-PER cent of farms of specified tenures.

The State.White $\ldots \ldots \ldots$.Colored........	100.0	80.6	4.6	0.5	0.8	6.0	7.5
	100.0	80.5	4.6	0.5	0.8	6.1	7.5
	100.0	93.3	1.9	0.6		1.1	3.1

In the period from 1880 to 1900 the total number of farms increased 26.4 per cent, and in the last decade, 23,386 , or 16.0 per cent. Since 1890 the number of farms operated by owners has increased 13.2 per cent; by cash tenants, 42.2 per cent; and by share tenants, 33.9 per cent. The percentages in Table 4 show that the gain in the number of owners has been slower than that of tenants. The increase in the number of cash tenants and the change in the relative per cent of cash and share tenants is the result of a growing sentiment on the part of both landlord and tenant in favor of the cash payment system, and indicates greater independence and financial responsibility on the part of the tenant class as a whole.
In $1900,99.7$ per cent of the farms of the state were operated by white farmers and 0.3 per cent by colored farmers. Of the white farmers, 85.6 per cent own all or a part of the farm land they operate, and 14.4 per cent operate farms owned by others. The corresponding percentages for colored farmers are 95.8 and 4.2. Indians constitute 88.8 per cent of the colored farmers.
No previou census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.
Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.

The value of the farm property of colored farmers is $\$ 1,050,505$. Of this amount $\$ 132,458$ represents the farm property of negroes, and $\$ 918,047$ that of Indian farmers.

Farms conducted by owners have the smallest average area, 111.8 acres, and those of managers, the largest, 238.2 acres. Some of the latter are adjuncts of public institutions, while others are conducted for

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RACE OF FARMER, AND TENURE.	Number of farms.	NUMBER OF ACRES IN FARMS.			Valde of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	169,795	117.0	19,862, 727	100.0	8811, 712,319	100.0
White farmers.......	169, 275	117.0	19, 805, 094	99.7	810,661, 814	99.9
Negro farmers.	58	94.7	5,495	${ }^{1}$)	132, 458	(1)
Indian farmers.	462	112.9	52,138	0.3	918,047	0.1
Owners.	136, 820	111.8	15, 301, 493	77.0	591, 219, 656	72.8
Part owners	7, 733	154.5	1,194,945	6.0	50, 343,665	6.2
Owners and tenants.	855	137.7	117,743	0.6	5, 208, 098	0.7
Managers............	1,391	238.2	331, 343	1.7	16, 302, 762	2.0
Cash tenants	10,249	113.5	1,163,217	5.9	67, 154, 404	8.3
Share tenants	12,747	137.6	1,753, 986	8.8	81, 483, 734	10.0

${ }^{1}$ Less than one-tenth of 1 per ceut.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Race of farmer and tenure.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (prodncts of 1899 not fed to live stock)	
	Land and improvements (except buildings).	Buildings.	Imple- ments and machinery.	Live stock.		
The State...	88,125	\$917	\$172	\$567	\$682	14.3
White farmers.	3,130	919	172	568	684	14.3
Negro farmers.	1,557	334	77	316	352	15.4
Indian farmers.	1,515	214	81	177	114	5.7
Owners..	2,750	874	165	532	631	14.6
Part owners	4,473	1,110	222	705	913	14.0
Owners and tenants	3,858	1,274	204	765	938	15.4
Managers..	7,956	2,275	341	1,148	1,177	10.0
Cash tenants..	4,644	1,032	188	688	846	12.9
Share tenants .	4,526	988	187	691	886	13.9

wealthy individuals in connection with their summer homes. These farms, as a rule, are favorably located and bighly improved, and the average values of the various forms of farm property, shown in Table 7, are much larger for this class than for any other class of farms grouped by tenure. The ratio which the gross income of these farms bears to the total value of farm property, however, is smaller than for the other groups. This is due to the high average valuation of the land and buildings, and to the fact that many of these farms are not cultivated primarily for profit.

The high percentage of gross income shown for negro farmers is due to the small size and consequent intensive cultivation of their farms, and to the low average value of farm property or capital invested.

FARMS CLASSIFIED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

TABLe 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

AREA.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NUMBER OF ACRES IN farms.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State..-..	169, 795	117.0	19, 862, 727	100.0	\$811, 712, 319	100.0
Under 3 acres	948	1.7	1,605	(1)	1,538,576	0.2
3 to 9 acres.	4,264	6.1	25,966	0.1	7,470,136	0.9
10 to 19 acres	4,316	13.2	57,182	0.3	9,611,571	1.2
20 to 49 acres	25,479	37.2	947,329	4.8	54, 552, 181	6.7
50 to 99 acres	52,590	76.8	4,037,908	20.3	191,346, 991	23.6
100 to 174 acres	54, 232	134.3	7, 284, 121	36.7	294, 757, 984	36.3
175 to 259 acres.	18,171	209.4	3,805, 408	19.2	141, 651, 755	17.5
260 to 499 acres	8,659	327.4	2,835, 210	14.3	91,598, 629	11.3
500 to 999 acres	991	608.7	603, 181	3.0	15,668, 591	1.9
1,000 acres and over .	145	826.3	264,817	1.3	3,515, 955	0.4

${ }^{1}$ Less than one-tenth of 1 per cent.
The group of medium-sized farms, containing from 100 to 174 acres each, comprises a larger percentage of the total acreage than any other group. For farms containing over 3 acres, the average values of farm property and products rise in unbroken series, with the single exception of the average value of buildings. For the group of farms containing less than 3 acres each, the average values are relatively high. This is explained by the fact that this group includes many florists' establishments and a large number of city dairies. The average gross incomes per acre for the various groups are as follows: Farms under 3 acres, $\$ 171.45 ; 3$ to 9 acres, $\$ 37.26 ; 10$ to 19 acres, $\$ 19.91 ; 20$ to 49 acres, $\$ 8.05$; 50 to 99 acres, $\$ 6.69 ; 100$ to 174 acres, $\$ 5.86$; 175 to 259 acres, $\$ 5.38$; 260 to 499 acres, $\$ 4.63$; 500 to 999 acres, $\$ 3.56$; and 1,000 acres and over, $\$ 1.43$.

Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

AREA.	average values fer farm of-					Per cent of gross income on total investmentin farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improve- ments (except build- ings).	Buildings.	lmpleand machinery.	Live stock.		
The State.	\$3,125	$\$ 917$	\$172	8567	\$682	14.3
Under 3 acres.	696	786	47	94	290	17.9
3 to 9 acres ..	915	675	46	116	227	12.9
10 to 19 acres..	1,290	717	61	159	264	11.8
20 to 49 acres	1,295	525	86	235	299	14.0
50 to 99 acres.	2,312	754	152	420	614	14.1
100 to 174 acres	3,573	1,022	194	646	788	14.5
175 to 259 acres.	5,297	1,274	257	967	1,126	14.4
260 to 499 acres	7,188	1,682	331	1,377	1,516	14.3
500 to 999 acres.	10,926	2,350	446	2,089	2, 169	13.7
1,000 acres and o	18,577	2,764	556	2,351	2,615	10.8

In considering the high gross income per acre for farms of less than 3 acres, it should be borne in mind that the incomes of the florists' establishments, nurse-
ries, and city dairies, of which this group is largely composed, are determined not so much by the acreage of land used as by the amount of capital invested in buildings, implements, and live stock, and the amounts expended for labor and fertilizers.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.
Tables 10 and 11 present the leading statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables are the leading crop, constituting 40 per cent of the products not fed to live stock, it is a "vegetable" farm. The farms of other groups are classified in accordance with the same general principle.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND YALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCEOF INCOME.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	NUMBER OF ACRES IN FARMS.			yalue of farm PROPERTY.	
		$\begin{aligned} & \text { A ver- } \\ & \text { age. } \end{aligned}$	Total.	Per cent.	Tota].	Per cent.
The State.	169,795	117.0	19, 862, 727	100.0	8811, 712, 319	100.0
Hay and grain	33,437	122.5	4, 099, 218	20.6	166, 566, 221	20.5
Vegetables .	6,351	89.3	566,934	2.9	21, 345, 590	2.6
Fruits	654	88.5	57,848	0.3	2,604, 323	0.3
Live stock	59, 182	133.9	7,926,842	39.9	319, 448, 898	39.4
Dairy produce	25, 246	104.5	2,637, 299	13.3	138, 155,713	17.0
Tobacco.....	3,181	79.9	254,306	1.3	16, 478, 435	2.1
Sugar...	14	112.0	1,568	(1)	54, 876	${ }^{(1)}$
Flowers and plants..		6.2 117.4				
Nursery products....	41,572	117.4 103.8	4, $\begin{array}{r}3,523 \\ \hline 14\end{array}$	${ }^{\text {(1). }} 7$	145, ${ }^{2435,858}$	${ }^{18.0}$

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 11.-AVERAGE Values of specified classes OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

"Miscellaneous" farms are those whose operators do not derive 40 per cent of their income from any class of farm products. Farms for which no income was reported in 1899 are classified according to the agricultural operations upon other farms in the same locality.

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms whose operators derive their principal income from flowers and plants, $\$ 347.17$; nursery products, $\$ 21.80$; tobacco, $\$ 12.52$; fruits, $\$ 9.61$; sugar, $\$ 8.73$; dairy produce, $\$ 6.78$; live stock, $\$ 6.05$; vegetables, $\$ 5.93$; hay and grain, $\$ 5.17$; and miscellaneous, \$4.96. In computing these averages, the total area of the farms of each group is used, and not the acreage devoted to the crop from which the principal income is derived.

The wide variations shown in the averages and percentages of gross income are largely due to the fact that in computing gross income no deductions are made for expenditures. For florists' establishments and nurseries, the average expenditure for such items as labor and fertilizers represents a far greater percentage of the gross income than in the case of "live stock" or "miscellaneous" farms. Were it possible to present the average net incomes, the variations shown would be comparatively slight.
farms classified by reported value of products NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED to LIVE STOCK, WITH PERCENTAGES.

valde of products not fed to live stock.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NUMBER OF ACRES inFARMS.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$
The State	169,795	117.0	19, 862,727	100.0	\$811, 712, 319	100.0
\$0.	666	84.5	56,268	0.3	827,500	0.1
\$1 to \$49	2,633	59.3	156, 236	0.8	2,908,860	0.3
\$50 to $\$ 99$	6,133	53.8	-330,259	1.7 8.8	$7,124,050$ $46,762,919$	0.9
\$100 to \$ $\$ 249$	27, 264	${ }_{90}^{64.6}$	$1,760,314$ $4,004,805$	1.8 20.2	$46,762,919$ $\mathbf{1 2 5}, 552,800$	15.5
\$250 to \$199	44,209 53	119.6	6, 388,797	32.2	267, 332, 690	32.9
\$500 to \$999	-32,397	192.2	6,227,301	31.3	302, 220, 740	37.2
\$2,500 and over	3,064	306.4	938.747	4.7	58,982, 760	7.3

The absence of income in the first group is due, in part, to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The persons in charge of such farms on June 1, 1900, could not always give definite information concerning the products of the preceding year. The same statement is true, also, of some of the farms with reported incomes of less than $\$ 100$. To

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

this extent the reports fall short of giving a complete exhibit of farm income in 1899. Other farms with small reported incomes are doubtless the country homes of city merchants and professional men who derive their principal incomes from other than agricultural pursuits.

LIVE STOCK.
At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in previous census reports.
Table 14 presents a summary of live-stock statistics.
Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES, ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Live stock.} \& \multirow{2}{*}{Age in years.} \& \multicolumn{3}{|c|}{on farms.} \& NOT ON FARMS.

\hline \& \& Number. \& Value. \& Aver-
age
value \& Number.

\hline \multirow[t]{4}{*}{Calves
Steers...........

Sulls} \& \multirow[t]{4}{*}{| Under 1 |
| :--- |
| 1 and under 2. 2 and under 3. 3 and over. |} \& \multirow[t]{2}{*}{623,343

205,798} \& \multirow[t]{2}{*}{\$4,107,904} \& \multirow[t]{2}{*}{\$66. 69} \& \multirow[t]{2}{*}{5,211
1,087}

\hline \& \& \& \& \&

\hline \& \& 205,798
73,319 \& 1, 917,616 \& \multirow[t]{2}{*}{26.15
38.30} \& 1804

\hline \& \& 10,773 \& 412,672 \& \& 335

\hline Heifers \& | 3 and over.... |
| :--- |
| 1 and over... | \& 48,062 \& 1,283,081 \& 26.70 \& 193

\hline Cows kept for milk.... \& 1 and under 2. 2 and over... \& $\begin{array}{r}285,319 \\ 9988 \\ \hline 897\end{array}$ \& - $29,642,522$ \& $$
\begin{aligned}
& 15.87 \\
& 29.69
\end{aligned}
$$ \& 34,414

\hline Cows and heifers not kept for milk. \& 2 and over.... \& 69,094 \& 1,730,773 \& 25.05 \& \multirow[t]{2}{*}{157
883}

\hline Colts..... \& \multirow[t]{5}{*}{| Under 1 |
| :--- |
| 1 and under 2. |
| 2 and over.... |
| Under 1 |
| 1 and under 2 . |
| 2 and over.... |} \& \multirow[t]{2}{*}{33,889

47,983
479} \& \multirow[t]{2}{*}{788,154
$1,871,167$} \& \multirow[t]{2}{*}{23.26
44.57} \&

\hline Horses \& \& \& \& \& 883
908

\hline Mule colts \& \& 479, 8484 \& $1,657,164$
19,625 \& ${ }^{65.97}$ \& 83,946

\hline Mules.. \& \& \multirow[t]{2}{*}{$$
\begin{array}{r}
414 \\
3,633
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
19,867 \\
204,001
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 47.99 \\
& 57.74
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{11

437}

\hline \& \& \& \& \&

\hline
\end{tabular}

Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES, ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS-Continued.

LIVE STOCK.	Age in years.	ON FARMS.			NOT ON FARMS. \qquad Number.
		Number.	Value.	Average value.	
Asses and burros	All ages	428	\% 88,505	19.87	101
Lambs .-.--	Under 1.	689,241	1,176,969	1.71	1,208
Sheep: Ewes.	1 and over....	918,638	3,048, 269	3.32	2,201
Rams and wetb-	1 and over...-	67,574	285, 118	4.22	, 386
ers.					
Goats -----..................	All ages	2,014,631	7,580,423	3.76	27,463
Fowls:1 ${ }^{\text {Goats }}$............	All ages	3,882	12,760	3.29	1,622
Chickens ${ }^{2}$.		8,097, 399			
Turkeys.		155,121	2,410,714		
Geese		102, 224	2,410, 714		
Ducks.		92, 800			
Bees (swarms of)		106, 090	377,105	3.55	
Unelassified.			18,400		
Value of all live stock.		96, 327, 649	

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.
${ }^{2}$ Including Guinea fowls.
The value of all live stock on farms, June 1, 1900, was $\$ 96,327,649$. Of this amount, 35.6 per cent represents the value of horses; 30.8 per cent, that of dairy cows; 17.8 per cent, that of other neat cattle; 7.9 per cent, that of swine; 4.7 per cent, that of sheep; 2.5 per cent, that of poultry; and 0.7 per cent, that of all other live stock.

The $\$ 18,400$ given as the value of unclassified live stock represents the value of 74 buffaloes reported from Buffalo county.

No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, however, the value of all live stock not on farms, exclusive of poultry and bees, is $\$ 6,893,640$, and the total value of live stock in the state is, approximately, $\$ 103,221,289$.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the changes since 1850 in the numbers of the most important domestic animals.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

YEAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	998, 397	1,315,708	555, 756	4,918	986,212	2, 014,631
1890.	792,620	855, 327	460, 740	5,752	984, 972	1, 347,750
1880.	478, 374	650,767	352,428	7,136	1,336, 807	1,128, 825
1870	308,377	384, 917	252,019	4,195	1, 0699,282	512,778
1860.	203,001	318, 859	116,180	1,030	332,954	334,055
1850.	64,339	119,094	30,179	156	124,896	159,276

${ }^{1}$ Lambs not included.
Every class of live stock shows a very great increase in number in the half century since 1850 . For dairy
cows, other neat cattle, horses, and swine, this progress has been uninterrupted, but the greatest numbers of mules and sheep are shown for 1880 . The number of mules has decreased steadily since, the rate being 14.5 per cent for the last decade. The number of sheep decreased 26.3 per cent from 1880 to 1890 , but increased 0.1 per cent between 1890 and 1900. The following increases in number are shown for the decade 1890 to 1900: Dairy cows, 26.0 per cent; other neat cattle, 53.8 per cent; horses, 20.6 per cent; swine, 49.5 per cent.

The enumerators in 1900 were instructed to report no fowls under 3 months old, which limitation was not made in previous census reports. This fact accounts for the small increases in numbers of chickens and ducks and the decreases in numbers of turkeys and geese. Compared with the census of 1890 the present census shows increases of 43.4 per cent and 1.7 per cent in the numbers of chickens and ducks, respectively, and decreases of 24.8 per cent and 21.4 per cent in the numbers of turkeys and geese.

ANIMAL PRODUCTS.

Table 16 is a summarized statement of the animal products of 1899.
Table 16.-QUANTITIES AND ValUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS, IN 1899.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds	7,224, 733	\$1,461,279
Mohair and goat hai	Pounds	, 614	145
Milk	Gallons.	1472, 274, 264	
Butter	Pounds	44,739, 147	226,779, 721
Cheese	Pounds	1,635, 618	
Eggs	Dozens	46,249, 580	4, 854, 020
Poultry			3,398,427
Honey	Pounds	2,677, 100	270,742
Wax..	Pounds	44,670	270,742
Animals sold.			27,131, 916
Animals slaughtered			5,407,114
Total value			69, 303, 364

[^135]The value of animal products for 1899 was $\$ 69,303,364$, nearly three-fourths as great as the value of all live stock on farms, June 1, 1900. Of this amount, 47.0 per cent represents the value of animals sold and animals slaughtered on farms; 38.6 per cent, that of dairy products; 11.9 per cent, that of poultry and eggs; 2.1 per cent, that of wool; and 0.4 per cent, that of honey and wax.

```
antmals sold and antwals slatghtered.
```

The value of animals sold and animals slaughtered on farms in 1899 is $\$ 32,539,030$, or 20.7 per cent of all farm products, and 28.1 per cent of the gross farm income. Of all farmers in the state reporting live stock, 134,530 , or 82.0 per cent, report animals slaughtered on
farms, the average value per farm being $\$ 40.19$. Sales of live animals were reported by 123,092 farmers, or 75.0 per cent of all those reporting live stock in the state, the average receipts per farm being $\$ 220.42$. Grant county is first in amount of sales, reporting an average of $\$ 559.31$ from each of 3,627 farms.

In obtaining these reports the enumerators were instructed to secure from each farm operator a statement of the amount received from sales in 1899 , less the amount paid for animals purchased during the same year.

DATRY PRODUCE.

Dairying is an important branch of agriculture in Wisconsin. The $\$ 26,779,721$ given in Table 16 as the value of dairy produce is 17.0 per cent of the value of all farm products and 23.1 per cent of the gross farm income. Of this amount, 78.6 per cent represents the value of dairy produce sold, and 21.4 per cent, that consumed on the farms of the producers. Of the former amount, $\$ 15,717,043$ was received from the sale of $252,450,051$ gallons of milk; $\$ 4,508,775$, from $26,931,757$ pounds of butter; $\$ 686,629$, from $1,638,601$ gallons of cream; and $\$ 135,938$, from $1,558,575$ pounds of cheese. The leading dairy counties are in the southeastern part of the state, and, ranking in the order named, are as follows: Dane, Dodge, Jefferson, Walworth, Sheboygan, and Fond du Lac. There was an increase of $168,573,130$ gallons, or 55.5 per cent, in the production of milk in the decade preceding 1900. The amount of butter produced on farms decreased 3.4 per cent, and that of cheese made on farms increased 80.5 per cent in the same time.

poultry and eggs.

Of the $\$ 8,252,447$ which is the total value of poultry and eggs produced in 1899, 58.8 per cent represents the value of eggs and 41.2 per cent that of poultry raised. An increase in production of eggs of $16,858,796$ dozens, or 57.4 per cent, is shown by the report of 1899 over that of 1889.

wool.

The production of wool for 1899 was greater than that for any previous census year. The year 1889 showed a considerable decrease compared with 1879, but the present census shows an increase of 2.9 per cent in the production of wool since 1879 , and 45.0 per cent snnce 1889. A part of this increase is more apparent than real, owing to the fact that in 1890 the fleeces from at least 223,197 sheep were omitted from the tables but included in a general estimate of wool shorn after the census enumeration. With the exception of Pierce, all the leading wool-producing counties are in the southern and southeastern parts of the state. Ranking in the order named, they are as follows: Fond du Lac, Columbia, Richland, Waukesha, Vernon, Dane, Pierce, and Grant.

HONEY AND WAX.

Compared with the census of 1890 , the present census shows a decrease of 23.9 per cent in the production of honey, and 3.0 per cent in the amount of wax. The counties reporting more than 100,000 pounds of honey as the production of 1899 were Vernon, Richland, Washington, Juneau, Dodge, and Outagamie.

HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.
Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

CLASSES.	HORSES.			DAIRY COWS.		
	Farms reporting.	Number.	Average per farm.	Farms reporting.	Number.	Average per farm.
Total.	154,769	555, 756	3.6	156,136	998,397	6.4
White farmers	154,341	654, 608	3.6	155, 927	997, 918	6.4
Colored farmers.	428	1,148	2.7	209	479	2.3
Owners ${ }^{1}$	132, 759	463, 965	3.5	134, 557	823, 705	6.1
Managers .	1,227	8,389	6.8	1, 214	11, 052	9.1
Cash tenants.	9,314	36,619	3.9	9,112	71,159	7.8
Share tenants.	11,469	46,783	4.1	11, 253	92,481	8.2
Under 20 acres	6,119	9,467	1.5	6,667	13,141	2.0
20 to 99 acres.	69, 070	180, 366	2.6	70,643	310, 898	4.4
100 to 174 acres	52, 361	202, 102	3.9	52,053	380, 419	7.3
176 to 259 acres.	17,633	93,799	5.3	17,300	173, 811	10.0
260 acres and over	9,586	70,022	7.3	9,473	120,128	12.7
Hay and grain	29, 201	101, 810	3.5	27,936	143,376	5.1
Vegetable	5,476	14,836	2.7	3,601	13,660	3.8
Fruit.	509	1,136	2.2	410	1,032	2.5
Live stock	53,739	229,506	4.3	57,816	404, 792	7.0
Dairy	24, 803	85, 965	3.5	25,246	241,548	9.6
Tobacco..	2,752	10, 274	3.7	2,658	15,342	5.8
Flower and plant	58	95	1.6	21	, 41	2.0
Miscellaneous ${ }^{2}$.	38,231	112,145	2.9	38,448	178,606	4.6

1 Including "part owners'" and "owners and tenants."
2Including sugar farms and nurseries.

CROPS.

The following table gives the statistics of the principal crops grown in 1899.

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF PRINCIPAL FARM CROPS IN 1899.

CROFS.	Acres.	Unit of measure.	Quantity.	Value.
Corn.	1, 497, 474	Bushels...	63,309, 810	\$16, 905, 822
Wheat	556, 614	Bushels.	9,005,170	5, 116, 346
Oats.	2, 365, 115	Bushels...	84,040, 800	17,931, 685
Barley	556, 747	Bushels..	18,699, 690	6,916,935
Rye	362,193	Bushels..	5, 142, 606	2, 443, 946
Buckwheat	39,713	Bushels..	489,896	288, 481
Broom corn	64	Pounds..	38,850	2,510
Kafir corn.	88	Bushels.	1,877	613
Flaxseed	11,263	Bushels.	140,765	143, 239
Clover seed		Bushels..	91, 189	392, 177
Hay and forage		Bushels..	60,577	54, 553
Tohacco	33,830	Pounds.	45,500,480	$19,267,709$ $2,898,091$
Hops	${ }_{342}$	Pounds.	45, 165,346	2, 18,020
Dry beans	12,989	Bushels..	143,182	206, 216
Dry pease	68,819	Bushels..	1,098, 819	824,603
Potatoes.	256, 931	Bushel	24,641, 498	5,826, 552

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF PRINCIPAL FARM CROPS IN 1899-Continued.

crops.	Acres.	Unit of measure.	Quantity.	Value.
Sweet potatoes	4	Bushels.	86	\$99
Onions.	1,230	Bushels.	331,662	154,310
Chicory	1, 11	Pounds	84, 000	
Miscellaneous veg Maple sugar	38,348	Pounds.	4,180	2,066, ${ }^{424}$
faple sirup		Gallons.	6,625	6, 478
Sorghum cane	2,399	Tons...	1952	2,716
Sorghum sirup.		Gallons	160,414	61,728
Sugar beets.	34	Tons.	233	937
Small fruits	12,389			835,119
Grapes.	${ }^{2} 341$	Centals	5,715	815, 173
Orchard fruits	255,009			4267,391 1,460
Nuts...........				6, 109, ${ }^{1,460}$
Flowers and plants	194			270, 872
Seeds.........	67			15,336
Nursery products	(5) 736			85, 087
Willows.				${ }^{13} 100$
Miscellaneous	201			13, 099
Total	8,270,127			88, 142, 349

1 Sold as cane.

2 Estimated from number of vines or trees.
${ }^{3}$ Including value of raisins, wine, etc.
${ }_{4}$ Including value of cider, vinegar, etc.
${ }^{6}$ Less than 1 acre.
Of the total value of crops, cereals contributed 55.1 per cent; hay and forage, 21.9 per cent; vegetables, including potatoes, sweet potatoes, and onions, 9.1' per cent; forest products, 6.9 per cent; tobacco, 3.3 per cent; fruits and nuts, 1.3 per cent; dry beans and pease, 1.2 per cent; and all other products, 1.2 per cent.

The average values per acre of the principal crops are as follows: Flowers and plants, $\$ 1,396$; onions, $\$ 125$; nursery products, $\$ 116$; tobacco, $\$ 86$; small fruits, $\$ 67$; miscellaneous vegetables, $\$ 54$; hops, $\$ 53$; broom corn, $\$ 39$; sweet potatoes, $\$ 25$; potatoes, $\$ 23$; dry beans, $\$ 16$; flaxseed, $\$ 13$; dry pease, $\$ 12$; cereals, $\$ 9$; hay and forage, $\$ 8$; and orchard fruits, $\$ 5$. The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production required a relatively great amount of labor, and large expenditures for fertilizers.

CEREALS.

The following table is a statement of the changes in cereal production since 1849 .

Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.

Part 1.-ACREAGE.

Year. ${ }^{1}$	Barley.	Buckwheat	Corn.	Oats.	Rye.	Wheat.
1899.	555, 747	39,713	I, 497,474	2,365, 116	362,193	556,614
1889.	474, 914	77,458	1,120,341	1,627,151	275, 058	744,080
1879.	204, 335	34, 117	1,015,393	955,597	169,692	1,948,160
Part 2.-BUSHELS PRODUCED.						
1899..	18, 699,690	489,895	53,309, 810	84,040, 800	5,142,606	9,005,170
1889.	15, 225, 872	1,064,178	34, 024, 216	60,739,052	4, 250, 582	11,698, 922
1879.	5, 043, 118	299, 107	34, 230, 579	32,905, 320	2,298,513	24, 884,689
1869..	1, 645,019	408, 897	15, 038, 998	20,180,016	1,325, 294	25,606, 344
1859.	707, 307	-88,987	7,517,300	11,059,260	1,888,544	15,657, 458
1849.	209, 692	79,878	1,988,979	3,414,672	81, 253	4, 286, 131

The total number of acres in cereals was $4,319,002$ in 1889 , and $5,376,856$ in 1899 , an increase of 24.5 per cent. The rates of increase in acreage for the last decade were: Oats, 45.4 per cent; corn, 33.7 per cent; rye, 31.7 per cent; and barley, 17.0 per cent. The area devoted to wheat decreased 25.2 per cent, and the acreage in buckwheat, 48.7 per cent.
Of the total acreage in 1899, oats occupied 44.0 per cent; corn, 27.0 per cent; wheat, 10.4 per cent; barley, 10.3 per cent; rye, 6.7 per cent; and buckwheat, 0.7 per cent. Oats were grown in 1899 by 138,706 farmers, or 81.7 per cent of the total number in the state; corn, by 127,900 , or 75.3 per cent; and wheat, by 79,695 , or 47.0 per cent.

The southern counties of Dane, Grant, Lafayette, Green, Dodge, and Iowa produced over one-third of the corn and more than one-fifth of the oats grown in the state. St. Croix, Buffalo, Pierce, Trempealeau, Polk, and Jackson counties, in the western part, reported over one-fifth of the wheat crop; and Dodge, Fond du Lac, Washington, Sheboygan, and Calumet counties, in the eastern part, produced over one-half of the total barley crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 are shcwn in the following table.

Table 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

Fruits.	NUMBER Of trees.		bushels of fruit.	
	1900	1890	1809	1889
Apples.	2,557,265	1,383, 070	303, 373	1,591,747
Apricots				
Cherries	273,740	$\begin{array}{r}75,670 \\ \hline 387\end{array}$	31,067	22,712
Peaches..	6,967 26,766	$\begin{array}{r}\text { ¢ } \\ \hline \\ \hline, 977\end{array}$	1,540	4,071
Plums and prunes	94,338	18,451	12,166	3,223

In the last ten years, the total number of trees increased from $1,484,313$ to $2,960,054$, or a gain of 99.4 per cent. The number of peach trees reported in 1900 was over 18 times as great as that reported in 1890. The rates of increase for other fruits are: Plum and prune trees, 411.3 per cent; cherry trees, 261.8 per cent; pear trees, 347.8 per cent; apple trees, 84.9 per cent; and apricot trees, 29.0 per cent.
Of the total number of trees reported in 1900, 86.1 per cent were apple trees; 9.2 per cent, cherry trees; 4.7 per cent, apricot, peach, pear, plum and prune, and unclassified fruit trees. The latter class, which is not included in the table, numbered 10,074 and yielded 188 bushels of fruit. The counties in the central and southern parts of the state report by far the largest numbers of fruit trees.
The value of orchard fruits given in Table 18 includes the value of 604 barrels of cider, 321 barrels of vinegar, and 2,670 pounds of dried and evaporated fruits.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 was 12,389 acres, distributed among 26,237 farms. Of this total, 5,821 acres, or 47.0 per cent, was devoted to cranberries, yielding 111,098 bushels, an average of 19.1 bushels per acre. Their production was entirely confined to nine counties, most of which are situated in the south central portion of the state. Wood and Waushara counties report 64.3 per cent of the total cranberry production, from 61.5 per cent of the total acreage.

To strawberries 14,246 farmers devoted 3,508 acres, yielding $7,343,740$ quarts. The acreages and productions of the other berries were as follows: Raspberries and Logan berries, 1,616 acres and $2,314,920$ quarts; currants, 667 acres and $1,153,190$ quarts; blackberries and dewberries, 411 acres and 644,880 quarts; gooseberries, 177 acres and 255 , 590 quarts; and other small fruits, 189 acres and 191,570 quarts.

VEGETABLES.

The total area used in the cultivation of vegetables, including potatoes, sweet potatoes, and onions, in 1899, was 296,513 acres. Of this amount, 86.7 per cent was devoted to potatoes and sweet potatoes; 0.4 per cent, to onions; and 12.9 per cent, to miscellaneous vegetables. Potatoes were raised throughout the state, but the southern counties of Portage, Waushara, Waupaca, Adams, Milwaukee, and Columbia reported 32.3 per cent of the total acreage. Of the 169,795 farms in the state, 145,463 , or 85.7 per cent, reported that they cultivated 256,931 acres, yielding $24,641,498$ bushels.

Of the 38,348 acres devoted to miscellaneous vegetables no detailed reports were received for the products grown on 23,087 acres. Of the 15,261 acres concerning which detailed reports were received, 4,400 were devoted to cabbages; 3,257 , to sweet corn; 2,214 , to pease; 1,266 , to tomatoes; 999 , to cucumbers; 600, to watermelons; 573, to turnips; 539, to beets; 457, to muskmelons; 265, to carrots; 238, to celery; and 453, to other vegetables.

tobacco.

Tobacco was grown in 1899 by 6,919 farmers, on 38,830 acres, an average of 4.9 acres for each farm reporting. On this area they produced $45,500,480$ pounds, a gain in ten years of 96.2 per cent in acreage, and of 134.7 per cent in production. The crop has increased rapidly in every decade since 1849 , when a production of 1,268 pounds was reported. In 1859 the production was 87,340 pounds; in $1869,960,813$ pounds; in 1879, 10,608,423 pounds; and in 1889, 19,389,166 pounds.

The average yield per acre in 1889 was $1,124.6$ pounds, while in 1899 it was $1,345.0$ pounds. The total value of
the crop in the latter year was $\$ 2,898,091$, an average of $\$ 418.86$ for each farm reporting, and of $\$ 85.67$ per acre. The average value per pound was 6.4 cents.
The crop was grown in 46 counties of the state, Rock county leading, with 9,988 acres, Vernon and Columbia counties being next in rank. These three counties together reported 47.0 per cent of the entire acreage, and 45.6 per cent of the total production.

SORGHUM CANE.

The present census shows that in 1899 sorghum cane was grown by 4,889 farmers on 2,399 acres, an average of 0.49 acres for each farm reporting. From this area they sold 952 tons of cane for $\$ 2,716$, and from the remaining product manufactured 160,414 gallons of sirup, valued at $\$ 61,728$. This was a decrease in acreage from 1889 of 30.5 per cent. The total value of sorghum-cane products was $\$ 64,444$, an average of $\$ 13.18$ for each farm reportiug and of $\$ 26.86$ per acre.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 194 acres, and the value of the products sold therefrom was $\$ 270,872$. These flowers and plants were grown by 193 farmers and florists. Of this number, 128 made commercial floriculture their principal business. They had invested in the aggregate $\$ 880,835$, of which $\$ 490,000$ represents the value of the land and the improvements other than buildings; $\$ 353,615$, that of buildings; $\$ 28,670$, that of implements and machinery; and $\$ 8,550$, that of live stock. Their sales of flowers and plants amounted to $\$ 257,238$, and of other products to $\$ 19,110$. The expenditure for labor was $\$ 49,187$, and for fertilizers $\$ 2,850$. The average income for each farm reporting, including products fed to live stock, was $\$ 2,175$.

In addition to the 128 principal florists' establishments, 491 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables.

They had an area under glass of 519,053 square feet, making, with the 711,427 belonging to the florists' establishments, a total of $1,230,480$ square feet.

NURSERIES.

The total value of nursery stock sold in 1899 was $\$ 85,087$, reported by the operators of 117 farms and nurseries. Of this number, 30 derived their principal income from the nursery business. They had 3,523 acres of land, valued at $\$ 175,350$; buildings worth $\$ 52,800$; implements and machinery worth $\$ 8,405$; and live stock worth $\$ 5,315$. The value of their products not fed to live stock in 1899 was $\$ 76,797$, of which $\$ 66,737$ represents the value of nursery stock, and $\$ 10,060$, that of other products. They expended $\$ 17,180$ for labor, and $\$ 405$ for fertilizers. The average income for each farm reporting, including products fed to live stock, was $\$ 2,671$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 10,468,610$, an average of $\$ 62$ per farm. The average was highest on the most intensively cultivated farms, being $\$ 573$ for nurseries, $\$ 384$ for florists' establishments, $\$ 212$ for fruit farms, $\$ 84$ for tobacco farms, $\$ 79$ for sugar farms, $\$ 72$ for dairy and live-stock farms, $\$ 60$ for vegetable farms, and $\$ 58$ for hay and grain farms. "Managers" expended ou an average $\$ 350$; "cash tenants," $\$ 83$; "share tenants," $\$ 83$; and "owners," $\$ 54$. White farmers expended $\$ 62$ per farm, and colored farmers, $\$ 7$.

Fertilizers purchased in 1899 cost $\$ 294,320$, an average of only $\$ 2$ per farm, but an increase since 1890 of 179.8 per cent. The average expenditure was $\$ 22$ for florists' establishments, $\$ 14$ for nurseries, $\$ 5$ for vegetable farms, $\$ 3$ for fruit and tobacco farms, $\$ 2$ for livestock and for hay and grain farms, and $\$ 1$ for dairy farms.

INDIAN RESERVATIONS.

The Indian reservations in Wisconsin on which agriculture was carried on in 1899, are La Pointe, Menominee, Oneida, and Stockbridge. The Stockbridge are self-supporting, but take little interest in agriculture; a few, however, have good farms. The Menominee and Chippewa, on the Menominee and La Pointe reservations, respectively, derive most of their support from the sale of their timber, although a few of them carry on agriculture on a small scale. The Menominee are dependent upon Government rations for 20.0 per cent of their subsistence.

LA POINTE RESERVATION.

La Pointe, or Bad River, reservation is situated in the extreme northern part of Wisconsin, in Ashland
county, and comprises an area of 194 square miles. The land is well adapted to agriculture and produces abundantly when properly cultivated. There is also considerable timber on the reserve.

The Indians at Bad River are a portion of the Lake Superior band of Chippewa (Algonquian) with a population of 627 . These Indians do not take much interest in agriculture, and it is extremely difficult to induce them to build permanent homes and to work. Here and there some have cleared small patches on their allotments and have planted gardens. They have a splendid opportunity to till the soil, but as long as they can derive an income from selling their pine timber they will do little farming.

The four Indian farmers at Bad River reserve raised a
crop of hay, consisting of clover and other tame grasses; one also had 4 acres in oats, another a small patch of corn. All raised vegetables of some kind, and three had several acres of potatoes. The largest area under cultivation was 40 acres, the smallest 10 acres.
Their live stock consisted principally of farm horses. One Indian had 21 horses valued at $\$ 2,000,62$ swine, and 40 chickens, and reported sales of live stock and animal products to the amount of $\$ 420$. The three remaining farmers owned no swine or chickens, but one possessed a dairy cow and reported a good production of milk and butter.

MENOMINEE AND STOCKBRIDGE RESERVATIONS.

Menominee and Stockbridge reservations, embracing areas of 362 and $18 \frac{1}{4}$ square miles, respectively, are located in the northeastern part of Wisconsin, the former in Shawano and Oconto counties, the latter in Shawano county, adjoining the Menominee reserve on the southwest. Menominee is largely timbered with hemlock, pine, elm, maple, and other valuable wood, yet the arable land is fertile and yields large returns when properly cultivated. Stockbridge also contains much farming land in addition to timber.

The Menominee (Algonquian) are an aboriginal Wisconsin tribe and have a present population of 1,487 . Their principal occupations are lumbering and farming.

The Stockbridge and Munsee tribes, of Algonquian stock, inhabit the reserve of the first named. These tribes originally lived in New England; later they moved to western New York and thence to Wisconsin; they are nonconsolidated, and number 376. Those among them who cultivate the soil have excellent crops to show for their labor, but most of them have not made an effort in this direction.

The principal crops raised on these two reserves are oats and corn; a few acres are also sown to wheat, rye, and buckwheat. The hay crop consists of clover and
other tame grasses. All of the 37 Indian farmers raised patches of potatoes, while some also had other garden vegetables. The majority cultivated from 10 to 50 acres, while tío had 110 and 130 acres, respectively, under cultivation.

Most farms are well supplied with work horses; many own dairy cows, and a few also have beef cattle. Chickens and swine are raised quite generally among these farmers.

ONEIDA RESERVATION.

Oneida reservation, now existing as such only in name, is situated in the extreme east-central part of Wisconsin, in Brown and Outagamie counties. The entire area, 102 square miles, has been allotted, with the exception of a small tract for school purposes. The land is generally adapted to agriculture, though there are a few swamps on the reserve.
The Oneida (Iroquoian) were formerly a portion of the Six Nations of New York, where they resided before being sent to Wisconsin. Their present population is 1,704 . They have long been a self-supporting, agricultural people, and all are engaged in farming. Their farms are well cultivated, and are supplied with good buildings, plenty of implements, and stock.
Their principal crops are oats, wheat, and corn in the order named, while small quantities of rye, buckwheat, and barley are also raised. Nearly all of the 309 Indian farmers planted patches of potatoes, but other garden vegetables were not reported. A few have small orchards of apple, plum, and cherry trees. The majority of Oneida farmers cultivated from 5 to 60 acres. Their proximity to several large cities gives them an excellent market for all farm produce.
The live stock of the Oneidas consists principally of farm horses of a good American grade and dairy cows, the latter being quite common among them. Chickens and swine are also found on most farms.

Twelfth Census of the United States.

Census Bulletin.

No. 219.
WASHINGTON, D. C.
July 1, 1902.

AGRICULTURE.

0HIO.

Hon. William R. Merriam,
 Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Ohio, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.
The farms of Ohio, June 1, 1900, numbered 276,719 and were valued at $\$ 1,036,615,180$. Of this amount, $\$ 219,451,470$, or 21.2 per cent, represents the value of buildings, and $\$ 817,163,710$, or 78.8 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 36,354,150$, and of live stock, $\$ 125,954,616$. These values, added to that of the farms, give $\$ 1,198$,923,946 , the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal
products." The total value of such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 257,065,826$, of which amount $\$ 100,213,468$, or 39.0 per cent, represents the value of animal products, and $\$ 156,852,358$, or 61.0 per cent, the value of crops, including forest products. The "total value of farm products" for 1899 exceeds that for 1889 by $\$ 123,833,328$, or 92.9 per cent, but a part of this gain is doubtless due to a more complete enumeration in 1900 than in 1890.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 56,245,050$, leaving $\$ 200,820,776$ as the gross farm income for that year. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Ohio in 1899 it was 16.8 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Ohio.

Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN 0HIO.

GENERAL STATISTICS.

Ohio has a total land surface of 40,760 square miles, or $26,086,400$ acres, of which $24,501,985$ acres, or 93.9 per cent, are included in farms.

The surface of the state is a rolling plain, with a gradual slope toward the southwest. A high ridge extending across the northern part forms a watershed, dividing the drainage basins of Lake Erie on the north and the Ohio River on the south. In the border counties adjacent to the Ohio River, the surface is broken by hills.

The soil is generally adapted to agriculture and to the cultivation of all products permitted by the latitude. In the southeast it is formed directly from the underlying and outcropping rocks, while elsewhere it is composed of drift material, including the limestone soil in the west, the clay formation of the uplands, and the northwestern swamp lands. The vast body of water in Lake Erie modifies the climate and renders the northern belt especially adapted to the culture of orchards and vineyards. The large cities furnish good markets, and the excellent railway and water transportation facilities have been important factors in the agricultural development of the state.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850 , the number of farms, the total and average acreage, and the percentage of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	Number of farms.	NUMBER OF \triangle CRES IN FARMS.				Per cent of farm land improved.
		- Total.	Improved.	Unimproved.	Average.	
1900	276, 719	24,501, 985	19, 244, 472	5,257,513	88.5	78.5
1890	251, 430	23, 352, 408	18, 338, 824	5, 013, 584	92.9	78.5
1880	247, 189	24, 529, 226	18, 081, 091	6,448, 135	99.2	73.7
1870	195,953	21, 712, 420	14, 469, 133	7,243, 287	111.8	66.6
1860	179, 889	20,472,141	12,625, 394	7,846, 747	113.8	61.7 54.7
1850	143,807	17,997, 493	9,851,493	8,146,000	125.2	54.7

The number of farms nearly doubled in the half century, and increased 10.1 per cent in the last decade.

The total farm area also increased steadily, except during the decade ending in 1890 , while the improved area more than doubled. The percentage of farm land improved shows a rapid increase for every decade except the last, when there was neither gain nor loss. The average area of farms has decreased steadily throughout the fifty years.

FARM PROPERTY AND PRODUCTS.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF sPECIFIED CLASSES OF FARM PROPERTY, AND OF FARM PRODUCTS: 1850 TO 1900.

year.	Total value of farm property.	Land, improve ments, and buildings.	Implements and machinery.	Live stock.	Farm prod ucts. ${ }^{1}$
1900	\$1, 198, 923, 946	\$1, 036, 615,180	\$36,354,150	\$125, 954, 616	\$257,065, 826
1890	1,195, 688, 864	1, 050, 031, 828	29, 475,346	116,181, 690	133, 232, 498
1880	1, 261, 726, 263	1, 127, 497, 353	30, 521, 180	103, 707, 730	156, 777, 152
$1870{ }^{2}$	1,200, 458,541	1,054,465, 226	25,692, 787	120, 300, 528	${ }^{3} 198,256,907$
1860	776, 056, 342	678, 132, 991	17, 538,832	80, 384, 819	
1850	415, 630, 929	358, 758, 603	12, 750, 585	44, 121, 741	

${ }^{1}$ For year preceding that designated.
${ }^{2}$ Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years they must be diminished one-fifth

Though the total value of farm property in 1900 was nearly three times as great as in 1850, an increase of only 0.3 per cent is shown for the last decade. This low rate is due to a decrease of $\$ 13,416,648$, or 1.3 per cent, in the value of farms. A gain of $\$ 6,878,804$, or 23.3 per cent, is shown for the value of implements and machinery, and of $\$ 9,772,926$, or 8.4 per cent, for the value of live stock. The apparent gain of $\$ 123,-$ 833,328 , or 92.9 per cent, in the value of farm products, and the gain shown for implements and machinery, are due in part to a more complete enumeration in 1900 than in previous census years.

COUNTY STATISTICS.

Table 3 gives an exhibit of general agricultural statistics by counties.

Table 3.-NUMBER AND ACREAGE OF FARMS, AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	NUMBER of Farms.		Acres in farms.		values of farm property.				Value of products not stock.	EXPENDITURES.	
	Total.	$\begin{aligned} & \text { With } \\ & \text { Wuild- } \\ & \text { ings. } \end{aligned}$	Total.	Improved.	Land and im provements (except buildings).	Buildings.	$\begin{aligned} & \text { Implements } \\ & \text { machinery. } \end{aligned}$	Live stock.		Labor.	Fertilizers.
The Sta	276,719	268,404	24,501,985	19, 244,472	\$817, 163,710	\$219,451,470	\$36, 354, 150	\$126, 954,616	\$200, 820,776	\$14,502, 600	\$2, 696, 4
Adams	3,533	3, 454	325, 125	${ }^{212}$, 928	4,009, 020	1,323, 710	${ }^{263,270}$	1,054, 169	1,606,741	69,490	46,240
Ashlan	2, 2 2, 638	2,795 2,585 2	${ }_{264,689}^{245,283}$	196,465 202677	\%,415, ${ }^{\text {, } 733} \mathbf{7 2 7 0}$	$2,451,660$ $2,503,140$	416,820 413,070	$1,469,218$ $1,363,933$	2, 21215,685	154,390	8,400
Ashtabula	5,038	4 4,939	416,963	244,013	9,131, 730	$4,127,170$	595, 660	1, 8989	2, 427, 804	186, 040	${ }_{76,500}$
Athens	3,004	2,861	297,166	229, 399	6,832,510	1,500, 660	258,300	1,167,917	1,381, 435	70, 220	27,050
Auglaize	2,810	2,713	240,607	187, 924	8,849,140	2,079, 860	405,000	1,256,092	2,217, 715	111,340	4,020
Belmont	3,839	3,731	327,460	${ }^{267,625}$	8, 654,890	2,456,180		1, $1,589,308$	2,207,419	131,090	27,240
Brown	${ }^{3,963}$	3,771	309, 336	${ }_{265,741}^{265}$	$7,229,000$	2,117, 980	349,080	1,372,780	2, 435,739	113, 770	
Carrol	2,724 2,301	$\stackrel{2,690}{2,244}$	280,331 243,060	226, 347	$11,249,330$ $5,527,290$	$2,698,760$ $1,560,310$	3966,570 300,230	1, $1,227,9001$	$2,826,237$ $1,417,229$	302,570 72,270	
Champai	2,540	2,456	269,021	218,543	10, 045, 330	2, 207, 470	375, 210	1,544, 148	2, 624,330	218,140	
Clark	2,330	2,283	240,903	198, 857	12, 105,310	2,900, 000	410,670	1,514, 474	2,903, 293	323,100	${ }_{21,720}$
Clermont	4,113	4,013	274,880	${ }_{2}^{233,432}$		$2,284,700$ $2,020,300$	336,770 312880 318	1,108,019	1,985, ${ }^{1,542}$	97,610 182840	25,440
${ }_{\text {Clinton }}^{\text {Columhana }}$	3,763	3,457 3,666	2071,164 315	${ }_{244,869}^{225,67}$		$3,659,320$ 3,	312,880 5280	1, $1,715,503$	-	182,840 158,430	24,660 48,47
Coshocton	3,364	3,241	347, 240	279, 856	$8,300,500$	2,139, 270	342,330	1,640, 822	2,036,203	117,350	26,220
Crawford			- 24888831	202,540	10,201, 910	2,654, 300	493,410	1,582, 371	2,440,345	167,480	18, 270
Cuyahoga	4,571	4, 773	237,507	154, 080	23,596, 300	4,982, 740	554,220	1,294,671	3,336,921	407, 810	81,700
Darke	$\xrightarrow{5,760}$	$\stackrel{\text { ¢ }}{\substack{6,648 \\ 2,673}}$	370,382 244	311,867 176,546	$16,202,920$ $8,025,050$	$\xrightarrow{3,911,070}$	857,020 441,190	2,036, 1,226	$4,598,684$ $2,066,135$	187,730 117,680	
Defiance	2,700					2,22, 460	411, 90		2,066, 135	117,680	8,450
Delawar	3,133	3,011	232, 396	234,482	9,148, 000	2, 156, 560	345,780	1,716, 274	2, 403, 421	139,960	${ }^{23,440}$
Frie	1,970	1,885	148,416 308,629	123,140	71, ${ }^{7,222,170}$	$2,321,550$ $2,647,480$	273,690 482,020	- 7 730, 686	1,43,050	180, 500	61, 19.350
Fayett	1,955	1,406	248, 198	225. 576	11, 622, 110	1,954, 120	322,440	1,555,'540	2, 999,034	252, 550	32, 810
Frank	3,686	3,588	310, 053	274, 495	21,958, 620	3,462,750	557, 280	1,921,779	3,506,206	364,290	21,580
Fulton.	3, ${ }_{3}^{3,273}$	3,213 3,287	${ }_{279}^{247,129}$	195,741	$9,551,240$	2,767, 160	458,950	1,539, 706	2, 260, 203	96, 320	12,940
	- 2,520	2,457	246, 801	136, 704	${ }_{6} \mathbf{6}, 3735,590$	2,148, 380	318, ${ }^{377}$, 770	1,230, 126	1, 5 1,56,640	${ }_{135,130}^{64,050}$	32, ${ }^{3240}$
Greene	2,637	2,577	256,172	214, 388	10,929,480	2,763, 040	395, 310	1, 627,545	2,894,185	219, 720	15,130
Guernsey	3,228	3,060	323,993	265, 374	6,175,060	1,655,350	411, 340	1,471, 284	1,366, 423	69, 600	30,250
Hamilton	${ }^{4,111}$	4,049	- 203,938	169,773 268375	$13,714,030$ $13,122,410$	4,783, ${ }^{4} 250$ $2,950,250$	700,820 626 250	$\begin{aligned} & 1,360,191 \\ & 1 \end{aligned}$	$3,939,686$ 2956	565,760	44,450
Hancocin	3,251	3,081	329,267 2909	283, ${ }^{264}$	$13,122,410$ $10,496,410$	2,960, 250 $2,120,820$	626,250 435,740	$1,829,994$ $1,660,048$	${ }_{2}^{2,955,410}$	194,120	8,8890
Harrison	2,390	2,324	247,933	208,073	6,177,440	1,766,680	260,410	1,397, 261	1,364,495	64,730	
Henry ..	3,387	3,233	253,549	204, 054	11,317, 590	2, 420,400	510,840	1,446,794	2, 411,784	129,800	1,700
Highland	3,539	3,428	363,892	306, 669	8,518,110	2,073,740	370, 170	1,789,347	2, 426,659	155, 850	
Hocking	2,255	$\stackrel{2,189}{ }$	${ }^{244,206}$	179,609	${ }_{3}^{3,123,720}$	642, 390	254, 620	762,476	1, 039,225	48,760	
Holmes	-	$\xrightarrow[3,021]{2,578}$	-	1967 237,093		2, $2,876,240$	391.720 465,140	1,490,961	$1,902,848$ 2,347884	$\begin{array}{r}122,490 \\ 184 \\ \hline 830\end{array}$	28, 5950
Jackson	2,078	2,010	234,173	184, 057	2,794, 460	844, 430	147, 670	710, 536	778,651	43,290	30,000
Jefferso	$\stackrel{2,011}{3,425}$	1,969	246,989 326,049		${ }_{6}^{6,034,470} 9$	$1,942,440$ $2,171,450$	283,420	1,222, 162	1,456,691	103, 030	20,910
Knox	3,425 1,902	3,249 1,830	326,049 132,214	$\begin{array}{r} 267,660 \\ 94,812 \end{array}$	${ }^{9,} 9,245,540$	$2,177,450$ $2,676,210$	368,660 270,130 20,	1,760, 4332	2, ${ }^{\text {2,305,094 }} 1$	145,180 127,910	34, 610
Lawrenc	2,945	2,864	209, 915	142, 835	3,069,330	1,009,000	177, 050	663,257	1,050,387	69, 540	
Licking	4,458	4,229	417,030	353, 412	12, 619,460	3,124,010	633,500	2,296,639	2,960, 421	199, 370	46,950
Logan.	3,172 3,600	- ${ }_{3,564}^{2,993}$	289,777	226,557 222,680 ${ }^{2}$	$8,809,190$ $11,436,270$	- ${ }_{3,822,261,950}$	384,870 533,090 50,	$1,678,205$ 1,677205	$2,628,449$ 2,550	169, 370	17, 160
Lucss.	2,807	2,700	167, 133	131,098	10,965, 260	2,575,410	441, 380	1,991, 712	1,986,050	292, 305	60,
Madison.	1,928	1,835	${ }_{247,976}^{294,353}$	256,006	12, 806, 960	1,764, 270	330, 280	1,794, 049	2,826, 168	292,860	
Mahoning	3,034	2,982	247,976	175, 213	7,918,500	2,977,590	401, 200	1,428, 848	2,058,599	160,050	55, 280
Marion	2,227	$\begin{array}{r}2,178 \\ \hline\end{array}$	241,191	206,505	$9,248,090$		279, 850	1, 541, 349	2, 3644,489	160, 200	
Meigin	- ${ }^{2,978}$		265,708 261,153	-192, 662	8, $4,1524,650$	3, 109,660 $1,156,040$	472,240 24,070	1,474,145	2, 134,062 $1,309,582$	204,370 66,270	68, 610
Mercer	3,288	3, 152	274,909	217, 017	${ }^{9}, 174,370$	2,481,710	503, 420	1,465, 689	2,607,617	117, 230	4,180
Miami.	2,989	2,927	249, 411	219, 112	11,565,540	2,977,950	540,600	1,204, 517	3,038,989	185, 910	29,880
Monroe	3,485 4,462	3,407 4,388	281,464 280,938	274,561 234,828	5,550,610 15, 019,940	$1,727,220$ $4,872,730$	297,160 765800	1,084,647	1,682,090	661,870	31, 310
Morgan	2,741	$\stackrel{2}{2,685}$	260, 760	${ }_{212,822}$	4,938,910	1,528, ${ }^{4} 140$	268, 770	1, $1,204,791$	4,465,022	335, 340	67, 980
Morrow	2,72	2,683	248,403	194,642	7,269,400	2,108,610	324,720	1,546,776	2,024,987	110, 410	32,290 33,600
Muskingu	3,974	3,869	405,481	333,866	8, 114,160	2,376,030	427, 970	1,748,390	2,276, 232	137,980	46,150
Noble.	${ }_{3,286}^{2,86}$	2,747	248, 495	214, 315	5, 305,510	1,400, 170		1,219, 180	1,442,401	76,800	20,580
Paulding	3,783	3,509	248, 303	129, 068	7,743, 670		- 344,		1, ${ }_{2}^{1928,093}$	153,310 95,590	1,110
Perry.	2,356	2,277	227, 242	182, 188	4,694, 000	1,387,610	283,600	1,049,027	1,261, 417	${ }_{70,620}$	
Piekaway	2,429	2,325	309, 642	257, 140	14, 374, 900	2, 398, 380	379, 150	1,969, 272	3,030,735	332, 510	40, 550
Pike		2,313	243,016		${ }^{2}, 9000,460$	641, 990		586,333	990, 732	71,900	
Preble	3, ${ }_{3}^{3,085}$	3,471 2,978	-		- $\begin{array}{r}\text { 9,316, } \\ 10,219 \\ \hline 192\end{array}$	$3,731,100$ $2,598,170$	510,670 493,550	1,543, 428	2, $24,5,994$ $8,206,582$	195,780 159,380	681,200 6887
Putnam	3,598	3,431 3,359	290,563	${ }^{234} \mathbf{2 3 9}$, 066	11,986,090	${ }^{2}, 600,900$	643, 770	1,621,507	2,783, 229	155,470	3 3, ${ }^{2020}$
Richland	3,419	3,359	304, 243	239, 361	9,475, 670	2,649,690	472, 770	1,663,419	2,619,937	171,960	38,300
Ros	3, 301				11,541, 300	1,925,010					
Sandu	2, 2 2,635	2,803 2,593		198,982		3, 926,760		$1,470,783$ 656,916	2, ${ }_{\text {2, }}^{1,185}$, 1665	221,930 18,350	12,140
Seneca	3,353	3,266	327, 485	254,634	13, 902,250	4, 0662,320	676, 160	2, 014,260	3, 1213,585	196, 480	
Shelby	2,856	2,786	251, 793	202, 356	8,181,670	1,963,110	324, 870	1,128, 993	2,198, 933	97,080	20, 190

Table 3.-NUMBER AND ACREAGE OF FARMS, AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE I, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES-Continued.

COUNTIES.	NUMBER OF FARMs.		ACRES IN FARMS.		values of farm property.				Value of products not fed to live stock.	EXPENDITURES	
	Total.	With buildings.	Total.	Improved.	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
Stark	4,495	4,412	342, 290	281,064	\$14, 619, 270	\$5, 323, 100	\$659, 310	\$1, 905, 043	\$3,169, 742	\$285, 820	\$53,450
Summit	2,871	2,788	238,816	162, 020	10, 361, 140	3,364, 820	403, 200	1, 402, 483	2, 307, 603	234,580	43, 100
Trumbull..	4, 345	4, 290	377, 552	240, 147	9, 865, 700	4, 064,820	525, 470	2,067,342	2, 454, 621	184, 580	52,760
Tuscarawas	8,581	3,439	339, 786	275, 206	$9,358,350$	2, 954, 500	428, 260	1,583, 309	2, 085, 637	147, 400	-27,720
Union	2,937	2,839	275, 958	227, 534	9,518,240	1,947,250	357, 860	1,738,692	2, 368,775	138,760	11, 460
Van Wert	3,367	3,225	256, 014	211,556	9, 831, 640	2, 194,540	499, 240	1,467,591	2,487, 288	96, 820	1,980
Vinton	2,089	1,990	226, 474	145,569	2,323, 650	566,220	230,010	624,248	669,858	32, 120	22,810
Warren.	2,514	2,408	250, 003	210,557	9, 002, 870	2,681,570	287, 810	1,337, 997	2,588, 069	213, 040	17,510
Washington	4,478	4,349	374,694	280,691	7,637,600	2,271, 580	463, 370	1,444,574	2,116,307	112,860	65,400
Wayne	3,943	3,871	338, 149	272, 280	13, 526,030	4,775,510	754, 300	2,020,606	3, 204, 507	280, 370	86,500
Williams	2,833	2,794	253, 228	195, 074	8, 408,650	2,427, 550	430, 180	1,426, 218	2,056,964	99, 520	6, 170
wood.	4,781	4,599	367, 527	296, 928	18,970, 210	4,389, 810	724, 230	2, 123, 450	3,631, 133	271, 520	8,570
Wyandot.	2,389	2,330	248, 222	208, 246	9,318, 210	2, 040, 480	334, 590	1,410,956	2, 283, 329	139, 120	13,640

In nearly all counties the number of farms increased in the last decade, the six northern counties of Ashland, Holmes, Medina, Morrow, Sandusky, and Williams alone showing decreases in the total farm acreage. The smaller area of improved land reported in many of the counties is due to the use of a more strict construction of the term "improved land" by the Twelfth than by any preceding census. The average size of farms for the state is 88.5 acres, and varies from less than 60 to more than 120 acres.

A little less than one-half of the counties in the state report increases in the total value of farms, the increases being generally in the western and northeastern counties. In the value of implements and machinery the majority of counties show an increase, slight decreases being reported by only eight counties. The value of live stock has decreased in one-fourth of the counties.

FARM TENURE.

Table 4 gives a comparative statement of farm tenure for 1880,1890 , and 1900 . The farms operated by tenants are divided into two groups, designated as farms operated by "cash tenants," who pay a rental in cash or a stated amount of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.
In Table 5 the tenure of farms for 1900 is given by race of farmer, the farms operated by owners being subdivided into four groups, designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it, and the other, or others, owning no part, but receiving for supervision or labor a share of the products; and (4)
farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

year.	Totalnumberof farms.	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPERATED BY-		
		Owners. ${ }^{1}$	$\begin{gathered} \text { Cash } \\ \text { tenants. } \end{gathered}$	Share tenants.	Owners. ${ }^{1}$	Cash tenants.	Share tenants.
1900	276,719	200,788	24,051	51,880	72.5	8.7	18.8
1890...	251, 430	193,895	18,947	38,588	77.1	7.5	15.4
1880	247, 189	199,562	14, 834	32,793	80.7	6.0	13.3

${ }^{1}$ Including "part owners," "owners and tenants," and "managers."
Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

Rack.	Total number of farms.	Owners.	Part owners.	Owners and tenants.	Managers.	Cash tenants.	Share tenants.
The State..- White Colored ${ }^{1}$	276,719	169,370	23,730	4,261	3,427	24,051	51,880
	274,750	168, 369	23,509	4,244	3,399	23,839	51,390
	1,969	1,001	221	17	28	212	490

Part 2.-PER CENT OF Farms of specified tenures.

The State...	100.0	61.2	8.6	1.5	1.2	8.7	18.8
White	100.0	61.3	8.6	1.5	1.2	8.7	18.7
Colored ${ }^{1}$. ${ }^{\text {a }}$.	100.0	60.8	11.2	0.9	1.4	10.8	24.9

${ }^{1}$ Comprising 1 Chinese, 2 Indians, and 1,966 negroes.
There was a slight decrease in the number of farms operated by owners in the decade from 1880 to 1890, but an increase of 3.6 per cent is shown for the last decade. The relative number of owners has, however, decreased each decade. Gains are shown for both tenant groups, the rates for the twenty years being 62.1
per cent for cash tenants and 58.2 per cent for share tenants.

Of the farms of the state, 99.3 per cent are operated by white farmers and 0.7 per cent by colored. The percentages of tenure for white and colored farmers do not differ greatly, a somewhat larger portion of the negroes being tenants.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number of farms conducted by the last-named group is constantly increasing.

FARMS CLABSIFIED BY RACE OF FARMER AND BY TENURE.

Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RACE OF FARMEE,AND TENURE.	Number of farms.	number of acres in FARMS.			valee of farm PROPERTY.	
		Average.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Total.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$
The State......	276,719	88.5	24,501, 985	100.0	81, 198, 923, 946	100.0
White Colored ${ }^{1}$ \qquad	274, 750	88.8	24, 396, 326	99.6	1, 194, 618, 103	99.6
		53.7		0.4		0.4
Owners..............	169,370	83.1	14,070,387	67.4	670, 537, 844	65.9
Part owners	23,730	98.1	2, 326,729	9.5	119, 421, 064	9.9
Owners and tenants.	4, 261	118.2	503,596	2.1	22,509,403	1.9
Managers............	3,427	164.8	664, 863	2.3	31, 953, 870	2.7
	24,051	82.0	1,971,501	8.0	107, 567, 883	9.0
Share tenants.........	51,880	97.6	5,064, 910	20.7	246, 933, 882	20.6

${ }^{1}$ Including 2 Indians and 1 Chinese.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

race of farmer, and tenure.	average values per farm of-					Per cent of gross income on total investmentin farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and im-prove(except build. ings).	Buildings.		Live stock.		
The State.	\$2,953	\$793	\$132	\$455	8726	16.8
White	2,963	796	132	457	729	16.7
			61	234	402	18.4
Owners.............		796	126	487	670	16.9
Part owners	3,509	829 962	150	544	888	16.9 17.6 1.8
Managers............	6,750	862 1,639	189	607 749	889 1,092	16.8
Cash tenants	3,206	1,691	186	749	1,740	11.7 16.6
Share tenants	3,430	748	136	446	789	16.6 16.6

[^136]The average area, value of property, and value of products are very much lower for colored than for white farmers. The higher per cent of gross income for colored farmers does not indicate superior farm management, but is due to the smaller average area, more intensive cultivation, and to the low value of farm property of the colored farmers.

The farms of managers, though fewest in number, have the largest average area and the highest average values, but as the values are high, the per cent of gross income is lowest for this group. The averages are lowest for owners and cash tenants.

FARMS CLASSIFIED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

AREA.	$\begin{gathered} \text { Number of } \\ \text { farms. } \end{gathered}$	NUMBER OF ACRES INFARMS.			VALUE OF FABM PROPERTY.	
		Average.	Total.	Per cent.	Total.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$
The State.....	276,719	88.5	24, 501, 985	100.0	\$1, 198, 923, 946	100.0
Under 3 acres	2,531	1.7	4,319	${ }^{1}$)	3,034, 248	0.3
3 to 9 acres.	14, 816	5.9	87,753	0.4	18,458,860	1.6
10 to 19 acres	18, 115	13.7	248,359	1.0	27,962,749	2.3
20 to 49 acres	57, 566	34.3	1,972,566	8.0	120, 224, 919	10.0
60 to 99 acres..	89,774	73.9	6, 636,508	27.1	329, 132, 854	27.5
100 to 174 acres.	67, 258	128.8	8,663,663	35.4	402, 364, 342	33.6
175 to 259 acres	18,361	201.5	3,699,942	15.1	166,973,652	13.9
260 to 499 acres.	7,218	325.6	2,350,226	9.6	100,066, 949	8.4
500 to 999 acres	916	627.0	574, 368	2.3	23,174,633	1.9
1,000 acres and over.	164	1,611.5	264, 281	1.1	7,530, 740	0.6

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

AREA.	averaoe valueg per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Grossincome(productsof 1899not fed tolivestock).	
	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State .	\$2,963	8793	\$132	\$455	8726	16.8
Under 3 acres.	495	676	46	83	332	27.7
3 to 9 acres	624	471	49	102	224	18.0
10 to 19 acres.	879	473	55	137	266	17.2
20 to 49 acres.	1,294	496	78	221	387	18.5
50 to 99 acres..	2,425	721	128	392	650	17.7
100 to 174 acres.	4,146	1,028	178	630	989	16.5
175 to 259 acres.	6,606	1,308	224	956	1,412	15.5
260 to 499 acres.	10,320	1, 802	278	1,464	2,001	14.4
1,000 acres and over..	36,890	3,817	543	2,817 4,669	3,483 6,479	13.8 14.1

The group of farms containing from 50 to 99 acres contains the largest number of farms, but the next largest group constitutes a larger percentage of the total acreage and value.

For the two groups containing less than 10 acres per farm, the average values given in Table 9 are relatively high, as these groups include most of the florists' establishments and a number of city dairies. It should be borne in mind that the income from these industries is determined, not so much by the acreage of land used, as by the amount of capital invested in buildings and implements and the amounts expended for labor and fertilizers.
The average gross incomes for the various groups classified by area are as follows: Farms under 3 acres, $\$ 194.48 ; 3$ to 9 acres, $\$ 37.85 ; 10$ to 19 acres, $\$ 19.40$; 20 to 49 acres, $\$ 11.30 ; 50$ to 99 acres, $\$ 8.80 ; 100$ to 174 acres, $\$ 7.68 ; 175$ to 259 acres, $\$ 7.01 ; 260$ to 499 acres, $\$ 6.15$; 500 to 999 acres, $\$ 5.55$; 1,000 acres and over, $\$ 4.02$.

FARMS CLASSIFIED BY PRINCIPAL SOUROE OF INCOME.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables are the leading crop, constituting 40 per cent of the value of such products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40 percent of their income from any one class of products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER and acreage of farms, and Value of farm property, June 1, 1900, ClassiFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCE OFINCOME.	Number of farms.	NUMBER OF ACRES IN FARMS.			VALDE OF PARM PROPERTY.	
		$\begin{gathered} \text { Aver- } \\ \text { age. } \end{gathered}$	Total.	Per cent.	Total.	Per cent.
The State	276, 719	88.5	24, 501, 985	100.0	\$1, 198, 923, 946	100.0
Hay and grain	80, 809	100.6	8, 131,676	33.2	423, 134, 731	35.3
Vegetables	7,171	32.5 40.3	233,339 204,387	1.0	25,418,977	2.1
Fruits	113,520	90.3 96.2	10,926,072	0.8 44.6	-481, 319,434	40.1
Dairy produce........	12,768	88.4	1, 128,380	4.6	65,735, 524	5.5
Tobacco	6,199	52.7	326, 400	1.3	18,360, 076	1.5
Sugar...	60	64.5	3,871	(1)	215,184	(1)
Flowers and plants..	505	5.6	2,832	(1)	2,970, 336	0.3
Nursery products....	147	73.6	10,818	0.1	1,063,545	0.1
Miscellaneous	50, 466	70.0	3,534,210	14.4	160, 772, 287	13.4

[^137]Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms deriving their principal income from flowers and plants, $\$ 493.12$; nursery products, $\$ 48.34$; vegetables, $\$ 19.49$; fruits, $\$ 15.50$; tobacco, $\$ 15.09$; dairy produce, $\$ 10.29$; hay and grain, $\$ 8.01$; live stock, $\$ 7.58$; miscellaneous, $\$ 7.53$; and sugar, $\$ 7.19$.
The wide variations shown in the averages and in the percentages of gross income are largely due to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens, the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than for "hay and grain," "live stock," or "miscellaneous" farms. Were it possible to present the average net incomes the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.
Tables 12 and 13 present data relating to farms classified by reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

VALUE OF PRODUCTS NOT FED TO LIVE stock.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NOMBER OF ACRES INFARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State	276, 719	88.5	24, 501, 985	100.0	\$1, 198, 923, 946	100.0
\$0....	686	47.0	32, 275	0.1	1,498,590	0.1
81 to $\$ 49$.	3,184	${ }_{23}^{23.2}$	$\begin{array}{r}73,862 \\ \hline 208 \\ \hline 123\end{array}$	0.3	3,127, 510	0.3
\$50 to \$99	8,909	2	208,423	0.8	9,593,320	0.8
\$100 to \$249	43,366	34.8	1.507,965	6.2	62,616,076	5.2
\$250 to \$4999	68,328 89,437	60.7 94.4		16.9 34.5	170, ${ }^{3925,390}$	14.3
\$1,000 to \$2,499	56,979	147.5	8, 402, 808	34.3	453,449, 210	37.8
\$2,500 and over	5,830	288.6	1,682,484	6.9	103, 342, 120	8.6

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

The absence of income in the first group is due in part to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The persons in charge of such farms on June 1, 1900, frequently could not give definite information concerning the products of the preceding year. The same statement is true also of some of the farms with reported incomes of less than $\$ 100$. To this extent the reports fall short of giving a complete exhibit of farm income in 1899 . Other farms with little or no reported incomes are doubtless the suburban or summer homes of city merchants and professional men, who derive their principal incomes from other than agricultural pursuits.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meatproducts. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in previous census reports.
The total value of live stock on farms, June 1, 1900, was $\$ 125,954,616$, of which 39.8 per cent represents the value of horses; 19.6 per cent, that of dairy cows; 17.3 per cent, that of other neat cattle; 9.4 per cent, that of swine; 8.7 per cent, that of sheep; 4.1 per cent, that of poultry; 0.8 per cent, that of mules and asses; and 0.3 per cent, that of all other live stock.

Table 14 presents a summary of live-stock statistics.
Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

LIVE STOCK.	Age in years.	ON FARMS.			NOT ON FARMS.
		Number.	Value.	Average value.	Number.
Calves	Under $1 . . .$.	494,584	\$4, 186, 575	88. 46	6,167
Steers	1 and under 2.	223,946	4,300,265	19.20	1,336
Steers	2 and under 3.	144, 725	4, 671,321	31.59	1,334
Steers.....................	3 and over....	27, 932	1,243, 624	44.52	829
Bulls.	1 and over....	39,276	1,226,696	31.23	346
Heifers.	1 and under 2.	217,571	3,959, 411	18.20	2,607
Cows kept for milk	2 and over....	818, 239	24, 725, 382	30.22	60,593
Cows and heifers not kept for milk.	2 and over....	87,040	2, 347, 072	26.97	1,400
Colts......................	Under 1......	55,324	1,395,896	25.23	1,837
Horses	1 and under 2.	67,332	3,087,402	45. 11	1,567
Horses	2 and over....	755, 549	45,725, 947	60.52	186,561
Mule colts	Under 1.	1,464	46,525	31.78	186 20
Mules.	1 and $u n d e r 2$.	1,321	60,244	45.60	101
Mules	2 and over....	13,986	834,442	59.66	4,651
Asses and burros	All ages	250	18,981	75.92	212
Lambs	Under 1	1,372,378	2,370, 851	1.73	2, 252
Sheep (ewes)	1 and over....	2,090,093	6,790,239	3.25	4,327
Sheep (rams and wethers).	1 and over....	558, 157	1, 795,218	3.22	2,814
Swine..--...-.-.........	All ages-.	3,188,563	11,813,168	3.70	
Goats.-1	All ages	5,432	16,975	3.13	1,149
Chickens ${ }^{2}$		14,269, 525			
Turkeys...		362,924			
Geese		179,665	5, 085, 921		
Ducks.........		206, 238			
Bees (swarms of)		151, 391	402,561	2.66	
Value of all live stock.			125, 954, 616		

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young
${ }^{2}$ Including Guinea fowls.
No reports were secured of the value of live stock not on farms, but it is probable that such animals have bigher average values than those on farms. Allowing the same averages, however, the value of domestic animals not on farms is $\$ 13,878,677$. Exclusive of poultry and bees not on farms the value of all live stock in the state is, approximately, $\$ 139,833,293$.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the changes since 1850 in the numbers of the most important domestic animals.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

YEAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	818,239	1,235,074	878,205	17, 021	2,648, 250	3,188, 663
1890.	794, 833	968,554	880,677	18,858	4,060,729	3,275, 922
1880.	767,043	1,093,143		19,481	4,902,486	3,141, 333
1870.	654,390	781, 827	609,722	16,065	4, 928, 635	1,728,968
1860.	676, 585	958,155	625,346	7,194	3,546,767	2,251,653
1850.	544,499	814,448	463,397	3,423	3, 942,929	1,964,770

${ }^{1}$ Lambs not included.
For the last half century all classes of live stock show fluctuations in numbers from decade to decade. Larger
numbers of every class except sheep are shown for 1900 than for 1850 , but for the last decade, only neat cattle show an increase. The decreases since 1890 were general throughout the state, and were due in part to the high prices prevailing just before the enumeration, which led many farmers to reduce their flocks and herds to an unusual extent.

The increase in number of dairy cows has been constant since 1870, that year's report showing the effects of the Civil War. The number reported in 1900 is 50.3 per cent greater than in 1850, and 2.9 per cent greater than in 1890. The number of other neat cattle has increased 51.6 per cent since 1850 , and 27.5 per cent since 1890. There were 89.5 per cent more horses reported in 1900 than in 1850 , but 0.3 per cent fewer than in 1890. Nearly five times as many mules and asses were reported in 1900 as in 1850 , but the last decade shows a decrease of 9.7 per cent. The years 1870 and 1880 show the largest numbers of sheep, the decrease in the last decade being 34.8 per cent. In 1900 there were 62.3 per cent more swine than in 1850 , but 2.7 per cent less than in 1890.

In 1900 the enumerators were instructed to report no fowls under 3 months old, but in 1890 no such limitation was made. This accounts for the small increase in the number of chickens and the apparent decreases in the numbers of other classes of poultry. Compared with the census of 1890 , the report of 1900 shows an increase of 4.5 per cent in the number of chickens, and a decrease of 38.0 per cent in the number of other classes of poultry. The increase in the number of eggs produced indicates conclusively that the apparent decreases in the numbers of fowls are due to a difference in the methods of enumeration in 1890 and 1900.

ANIMAL PRODUCTS.

Table 16 is a summarized statement of the animal products of 1899 .
Table 16.-QUANTITIES AND Values of SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1899.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds	20,350, 721	84, 299,025
Mohair and goat hair	Pounds..	469	112
Milk	Gallons.	$1425,870,394$	
Butter	Pounds	79,551, 299	2 25, 383, 627
Cheese	Pounds	1,167,001	
Eggs	Dozens	91, 766,630	10,280, 769
Poultry			8,847,009
Honey	Pounds	$1,980,530$ 34,620	252, 321
Wax .-....-g	Pounds	34, 620	-62, 321
Animals sold.......			$\begin{aligned} & 40,873,674 \\ & 10,276,981 \end{aligned}$
Total value			100, 213, 468

[^138]The value of the animal products of the state for 1899 was $\$ 100,213,468$. Of this value 51.0 per cent represents the value of animals sold and animals slaughtered on farms; 25.3 per cent, that of dairy produce; 19.1 per cent, that of poultry and eggs; 4.3 per cent, that of wool, mohair, and goat hair; and 0.3 per cent, that of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms in 1899 was $\$ 51,150,605$, or 25.5 per cent of the gross farm income. Of all farmers reporting live stock, 222,155 , or 83.3 per cent, reported animals slaughtered on farms, and 193,642, or 72.6 per cent, reported sales of live animals, the average receipts per farm being $\$ 46.26$ and $\$ 211.08$, respectively.

DAIRY PRODUCE.

In 1899 the proprietors of 12,768 farms, or 4.6 per cent of the total number in the state, derived their principal income from the sale of dairy produce. The production of milk in 1899 was $98,944,998$ gallons greater than in 1889, a gain of 30.3 per cent. The quantity of butter produced on farms increased 6.1 per cent, and the quantity of cheese made on farms, 9.3 per cent, the development of creameries and the increased consumption of milk and cream in cities accounting for the smallness of the increases.
Of the $\$ 25,383,627$ given in Table 16 as the value of dairy produce, $\$ 15,484,849$, or 61.0 per cent, represents the value of such produce sold, and $\$ 9,898,778$, or 39.0 per cent, the value of that consumed on farms. Of the former amount, $\$ 8,303,626$ was derived from the sale of $84,543,703$ gallons of milk; $\$ 6,896,334$ from $47,118,140$ pounds of butter; $\$ 213,716$ from 429,143 gallons of cream; and $\$ 71,173$ from $1,047,202$ pounds of cheese.

POULIRY AND EGGS.

Of the $\$ 19,127,778$ given as the value of poultry products, 53.7 per cent represents the value of eggs produced, and 46.3 per cent the value of poultry raised. The $91,766,630$ dozens of eggs reported in 1900 are $21,604,390$ dozens, or 30.8 per cent, more than were reported in 1890.

> WOOL.

The production of wool was greatest in 1880. There was a decrease for the last decade of 3.0 per cent. That this decrease was not so great as that shown in the number of sheep in Table 15 is due to the facts that the average weight of fleeces has increased, and that in 1890 the fleeces of at least 376,906 sheep were not included in the tables, but were given in a general estimate of wool shorn after the census enumeration.

The average weight of fleeces increased from 5.7 pounds in 1889 to 7.0 pounds in 1899, indicating improvement in the grade of sheep kept. Harrison county led in the production of wool, reporting $1,017,810$ pounds for 1899 , with an average weight of 8.5 pounds per fleece.

HONEY AND WAX.

The production of honey for 1899 was $1,980,530$ pounds, and of wax, 34,620 pounds, a decrease in the last decade of 31.6 per cent in quantity of honey, and an increase of 3.3 per cent in quantity of wax.

HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.

Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

CLASSES.	Horses.			DAIRY COWs.		
	F'arms reporting.	Number.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { per } \\ \text { farm. } \end{gathered}$	Farms reporting.	Number.	Average farm.
Total..	261,788	878, 205	3.5	244,405	818,239	3.3
White farmers Colored farmers \qquad	250, 211	873,385 4,820	3.5 3.1	243,135 1,270	816,875 2,364	3.4
Owners 1	178,017	610,193	3.4	176,450	582,100	3.3
Managers.	2,879	13,927	4.8	2,734	16,857	5.8
Cash tenants..	21,836	77,033	3.5	20, 254	78,101	3.9
Share tenant	49,056	177,062	3.6	44,967	142,181	3.2
Under 20 acres 20 to 99 acres. \qquad 100 to 174 acres. 175 to 259 acres. 260 acres and over	25, 662	41,671	1.6	22,187	33,503	1.5
	134, 397	386, 711	2.9	131, 784	360,386	2.7
	66,078	282,177	4.3	64,776	277, 379	4.3
	17,935	102,124	5.7	17,740	95,581	6.4
	8,116	65,522	8.1	7,918	51, 390	6.5
Hay and graln........... Vegetable	71,067	270,612	3.8	66,682	197, 182	3.0
	6,067	14,056	2.3	4,307	8,265	1.9
Fruit.....................	4,166	9,367	2.2	3,375	7,126	2.1
Live stock	107, 834	397, 140	3.7	107, 074	341, 838	3.2
	11, 949	41, 369	3.5	12,768	121, 323	9.6
Tobacco	5,530	15, 310	2.8	4,758	10, 815	2.3
Flower and plant......... Nursery Miscellaneous ${ }^{2}$	182	364	2.0	89	153	1.7
	65	276	4.2	64	147	2.3
	44, 928	129,711	2.9	45,388	131, 290	2.9

[^139]
CROPS.

The following table gives the statistics of the priacipal crops of 1899 .

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

crops.		Unit of measure.	Quantity.	Value.
Corn.	3,826,013	Busbels.	162,055,390	\$48,037, 895
Wheat	3, 209,074	Bushels........	50, 376, 800	32, 855, 834
Oats	1,115, 149	Bushels........	42,050, 910	10, 236, 251
Barley	34, 058	Busbels.....	1,053, 240	402,977
Rye	17,583	Bushels..	257, 120	128,072
Buckwheat	13,071	Buskels.	164,305	87,242
Broom corn	802	Pounds..	537, 160	26,317
Kafir corn	12	Bushels.	90	49
Flaxseed.	3,092	Bushels..	29,821	28,935
Clover seed		Busbels.	336,318	1, 358, 494
Grass seed		Bushels.	52,403	60,195
Hay and forage	3,015,261	Tons....	4,192, 871	29,047, 632
Tobacco	71, 422	Pounds.	65, 957,100	4,864, 191
Hops.		Pounds.	2,910	${ }^{279}$
Peanuts	1	Bushels.......	20	20
Dry beans	1,828	Busbels........	19,042	33,307
Dry pease	506	Bushels......	7,521	7,410
Potatoes.	167, 690	Bushels.	13,709,238	5,750, 058
Sweet potatoes	3,796	Bushels.......	249, 767	158,103
Onions -.......	6,067	Bushel	1,671,442	826,212
Miscellaneous bles.	98,279			5,620,024
Maple sugar.		Pounds.	613,990	48,736
Maple sirup		Gallons.....	923,519	616, 490
Sorghum cane	6,037	Tons...........	11,855	5,651
Sorghum sirup		Gallons.	341,623	121,130
Grapes	222,955	Centals	791,739	$1,767,357$ 8992,746
Orchard fruits	${ }^{2} 370,769$			46,141, 118
Nuts...........				4,871
Forest products				5,625, 897
Flowers and pla Seeds	$\begin{aligned} & 685 \\ & 206 \end{aligned}$			1, 399,957
Nursery products	4, 699			638, 012
Willows.	14			1,144
Miscella	2			26,854
Total	12,008,095			156, 852, 358

1 Sold as cane.
2 Estimated from number of vines or trees.
4 Including value of raisins, wine, etc.
${ }^{4}$ Including value of clder, vinegar, etc.
Of the total value of crops in 1899, corn contributed 30.6 per cent; other cereals, 27.9 per cent; hay and forage, 18.5 per cent; vegetables, including potatoes, sweet potatoes, and onions, 7.9 per cent; fruits and nuts, 5.7 per cent; forest products, 3.6 per cent; tobacco, 3.1 per cent; and all other products, 2.7 per cent.

The average values per acre of crops were as follows: Flowers and plants, $\$ 2,043.73$; onions, $\$ 163.06$; nursery products, $\$ 114.49$; tobacco, $\$ 68.10$; sweet potatoes, $\$ 41.65$; potatoes, $\$ 34.31$; dry pease and beans, $\$ 17.45$; orchard fruits, $\$ 16.56$; and cereals, $\$ 11.17$.

CEREALS.

The following table is an exhibit of the changes in cereal production since 1849.

Table 19.-ACREAGE AND PRODUOTION OF CEREALS: 1849 TO 1899.

Part 1,-ACREAGE.

Year. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899......	34,058	13,071	3, 826, 013	1,115,149	17,583	3, 209,074
1889......	37,092	14,052	3,189, 553	1,215,355	59,643	2,269,585
1879......	57,482	22,130	3, 281, 923	910,388	29,499	2,556,134

Part 2.-bushels produced.

1899.	1,053, 240	164,305	152, 055, 390	42,050,910	257, 120	50, 376,800
1889.	1,059,915	162,883	113, 892, 318	40, 136, 732	1,007, 156	35, 559, 208
1879..	1,707,129	280, 229	111, 877, 124	28,664,505	389, 221	46,014, 869
1869......	1,715, 221	180, 341	67,501, 144	25, 347,549	846,890	27, 882, 159
1859......	1,663, 868	2,370,650	73,543, 190	15,409, 234	683,686	15, 119, 047
1849.	354, 358	638, 060	59,078, 695	13, 472, 742	425, 918	14, 487, 351

${ }^{1}$ No statistics of acreage were secured prior to 1879.
The total area devoted to cereals in 1879 was $6,857,556$ acres; in 1889, 6,785,280 acres; and in 1899, 8,214,948 acres. The total number of bushels produced in 1849 was $88,457,124$, and in $1899,245,957,765$, showing an increase in fifty years of $157,400,641$ bushels, or almost twice the quantity produced in 1849. The increases in acreage under cereals in the decade from 1889 to 1899 , were: Wheat, 41.4 per cent, and corn, 20.0 per cent. The decreases were: Oats and barley, each 8.2 per cent; rye, 70.5 per cent; and buckwheat, 7.0 per cent.

Of the total area under cereals in $1899,46.6$ per cent was devoted to corn; 39.0 per cent to wheat; 13.6 per cent to oats; 0.4 per cent to barley; and 0.4 per cent to rye and buckwheat.

Corn, oats, and wheat were raised extensively throughout the state. Henry and Hamilton counties, in the western part, reported 13.5 per cent of the total area under rye, and Henry and Paulding counties 28.5 per cent of the total acreage devoted to barley. The largest acreages in buckwheat were in the northern section, Lucas and Ashtabula counties reporting 36.2 per cent of the total area devoted to this grain.

HAY AND FORAGE.

In $1900,220,089$ farmers, or 79.5 per cent of the total number, reported hay and forage crops. Exclusive of cornstalks, they obtained an average yield of 1.2 tons per acre. The acreage in hay and forage in 1899 was $3,015,261$, or 0.8 per cent greater than ten years before.
In 1899 the acreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 3,548 acres and 3,563 tons; millet and Hungarian grasses, 13,048 acres and 19,'552 tons; alfalfa or lucern, 2,799 acres and 3,944 tons; clover, 617,516 acres and 773,857 tons; other tame and cultivated grasses, $2,276,898$ acres and 2,627,989 tons; grains cut green for hay, 60,813 acres and 77,749 tons; crops grown for forage, 40,639 acres and 123,068 tons; cornstalks, 446,079 acres and 563,149 tons.

In Table 18 the production of cornstalks is included under "hay and forage," but the acreage is included under "corn," as the forage secured was only an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 may be seen in the following table.

Table 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRUITS	NUMBER OF TREES.		bUSHELS Of FBUIT.	
	1900	1890	1899	1889
Apples.	12,952, 625	10, 860, 613	20,617,480	13,789, 278
Apricots	5,348 697	6,077		
Peaches.	6,363,127	1,882, 191	240,686	687,112
Pears..	921,412	353,232	244, 565	279, 831
Plums and prunes	892, 441	145,832	81,485	17,921

The total number of trees in the state in 1890 was $13,616,256$, and in $1900,21,832,223$, an increase of $8,215,967$, or 60.3 per cent, in the decade. The number of apple trees increased 19.3 per cent, and of cherry trees, 89.3 per cent, while the number of peach and pear trees in 1900 was, approximately, three times, and of plum and prune trees six times, as great as in 1890. The number of apricot trees decreased 12.0 per cent.

Of all trees reported in 1900, 59.1 per cent were apple trees; 29.1 per cent, peach trees; 4.2 per cent, pear trees; 4.1 per cent, plum and prune trees; 3.2 per cent, cherry trees; 0.3 per cent, apricot and unclassified trees. The latter class, which is not included in the table, numbered 61,579 and yielded 21,704 bushels of fruit.
The value of orchard products given in Table 18 includes the value of 400,578 barrels of cider, 71,909 barrels of vinegar, and $1,191,170$ pounds of dried and evaporated fruits. Comparisons of the yield of orchard fruits, when made by decades only, are of little importance, as the crop is subject to great seasonal variations.

SMALL FRUITS.

The total area devoted to small fruits in 1899 was 21,121 acres, distributed among 49,113 farms, an average of 0.4 acre per farm. Of the total acreage, 9,373 acres, or 44.4 per cent of the total, were devoted to strawberries, yielding 17,916,080 quarts. The acreages and productions of the other berries were as follows: Raspberries and Logan berries, 6,795 acres and 8,745,950 quarts; blackberries and dewberries, 3,397 acres and 4,905,430 quarts; currants, 765 acres and 1,153,920 quarts; gooseberries, 539 acres and 767,760 quarts; and other small fruits, 252 acres and 246,890 quarts.

FLAX.
Flax was grown in 1899 by 413 farmers. The area devoted to the crop was 3,092 acres, and the yield was 29,821 bushels of seed. Large decreases are shown for
the last decade, the acreage in 1899 being but oneseventh, and the production but one-fifth of that reported in 1889. The average yield per acre was 7.1 bushels of seed in 1889, and 9.6 in 1899. The average area per farm in 1899 was 7.5 acres, and the value of the crop per acre, \$9.36.

The seven northern counties of Ashland, Medina, Huron, Richland, Lorain, Wayne, and Summit, ranking in the order named, reported 90.1 per cent of the total acreage. Ashland county alone reported four times the acreage of any other county, or 52.5 per cent of the total.

VEGETABLES.
The total area used in the cultivation of vegetables, including potatoes, sweet potatoes, and onions, in 1899, was 274,732 acres. Of this amount 61.0 per cent was devoted to potatoes, 35.8 per cent to miscellaneous vegetables, 1.8 per cent to onions, and 1.4 per cent to sweet potatoes.

Potatoes were reported by 190,745 farmers, or 68.9 per cent of the total number in the state. The average area per farm devoted to potatoes by the farmers reporting them was 0.9 acre, and the average yield was 81.8 bushels per acre. Potatoes were grown throughout the state generally, but the northeastern counties of Cuyahoga, Portage, Ashtabula, Stark, and Trumbull reported 20.7 per cent of the product from 18.9 per cent of the acreage.

Of the 98,279 acres used in the cultivation of other vegetables no detailed reports were received for 55,034 acres, or 56.0 per cent of the total. Of the 43,245 acres whose products were reported in detail, 16,659 were devoted to sweet corn; 10,800 , to tomatoes; 6,970 , to cabbages; 2,256 , to muskmelons; 1,959 , to watermelons; 1,432 , to cucumbers; 954 , to celery; 748, to pease; 306, to beans, and 1,161 , to other vegetables.

TOBACCO.

The tobacco crop in Ohio, as in other states, has been subject to many fluctuations during the last fifty years. According to the census of 1850 the state produced $10,454,449$ pounds in 1849. That of 1860 showed a gain over this amount of $14,638,132$ pounds, or 140.0 per cent, while that of 1870 showed a falling off of $6,350,608$ pounds, or 25.3 per cent. Between 1870 and 1880 there was a gain of $15,993,262$ pounds, or 85.3 per cent, and between 1880 and 1890 a gain of $3,118,328$ pounds, or 9.0 per cent.

In 1899 tobacco was grown in Ohio by 16,666 farmers, who obtained from 71,422 acres a yield of $65,957,100$ pounds. This was an increase in area in the last decade of 27,119 acres, or 61.2 per cent, and in production of $28.103,537$ pounds, or 74.2 per cent. The total value
of the crop was $\$ 4,864,191$, an average, for each farm reporting, of $\$ 291.86$. The average yield per acre in 1899 was 923 pounds, as against 854 pounds in 1889 , and 1,001 pounds in 1879. The average value in 1899 was 7.4 cents per pound.

Tobacco was grown in 1899 in 71 counties of the state. The leading county was Montgomery, with 18,883 acres, and the second in rank was Darke county, with 11,995 acres. These two counties together contributed 43.2 per cent of the acreage and 43.5 per cent of the production of the state, and with Preble, Warren, Miami, and Brown, furnished 77.6 per cent of the entire area, and 78.7 per cent of the entire production of the state.

SORGHUM CANE.
The present census shows that in 1899 sorghum cane was raised by 12,418 farmers, on 5, 037 acres, an average of 0.4 acre for each farm reporting. From this area were sold 1,855 tons of cane for $\$ 5,651$, and from the remaining product manufactured 341,523 gallons of sirup, valued at $\$ 121,130$. This was a decrease in acreage from 1889 of 32.9 per cent, and in production of 37.6 per cent. The total value of all sorghum products was $\$ 126,781$, an average of $\$ 10.21$ for each farm reporting. The crop was distributed over 88 counties of the state, Lawrence county leading with 756 acres.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 685 acres, and the value of the products sold therefrom was $\$ 1,399,957$. These flowers and plants were grown by 662 farmers and florists, and of this number, 505 made commercial floriculture their principal business. They had invested in the aggregate $\$ 2,970,336$, of which $\$ 1,568,354$ represents the value of land and improvements other than buildings; $\$ 1,308,956$ the value of buildings; $\$ 67,850$ that of implements and machinery; and $\$ 25,176$ that of live stock. Their sales of flowers and plants amounted to $\$ 1,342,470$, and of other products, to $\$ 54,060$. They expended for labor $\$ 273,233$, and for fertilizers $\$ 11,824$.

In addition to the 505 principal florists' establishments, 2,233 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of $4,059,484$ square feet, making, with the $3,910,706$ belonging to the florists' establishments, a total of $7,970,190$ square feet.

NURSERIES.

The total value of nursery products sold in 1899 was $\$ 538,012$, reported by the operators of 317 farms and nurseries. Of this number, 147 derived their principal
income from the nursery business. They had 10,818 acres of land, valued at $\$ 761,375$; buildings worth $\$ 247,259$; implements and machinery worth $\$ 24,040$; and live stock worth $\$ 30,880$. Their total income, exclusive of products fed to live stock, was $\$ 522,905$, of which $\$ 484,539$ represents the value of nursery stock, and $\$ 38,366$ that of other products.

The expenditure for labor was $\$ 127,390$, and for fertilizers, $\$ 4,732$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including tee value of board furnished, was $\$ 14,502,600$, an average of $\$ 52$ per farm. The average was highest on the most intensively cultivated farms, being $\$ 867$
for nurseries, $\$ 541$ for florists' establishments, $\$ 96$ for dairy farms, $\$ 92$ for vegetable farms, $\$ 75$ for fruit farms, $\$ 60$ for hay and grain farms, $\$ 44$ for live-stock farms, $\$ 35$ for tobacco farms, and $\$ 28$ for sugar farms. "Managers" expended on an average $\$ 219$; "cash tenants," $\$ 53$; "share tenants," $\$ 49$; and "owners," $\$ 47$. White farmers expended $\$ 53$ per farm, and colored farmers, $\$ 23$.

Fertilizers purchased in 1899 cost $\$ 2,695,470$, an average of $\$ 10$ per farm and an increase since 1889 of 68.2 per cent. The average expenditure was $\$ 32$ for nurseries, $\$ 23$ for florists' establishments, $\$ 15$ for vegetable farms, $\$ 12$ for dairy farms, $\$ 10$ for live-stock farms, $\$ 9$ for hay and grain farms, $\$ 8$ for tobacco farms, $\$ 7$ for fruit farms, and $\$ 5$ for sugar farms.

Twelfth Census of the United States.

Census Bulletin.

AGRICULTURE.

KENTUCKY.

Hon. William R. Merriam, Director of the Census.

SIR: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Kentucky, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-

The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land under one management used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.
The farms of Kentucky, June 1, 1900, numbered 234,667 , and were valued at $\$ 382,004,890$. Of this amount, $\$ 90,887,460$, or 23.8 per cent, represents the value of buildings, and $\$ 291,117,430$, or 76.2 per cent, the value of land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 15,301,860$, and of live stock, $\$ 73,739,106$. These values, added to that of farms, give $\$ 471,045,856$, the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal products." The total value of such products, together
with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 123,266,785$, of which amount $\$ 44,303,940$, or 35.9 per cent, represents the value of animal products, and $\$ 78,962,845$, or 64.1 per cent, the value of crops, including forest products cut or produced on farms. The total value of farm products for 1899 exceeds that for 1889 by $\$ 57,318,300$, or 86.9 per cent, but a part of this increase is doubtless due to a more detailed enumeration in 1900 than in 1890.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 21,128,530$, leaving $\$ 102,138,255$ as the gross farm income. The ratio which the latter amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Kentucky in 1899 it was 21.7 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Kentucky.

Very reṣpectfully,

Chief Statistician for Agriculture.

KENTUCKY.

GENERAL STATISTICS.

Kentucky has a total land surface of 40,000 square miles, or $25,600,000$ acres, of which $21,979,422$ acres, or 85.9 per cent, are included in farms.

The surface is an elevated plateau sloping from the Appalachian Mountains in the southeast to the Ohio and Mississippi rivers on the north and west. In the western part the surface is generally level, and low in altitude, while some of the mountains in the east attain a height of 2,500 feet above sea level. The Tennessee, Cumberland, Green, Kentacky, and Licking rivers flow into the Ohio and form a succession of river valleys across the State.

The soil is generally favorable for cultivation. In the north central part is situated the blue grass region, renowned for its fertile lands, rich pastures, and superior grades of horses and cattle. Here the soil is enriched by disintegrating limestone of such great depth as to insure almost perpetual fertility. The productive alluvial soil of the river valleys is fertilized by frequent inundations. Corn, tobacco, wheat, and hay are the leading products. Nearly all the hemp produced in the United States is grown in Kentucky. Vegetables and orchard fruits are grown in large quantities in the region along the Ohio River between the cities of Louisville and Cincinnati, which furnish good markets for the products of the state.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850 , the number of farms, the total and average acreage, and the per cent of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	Number of farms.	NUMBER OF ACRES IN FARMS.				Per cent of farm land improved.
		Total.	Improved.	Unimproved.	Average.	
1900.	234,667	21,979, 422°	13, 741, 968	8, 237, 454	93.7	62.5
1890.	179, 264	21,412, 229	11, 818, 882	9, 593, 347	119.4	55.2
1880	166, 453	21,495, 240	10, 731, 683	10,763, 557	129.1	49.9
1870.	118, 422	18,660, 106	8,103,850	10,556, 266	157.6	43.4
1860.	90, 814	19,163, 261	7,644,208	11,519,063	211.0	39.9
1850.	74,777	16,949, 748	5, 968, 270	10,981,478	226.7	35.2

The number of farms reported June 1, 1900, was more than three times the number reported in 1850,
and 30.9 per cent greater than in 1890 . The total acreage of farm land shows alternating increases and decreases through the five decades. For the last decade, a gain of 2.6 per cent is shown. The fact that the number of farms has increased more rapidly than the total acreage indicates a progressive division of farm holdings, and a decrease in the average size of farms. The steady increase in the acreage and per cent of improved farm land is in keeping with this movement.

FARM PROPERTY AND PRODUCTS.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF SPECIFIED OLASSES OF FARM PROPERTY, AND OF FARM PRODUCTS: 1850 TO 1900.

Year,	Total value of farm property.	Land,improvements, and buildings.	Implements and machinery.	Live stock.	$\underset{\text { products. }}{\text { Farm }}$
1900	\$471, 045, 856	\$382, 004, 890	\$15, 301, 860	873,739, 106	\$123, 266,785
1890	428, 170, 266	346, 339, 360	10,906,506	70, 924, 400	65,948,485
18800^{2}	$358,703,832$ $386,099,155$	$299,298,631$ $311,238,916$	$9,734,634$ $8,572,896$	49,670, 66,287	887,477,374
1860	360, 839, 765	291, 496, 955	7,474,573	61,868,237	
1850	189, 851, 735	155,021, 262	5,169,037	29,661,436

${ }^{1}$ For year preceding that designated.
2 Values for 1870 were reported in depreciated currency. To reduce to specie basis of otber years they must be diminished one-fifth.
${ }^{8}$ Includes betterments and additions to live stock.
The gain in the last decade in the total value of farm property was $\$ 42,875,590$, or 10.0 per cent. The increase in the value of land, improvements, and buildings was $\$ 35,665,530$, or 10.3 per cent; in that of implements and machinery, $\$ 4,395,354$, or 40.3 per cent; and in that of live stock, $\$ 2,814,706$, or 4.0 per cent. The value of the farm products of 1899 was 86.9 per cent greater than that reported for 1889. A portion of this increase, and of that shown for implements and machinery, is. doubtless the result of a more detailed enumeration in 1900 than in previous census years.

COUNTY STATISTICS.

Table 3 gives a statement of general agricultural statistics by counties.

Table 3.-NUMBER AND ACREAGE OF FARMS, AND VALUES OF SPECLFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	NUMBER Of FARMS.		acres in farms.		values of farm property.				Value of products not stock.	EXPENDITURES.	
	Total.	With huild ings.	Total.	Improved.	Land and im provements (except buildings).	Buildings.	$\begin{aligned} & \text { Implements } \\ & \text { mand } \\ & \text { machinery. } \end{aligned}$	Live stock.		Labor.	Fertilizers.
The state.	234,667	226,408	21, 979, 422	13,741,968	\$291,117, 430	890, 887, 460	\$15, 301, 860	\$73, 739, 106	\$102, 138, 255	86,613, 330	\$908,250
Adair	$\begin{aligned} & 2,422 \\ & 2,435 \\ & 1,245 \\ & 1,2540 \\ & 3,321 \end{aligned}$	$\begin{aligned} & 2,349 \\ & 2,265 \\ & 1,264 \\ & 1,224 \\ & 3,231 \\ & 3,291 \end{aligned}$	225,257 199,540 1166,658 285,497 285	124,365120,34197,37884,401214,010	$1,214,900$$1,062,270$$1,43,120$$1,636,1270$$2,490,340$	$\begin{array}{r} 454,960 \\ 396,640 \\ 68,640 \\ 476,880 \\ 1,072,080 \end{array}$			$\begin{aligned} & 498,088 \\ & 771,637 \end{aligned}$	$\begin{aligned} & 199,190 \\ & 29,190 \\ & 29,40 \\ & \hline 0,620 \end{aligned}$	10, 580
Andersö											10,080103901,48012,190
Ballard.											
Barren							185,720				
Bath.	2,027	1,9171,3511,5401,54	$\begin{array}{r}151,266 \\ 143,288 \\ \hline\end{array}$		3, ${ }^{\text {324, }} \mathbf{7} \mathbf{7} 970$	${ }_{294} 7960$	104,670	741,418	995, 300	53,760	1,610430
Bell ${ }^{\text {Boone }}$ (...................	1,420			41,074		234, 160	26, 340		325,770		
			149, 191	137, 304	4,416, 450	1,673, 210	${ }^{1877,620}$	838,759	1,110, 368	77, 910	9,260
Boyd	1, 708	1,274	174,383 66,111	155,849 44,741	$\begin{aligned} & 10,481,060 \\ & 627,250 \end{aligned}$	2,154, ${ }_{222,}$	233, 740		1,947, ${ }^{6000}$	242, 13,400	,130
Boyle.	875	$\begin{array}{r}851 \\ \hline 1,661 \\ \hline\end{array}$	108,831	80, 138	3,661, 240	1,039,650	130, 120				
Bracken	1,711		126, 953	112, 255	2, 902 , 320	1,042,090	139, 560	471,936	1,033, 680	34, 600	
Breathitt Breckinri	2,048 2,815 21		261,547 $\left.\begin{array}{l}257,903 \\ 3\end{array}\right)$	$\begin{array}{r}\text { 59, } \\ \\ \text { 231, } 596 \\ \hline 989\end{array}$	- 805,100	1 200,670 858,770	-31, 410	34, 3684	1,483,507	26,620 80 800	
Bullitt.	1,173	1,165	167, 809	95,111	1,647,930	640,600	136, 450	493, 741	1,601,986	48,700	
ter.	$\begin{aligned} & 2,223 \\ & 1,760 \\ & 2,798 \\ & 1,7622 \\ & 1,441 \end{aligned}$	$\begin{aligned} & 2,187 \\ & 1,736 \\ & 2,780 \\ & 1,795 \\ & 1,404 \end{aligned}$		962	952,380	342,340	86,100	549, 439	723,134	21,640	3,22010, 5604,190
110we				140, 299	1,681, 130				752, 813	51, 880	
mphell				73,99478,349	2, ${ }^{2}, 6942,820$	1,283,860	- ${ }_{229,120}^{157}$	b54, 439,151 451	1,013, 224	${ }^{62,750}$	2,810990
Carlisle.			114, 108			$1,283,860$ 4758	161, 880	479, 450	702,607		
Carroll	1,254	1,182	92,890	78,658	1,943, 470	723,870	103,640	384, 105	672,172	${ }^{36,860}$	$\begin{array}{r}\text { 2, } 480 \\ 890 \\ 3,170 \\ \hline 150\end{array}$
arter	$\stackrel{2,738}{ }$	2,668	211, 927	113, 327	1,070,990	458,680	71, 470	505,178	650,	${ }^{26,040}$	
${ }_{\text {Casey }}$ Casey	2,435	2,373			${ }^{1}, 165,1670$	1,922,170	89, 170	477, 997	543	21,410	
Clarla	-1, ${ }_{1}^{1,162}$	-1,296	$\begin{aligned} & 4146,347,397 \\ & 149,97 \end{aligned}$	300,408 124,451	$6,771,240$ $6,199,960$	1,273,030	465,070 150,690	$1,310,126$ $1,170,465$	1,26i1,054	306,160 93	- ${ }^{4} \mathbf{1}, 790$
ay.	2,477	2, 2,353 1,252	244,735	90,838	1,015,		38, 020				$\begin{array}{r} 50 \\ 3,920 \\ 10,500 \\ 74,230 \\ 24,230 \end{array}$
inton.	1,269		114,076	69, 190	24,05		38,780	226,	297,014	14,960	
Critenderia	2,209 $\mathbf{1}, 526$	- ${ }_{\text {2, }}^{1,383}$	220,309 167216	$\begin{array}{r}151,717 \\ 67 \\ \hline 17\end{array}$	1,847, 630	- 6853,560	151,860 46,930		788,025	41,990	
Daviess	3,616	3,464	282, 184	236, 221	6,764,450	1,931,170	382, 360	1,163,700	2, 212, 317	159, 140	
onso	$\begin{aligned} & \mathbf{1}, 631 \\ & 1,697 \\ & 1,665 \\ & 1,664 \\ & 1,246 \\ & 2,627 \end{aligned}$	$\begin{aligned} & 1,303 \\ & 1,636 \\ & 1,626 \\ & 1,210 \end{aligned}$	149,227 150,619 138, 189 178,894	$\begin{array}{r} 78,268 \\ 75,565 \\ 63,534 \\ 139,919 \end{array}$	$\begin{array}{r} 582,860 \\ 564,820 \\ 751,050 \\ 12,032,270 \end{array}$	$\begin{array}{r} 227,430 \\ 200,930 \\ 231,670 \\ 3,163,170 \end{array}$	$\begin{gathered} 50,800,80 \\ 29,820 \\ 43,200 \\ 341,290 \end{gathered}$	$\begin{array}{r} 310,641 \\ 308,962 \\ 336,846 \\ 3,463,010 \end{array}$			$\begin{aligned} & 6,760 \\ & 920 \\ & 1,990 \\ & 7,870 \\ & 7 \end{aligned}$
Estilild											
Fayette											
Fleming		2,410	204, 617	162,634		1,233, 360	178,680	3, 967 , 394	1, 338,149	${ }_{71}$, 780	4,420
Floyd	$\begin{aligned} & 2,490 \\ & 1,668 \\ & 1,001 \\ & 1,797 \\ & 1,306 \end{aligned}$	$\begin{array}{r} 2,345 \\ \mathbf{r}, 619 \\ \hline 925 \\ \hline 931 \end{array}$	$\begin{aligned} & 24,729,725 \\ & 129,042 \\ & 87,086 \\ & 63,062 \\ & \hline \end{aligned}$		$\begin{array}{r} 993,360 \\ 2,802,160 \\ 2,164,50 \\ { }^{2}, 1,274,900 \\ 2,836,950 \end{array}$	266,530993,500461,010423,0100826,880820	$\begin{gathered} 39,260 \\ 141,130 \\ 115,270 \\ 57,270 \\ 115,830 \end{gathered}$	441,810662,227393,901265,169754,699	606,705 698, 996 444,642900,769	$\begin{aligned} & 18,290 \\ & 60,150 \\ & 57,730 \\ & 15,780 \\ & 49,060 \end{aligned}$	
Frankli											
Fullo											
Garrard		1,278	129,460								
Grant.	$\begin{aligned} & 2,056 \\ & 4,526 \\ & 4,526 \\ & 3,125 \\ & 2,172 \\ & 1,897 \end{aligned}$	$\begin{aligned} & 1,972 \\ & 4,431 \\ & 3,036 \\ & 2,078 \\ & 1,867 \end{aligned}$	$\begin{aligned} & 154,892 \\ & 329,564 \\ & 291,623 \\ & \hline 145,957 \\ & 162,747 \end{aligned}$	$\begin{aligned} & 139,986 \\ & 241,066 \\ & 175,702 \\ & 124,122 \\ & 76,412 \end{aligned}$			$\begin{aligned} & 140,680 \\ & 313,570 \\ & 134,920 \\ & 90,1100 \end{aligned}$	$\begin{array}{r} 660,366 \\ 1,137,068 \\ 717,620 \\ 47,962 \\ 389,115 \end{array}$		$\begin{aligned} & 66,670 \\ & 70,870 \\ & 706 \\ & 7,080 \\ & 17,170 \\ & 21,950 \end{aligned}$	
Graves											3,580
Grayso											${ }^{33,300}$
Greenup											10,480 2,510
Hancoc	$\begin{aligned} & 1,332 \\ & 3,155 \\ & 1,674 \\ & 2,456 \\ & 2,861 \end{aligned}$	$\begin{aligned} & 1,222 \\ & 3,071 \\ & 1,608 \\ & 2,365 \end{aligned}$	$\begin{aligned} & 107,081 \\ & 362,814 \\ & 179,485 \\ & 1014140 \end{aligned}$$\begin{aligned} & 194,480 \\ & 940 \end{aligned}$		921,850 $3,769,690$ 835,000 4, 591,660		$\begin{array}{r} 74,670 \\ 286,760 \\ 34,400 \\ 193,910 \\ 136,190 \end{array}$		$\begin{array}{r} 471,670 \\ 1,44,73, \\ 1,43,999 \\ 1,472,777 \\ 947,794 \end{array}$	20,81094,0207,51083,02046,030	$\begin{array}{r} 5,790 \\ 60,190 \\ 60,150 \\ 2,1540 \\ 14,930 \end{array}$
${ }_{\text {Hardin }}^{\text {Harlan }}$											
Harrison											
Hart....		2,783	240, 523	167, 729	2, 183,810	-803,660					
Henderson		$\begin{aligned} & 2,684 \\ & 2,069 \\ & 2,376 \\ & 2,37 \\ & 2,723 \\ & 1,766 \end{aligned}$	$\begin{aligned} & 267,717 \\ & 176,727 \\ & 117,634 \\ & 278,453 \\ & \hline 56,422 \end{aligned}$	$\begin{aligned} & 216,726 \\ & 1549,934 \\ & 189,279 \\ & 179,098 \\ & 65,224 \end{aligned}$			285,540 154,980 156,940 197,050 197,190	$\begin{array}{r} 1,005,835 \\ 798,996 \\ 549,1946 \\ 72,460 \\ 318,621 \end{array}$		220,28054,40068,24043,5009,35093	10,300
Henry....											2,560
Hopkins.											
Jackson.											140
Jefferso	2,827	2,774	208,733	167, 246	13,988, 910	4,048,340	568,220	1,232, 891	2,649, 122	393,790	
Jessamin		2,147	98,698 $\mathbf{1 6 6}, 727$	88, 841	3,908,080	1,145, ${ }^{\text {2 }}$, 970	144,630		989, 118	103,550	2,890
Johnson.	-1, ${ }_{1}^{2,252}$	1,364	${ }_{95,248}$	86,867	3,296,050	1,257, 660	$\begin{array}{r}\text { 131,690 } \\ 1945 \\ \hline\end{array}$		- 470,649	10,360	720
Knott	1,392	1,354	184,687	39,007	536, 440	101,860	19,480	218, 891	282, 477	4,260	250
Knox.	2,318	2,248	199, 218	96,026	1,032, 720	301,370	50, 450	439, 249	661,912		1,420
Larue	1,631 230	2,283	${ }_{204,876}^{159,641}$	-92,779	1, ${ }^{12623,330}$	481,500 3988 800	121, 720	463, 367	-653, 320	31, 850	33,610
Lawren	2,959	2,857	247,661	181,013	1,197,510	469,710	73,900	692, 187	783, ${ }^{\text {ba }}$	16,690	5,190
Lee....	1,022	1,001	87,834	30,736	395, 970	106,630	19,520	174,867	271,775	Б,750	130
Leslie.			173, 079	50, 858	433,160	99, 290	21,390				
Letche	1,487	1,437	${ }^{162,881}$	${ }^{49,878}$		159, 250	23, 580	265,241	327,405		310
Lewis.	$\xrightarrow{2,476}$	- $1,2,997$	183, 723	128,019	1, ${ }^{1}, 401206060$		108,680 167,020	489, 826 911,610	758,278 873,782	188,880	${ }_{5}^{5}, 6990$
Livingston	1,556	1,517	183, 118	113, 281	1,352,960	421,250	112,650	544, 960	627, 229	${ }_{36,410}$	3,120
Logan.	3,779	3,619	316,552	221, 350	4,284,170	1,376,790	292, 260	1,003, 197	1,888, 294	122, 120	48,510
Lyon.....	1, 1,569	1,508	133, 579	84,704	1,6383,060		\%3, 63.	- 469,449	404, 342	21,090	1,490
McLean	1, 670	1,501	141,731	98,975	1,725,910	607, 42	136, 030	476,651	771, 048	${ }_{36,190}^{27,360}$	${ }_{5}^{1}, 430$
Madison.	2,741	2,677	267,159	229, 185	6,197,870	1,652,450	168,240	1,719,462	1,498,909	87, 390	3, 080
Magoffin	1,865	1,796	163, 885	67,879 140,635	767,010 26793	${ }_{924}^{183,460}$	27, 430	367,942	375, 245	11,480	1,470
Marshal	2,281	2,218	197, 187	121, 137	1, 333,410	493, 850	136,980	505, 029	813, 717	56,760 19,220	
Martin	942	928		- 23,859	- 3887,980	109,790	8,280	134, 794	173,087	11, 050	560
Mason.	1,572	1,646	142,69		6, 267,280	1,797,380	206,250	932,472	1,532, 838	186, 060	3,380

Table 3.-NUMBER AND ACREAGE OF FARMS, AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES-Continued.

counties.	number of FArms.		agres in farms.		Values of farm property.				Value of products not fed to live stock.	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Land and improvements (except buildings).	Buildings.	$\begin{aligned} & \text { Implements } \\ & \text { and } \\ & \text { machinery. } \end{aligned}$	Live stock.		Labor.	Fertilizers.
Meade.	1,465	1,411	178,458	115, 208	\$1, 642,770	\$580,590					
Menifee	1979	, 959	102, 541	32, 497	475, 290	129,800	$\begin{array}{r}1130,85 \\ 24,850 \\ \hline\end{array}$	\$40, $\mathbf{1 7 9 , 2 7 5}$	$\begin{array}{r}\$ 544,353 \\ 239,155 \\ \hline\end{array}$	836,870 8,110	\$14,360
Mercer ${ }^{\text {Metalfe }}$	1,590	1,559	150,780	133,966	3, 534, 320	1,361, 220	196, 790	924, 864	995, 242	78,920	130
Monroe.	2,236	2,123	196, ${ }^{1931}$	91,992	897,750	366, 310	76, 200	376,938	482,197	17,350	8,000
				93, 262	874,390	331,770	78,620	431, 513	675,975	12,530	8,600
Montgomery	1,222	1,187	131,606	102, 724	4, 511,550	1,060,060	125, 710	906,987			
Morgan ${ }^{\text {Mublenberg }}$	2, 278	2, 162	206,918	96, 347	,941,730	328,190	67, 190	469,952	1, 642,084	75,830	2,690 620
Mublenberg	2,701	2,593	249,938 224,607	189, 501	1,683, 270	559,460	138, 630	593, 292	915,825	26, 220	10,620
Nicholas	1,716 1,634	1,683	224,607 119,277	153,862 106,611	$3,028,690$ $3,220,540$	$1,159,750$ 980,550	177, 930	869,180	890,548	80,850	12,880
				106, 611	3,220,540	980, 550	126, 770	693, 209	919,324	36, 450	330
Ohio...	3,914	3,844	342,349	219,334	2,073, 330	941, 080	201, 920	975,450	1,314,715	46, 870	26, 050
Oldham	811	+ 790	111,604	88,633	2, 304, 160	741, 430	119,780	489, 305	1,646, 907	67, 210	21, 870
Owsley	1,223	2, 171	1106,042	183,292 46,721	4, 4271, 3890	1,285, 290	168, 640	777,817	1,264, 831	65,140	920
Pendleton	2,483	2,367	158, 662	151,818	2, 6445,300	1,094,760	147, 400	627,043	1249,379 $1,031,210$	7,930 44,100	230 3,020
Perry	1,347	1,305	171,791	36,435	489, 830	134,350	20,020	239,005	271, 808	10,580	350
Pike.	3,684	3,600	506,010	100, 914	1,633, 620	446, 140	67,760	596,631	871, 413	22,120	290
Powell	$\begin{array}{r}895 \\ 4,506 \\ \hline\end{array}$	-872	107,089	36, 662	554, 810	147, 420	22,560	191, 682	262,215	4,740	240
Robertson	+979	-887	167,586 59,360	186,989 54,386	2, 128, 93848	663,390 360,070	135,220 51,980	796,585 265,683	921,658 397,573	24,460 6,040	11,380
Rockcastle	1,747	1,723	164,117	74, 611	909, 440	320,100	53,340	318, 887			
Rowan	1,112	1,074	111,335	57, 188	361,110	144, 630	27,360	3190, 118	390 297,929	6,870 8,220	2,730
Russell	1,719	1,656	147, 895	65,026	600,640	229, 420	60, 080	292,327	382, 996	8,540	6, 840
Scott.	1,921	1,845	186, 173	170, 071	6, 677,000	1,813,730	194, 200	1,009, 026	1,622,923	162, 500	3, ${ }^{\text {, }}$, 990
Shelby.	1,997	1,972	234,135	205, 940	7,151,170	2, 236, 040	266, 720	1, 287,102	1,996,915	168, 750	15, 510
Simpson	1,608	1,656	115,580	87, 626	1,933,610	700,590	144,340	467, 227	771,884	33, 460	20,960
Spencer	1,084	1,009	117,087	93, 739	1,672, 180	635, 260	105,090	639, 683	693, 307	61, 410	2,110
Taylor	1,565	1,548	139,879	93, 325	845,470	377, 270	86, 810	319,448	309, 380	19,980	15,300
Trigg	2,088	1,965 1,797	$\begin{array}{r}\text { 217, } \\ \hline 2997\end{array}$	156, 313	2,585, 660	923,580 558,600	166, 750	581, 655	1, 056,515	132,180	23,430
Union.	1, 379	1,286	81,764	62, 885	1,643, 040	532, 250	81, 970	351,584	563, 677	18,770	11,890
Warren	3,145	3,020	198,638 $\mathbf{3 1 0 , 1 6 9}$	175,697 22,919	$6,424,160$ $4,438,580$	1, $1,496,080$	284, 730	983,860 $1,003,761$	1, 655,268	158, 960	3,380
Washington	2,052	1,996	187,731	156, 121	2, 702, 220	1,087, 510	170, 320	1, 863,651	1,017,484	-65,990	17,310
Wayne	2,304	2,193	286,314	121,483	1,055,880	361,740	60, 320	613, 729	-566,435	22, 280	4, ${ }^{1} 880$
Webster	2,715	2,567	196,358	144,647	3, 288,890	833,960	191,820	679,107	1,189,37]	62,190	13,380
Whitley	3,111	3,024	276,7a6	116, 503	1, 398, 100	386, 260	76,560	661, 940	723, 381	18,020	1, 360
Wolfe.	1,390	1,342	146, 880	65, 498	512, 800	225, 490	31, 430	287, 102	341,803	15,760	310
Wuodford	1,053	1,000	118, 690	101, 653	5, 429, 170	1,584, 210	197, 120	632, 462	1,333,649	183, 290	280

The number of farms increased in nearly all counties in the last decade, Bracken and Kenton alone reporting decreases. Nearly three-fourths of the counties report an increase in the total area of farm land since 1890. The decreases are mainly in the eastern half of the state. The smaller area of improved land reported in several of the counties is due to a more intensive cultivation of the soil, and to the use of a more strict construction of the term "improved" by the Twelfth than by any preceding census. The average size of farms is smallest in the northeastern counties, where tobacco and corn occupy a large area, and largest in the counties raising live stock. The average size for the state is 93.7 acres, and in the majority of counties the farms do not vary greatly from this average.
In a number of instances the counties whose farm areas decreased also report a decrease in the value of farms. The average value for the state is $\$ 1,627.86$. Four counties, Campbell, Morgan, Owsley, and Todd, report a decrease in the value of implements and machinery, the majority of the others showing extensive increases. The value of live stock increased in more than two-thirds of the counties.

The expenditure for labor in 1899 averaged $\$ 28.18$
per farm, and varied greatly in the different counties. For fertilizers, the total expenditure was nearly three times as great in 1899 as in 1889. The average per farm in 1899 was $\$ 3.87$. Decreases are reported by two counties only, Bullitt and Robertson.

FARM TENURE.

Table 4 gives a comparative statement of farm tenure in 1880, 1890, and 1900. Tenants are divided into two groups: "Cash tenants," who pay a rental in cash or in a stated amount of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.
In Table 5 the tenure of farms for 1900 is given by race of farmer, and "farms operated by owners" are subdivided into groups, designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more indi-
viduals, one owning the farm or a part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive a fixed salary from the owners for their supervision ana other services.

Table 4.-NUMBER and PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

YEAR.	$\begin{gathered} \text { Total } \\ \text { number } \\ \text { of farms. } \end{gathered}$	NUMBER OF FARMS OPERATED BY-			PER GENT OF FARMS OPERATED BY-		
		Owners. ${ }^{1}$	$\begin{aligned} & \text { Cash } \\ & \text { ten- } \\ & \text { ants. } \end{aligned}$	Share tenants.	$\begin{aligned} & \text { Own- } \\ & \text { ers. } \end{aligned}$	Cash tenants.	Share tenants.
1900	234,667	157,602	16,776	60, 289	67.2	7.1	25.7
1890	179, 264	134,529	14,524	30, 211	75.1	8.1	16.8
1880	166, 453	122,426	16,824	27,203	73.6	10.1	16.3

${ }^{1}$ Including "part owners," "owners and tenants," and "managers."
Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

Race.	Total number of farms.	Owners.	Part owners.	Owners and tensants.	Managers.	Cash tenants.	Share tenants.
The State.... White \qquad Colored ${ }^{1}$ \qquad	234,667	137,557	14,659	3,780	1,606	16,776	60,289
	223,429	133,317	13,679	3,698	1,543	15,987	55,305
	11,238	4,24	1,080	82	63	789	4,984

Part 2.-PER CENT OF Farms of specified tenures.

The State....	100.0	68.6	6.2	1.6	0.7	7.2	25.7
White	100.0	59.7	6.1	1.6	0.7	7.2	24.7
Colored ${ }^{1}$	100.0	37.7	9.6	0.7	0.6	7.0	44.4

Since 1880 the total number of farms has increased 68,214; the number operated by owners, 35,176 ; and by tenants, 33,038 . From 1890 to 1900 the total number of farms increased 55,403 , or 30.9 per cent; that of owners 23,073 , or 17.2 per cent; and that of tenants 32,330 , or 72.3 per cent. The number of share tenants in 1900 is approximately twice that reported for 1890 , but the number of cash tenants shows but a slight increase in the last decade, and is less for 1900 than for 1880.

Of the total number of farms in the state in 1900, 25.7 per cent were operated by share tenants. This percentage is an increase of 8.9 since 1890 , while the percentages for owners and cash tenants show corresponding decreases.

Of the farms in Kentucky, 95.2 per cent are operated by white farmers and 4.8 per cent by colored farmers. Of the white farmers, 67.4 per cent own all or part of the farms they operate and 32.6 per cent operate farms owned by others. For colored farmers, the corresponding percentages are 48.1 and 51.9.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RAOE OF FARMER AND BY TENURE.
Tables 6 and 7 present the principal statistics for farms classitied by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED by Race of farmer and by Tenure, with PerCENTAGES.

RACE OF FARMER,AND TENURE.	Number of farms	NUMBER OF ACRES IN Farms.			valde of farm PROPERTY.	
		Average.	Total.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$	Total.	Per cent.
The State.....	234,667	98.7	21, 979, 422	100.0	\$471, 045,856	100.0
White farmers. Colored farmers ${ }^{1}$...	223,429	96.4	21,531, 566	98.0	460, 091, 384	97.7
	11,238	39.9	447, 856	2.0	10, 954, 472	2.3
Owners...............	137,557	112.1	15, 421, 128	70.2	300, 445, 967	63.8
Part owners .-.....	14, 659	96.5	1, 414, 173	6.4	37, 858,886	8.0
Owners and tenants.	3,780	132.0	499, 023	2.3	10,510, 979	2.2
Managers............	1,606	225.5	362, 219	1.6	12,453,771	2.7
	16,776	79.3	1, 329, 615	6.1	42, 842,071	9.1
Share tenants	60,289	49.0	2, 953, 264	13.4	66, 934, 162	14.2

${ }^{1}$ Comprising 11 Indians and 11,227 negroes.
Table 7.-AVERAGE Values of specified Classes of FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

RACE Of FARMER, AND TENURE.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				$\begin{gathered} \text { Gross in- } \\ \text { come } \\ \text { (products } \\ \text { of } 1899 \\ \text { not fed } \\ \text { to live } \\ \text { stock). } \end{gathered}$	
	Land and improvements (except buildings).	Build- ings.	Implements and machinery.	Live stock.		
The State.	\$1,241	\$387	\$65	\$314	\$435	21.7
White farmers. .	1,270	399	67	323	444	21.5
Colored farmers ${ }^{1}$.	644	153	32	146	270	27.7
Owners.	1,301	451	74	358	458	21.0
Part owners.	1,650	462	87	384	555	21.5
Owners and tenants.	1,649	575	103	454	608	21.9
Managers...	4,797	1,325	174	1,459	1, 048	13.5
Cash tenants.	1,750	411	71	322	492	19.3
Share tenants.	741	180	32	157	310	28.0

${ }^{1}$ Comprising 11 lndians and 11,227 negroes.
White farmers cultivate 98.0 per cent of the farm area and their property represents 97.7 per cent of the total value. For colored farmers the corresponding percentages are 2.0 and 2.3 , respectively.
As shown in Table 6, the average number of acres per farm is largest for the farms of "managers." The average value per acre, and the average value per farm under Table 7, are highest for the same group. The lowest average values per farm are shown for tenant-
operated farms. The relatively high per cent of gross income shown for farms operated by share tenants and for those operated by negroes must not be construed as evidence of superior farm management. This condition is the result of a system of tenure whereby many estates formerly cultivated by hired labor are now divided into small tracts which are leased and reported as tenant farms. The tracts not so leased by the owners, including the main buildings but less productive land, constitute the farms as reported by such owners. The large per cent of gross income shown for colored farmers is due also to the smaller average size of their farms, and to the lower value of their farm property.

FARMS GLASSIELED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

area.	Number of farms	NUMBER OF ACRES IN FARMS.			valde of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	234, 667	93.7	21, 979, 422	100.0	\$471, 045, 856	100.0
Under 3 acres.	1,175	2.2	2,641	$\left.{ }^{1}\right)$	888,446	0.2
3 to 9 acres	14,960	6.3	94, 460	0.4	6, 482, 363	1.4
10 to 19 acres	26,769	13.7	$\begin{array}{r}367,939 \\ \hline 1658 \\ \hline\end{array}$	1.7	15,204, 769	13.2
20 to 49 acres	51,850 60,435	32.0 68.9	1, $4,161,328$	18.9	83, 377,574	17.7
100 to 174 acres	48,564	125.8	6,107,837	27.8	114, 537, 839	24.3
175 to 259 acres	17,480	207.6	3,629,315	16.5	74,630,621	15.9
260 to 499 acres	10,406	332.3	3,458,131	15.7	76,803, 655	${ }^{16.3}$
500 to 999 acres	2,470	612.9	1, 513, 808	6.9 4.5	$33,602,346$ $13,326,884$	7.1
1,000 acres and over..	558	1,766.5	985,680	4.5	13, 326, 884	2.8

Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

Area.	average yalues per farm of-					Per cent of gross income on total investmentin farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land andim-prove(except buildings).	Buildings.	Tmpleand machinery.	Live stack.		
The State.	\$1, 241	\$387	\$65	\$314	\$435	21.7
Under 3 acres.	305	337	25	89	266	35.2
3 to 9 acres....	201	148	16	68	127	29.3
10 to 19 acres..	309	139	20	100	185	32.6 26.8
20 to 49 acres.	623	194 280	55	155	269	25.8
50 to 99 acres.	+ 811	489	${ }_{86}$	378	525	22.3
100 to 174 acres	1,405 2,700	798	132	639	815	19.1
175 to 259 acres	4,700	1,276	194	1,082	1,238	16.8
260 to 499 acres 500 to 999 acres	${ }_{9}^{4,233}$	2,031	279	2,061	2,082	15.3
1,000 acres and	17,308	2,857	325	3,393	3,027	12.7

Of the total number of farms, the group containing farms of 50 to 99 acres each comprises 25.8 per cent. The sixth group, or that of medium-sized farms, containing from 100 to 174 acres each, represents approximately one-fourth of both the total farm acreage and the total value of farm property.

For the two groups of farms containing less than 10 acres each, the average values given in table 9 are relatively high, as these groups contain most of the florists' establishments and a number of city dairies. The income from these industries is determined not so much by the acreage of land used as by the amount of capital invested in buildings and implements, and by the amounts expended for labor and fertilizers.

The average gross incomes per acre for the various groups classified by area are as follows: Farms under 3 acres, $\$ 118.46 ; 3$ to 9 acres, $\$ 20.09 ; 10$ to 19 acres, $\$ 13.45 ; 20$ to 49 acres, $\$ 8.42 ; 50$ to 99 acres, $\$ 5.17 ; 100$ to 174 acres, $\$ 4.18 ; 175$ to 259 acres, $\$ 3.93 ; 260$ to 499 acres, $\$ 3.71 ; 500$ to 999 acres, $\$ 3.40 ; 1,000$ acres and over, \$1.71.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables are the leading crop, constituting 40 per cent of the value of such products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40 per cent of their income from any one class of products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCE OF INCOME.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NUMBER OF ACRES IN Farms.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	234,667	93.7	21, 979, 422	100.0	\$471,045, 856	100.0
Hay and grain.	53,397	94.7	5, 056,310	23.0	115, 255, 486	24.5
Vegetables .-..........	4,319	39.9	172, 186	0.8	10, 497, 678	2.2
Fruits ...-..............	1,918	84.7	162, 534	0.7	$3,630,907$	0.8
Live stock..............	78,547	108.0	8,481, 529	38.6	174, 147, 432	37.0
Dairy produce.........	2,443	87.4	213, 402	1.0	10, 726, 118	2.3
Tobacco ...-..........-	35,406	72.9	2,581,938	11.7	78, 911,706	16.7
Cotton.	162	107.8	17,465	6. 1	469,726	0.1
Sugar...................	72	65.0	4,679	(1)	100,626	(1)
Flowers and plants...	77	4.8	366	${ }^{1}$	537,731	0.1
Nursery products.....	26	120.3	3,128	(1)	207,427	(1)
Miscellaneous	58,300	90.7	5,285,885	24.1	76,561, 019	16.3

${ }^{1}$ Less than one-tenth of 1 per cent.

Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE of INCOME.	average valdes per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and im-provements buildings).	Buildings.	Imple- and ma- cbinery.	Live stock.		
The State.	\$1,241	\$387	$\$ 65$	\$314	\$435	21.7
Hay and grain	1,442	385	69	262	415	19.2
Vegetables	1,686	613	77	155	384	15.8
Fruits	1,141	461 430	82	209	480	25.3 20.0
Dairy produce.	2,760	953	129	549	829	18.9
Tobacco......	1,446	430	70	283	594	26.7
Cotton..	1,961	487	105	347	784	27.0
Sugar.	908	275	56	159	268	19.2
Flowers and plants.	3,410	3,314	214	46	2,825	40.5
Nursery products....	5,810	1,759	270	139	4,288	53.8
Miscellaneous	782	266	48	217	327	24.9

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms deriving their principal income from flowers and plants, $\$ 594.37$; nursery products, $\$ 35.65$; vegetables, $\$ 9.63$; dairy produce, $\$ 9.49$; tobacco, $\$ 8.15$; cotton, $\$ 7.27$; fruits, $\$ 5.66$; hay and grain, $\$ 4.38$; sugar, $\$ 4.12$; live stock, $\$ 4.10$; and miscellaneous products, \$3.61.

The wide variations shown in the averages and in the percentages of gross income are largely due to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than in the case of "hay and grain," "live-stock," or "miscellaneous" farms. Were it possible to present the average net income, the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

VALUE OF PRODUCTSNOT FED TO LIVE stock.	Numaber of farms	NUMBER OF ACRES IN FARMS.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	234, 667	93.7	21,979,422	100.0	\$471,045, 856	100.0
	1,788	40.2	71,886	0.3	1,481,710	0.3
\$1 to \$49.	9,909	28.3	280,861	1.3	3,401,340	0.7
\$ 50 to \$99	22, 003	38.6	849, 009	3.9	9,668,410	2.1
\$100 to \$249	76, 471	61.5	4, 699, 249	21.4	54,885,090	11.6
\$250 to \$499.	66,561	92.8	6,174, 858	28.1	93, 377, 326	19.8
\$500 to \$999.	37,980	132.9	Б, 046,857	22.9	11.2, 446, 720	23.9
\$1,000 to \$2,499	16,545	209.4	3, 464, 374	15.8	120,623, 610	25.6
\$2,500 and over	3,410	408.3	1, 392, 328	6.3	75, 161, 650	16.0

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

value of products NOT fed to live stock.	average valubs per farm of-					Per cent of gross income on total investment in farm property
	Farm property, June 1, 1900.				Gross in-come(prod-ucts of1899 notfed tolivestock).	
	Land and improvements (except buildings).	Buildings.	Imple- and ma- chinery.	Live stock.		
The State.	\$1,241	\$387	\$65	\$314	\$435	21.7
$\$ 0$. $\$ 1$ to $\$ 49$ $\$ 50$ to $\$ 99$ $\$ 100$ to $\$ 249$ $\$ 250$ to $\$ 499$ $\$ 500$ to $\$ 999$ $\$ 1,000$ to $\$ 2,499$ \$2,500 and over .	624210	102	18	85		
		70	10	53	28	8.2
	251	92	18	83	70	16.1
		147	25	146	166	23.2
	793	286	54	270	348	24.8
	1,802	604	109	446	680	22.1
	$\begin{array}{r} 1,006 \\ 4,791 \\ 15,052 \end{array}$	1,368	218	-914	1,444	19.8
		3,543	491	2,956	4,305	19.5

The absence of income in the first group is due in part to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. Frequently the persons in charge of such farms on June 1, 1900, could not give definite information concerning the products of the preceding year. The same statement is true, also, of some of the farms with reported incomes of less than $\$ 100$. To this extent the reports fall short of giving a complete exhibit of farm income in 1899. Other farms with small
reported incomes are doubtless the suburban or summer homes of city merchants and professional men, who derive their principal incomes from other than agricultural pursuits.

LIVE STOCK.

At the request of the various live-stock associations of the country a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in previous census reports.

Table 14 presents a summary of live-stock statistics.
Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old ${ }_{2}$ and young. ${ }^{2}$.nding guinea fowls.

The value of live stock on farms, June 1, 1900, was $\$ 73,739,106$. Of this amount 33.3 per cent represents
the value of horses; 19.6 per cent, that of neat cattie other than dairy cows; 15.0 per cent, that of mules; 14.3 per cent, that of dairy cows; 7.0 per cent, that of swine; 5.7 per cent, that of sheep; 3.7 per cent, that of poultry; and 1.4 per cent, that of all other live stock.
The average prices of all young horses are high, and prices of horses 1 and under 2 years old are higher than of horses over 2 years old. This is due to the fact that Kentucky contains many extensive stock farms devoted exclusively to the breeding and training of fine horses.

No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, the value of live stock not on farms, exclusive of poultry and bees, June 1, 1900, was $\$ 4,095,901$, and the total value of live stock in the state was approximately $\$ 77,835,007$.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the changes since 1850 in the number of the most important domestic animals.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

year.	Dairy cows.	Otber neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	364,025	719,223	451,697	195,924	716, 158	1,954,537
1890.	364,516	701,575	401, 356	151,649	937, 124	2,036,746
1880.	301, 882	541, 912	372,648	116, 153	1,000, 269	2,225,225
1870.	247, 615	452,712	317,034	99,230	936,765	1,838,227
1860.	269,215	566, 844	355, 704	117,634	938,990	2,330,695
1850.	247,475	505,037	315, 682	65, 609	1, 102,091	2, 891, 163

Many fluctuations in the numbers of the different classes of live stock are shown, but, with the exception of the decade including the Civil War period, the numbers of all neat cattle, horses, and mules show quite regular increases throughout the half century. Since 1880 the numbers of sheep and swine have decreased.
For the decade following 1890 the number of dairy. cows shows a decrease of 0.1 per cent, probably due to the close restriction of the term "dairy cows" by the census of 1900 to "cows kept for milk" exclusively, while many cows which were milked at some time in the year, but were dry at the time of enumeration, were classed with "cows and heifers not kept for milk," and consequently with "other neat cattle." The numbers of sheep and swine show decreases in the last decade of
23.6 per cent and 4.0 per cent, respectively. The following increases in numbers were shown for the same period: Mules and asses, 29.2 per cent; horses, 12.5 per cent; and neat cattle other than dairy cows, 2.5 per cent.

In 1900 the enumerators were instructed to report no fowls under three months old, which limitation was not made in previous census reports. This fact partially accounts for the decrease in numbers of all classes of domestic fowls in the decade 1890 to 1900. The decreases in numbers of fowls for that period are as follows: Turkeys, 58.4 per cent; ducks, 50.0 per cent; chickens, 46.2 per cent; and geese, 44.0 per cent.

ANIMAL PRODUCTS.

Table 16 is a summarized exhibit of the animal products of 1899 .

Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS, IN 1899.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds.	3,617,497	\$737,632
Mohair and goat hair	Pounds..	524	163
Milk ..	Gallons.	$1159,311,527$	
Butter.	Pounds	30,446, 381	29,985,540
Cheese	Pounds	45,759	
Eggs	Dozens.	35, 337, 340	3,460,607
Poultry			4,970,063
Honey	Pounds.	2,681,720	291, 179
Wax Animals sold	Pounds .	53, 120	16,660,676
Animals slaughtered			8,198,080
Total.			44, 303, 940

${ }^{1}$ lncludes all milk produced, whether sold, consumed, or made into butter
or cheese. made.

The value of the animal products of the state for 1899 was $\$ 44,303,940$, or about 60 per cent as great as the value of all live stock on farms, June 1, 1900. Of this amount, 56.1 per cent represents the value of animals sold and animals slaughtered; 22.5 per cent, that of dairy products; 19.0 per cent, that of poultry and eggs; 1.7 per cent, that of wool; and 0.7 per cent, that of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms in 1899 was $\$ 24,858,756$, or 20.2 per cent of the total value of farm products. Of all farmers in the state reporting live stock, 183,341 , or 81.9 per cent, report animals slaughtered, the average value per farm being $\$ 44.71$. Sales were reported by $122,78 \pm$ farmers, or 54.9 per cent of all reporting live stock. The average receipts per farm were $\$ 135.69$. Fayette, Bourbon, and Shelby counties each reported more than $\$ 500,000$ re-
ceived from the sale of live animals, the average receipts per farm for Fayette county being $\$ 1,169.11$. In obtaining these reports the enumerators were instructed to secure from each farm operator a statement of the amount received from sales in 1899 , less the amount paid for animals purchased during the same year.

DAIRY PRODUCE.

In 1899, 2,443 farms, or 1.0 per cent of all in the state, received their principal income from the sale of dairy produce. There was an increase of $40,814,238$ gallons, or 34.4 per cent, in the production of milk, an increase of 4.8 per cent in amount of butter made on farms, and a decrease of 29.4 per cent in amount of cheese made on farms in the decade 1890 to 1900 .

Of the $\$ 9,985,540$ given in Table 16 as the value of dairy products, $\$ 7,691,040$, or 77.0 per cent, represents the value of dairy products consumed on farms, and $\$ 2,294,500$, or 23.0 per cent, the receipts from sales. Of the latter amount, $\$ 1,291,641$ was received from the sale of $8,923,259$ gallons of milk; $\$ 953,370$, from $5,873,883$ pounds of butter; $\$ 45,766$, from 95,671 gallons of cream; and $\$ 3,723$, from 37,245 pounds of cheese.
poultry, egga, wool, and honey and wax.
Of the $\$ 8,430,670$ given as the value of poultry anc. eggs, 59.0 per cent represents the value of poultry raised, and 41.0 per cent that of eggs produced. The production of eggs in 1899 was $10,645,903$ dozens greater than in 1889 , a gain of 43.1 per cent.

Compared with the production of wool for 1889 , that of 1899 shows an increase of 839,964 pounds, or 30.2 per cent. This increase is more apparent than real, owing to the fact that the fleeces of at least 273,757 sheep were omitted from the tables in 1890 , but included in a general estimate of wool shorn after the census enumeration. Bourbon, Boone, Clarke, Scott, Mercer, and Harrison counties lead in the production of wool, ranking in the order named and each reporting more than 100,000 pounds as the product of 1899.

The production of apiarian products in 1899 compared with that in 1889 shows an increase of 16.1 per cent in amount of honey, and 42.7 per cent in amount of wax. The counties leading were Pendleton, Pike, Pulaski, and Madison.

HORSES AND COWS ON SPECIFIED CLASSES OF FARMS.
Table 17 presents for the leading groups of farms the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE $1,1900$.

CLasses.	Horses.			DAIRY COWs.		
	Farms reporting.	Number.	Ayerage per farm.	Farms reporting.	Number.	Average per farm
White farmers ...	181, 179	451,697	2.5	189,905	364,025	1.9
Owners 1	128,808	339,922				
Managers	1,199	63, 314	2.6 5.1	136,457 1,235	278, 415	${ }_{3.3}^{2.0}$
	12,617	31,351	2.5	12,546	25, 917	
Sbare tenants.	38, 655	74, 310	1.9	39,667	55, 357	1.4
Under 20 acres.	23,037	34,380	1.5	24,307	30,722	1.3
20 to 99 acres...	87, 454	177,661	2.0	91, 388	142,941	1.6
	42, 652	119,097	2.8	44, 871	95, 903	2.1
100 to 174 acres.	15, 875	57, 839	3.6	16, 646	46, 450	2.8
250 acres and over	12, 161	62,720	5.2	12, 793	48,009	3.7
Hay and grain. Vegetable......	36, 384	88, 281	2.4	36,557	65, 067	1.8
	2, 988	5 5,804	1.9	2, 552	4,647	1.8
Fruit.............	1,533	3,200	2.1	1,412	2,733	1.9
Live st	66, 493	186,830	2.8	69,599	146, 660	2.1
	2,066	6,268	3.0	2, 443	18,513	7.6
Dairy	28,326 43,389	73,667 87	2.6 2.0	27,290 49,952	44, 937 81,468	1.6
Miscellaneous ${ }^{\text {a }}$........					81,468	1.6

${ }^{1}$ Including "part owners" and "owners and tenants."
${ }^{2}$ Including florists' establishments and nurseries, and cotton and sugar
CROPS.
The following table presents the statistics of the principal crops of 1899.

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

[^140]Of the total value of crops in 1899, cereals contributed 50.3 per cent; vegetables, including potatoes, sweet potatoes, and onions, 7.8 per cent; hay and forage, 7.7 per cent; forest products, 5.3 per cent; fruits, 3.2 per cent; flowers and plants, 0.3 per cent; and all other products, 25.4 per cent.
The average values per acre of crops were: Flowers and plants, $\$ 1,987.03$; onions, $\$ 139.41$; nursery prodncts, $\$ 137.10$; small fruits, $\$ 71.08$; miscellaneous vegetables, $\$ 51.03$; tobacco, $\$ 48.18$; potatoes, $\$ 33.91$; hay and forage, $\$ 8.93$; orchard fruits, $\$ 8.44$; and cereals, $\$ 7.81$. The crops yielding the greatest returns were grown upon the most highly cultivated land, and required relatively large expenditures for labor and fertilizers.

CEREALS.

The following table is an exhibit of the cereal production since 1849.

Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.
Part 1.-ACREAGE.

year. ${ }^{1}$	Barley.	Buckwheat	Corn.	Oats.	Rye.	Wheat.
1899.	953	84	3,319,257	316,590	17,618	1, 431, 027
1889.	5,776	384	2, 960, 382	645,316	45,546	898,694
1879.	20,089	1,024	3,021, 176	403,416	89,417	1,160, 108

Part 2.-BUSHELS PRODUCED.

$1899 \ldots \ldots \ldots \ldots$	17,772	879	$73,974,220$	$4,009,830$	155,365	$14,264,500$
$1889 \ldots \ldots \ldots \ldots$	165,959	3,804	$78,434,847$	$8,775,814$	423,847	$10,707,462$
$1879 \ldots \ldots \ldots \ldots$	486,326	9,942	$72,852,263$	$4,580,738$	668,050	$11,356,113$
$1869 \ldots \ldots \ldots \ldots$	238,486	3,443	$50,091,006$	$6,620,103$	$1,108,933$	$5,728,704$
$1859 \ldots \ldots \ldots \ldots$	270,685	18,928	$64,048,633$	$4,617,029$	$1,055,260$	$7,394,809$
$1849 \ldots \ldots \ldots \ldots$	95,343	16,097	$58,672,591$	$8,201,311$	415,073	$2,142,822$

${ }^{1}$ No statistics of acreage were secured prior to 1879.
The total area devoted to cereals in 1879 was $4,695,230$ acres; in 1889, 4,556,098 acres; and in 1899, 5,085,529 acres, an increase intwenty years of 8.3 per cent. The increases in area under cereals in the decade from 1889 to 1899 were: Wheat, 59.2 per cent, and corn, 12.1 per cent. The decreases were: Oats, 50.9 per cent; rye, 61.3 per cent; barley, 83.5 per cent; and buckwheat, 78.1 per cent. The total number of bushels produced in 1849 was $69,543,237$, and in $1899,92,422,566$, showing an increase of 32.9 per cent in fifty years.
Of the total area devoted to cereals in 1899, 65.3 per cent was devoted to corn; 28.1 per cent to wheat; 6.2 per cent to oats; 0.4 per cent to rye, barley, and buckwheat.
Corn is raised in all parts of the state. The four counties of Christian, Union, Hardin, and Logan, in the Ohio and Cumberland river valleys, report 13.7 per cent of all the area under wheat, while the largest acreage in oats is reported from the central counties, Barren, Warren, Pulaski, and Grayson, furnish 17.0 per cent of the total area. Barley and buckwheat receive little attention.

HAY AND FORAGE.

In $1900,86,575$ farmers, or 36.9 per cent of the total number, reported hay and forage crops. Exclusive of cornstalks and corn strippings, they obtained an average yield of 0.96 ton per acre. The total area in hay and forage in 1899 was 683,139 acres, or 3.2 per cent greater than ten years before.

The acreages and yields of the various kinds of hay and forage in 1899 were as follows: Wild, salt, and prairie grasses, 6,375 acres and 5,550 tons; millet and Hungarian grasses, 37,653 acres and 37,139 tons; alfalfa, or lucern, 808 acres and 1,056 tons; clover, 158,110 acres and 159,747 tons; other tame and cultivated grasses, 403,211 acres and 370,461 tons; grains cut green for hay, 55,334 acres and 56,911 tons; crops grown for forage, 21,648 acres and 24,202 tons; and cornstalks and corn strippings, 172,809 acres and 121,468 tons.
In Table 18 the production of cornstalks and corn strippings is included under "hay and forage," but the acreage is included under " corn," as the forage secured was only an incidental product of the corn crop.

SORGHUM CANE.

The present census shows that in 1899 sorghum cane was grown by 33,692 farmers on 21,982 acres, an average of 0.65 acre for each farm reporting. From this area they sold 22,601 tons of cane for $\$ 64,984$, and from the remaining product manufactured $1,277,206$ gallons of sirup, valued at $\$ 384,292$. There was a decrease in acreage from 1889 of 41.0 per cent. The total value of sorghum-cane products was $\$ 449,276$, an average of $\$ 13.33$ for each farm reporting, and of $\$ 20.44$ per acre. The average yield of sirup per acre was 58.1 gallons, not including the product of the cane sold, compared with 56.3 gallons in 1889 . The average value per gallon was 30.1 cents.

HEMP.

Hemp was grown in 1899 by 937 farmers on 14,107 acres, from which they produced $10,303,560$ pounds, a decrease since 1889 of 39.9 per cent in acreage and of 52.3 per cent in production. The largest crop ever reported was in 1859, when there was a production of $78,818,000$ pounds. Since that time there has been a great falling off in the crop.
The total value of the crop in 1899 was $\$ 468,454$, an average of $\$ 499.95$ for each farm reporting, and of $\$ 33.21$ per acre. The average yield per acre was 730.4 pounds, compared with 919.9 pounds in 1889.
The crop is confined to 17 counties of the state, the 5 leading counties being Fayette, with 4,297 acres; Jes-
samine, with 2,117 acres; Woodford, with 2,065 acres; Garrard, with 1,412 acres; and Clark, with 1,130 acres. These 5 counties furnished 78.1 per cent of the acreage and 78.1 per cent of the entire production.

COTTON.

The following table is a statement of the changes in cotton production since 1879.

Table 20.-ACREAGE AND PRODUCTION OF COTTON: 1879 TO 1899.

YeAR.	ACREAGE.		PRODUCTION.		
	Total.	$\begin{aligned} & \text { Per cent } \\ & \text { of } \\ & \text { increase. } \end{aligned}$	$\begin{gathered} \text { Commer- } \\ \text { cial } \\ \text { bales. } \end{gathered}$	Pounds.	$\begin{aligned} & \text { Per cent } \\ & \text { of } \\ & \text { increase. } \end{aligned}$
1899.	2,396	18.9	1,369	685, 724	64.7
1889.	2,629	11.4	873	416, 421	132.8
1879.	2,667		1,367	619, 251	

${ }^{1}$ Decrease.
The total area under cotton in Kentucky in 1879, was 2,667 acres, which was the largest area reported for this crop by any census. This land produced 619,251 pounds of cotton. The census of 1890 showed a decrease in the production of cotton of 202,830 pounds, or 32.8 per cent.

In 1899, 190 farmers seeded to cotton an area of 2,396 acres, an average of 12.6 acres per farm reporting. From this land was produced 685,724 pounds of cotton, an average of 3,609 pounds per farm and 286 pounds per acre. The total value of this product, including the value of both lint and seed, was $\$ 58,752$, an average of $\$ 309.22$ per farm and $\$ 24.52$ per acre.

The limited area devoted to cotton in 1899 was divided among 25 counties, of which Fulton county, located in the extreme southwestern corner of the state, reported all but 72 acres, or 97.0 per cent of the total acreage.

TOBACCO.

The present census shows that in 1899 tobacco was grown by 86,534 farmers, who reported 384,805 acres, and a yield of $314,288,050$ pounds. This shows a gain in ten years of 40.1 per cent in acreage and 41.6 per cent in production, and is the largest acreage and production ever reported. The next largest was in 1889, when 274,587 acres yielded $221,880,303$ pounds.

The average yield per acre in 1889 was 808.1 pounds, while in 1899 it was 816.7 pounds. The total value of the crop in the latter year was $\$ 18,541,982$, an average of $\$ 214.27$ for each farm reporting, and of $\$ 48.19$ per acre. The average value per pound was 5.9 cents.

The crop was grown in 119 counties, Christian county leading, with 23,402 acres; Daviess county was next in 'rank, with 21,376 acres.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 may be seen in the following table.

Table 21.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRUITS.	NUMBER OF TREES.		bUSHELS Of fruit.	
	1900	1890	1899	1889
Apples	8, 757, 238	5,730,144	6,053,717	10,679,389
Apricots.	5,417	3, 417		1,621
Peaches.	237,612	131,089	34, 258	43, 393
Pears.	2,322,201	1,116,311	76,940	118,850
Plums and prunes	375, 716	162,825	76,574	56, 914

In 1890 the total number of fruit trees in the state was $7,349,652$; in 1900 there were $12,617,897$ trees, an increase of $5,268,245$, or 71.7 per cent. The increases were as follows: Apple trees, 52.8 per cent; apricot trees, 58.5 per cent; cherry trees, 81.3 per cent; peach trees, 139.2 per cent; pear trees, 177.0 per cent; plum and prune trees, 130.7 per cent. The increases were general throughout the state.
Of all trees reported in 1900, 69.4 per cent were apple trees; 22.9 per cent, peach trees; 3.0 per cent, plum and prune trees; 2.5 per cent, pear trees; 2.2 per cent, cherry, apricot, and unclassified fruit trees. The latter class, which is not included in Table 20, numbered 35,520 , and yielded 9,593 bushels of fruit.

The value of orchard fruits, given in Table 18, includes the value of 20,305 barrels of cider, 8,277 barrels of vinegar, and 1,581,430 pounds of dried and evaporated fruits. The quantity of fruit produced in any given year is largely determined by the nature of the season. Comparisons between the crop of 1889 and that of 1899 have little significance, because in the latter year there was an almost complete failure of peaches and apricots, and a very small yield of other fruits.

The counties bordering on the Ohio River, especially those in the western part of the state, rank highest in numbers and variety of fruit trees. Apples and peaches, however, are extensively cultivated throughout the state. The 5 counties of Meade, Breckinridge, Hardin, Jefferson, and Pulaski, ranking in the order named, reported the largest numbers of apple trees; and Trimble, Bullitt, Hardin, Jefferson, and Campbell counties, all bordering on the Ohio River, reported 37.0 per cent of the total number of peach trees.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 was 6,126 acres, distributed among 12, 254 farms, an average of 0.5 acre per farm. Of the total area 4,128 acres were devoted to strawberries, yielding $6,767,300$
quarts. Campbell and Jefferson counties reported 39.6 per cent of the acreage devoted to this crop. The acreages and productions of the other berries were as follows: Blackberries and dewberries, 1,024 acres and 1,068,340 quarts; raspberries and Logan berries, 755 acres and 787,820 quarts; gooseberries, 99 acres and 114,590 quarts; currants, 15 acres and 19,370 quarts; and other small fruits, 105 acres and 105,140 quarts.

VEGETABLES.

The total area used in the cultivation of vegetables, including potatoes, sweet potatoes, and onions, in 1899, was 134,972 acres. Of this amount 60.7 per cent was devoted to miscellaneous vegetables, 27.5 per cent to potatoes, 10.5 per cent to sweet potatoes, and 1.3 per cent to onions. Potatoes were raised throughout the state, and the 37,160 acres occupied by them yielded $2,661,774$ bushels, an average of 71.6 bushels per acre.
The total area devoted to miscellaneous vegetables was 81,929 acres, of which the products of 64,289 acres were not reported in detail. Of the 17,640 acres concerning which detailed reports were received, 5,307 acres were devoted to watermelons; 3,914 to tomatoes; 3,732 to cabbages; 1,705 to sweet corn; 1,263 to muskmelons; 540 to cucumbers; 381 to beans; 364 to pease; and 434 to other vegetables.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 128 acres, and the value of the products sold therefrom was $\$ 262,288$. These flowers and plants were grown by 187 farmers and florists. Of this number 77 made commercial floriculture their principal business. They had invested in the aggregate $\$ 537,731$, of which $\$ 262,532$ represents the value of land and improvements other than buildings; $\$ 255,155$, that of buildings; $\$ 16,490$, that of implements and machinery; and $\$ 3,554$, that of live stock. The value of their products in 1899 was $\$ 217,914$, of which $\$ 212,944$ rep-esents the value of flowers and plants, and $\$ 4,970$ that of other products. The expenditure for labor was $\$ 44,927$, and for fertilizers, $\$ 2,025$. The average gross value of products per farm was $\$ 2,830$.
In addition to the 77 principal fiorists' establishments, 616 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 714,748 square feet, making, with the 623,512 square feet belonging to the florists' establishments, a total of $1,338,260$ square feet.

NURSERY PRODUCTS.

The total value of nursery products sold in 1899 was $\$ 114,749$, reported by the operators of 65 farms and nurseries. Of this number, 26 derived their principal
income from the nursery business. They had 3,128 acres of land, valued at $\$ 151,050$; buildings, valued at $\$ 45,750$; implements and machinery, valued at $\$ 7,012$; and live stock, valued at $\$ 3,615$. Their total gross income was $\$ 112,684$, of which $\$ 105,449$ was derived from the sale of trees, shrubs, and vines, and $\$ 7,235$ fromother products. The average gross income was $\$ 4,334$ for each farm reporting.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 6,613,330$, an average of $\$ 28$ per farm. The average was highest on the most intensively cultivated farms, being $\$ 667$
for nurseries, $\$ 584$ for florists' establishments, $\$ 81$ for dairy farms, $\$ 76$ for cotton farms, $\$ 42$ for vegetable farms, $\$ 37$ for fruit farms, $\$ 37$ for tobacco farms, $\$ 28$ for live-stock farms, and $\$ 13$ for sugar farms. "Managers" expended, an average of $\$ 171$; "cash tenants," $\$ 38$; "owners," \$30; and "share tenants," \$13. White farmers expended $\$ 29$ per farm, and colored farmers, $\$ 10$.

Fertilizers purchased in 1899 cost $\$ 908,250$, which was nearly three times the amount expended in 1889, and an average of $\$ 4$ per farm. The average was $\$ 26$ for florists' establishments, $\$ 15$ for vegetable farms, $\$ 12$ for nurseries, $\$ 5$ each for cotton, fruit, and hay and grain farms, $\$ 4$ for tobacco farms, $\$ 4$ for live-stock farms, $\$ 3$ for dairy farms, and $\$ 1$ for sugar farms.

Twelfth Census of the United States.

Census Bulletin.

No. 221.
WASHINGTON, D. C.
July 2, 1902.

mandfactures.

B00TS AND SH0ES.

Hon. William R. Merriam, Director of the Census.

SIr: I transmit herewith, for publication in bulletin form, the statistics of the manufacture of boots and shoes, prepared under my direction by Mr. George C. Houghton, of Boston, Mass., acting as an expert special agent of the division of manufactures, of the Census Office.

The statistics are shown in 10 tables. Table 1 is a comparative summary, 1880, 1890, and 1900, with per cent of increase for each decade; Table 2 shows the capital invested in machinery, tools, and implements, value of products, and average investment required for a product valued at $\$ 100$, by states, 1890 and 1900 , with per cent of increase; Table 3 gives the rank of states, geographically arranged, in capital, average number of wage-earners, total wages, and value of products, 1880 , 1890, and 1900; Table t shows materials and products classified by number of establishments, 1900; Table 5 presents the cities and towns having products of over $\$ 1,000,000$ in 1900 , ranked by value of products, 1890 and 1900 ; Table 6 gives average number of wageearners, men, women, and children, by states, 1890 and 1900, and per cent each class is of the total wageearners; Table 7 is a comparative summary, kinds, quantity, and value of product, 1890 and 1900 , with per cent of increase; Table 8 shows the average capital required for a product valued at $\$ 100,1880,1890$, and 1890; Table 9 is a comparative summary, by states, 1890 and 1900; and Table 10 gives the detailed statistics of the manufacture, by states, 1900 .

In drafting the schedules of inquiry for the census of 1900 care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the items of inquiry except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital, that is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on haud, and other sundries, was first called for at the census of 1890 . No definite attempt was made, prior to the census of 1890, to secure a return of live capital invested.

Changes were made in the inquiries relating to employees and wages in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons em. ployed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1900 the greatest and least numbers of employees. were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12 , the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wage-
earners during the entire year may have resulted in a variation in the number, and should be considered in making comparisons.
At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was ascertained, and no salaries were reported for this class. It is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.
Furthermore, the schedules for 1890 included in the wage-earning class, overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wageearning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890.
In some instances, the number of proprietors and firm members shown in the accompanying tables falls short of the number of establishments reported. This is accounted for by the fact that no proprietors or firm members are reported for corporations or cooperative
establishments. The number of salaried officials, clerks, etc., is the greatest number reported employed at any one time during the year.

The reports show a capital of $\$ 101,795,233$ invested in the manufacture of boots and shoes. This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, 'but does not include the capital stock of any of the manufacturing corporations of the state. The value of the products is returned at $\$ 261,028,580$, to produce which involved an outlay of $\$ 7,757,749$ for salaries of officials, clerks, etc.; $\$ 59,175,883$ for wages; $\$ 10,766,402$ for miscellaneous expenses, including rent, taxes, etc.; and $\$ 169,604,054$ for materials used, mill supplies, freight, and fuel. It is not to be assumed, however, that the difference between the aggregate of these sums and the value of the products is in any sense indicative of the profits in the manufacture of the products during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. The value of the product given is the value as obtained or fixed at the shop or factory. This statement is necessary in order to avoid erroneous conclusions from the figures presented.

Very respectfully,

Chief Statistican for Manufactures.

B00TS AND SH0ES.

By George C. Houghton, Expert Special Agent.

Prior to the census of 1880 the factory manufacture of boots and shoes was included with that of boots and shoes, custom work and repairing, and comparative figures, therefore, are not available beyond that period. In presenting the statistics of the industry for the Twelfth Census it seems proper to state that the business for the year covered by this census is said by manufacturers to have been considerably below normal, due to a reaction following the exceptional demand of the previous year and the upward tendency of prices. Table 1 presents the leading statistics of the industry at the censuses of 1880,1890 , and 1900 , with per cent of increase for each decade.

Table 1.-COMPARATIVE SUMMARY, 1880 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	date of censứs.			PER CENT OF increase.	
	1900	1890	1880	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$
Number of establish: ments	1,600	2,082	1,959	123.2	6.3
Capital	\$101, 795, 233	\$95,282,311	\$42,994, 028	6.8	121.6
Salaried officials, clerks, etc., number.	77,843	25,643	$\binom{8}{3}$	39.0	
Salaries.............------	\$7, 757, 749	${ }^{2} 85,707,931$	$\left.{ }^{8}\right)$	35.9	
Wage-earners, average number.	142,922	133,690	111,152	6.9	20.3
Total wages.................	\$59, 175, 883	\$60, 667, 145	\$43, 001,438	12.5	41.1
Men, 16 yearsand over	-91,215	91,406	82,547	${ }^{1} 0.2$	10.7
Wages Women, 16 years and	\$43, 301, 430	\$46, 905, 974	$\left.{ }^{3}\right)$	17.7	
over	47, 186	39,849	25,122	18.4	58.6
Wages	815, 068, 726	813, 393,611	$\left.{ }^{3}\right)$	12.5	
Children, under 16 years	4,521	2,435	3,483	85.7	130.1
Wages	8805,727	\$8367,560	${ }^{3}$)	119.2	
Miscellaneous expenses . .	810,766,402	89,217,519	${ }^{(4)}$	16.8	
Cost of materials used....	$\$ 169,604,054$	\$118,785, 831	\$102, 442,442	42.8	16.0
Value of products.........	\$261, 028,580	\$220, 649,358	\$166, 050,354	18.3	32.9

${ }_{1}$ Decrease.
${ }^{1}$ Decrease. reported in 1900 , but not included in this table. (See Table 11.)

8 Not reported separately.
4 Not reported.
Table 1 shows that from 1890 to 1900 there was a decrease in the number of establishments of 482 , or 23.2 per cent. This is accounted for in a measure by the fact that there were included in the reports of the Eleventh Census, to what extent it is impracticable to ascertain, a large number of establishments doing contract work. This has been a peculiar feature of the
shoe manufacturing business in certain sections of New England ever since the industry assumed the proportions of the factory system. Especially has this been the case in Haverhill and Lynn, Mass., though the returns of the Twelfth Census show that the number of such establishments is growing notably less.

The work of these contract shops consists largely in stitching or fitting, working the buttonholes, or heeling the shoes for manufacturers, who are thereby relieved of the expense of fitting up one or more departments; and in rush times these shops are also taken advantage of by those manufacturers who ordinarily do the work in their own establishments. In 1890 there were reported in the city of Haverhill, Mass., 74 shops doing contract work, against 49 in 1900; Lynn, Mass., had 64 in 1890 , compared with 16 in 1900; and a similar ratio, it is reasonable to assume, followed in other places where such shops were located. At the Twelfth Census there was reported a total of only 78 contract shops-73 of them located in Massachusetts, 4 in New Hampshire, and 1 in New Jersey. These 78 establishments are included in the present total of 1,600 establishments; and after deducting the same from the 1,600 , as shown in Table 1, there remains 1,522 legitimate shoe-manufacturing establishments in the year 1900. Undoubtedly there was a larger number of boot and shoe factories in 1890 than in 1900. Many of the smaller establishments which existed in 1890 have discontinued operations, the tendency being to consolidate the business into larger establishments.
The apparently abnormal increase of capital from 1880 to 1890 is due in part to the fact that a return of live capital was first called for at the census of 1890 .

From 1890 to 1900 the average number of wageearuers increased from 133,690 to 142,922 , a gain of 9,232 , or 6.9 per cent; the total wages paid decreased from $\$ 60,667,145$ to $\$ 59,175,883$, a loss of $\$ 1,491,262$, or 2.5 per cent; and the value of products increased from $\$ 220,649,358$ to $\$ 261,028,580$, a gain of $\$ 40,379,222$, or 18.3 per cent. The improvements in machinery have so increased the capacity of shoe factories that fewer hands are necessary in turning out a given amount of work. To a considerable extent women have taken the place
of men in operating the lighter machines, while children now perform work that women were doing heretofore. As a larger portion of the work is done by these cheaper classes of workers, a reduction in the total wages paid necessarily follows. The reduction of total wages is also due to the fact that many boot and shoe manufacturers have found it more advantageous to purchase from cut-stock dealers outer soles, inner soles, taps, heels, etc., already prepared, and where formerly a considerable number of wage-earners were employed in the sole-leather department of individual establishments, in many cases but a fraction of that number are now employed. These employees were not only lost entirely to the industry, but reduced the number in a class that received above the average wages.

Statistics relating to the cost of materials used and the value of the products make it evident, notwithstanding the increased use of machinery and improvement in methods, that it is costing more to manufacture shoes now than it did ten years ago. There was an increase of 42.8 per cent in the cost of materials during the decade, while the value of the finished product shows an increase of but 18.3 per cent.
Table 2 shows the capital invested in machinery, tools, and implements, the total value of products, the value of machinery, tools, and implements required for a product of $\$ 100$, by states, 1890 and 1900 , with the per cent of increase for the decade.
Since the invention of the rolling machine-the first practical mechanical substitute for hand labor-there has been constant progress in the perfection of shoe machinery. The shoe factory of to-day provides a perfect system of continuous manufacture, involving, in some instances, more than 100 operations. The continued improvement of the various machines, together with the keen competition in the busincss, has made necessary the adoption, as soon as perfected, of the latest devices.

This will be seen in the increase for 1900, over the previous census year, in the value of machinery, tools, and implements required for a product valued at $\$ 100$, as shown in Table 2. The total increase for this item is $\$ 3,083,941$, or 22.2 per cent for the industry. In 1900 the average amount invested in machinery, tools, and implements for a product valued at $\$ 100$ was $\$ 6.50$, compared with $\$ 6.29$ in 1890 , an increase of 3.3 per cent. This item varies greatly in the several states, being reported as high as $\$ 18.57$ in California, and as low as $\$ 2.57$ in Rhode Island. Massachusetts shows the largest investment in machinery, $\$ 5,750,238$. The increase was but $\$ 94,200$, or 1.7 per cent, while the amount invested in machinery required for a product valued at $\$ 100$ shows an increase of 1 per cent. The largest percentage increase in machinery during the decade is credited to Georgia. The amount of money involved, though but $\$ 23,400$, indicates an increase of more than 500 per cent over 1890. The average amount of investment in machinery for a $\$ 100$ product in Georgia was $\$ 6.76$, or within 35 cents of the average for the United States. Indiana also shows a large increase in machinery, the percentage being 307.5. The other states having more than doubled the value of their machinery are Vermont, showing an increase of 156.9 per cent; Minnesota, 143.5 per cent; Missouri, 108.4 per cent; and Ohio, 113.9 per cent.

While the manufacture of boots and shoes in other sections of the United States has made marked progress, New England still maintains the lead in the industry, the output for that section in 1900 representing 59.5 per cent of the total for the United States. The output of the factories of Massachusetts for 1900 was $\$ 117,115,243$, or 44.9 per cent of the total for the entire country, compared with 52.7 per cent in 1890 , a decrease of 7.8 per cent, although showing a smali increase over the value of t'e products of the state for the decade.

Table 2.-Capital invested in Machinery, Tools, and implements, value of products, and average AMOUNT OF INVESTMENT REQUIRED FOR A PRODUCT VALUED AT $\$ 100$: BY STATES, 1890 AND 1900, WITH PER CENT OF INCREASE.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ETATES.} \& \multirow[b]{2}{*}{Year.} \& \multirow[b]{2}{*}{Machinery, tools, and implements.} \& \multirow[b]{2}{*}{Value of products.} \& \multirow[b]{2}{*}{Average amount of investment in machinery, tools, and implements required for a product ${ }_{\text {at }} \$ 100$.} \& \multicolumn{3}{|c|}{per cent of increase.}

\hline \& \& \& \& \& Machinery, tools, and implements. \& Valne of products. \& Average amount of investment in machinery, tools, and implements required for a product valued at $\$ 100$.

\hline United States .. \& $$
\begin{aligned}
& 1900 \\
& 1890
\end{aligned}
$$ \& $$
\begin{array}{r}
\$ 16,957,305 \\
13,873,364
\end{array}
$$ \& $$
\begin{array}{r}
\$ 261,028,580 \\
220,649,358
\end{array}
$$ \& $$
\begin{array}{r}
86.50 \\
6.29
\end{array}
$$ \& 22.2 \& 18.3 \& 3.3

\hline California.......................................-................ \& 1900
1890 \& 343,633
324,252 \& 3,850,511 \& $$
\begin{array}{r}
18.57 \\
9.55
\end{array}
$$ \& 6.0 \& ${ }^{145.5}$ \& 94.5

\hline Connecticut.. \& $$
\begin{aligned}
& 1900 \\
& 1890
\end{aligned}
$$ \& $$
\begin{aligned}
& 117,172 \\
& 148,981
\end{aligned}
$$ \& 1, 617,364 \& 7.72
9.70 \& 121.4 \& ${ }^{1} 1.2$ \& 120.4

\hline Georgia.. \& 1900
1890 \& 23,400
3,900 \& $$
\begin{array}{r}
346,259 \\
18,542
\end{array}
$$ \& $$
\begin{array}{r}
6.76 \\
21.03
\end{array}
$$ \& 500.0 \& 1,767.4 \& 167.9

\hline Illinois.. \& 1900
1890 \& 931,083
635,816 \& $$
\begin{array}{r}
11,434,842 \\
8,756,824
\end{array}
$$ \& $$
\begin{aligned}
& 8.14 \\
& 7.26
\end{aligned}
$$ \& - 46.4 \& 30.6 \& 12.1

\hline Indiana.. \& $$
\begin{aligned}
& 1900 \\
& 1890
\end{aligned}
$$ \& 97,157
23,845 \& $$
\begin{aligned}
& 864,090 \\
& 179,936
\end{aligned}
$$ \& 11.24
13.25 \& 307.5 \& 380.2 \& 115.2

\hline Iowa....... \& 1900
1890 \& $$
\begin{aligned}
& 86,471 \\
& 71,000
\end{aligned}
$$ \& $$
\begin{aligned}
& 786,141 \\
& 574,378
\end{aligned}
$$ \& 11.00
12.36 \& 21.8 \& 36.9 \& 111.0

\hline Kentucky...........................-............................... \& 1900
1890 \& 44,456
70,000 \& 630,358
526,387 \& 7.05
13.30 \& ${ }^{136.5}$ \& 19.8 \& 147.0

\hline Louisiana... \& 1900
1890 \& 72,933
61,125 \& 660,987
968,017 \& 11.03
6.31 \& 19.3 \& 131.7 \& 74.8

\hline Maine......... \& 1900
1890 \& 663,326
591,304 \& $12,295,847$
$10,335,342$ \& 6.39
8.72 \& 12.2 \& 19.0 \& 16.8

\hline Maryland.. \& 1900 \& 167,326
178,433 \& $$
\begin{aligned}
& 1,129,163 \\
& 1,533,761
\end{aligned}
$$ \& $$
\begin{aligned}
& 14.82 \\
& 11.63
\end{aligned}
$$ \& ${ }^{1} 6.2$ \& 126.4 \& 27.4

\hline Massachusetts \& 1900
1890 \& 5, 750, 238
$5,656,038$ \& $$
\begin{aligned}
& 117,115,243 \\
& 116,387,900
\end{aligned}
$$ \& 4.91
4.86 \& 1.7 \& 0.6 \& 1.0

\hline Michigan .-.. \& 1900
1890 \& 150,800
146,997 \& $1,915,179$
$2,065,531$ \& 7.87
7.12 \& 2.6 \& 17.3 \& 10.5

\hline Minnesota ... \& 1900
1890 \& $$
\begin{aligned}
& 337,236 \\
& 138,512
\end{aligned}
$$ \& $3,615,801$
$2,032,814$ \& 9.33
6.81 \& 143.5 \& 77.9 \& 37.0

\hline Missouri \& $$
\begin{aligned}
& 1900 \\
& 1890
\end{aligned}
$$ \& $$
\begin{aligned}
& 804,568 \\
& 385,982
\end{aligned}
$$ \& $11,253,202$
$4,841,004$ \& 7.15
7.97 \& 108.4 \& 132.5 \& ${ }^{1} 10.3$

\hline Nebraska .. \& 1900

2 1890 \& 8,700 \& 73,210 \& 11.88 \& \& ... \&

\hline New Hampshire. \& 1900

1890 \& $$
\begin{array}{r}
1,063,569 \\
672,537
\end{array}
$$ \& \[

$$
\begin{aligned}
& 23,405,558 \\
& 11,986,003
\end{aligned}
$$
\] \& 4.54

5.61 \& 58.1 \& 95.3 \& ${ }^{1} 19.1$

\hline New Jersey ... \& 1900

1890 \& $$
\begin{aligned}
& 736,375 \\
& 532,757
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
6,978,043 \\
7,255,409
\end{array}
$$
\] \& 10.55

7.34 \& 38.2 \& 13.8 \& 43.7

\hline New York \& 1900
1890 \& $2,362,396$

$2,026,690$ \& \[
$$
\begin{aligned}
& 25,585,631 \\
& 23,661,204
\end{aligned}
$$

\] \& | 9.29 |
| :--- |
| 8.97 | \& 16.6 \& 8.1 \& 7.7

\hline North Carolina. \& 1900
1890 \& 7,450

11,500 \& $$
\begin{array}{r}
73,493 \\
155,900
\end{array}
$$ \& 10.14

7.38 \& 135.2 \& ${ }^{1} 52.9$ \& 37.4

\hline Ohio \& 1900
1890 \& 1, 180, 322 \& $17,920,854$

$8,489,728$ \& $$
\begin{aligned}
& 6.59 \\
& 6.50
\end{aligned}
$$ \& 113.9 \& 111.1 \& 1.4

\hline Pennsylvania \& 1900
1890 \& $1,309,513$

$1,129,464$ \& $$
\begin{aligned}
& 13,235,933 \\
& 10,354,850
\end{aligned}
$$ \& 9.89

10.91 \& 15.9 \& 27.8 \& 19.3

\hline Rhode Island \& 1900
1890 \& 6,200

6,700 \& $$
\begin{aligned}
& 241,278 \\
& 158,800
\end{aligned}
$$ \& 2.57

4.22 \& 17.5 \& 51.9 \& ${ }^{1} 39.1$

\hline Utah. \& 1900
21890 \& 21,743 \& 225,986 \& 9.62 \& \& \&

\hline Vermont................. \& $$
\begin{aligned}
& 1900 \\
& 1890
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 77,596 \\
& 30,209
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
792,707 \\
529,486
\end{array}
$$

\] \& | 9.79 |
| :---: |
| 5.71 | \& 156.9 \& 49.7 \& 71.5

\hline Virginia.. \& $$
\begin{aligned}
& 1900 \\
& 1890
\end{aligned}
$$ \& 47,

79,238 \& \[
$$
\begin{aligned}
& 1,452,480 \\
& 1,279,069
\end{aligned}
$$

\] \& | 3.24 |
| :--- |
| 6.19 | \& ${ }^{1} 40.6$ \& 13.6 \& 247.7

\hline Washington... \& 1900
21890 \& 14, 715 \& 166,423 \& 8.84 \& \& \&

\hline Wisconsin.. \& 1900

1890 \& $$
\begin{aligned}
& 462,255 \\
& 311,059
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 4,791,684 \\
& 2,972,233
\end{aligned}
$$

\] \&	9.65
10.47	\& 48.6 \& 61.2 \& 27.8

\hline All other states ${ }^{\text {4 }}$... \& \[
$$
\begin{aligned}
& 1900 \\
& 1890
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
69,638 \\
85,269
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 670,323 \\
& 656,072
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.39 \\
& 13.00
\end{aligned}
$$
\] \& 34.3 \& 22.7 \& $7 \quad 9.4$

\hline
\end{tabular}

[^141]Table 3 shows the relative rank of the various states as regards capital, number of wage-earners, total
wages, and value of products at the censuses of 1880 , 1890 , and 1900.

Table 3.-Rank By Capital, average number of wage-earners, total wages, and value of products, BY STATES ARRANGED GEOGRAPHICALLY: 1880, 1890, AND 1900.

states.	Year.	capital.		WAGE-EARNERS.				products.	
		Rank.	Amount.	Average number.		Total wages.		Rank.	Value.
				Rank.	Number.	Rank.	Amount.		
United States.New England states	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} \$ 101,795,233 \\ 95,282,311 \\ 42,994,028 \end{array}$	…..	$\begin{aligned} & 142,922 \\ & 133,690 \\ & 111,152 \end{aligned}$	……	$\begin{array}{r} \$ 59,175,883 \\ 60,667,145 \\ 43,001,438 \end{array}$	$\begin{array}{r} \$ 261,028,580 \\ 220,645,958 \\ 166,050,354 \end{array}$
	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & \mathbf{3} 2,174,549 \\ & 54,389,199 \\ & 24,882,333 \end{aligned}$		$\begin{aligned} & 78,167 \\ & 82,901 \\ & 71,61 \end{aligned}$	….....	$\begin{aligned} & 35,810,931 \\ & 39,140,122 \\ & 28,574,114 \end{aligned}$	……	$\begin{aligned} & 155,367,997 \\ & 140,932,656 \\ & 111,364,44 \end{aligned}$
Maine.............................	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	7 4 6	$\begin{aligned} & \mathbf{6}, 148,278 \\ & 4,804,946 \\ & 1,369,000 \end{aligned}$	6 5 6	6,432 6,382 3,919	7 5 5	$\begin{aligned} & 2,664,672 \\ & 2,868,500 \\ & 1,335,168 \end{aligned}$	6 5 5	$\begin{array}{r} 12,295,847 \\ 10,335,342 \\ 5,823,541 \end{array}$
New Hampshire.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	3 5 6	$\begin{aligned} & 8,123,481 \\ & 3,956,774 \\ & 1,696,200 \end{aligned}$	4 3 4 4	12,007 7,912 4,434	3 3 4 4	$\begin{aligned} & 4,971,954 \\ & 3,337,167 \\ & 1,792,832 \end{aligned}$	3 3 4 4	$\begin{array}{r} 23,405,558 \\ 11,98,003 \\ 7,230,804 \end{array}$
Vermont..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	19 18 18	$\begin{array}{r} 478,184 \\ 348,827 \\ 88,000 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 355 \\ & 227 \\ & 101 \end{aligned}$	20 20 20	$\begin{array}{r} 128,771 \\ 94,766 \\ 41,950 \end{array}$	18 19 19	$\begin{aligned} & 792,707 \\ & 529,486 \\ & 198 \end{aligned}$ $198,200$
Massachusetts	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	1 1 1	$\begin{aligned} & 37,577,630 \\ & 44,567,702 \\ & 21,098,133 \end{aligned}$	1 1 1	58,645 67,374 61,651	1 1 1	$\begin{aligned} & 27,745,820 \\ & 32,379,899 \\ & 24,875,106 \end{aligned}$	1 1 1	$\begin{array}{r} 117,115,243 \\ 16,387,900 \\ 95,90,51 \end{array}$
Rhode Island .	$\begin{array}{r} 1900 \\ 1890 \\ 11880 \end{array}$	$\stackrel{25}{23}$	$\begin{gathered} 57,358 \\ 27,850 \end{gathered}$	27 24	-9	27 24	1,888 4,084	${ }_{22}^{23}$	$\begin{aligned} & 241,278 \\ & 158,800 \end{aligned}$
Connecticut	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	14 15 11	$\begin{aligned} & 789,618 \\ & 683,100 \\ & 631,000 \end{aligned}$	16 16 11	$\begin{array}{r} 719 \\ 995 \\ 1,412 \end{array}$	14 15 11	$\begin{aligned} & 297,826 \\ & 45,706 \\ & 529,058 \end{aligned}$	14 14 11	$\begin{aligned} & 1,517,364 \\ & 1,535,125 \\ & 2,211,385 \end{aligned}$
Middle states.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$		$\begin{aligned} & 22,496,583 \\ & 21,020,753 \\ & 11,410,222 \end{aligned}$	$\begin{aligned} & 30,257 \\ & 29,321 \\ & 26,373 \end{aligned}$	$\begin{array}{r} 11,262,119 \\ 12,390,279 \\ 9,596,980 \end{array}$	……	$\begin{aligned} & 46,928,760 \\ & 42,805,224 \\ & 35,471,510 \end{aligned}$
New York..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	2 2 2		2 2 2 2		$\begin{array}{r}2 \\ \mathbf{2} \\ 2 \\ \hline\end{array}$	$\begin{aligned} & 6,138,653 \\ & 6,629,641 \\ & 4,902,132 \end{aligned}$	2 2 2	$\begin{aligned} & 25,585,631 \\ & 23,661,604 \\ & 18,979,259 \end{aligned}$
New Jersey	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	9 9 9	$\begin{array}{r} 3,163,255 \\ 2,811,098 \\ 964,245 \end{array}$	9 7 6	$\begin{aligned} & 4,421 \\ & 6,162 \\ & 3,318 \end{aligned}$	9 7 6	$\begin{aligned} & 1,723,159 \\ & 2,206,652 \\ & 1,278,269 \end{aligned}$	9 8 6	$\begin{aligned} & 6,978,043 \\ & 7,255,409 \\ & 4,689,286 \end{aligned}$
Pennsylvania.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	5 3 3	$\begin{aligned} & 6,860,480 \\ & 5,394,794 \\ & 3,627,840 \end{aligned}$	5 4 3	9,144 7,616 7,845	5 4 4	$\begin{aligned} & 3,111,113 \\ & 3,094,582 \\ & 2,820,976 \end{aligned}$	5 4 3	$\begin{array}{r} 13,235,933 \\ 10,354,850 \\ 9,590,002 \end{array}$
Maryland.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	18 14 12	499,609 863,965 590,600	15 13 10	896 1,182 1,796	15 14 10	$\begin{aligned} & 289,194 \\ & 459,404 \\ & 595,603 \end{aligned}$	16 15 10	$\begin{aligned} & 1,129,153 \\ & \mathbf{1}, 533,761 \\ & \mathbf{2}, 212,963 \end{aligned}$
Southern states .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$. $\ldots .$.	$\begin{array}{r} 1,313,293 \\ 1,209,532 \\ 356,700 \end{array}$		$\begin{aligned} & 2,047 \\ & 1,451 \\ & 980 \end{aligned}$	$\begin{aligned} & 482,049 \\ & 587,433 \\ & 288,836 \end{aligned}$		$\begin{aligned} & 3,163,577 \\ & 2,94,916 \\ & 1,163,493 \end{aligned}$
Virginia	1900 1890 1880	15 16 20	641,166 501,661 60,800	$\begin{aligned} & 12 \\ & 19 \\ & 18 \end{aligned}$	$\begin{array}{r} 1,153 \\ 252 \\ 221 \end{array}$	16 17 22	206,119 115,414 30,381	15 16 21	$\begin{array}{r} 1,462,480 \\ 1,279,069 \\ 187,520 \end{array}$
North Carolina.	1900 1890 1880	27 21 23 23	37,700 118,000 34,000	$\begin{aligned} & 26 \\ & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{array}{r} 40 \\ 95 \\ 108 \end{array}$	26 22 23	$\begin{aligned} & 14,107 \\ & 26,720 \\ & 23,900 \end{aligned}$	26 23 23	$\begin{array}{r} 73,493 \\ 150,900 \\ 107,600 \end{array}$
Georgla	1800 1890 1880	23 24 22 24	$\begin{aligned} & 90,700 \\ & 16,461 \\ & 41,800 \end{aligned}$	$\begin{aligned} & 21 \\ & 23 \\ & 25 \end{aligned}$	$\begin{array}{r} 250 \\ 22 \\ 38 \end{array}$	21 23 25	$\begin{array}{r} 66,000 \\ 4,104 \\ 11,445 \end{array}$	22 25 24 24	$\begin{array}{r} 346,259 \\ 18.642 \\ 89,725 \end{array}$
Kentucky.	1900 1890 1850	21 20 17	$\begin{aligned} & 254,382 \\ & 280,166 \\ & 197,100 \end{aligned}$	$\begin{aligned} & 22 \\ & 17 \\ & 16 \end{aligned}$	$\begin{aligned} & 207 \\ & 296 \\ & 472 \end{aligned}$	$\begin{aligned} & 23 \\ & 18 \\ & 16 \end{aligned}$	$\begin{array}{r} 60,819 \\ 112,295 \\ 159,587 \end{array}$	21 20 16	$\begin{aligned} & 630,358 \\ & 52,387 \\ & 578,732 \end{aligned}$
Tenressee..	21900 21890 1880	$\dddot{26}$	$6,000$	- 26	26	26		
Louisiana	1900 1890 1880	$\begin{aligned} & 20 \\ & 19 \\ & 24 \end{aligned}$	$\begin{array}{r} 289,345 \\ 293,244 \\ 17,000 \end{array}$	$\begin{aligned} & 19 \\ & 16 \\ & 21 \end{aligned}$	$\text { - } \begin{aligned} & 397 \\ & 786 \\ & \\ & 115 \end{aligned}$	$\begin{aligned} & 19 \\ & 16 \\ & 19 \end{aligned}$	145,004 328,900 63,618	20 17 22	660,987 968, 017 164090
				${ }^{2}$ Inclu	ded in ' all	other st			

Table 3.-RANK BY Capital, a VERAGE NUMBER of WaGE-EARNERS, TOTAL WAGES, AND VALUE OF PRODUCTS, BY STATES ARRANGED GEOGRAPHICALLY: 1880, 1890, AND 1900-Continued.

states.	Year.	capital.		wage-earners.				PRODOCTS.	
		Rank.	Amount.	Average number.		Total wages.		Rank.	Value.
				Rank.	Number.	Rank.	Amount.		
Central states..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	…....	$\begin{array}{r}\$ 23,980,711 \\ 16,592,691 \\ 5,169,040 \\ \hline\end{array}$...	$\begin{array}{r} 31,011 \\ 17,360 \\ 9,388 \end{array}$	….....	$\begin{array}{r} \$ 11,006,763 \\ 7,281,303 \\ 3,366,085 \end{array}$	……...	$\begin{array}{r} 852,581,793 \\ 29,912,448 \\ 13,986,600 \end{array}$
Ohio ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	4 8 7	$\begin{aligned} & 7,549,142 \\ & 3,176,318 \\ & 1,154,200 \end{aligned}$	$\begin{aligned} & \hline \mathbf{3} \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 12,718 \\ 6,743 \\ 3,204 \end{array}$	4 6 7	$\begin{aligned} & 3,989,744 \\ & 2,308,393 \\ & 1,099,11 \end{aligned}$	4 7 7	$\begin{array}{r} 17,920,854 \\ 8,489,728 \\ 4,167,476 \end{array}$
Michigan ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	13 13 15 15	$1,135,961$ 972,534 343,500	$\begin{aligned} & 13 \\ & 12 \\ & 14 \end{aligned}$	$\begin{array}{r}1,117 \\ 1,309 \\ \hline 783\end{array}$	13 13 14	386,074 495,202 340,172	12 12 14	$\begin{aligned} & 1,915,179 \\ & \mathbf{2}, 065,731 \\ & 1,216,255 \end{aligned}$
Indiana...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	16 22 16	542,224 98,065 266,500	17 21 17	610 173 341	18 21 17 17	151,455 57,079 111,465	17 21 17	$\begin{aligned} & 864,090 \\ & 179,936 \\ & 476,845 \end{aligned}$
Illinois ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	6 6 4	$\begin{aligned} & 5,351,482 \\ & 3,781,476 \\ & 1,729,200 \end{aligned}$	8 8 9	$\begin{aligned} & 5,553 \\ & 3,992 \\ & 2,060 \end{aligned}$	6 8 9	$\begin{array}{r} 2,694,959 \\ 1,896,998 \\ 765,769 \end{array}$	7 6 9	$\begin{array}{r} 71,434,842 \\ 8,756,824 \\ 3,183,026 \end{array}$
Wlsconsin...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	10 10 13	$2,473,626$ $2,621,606$ 548,800	10 11 13	2,507 2,036 1,177	10 11 13	$\begin{aligned} & \mathbf{8 2 1 , 4 0 3} \\ & 774,163 \\ & 381,732 \end{aligned}$	10 11 13	$\begin{aligned} & 4,791,684 \\ & 2,972,233 \\ & 1,736,773 \end{aligned}$
Minnesota ...	1900 1890 1880	11 11 11	$2,237,540$ $1,794,71$ 463,000	- $\begin{array}{r}11 \\ 14 \\ 16\end{array}$	2,025 1,099 402	11 12 15	719,231 524,978 207,218	11 13 15	$\begin{array}{r} 3,615,801 \\ 2,032,814 \\ 980,192 \end{array}$
lbwa...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	17 17 19	506,757 435,066 61,040	18 18 18	566 292 139	17 19 19 21	191,783 110,100 32,950	19 18 18	$\begin{aligned} & 786,141 \\ & 574,378 \\ & 243,040 \end{aligned}$
Missouri $\cdot . .$. ...	1900 1890 1880	8 7 10	$4,183,979$ $3,762,985$ 642,800	7 9 12	5, 915 $\mathbf{2}, 716$ $\mathbf{1 , 2 8 2}$	8 9 12	$2,052,114$ $\mathbf{1}, 119,390$ 447,663	$\begin{array}{r}8 \\ 9 \\ 12 \\ \hline\end{array}$	$11,253,202$ $4,841,004$ $\mathbf{1 , 9 8 2}, 993$
Western statea	$\begin{array}{r} 1900 \\ 11890 \\ 1880 \end{array}$		167,767 -76000		195		69,860 69,020		
Nebraaka ...	$\begin{aligned} & 1900 \\ & 11890 \\ & \mathbf{1} 1880 \end{aligned}$	26	43,500	25 \cdots ..	55	25	17,302	27	73,210
Utah ..ax.	$\begin{array}{r} 1900 \\ 1989 \\ 1880 \end{array}$	22 $\cdots \quad . \quad 21$	124,267 60,050	23 19	140 186	22 18	52, 558 $-65,220$	24 $\cdots \cdots 3$	225,986 1789,669
Kansas.....	$\begin{array}{r} 11900 \\ 11890 \\ 1880 \\ \hline \end{array}$		16,000	…… 24	67	24	13,800	\cdots	- 55,814
Pacific atates...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 1,328,817 \\ & 1,740,175 \\ & 1,001,183 \end{aligned}$	$\begin{aligned} & 1,069 \\ & 2,280 \\ & 2,499 \end{aligned}$	….......	$\begin{array}{r} 488,388 \\ \mathbf{1 , 1 0 9 , 4 1 9} \\ 1,064,938 \end{array}$..	$\begin{aligned} & 2,016,934 \\ & 3,395,043 \\ & 3,649,551 \end{aligned}$
Waahington..	$\begin{array}{r} 1900 \\ 11890 \\ 1880 \end{array}$	24	71,071	24	75	24	31,461	25	166, 423
California...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	12 12 8	$1,257,746$ $1,740,175$ $1,001,183$	14 10 8	994 29280 2,499	12 10 8	$\begin{array}{r} 456,927 \\ 1,109,419 \\ 1,064,938 \end{array}$	13 10 8	$\begin{aligned} & 1,850,511 \\ & 3,395,043 \\ & 3,649,551 \end{aligned}$
All other atates ${ }^{3}$..	1900 1890 1880		$\begin{array}{r} 333,513 \\ 329,961 \\ 98,500 \end{array}$	176 377 142		$\begin{array}{r} 55,773 \\ 158,589 \\ 41,465 \end{array}$	$\begin{aligned} & 670,323 \\ & 656.072 \\ & 219,277 \end{aligned}$

[^142]Although the sotal capital for the United States shows an increase of $\$ 6,512,922$, there was a decrease shown in reports from 7 states, ranging from $\$ 6,990,072$ in Massachusetts to $\$ 3,899$ in Louisiana. Marylanci shows a decline in capital of $\$ 364,536$; Wisconsin, $\$ 147,980$; California, $\$ 482,429$; Kentucky, $\$ 25,784$; and North Carolina, $\$ 80,300$. Louisiana, Maryland, and

North Carolina show a decrease in value of products from 1890 to 1900 . There was also a decrease in the average number of wage-earners in these states, except Wisconsin, although the returns for the United States, as a whole, show an increase of 9,232 . On the other hand, each of the states showing a falling off in capital, and decrease in the number of wage-earners, except

California, reports an increase in the value of products, amounting, in the case of Wisconsin, to $\$ 1,819,451$, or 61.2 per cent of the total of $\$ 2,972,233$ in 1890 . Of the geographic divisions, New England, in 1900, employed by far the largest capital, $\$ 52,174,549$, or $\$ 1,276,932$ in excess of one-half of the total for the industry in the United States. The average number of wage-earners, men, women, and children, in New England shoe factories was 78,167 , or 54.7 per cent of the total, while the value of products for that section was $\$ 155,367,997$, or 59.5 per cent of the total for the United States.

Of the New England states, in 1900, Maine occupied the position, as regards capital, that was held by Missouri in 1890 , that of seventh in rank; though in the matter of product, Maine was sixth in 1900 , and Missouri was eighth. Maine shows a gain in capital of $\$ 343,332$, or 7.1 per cent, and an increase in product of $\$ 1,960,505$, or 19 per cent. Compared with 1880 , the gain in capital was 276.1 per cent, and in product 111.1 per cent. From 1890 to 1900, New Hampshire's gain in capital was $\$ 4,166,707$, or 105.3 per cent, and in product, $\$ 11,419,555$, or 95.3 per cent. For the same decade, Connecticut reports an increase in capital of 15.6 per cent, but shows a slight falling off in product, amounting to 1.2 per cent. Vermont and Rhode Island both show gains in capital and product, the latter aggregating $\$ 345,699$ for the two states. Massachusetts shows a decrease in capital of $\$ 6,990,072$, or 15.7 per cent, while the value of the product increased $\$ 727,343$. From 1880 to 1900 the increase was $\$ 21,214,733$.

Massachusetts, while first in rank in every item relating to shoe manufacture, shows a loss in the number of wage-earners of 8,729 , or 13.0 per cent, in a total of 58,645 for 1900 . The wages show nearly the same decrease, or 14.3 per cent, indicating a slight falling off in this item.

New Hampshire, which ranks second in New England as regards capital, wages, and products, ranks fourth in the United States in the number of page-earners. This state shows an output valued at $\$ 23,405,558$, with 12,007 wage-earners, who received $\$ 4,971,954$. In 1890 it required 7,912 workers to produce $\$ 1,986,003$, while $\$ 7,230,804$ was producod by 4,434 wage-earners in 1880 , the state then ranking fourth in all items except that of capital.

In 1900, Ohio in the matter of capital occupied fourth place, which was held by Maine in 1890, and by Illinois in 1880 , and had 12,718 wage-earners, who earned $\$ 3,989,744$; the products were valued at $\$ 17,920,854$.

Illinois shows a gain in capital, in the number of wage-earners, wages paid, and the value of products. In capital the state stands sixth, as it also does in the total wages paid; but it ranks eighth in the number of wage-earners, and seventh in the value of products. The gain by this state since the census of 1880 represents $\$ 3,622,282$ in capital, 3,493 in the number of wageearners, and $\$ 8,251,816$ in value of products.

Compared with the capital invested each wage-earner in the United States represented $\$ 712$ in 1900 , being about the same as in 1890. The largest amount of capital per wage-earner, $\$ 1,265$, is reported from California. Of the other states having $\$ 1,000,000$ capital and upward, Illinois has $\$ 964$ invested for each wage-earner: Maine, $\$ 800$; Massachusetts, $\$ 641$; Michigan, $\$ 1,017$; Minnesota, $\$ 1,105$; New Hampshire, $\$ 677$; New Jersey, $\$ 713$; New York, $\$ 759$; Pennsylvania, $\$ 750$; Ohio, $\$ 594$, and Wisconsin, $\$ 987$. The increase in the average number of wage-earners from 1880 to 1890 was 20.3 per cent, and but 6.9 per cent during the decade from 1890 to 1900.

The Middle states, comprising New York, New Jersey, Peunsylvania, Delaware, Maryland, and the District of Columbia, employed capital amounting to $\$ 22,496,583$, or 22.1 per cent of the total. The average number of wage-earners represents 21.2 per cent of the whole, while the product aggregates $\$ 46,928,760$, or 18 per cent of the total. Of these states, Pennsylvania made the largest gain in capital over 1890, $\$ 1,465,681$ in a total of $\$ 6,860,480$, or 27.2 per cent. From 1890 to 1900 the average number of wage-earners in Pennsylvania increased from 7,616 to 9,144 , while the value of the products increased from $\$ 10,354,850$ to $\$ 13,235,933$, a gain of $\$ 2,881,083$, or 27.8 per cent.

New York still ranks second in the amount of capital, average number of wage-earners, and value of products. From 1890 to 1900 the gain in capital was but $\$ 32,348$ in a total of $\$ 11,983,239$, while the output increased from $\$ 23,661,204$ to $\$ 25,585,631$.
New Jersey, though reporting an increase of $\$ 342,157$ in capital, shows a falling off both in the average number of wage-earners and the value of products, the decrease for the latter item being $\$ 277,366$.

With the exception of Virginia and Georgia, every Southern state engaged in the shoe-manufacturing industry shows a decline in the amount of capital, aggregating, for the entire section, $\$ 109,983$, or 22.9 per cent.
In 1900 North Carolina had a capital of $\$ 37,700$, or $\$ 80,300$ less than at the census of 1890 .

In 1900 Kentucky had a capital of $\$ 254,382$, against $\$ 280,166$ in 1890 ; while Louisiana has $\$ 289,345$, compared with $\$ 293,244$. This decrease, however, does not indicate in every case a falling off in the product. For instance, Kentucky, while showing a decline in capital of $\$ 25,784$, bad an increased output of $\$ 103,971$ in a total of $\$ 630,358$. Louisiana, on the other hand, with a capital only $\$ 3,899$ less than in 1890 , shows a decrease of $\$ 307,030$ in the value of its products.
The increase in the product from 1890 to 1900 was 18.3 per cent, or about three times the percentage of increase in the number of wage-earners. This is accounted for by the greater efficiency of machinery and the perfection of the factory system, which allows the largest output at the minimum expenditure of labor. The manufacture of boots and shoes, particularly in the

Eastern states, is to-day carried on under as favorable conditions, as regards the economical use of labor, modern machinery, and general factory appliances, as any other line of manufacture. This accounts for the low average cost of factory-made boots and shoes, as shown by Table 10 .
The Eastern states are producing more per wageearner than is the case where shoe manufacture is a newer industry. For instance, in Massachusetts the average product per wage-earner was $\$ 1,997.02$, while in Michigan it was $\$ 1,714.57$. In Maine the average was $\$ 1,911.67$; in Missouri, $\$ 1,902.49$; and in Obio, \$1,409.09.

It will be seen by the foregoing that while New England is still far in the lead in the production of boots and shoes, employing more than half the total capital and manufacturing considerably more than half of the entire shoe output, the Western, states have made large gains during the last decade, though not so large as was generally expected. For, marked as the gain in the West has been, amounting to more than 75 per cent, it is but little more than half the total increase for the United States.
That Massachusetts has not made a larger gain is compensated for in the increase in New Hampshire and Maine, both in the same section; the increase in the first-named state alone being equal to the entire production of either Illinois or Missouri.

The advance made by Ohio is notable, as in passing from the seventh rank to that of fourth, the state takes a position in advance of Pennsylvania, Maine, and Illinois.

Michigan, though losing 7.3 per cent, holds its relative position.

Table 4 shows for 1900 the quantity and cost of each kind of leather used in the manufacture of footwear during the census year; the cost of findings, linings, trimmings, and other sundries; the amounts paid for fuel, power, heat, mill supplies, and all other materials; and the kinds, quantity, and value of the products.

Table 4.-Materials and products: Classified by NUMBER OF ESTABLISHMENTS, 1900.

	Number of estab-lishments.	Unit of measure.	Quantity.	Cost of materials used.
Materials: Total				\$169,604,054
Sole leather	946	Pounds.	178,504, 837	39, 192, 300
Split leather.	278	Pounds....	15, 817, 460	3, 109, 729
Calf and kip skins	420	Pounds	10, 569,581	7, 069, 408
Grain and other side leather.	- 587	Square feet	131,542, 365	15,950,818
Goatskins All other upper material	1,019	Square feet	233, $98,866,823$	35, $15,578,659$
All other upper material..... Sheep and leather linings	1, 828	Square feet.	98,866,823	7, 729,156
and trimmings. ${ }_{\text {cut soles, taps, }}$ heels; etc.,	986			17,248,898
Cut soles, taps, heels, etc., purchased.	986			17,248,898
Findings, purchased	1,553			12,902,750
Fuel rent of power and heat, mill supplies, freight, and all other materials.				13, 723,698

Table 4.-MATERIALS AND PRODUCTS: CLASSIFIED BY NUMBER OF ESTABLISHMENTS, 1900-Continued.

	Number of estab-lishments.	Unit of measure.	Quantity.	Value of products.
Products: Total			219,235, 419	\$261, 028, 580
Men's hoots and shoes........	561	Pairs	68, 042, 839	108, 705, 938
Boys' and youths' boots and shoes.	389	Paírs	21, 080,479	20,799, 297
Women's boots and shoes	589	Pairs	65, 372, 653	82, 504, 303
Misses' and children's hoots and shoes.	652	Pairs	42, 043, 202	30,319,611
Men's and boys' and youths' slippers.	136	Pairs	4,456, 965	2,812,213
Women's, misses' and children's slippers.	279	Pairs	12,655, 876	10,146,393
All other kinds.................	127	Pairs	5,583, 405	2,491,511
All other products.....-.-.-.--	161			2,175,738
Amount received for custom or contract work.	148	-•••••••••		1,073,576

Table 4 shows that sole leather was the largest item of materials used, $178,504,837$ pounds,'costing $\$ 39,192,300$, being required for the total products of $219,235,419$ pairs of boots and shoes. Goatskins constituted the largest portion of upper leather, the quantity reported being $233,050,841$ square feet, costing $\$ 35,398,638$-almost equal to the total cost of all other upper leathers. Split leather was used to the amount of $15,817,460$ pounds, costing $\$ 3,109,729$; while there were $10,569,581$ pounds of calf and kip skins, costing $\$ 7,069,408$, and $131,542,365$ pounds of grain and other side leather, costing $\$ 15,950,818$. All other upper material amounted to $\$ 15,578,659$. Sheep and leather linings and trimmings cost $\$ 7,429,156$, while cut soles, taps, heels, etc., were purchased, costing $\$ 17,248,898$. Findings, fuel, power and heat, mill supplies, freight, and all other materials, amounting to $\$ 28,626,448$, brought the total cost of materials up to $\$ 169,604,054$. Men's boots and shoes led in the quantity and value of the products, the returns for the census year showing an output of $68,042,839$ pairs, valued at $\$ 108,705,938$. Women's boots and shoes followed with $65,372,653$ pairs, valued at $\$ 82,504,303$, while $42,043,202$ pairs of misses' and children's shoes were made, valued at $\$ 30,319,611$. The average cost of each pair of footwear was $\$ 1.19$, and, after deducting the $3,016,720$ pairs exported, permits a per capita consumption in the United States of 2.8 pairs.

Table 5 shows cities and towns having products valued at $\$ 1,000,000$ in 1900 , ranked by value of products, 1890 and 1900.
Table 5.-CITIES and TOWNS Having products of OVER $\$ 1,000,000$ IN 1900, RANKED BY VALUE OF PRODUCTS: 1890 AND 1900.

CITIES.	1900		1890	
	Rank.	Value of product.	Rank.	Value of product.
Brockton, Mass	1	\$19,844, 397	21	\$16,171,624
Lynn, Mass	2	16,830,733	1	20, 190,695
Cincinnati, Ohi	8	15, 231,440	3	16,137, 352
St. Louis, Mo..	5	8 8, 286, 156	9	$6,024,454$ $4,250,960$
Rochester N. Y	6	6,933,111	6	6, 489, 382
Philadelphia, Pa	7	5,931, 045	5	6,851, 834

Table 5.-Cities and TOWNS Having Products of OVER $\$ 1,000,000$ IN 1900 , RANKED BY VALUE OF PRODUCTS: 1890 AND 1900-Continued.

Cities,	1900		1890	
	Rank.	Value of product.	Rank.	Value of product.
Brooklyn, N. Y	8	\$5, 733, 432	12	\$2, 489, 885
Chicago, 111	9	5,723,126	4	7,257,034
Auhurn, Me.	10	4,176, 826		${ }^{(1)}{ }^{2} 9$
Manchester, N.	11 12	- $\begin{array}{r}\text { 4,052, } 204 \\ 3,882,655\end{array}$	23 17	39,024 $1,508,697$
Marlboro, Mass	13	3, 852,931		(1)
Whitman, Mass	14	3,609,009		(1)
Columhus, Ohio	15	3,505,126	20	359,000
Nashua, N. H	16	3,433, 597		
New York, N. Y	17	3,391,063	8	5,306, 411
Portsmouth, Ohi	18	3,043, 916		(1)
Salem, Mass..	19	2, 974, 631	18	1, 178, 724
North Adams, Mass.	20	2,881,474		${ }^{1}$ (1)
North Brookfield, Mass	21	2, 798, 711		${ }^{1}$
Newburyport, Mass	22	2, 714,693		(1)
Beverly, Mass.	23	2, 627, 587		(1)
Newark, N.J.	24	2,530,048	13	2,266,789
Hudson, Mass.	25	2,317,636		$\left.{ }^{1}\right)$
Jefferson City, M	26	2,236,278		(1)
Weymouth, Mass	27	2,235, 253		(1)
Natick, Mass	28	2, 228,791		(1)
Milwankee, Wis	29	2,195,928	14	1,617,534
Abington, Mass.	30	2,170, 880		$\left.{ }^{1}\right)$
Rochester, N. H	31	2,143,833		(1)
Spencer, Mass .-	32	2,000, 205		(1)
Stoneham, Mass	33	1,946,783		(1)
St. Paul, Minn.	34	1,645,999	22	133,375
San Francisco, ${ }^{\text {Worcester, }}$ M ass	35 36	$1,618,514$ $\mathbf{1}, 610,605$	11	$3,315.043$ $2,923,545$
Rockland, Mass	37 37	1,604,000	11	2, (1)
Derry, $\mathrm{N} . \mathrm{H}$.	38	1,530, 000		1)
Portsmouth, N. H	39	1,509,050		1)
Exeter, N. H .	40	1,503,650		(1)
Milford, Mass.	41	1,472, 671		(1)
Bridgewater, Mass	42	1,230,589		
Richmond, Va..	43	1,224,689	19	1,071,680
Somersworth, N. H	44	1,215, 426		(2)
Detroit, Mich.	45	1,212,742	15	1,611,700
Randolph, Mass	46	1,190,949		(1)
Burlington; N. J	47	1,180,649		(1)
Webster, Mass	48	1,162,939		(1)
Claremont, N, H	49	1,126, 234		(1)
Dover, N. H.	50	1,113, 266		
Middleboro, Ma	51	1,066,568		1, 519261
Baltimore, Md Miuneapolis, Mi	52	$1,065,507$ $1,008,007$	${ }_{21}^{16}$	1,519,261
New Bedford, Mass	54	1,006,881		(1)

${ }^{1}$ Not reported.
Until well along in the present century little attempt was made to establish the boot and shoe industry outside eastern Massachusetts. However, it was not to be expected that the other enterprising sections of the United States would always remain content to depend entirely on New England for so important an article of merchandise as shoes. In New York city and other cities of New York state, especially Rochester, the industry has attained large proportions and has reached a high state of perfection. In Newark, N. J., where the business was early established, are made many of the finest shoes for men; and in Philadelphia the shoe industry has become very prominent among the manufactures for which that city is celebrated. In Cincinnati and St. Louis shoes are produced in great quantities and of an excellent style and finish. Chicago has taken up the industry with an energy that has already placed her in a prominent position, and she has several factories which equal those of older shoe-manufacturing centers.

In fact, all through the West, including the Pacific coast, there are scores of thoroughly equipped and financially successful shoe factories. It will be noticed
that some cities, well up in the scale in 1900 , were not reported in 1890, thus precluding any comparison of them during the decade. It must not be inferred, however, that no shoes were manufactured in those places in 1890. At the Eleventh Census only 165 principal cities were reported by specified industries. Several cities and towns named in the table produced boots and shoes in considerable quantities in 1890, but, as their manufacturing statistics were not shown separately, no figures are available for purposes of comparison. They appear in Table 5 as not reporting for 1890, but are ranked according to the output for 1900 .

Lynn, Mass., which has been foremostas a shoe center for one hundred and seventy-five years, changes places in the census of 1900 with Brockton, Mass., as the largest producer of boots and shoes, the latter city having an output of $\$ 19,844,397$. This is $\$ 346,298$ less than Lynn is reported to have produced in 1890 , but $\$ 3,013,664$ more than was turned out in 1900. Haverhill, Mass., which ranks third in 1900, held the same position in 1890, though her output shows a decrease of $\$ 905,912$. The decrease in the output of Lynn and Haverhill, shown by the returns for 1900 , is undoubtedly due in a measure to the fact that the business for the census year was below normal, and the decrease in the value of products of Lynn is still further explained by the fact that just previous to the present census year one of the largest shoe manufacturing establishments in the city removed its entire business to Boston.
In 1900 Cincinnati, Ohio, takes fourth place, which was occupied at the Eleventh Census by Chicago, the latter city having dropped 5 numbers in the meantime.

Philadelphia's standing changed from fifth to seventh place and had a reduced output.

Remarkable gains are shown by several cities, one of the most notable being Manchester, N. H. In 1890 this city ranked twenty-third, with an output of $\$ 39,024$; in 1900 it ranked eleventh, the production having increased to $\$ 4,052,204$.

St. Louis, Mo., has nearly doubled the value of its product, which, in 1900 , amounted to $\$ 8,286,156$, compared with $\$ 4,250,960$ in 1890. Boston made $\$ 3,882,655$ worth of boots and shoes in 1900, compared with $\$ 1,508,697$ in 1890.

Auburn, Me., not reported among the 165 principal cities ten years ago, ranks tenth, with an output of $\$ 4,176,826$ in 1900 .

Marlboro, Mass., showing a product of $\$ 3,852,931$ with the rank of 13 would, under normal local conditions, be entitled to a much higher place, but unfortunately labor difficulties during a portion of the Census year are said to have reduced the output of the factories located there nearly one-half.

Columbus, Ohio, which stood twentieth at the Eleventh Census, with an output valued at $\$ 359,000$, in 1900 is fifteenth in rank, with products valued at $\$ 3,505,126$.

New York city shows a falling off of $\$ 1,915,348$, during the decade, its rank having been reduced from eighth to seventeenth.

Chicago shows a decrease of $\$ 1,533,908$ in the value of products for 1900 , and drops from fourth to ninth place. The total in 1890 was $\$ 7,257,034$.

St. Paul, Minn., while ranking thirty-fourth instead of twenty-second as in 1890, shows an increase of $\$ 1,512,624$ in value of its output, and Minneapolis, Minn., increased from $\$ 211,684$ in 1890 to $\$ 1,008,007$ in 1900 , although changing its rank from twenty-first to fifty-third.

Worcester, Mass., which stood eleventh in 1890, ranks as thirty-sixth, with an output of $\$ 1,610,605$ in 1900 , as compared with $\$ 2,923,545$ at the Eleventh Census.
San Francisco, Cal., which ranked tenth in 1890, with products valued at $\$ 3,315,043$, drops to thirtyfifth in 1900, and the value of its output decreased to $\$ 1,618,514$.

It will be seen that 3 Massachusetts cities, Brockton, Lynn, and Haverhill, produced 27.4 per cent of the total for the 54 principal cities, while all the Massachusetts cities and towns in the list turned out 53.0 per cent of the total for cities and towns, having a product exceeding $\$ 1,000,000$ each.
Table 6 shows the average number of men, women, and children employed in the industry, and the changes that have taken place in the employment of these classes in the United States as a whole, and in the several states, since the taking of the Eleventh Census.
Table 6.-AVERAGE NUMBER OF WAGE-EARNERS AND PROPORTION OF MEN, WOMEN, AND CHILDREN, BY STATES: 1890 AND 1900.

states.	Year.	average number of wage-				per cent of total.		
		Total average ber.	$\begin{gathered} \text { Men, } \\ \text { M years } \\ \text { and } \\ \text { over. } \end{gathered}$	$\begin{gathered} \text { Women, } \\ 16 \text { years } \\ \text { and } \\ \text { over. } \end{gathered}$	Children, 16 years.	Men.	Wom-	$\begin{aligned} & \text { Chill- } \\ & \text { dren. } \end{aligned}$
United States.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 142,922 \\ & 133,690 \end{aligned}$	$\begin{aligned} & 91, \dot{1215} \\ & 91,406 \end{aligned}$	47,186 39,849	$\begin{aligned} & 4,521 \\ & 2,435 \end{aligned}$	$\begin{aligned} & 63.8 \\ & 68.4 \\ & \hline \end{aligned}$	33.0 29.8	3.2 1.8
California	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 994 \\ 2,280 \end{array}$	$\begin{array}{r} 720 \\ \mathbf{1} 843 \end{array}$	$\begin{aligned} & 241 \\ & 389 \end{aligned}$	$\begin{aligned} & 38 \\ & 48 \end{aligned}$	$\begin{aligned} & 7.4 .4 \\ & 80.8 \end{aligned}$	24.3 17.1	${ }_{2.1}^{3.3}$
Connecticut	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	719 995	456 698	284 285	12	${ }^{63.4}$	35.3 28.6	1.3 1.2
Georgia.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	250 22	190 18	40 3	20 1	$\begin{aligned} & 76.0 \\ & 81.8 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 1.6 \end{aligned}$	8.0 4.6
nlinois	1900 1890	$\begin{aligned} & 5,553 \\ & 3,992 \end{aligned}$	$\xrightarrow{3,484} \mathbf{2 , 6 7 8}$	1,836 1,282	233 32	${ }_{67.1}^{62.7}$	${ }_{32.1}^{33.1}$	4.2 0.8
Indiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	610 173	434 124	170 46	${ }_{3}^{6}$	71.1	27.9 26.6	1.0 1.7
Iowa	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{gathered} 566 \\ \hline 92 \end{gathered}$	$\begin{aligned} & 272 \\ & 176 \end{aligned}$	227 116	67	${ }_{60.3}^{48.1}$	${ }_{39}^{40.7}$	11.8
Kentucky	$\begin{aligned} & 1990 \\ & 1890 \end{aligned}$	207 296	94 178 178	69 108 108	44 10	$\begin{aligned} & 45.4 \\ & 60.1 \end{aligned}$	$\begin{aligned} & 33.3 \\ & 36.5 \end{aligned}$	21.3 3.4 8.4
Louisiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	397 786	$\begin{aligned} & 326 \\ & 722 \end{aligned}$	37 9	34 50 50	$\begin{aligned} & 82.1 \\ & 92.5 \end{aligned}$	$\begin{aligned} & 9.3 \\ & 1.1 \end{aligned}$	8.6 6.4
Maine .	1900	$\xrightarrow{6,432}$	4,346 4,047	2,064 2,301	${ }_{34}^{22}$	$\begin{gathered} 67.6 \\ 63.4 \end{gathered}$	32.1 36.1	0.3 0.5

Table 6.-AVERAGE NUMBER OF WAGE-EARNERS AND PROPORTION OF MEN, WOMEN, AND CHILDREN, BY STATES: 1890 AND 1900-Continued.

STATES.	Year.	AVERAGE NUMBER OF WAGEEARNERS.				PER CENT. OF TOTAL,		
		Total average number.	Men, 16 years and over.	Women, 16 years and over.	Children under 16 years.	Men.	Women.	Children.
Maryland	1900	896	597	285	14	66.6	31.8	1.6
	1890	1,182	792	380	10	67.0	32.2	0.8
Massachusetts.	1900	58, 645	39,022	18, 636	987	66.5	31.8	1.7
	1890	67, 374	47,817	18,677	980	71.0	27.6	1.4
Michigan..........	1900	1,117	691	417	9	61.9	37.3	0.8
	1890	1,309	847	454	8	64.7	34.7	0.6
Minnesota.........	1900	2,025	1,438	566	21	71.0	28.0	1.0
	1890	1,099	715	383	1	65.1	34.8	0.1
Missouri............	1900	5,915	3,256	2,207	462	65.1	37.3	7.6
	1890	2,716	1,669	1,024	123	57.8	37.7	4.5
Nebraska	1900	55	18	37	...	32.7	67.3	. .
New Hampshire...	1900	12,007	7,755	3,866	386	64.6	32.2	3.2
	1890	7,912	5,418	2,370	124	68.5	29.9	1.6
New Jersey........	1900	4,421	2,740	1,497	184	62.0	33.8	4.2
	1890	6, 162	3,294	1,720	148	63.8	33.3	2.9
New York.........	1900	15, 796	9,764	5,483	559	61.8	34.7	3.5
	1890	15, 361	10,150	4,839	372	66.1	31.5	2.4
North Carolina....	1900	40	40			100.0		
	1890	95	79	8	8	83.2	8.4	8.4
Ohio...............	1900	12,718	7,289	4,781	648	57.3	37.6	5.1
	1890	5,743	3,523	2,149	71	61.4	37.4	1.2
Pennsylvania	1900	9,144	5,291	3,239	614	57.9	35.4	6.7
	1890	7,616	4,842	2,441	333	63.6	32.0	4.4
Rhode 1slaud......	1900	9	4	4	1	44.5	44.5	11.0
	1890	11	7	3	1	63.6	27.3	9.1
Utah	1900	140	98	40	2	70.0	28.6	1.4
	${ }^{1} 1890$							
Vermont	1900	355	199	155	1	56.0	43.7	0.3
	1890	227	141	76	10	62.1	33.5	4.4
Virginia.........--	1900	1,153	1,021	127	5	88.6	11.0	0.4
	1890	- 252	168	77	7	66.7	30.5	2.8
Washington	1900	75	50	22	3	66.7	29.3	4.0
	${ }^{1} 1890$							
Wisconsin.	1900	2,507	1,494	849	164	59.6	33.9	6.5
	1890	2,036	1,273	727	36	62.5	35.7	1.8
All other states ${ }^{2} .$.	1900	176	136	37	3	77.3	21.0	1.7
	1890	377	282	82	13	74.8	21.8	3.9

[^143]It will be noted that there has been a marked gain in the number of women and children, and a decrease in the number and percentage of men employed. This is accounted for by the growing tendency to substitut. women for men in many of the departments of shoe manufacture, and the turning over to children of the work heretofore done by women. As a consequence, the number of women and children employed furnished a larger ratio of the total than has formerly been the case. The total average number of wage-earners reported in 1900 was 142,922 , and in 1890, 133,690, an increase of 9,232 , or 6.9 per cent. Men of 16 years and over numbered 91,215 in 1900, against 91,406 in

1890, a decrease of 191 , or two-tenths of 1 per cent. There were 47,186 women employed in 1900 , and 39,849 in 1890, an increase of 7,337 , or 18.4 per cent. Children under 16 years were employed to the number of 4,521 in 1900 and 2,435 in 1890, an increase of 2,086 , or 85.7 per cent.
The percentage of men decreased from 68.4 per cent to 63.8 per cent, while the percentage of women increased from 29.8 per cent to 33 per cent, and that of children from 1.8 per cent to 3.2 per cent. The largest number employed at any one time, as shown in Table 10, printed elsewhere in this report, was 169,912, and the smallest number was 116,436 . February and March show the greatest activity in shoe manufacture, the total number employed in the first month being 148,015, and in the latter 149,728, or 5,093 more in February and 6,806 more in March than the average for the year.
The only state employing men exclusively was North Carolina; while another Southern state, Kentucky, reports the smallest proportion of men, 45.4 per cent. Massachusetts shoe factories, which employ 58,645 workers, have 66.5 per cent men, 31.8 per cent women, and 1.7 per cent children. New York, which follows Massachusetts, employs 15,796 wage-earners-61.8 per cent men, 34.7 per cent women, and 3.5 per cent children.
Practically all the shoe manufacturing in Rhode Island during the census year was done by contract, and the number of wage-earners engaged in such work does not appear in the table, the average number em-
ployed, outside of those persons performing contract work, being 9-4 men, 4 women, and 1 child.
Vermont has the largest proportion of women employed, 43.7 per cent, but has the smallest percentage of child labor, 0.3 per cent. This is an increase since 1890 of 10.2 per cent for women, and a decrease of 4.1 per cent for children.

New Hampshire, with 12,007 wage-earners, has doubled the percentage of child labor and employs a smaller proportion of adults. In 1900 the percentage of men wage-earners in this state was 64.6 per cent compared with 68.5 per cent, in 1890 ; of women 32.2 per cent, against 29.9 per cent ten years ago; and of children 3.2 per cent, compared with 1.6 per cent at the Eleventh Census.

Of the increase of 1,561 wage-earners reported for the decade in Illinois, 755 , or 48.4 per cent, were women and children. This increase brings the percentage of children from 0.8 per cent in 1890 to 4.2 per cent in 1900 , and increases the ratio of women 1 per cent.
Of the other Middle and Western states, Indiana reports an increase in the total number of wageearners of 437 , which, though not changing more than 1 per cent the proportion of the 3 classes employed, shows 71.1 per cent of men, 27.9 per cent of women, and 1 per cent of children. Michigan shows a decreased percentage of men and an increased percentage of women and children for the decade. In Wisconsin child labor constitutes 6.5 per cent in this industry, compared with 1.8 per cent in 1890 , and 33.9 per cent was represented by women against 35.7 per cent in 1890 .

CONVICT LABOR.

No account of the manufacture of boots and shoes would be complete without reference to the employment of convict labor. The business offers many advantages to the authorities of prisons who are seeking remunerative work for the men and women in their charge. The great number of operations in producing a shoe makes it possible to use all classes of convicts, from the strong to the weak; and as far back as 1850, even before machinery was introduced, it was not an uncommon thing for houses of correction and prisons to produce footwear not only for their own convicts, but to be sold in the market. After the introduction of machinery, and during the demand for cheap shoes which followed the close of the Civil War, many of the states leased the labor of their convicts to shoe manufacturers. In the year 1870 there were employed in this industry in 26 different states 6,581 convicts, while there were only 129,989 employed in the industry in the same states outside the prisons. In the fiscal year 1886 there were made by 7,609 convicts, $6,634,960$ pairs of shoes, valued at
$\$ 10,990,173$, and it is probable that the number employed and the annual production are steadily increasing. In states where the system was believed to have a harmful influence on the wages of the worknian outside the prisons, the business has been conducted on the states' account, and in some instances, at least, the result has been disastrous. Attempts have been made, in the supposed interest of labor, to forbid prison authorities to use the convicts in any industry which would compete with outside labor. At the present time, in view of the fact that the boot and shoe factories of the United States can produce in nine months all of the shoes required for consumption in twelve months, and that convicts must be worked nearly every week day of the year, their employment at shoemaking must have more or less effect on the market. ${ }^{1}$

[^144]Table 7 shows the kinds, quantity, and value of the boots and shoes manufactured in 1890 and 1900.

Table 7.-COMPARATIVE SUMMARY, 1890 AND 1900, KINDS, QUANTITY, AND VALUE OF PRODUCTS, WITH PER OENT OF INCREASE.

The total quantity of boots and shoes manufactured in 1900 was $219,235,419$ pairs, an increase over 1890 of $45,372,479$ pairs, or 20.6 per cent. This is about the same as the percentage of increase in population for the United States. In 1900, 89, 123,318 pairs of men's, youths', and boys' boots and shoes were manufactured, valued at $\$ 129,505,235$, compared with $67,740,489$ pairs, valued at $\$ 97,496,514$, in 1890 . Women's, misses', and children's shoes were made to the number of $107,415,855$ pairs, yalued at $\$ 112,823,914$, in 1900 , and $106,122,451$ pairs, valued at $\$ 115,655,533$, in 1890 . Slippers, which were reported separately for the first time at the Twelfth Census, were produced for men, youths, and boys to the number of $4,456,965$ pairs, valued at $\$ 2,812,213$. Another new item in 1900, "slippers, oxfords, and low cuts for women, misses, and children," is represented by $12,655,876$ pairs, valued at $\$ 10,146,393$. In the 1890 report slıppers of all kinds, oxfords, and low cuts, were classified generally under the head of "boots and shoes," and no separate report was given. This new classification accounts for the apparently small increase in the number of women's, misses', and children's shoes, and the decrease of 2.4 per cent in value during the decade. The total product for 1900 was valued at $\$ 261,028,580$, compared with $\$ 220,649,358$ in 1890 , an increase of $\$ 40,379,222$, or 18.3 per cent.

The following tabular statement shows the value of the exports of leather boots and shoes from 1870 to 1901: ${ }^{1}$

YeARS.	Values.	years.	Values.
1901	85,526,290	1898	\$590,754
1900	4, 276, 656	1892	914, 974
1899	2, 711, 385	1891	651,343
1898	1, 816, 538.	1890	662,974
1897	1, 708, 224	1885	598,151
1896	1,436, 686	1880	441, 069
1895	1,010,228	1875	429, 363
1894	777, 354	1870	419,612

${ }^{1}$ Statistical Abstract of the United States Treasury Department.
Early manufacturers shipped goods to the West Indies, more especially to Cuba, and up to the time of the Civil War the export business was prosecuted with considerable vigor and profit. In 1810, 10 per cent of all the boots and shoes sold in Boston were for export. In the year 1865 shoes to the value of more than $\$ 2,000,000$ were exported. From that time the trade fell off sharply. This may be accounted for by the great advance in 1866, when values rose at least 50 per cent. Within the last few years interest has been renewed in the export trade. Manufacturers have become convinced that there is nothing in the conditions which will prevent competition with foreign countries. The raw materials are available, and, while many hides and skins are imported, the supply of the domestic product is constantly increasing and leather manufacturers have been able to produce materials for making boots and shoes as advantageously, both in regard to quality and price, as any other country. Styles have been adapted to the wants of such countries as import their footwear. Many of the leading manufacturers are alive to the situation and are endeavoring to secure a greater share of the world's trade.

The exports, with the exception of the year 1865, appear to have been unimportant until 1895, when the first decided gain was made, the exports for that year being valued at $\$ 1,010,228$. Since that date there has been a steady increase until, in 1901, these exports amounted to $\$ 5,526,290$. The maximum yearly capacity of the combined factories of the United States, on a basis of three hundred working days, is slightly under $400,000,000$ pairs, showing that all the factories running at full capacity would require not exceeding seven months to produce all shoes consumed in the United States, and those exported for the year ending June $30,1900$.

Table 8 shows, by states, the average amount of capital required to produce $\$ 100$ worth of boots and shoes at the Tenth, Eleventh, and Twelfth censuses.

Table 8.-AVERAGE AMOUNT of CAPITAL REQUIRED FOR A PRODUCT VALUED AT $\$ 100: 1880,1890$, AND 1900.

states.	Year.	Capital.	Value of products.	$\begin{aligned} & \text { For } \$ 100 \\ & \text { of } \\ & \text { product. } \end{aligned}$
United States. .	1900	\$101,795, 233	\$261, 028,580	\$39.00
United states.	1890	-95,282, 311	220, 649,358	43.18
	1880	42,994, 028	166, 050, 354	25.89
California	1900	1,257,746	1,850,511	67.97
	1890	1,740,175	3, 395, 043	51.26
	1880	1,001,183	3,649,551	27.43
Connecticut.	1900	789,618	1, 517,364	52.04
	1890	683,100	1,535,125	44.50
	1880	631,000	2,211, 385	28.53
Georgia.	1900	90,700	346, 259	26.19
	1890	16,461	18,542	88.79
	1880	41,800	89,725	46.59
Illinois	1900	5,351,482	11,434, 842	
	1890	3,781, 476	8, 756, 824	43.18
	1880	1, 729,200	3,183, 026	
Indiana	1900	542,224	864,090	62.75
	1890	98, 065	179, 936	54.50 47.50
	1880	226,500		
Iowa	1900	506,757	786,141	64.46
	1890	435, 066	574, 378	75.75
	1880	61,040	243, 040	25.11
Kansas	${ }^{1} 1900$		
	11890 1880	16,000	55, 814	28.67
Kentucky	1900	254,382	630,358	40.36
	1890	280, 166	526,387	53.22
	1880	197, 100		34.06
Louisiana	1900	289, 345	660,987	43.77
	1890	293, 244	968,017	30.29
	1880	17,000	164,090	10.36
Maine	1900	5,148,278	12, 295, 847	41.87
	1890	4, 804, 946	10,335, 342	46. 49
	1880	1,369,000	5, 823,541	23.51
Maryland	1900	499, 609	1,129,153	44.25
	1890	863,965	1, 533, 761	56.33
	1880	590, 600	2, 212,963	26.69
Massachusetts.......	1900	37, 577,630	117, 115, 243	32.09
	1890	44,567, 702	116, 387, 900	38.29
	1880	21,098,133	95, 900,510	22.00
Michigan..	1900	1,135,961	1,915,179	59.32
	1890	972,534	2, 065, 531	47.08
	1880	343, 500	1,216,255	
Minnesota.	1900	2,237,540	3,615, 801	61.88
	1890	1,794,711	2,032, 814	88.20
	1880	${ }^{463,000}$	-930,192	49.77
Missouri .				37.18
	1890	3,712, 915	$\begin{array}{r} 4,841,004 \end{array}$	76.70
	1880	642, 800	1,982, 993	
Nebraska	1900	43,500	73, 210	59.42
	$\begin{aligned} & { }_{2}^{11890} \\ & { }_{2} 1880 \end{aligned}$			
New Hampshire	1900	8,123, 481	23,405, 558	34.71
	1890	3,956,774	11,986,003	33.01
	1880	1,696, 200	7,230,804	23.46
New Jersey .	1900	3, 153, 205	6,978,043	45.19
	1890	2, 811, 098	7,255,409	38.74
	1880	964,245	4,689, 286	20.56
New York	1900	11,983, 239	25,585, 631	
	1890	11, 950, 891	23, 661, 204	50.51
	1880	6, 227,537	18,979,259	32.81
North Carolina.	1900	37,700	73,493	51.30
	1890	118,000	155,900	75.69
	1880	34,000	107,600	31.60
Ohio.	1900	7,549, 142	17,920,854	42.12
	1890	3,176, 318	8, 489, 728	37.41
	1880	1,154,200	4,167,476	27.69
Pennsylvania	1900	6, 860,480	13,235,933	51.83
	1890	5, 394, 799	10, 354, 850	52.10
	1880	3,627,840	9,590,002	37.83

${ }_{2}^{1}$ Included in "all other states."
${ }^{2}$ No establishments reported.

Table 8.-AVERAGE AMOUNT OF CAPITAL REQUIRED FOR A PRODUCT VALUED AT $\$ 100: 1880,1890$, AND 1900Continued.

states.	Year.	Capital.	Value of products.	$\begin{aligned} & \text { For } \$ 100 \\ & \text { of } \\ & \text { product. } \end{aligned}$
Rhode 1sland.	$\begin{array}{r} 1900 \\ 1890 \\ 1880 \end{array}$	$\begin{array}{r} \$ 57,358 \\ 27,850 \end{array}$	$\begin{array}{r} \$ 241,278 \\ 158,800 \end{array}$	$\begin{array}{r} \$ 23.77 \\ 17.54 \end{array}$
Tennessee	$\begin{array}{r} \mathbf{2} 1900 \\ \mathbf{2} 1890 \\ \\ 1880 \end{array}$	6,000	35,826	16.75
Utah.	$\begin{array}{r} 1900 \\ 21890 \\ 1880 \end{array}$	124,267 $60,0.50$	225,986 1097×69	54.99 31.06
Vermont	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 478,184 \\ 348,827 \\ 88,000 \end{array}$	$\begin{array}{r} 792,707 \\ 529,486 \\ 198,200 \end{array}$	$\begin{aligned} & 60.32 \\ & 65.88 \\ & 44.40 \end{aligned}$
Virginia	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 641,166 \\ 501,661 \\ 60,800 \end{array}$	$\begin{array}{r} 1,452,480 \\ 1,279,069 \\ 187,520 \end{array}$	$\begin{aligned} & 44.14 \\ & 39: 22 \\ & 32.42 \end{aligned}$
Washington	$\begin{array}{r} 1900 \\ \mathbf{1} 1890 \\ \mathbf{2} 1880 \end{array}$	71,071	166,423	42.71
Wisconsin	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 2,473,626 \\ 2,621,606 \\ 548,800 \end{array}$	$\begin{aligned} & 4,791,684 \\ & 2,972,233 \\ & 1,736,773 \end{aligned}$	$\begin{aligned} & 51.62 \\ & 88.20 \\ & 31.60 \end{aligned}$
All other states ${ }^{3}$.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 333,513 \\ 329,961 \\ 98,500 \end{array}$	$\begin{aligned} & 670,323 \\ & 656,072 \\ & 219,277 \end{aligned}$	$\begin{aligned} & 49.75 \\ & 50.29 \\ & 44.92 \end{aligned}$

${ }^{1}$ No establishments reported.
${ }^{2}$ Included in "all other states,",
${ }^{3}$ Includes establishments distributed as follows: 1900-Alahama, 1; Colorado, 1; Delaware, 1; Kansas, 1; Oregon, 2; Tennessee, 2. 1890-Alabama, 1; Delaware, 1; Kansas, $2 ;$ Nebraska, $1 ;$ Oregon, 1; South Carolina, 2; Tennessee,
2; Texas, 3; Utah, 2; Washington, 1. 1880-Colorado, 1; Idaho, $1 ;$ Mississippi, 2; 2; Texas, $3 ;$ Utah, 2; Washin
Oregon, $1 ;$ West Virginia, 1 .

Capital in 1890 and 1900 included that invested in land, buildings, and machinery, tools, and implements, together with live capital either owned or borrowed. For the United States, in 1900, the average capital was $\$ 39$ for every $\$ 1.00$ of product against $\$ 43.18$ in 1890 and $\$ 25.89$ in 1880 . Table 8 shows that there was a wide difference in the amounts required in different sections of the country to manufacture a product valued at $\$ 100$. This is explained by the varying conditions under which the business was carried on. In 1900 the two extremes appeared to be Rhode Island, requiring $\$ 23.77$, and California, $\$ 67.97$. California's excessive average is due to the fact that the value of the products in the state decreased from $\$ 3,395,043$ in 1890 to $\$ 1,850,511$ in 1900 , or 45.5 per cent, while the capital decreased in a lesser ratio, from $\$ 1,740,175$ to $\$ 1,257,746$, or 27.7 per cent. During the same period the number of establishments declined from 56 to 30 , a loss of 26 , which undoubtedly accounts for a part of the loss in value of products; though in consideration of the comparatively slight reduction in the amount of capital, it would appear that the loss in establishments was of the class using small capital.

Consequently, it is evident that while the larger portion of the capital remained in the business in 1900, the product was considerably below normal, thereby adding materially to the amount of capital reported for a product of $\$ 100$. Other states with a product in excess of $\$ 1,000,000$, which reported more than $\$ 50$ invested for
each $\$ 100$ of product during the census year are as follows: Minnesota, $\$ 61.88$ against $\$ 88.20$ in 1890; Michigan, $\$ 59.32$ against $\$ 47.08$ in 1890 ; Connecticut, $\$ 52.04$ against $\$ 44.50$ in 1890; Wisconsin, $\$ 51.62$ against $\$ 88.20$ in 1890; and Pennsylvania, $\$ 51.83$ against $\$ 52.10$ in 1890. It will be noticed that the amount invested by Minnesota and Wisconsin in 1890 was precisely the same, $\$ 88.20$ being the amount shown in each state; while in 1900 W isconsin showed a reduction to $\$ 51.62$ and Minnesota to $\$ 61.88$. Wisconsin mänufactured products valued at $\$ 4,791,684$ in 1900 against $\$ 2,972,233$ in 1890 , with $\$ 147,980$ less of capital than in 1890 ; while Minnesota produced $\$ 3,615,801$ in 1900 compared with $\$ 2,032,814$ in 1890 , with an increase of $\$ 442,829$ in capital.
Pennsylvania shows an increase in product over 1890 of nearly $\$ 3,000,000$, with an increase of a little less than $\$ 1,500,000$ in capital, showing a variation between the two censuses of only 27 cents in the amount required for a product of $\$ 100$.

Michigan shows an increase of $\$ 12.24$ in the capital invested for $\$ 100$ of product; the capital for that state having increased $\$ 163,427$, while the product was $\$ 150,352$ less than in 1890 .

Illinois shows an increase of $\$ 1,570,006$ in capital and $\$ 2,678,018$ in product; a capital of $\$ 46.80$ was required for $\$ 100$ of product in 1900 compared with $\$+3.18$ in 1890 .
In Missouri the capital required for $\$ 100$ of product diminished more than one-half during the past ten years, showing $\$ 76.70$ in 1890 and $\$ 37.18$ in 1900 . During the decade the value of the products increased $\$ 6,412,198$, while the capital increased only $\$ 471,064$. This is probably due to the fact that about the year 1890 an extensive development of the industry began in that state and a large amount of capital was invested, the benefits of which were not fully realized until after the returns for the census of 1890.
The products of the state of New York show an increase of nearly $\$ 2,000,000$, while the growth of capital is represented by the comparatively small sum of $\$ 32,348$; thus reducing the amount required for a product of $\$ 100$ from $\$ 50.51$ in 1890 to $\$ 46.84$ in 1900.

Maryland shows a material reduction in the amount of capital required for a product of $\$ 100$ in $1900, \$ 44.25$ having been used against $\$ 56.33$ in 1890 .

New Jersey shows an increase of $\$ 6.45$ in the average capital required, or from $\$ 38.74$ in 1890 to $\$ 45.19$ in 1900 , with a small loss in value of products, and an actual increase in capital of $\$ 342,157$.

Ohio reports an increase of $\$ 4.71$ in the average capital employed, $\$ 42.12$ having been required in 1900 against $\$ 37.41$ in 1890 . The product was more than
doubled during the dccade, and the total capital increased $\$ 4,372,824$.

Virginia shows an increase of $\$ 4.92$, or from $\$ 39.22$ to $\$ 44.14$, with small increases in production and capital.
With the exception of those located in Connecticut, the factories in the New England states reporting a product of more than $\$ 1,000,000$, generally shows a smaller amount of capital required for a product of $\$ 100$ than in states located in other sections of the United States. Maine reported $\$ 41.87$ in 1900 against $\$ 46.49$ in 1890; New Hampshire shows an increase of $\$ 1.70$, or from $\$ 33.01$ to $\$ 34.71$, with an increase of more than 100 per cent in the amounts of product and capital; Massachusetts shows a decrease of $\$ 6.20$ in the amount employed for a product of $\$ 100$, or $\$ 32.09$ in 1900 against $\$ 38.29$ in 1890 ; the products increased $\$ 727,343$ and the capital diminished $\$ 6,990,072$.
The wide variation in the amount of capital employed in the different states where boot and shoe manufacturing is carried on is accounted for in various ways. That the Western, Middle, and Southern states employ a larger capital than the New England states is due in a measure to the fact that many of the manufacturers in those states dispose of a larger proportion of their products directly to the retail dealer than is the case in New England. This requires oftentimes longer credits than is required when the product is sold to the "jobber;" and, in addition to this, manufacturers selling to the retail trade are required to carry in stock a considerable quantity of manufactured goods in order to promptly supply their customers when the goods are wanted. Furthermore the manufacturers in the Western, Middle, and Southern states are farther from the source of supply and are generally obliged to buy their raw materials in larger quantities than the manufacturers located in the New England states.

Table 8 also shows that the average capital employed for a product of $\$ 100$ in 1900 was $\$ 4.18$ less than that employed in 1890. A comparison of figures indicates that the shoe manufacturers of the United States turned their capital 2.56 times in 1900 , and 2.31 times in 1890. In almost every instance the capital employed in 1880 was very much less than in 1890 or in 1900. In 1880 manufacturers bought their materials on long credits and did not employ the vast amount of machinery which is to-day required to carry on a successful shoemanufacturing business. The factories were run almost twelve months in the year, while the business as conducted to-day requires that most of the product should be made in a much shorter time, thus necessitating the use of larger capital. The business in 1880 was conducted on a much smaller scale, and was carried
on in comparatively inexpensive buildings, while to-day the magnitude of the business frequently requires the occupancy of immense structures of iron, brick, and stone, representing a larger amount of capital invested.

There were 2 educational, 1 eleemosynary, and 3 penal institutions returned as engaged in the manufacture of boots and shoes during the census year, using
materials costing $\$ 215,110$, with products valued at $\$ 269,476$.

Twenty-three idle boot and shoe factories were reported in 1900. The total capital of these establishments was $\$ 413,018$, divided as follows: Land, $\$ 32,560$; buildings, $\$ 103,400$; machinery, tools, and implements, $\$ 154,171$; and cash and sundries, $\$ 122,887$.

HISTORICAL AND DESCRIPTIVE.

Early History.-Few industries, in their evolution, offer a more interesting history than the manufacture of boots and shoes. Supplying, as the shoemaker does, a necessity common to all civilized people, his progress is due to the fact that the number of wearers increases each year, and the demand for his products continues in an ever-widening ratio. The history of this branch of manufacturing, as it has progressed from the shoemaker's bench, where shoes were turned out one at a time, to the modern factory with its output of thousands of pairs daily marks, as do few others, the remarkable industrial progiess of the present age.

The introduction of the boot and shoe industry in America is almost coincident with the first settlement of New England, for it is a matter of history that in the year 1629 a shoemaker named Thomas Beard, with a supply of hides, arrived on board the Mayflower. This pioneer of the American boot and shoe trade was accredited to the governor of the colony, by the company in London, at a salary of $£ 10$ per annum and a grant of 50 acres of land, upon which he should settle. Seven years after the arrival of Beard, the city of Lynn saw the inception of the industry which has given it a world-wide fame, for there, in 1636, Philip Kertland, a native of Buckinghamshire, began the manufacture of shoes and fifteen years later the shoemakers of Lynn were supplying the trade of Boston. As early as 1648, we find tanning and shoemaking mentioned as an industry in the colony of Virginia, special mention being made of the fact that a planter named Matthews employed 8 shoemakers upon his own premises. Legal restraint was placed upon the business of the cordwainer in Connecticut, in 1656 and in Rhode Island in 1706, while in New York the business of tanning and shoemaking is known to have been firmly established previous to the capitulation of the province to the English, in 1664. In 1698 the industry was carried on profitably in Philadelphia, and in 1721 the colonial legislature of Pennsylvania passed an act regulating the materials and the prices of the boot and shoe industry. ${ }^{1}$

During the Revolution most of the shoes worn by the Continental army, as well as nearly all ready-made shoes sold throughout the colonies, were produced in

[^145]Massachusetts, and we find it recorded that " for quality and service they were quite as good as those imported from England." Immediately after the Revolution, in consequence of large importations, the business languished somewhat. It soon recovered, however, and was pursued with such vigor that in 1795 there were in Lynn 200 master workmen and 600 journeymen, who produced in the aggregate 300,000 pairs of ladies' shoes. One manufacturer in seven months of the year 1795 made 20,000 pairs. In 1778 men's shoes were made in Reading, Braintree, and other towns in the Old Colony for the wholesale trade; they were sold to dealers in Boston, Philadelphia, Savannah, and Charleston, a considerable portion being exported to Cuba and other West India islands.
About the year 1795 the business was established in Milford and other Worcester county towns, where brogans were made, and sold to the planters in the Southern states for negro wear. The custom at this time was for the manufacturer to make weekly trips to Boston with his horse and wagon, taking his goods in baskets and barrels, and selling them to the wholesale trade. ${ }^{2}$

Early Methods.-Prior to 1815 most of the shoes were hand sewed, a few having been copper nailed; the heavier shoes were welted and the lighter ones turned. This method of manufacture was changed, about the year 1815, by the adoption of the wooden shoe peg, which was invented in 1811 and soon came into general use. Up to this time little or no progress had been made in the methods of manufacture. The shoemaker sat on his bench, and with scarcely any tools other than a hammer, knife, and wooden shoulder stick, cut, stitched, hammered, and sewed, until the shoe was completed. Previous to the year 1845, which marked the first successful application of machinery to American shoemaking, this industry was in the strictest sense a hand process, and the young man who chose it for his vocation was apprenticed for seven years, and in that time was taught every detail of the art. He wasinstructed in the preparation of the insole and outsole, depending almost entirely upon his eye for the proper proportions; taught to prepare pegs and drive them, for the pegged shoe was the most common type of footwear in the first

[^146]balf of the last century; and familiarized himself with the making of turned and welt shoes, which have always been considered the highest type of shoemaking, requiring exceptional skill of the artisan in channeling the insole and outsole by hand, rounding the sole, sewing the welt, and stitching the outsole. After having served his apprenticeship, it was the custom for the full-fledged shoemaker to start on what was known as "whipping the cat," which meant traveling from town to town, living with a family while making a year's supply of shoes for each member, and then moving on to fill engagements previously made.

The change from which bas been evolved our present factory system, began in the latter part of 1700 , when a system of sizes had been drafted, and shoemakers more enterprising than their fellows gathered about them groups of workmen, and took upon themselves the dignity of manufacturers. The entire shoe was then made under one roof, and generally from leather that was tanned on the premises; one workman cut the leather, others sewed the uppers, and still others fastened uppers to soles, each workman handling only one part in the process of manufacture. This division of labor was successful from the very start, and soon the method was adopted of sending out the uppers to be sewed by the women and children at their homes. Small shops were numerous throughout certain parts of Massachusetts where the shoemaker, with members of his family or sometimes a neighbor, received the uppers and understock from the factories near by, bottomed the boots and shoes, and returned them to the factories, where they were finished and sent to the market packed in wooden boxes. Thus the industry developed and prospered and was carried on without any further improvement in methods until the introduction of machinery a little more than a half century ago.

Machinery.-The first machine which proved itself of any practical value was the leather-rolling machine, which came into use about 1845 and with which it was said "a man could do in a minute what would require half an hour's hard work with a lapstone and hammer." This was closely followed by the wax-thread sewing machine, which greatly reduced the time required for sewing together the different parts that formed the upper, and the buffing machine, for removing the grain from sole leather. Then came a machine which made pegs very cheaply and with great rapidity, and this in turn was followed by a hand-power machine for driving pegs. In 1855 there was introduced the splitting machine, for reducing sole leather to a uniform thickness. Peg-making and power-pegging machines were soon perfected and there had appeared a dieing-out machine, which was used for cutting soles, taps, and heels by the use of different sized dies. The year 1860 saw the introduction of the McKay sewing machine, which has perhaps done more to revolutionize the manufacture of shoes than any other single machine. The shoe to be sewed was placed over a horn and the sewing was done from the channel in the outsole through the sole
and insole. The machine made a loop stich and left a ridge of thread on the inside of the shoe, but it filled the great demand that existed for sewed shoes, and many hundreds of millions of pairs have been made by its use.

At the time of the introduction of the McKay machine inventors were busy in other directions, and, as a result, came the introduction of the cable nailing machine, which was provided with a cable of nails, the head of one being joined to the point of another; these the machine cut into separate nails and drove automatically. At about this time was introduced the screw machine which formed a screw from brass wire, forcing it into the leather and cutting it off automatically. This was the prototype of the "rapid standard screw machine," which is a comparatively recent invention and is very widely used as a sole fastener at the present time on the heavier class of boots and shoes. Very soon thereafter the attention of the trade was attracted to the invention of a New York mechanic for the sewing of soles. This device was particularly intended for the making of turn shoes and afterwards became famous as the Goodyear "turn shoe machine." It was many years before this machine became a commercial success, and mention of its progress is made later.
Closely following the Goodyear invention came the introduction of the first machine used in connection with heeling-a machine which compressed the heel and pricked holes for the nails-and this was soon followed by a machine which automatically drove the nails, the heel having previously been put in place and held by guides on the machine. Other improvements in heeling machines followed with considerable rapidity, and a machine came into use shortly afterwards which not only nailed the heel but was also provided with a hand trimmer, which the operator swung round the heel immediately after nailing. From these have been evolved the heeling machines in use at the present time.

Notable improvements had during this time been made in the Goodyear system, and a machine was made for the sewing of welts which was the foundation of the Goodyear machine now so universally used. This machine sewed from the channel of the insole through upper and welt, uniting all three, and was a machine of the chain-stitch type which left the loop on the outside of the welt. This machine was closely followed by the introduction of one which stitched the outsole, uniting it to the welt by a stitch made from the channel in the outsole, through outsole and welt. This machine afterwards became famous as the Goodyear "rapid outsole lock-stitch machine." The great demand that existed for shoes of this type made it necessary that accessory machines should be invented, and those which prepared the insole, skived the welt, trimmed the insole, rounded and channeled the outsole, as well as a machine which automatically rolled or leveled the shoe, and the stitch separating machine were soon produced. These formed the Goodyear welt system which has been the subject of constant improvement up to the present time
and is now in use wherever shoes of a higher class are made.

At the time the first standard screw machine was attracting attention, the heel-trimming and foreparttrimming machines were brought out. This part of the work had previously been done by the hand workman, using a shave or knife for trimming, and as he was entirely dependent upon the eye for the proper proportions of the finished sole, the work was not often of a very uniform nature. The heel and forepart trimming machines greatly reduced this part of the labor, and their adoption was very rapid.
In the early seventies came a change in a department of shoemaking which, prior to that time, had been regarded as a confirmed hand process. This was the important part of the work known as lasting; and a machine was introduced at that time for doing this work. This machine, as well as those which followed afterwards for a period of twenty years, was known as the bed type of machine, in which the shoe upper was drawn over the last by either friction or pincers, and then tacked by the use of a hand tool. At a comparatively recent period another machine which revolutionized all previous ideas in lasting was introduced. This machine is generally in use at the present time and is known as the "consolidated hand-method lasting machine." It was fitted with pincers which automatically drew the leather round the last, at the same time driving a tack which held it in place. This machine has been so developed that it is now used for the lasting of shoes of every type, from the lowest and cheapest to the highest grade, and it is a machine that shows wonderful mechanical ingenuity.

The perfecting of the lasting machine has been followed recently by the introduction of a machine which performs in a most satisfactory way the difficult process known as "pulling over," which consists of accurately centering the shoe upper on the last and securing it temporarily in position for the work of lasting. The new machine, which is known as the hand-method pulling-over machine, is provided with pincers, which close automatically, gripping the shoe upper at sides and toe. It is fitted with adjustments by which the operator is enabled to quickly center the shoe upper on the last, and, on the pressing of a foot lever, the machine automatically draws the upper closely to the last and secures it in position by tacks, which are also -driven by the machine. The introduction of this machine marked a radical change in the one important shoemaking process that had up to this time successfully withstood all attempts at mechanical improvement. At about the time that lasting was first introduced there came the finishing machines, which were used for finishing heel and forepart. These machines were fitted with a tool, which was heated by gas and which practically duplicated the labor of the hand workman in rubbing the edges with a hot tool for the purpose of finishing them. From these early machines have been evolved the edge-setting machines which are in use at the present time.

The latest machine to attract the attention of the trade is one which, in the opinion of those well qualified to judge, is destined to revolutionize the making of that class of shoes which has heretofore been made on the McKay sewing machine. It is known as the "universal double-clinch machine," and forms a fastening of wire, which is taken from a coil corrugated in the machine, and driven, one end being clinched back into the leather of the insole while the driven end is clinched into the leather of the outsole. It is further provided with an attachment which makes the channel in which the fastening is driven and afterwards closes it automatically. It makes a very comfortable, flexible, and durable shoe, and is being rapidly adopted by manufacturers.

At the present time the genius of the American inventor has provided for every detail of shoemaking, even the smallest processes being performed by mechanical devices of some kind. This has naturally made the shoemaker of to-day a specialist, who very seldom knows anything of shoemaking apart from the particular process in the performance of which he is an adept, and from which he earns a livelihood. The American shoe of to-day is the standard production of the world. It is in demand wherever shoes are worn, and although the tools which have made its production possible have been perfected in the face of most discouraging conditions and opposition, they are to-day classed among the most ingenious productions of a wonderfully productive epoch.

Power.-In 1855, William F. Trowbridge, of Feltonville, Mass. (then a part of Marlboro, now the town of Hudson), a partner in the firm of F. Brigham \& Co., conceived the idea of driving by horsepower the machines then in use. In a building attached to the factory be established a sweep, around which a horse known for a score of years in that section as the "Old General" provided the first power other than manual which ever drove shoe machinery. For some years prior to that time two or three stout Irishmen had supplied the motive power in this factory. Soon afterwards steam power was used in the factory of John Hill \& Co., of Stoneham; and one after another of the larger manufacturers throughout the Eastern states found it necessary to adopt modern methods, so that after the year 1860 there were very few of any pretensions who did not use either steam or waterpower to drive their machinery. This opened up the way for numerous improvements. None was of more importance than the Howe sewing machine, which was now brought into general use. Waxed thread sewing machines were also introduced in 1857, by which the uppers of nearly all heavy shoes are stitched together. Buffing machines had been run by foot as far back as 1855, but were now all driven at high speed by power. Power machines for dieing out soles and heels were introduced in 1858. ${ }^{1}$

[^147]The United States Commissioner of Labor，in dealing with boot and shoe manufacture in his report for 1898， has analyzed the different operations through which the factory－made shoe passes in its making，comparing the time needed to carry on the same operation by hand． A portion of the report is reproduced here to show the part that machinery plays in the manufacture of boot． and shoes at this time．

To illustrate the difference between hand and machine work，the Commissioner uses seven different and dis－ tinct styles and grades of footwear that are fairly rep－ resentative of the industry．The quantity in each instance is 100 pairs．Following is the list with their unit numbers to which reference is made in making the comparisons．

BOOTS AND SHOES．

Unit No．	ARTICLE PRODLCED OA WOAK ACCOMPLISHED．				YEAR OF PRODUC－ TION．		$\begin{gathered} \text { DIFFERENT } \\ \text { OPERATIONS } \\ \text { PER- } \\ \text { FORMED. } \end{gathered}$		DIFFERENT WORIKMEN EMPLOYED．		TIME WORKED．				LABOR COST．			
	Name．	Deseription．		Quan－ tity， pairs．			Hand．	Machine．										
		Hand．	Machine．			品				登				$\begin{aligned} & \text { © } \\ & \text { B } \\ & \text { B } \\ & \hline \end{aligned}$		$\begin{aligned} & \dot{\mathscr{U}} \\ & \stackrel{\text { O}}{己} \\ & \underset{Z}{E} \end{aligned}$	嵅	
69．．．	Boots ．	Men＇s cheap－grade，kip， pegged hoots，hali－double soles．	Men＇s cheap－grade，kip， pegged hoots，hali－double soles．	100．．．	1859	1895	83	122			2	113	1，436	40.0	154	4.9	\＄408． 5000	\＄35．4008
70．．．	Shoes．	Men＇sfine－grade，calf，welt， lace shoes，single soles， soft box toes．	Men＇s fine－grade，calf，welt， lace shoes，single soles， soft box toes．	100：．．	1865	1895	76	146	1	140	2，225		296	38.6	556.2496	74.3904		
71．．．	Shoes．	Men＇s medium－grade，calf， welt，lace shoes，single soles，soft box toes．	Men＇s medium－grade，calf， welt，lace shoes，single soles，soft box toes．	100．．．	1863	1895	73	173	1	371	1，831	40.0	234	36.3	4．57．9164	59.5461		
72．．．	Shoes．	Men＇s grain，pegged，bro－ gan shoes，tap soles．	Men＇s grain，pegged，bro－ gan shoes，tap soles．	100．．．	1855	1895	45	84	1	98	283	20.0	62	4.6	56.6668	13.8246		
73：．．	Shoes．	Women＇s fine－grade，kid， welt，button shoes，single soles，patent－leather tips， soft box toes．	women＇s fine－grade，kid， welt，button shoes，single soles，patent－leather tips， soft box toes．	100．．．	1875	1896	102	140	1	140	1，996	40.0	173	29.5	499.1664	54.6535		
74．．．	Shoes．	Women＇s cheap－grade，kid， turned，lace shoes，single soles，plain toes．	Women＇s cheap－grade，kid， turned，lace shoes，single soles，plain toes．	100．．．	1858	1895	67	95	1	85	1，025	20.0	80	22.3	256.3332	18． 5882		
75．．．	Shoes．	Women＇s cheap－grade， grain，pegged，button shoes，single soles，plain toes．	Women＇s cheap－grade， grain，McKay sewed，but－ ton shoes，half－double soles，plain toes．	100．．．	1868	1895	56	98	2	269	538	20.0	83	$\cdot 10.7$	109.3331	20.4435		

In discussing the above statement，the Commissioner says：

There is probably none of the older industries of the country in which the introduction of machinery has been more rapid，or has played a more important part in saving time and reducing labor cost，than in that pertaining to the manufacture of boots and shoes． Following the primitive shoemaker，who worked on the bench in his own home making shoes to measure for the community，the first change introduced the old－fashioned shoe shops，which were large enough to accommodate but three or four workmen．Then followed the primitive factory system，in which the greater por－ tion of the work was done by hand and the balance by machinery， and in time this system gradually gave way to the modern factory system in voggue at the present time，in which，with the exception of the upper－cutting department，machinery has almost entirely displaced hand methods．
In 1880，when the subdivision of labor bad about reached its limit and the present system had become perfected，efforts were next directed to the production of subordinate parts of the product， which up to that time had received but little attention．This de－ parture has resulted in the gradual and steady growth of a large number of establishments which make a specialty of preparing the rough soles，heels，counters，box toes，welting，etc．
While a large proportion of the operations in each unit are quite similar，there is considerable difference in time．The reason for this will readily be understood when attention is called to the fact that the several units represent entirely different grades of shoes，and that while the description of the machine used，work done，and the occupations may be similar，yet the actual amount of time and energy expended upon each particular part and number of opera－ tions required to produce the unit are always regulated by the particular style and quality of the product．

Ordinarily the greatest efficiency is obtained in the production of the cheaper grades of shoes，and a comparison of the aggregate
time for the several units shows this to be the case．It frequently happens that in some operations greater efficiency is attained in the higher－grade product．In some operations the time reported appeared somewhat inconsistent，but when the data were sub－ mitted for revision and approved by the persons who furnished the information，attention was called to these discrepancies，and in every instance corrections were made or some special reason as－ signed．In some cases it was due to the difference in the style or quality of the product，or to the use of more modern machinery， while in others the skill of the workmen played an important part，and in a number of instances it was found that where the workmen were paid by the piece，they performed the work in less time than those who were paid by the hour or day．But in every case the data，as published，has been revised and approved by the parties who furnished the original information，and the results shown are considered to be as nearly correct as it is possible to make them．

Lasts and Patterns．－An important feature of the boot and shoe industry is the use of lasts and the sys－ tem of last measurements adopted by manufacturers． In the early fifties the methods in lastand pattern mak－ ing were very crude，although some of the boots and shoes made in those days were very fine in workman－ ship，and the amount paid to a workman for simply putting on the bottoms which was done by hand would， at the present time，purchase a good pair of shoes． Lasts were then made only in whole sizes，such a thing as half sizes being unheard of，and were of curious shapes； first，they would have very broad toes，then would go to the other extreme and run out so thin at the end that it was necessary to iron plate them．There were only
two or three styles and widths, and one pattern would fit them all. Many of the women's lasts were made straight. Very little attention was given to the saving of stock in those days, and in the making of patterns one had only to get them large enough. At the present day the saving of stock in the making of patterns is of the greatest importance. The measurements must be absolutely retained. The character and style must be kept up; and the lines, proportions, and graceful curves must receive the most careful attention in all their details, as these are necessary to make up the symmetrical whole. The early method of producing patterns was largely by guess, and some, it is said, still cling to the old way. At one time what was called the English system was considerably used, the method being to take a piece of upper leather, wet and crimp it over the last, and let it dry. This gave the form of the last, and then the pattern was cut from stiff paper allowing for laps, seams, and folds. This method gave good results, providing that the person using it had good taste in putting style into the pattern. Later came the Radii system, which some are using at the present day. Still later came the Soule method, and a book was published describing that system. This method, which is said to produce very good results, is still being used by many pattern manufacturers, and also by local shoe-pattern makers in many of the shoe factories of the country. Some of the most enterprising pattern makers of to-day, however, are using more modern methods. It is conceded that America leads the world in the manufacture of shoes, principally on account of superior style and workmanship; and the American last and pattern makers are entitled to a large degree of credit in establishing the character and style of the American shoe.

Methods of manufacture.-The following gives a fair idea of how a pair of shoes is turned ont under modern methods in the factory of to-day: First, the cutters are given tickets describing the style of shoe required, the thickness of sole, and whatever other details are necessary. From this ticket the vamp cutter blocks out the vamps and gives them with the ticket to the upper cutter, who shapes the vamps to the pattern and cuts the tops or quarters which accompany them. The trimming cutter then gets out the side linings, stays, facings, or whatever trimmings are needed. The whole is then made into a bundle and sent to the fitting department. Here they are arranged in classes by themselves. Pieces which are too heavy are run through a splitting machine, and the edges are beveled by means of the skiving machine. Next they are pasted together, care being taken to join them at the marks made for that purpose. After being dried they go into the hands of the machine operators. The different parts go to different machines, each of which is adjusted for its particular work. The completed upper next goes to the sole-leather room, in which department machinery also performs the major
part of the work. By the use of the cutting machine the sides of leather are reduced into strips corresponding to the length of the sole required. These strips are passed through a powerful rolling machine, which hardens the leather and removes from its surface all irregularities. They are then shaved down to a uniform thickness, also by machinery, and placed under dies which cut them out in proper form. The smaller pieces are died out in the form of lifts, or heel pieces, which are joined together to the proper thickness and cemented, after which they are put in presses which give them the greatest amount of solidity. The top lift is not added to the heel until after it has been nailed to the shoe. The remaining sole leather is used for shank pieces, rands, and bottom leveling.

For the insole, a lighter grade of leather is used, which, being cut into strips and rolled, is cut by dies to the correct shape, shaved uniformly, and channeled around the under edge for receiving the upper. The counters are died out and skived, by machine, and the welts cut in strips. The uppers and soles are then sent to the bottoming department, where the first operation is that of lasting, the uppers being tacked to the insole. From the laster they go to the machine operator, where the upper, sole, and welt are firmly sewed together by the machine. The bottom is filled and leveled off and the steel shank inserted. Next, the bottom is coated with cement, and the outsole pressed on it by a machine. Thence it is sent through the rounding machine, which trims it and channels the sole for stitching. From there it goes again to the sewing machine, which stitches through the welt outside of the upper. The next step is that of leveling, then heeling, both of which processes are accomplished by machinery. The heels are nailed on in the rough and afterwards trimmed into shape by a machine operating revolving knives; a breasting machine shaping the front of the heel. Still another machine drives in the brass nails and cuts them off flush with the top pieces. The edging machine is next used, which trims the edges of both sole and heel. The sole bottom is then sandpapered, blacked, and burnished by machinery, after which the shoe is cleaned, treed, and packed. ${ }^{1}$

The total floor space occupied by the shoe factories of the United States is practically $24,000,000$ square feet, or about 550 acres.

The statistics of boot and shoe manufacture furnish an interesting commentary upon American enterprise, showing, as they do, the evolution of an industry from the smallest beginning and with the crudest appliances to a position that up to recent years equaled in importance that of any of the great industries of the country.

[^148]Table 9.-COMPARATIVE SUMMARY BY STATES: 1890 AND 1900.

states.	Year.		Capital.	$\underset{\substack{\text { Salaried offictals, } \\ \text { clerks, } \\ \text { ETC. }}}{\text { and }}$		Wage-Earners		Miscellane-ous expenses	Cost of mate rials used.	Value of products.
				Number.	Salaries.	Average	Total wages.			
United States	$\begin{aligned} & 1980 \\ & 1890 \end{aligned}$	$\begin{aligned} & 1,600 \\ & 2,082 \end{aligned}$	$\begin{gathered} \$ 101,795,238 \\ 96,282,311 \end{gathered}$	$\begin{array}{r} 7,843 \\ 16,643 \end{array}$	$\begin{array}{r} \$ 7,757,749 \\ \hline 6,707,931 \end{array}$	$\begin{aligned} & 142,922 \\ & 133,690 \end{aligned}$	\$59, 175, 883 $60,667,145$	$\$ 10,766,402$ $9,217,519$	$\$ 169,604,054$ $118,785,831$	${ }_{2}^{\$ 261,028,649,580}$
California	$\begin{aligned} & 1900 \\ & 1800 \end{aligned}$	$\begin{aligned} & 30 \\ & 66 \end{aligned}$	$\begin{aligned} & 1,257,746 \\ & 1,740,776 \end{aligned}$	61 192	$\begin{array}{r} 55,632 \\ 152,500 \end{array}$	$\begin{array}{r} 994 \\ 2,280 \end{array}$	$\begin{array}{r} 456,927 \\ 1,109,419 \end{array}$	$\begin{array}{r} 64,373 \\ 141,276 \\ 146 \end{array}$	$1,098,184$ $1,524,272$	$1,850,511$ $3,395,043$
Connecticut.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 789,618 \\ & 683,100 \end{aligned}$	$\begin{aligned} & 40 \\ & 66 \end{aligned}$	$\begin{aligned} & 38,405 \\ & 73,761 \end{aligned}$	$\begin{aligned} & 719 \\ & 995 \end{aligned}$	$\begin{gathered} 297,826 \\ 45,706 \end{gathered}$	$\begin{gathered} 117,372 \\ 63,666 \end{gathered}$	$\begin{aligned} & 986,555 \\ & 760,100 \end{aligned}$	1,517,364 1,655, 12
Georgia	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	8	$\begin{aligned} & 90,700 \\ & 16,461 \end{aligned}$	9 4	$\begin{aligned} & 8,200 \\ & 3,100 \end{aligned}$	250 22	$\begin{array}{r} 66,000 \\ 4,104 \end{array}$	$\begin{aligned} & 7,859 \\ & 1,034 \end{aligned}$	$\begin{gathered} 255,695 \\ 7,917 \end{gathered}$	$\begin{gathered} 346,259 \\ 18,542 \end{gathered}$
nlinois	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	65 66	$5,351,482$ $3,781,476$	$\begin{aligned} & 3499 \\ & 160 \end{aligned}$	$\begin{aligned} & 409,362 \\ & 160,332 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 5,553 \\ 3,992 \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} 2,694,959 \\ 1,886,998 \end{gathered}$	$\begin{aligned} & 444,774 \\ & 388,001 \end{aligned}$	$\begin{aligned} & 7,306,025 \\ & 4,931,986 \end{aligned}$	$\begin{array}{r} 11,434,842 \\ 8,766,824 \end{array}$
Indiana	1900 1890	${ }_{6}^{6}$	$\begin{array}{r} 542,224 \\ 98,065 \end{array}$	${ }_{13}^{41}$	41,469 10,126	610 173	$\begin{array}{r} 151,455 \\ 57,079 \end{array}$	$\begin{array}{r} 23,106 \\ 3,768 \end{array}$	$\begin{array}{r} 631,856 \\ 90,157 \end{array}$	$\begin{aligned} & 864,090 \\ & 179,936 \end{aligned}$
Iowa	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	7 6	606, 757 436, 066	${ }_{27}^{40}$	36,882 26,750	566 292	$\begin{aligned} & 191,783 \\ & 100,100 \end{aligned}$	$\begin{aligned} & 18,718 \\ & 16,309 \end{aligned}$	${ }_{286,492}^{507,792}$	786,141 574,378
Kentucky	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	${ }^{7}$	$\begin{aligned} & 254,382 \\ & 280,166 \end{aligned}$	63 29	$\begin{aligned} & 37,075 \\ & 26,615 \end{aligned}$	${ }_{296}^{207}$	$\begin{array}{r} 50,819 \\ 112,295 \end{array}$	$\begin{aligned} & 64,33 \\ & 33,640 \end{aligned}$	456,018 266,210	$\begin{aligned} & 630,358 \\ & 626,387 \end{aligned}$
Lowisiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 12 \\ & 17 \end{aligned}$	$\begin{aligned} & 289,345 \\ & 293,244 \end{aligned}$	27 39	$\begin{aligned} & 26,360 \\ & 36,380 \end{aligned}$	$\begin{gathered} 397 \\ 786 \end{gathered}$	$\begin{aligned} & 145,004 \\ & 328,900 \end{aligned}$	$\begin{gathered} 211,062 \\ 11,663 \end{gathered}$	$\begin{aligned} & 42,002 \\ & 412,497 \end{aligned}$	$\begin{aligned} & 660,987 \\ & 968,007 \end{aligned}$
Maine .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 48 \\ & 53 \end{aligned}$	$\begin{aligned} & 6,148,278 \\ & 4,804,946 \end{aligned}$	$\begin{aligned} & 345 \\ & 245 \end{aligned}$	$\begin{aligned} & 345,556 \\ & 209,966 \end{aligned}$	$\begin{aligned} & 6,432 \\ & 6,382 \end{aligned}$	$\begin{aligned} & 2,664,672 \\ & 2,868,600 \end{aligned}$	$\begin{aligned} & 402,027 \\ & 397,37 \end{aligned}$	$8,366,747$ $6,800,682$	12, 295, 847 $10,335,342$
Maryland	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 19 \\ & 28 \end{aligned}$	$\begin{aligned} & 499,609 \\ & 863,965 \end{aligned}$	$\stackrel{44}{71}$	$\begin{aligned} & 50,236 \\ & 61,644 \end{aligned}$	$\begin{array}{r} 896 \\ 1,182 \end{array}$	$\begin{aligned} & 289,194 \\ & 459,404 \end{aligned}$	$\begin{gathered} 38,480 \\ 30,953 \end{gathered}$	$\begin{aligned} & 676,359 \\ & 723,052 \end{aligned}$	$\begin{aligned} & 1,129,153 \\ & 1,538,761 \end{aligned}$
Massachusetts.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 640 \\ 1,057 \end{array}$	37,577,630 44,567,702	$\begin{aligned} & 2,546 \\ & 2,560 \end{aligned}$	$\begin{aligned} & 2,487,013 \\ & 2,669,799 \end{aligned}$	$\begin{aligned} & 58,645 \\ & 67,374 \end{aligned}$	$27,745,820$ $32,379,899$	$4,826,896$ $5,568,233$	75,751,964 63, 928,182	$117,115,243$ $116,387,900$
Michigan.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & \prime 13 \\ & 12 \end{aligned}$	$\begin{gathered} 1,136,961 \\ \substack{972,534} \end{gathered}$	$\begin{aligned} & 77 \\ & 62 \end{aligned}$	$\begin{gathered} 69,688 \\ 86,930 \\ \hline 88 \end{gathered}$	$\begin{gathered} 1,117 \\ 1,309 \end{gathered}$	386,074 495,202	$\begin{gathered} 200,504 \\ 89,088 \\ 080 \end{gathered}$	$\begin{aligned} & 1,163,863 \\ & 1,209,387 \end{aligned}$	$\begin{aligned} & 1,915,179 \\ & 2,065,531 \end{aligned}$
Minnesota.	1900 1890	16 8	2, 237,540 1,794	$\begin{array}{r}146 \\ 83 \\ \hline\end{array}$	$\begin{array}{r} 164,946 \\ 89,044 \end{array}$	$\begin{aligned} & 2,025 \\ & 1,099 \end{aligned}$	$\begin{aligned} & 719,231 \\ & 524,978 \end{aligned}$	$\begin{gathered} 151,042 \\ 99,962 \end{gathered}$	$\begin{aligned} & 2,378,156 \\ & 1,090,722 \end{aligned}$	$\begin{aligned} & 3,615,801 \\ & 2,032,814 \end{aligned}$
Missouri	$\begin{aligned} & 1990 \\ & 1890 \end{aligned}$	50 29	$4,183,979$ $3,712,916$	330 97	$\begin{aligned} & 346,877 \\ & 127,902 \end{aligned}$	$\begin{aligned} & 5,915 \\ & 2,716 \end{aligned}$	$\begin{aligned} & 2,052,114 \\ & 1,119,350 \end{aligned}$	$\begin{aligned} & 643,942 \\ & 305,194 \end{aligned}$	$\begin{aligned} & 7,993,026 \\ & 2,621,027 \end{aligned}$	$\begin{gathered} 11,253,202 \\ 4,841,004 \end{gathered}$
Nebraska.	1900 21880	3	43,500	6	3,300	55	17,302	2,000	47,005	73,210
New Hampshire.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 67 \\ & 64 \end{aligned}$	$\begin{aligned} & 8,123,481 \\ & 3,966,774 \end{aligned}$	$\begin{aligned} & 362 \\ & 167 \end{aligned}$	$\begin{aligned} & 357,046 \\ & 132,741 \end{aligned}$	$\begin{gathered} 12,007 \\ 7,912 \end{gathered}$	$\begin{aligned} & 4,9,93,954 \\ & 3,37,167 \end{aligned}$	$\begin{aligned} & 453,706 \\ & 256,543 \end{aligned}$	$\begin{array}{r} 16,569,725 \\ 6,749,322 \end{array}$	$23,405,558$ $11,986,003$
New Jersey .	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{gathered} 84 \\ 109 \end{gathered}$	$3,153,255$ 2,811,098	$\begin{gathered} 333 \\ 293 \end{gathered}$	$\begin{aligned} & 368,968 \\ & 282,206 \end{aligned}$	$\begin{aligned} & 4,421 \\ & 5,162 \end{aligned}$	$\begin{aligned} & 1,723,159 \\ & 2,206,652 \end{aligned}$	$\begin{aligned} & 391,043 \\ & 129,513 \end{aligned}$	$\begin{aligned} & 4,210,472 \\ & 3,417,180 \end{aligned}$	$\begin{aligned} & 6,978,043 \\ & 7,255,409 \end{aligned}$
New York	1900 1890	223 257		1,076 809	1, ${ }^{1,0180,153}$	15,796 15, 361	$6,138,6 \overline{3} 3$ 6,629,641	$\begin{aligned} & 1,251,902 \\ & 812,099 \end{aligned}$	15, 611,386 12, 383,851	$\begin{aligned} & 25,585,631 \\ & 23,661,204 \end{aligned}$
North Carolina.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	3	$\begin{gathered} 37,700 \\ 118,000 \end{gathered}$	3 7	$\begin{gathered} 1,618 \\ 5,200 \end{gathered}$	$\begin{aligned} & 40 \\ & 95 \end{aligned}$	$\begin{aligned} & 14,107 \\ & 26,720 \end{aligned}$	$\begin{aligned} & 1,058 \\ & 3,473 \end{aligned}$	$\begin{aligned} & 53,297 \\ & 76,670 \end{aligned}$	$\begin{array}{r} 73,493 \\ 155,900 \end{array}$
Obio.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 81 \\ & 63 \end{aligned}$	$\begin{aligned} & 7,549,142 \\ & 3,176,318 \end{aligned}$	$\begin{aligned} & 888 \\ & 248 \end{aligned}$	$\begin{aligned} & 960,890 \\ & 269,687 \end{aligned}$	$\begin{array}{r} 12,718 \\ 5,743 \end{array}$	$\begin{aligned} & 3,989,744 \\ & 2,303,393 \end{aligned}$	$\begin{aligned} & 637,537 \\ & 257, \end{aligned}$	$\begin{gathered} 11,074,008 \\ 4,480,206 \end{gathered}$	$\begin{array}{r} 17,920,854 \\ 8,488,728 \end{array}$
Pennsylvania.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 146 \\ & 158 \end{aligned}$	6, 860, 480 5, 394, 799	$\begin{aligned} & 663 \\ & 836 \end{aligned}$	$\begin{aligned} & 679,784 \\ & 304 \end{aligned}$	$\begin{aligned} & 9,144 \\ & 7,616 \end{aligned}$	$\begin{aligned} & 3,111,113 \\ & 3,094,582 \end{aligned}$	$\begin{aligned} & 572,624 \\ & 311,684 \end{aligned}$	$\begin{aligned} & 8,210,846 \\ & 5,0,02,096 \\ & \hline \end{aligned}$	13, 235, 933 $10,354,850$
Rhode Island.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\left.\begin{aligned} & 5 \\ & 3 \end{aligned} \right\rvert\,$	$\begin{gathered} 57,358 \\ 27,850 \end{gathered}$	17 2	$\begin{array}{r} 14,800 \\ 1,450 \end{array}$	${ }_{11}^{9}$	$\begin{aligned} & 1,888 \\ & 4,084 \end{aligned}$	$\begin{aligned} & 27,480 \\ & 27,631 \end{aligned}$	$\begin{aligned} & 179,986 \\ & 10,745 \end{aligned}$	$\begin{aligned} & 241,278 \\ & 158,800 \end{aligned}$
Utah.......	1900 21890	3	124, 267	17	17,432	140	52,558	5,017	156, 046	225,986
Vermont.	1900 1890	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 478,184 \\ & 348,827 \end{aligned}$	$\begin{aligned} & 40 \\ & 12 \end{aligned}$	$\begin{aligned} & 32,114 \\ & 12,624 \end{aligned}$	$\begin{aligned} & 355 \\ & 227 \end{aligned}$	$\begin{gathered} 128,771 \\ 94,766 \end{gathered}$	$\begin{aligned} & 25,970 \\ & 32,450 \\ & \end{aligned}$	561,786 346, 557	$\begin{aligned} & 792,707 \\ & 529,486 \end{aligned}$
Virginia	1900 1890	7	$\begin{aligned} & 641,166 \\ & 501.661 \end{aligned}$	$\begin{aligned} & 45 \\ & 20 \end{aligned}$	$\begin{gathered} 50,509 \\ 24.474 \end{gathered}$	$\begin{array}{r} 1,153 \\ { }_{252} \end{array}$	$\begin{aligned} & 206,119 \\ & 115,414 \end{aligned}$	$\begin{aligned} & 35,122 \\ & 83,682 \end{aligned}$	$\begin{array}{r} \mathrm{I}, 159,969 \\ 874,564 \end{array}$	$\begin{aligned} & 1,452,480 \\ & 1,279,069 \end{aligned}$
Washington	$\begin{array}{r} 1900 \\ \mathbf{2} 1890 \end{array}$	3	71,071	16	12,060	76	31,461	14,937	102,599	166, 423
Wisconsin	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 40 \\ & 32 \end{aligned}$	$\begin{aligned} & \begin{array}{c} 2,473,626 \\ 2,621,506 \end{array} \end{aligned}$	$\begin{aligned} & 232 \\ & 119 \end{aligned}$	$\begin{aligned} & 213,600 \\ & 101,622 \end{aligned}$	$\begin{aligned} & 2,507 \\ & 2,036 \end{aligned}$	$\begin{aligned} & 821,403 \\ & 774,163 \end{aligned}$	279,913 146,345	$\begin{aligned} & 3,170,921 \\ & 1,466,557 \end{aligned}$	$\begin{aligned} & 4,791,684 \\ & 2,972,233 \end{aligned}$
All other states ${ }^{3}$.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{array}{r} 8 \\ 16 \end{array}$	$\begin{aligned} & 333,513 \\ & 329,961 \end{aligned}$	$\begin{aligned} & 28 \\ & 22 \end{aligned}$	$\begin{aligned} & 20,915 \\ & 19,676 \end{aligned}$	$\begin{aligned} & 176 \\ & 377 \end{aligned}$	$\begin{array}{r} 55,773 \\ 158,589 \end{array}$	$\begin{aligned} & 43,625 \\ & 16,469 \end{aligned}$	$\begin{aligned} & 482,066 \\ & 325,136 \end{aligned}$	$\begin{aligned} & 670,323 \\ & 656,072 \end{aligned}$

${ }^{1}$ Includes proprietors and firm members, with their salaries; number only reported in 1900, but not included in this table. (See Table 10.)
 ware, 1 ; Kansas, 2; Nebraska, 1; Oregon, 1 ; South Carolina, 2; Tennessee, 2; Texas, 3 ; Utah, 2 ; Washington, 1 .

Table 10.-boots and shoes:

		United States.	California.	Connecticut.	'Georgia.	Illinois.
1	Number of establisbments.	-1,600	30	15	5	55
2	Character of organization:	, 18				5
3	Firm and limited partnership	580	15	7	$\stackrel{1}{2}$	15 20
4	Incorporated company --...-.	401	9	3	2	20
5	Miscellaneons.	1				
6	Total	\$101, 795, 233	\$1, 257, 746	\$789,618	\$90, 700	\$6,351, 482
7	Land	\$2, 177, 426	\$13,500	\$12,700	\$1,500	\$101, 445
8	Buildings	\$7,008, 014	\$12,450	\$17, 900	\$6,500	\$381,098
9	Machinery, tools, and imple	\$16,957, 305	\$343, 633	\$117, 172	\$23,400	\$931, 083
10	Cash and sundries	\$75, 652, 488	\$888, 163	\$641,846	\$59,300	\$3, 937, 856
11	Proprietors and firm members	2,030	- 82	28	10	-61
2	Salaried officials, clerks, etc.: Total number --..........	7,843	61	40	9	349
13	Total salaries .-.	87, 757, 749	855, 532	838,405	88,200	\$409, 362
14	Officers of corporations- Number					
15	Salaries.	\$1, 295, 350	\$17, 070	\$5,560		\$96,900
17	Total salaries	析	47	36	-9	32
	Men-	,				\$312,462
18	Number	5,464	39	28	9	- 255
19	Salaries	\$5,710,279	\$34, 862	\$29, 551	\$8,200	\$278, 334
20	Women- Number					
21	Salaries.	\$752, 120	83,600	83, 294		\$34, 128
	Wage-earners, including pieceworkers, and total wages:					
22	Greatest number employed at any one time during the year...............	169, 912	1,211	899	256	6,681
3	Least number employed at any one time during tbe year...................	116, 436	762	459	246	4,298
4	Average number..	142,922	994	719	250	5,553
25	Wages. Men, 16 years and over-	\$59, 175, 883	\$456, 927	\$297, 826	\$66,000	\$2,694, 959
26	Average number ...	91,215	720	456	190	3,484
27	Wages............	\$43, 301, 430	\$372, 131	\$221, 629	\$55, 600	\$1,872, 402
	Women, 16 years and over-					
$\stackrel{28}{28}$	Average number--.---..-.	47, 186	241	- 254	40	1,836 8783,949
	Cbildren, under 16 years-	5,068, 726	\$79,036	874,932	\$7,400	8783,949
30	Average number..	4,521	33	9	20	233
31	Wages ...-	\$805, 727	\$5, 780	\$1,265	\$3,000	\$38,608
	Average number of wage-earners, including piece workers, employed during eacb month:					
	Men, 16 years and over-					
32	January..	91,197	664	428	187	3,793
3	February	94,122	706	475	186	3,707
4	March	95, 299	699	486	189	3, 600
-35	April..	92,758	716	497	189	3,272
6	May..	90, 433	737	425	189	3,130
37	June.	86,990	721	444	191	2,943
38	July...	87, 224	649	403	191	3,772
49	August....	92, 712	747	491	189	3,812
40	September	93,526	782	488	191	3, 861
1	October.-	92,045	803	472	196	3,245
42	November -	87, 808	649	424	194	3,414
43	December.	90, 465	770	436	191	3,258
44	Women, 16 years and overJanuary	47,914				
45	February.	49, 304	251	220	40	2,089
46	March	49,757	239	234	40	1,749
47	April...	47, 840	255	240	40	1,612
48	May	46, 767	252	225	40	1,592
49	June..	44,693	223	262	40	1,519
50	July...	44,684	198	263	40	2,104
51	August	47,647	254	315	40	2,157
52	September	47, 920	253	297	40	2,156
53 54	October...	47, 166	266	284	40	1,626
5	November . ${ }^{\text {Dec...... }}$	45,536	216	268	40	1,713
	Cbildren, under 16 years-	47,005	240	229	40	1,658
56	January.-.	4,529	30	7	20	235
57	February	4,589	32	9	20	222
58	March ...	4,672	35	12	20	243
59	April.....	4,524	33	12	20	243
60	May---	4,441	31	11	20	231
61	June ...	4,389	30	10	20	190
62	July........	4,436	31	8	20	245
63 64	Angust......	4,723	37	10	20	262
64 65	September.	4,655	37	11	20	259
65 66	October...	4,493	38	8	20	203
66 67	November.	4,357	25	6	20	246
67	A $\begin{aligned} & \text { December } \\ & \text { A }\end{aligned}$	4,441	34		20	218
68	Cutters.............	19,900	128	78		
69	Stitcbers..	41,870	288.	165	35	1,702
70	Lasters....-.--	19,247	155	67	25	${ }^{1} 754$
71	Bottomers	27,558	205	185	101	1,248
72 73	Edgemakers	6,432	$\stackrel{47}{4}$	31 74	- 12	1,248
73	Miscellaneous expenses:	15,391	73	74	- 43	418
74	Total...........	\$10,766, 402	\$64,373	\$117,372		
75 76	Rent of works .i. ${ }^{\text {Taxes }}$ not includ.............	\$1,000, 689	\$22,338	\$7,691	\$1,810	\$ $\$ 52,418$
76 77	Taxes, not including internal-revenue	\$382,426	\$4,874	\$1,979	\$1,024	\$15, 268
	hitherto included	87,631,339				
78	Contract work ..	\$1, 751,948	\$36,961	\$35, 000	\$5,025	$\begin{array}{r} \$ 326,050 \\ \$ 51,038 \end{array}$

BY STATES, 1900.

Indiana.	Iowa.	Rentucky.	Lovisiana.	Maine.	Maryland.	Massachusetts.	Michigan.	Minnesota.	Missouri.	
6	7	7	12	48	19	640	13	16	50	1
2	$\stackrel{1}{2}$	1	7	9 14	9 6	286 267	$\stackrel{\square}{6}$	5 4 4	6 8 8	$\stackrel{2}{3}$
4	4	2		2 5		86	5	7	36	$\stackrel{4}{5}$
\$542, 224	\$506, 757	\$254, 382	\$289, 345	\$5, 148, 278	\$499,609	\$37, 577, 630	\$1,135,961	\$2, 237, 540	\$4,183, 979	6
83,000	812,100	254,382	\$13,000	\$135, 285	\$12,500	88674,179	- $\$ 82,148$		\% $\$ 89,250$	7
\$13,399	\$57, 840		\$25,700	\$540,950	\$26,800	82, 360,203	\$200, 150	\$2,100	\$456, 877	8
\$97,157	\$86,471	944,456	\$72, 933	\$663,326	\$167, 326	\$5,750, 238	\$150, 800	\$337,236	\$804, 568	0
\$428,668	8350, 346	\$209, 926	\$177, 712	\$3, 808, 717	\$292, 983	\$28,793,010	\$702,863	\$1,898, 204	\$2, 833, 284	10 11
- 2	\checkmark,	\$12	- 20	-811	-26	${ }_{897}$	-19	13	25	11
41 $\$ 41,469$	\% $\begin{array}{r}40 \\ \$ 35,832\end{array}$	\% 83 837,075	\$26, 360	\$345, $\begin{array}{r}345 \\ 556\end{array}$	44 $\mathbf{8 5 0 , 2 3 6}$	\$2, 487, ${ }^{2,546}$	77 $\$ 69,688$	146 $\$ 154,945$	330 9346,877	12
\$14,000	\$1,980	\$3, 288		[89, $\begin{array}{r}44 \\ \text { \$14 }\end{array}$	87, 700	146 $\$ 352,163$	86, $\begin{array}{r}34 \\ \hline\end{array}$	\$4,040 ${ }^{4}$	47 $\$ 76,513$	14 15
33 $\$ 27,469$	38 833,852	\$33, ${ }^{695}$	\$26, 360	($\begin{array}{r}301 \\ \$ 256,242\end{array}$		\$2, 324,400	74 $\$ 63,248$	\$150,905 ${ }^{142}$	283 $\$ 270,364$	16
$\$ 26,169$	$\begin{array}{r} 33 \\ \$ 32,012 \end{array}$	$\begin{array}{r} 5 i \\ \$ 32,195 \end{array}$	(25, $\begin{array}{r}25 \\ \hline\end{array}$	\$224, ${ }^{225}$	38 $\$ 41,252$	\$1, $\begin{array}{r}1,57 \\ \hline 1,419\end{array}$	56 $\$ 55,959$		\% $8249,{ }^{243} \times 2{ }^{\prime}$	18
\$ 81,300	5 $\$ 1,840$	\$1,600	\$700 ${ }^{2}$	$\begin{array}{r} 76 \\ 832,155 \end{array}$	81, 284	\$397, 831	18 87,289	\$3, 147 ${ }^{6}$	\$21, $\begin{array}{r}40 \\ \$ 81\end{array}$	20
637	632	256	431	7,760	934	72, 261	1,378	2,319	7,040	22
555	489	155	370	4,808	824 896 896	45,579	, 915	1,843 2,025	4,766 5 5	
610	566	- 207	- ${ }^{3975}$	\&2, 664, 672	896 $\$ 289,194$	58,645 $\$ 27,745,820$	1,117 $\$ 386,074$	12,025 879,231	\$2, 052, ${ }^{\text {6, }} 114$	${ }_{25}^{24}$
\$151,455	\$191,783	\$50,819	\$145,004	\$2, 664, 672	\$289, 194	\$27,745, 820	\$386,074	\$719,231	\$2,052,114	20
434 $\$ 114,988$	\$115,659 ${ }^{272}$	94 $\$ 30,629$	326 $\$ 133,500$	4,346 $\$ 2,014,993$	597 $\$ 220,030$		$\begin{array}{r}\text { \% } \\ \$ 272,308 \\ \hline\end{array}$	1,438 $\$ 336,988$	81, 356, ${ }^{3,256}$	26 27
170 $\$ 35,867$	¢65,557	69 $\$ 14,664$	37 $\$ 8,108$	2,064 $\$ 645,694$	\$67, ${ }^{285} 4$	$\begin{array}{r} 18,636 \\ \$ 6,686,138 \end{array}$	$\begin{array}{r} 417 \\ \$ 112,634 \end{array}$	\$179, $\begin{array}{r}566 \\ 428\end{array}$	2,207 $\$ 623,281$	28 29
§600 ${ }^{6}$	\$10,567 ${ }^{67}$	$\begin{array}{r} 44 \\ \$ 5,526 \end{array}$	34 $\$ 3,396$	\$3,985	\$1,900	987 $\$ 186,434$	\$1,132 ${ }^{9}$	\$ 82,815	\$ $\begin{array}{r}\text { 472, } \\ \hline 854\end{array}$	30 31
				4,549	606	38, 195	748	1,485	3,235	32
${ }_{437}^{441}$	273	84 97	${ }_{341}^{341}$	4,702	615	39,888	776	1, 178	3,311	
429	285	99	344	4, 620	613	40, 809	779	1,462	3,351 3,344	
408	279	103	344	4,128	606	40,237	672 678	1,398	3, 3442	36
434	270	102	326 279	4, 135	579 578	38,958 37,677	678 698	1,193	3,049	37
443	266	${ }_{91}^{64}$	279 288	4,295 4,218	678 602	37,077 37,445	338	1,491	3,012	38
448	$\stackrel{273}{ }$	$\begin{array}{r}91 \\ 107 \\ \hline\end{array}$	288	4, 4,272	601	39,748	765	1,525	3, 12\%	39
${ }_{432}$	252	111	${ }_{349}$	4, 349	609	40, 112	794	1,512	3,173	40
4809	262	199	328	4,292	606	39,619	747	1,491 1,468	3,305 3,245	412
434	280	91	319 318	4,177 4,415	567 580	37,441 38,132	589 706	1,459	3,476	43
444	271	79	318	4,415	580	38,132	70			
	225	63	39	2, 234	280	18,523	468	571	2,212	44 45
182	235	71	38	2, 260	287	19,335 19840	474 472	571 577 577	2,374	46
178	240	74	38	2,231	289	19,840 19,284	488	563	2,277	47
168	230	76	39	1,921	283 273	18,284 18,760	388	536	2,308	48
126	$\stackrel{122}{ }$	71 49	37 25	2, 048	284	17,711	447	477	2,082	49
157	${ }_{227}^{233}$	63	31	1,977	284	17,348	190	586	$\stackrel{2,033}{2,110}$	50
175 177	228	78	37	2,014	292	18,498	475	605 591	2,131	52
172	218	83	40	2,017	297	18,807	479 420	593	2, 233	53
163	214	69	40	1,993 1,976	275	18,828	345	559	2, 162	54
176	224 229	68 68	40 40	1,976 2,077	291	18,509	459	568	2,342	55
181								16	471	56
	68	42				${ }_{970}^{948}$	9	16	463	57
6	70	46	36 36 36	$\stackrel{21}{21}$	14	993	9	18	458	58 59
${ }_{6}^{6}$	72	51 55	36 36	21	14	948	9	18	452 480	59 60
${ }_{6}^{6}$	75 64	45	35	21	12	$\begin{array}{r}960 \\ \hline 18\end{array}$	9	${ }_{26} 21$	402	61
${ }_{6}^{6}$	63	30	23	24	14	1,042 1,051	7	23	409	62
6	69	46	${ }_{36} 24$	$\stackrel{24}{24}$	14	1,069	9	27	424	63
6	72	57	36 36	25	14	1,022	9	24	432	64
6	60	57 42	${ }_{36}$	21	14	953	9	24	475	65
6 9	62 69	32	36	21	12	960	9 9	${ }_{17}$	508	67
9	64	27	36	23	14	928				
				973	92	8,586	191	333	832 2,035	68
69 189	73 97	26 58	93	1,845	243	16, 352	383 142	134	2,695	69 70
168	C1	32	62	, 780	116	8,147	${ }_{238}$	639	1,309	71
82	127	29	120	1,156	129	2,705	28	37	310	72
20	10	9	15 49	302 600	128	6,750	142	223	730	73
42	33	12							\$643,942	74
	\$18,718	\$64,313	\$21, 662	\$402, 027	$\$ 38,480$ 88,168	$\$ 4,826,896$ $\$ 399,893$	\$200, $\$ 304$	\$151, 928	\$ $\$ 188,800$	75
\$8520	\$1, 732	\% 93,294	\% 81,405	\$ $\$ 120,380$		\$192, 777	\$4,385	\$8,060	\$11,920	76
\$1,199	\$2, 174	\$14,397	\$1,403							77
\$21,387	\$14,812	\$4, 842	\$15, 254	$\$ 367,350$ $\$ 1,000$	$8: 29,961$	$\$ 3,252,789$ $\$ 981,637$	\$192, $\$ 260$	\$13,960	\$324,300	78

Table 10.-BOOTS AND SHOES:

		United States.	California.	Connecticut.	Georgia.	Illinois.
	Materials used:					
79	Total cost..	\$169, 604, 054	\$1,098, 184	\$986, 555	\$255,695	\$7, 306,025
80	Sole leather, pou	178, 504, 837	1,631, 874	799, 381	3418000	9,187,088
81	Split leather, pounds	\$39,192, 300	\$354, 201	\$179,426	100,000	-11,94,280
83	Cost........	\$3,109, 729	\$8, 131	\$27, 163	\$20,000	830,046
84	Calf and kip skins, pound	10, 569, 581	228, 298	32, 645	63,120	650,972
85	Cost.	\$7, 069,408	\$119, 462	822,579	\$21,920	\$464,286
86	Grain and other side leather, square feet	131,542, 365	717, 843	573, 155	535, 000	4,035, 946
87	Cost	\$15, 950, 818	\$109,282	\$69,044	\$34,800	\$542, 151
88	Goatskins, square feet	233, 050, 841	557,046	1,076,075	300,000	7,499,820
89	Cost.	\$35, 398, 638	\$93, 696	\$206, 745	\$30,000	\$1,255,324
90	All other upper leatber, square feet	98, 866, 823	824,998	257, 365	45, 000	5,341,480
91	Cost.	\$15, 578, 659	\$150, 178	872, 237	86,000	\$8817,659
92	Sbeep and leather linings and trimmings	\$7,429, 156	\$30, 863	\$66,680	\$5,500	\$8305, 016
93	Cut soles, taps, heels, etc., purchased.	\$17, 248, 898	\$59, 125	\$87,008	\$2, 325	\$537,954
94	Findings, purchased	\$12, 902, 750	\$93, 497	\$90,058	\$19,400	\$707,851
95	Fuel	\$613,410	86, 633	84, 438	\$1,070	817,985
96	Rent of power a	8345,518	\$4,883	81, ${ }^{82}$	\$2, 145	\$19, 321
97 98	Mll other materials	8466, $\$ 12,979,998$	\%2, $\mathbf{8 5 8}, 596$	$\$ 1,929$ $\$ 148,649$	\$ 86,980	\$ $\$ 625,989$
99	Freight.	\$1,318, 313	\$6,925	\$88,190	86,475	\$55, 119
100	Products: Total value	\$261,028, 580	\$1,850,511	\$1, 517, 364	\$346, 259	\$11, 434, 842
	Men's boots and shoes-					
101	Number of pairs	68,042, 839	-582,966	$\begin{array}{r}365,949 \\ \hline 499\end{array}$	175, 700	$3,275,957$ $86,047,520$
102	Value Boys' and youths boots and sho...............	\$108, 705, 938	\$1, 225,597	\$499,695	\$203, 500	\$6,047, 520
103	Number of pairs...	21,080, 479	100,263	59, 446	21,000	469,839
104	Value	\$20, 799, 297	\$140,371	\$85, 122	\$20, 900	\$502,390
105	Women's boots and shoes- Number of pairs-	65, 372, 653	239,583	308, 557	106,900	1,952,473
106	Value	\$52, 504, 303	\$440, 840	\$616, 358	\$95, 160	\$2, 721, 582
107	Misses' and children's boots and shoesNumber of pairs	42,043, 202	8,583	33,563	22,000	921,207
108	Value.	\$30,319,611	\$11, 327	\$30,094	\$13,500	\$772, 518
	Men's, boys', and youths' slippers-					
$\begin{aligned} & 109 \\ & 110 \end{aligned}$	Number of pairs.	$4,456,965$ $82,812,213$	$\begin{array}{r} 30,014 \\ \$ 20,402 \end{array}$	$\begin{gathered} 5,046 \\ 86,811 \end{gathered}$	$\begin{array}{r} 7,500 \\ \$ 6,000 \end{array}$	$\begin{array}{r} 55,420 \\ \$ 47,640 \end{array}$
	Women's, misses', and children's slippers, oxfords, and low cuts-					
112	Number of pairs	12, 655, 876	8,577	10,095	8,000	177.706
	All ${ }^{\text {Value }}$ other kinds-...	\$10, 146, 393	\$3,041	\$7, 285		\$174,377
113	Number of pairs	5, 583, 405		5,242		479,380
114	Value.	\$2, 491,511		\$2, 900		\$538, 949
115	All other products.............................	\$8, 175, 738	\$233	\$266, 500		\$621,340
116	Amount received for custom or contract work	\$1, 073, 576	88,700	\$2,599	\$1,199	\$8,526
117	Maximum daily capacity of factory: Number of pairs	1,301,326	5,789	5,222	1,410	45,542
	Total floor space in factory:					
118	Square feet	23, 799, 973	145,654	135, 724	33,200	903, 650
119	Comparison of products: Number of establishments reporting for both year	1,411	28	14		47
120	Value for census year...	\$253, 152, 430	\$1, 845, 438	\$1, 509, 290	8346, 259	\$11, 241, 005
121	Value for preceding business year.	\$228, 305, 842	\$2, 522, 329	\$1,527, 635	\$179, 520	\$10,009, 673
122	Power: ${ }_{\text {Number }}$ of establishments reporti	1,285	15			
123	Total horsepower..............	51,073	304	379	51	2,476
	Owned-					
124	Steam, number	633	3	9	2	18
125	Horsepower.........	34,816	160	199	45	1,429
126	Gas or gasoline, number	90	3	1		8
127	Horsepower....	1,156	26	6		80
128	Water wheels, number.	57		1		5
129	Horsepower...	2,390		15		160
130	Electric motors, number.	117				3
131	Horsepower....... Other power-	1,629				35
132	Number...	5				
133	Horsepower.	91				
	Rented-					
134	Electric, horsepower...	3,572	108	159	6	322
135	Other kind, horsepower	7,419	20			460
136	Furnisbed to other establishments, horsepower .	1,023				3
	Establishments classified by number of persons employed, not including proprietors and firm members:					
137	Total number.................	1,600	30	15	5	
138	No employees.	24	2			5
139	Under 5....	166	1	1	1	5
140	5 to 20.	345	14	2	2	16
141	21 to 50.	311	3	6	1	8
142	51 to 100..	275	8	4		5
143	101 to 250.	277	1	1	1	7
144	251 to 500.	147	1			6
145	501 to 1,000	39				
146	Over 1,000....	16				1

BY STATES, 1900-Continued.

Indiana.	jowa.	Kentucky.	Louisiaua.	Maine.	Maryland.	Massachusetts.	Michigan.	Minnesota.	Missouri.		
\$631,856	\$507, 492		9442, 002	\$8, 366, 747							
	${ }^{254,141}$	- $\begin{aligned} & 483,280 \\ & \$ 105,229\end{aligned}$	616,866	11, 1842,219	8676,398 4877	*70, 78038,736	$1,1163,863$ $1,572,210$	$\underset{3}{\$ 2,37877,5166}$	-	${ }_{80}^{79}$	
- 61	2, 215	$\$ 105,229$ 30,269	8122,860 9,925	\$2,288, 608	8147,478 13,270	$310,026,246$99	$\begin{array}{r}8357,878 \\ 10,603 \\ \hline\end{array}$	8809,08854,301			
$\$ 15,823$ 500		86,052 800	82,184 6,091 8	$\begin{aligned} & \$ 119,674 \\ & 460,988 \end{aligned}$					$\begin{array}{r}118,561 \\ 822 \\ \hline 732\end{array}$	8283	
${ }_{\text {\% }} \mathbf{8 3 5 0}$	\% 835 , 543	800 8500			\$18, 313	$\begin{array}{r} \$ 1,865,953 \\ 5,110,293 \end{array}$	183,489 88,209 88	¢ 410,521			
\%91,366	109, 612	$\begin{array}{r}1,177,212 \\ \mathbf{\$ 1 5 3}, 766 \\ \hline\end{array}$	4488,661862,721				¢861,007	306,750	${ }_{3}^{3822}$,692 ${ }^{\text {a }}$		
$\$ 108,804$ 461660				$\begin{array}{r}\$ 1,095,744 \\ 9,951,308 \\ \hline\end{array}$	-68, 875		- 81506,173	2,531, 119			
451,660 $\mathbf{8 5 8 , 0 4 9}$		- $\begin{aligned} & 409,019 \\ & \$ 54,752\end{aligned}$			1,348, 883		1,992, ${ }^{\text {, 966 }}$	$\begin{aligned} & 2,707,161 \\ & \substack{2018 \\ \$ 18,395} \end{aligned}$	- $82,659,158$		
632, ${ }^{635}$	${ }^{43,726}$		338,690		- 452,799	$47,344,310$$877,273,400$	\$354,425				
\$23, 387	($\begin{array}{r}860,699 \\ \$ 20,88\end{array}$	-	\$50, 531	-8585, 225	\$80, 112		8556, 887	$\begin{array}{r} , 019,11 / 130 \\ \$ 197,130 \\ \$ 50,401 \end{array}$			
\$31,824	¢94,913	- 5314		\$ 85666,285	\$68, 260	- $88,876,400$	- 813,635				
$\$ 47,400$ $\$ 3,120$	$\$ 32,473$ $\$ 4,306$	834, 0500					$\begin{aligned} & 814,472 \\ & 8 \pi 5,603 \\ & 875 \end{aligned}$	$\begin{gathered} \$ 44,5415 \\ \$ 265,761 \\ \hline \end{gathered}$			
		\$1, 555	\$55,107	- $\begin{aligned} & \text { 833,04 } \\ & 810,413\end{aligned}$	83,949	$\begin{array}{r} 3078,443 \\ \$ 264, \\ 8155 \\ \hline 150 \end{array}$	\$6, 497	¢$\$ 11,966$ $\$ 8,376$	- 831,166		
8750	§2,431				(\% ${ }_{885}^{115,155}$	$\begin{gathered} \$ 2,867 \\ \$ 99,404 \end{gathered}$		\$25, 896	96	
- $\begin{aligned} & \text { 226, } 665 \\ & \$ 10,123\end{aligned}$	837,780 58,716	$\begin{gathered} \$ 39,765 \\ \$ 9,505 \\ \hline 765 \end{gathered}$	$\$ 16,729$$\$ 5,458$	$\begin{array}{r} \$ 32,628 \\ \$ 9309,252 \\ \$ 69,681 \end{array}$		$\$ 85,959$$\$ 5,764,500$$\$ 465,077$		\% $\begin{array}{r}\$ 9,008 \\ \$ 103,028 \\ \hline\end{array}$			
							\$11, 144	\$28, 204	8109, 999	99	
\$864,090	\$786, 141	\$630,358	8660,987	\$12, 295,847	\$1,129, 153	\$117, 115, 243	\$1,915, 179	\$3,616, 801	\$11, 253, 202	100	
$\begin{array}{r} 279,000 \\ \mathbf{\$ 3 8 3 , 0 0 0} \end{array}$	$\begin{array}{r} 88,293 \\ \$ 182,502 \end{array}$	$\begin{aligned} & 1,000 \\ & \$ 3,500 \end{aligned}$	$\begin{array}{r} 366,040 \\ 8583,029 \end{array}$	$\begin{gathered} 6,134,268 \\ 87,810,471 \end{gathered}$	$\begin{array}{r} 105,570 \\ \$ 295,677 \end{array}$	$40,004,809$ $859,628,907$	$\begin{array}{r} 325,991 \\ \$ 636,944 \end{array}$	$\begin{array}{r} 1,336,793 \\ \$ 2,024,910 \end{array}$	$\begin{array}{r} 3,083,759 \\ 855,453,709 \end{array}$	101 102	
$\begin{aligned} & 154,428 \\ & \mathbf{\$ 1 7 4 , 2 9 0} \end{aligned}$	24,162 $\$ 30,955$		$\begin{array}{r} 17,900 \\ \$ 31,775 \end{array}$	$\begin{gathered} 1,421,682 \\ \$ 1,416,844 \end{gathered}$	$\begin{array}{r} 26,872 \\ 852,340 \end{array}$	10,665,620 \$9,975,116	$\begin{array}{r} 107,337 \\ \$ 143,840 \end{array}$	$\begin{array}{r} 339,375 \\ 8464,521 \end{array}$	$\begin{array}{r} 425,979 \\ \mathbf{8 5 2 4 , 6 8 9} \end{array}$	103 104	
$\begin{aligned} & 120,000 \\ & \$ 150,000 \end{aligned}$	$\begin{array}{r} 226,153 \\ \mathbf{\$ 3 6 2 , 2 4 6} \end{array}$	$\begin{array}{r} 469,220 \\ \$ 502,970 \end{array}$	$\begin{aligned} & 11,400 \\ & 819,200 \end{aligned}$	$\begin{array}{r} 2,208,878 \\ 8,294,565 \end{array}$	$\begin{array}{r} 356,299 \\ \$ 593,235 \end{array}$	24,500,767 \$28, 034, 460	$\begin{array}{r} 542,993 \\ \$ 1,004,377 \end{array}$	$\begin{aligned} & 423,276 \\ & \$ 689,096 \end{aligned}$	$\begin{gathered} 3,120,911 \\ \$ 3,963,4 \times 1 \end{gathered}$	(105	
$\begin{aligned} & 150,000 \\ & \$ 150,000 \end{aligned}$	$\begin{aligned} & \text { } 929,523,573 \end{aligned}$	$\begin{array}{r} 184,969 \\ \$ 123,188 \end{array}$	$\begin{aligned} & 1,000 \\ & 81,650 \end{aligned}$	$\begin{array}{r} 349,269 \\ 8261,967 \end{array}$	$\begin{gathered} 191,210 \\ \mathbf{\$ 1 3 6 , 1 8 6} \end{gathered}$	14, 509, 745 $\$ 9,170,140$	$\begin{aligned} & 7,948 \\ & \$ 79,9 \end{aligned}$	$\begin{aligned} & 228,967 \\ & \$ 291,643 \end{aligned}$	$\begin{aligned} & 1,159,799 \\ & 81059 \end{aligned}$	108	
	874 8716		1,000 $\$ 1,100$	6,144 $\$ 4,944$ 4.9	10,212 88,388	$\begin{array}{r} 3,282,260 \\ \$ 2,057,672 \end{array}$	$\begin{gathered} 30,232 \\ \stackrel{y y}{2} 2,216 \end{gathered}$	10,014	$\begin{aligned} & 10,296 \\ & \$ 9,755 \end{aligned}$	$\begin{aligned} & 109 \\ & 110 \end{aligned}$	
8,175 85,000	$\begin{array}{r} 39,359 \\ \mathbf{\$ 3 9}, 359 \end{array}$		$\begin{aligned} & 50,088 \\ & 819,3 \end{aligned}$	$\begin{array}{r} 465,732 \\ \$ 302,195 \end{array}$	$\begin{array}{r} 38,760 \\ \mathbf{\$ 3 8 , 1 2 7} \end{array}$	$\begin{array}{r} 8,769,854 \\ \$ 6,881,058 \end{array}$	$\begin{array}{r} 15,000 \\ \$ 14,000 \end{array}$	59,049 \$63,686	$\begin{array}{r} 192,503 \\ \$ 164,619 \end{array}$	111	
	$\begin{aligned} & 43,294 \\ & \begin{array}{l} 468,150 \\ \$ 69,840 \end{array} \end{aligned}$		$\begin{gathered} 162,924 \\ 8100,939 \\ 874,470 \\ 8100 \end{gathered}$	$\begin{aligned} & 16,2500 \\ & 85,900 \end{aligned}$	999,490$\mathbf{\$ 3 6 0}$ \$186,386 \$821,61	$\begin{aligned} & 18,247 \\ & 898508 \end{aligned}$	$\begin{array}{r} 59,408 \\ \$ 49,805 \\ \$ 15,800 \\ \$ 16,010 \end{array}$			
			$\begin{aligned} & \$ 2,109 \\ & \$ 2,800 \end{aligned}$								
\$1,800		\$700			\$250		\$2,113			7	
2,740	2,830	2,945	2,652	73,88	3,327	690, 864	8,086	14,550	51,876	117	
101,900	91,142	75,350	78,006	1, 269, 365	104,090	10,118,725	199,313	348, 496	1,094,837	118	
$\begin{array}{r} \mathbf{6} \\ \mathbf{8 8 6 4 , 0 . 0 0} \\ \mathbf{8 6 3 0}, 549 \end{array}$	$\begin{array}{r} 8784,175 \\ 8874,479 \end{array}$	$\begin{array}{r} 6 \\ \$ 600,358 \\ \$ 458,068 \end{array}$	$\begin{array}{r} 11 \\ \$ 608,362 \\ \$ 504,280 \end{array}$	$\begin{array}{r} 42 \\ \$ 11,934,167 \\ \$ 11,199,426 \end{array}$	$\begin{array}{r} 160 \\ \$ 1,033,000 \\ \$ 922,801 \end{array}$	$\begin{array}{r} 579 \\ \$ 115,122,299 \\ \$ 104,606,916 \end{array}$				${ }_{119}^{120}$	
5 180	243	5 122	9 146	- ${ }_{3,161}$	14 240	$\begin{array}{r} 637 \\ 18,411 \end{array}$	11	15 847	46 4,003	122	
${ }^{145}$	${ }_{213}^{6}$	$\begin{array}{r}1 \\ 80 \\ \hline\end{array}$	$\begin{array}{r}1 \\ 50 \\ \hline\end{array}$	- $\begin{array}{r}31 \\ 2,177\end{array}$		(\%, ${ }_{\text {232 }}^{230}$	255		33 2,425	${ }_{125}^{124}$	
							${ }_{9}^{4}$	$\begin{array}{r}3 \\ 3 \\ 3 \\ \hline\end{array}$	2,4 4	${ }_{126}^{125}$	
				13		3					
	1			59		130				129	
				78		,		39	454	131	
				6		53				133	
	20	42	89				${ }^{60}$				
				103 99	33	3,906	10	3	608	135	
									105	136	
6	7	7	12				13	16	50	137	
		1		$\stackrel{1}{2}$	1	71	2		3	${ }_{139}^{138}$	
1	1				4	132		5	11	130	
	1	3		4	5	130	5	${ }_{3}^{2}$	8	141	
3	1	1	1	16	3	112	${ }_{2}$	1	8	143	
1	1					73			6	144	
				1			1	- 2	2	145	
									1	146	

Table 10.-boots and shoes:

		Nebraska.	New Hampsbire.	New Jersey.	New York.	North Carolina.
1	Numoer of establishments	3	67	84	223	3
2	Character of organization:		18	36	111	1
3	Firm and limited partuership.	3	30	23	68	1
4	Incorporated company........		19	25	44	2
5	Miscellaneous					
6	Capital:	843, 500	\$8, 123, 481	\$3,153,255	811, 983, 239	\$37,700
7	Land	81,000	\$124, 187	- \$68,655	\$285, 835	\$200
8	Buildiags.	\$9,000	\$473, 961	\$296,541	8623,594	\$1,850
9	Machinery, tools, and implements.	\$8,700	81,063, 569	8736,375	\$2, 362,396	\$7,450
10	Cash and sundries...................	\$24,800	\$6, 461, 764	\$2, 051, 684	\$8,711,414	\$28,200
11	Proprietors and firm members	6		86	264	1
	Salaried officials, clerks, etc.: Total number	6	362	333	1,076	3
13	Total salaries................	\$3,300	\$357, 046	\$368,968	81, 018, 153	\$1,618
	Officers of corporations:		25	40	82	2
15	Sumbe Salaries......		854, 776	\$93,432	\$139, 983	8918
	General superintendents, managers, clerks, etc.-					
$\begin{aligned} & \mathbf{1 6} \\ & \mathbf{1 7} \end{aligned}$	Total number...................	6 83,300	$\begin{array}{r} 337 \\ \mathbf{8 3 0 2}, 270 \end{array}$	$\begin{array}{r} 293 \\ \$ 275,536 \end{array}$	$\begin{gathered} 994 \\ \$ 878,170 \end{gathered}$	\$700
	Men-					
18	Number	${ }^{6}$	237	241	811	1
19	Salaries.	\$3,300	\$259,687	8252,173	\$802,984	8700
20	Number		100	52	183	
21	Salaries.........		\$42,583	823,363	\$75, 186	
	Wage-earners, including pieceworkers, and total wages:					
${ }_{23}^{22}$	Greatest number employed at any one time during the year...........	121	14, 014	5,354	18,143	45
$\stackrel{23}{23}$	Least number employed at any one time during the year............	33	9,874	3, 958	13, 398	45
25	Average number.	65	84, 971,054	\$1,723, 159	\$6,138, 653	814, 107
	Wages, 16 years and over-	817,302	34,971,954			
26	Average number....	18	7,756	2,740	9,754	40
27	Wages............	\$8,812	\$3,540,273	\$1, 259, 819	84, 465, 363	\$14, 107
	Women, 16 years and over- Average number......					
28 29	Average number..	37 88,490	81, $\begin{array}{r}3,864,143\end{array}$	8427,732	$\begin{array}{r} 5,483 \\ 81,584,992 \end{array}$	
	Cblldren, ander 16 years-					
30	Average number....		386	184	559	
31	Wages.		897, 538	\$35, 608	\$88, 298	
	Average number of wage-earners, including pieceworkers, employed during each month:					
	Men, 16 years and over-					
32	January ...	9	8,014	2,610	9,675	45
33	February .	9	8,089	2,928	10,023	45
34	March...	9	8,187	2,971	10,187	31
35	April..	11	7,816	2,974	9, 882	31
36	May....	18	7,623	2,925	9, 808	31
37	June ...	17	7,422	2,676	9,511	45
38	July....	20	7 7 515	2,177	9,134	45
39	August	25	7,721	2,704	9,771	45
40	September	25	7, 631	2,929	9,986	45
41	October ...	25	7,620	2,831	9,893	45
42	November.	26	7,386	2, 472	9,374	45
43	December	27	8, 002	2,685	9,799	27
	Women, 16 years and over-					
45	January	12	4,006	1,429	5,498	
46	March	12	4,133	1,625	6,737	
47	April	13	3,967	1,605	5,484	
48	May	35	3, 833	1,576	5,407	
49	June....	38	3,724	1,471	5,293	
50	July......	43	3,709	1,224	5,192	
51	August..	58	3,715	1,580	6,612	
52	September.	64	3,737	1,561	5,710	
53	October...	62	3,727	1,606	5,567	
54	November.	62	3,627	1,348	5,163	
55	December..........	33	4,095	1,442	5,457	
${ }_{56}$	Cbildren, under 16 years-		382			
57	February		382 400	182	585	
58	March....		401	202	587	
59	April ...		364	205	666	
60	May...		370	198	512	
6_{6}^{61}	June....		373	168	572	
62	July		386	142	653	
63	August		400	166	592	
64	September..............		372	205	586	
65	October............		377	201	554	
${ }_{67}^{66}$	November........		397	195	466	
67	December ….....................		405	173	557	
68	Average number of employees, by classes: Cutters..............................					
69	Stitchers......	${ }_{3}^{2}$	1,862	1, ${ }^{684}$	2,002	7
70	Lasters........	4	1,774	1,637	4, 1,891	7
71	Bottomers	2	1,933	791	3,478	10
72	Edge makers ...	2	457	245	, 683	2
7777778	Miscllaneous expen	2	1,353	463	1,622	4
	Total	\$2, 000	\$453,706	\$391, 043	\$1, 251, 902	
75	Rent of works	9250	\$832,530	\$19, 170	\$204,153	${ }^{1,180}$
76 77	Taxes, not including internal revenue..	\$205	\$17,289	\$8,567	\$22, 563	\$128
77	Rent of offices, insurance, interest, and all sundry expenses not bitherto included.	81,545	8398,957	\$335, 220	\$924, 075	\$850
78	Contract work.........................		84,930	\$28,086	\$100, 111	

BY STATES, 1900-Continued.

Ohio.	Pennsylvania.	Rhode Island.	Utah.	Vermont.	Virginia.	Washington.	Wisconsin.	All other states. ${ }^{3}$	
81	146	5	3	6	5	3	40	8	1
16 27	63 56	4	1	2	2	1	10 8 8	2	2 3
38	27	1	2	4		2	22	5	4
87.549142	\$6,860,480	857,358	8124.267	9478,184	9641,166	\$71,071	\$2, 473, 626	\$333,513	6
\$168, 950	\$ \$279,602	\$5,	\$94, 750	- 84,800	\$ $\$ 2.000$	\$7,071	- ${ }^{2} \mathbf{4 8 0}$, 536	-86,304	7
8464, 713	\$660, 300		\$33, 036	\$42,393	\$7,932		\$261, 290	831, 437	8
\$1,180, 322	$811,309,513$	\$56,200	821,743	- \$77, 5996	\$47,034	\$14,715	\$162,255	\% $\$ 869,638$	10
$\mathbf{8 1}, 735,157$ 87	\$4,611,065	\$51, 158	864,738	\$353, 395	$\$ 584,200$ 5	856, 356	\$1,669,545 ${ }_{29}$	\$226, 134	11
888 $\$ 960,890$	\$579, $\begin{array}{r}664 \\ \hline 98\end{array}$	\$14, 800	\$17, ${ }^{1732}$	\%32, $\begin{array}{r}40 \\ 114\end{array}$	45 $\$ 50,509$	15 $\$ 12,060$	232 $\$ 213,600$	\$20, 915	12
\% $\mathbf{7 9}$ $\mathbf{8 1 7 3 , 9 5 3}$	45 878,951		(83,500	\$5, 700	810, $27{ }^{4}$	\$7,080 ${ }^{8}$	40 847,022	\$4,800	14
$\begin{array}{r}\text { \% } \\ \hline 809 \\ \hline 8987\end{array}$	618 8500,843	r $\begin{array}{r}17 \\ 814,800\end{array}$	\$13, $\begin{array}{r}142 \\ \hline 8.2\end{array}$	34 $\$ 26,414$	\$40, 234	84, 980	\$166, 578	816, 115	16 17
662 $\mathbf{8 7 3 1}, 032$	550 $\$ 473,450$	\$14,800	\$13, $\begin{array}{r}152 \\ \hline\end{array}$	\$23, 329	- $\$ 38,650$	84, 530	157 $\mathbf{8 1 5 4 , 6 3 5}$	814, 776	18 19
$\begin{array}{r} 147 \\ 855,905 \end{array}$	$\begin{array}{r} 68 \\ \$ 27,393 \end{array}$		\$480 ${ }^{1}$	83,085	\$1, 58.4	\$450	\$11,943 ${ }^{35}$	5 $\$ 1,339$	20 21
14,004	10,479	14	159	471	1,274	116	2, 815	208	22
11,344	7, 762	11	117	269	1,079	49	$\stackrel{2}{2,192}$	135	23
12,718	- 9,144	9 8188	-140	355 $\$ 128,771$	1,153 $\$ 206,119$	75 831,461	2,507 $\$ 821,403$	\$ $\begin{array}{r}176 \\ \hline 173\end{array}$	25
83, 989, 744	\$3,111,113	\$1,888	852,558	\$128,771	\$206,119	831,461	\$821, 403	\$55, 773	20
$\begin{array}{r} 7,289 \\ \$ 2,709,382 \end{array}$	\$2, $\mathbf{5}_{5,291} \mathbf{7 8 6}$	81, $\begin{array}{r}4 \\ \hline\end{array}$	$\begin{array}{r} 98 \\ 843,275 \end{array}$	199 $\$ 86,719$	8187,214	50 823,990	1,494 $\mathbf{8 5 6 9}, 246$	136 $\mathbf{\$ 4 4}, 220$	26 27
$\begin{array}{r} \mathbf{4}, 781 \\ \mathbf{8 1 , 1 7 5 , 1 5 3} \end{array}$	$\begin{array}{r} 3,239 \\ 8838,589 \end{array}$	4 $\$ 728$	40 $\$ 8,530$	841, $\begin{array}{r}155 \\ \hline 952\end{array}$	\$18, ${ }^{1271}$	\$7,011 ${ }^{22}$	849 $\$ 227,820$	\$11, 103	${ }_{29}^{28}$
$\begin{array}{r} 648 \\ \$ 105,209 \end{array}$	$\begin{array}{r} 614 \\ \$ 114,738 \end{array}$	\$120	\$753 ${ }^{2}$	\$100	5 $\$ 874$	3 $\$ 460$		\$455 ${ }^{3}$	30 31
					1,002		1,577	136	32
7,475	5,286	4	85 100	189	1,965	58	1,540	146	33 34
7,548	5,595		98	182	973	55	1,546	148	${ }_{35}$
7,307	5, 565	4	98	178	${ }_{927}^{988}$	54	1,435	150	36
7,159	5, 326	4	97	174	927 954	24	1,466	152	37
6,714	4,911	4	96 94	152 167	$\begin{array}{r}927 \\ 1,077 \\ \hline\end{array}$	49	1,458	6	38
7,427	4,785		1093	2016	1,089	54	1,487	142	49
7,515	5, ${ }^{\mathbf{5}, 507}$	$\stackrel{4}{5}$	101	223	1,100	51	1,539	142	40
7,196	5,394	4	102	243	1,046	53 4	1,330	150	42
7,093	5, 164	5 4	102	244	1,043	46	1,471	157	43
7,258	5,065	4	102	244					
5,000	3, e112	4	32	158	142 141 1	26 26	887 879	30	45
5,017	3,347	4	39 39	158	139	23	888	41	46
4,962	3,431	4	39 39	148	137	22	866	42	47
4,766 4,647	3,375 3,266	4	39	154	88	22	799 826	43	49
4,647 4,378	3,266 3,036	4	37	138	134	13	882		50
4,935	2, 896	4	41	142	133 133 13	21	847	39	51
4,925	3,236	4	43	154	133	26	874	39	52
4,710	3,274	4	43	168	108	25	883	43	53
4,724	3,262		43	173	131	17	772 843	48	55
4,636 4,668	3,260 3,170	${ }_{3}^{4}$	43	164	106	17	843		
						3	190		
667	600	1	2	1	5	3	183	3	57
668	${ }_{623}^{625}$	1	${ }_{2}^{2}$	1	5	3	175 162	$\stackrel{3}{3}$	59
671	633	1	2	1	5	3 3	145	8	60
6578	628	1	2	1	3	3	159	3	61
619	597	1	2	1	4	3	160		62
668	541		1	1	5	3	163	$\stackrel{3}{3}$	64
677	645		2	1	5	5	168	3	65
6513	623		2	1	5	6	153	3	66
608	606		2	1	3	6	150	3.	67
618	608					10	266	18	68
	1,009		12	60	336	21	988	37	69
4,460	2,476	3	44	115	149	9	384	37	70
2,008	1,059	1	${ }_{25}^{22}$	24	170	20	- 708	21	72
2,257	1,643	1	11	15	41	8	262	17	73
$\begin{array}{r}\text { 2, } \\ 1,398 \\ \hline 189\end{array}$	696	$\cdots \cdots \cdots \cdots \cdots{ }^{1}$	15	56	184				
					835, 122	814,937	\$279, 913	\$43,625	74
\$637,537	\$572,624	\$27,480	\$5,017	\$1,060	- 8760	\$2,958	\$15,831	${ }_{8989}$	76
877, 084	$\$ 48,953$ $\$ 10,193$	\$8145	\$1,077	\$8547	$\$ 1,357$ $\$ 33,005$	(${ }^{811}$	\$143,135	89,905	-77
\$ 532,125	\$509,079	\$5,867	83,940	\$24,318	\$33,005				
				5			\$112,034	\$31,945	

Includes states having less than 3 establishments in order that the operations of individua

Table 10.-BOOTS AND SHOES:

BY STATES, 1900-Continued.

1 Includes states having less than 3 establishments in order that the operations of individual establishments may not be diselosed. These estahlishments are distributed as follows: Alabama, 1; Colorado, 1; Delaware, 1; Kansas, 1; Oregon, 2; Temnessee, 2.

Twelfth Census of the United States.

Census Bulletin.

No. 222.
WASHINGTON, D. C.
July 2, 1902.

AGRICULTURE.

UTAH.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Utah, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-

The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides and all other buildings used by him in connection with his farming operations.
The farms of Utah, June 1, 1900, numbered 19,387, and were valued at $\$ 50,778,350$. Of this amount $\$ 10,651,790$, or 21.0 per cent, represents the value of buildings, and $\$ 40,126,560$, or 79.0 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 2,922,550$, and of live stock $\$ 21,474,241$. These values, added to that of farms, give $\$ 75,175,141$, the " total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaugbtered on farms, are referred to in this bulletin as "animal products." The total value of all such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 16,502,051$, of which amount $\$ 8,259,080$, or 50.0 per cent, represents the value of animal products, and $\$ 8,242,971$, or 50.0 per
cent, the value of crops, including forest products cut or produced on farms. The "total value of farm products" for 1899 exceeds that for 1889 by $\$ 11,610,591$, or 237.4 per cent, but a part of this gain is due to a more detailed enumeration in 1900 than in 1890.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 2,959,390$, leaving $\$ 13,542,661$ as the gross farm income for that year. The percentage which this anount is of the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Utah in 1899 it was 18.0 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

Special reports as to the dimensions and cost of the leading irrigation ditches and canals, the area of land under them, methods for the artificial application of water to the growing crops, and other facts relating to irrigation were obtained by correspondence with farmers, engineers, and others. This correspondence was under the joint direction of Mr. F. H. Newell, chief hydrographer of the Geological Survey, acting as expert special agent for the division of agriculture, and Mr. Clarence J. Blanchard.
The statistics presented in this bulletin will be treated in greater detail in the final report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Utah.

Very respectfully,

Total IrrigatedArea

629,293 Acres

AGRICULTURE IN UTAH.

GENERAL STATISTICS.

The total land area of Utah is 82,190 square miles, or $52,601,600$ acres, of which $4,116,951$ acres, or 7.8 per cent, are included in farms.

Utah belongs to the great plateau of the Rocky Mountains, its valleys being 2,700 feet above sea level and its mountain peaks reaching a height of from 12,000 to 15,000 feet.

East of the Wasatch Mountains, which bisect the state from north to south, the land is high and rocky, cut into canyons and gorges, and drained by rivers and mountain streams, which, with the exception of the Green and the Grand that unite to form the headwaters of the Colorado River, only attain volume and strength during the spring thaws.

W est of the mountains is a succession of small valleys, and the drainage is into sinks and lakes which have no outlet, the largest of these being the Great Salt Lake.

The soil of the mountains and more elevated valleys is hard, clayey, and generally poor, but produces succulent grasses which furnish good ranges for live stock. In the lower parts the soil is sedimentary and not difficult of reclamation. Agriculture, however, is almost entirely dependent upon irrigation, the rainfall being slight and uncertain.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850 , the total and average acreage, and the per cent of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

ydar.	Number of farms.	NCMber of acres in farms.				Per cent of farm proved.
		Total.	Improved.	Unimproved.	Average.	
1900.	19,387	4, 116, 951	1,082,117	3,084, 834	212.4	25.1
1890...	10,517	1,323,705	548, 223	775, 482	125.9	41.4
1880.	9,452	655, 524	416, 105	239,419	69.3	63.5
1870.	4,908	148, 361.	118,755	29,606	30.2	80.0 85.9
1860. 1850.	3,635 926	89,911 46,849	77,219 16,383	12,692 30,516	24.7 50.6	85.9 34.9
			16, 30			

The number of farms in Utah in 1900 was more than twenty times as great as in. 1850 , and 84.3 per cent greater than in 1890. The total farm area has also increased very rapidly, the rate of gain for the last decade being 211.0 per cent. The large increase in farm area is due to the extensive additions to private ranges
from land formerly embraced in the public domain. This has led to an increase in the average size of farms and, as most of the new land is unimproved, a corresponding decrease is shown in the per cent of farm land improved. The actual area improved has increased rapidly, nearly doubling in the last decade.

FARM PROPERTY AND PRODUCTS.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF FARM PRODUCTS: 1850 TO 1900.

year.	Total value of iarm property.	Land, im-provements and buildings.	Implements and machinery.	Live stock.	Farm products.
1900.	\$75, 175, 141	\$50, 778, 350	\$2,922, 550	821, 474, 241	\$16,502, 051
1890.	36, 381, 270	28, 402,780	1,164,660	2 6, 813,830	4, 891, 460
1880.	18,268, 569	14, 015, 178	946, 753	${ }^{2} 3,306,638$	3,337, 110
$1870{ }^{\text {a }}$	4,739,126	2, 297, 922	291, 390	2,149, 814	${ }^{4} 1,973,142$
1860.	3,092,951	1,333,355	242, 889	1,516,707	
1850	943,055	311, 799	84, 288	546,968	

${ }^{1}$ For year preceding tbat designated.
2 Exclusive of the value of animals on ranges.
${ }_{3}$ Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years they must be diminished by one-fifth.
${ }^{4}$ Includes betterments and additions to live stock

Since 1850 the total value of farm property bas increased $\$ 74,232,086$, and in the last decade $\$ 38,793,871$, or 106.6 per cent. The gain in value of land, improvements, and buildings between 1890 and 1900 was $\$ 22,375,570$, or 78.8 per cent; in that of implements and machinery, $\$ 1,757,890$, or 150.9 per cent; and in that of live stock, $\$ 14,660,411$, or 215.2 per cent. The value of farm products in 1899 was 237.4 per cent greater than in 1889, but a portion of this increase is doubtless the result of a nore detailed enumeration in 1900 than formerly. The most important item which was enumerated in 1900 , but not in 1890 is the value of animals sold and animals slaughtered on farms, which amounted, for 1899 , to $\$ 3,354,873$, or 28.9 per cent of the increase.

COUNTY STATISTICS.

Table 3 gives a smmmary of general agricultural statistics by counties.

Table 3.-NUMBER AND ACREAGE OF FARMS, AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	NUMBER OF FARMS.		acres in farms.		Values of farm property.				Value of products not fed to live stock.	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Land and im provements (except buildings).	Buildings.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
The State..	19,387	18,224	4,116,951	1,032,117	\$40, 126, 560	\$10, 651, 790	\$2, 922, 550	\$21, 474, 241	\$13,542, 661	\$1,837, 900	\$14,300
Beaver	301	290	29,239	14, 821	414, 920	174, 010	42,610	286, 128	165, 124	11,510	90
Boxelder	1,017	975	570,669	90,703	2,636,160	510,990	204,990	1,076, 976	710,894	128,890	990
Cacbe	1,795	1,689	316,662	166, 272	4,089,700	850,700	300,410	1,107,185	1,083, 149	137,440	200
Carbon	144	115	27,975	8,780	173,920	61,010	16,190	208, 141	94, 488	18,390	50
Davis.	938	907	225, 957	59,575	3,040, 200	736,800	153,370	885, 449	905,646	152, 160	1,060
Emery	458	446	54, 181	25,918	564,750	213,550	90,600	403, 368	228, 309	17,380	350
Garfield	237	227	28,800	13, 652	255, 850	122, 810	33,930	507,014	203,829	13,670	80
Grand	121	109	15,686	4,748	278, 250	46,140	19,810	371, 459	134, 016	26,980	
1ron.	235	208	23,562	7,746	220, 840	108, 000	26,520	256, 246	167,136	5,900	
Juab.	356	303	79,317	26,351	806, 130	153, 980	75,540	556, 319	315, 116	31,450	200
Kane.-	213	204	23,950	6,214	223,000	134, 990	30,100	318,677	152,436	14, 380	20
Millard.	676	643	108,009	39, 153	1,364,010	344, 360	110, 720	715, 054	423,922	55, 330	55
Morgan	299	289	138,628	11, 368	493,380	140,680	35,720	244, 776	166,711	14,780	110
Pinte	189	185	27,548	12,349	241, 420	67,840	31,850	218,165	118, 998	8,660	90
Rich.	276	267	160, 866	48,053	877, 730	146, 820	95,930	1,271,883	468, 521	84, 470	
Salt Lake.	2,208	2,095	275,939	74,042	6,787, 270	1,709, 810	318,540	2, 296, 064	1,768,431	259,090	2,510
San Juan	85		18,846	4,360	78,390	27,940	12,140	400,246	136, 143	13,370	
Sanpete	1,618	1,484	188, 659	91,971	3, 010,100	867,970	218,340	2, 528, 328	1,090,253	227,680	30
Sevier	946	905	75,207	41,315	1,257,860	398, 350	118, 120	832,888	482, 747	49,190	570
Summit	608	567	289, 651	35, 296	1,148, 670	318, 100	90,880	1,034, 930	447,519	101, 180	225
Tooele.	487	457	116,016	27,057	944,670	293, 710	77,720	833, 862	424,388	63,560	
Uinta.	559	+539	340,326	24, 089	901,900	250, 110	92, 100	800, 245	381, 300	72, 750	130
Wasatch	2, 760	2,583	223,836	100, 170	5,111,280	1,455,700	351,140	1,969, 889	1,725, 139	182, 980	4,200
Wasatch	492	471	93,480	21,947	687, 820	279,390	60,970	596, 926	275,147	26,540	40
Washington	477	463	21, 886	10,866	495,710	256,150	73, 100	263, 940	233, 142	6,460	100
Wayne	271 1,479	251 1,399	29,354 186,632	12, 202	210,400 $3,208,580$	70,080	34, 310	226, 689	122, 172	7,830	
Uinta Valley and compabgre ${ }^{1}$	1,479 142	1,399 97	186,632 426,070	48, 208 4,891	$3,208,580$ 603,650	876,880 34,920	196,290 10,610	949,344 314,050	$1,070,920$ 47,065	105,390 490	3,200

${ }^{1}$ Indian reservation.

In all counties the number of farms increased in the last ten years, and about one-third of the counties report more than twice as many farms. The total acreage in farm land increased to over three times that reported in 1890, and the improved area also shows a substantial increase, every county contributing to these gains. The average size of farms for the state is 212.4 acres, and varies from 45.9 acres in Washington county to 608.8 acres in Uinta county. In general the northern counties report the largest farms.

There was a marked increase in the value of farms in all counties in the last decade. In 1900 the average value of farms was $\$ 2,619$. The northwestern counties report the highest values, but in no county does the average per farm fall below $\$ 1,000$.

A general increase is reported in the value of implements and machinery. The total value of live stock was over three times as great in 1900 as in 1890 , and averaged $\$ 1,108$ per farm. In all except three counties the value reported in 1900 was more than twice as great as that in 1890 .

FARM TENURE.

Table 4 gives a comparative statement of farm tenule for 1880,1890 , and 1900 . The farms operated by tenants are divided into two groups, designated as farms operated by "cash tenants," who pay a rental in cash or a stated amount of labor or farm products, and ""share tenants," who pay as rental a stated share of the products.

In Table 5 the tenure of farms for 1900 is given by race of farmer. The farms under the classification "owner" are subdivided into four groups, designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it, and the other or others owning no part, but receiving for
supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

YEAR.	Total numfarms.	number of farms operATED BY—			PER CENT OF FARMS OPER- ated by-		
		Owners. ${ }^{1}$	$\begin{aligned} & \text { Cash } \\ & \text { tenants. } \end{aligned}$	Share tenants.	Owncrs. ${ }^{1}$	$\begin{aligned} & \text { Cash } \\ & \text { tenants. } \end{aligned}$	Share tenants.
1900	19,387	17,674	506	1,207	91.2	2.6	6.2
1890	10,517	9, 974	121	422	94.8	1.2	4.0
1880	9,452	9,019	60	373	95.4	0.6	4.0

${ }^{1}$ Including "part owners," "owners nad tenants," and " managers."
Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF FARMS OF SPECIFIED TENTJRES.

race.	Total number of farms.	Owners.	Part owners.	Own-tenants.	Managers.	$\begin{aligned} & \text { Cash } \\ & \text { ten- } \\ & \text { ants. } \end{aligned}$	Share tenants.
The StateWhiteColored...-...	19,387	15,177	2,051	135	311	506	1,207
	$\begin{array}{r}19,144 \\ \hline 243\end{array}$	14,979	2,045 6	135	311	$\begin{array}{r}472 \\ 34 \\ \hline\end{array}$	1,202 5
Chinese	$\begin{array}{r} 33 \\ 199 \\ 11 \end{array}$	… 1908				33	
Indian....			6			1	3

> Part 2.-per cent of farms of specifled tenures.

The State.	100.0	78.3	10.6	0.7	1.6	2.6	6.2
White	100.0	78.2	10.7	0.7	1.6	2.5	6.3
colored..	100.0	81.5	2.5			14.0	2.0

In the period from 1880 to 1900 the total number of farms increased 105.1 per cent, the greater part of the increase having occurred in the last decade. Since 1890 the number of farms operated by owners has increased 7,700 , or 77.2 per cent; by cash tenants, 385 , or 318.2 per cent; and by share tenants, 785 , or 186.0 per cent. The percentages in Table 4 show that the number of farms operated by owners has not increased as rapidly during the last decade as the number operated by tenants.

In $1900,98.7$ per cent of all farms were operated by white farmers and 1.3 per cent by colored farmers. Of the white farmers 89.6 per cent own all or a part of the farms they operate, and 10.4 per cent operate farms owned by others. The corresponding percentages for colored farmers are 84.0 and 16.0. The Indians, who comprise the greater part of the colored farmers, generally own the farms they operate, as do 8 of the 11 negro farmers, while all the Chinese farmers are cash tenants.

No previous census has reported the number of farms operated by "part owners," "owners and tenants,"
and "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE of Farmer and by tenure, with percentages.

bace of farmer, and tenure.	Number of farms.	number of acres in Farms.			VALUE OF FARM PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Total.	Per	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$
The State.	19,387	212.4	4,116,951	100.0	\$75, 175, 141	100.0
White	19, 144	214.0	4,097, 163	99.5	74, 768,044	99.5
Negro	11	58.9	648	(1)	20,675	(1)
Indian	199	95.4	18,983	0.5	324, 287	0.4
Chinese	33	5.1	167	(1)	62,135	0.1
Owners.	15, 177	116.2	1,763,619	42.8	52, 238,977	69.5
Part owners	2,051	399.7	819, 696	19.9	9, 814, 427	13.1
Owners and tenants.	135	135.1	18,239	0.4		0.8
Mrnagers.	311	2, ${ }_{988}{ }^{38.1}$	${ }_{467,795}^{929,298}$	22.6 11.4	$6,082,323$ $2,469,915$	8.1
Cash tenants..	506 1,207	924.5 98.0	467,795 118,304	11.4 2.9	$2,469,915$ $3,940,692$	3.3 5.2

${ }^{1}$ Less than one-tenth of 1 per cent.

Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

RACE OF FARMER,and tanure.	average values per farm of-					Per cent or gross on total investfarm property.
	Farm property, Jnne 1, 1900.				Grossincome (prod1899 not fed to live stock).	
	Land and improve ments (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State.	\$2,070	8549	$\$ 151$	\$1, 108	\$698	18.0
White	2,087	554	152	1,113	705	18.0
Negro	1,391	259	74	156	194	10.3
Indian	550	175	80	825	118	7.2 40.1
Chinese.	1,721	81	64	26	756	40.1
Owners.	1,776	543	145	979	588	17.1
Part owners	2,965	598	180	1,042	946 640	19.8
Owners and tenants.	3,214	626 1,012	165	10,737	4,956	13.3
Managers....	3,516	1,444	122	$\begin{array}{r}10 \\ \hline 79\end{array}$, 886	18.2
Share tenants	2,147	461	126	531	506	15.5

The average area, the average value of property and products, and the per cent of gross income are higher for white than for colored farmers, with the exception of the average and per cent of gross income for farms operated by Chinese farmers. Most of the last group report intensively cultivated vegetable farms.

The farms of managers show the highest average value of property, and the highest average and per cent of gross income. Most of these farms are devoted to live stock or grain.

FARMS CLASSIFIED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

AREA.	Number of farms.	NUMBER OFACRES IN FARMS.			Value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
TheState........	19,387	212.4	4, 116,951	100.0	\$75,175, 141	100.0
Under 3 aeres	595	2.5	1,487	(1)	2,512,763	3.3
3 to 9 acres.	1,407	5.9	8,258	0.2	2,082,224	2.8
10 to 19 acres	2,202	14.1	30,987	0.8	4,138, 535	5.5
20 to 49 acres.	5,261	32.9	173, 303	4.2	13,483, 291	17.9
50 to 99 acres.	3,741	71.9	268,889	6.5	13, 232,924	17.6
100 to 174 acres.	3,363	142.7	480, 041	11.7	12, 486, 808	16.6
175 to 259 acres	1,194	212.7	254,021	6.2	$6,163,802$	8.2
260 to 499 acres	1,008	346.3	349,074	8.5	7,351,851	9.8
500 to 999 acres. .-.	368	663.8	244,291	5.9	4,323, 194	5.8
1,000 aeres and over...-	148	9,300.8	2,306,600	56.0	9, 399, 749	12.5

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-average values of specified classes of FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER OENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

Area.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1.1900.				Gross income (products of 1899 not fed to live stock.)	
	Land end improvements (except buildings).	Bnildings.	Implemend ma chinery.	Live		
The State	\$2,070	$\$ 549$	\$151	\$1,108	\$698	18.0
Under 3 acres.	313	254	63	3,593	1,473	34.9
3 to 9 acres	691	390	63	331	306	20.7
10 to 19 aeres	1,038	424	$\begin{array}{r}87 \\ 121 \\ \hline\end{array}$	330	324	17.2
20 to 49 ares	1,470				${ }^{389}$	15.2
50 to 99 aeres	2,047 2,031	576	152	762 999	302 690	14.2
100 to 174 acres	2,031	517	104	1981	690	18.6
175 to 259 aeres	2,860	717	204	1,381	926	17.9
260 to 499 aeres.	4,022	882 1.145	${ }_{343}$	4,168	1,283	17.6
1,000 acres and	6,096 19,152	1,755	398 759	- 16,1636	2,491 7,929	21.3 20.9

The group of farms containing from 20 to 49 acres each comprises a greater part of the total number of farms than any other. The group " 1,000 acres and over" contains more than one-half of the total acreage, but only 12.5 per cent of the total value of farm property.

With few exceptions, the average values of the several forms of farm property and products increase with the size of the farms. The high average value of live stock for farms under 3 acres and the large gross income for the same class are due to the fact that most of them are ranges consisting almost entirely of public lands. Some of them are city dairies and market gar-
dens. The incomes from these industries are determined not so much by the acreage of land used, as by the capital invested in buildings, implements, and live stock, and the amounts expended for labor and similar items.

farmi classified by principal source of income.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop and constitutes at least 40.0 per cent of the value of the products not fed to live stock, the farm is designated as a "hay and grain" farm. If vegetables are the leading crop, constituting 40.0 per cent of the value of products, the farm is designated a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive their principal income from any one class of farm products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.
Table 10.-NUMBER AND ACREAGE OF FARMS AND value of farm property, June 1, 1900, ClassiFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOUREE OFINCOME.	Number of farms.	NUMRER OF ACRES IN FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per eent.	Total.	Per cent.
The State.	19,387	212.4	4,116,951	100.0	\$75, 175, 141	100.0
Hay and grain	6,857	172.3	1,181,514	28.7	23, 372, 694	31.1
Vegetables	729	43.7	31,833	0.8	2,085,087	2.7
Fruits .	412	36.7	15, 116	0.4	1,228, 871	- 1.6
Live stock	5,458	453.5	2, 476, 256	60.1	32,633,667	43.4
Dairy produce	1,815	88.0	159, 773	3.9	4,928,736	6.6
Sugar.-.-.--	440	38.1	16,771	0.4	1,221, 282	1.6
Flowers and plants	20	2.2	44	(1)	1,80,960	0.1
Nursery products.	17	58.5	995	(1)	137,500	0.2
Miseellaneous .	3,639	64.8	235,649	5.7	9,536,344	12.7

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 11.-AVERaGE Values of specified Classes OF FARM PROPERTY AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

For the several classes of farms the average value peracre of products not fed to live stock are as follows: For farms deriving their principal income from towers and plants, $\$ 768.23$; nurser'y products, $\$ 122.65$; fruits, $\$ 17.46$; sugar, $\$ 15.77$; vegetables, $\$ 12.94$; miscellaneous, $\$ 6.69$; dairy produce, $\$ 4.56$; hay and grain, $\mathbb{\$ 3 . 0 6}$; and live stock, $\$ 2.64$. The wide variations in the averages and percentages of gross income are largely due to the fact that in computing gross income no deductions are made for expenses involved in operation. For florists' establishments and nurseries the average expenditures for such items as labor and fertilizers represent a far greater percentage of the gross income than for "live-stock" and "miscellaneous" farms. If it were possible to present the average net income, the variations shown would be comparatively slight.

FARMIS CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

VALUE OF PRODUCTS NOT FED TO LIVE STOCK.	Number of farms.	NCMBER of ACRES inFARMS. farms.			value of farm PROPERTY.	
		Average.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Total.	Per ceut.
The State	19,387	212.4	4,116,951	100.0	\$75, 175, 141	100.0
80.	230	91.2	20,987	0.5	453, 510	0.6
\$1 to \$49	466	60.9	28, 393	0.7	454,900	0.6
\$50 to \$99	1,089	55.9	60,907	1.5	1,385, 260	1.8
\$100 to \$249	4,408	60.9	268, 565	6.5	7,195, 780	9.6
\$250 to 4499	5,685	76.1	432, 681	10.5	14, 117, 390	18.8
8500 to $\$ 999$	4,625	144.6	668,957	16.3	18, 212, 320	24.2
81,0C0 to \$2,499	2,069	250.5	518, 341	12.6	15,088,541	20.1
\$2,500 and over	815	2,598.9	2,118,120	51.4	18, 267, 440	24.3

Table 13.-AVERAGE Values OF specified Classes OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF. GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

That many of the farms were homesteads taken up too late for cultivation that year is indicated by the fact that of the 230 farms of the state reporting no income for 1899,204 were operated by owners and 53 were of 100 to 175 acres in size. There were some farms also from which no reports of the products of 1899 could be secured, as the persons in charge June 1, 1900, did not operate the farms the preceding year, and could give no information concerning the products of that year. To this extent the reports fall short of giving a complete report of farm products in 1899.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the census of 1900. The age grouping of neat cattle was determined by their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in previous census reports.
Table 14 presents a summary of live-stock statistics.
Table 14.-DOMEStIC animals, FOWLS, AND BEES ON FARMS AND RANGES, JUNE 1, 1900, WITH TOTAL AND aVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

Live stock.	Age, in years.	ON FARMS AND RANGES.			$\begin{gathered} \text { NOT ON } \\ \text { FARMS } \\ \text { OR } \\ \text { RANGES } \end{gathered}$
		Number.	Value.	Average value.	Number.
Calves.	Under 1	78,940	\$729,551	\$9.24	2,592
Steers.	1 and nnder 2.	32,505	544,555	16.75	379
Steers	2 and under 3 .	17,512	413, 679	23.62	121
Steers	3 and over...-	6,073	174, 487	28.73	104
Bulls.	1 and over...-	5,445	219,312	40.28	73
Heifers	1 and under 2.	40,461	681,040	16.83	732
Cows kept for milk	2 and over....	65,905	2,037,367	30.91	8,379
Cows and heifers not kept for milk.	2 and over....	96,849	2,352, 853	24.29	551
Colts - -	Under 1.	11,395	122,843	10.78	277
Horses	1 and nuder 2.	13,515	247,348	18.30	287
Horses	2 and over....	90,974	3,026, 122	33.26	12, 438
Mule colts	Under 1 .-.	458	6,279	13.71	15
Mules...	1 and under 2.	$\begin{array}{r}380 \\ \hline\end{array}$	9,775	25.72	20
Mules.	2 and over....	1,278	42,796	33.49	126
Asses and burros.	All ages......	8888	$\begin{array}{r}15 \\ 555 \\ \hline\end{array}$	17.52	39
Lambs.	Under 1.	1,265,289	2,318, 866	1.83	513 509
Sheep (ewes)	1 and over....	1,893, 802	5,695, 818	3.01	2,509
Sheep (rams and wethers).	1 and over....	659,332 65,732	$2,241,804$ 293,115	3.40 4.46	393 6,036
Swine---- - . . - --- -- - -	All ages	65,732 1,427	293,115 2,702	4.46 1.89	6,036
Goats	All ages .-.-.-	1,427	2,702	1.89	42
Fowls: ${ }^{1}$ Chickens:		534,842			
Turkeys		10,649	186, 922		
Geese..		2,759			
Ducks.		8,503)			
Bees (swarms of)		33,818	111,452	3.30	. \cdot....
Value of all live stock.			21, 474, 211		

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.
${ }^{2}$ lneluding Guinea fowls.
The total value of all live stock on farms and ranges, June 1, 1900, was $\$ 21,474,241$, of which 47.8 per cent represents the value of sheep, 23.8 per cent the value of neat cattle other than dairy cows, 15.8 per cent the value of horses, 9.5 per cent that of
dairy cows, and 3.1 per cent that of all other live stock.

No reports were secured of the value of live stock not on farms or ranges, but it is probable that such animals have higher average values than those on farms. Allowing the same average value, bowever, the total value of the domestic animals not on farms or ranges is $\$ 788,159$. Exclusive of poultry and bees not on farms the total value of live stock in the state is approximately $\$ 22,262,400$.

CHANGES IN LIVE STOCK KEPT ON FARMS AND RANGES.
The following table shows the changes since 1860 in the numbers of the most important domestic animals.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS AND RANGES: 1850 TO 1900.

YEAR.	Dairy Cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	65,905	277,785	115, 884	8,004	2,553,134	65, 732
18902	45,982	154, 284	65,057	1,554	1,014, 176	27,046
$1880{ }^{2}$	32, 768	62,648	38,131	2,898	233, 121	17,198
1870.	17,563	21,617	11,068	2,879	59,672	3,150
1860.	11,967	22,127	4,565	851	37,332	6,707
1850.	4,861	7,755	2,429	325	3,262	914

${ }^{1}$ Lambs not included.
${ }^{2}$ Exclusive of animals on ranges.
The live-stock enumerations in 1880 and in 1890 did not include domestic animals on ranges, and hence the figures for those years presented in the table are not strictly comparable with the figures for 1900 . The number of animals on ranges in 1890 was estimated by special agents to be as follows: All neat cattle, 78,047; horses, 22,243 ; sheep, 922,730 . In comparing the number of animals reported in 1900 with the .umber reported in 1890 these estimates are disregarded. Nearly fourteen times as many dairy cows were reported in 1900 as in 1850, the gain in the last decade being 43.3 per cent. Nearly thirty-six times as many other neat cattle were reported in 1900 as in 1850 , the gain since 1890 being 80.0 per cent. Horses have increased nearly fiftyfold since 1850 and 78.1 per cent since 1890 . Nine times as many mules were kept in 1900 as in 1850 , the increase in the last decade being 93.3 per cent. No other class of animals shows so great a numerical change as sheep, the rate of gain since 1890 being 151.7 per cent. Swine show large increases from decade to decade. Nearly ten times as many were reported in 1900 as in 1860, the gain in the last ten years being 143.0 per cent.

In comparing the poultry report of 1900 with that of the Eleventh Census, it should be borne in mind that in 1900 the enumerators were instructed not to report fowls less than three months old, while in 1890 no such limitation was made. Notwithstanding this fact, poultry of all kinds show increases since 1890, as follows: Chickens, 91.3 per cent; all other poultry, 33.4 per cent.

ANIMAL PRODUCTS.

Table 16 is a summarized statement of the animal products of 1899 .

Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1899.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool..	Pounds.....	17, 050, 977	\$22, 599, 638
Mohair and goat hair	Pounds......		142
Milk Butter	Gallons.....	$\left.{ }^{1} 25,124,642\right)^{2}$	
Cheese	Pounds......	2,812, 169,251$\}$	2 1, 522,932
Eggs	Dozens	3,387, 340	424,628
Poultry			262, 503
Honey.	Pounds.	1,292, 118 $\}$	
Waẍ	Pounds.	23,740	94, 364 $2,695,504$
Animals slaughtered			$\begin{array}{r} 2,695,504 \\ 659,369 \end{array}$
Total.			8,259,080

[^149]The value of the animal products in 1899 was $\$ 8,259,080$, or 50.0 per cent of the value of all farm products, and 61.0 per cent of the gross farm income. Of the total value given, 40.6 per cent represents the value of animals sold and animals slaughtered on farms; 31.5 per cent the value of wool, mohair and goat hair; 18.4 per cent the value of dairy products; 8.3 per cent the value of poultry and eggs; and 1.2 per cent that of honey and wax.

ANIMALS' SOLD AND ANIMALS SLALGHTERED.

The operators of 9,895 farms, or 52.5 per cent of all having domestic animals, report sales of live stock on farms. The average value per farm of live animals sold was $\$ 272.41$, and the average value per farm of animals slaughtered was $\$ 49.32$. In securing the reports of sales of live animals the enumerators were instructed to obtain from each farm operator a statement of the amount received from sales in 1899 , less the amount paid for animals purchased the same year.

DAIRY PRODUCTS.

The nrogress of dairying corresponds with that of other branches of agriculture. In the last ten years the production of milk has increased 191.6 per cent; that of butter made on farms, 59.8 per cent; that of cheese made on farms, 3.5 per cent.

Of the $\$ 1 ; 522,932$ given in Table 16 as the value of dairy products in $1899, \$ 875,746$, or 57.5 per cent, represents dairy products sold, and $\$ 647,186$, or 42.5 per cent, that of dairy products consumed on farms. Of the former amount, $\$ 645,550$ was received from the sale of $9,964,903$ gallons of milk; $\$ 3,013$ from 3,312 gallons of cream; $\$ 214,910$, from $1,125,377$ pounds of butter; and $\$ 12,273$, from 122,933 pounds of cheese.

POULTRY AND EGGS.

The total value of the products of the poultry industry in 1899 was $\$ 687,131$, of which amount 61.8 per cent represents the value of eggs produced, and 38.2 per cent the value of fowls raised. In 1899, 3,387,340 dozen eggs were produced, three times as many as ten years before.

WOOL.

For half a century the production of wool has increased rapidly. By the Twelfth Census $17,050,977$ pounds were reported, nearly four times as much as in 1890, but a part of this increase is probably only apparent, as the fleeces of a large number of sheep were omitted from the table in 1890 , but included in a general estimate of wool shorn after the census enumeration. The average weight of the fleeces increased from 5.0 pounds in 1890 to 6.4 pounds in 1900, indicating improvement in the grade of sheep kept. Wool growing is a leading industry throughout the state, as the dry climate keeps the sheep in good health and improves the texture and cleanliness of the wool. San Pete county shows the greatest production in both 1890 and 1900 , but Grand county shows the greatest increase.

HONEY AND WAX.

The quantity of honey produced in 1899 was $1,292,118$ pounds, nearly three times the product of 1889. The quantity of wax reported in 1899 was 23,740 pounds, while in 1889 it was but 11,708 pounds.

HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.
Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.
Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE $1,1900$.

classes.	Horses.			dairy cows.		
	Farms reportiog.	Number.	Average per farm.	Farms reporting.	Number.	Average per farm.
Total.	17,806	115, 884	6.5	16,581	65, 905	4.0
White farmers. Colored farmers	17,581 225	109,907 5,977	6.3 26.6	16,562 19	65,838 67	4.0 3.5
Owners ${ }^{1}$	16, 104	100,473	6.2	15,128	60,218	4.0
Managers...	409	7,029 $\mathbf{1}, 890$	26.5 4.6	1		3.9 3.9
Cash tenants.	409 1,028	1,890 6,492	4.6 6.3	324 956	1, ${ }^{1,285}$	3.9 3.6
Under 20 acres.	3,428	15,918	4.6	3,114	6,488	2.1
20 to 99 acres.	8,487	38,368	4.5	8,041	28,471	3.5
100 to 174 acres	3,169	24, 027	7.6	2,886	13, 624	4.7
175 to 259 acres	1,160	9,592	8.3 17.9	1,096		5.9 7.6
260 acres and over.	1,562	27,984	17.9	1,444	10,922	7.6
Hay and grain	6, 146	34, 677	5.6	5,506	18,932	3.4
Vegetables..	659 357	2,472 1,216	3. 3.4 3.4	5054	1,330 678	2.4
Fruit.....	5, 109	52,591	10.3	4, 697	21,145	4.5
Dairy	1,698	8,878	5.2	1,807	11,841	6.6
Sugar	395	1,394	3.5	376	1,035	2.8
Miscellaneous ${ }^{2}$	3,442	14,656	4.3	3,333	10,944	3.3

[^150] rice farms.

CROPS.
The following table gives the statistics of the principal crops grown in 1899:

Table 18.-ACREAGES, QUANTITIES, aND ValUES OF THE PRINCIPAL FARM CROPS IN 1899.

crops.	Acres.	Unit of measure.	Quantity.	Value.
Corn.	11,517	Bushels.	250, 020	\$121,872
Wheat	189,235	Bushels.	3,413,470	1,575,064
Oats.	43,394	Bushels.	1,436, 225	553,847
Barley	8,644	Bushels.	- 252, 140	121,826
Rye	2,866	Bushels.	28,630	18, 761
Buckwheat	2, 43	Bushels.	-640	- 419
Flaxseed	1	Bushels.	20	40
Clover seed		Bushels.	35,328	127,901
Grass seed.		Bushels.	-39	127 87
Hay and forage	388,043	Tons...	851, 864	3,862,820
Cotton.-	10	Bales.	-5	, 250
Cotton seed.		Tons.	2	12
Broom corn	19	Pounds	4,830	259
Peanuts	2	Bushels.	151	78
Dry beans	176	Bushels.	1,806	4,085
Dry pease.	143	Bushels.	2,694	3, 504
Potatoes..	10,433	Bushels.	1,483, 570	487,816
Sweet potatoes	40	Bushels.	1, 4,958	1,635
Onions .-...-	175	Bushels.	53,440	33,317
Miscellaneous veg	5,848			362,782
Sorghum cane.	371	Tons.	101	442
Sorghum sirup		Gallons	28,017	12,993
Sugar beets...	7,546	Tons..	85,914	365, 163
Small fruits	1,052			117,489
Orchard frui	${ }^{1} 16,013$	Bushels.		$2 \cdot 263,098$
Grapes.	1446	Centals	9, 200	327,736
Figs	17	Pounds.	5,425	190
Nuts				878
Forest products.				13, 311
Flowers and plan	14			34, 173
Seeds-.	84			10,330
Nursery products	236			120,648
Miscellaneous	16			45,150
'Total	686, 374			8,242,971

1 Estimated from number of vines or trees.
${ }^{2} 1$ ncluding value of cider, vinegar, ctc.
${ }_{4}^{3}$ ncluding value of wine, raisios, etc.
${ }^{4}$ The greater part of this value was derlved from products for which no acreage was reported.

Of the total value of crops, hay and forage contributed 46.9 per cent; cereals, 29.0 per cent; potatoes, 5.9 per cent; fruits and nuts, 5.0 per cent; vegetables, including sweet potatoes and onions, 4.8 per cent; sugar beets, 4.4 per cent; and all other crops, 4.0 per cent.

The average valnes per acre of, the various crops are as follows: Flowers and plants, $\$ 2,441$; nursery products, $\$ 511$; onions, $\$ 190$; seeds, $\$ 123$; small fruits, $\$ 112$; grapes, $\$ 62$; miscellaneous vegetables, $\$ 62$; sugar beets, $\$ 48$; potatoes, $\$ 47$; orchard fruits, $\$ 16$; hay and forage, $\$ 10$; and cereals, $\$ 9$. The crops yielding the highest average returns per acre were grown upon highly improved land. Their production requires a relatively great amount of labor and large expenditures for fertilizers.

CEREALS.
The following table is a statement of the changes in cereal production since 1849.
Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.
part 1.-ACREAGE.

YEAR. ${ }^{1}$	Barley.	Buckwheat.	Corin.	Oats.	Rye.	Wheat.
1899.	8,644	43	11,517	43, 394	2,866	189,235
1889.	6,440	15	5,782	22,747	3,389	84,505
1879.	11,268		12,007	19,525	1,153	72,542

${ }^{1}$ No statistics of acreage were secured prior to 1879 .

Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899-Continued.

YEAR. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899.	252,140	640	250,020	1,436, 225	28,630	3, 413,470
1889.	163, 328	316	84,760	1, 597,947	33, 928	1.515, 465
1879.	217,140		163,342	418,082	y, 605	1,169,199
1869.	49,117	178	95,557	65,650	1,312	558,473
1859.	9,976	68	90,482	63, 211	754	384, 692
1849.	1,799	332	9,899	10,900	210	107,702

${ }^{1}$ No statistics of acreage were secured prior to 1879.
The total area devoted to cereals in 1879 was 116,495 acres; in 1889, 122, 878 acres; and in 1899, 255, 699 acres. The acreages devoted to wheat and corn in 1899 were approximately twice as large, and that to buckwheat nearly three times as large as in 1889. The acreage under oats increased 90.8 per cent, that under barley increased 34.2 per cent, and that under rye decreased 15.4 per cent in the same period. The total production of cereals in 1849 was 130,842 bushels and that of 1899 was $5,381,125$ bushels, or over 41 times as great.

Of the total area under cereals in $1899,74.0$ per cent was devoted to wheat, 17.0 per cent to oats, 4.5 per cent to corn, 3.4 per cent to barley, and 1.1 per cent to rye and to buckwheat.

HAY AND FORAGE.

In $1900,17,042$ farmers, or 87.9 per cent of the total number, reported hay and forage. Excluding cornstalks, they obtained an average yield of 2.2 tons per acre. The total area in hay and forage for 1899 was 388,043 acres, or 143.5 per cent greater than ten years before. Of this area, 268,229 acres, or 69.1 per cent, produced 681,515 tons of lucern or alfafa.

In 1899 the acreages and yields of the various other kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 71,065 acres and 88,690 tons; millet and Hungarian grasses, 2,604 acres and 3,376 tons; clover, 1,357 acres and 2,995 tons; other tame and cultivated grasses, 38,999 acres and 66,587 tons; grains cut green for hay, 3,324 acres and 4,290 tons; crops grown for forage, 2,465 acres and 3,509 tons; and cornstalks, 603 acres and 902 tons.

In Table 18 the production of cornstalks is included under "hay and forage," but the acreage is a part of that given for corn, as this forage was only an incidental product of the corn crop.

ORCTARD FRUITS.

The changes in orchard fruits since 1890 are shown in the following table.
T.ible 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

fruits.	NUMBER Of trees.		bushels of fruit.	
	1900	1890	1899	1889
Apples	715,778	112,396	189, 882	56,633
Appricots.	27,927	6,473	5,272 9,905	4, 178
Cherries.	60, 40965	68,121	85,315	69,910
Pears..	2:29,310	9,564	59,982	6,198
Plums and prunes	298,808	23,027	45,984	9,663

In the decade from 1890 to 1900 great progress was made in fruit growing. Nearly seven times as many apple trees, ovel six times as nany peach trees, almost thirteen times as many plum and prune trees, and almost twenty-four times as many pear trees were reported in 1900 as in 1890 . The total number of tiees increased from 223,840 to $1,786,412$.

Of the number reported in $1900,40.1$ per cent were apple trees, 22.9 per cent peach trees, 16.7 per cent plum and prune trees, 12.8 per cent pear trees, 3.7 per cent cherry trees, 1.6 per cent apricot trees, and 2.2 per cent unclassified fruit trees. The last-named class, which is not given in the table, numbered 38,709 , and yielded 1,523 bushels of fruit.

The northwestern counties of Weber, Salt Lake, Utah, and Boxelder report the greatest numbers of fruit trees, and Weber county alone contributed $\$ 100,179$ of the $\$ 263,098$, which was the total value of orchard products in 1899 . In this total value is included the value of 439 barrels of cider, 194 barrels of vinegar, and 145,380 pounds of dried and evaporated fruits produced on farms.

VEGETABLES.

The value of vegetables grown in 1899 , including potatoes, sweet potatoes, and onions, was $\$ 885,550$. Of this amount, 55.1 per cent represents the value of potatoes and 3.8 per cent that of onions. Aside from the land devoted to potatoes, sweet potatoes, and onions, 5,848 acres were used in the growing of miscellaneous vegetables. Of this area the 'products of 3,139 acres were not reported in detail. Of the remaining 2,709 acres concerning which detailed reports were received, 1,318 acres were devoted to tomatoes, 380 to cabbages, 304 to watermelons, 181 to sweet corn, 113 to muskmelons, 97 to cucumbers, 84 to squashes, and 232 to other vegetables.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 was 1,052 acres, distributed among 4,003 farms. The value of the fruits grown was $\$ 117,489$, an average of $\$ 29.35$ per farm.

The acreage and production of the different berries were as follows: Strawberries, 345 acres and 663,190 quarts; raspberries and Logan berries, 284 acres and 426,000 quarts; currants, 194 acres and 304,850 quarts; gooseberries, 110 acres and 173,460 quarts; blackberries and dewberries, 72 acres and 80,110 quarts, and other small fruits, 47 acres and 47,120 quarts.

SUGAR BEETS.

The beet-sugar industry is an important branch of agriculture in Utah. In 1899, 1,753 farmers devoted to this crop an area of 7,546 acres, an average of 4.3 acres per farm. They obtained and sold 85,914 tons of beets, an average yield of 11.4 tons per acre, and received therefore $\$ 365,163$, or an average of $\$ 208.31$ per farm, $\$ 48.39$ per acre, and $\$ 4.25$ per ton. Utab, Weber, and Salt Lake counties report 88.7 per cent of the acreage, with a product valued at $\$ 340,290$, or 93.2 per cent of the total receipts from this crop.

FLORICULTURE.

The area devoted to the cultivation of tlowers and ornamental plants in 1899 was 14 acres, and the value of the products sold therefrom was $\$ 34,173$. These flowers and plants were grown by 36 farmers and florists, of whom 20 made commercial floriculture their principal business. They had invested in land, buildings, implements, and live stock $\$ 80,960$, of which $\$ 33,400$ represents the value of buildings. Their sales of flowers and plants amounted to $\$ 32,922$, and they obtained other products valued at $\$ 880$. They expended $\$ 6,645$ for labor, and $\$ 615$ for fertilizers. The average income for each farm reporting, including products fed to live stock, was $\$ 1,695$.

In addition to the 20 principal florists' establishments, 289 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 71,348 square feet, making, with the 79,672 square feet belonging to the florists' establishments, a total of 151,020 square feet of land under glass.

NURSERIES.

The total value of nursery products sold in 1899 was $\$ 120,648$, reported by the operators of 47 farms and nurseries. Of this number 17 derived their principal income from the nursery business. They had 995 acres of land, valued at $\$ 108,565$, buildings worth $\$ 18,650$, inuplements and machinery worth $\$ 5,725$, and live stock worth $\$ 4,560$. The value of their products in 1899 was $\$ 122,035$, of which $\$ 118,575$ represents the value of nursery stock, and $\$ 3,460$, that of other products. The expenditure for labor was $\$ 22,315$, and for fertilizers, \$515. The average income for each farm reporting, including products fed to live stock, was $\$ 7,222$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899 , including the value of board furnished, was $\$ 1,837,900$, an average of $\$ 95$ per farm. The average expenditure was $\$ 1,313$ for nurseries, $\$ 332$ for Horists' establishments, $\$ 198$ for live-stock farms, $\$ 65$ for hay and grain farms, $\$ 64$ for sugar farms, $\$ 57$ for fruit farms, and $\$ 39$ for vegetable and for dairy farms. "Managers" expended on an average $\$ 1,238$; "cash tenants," $\$ 94$; " owners," $\$ 72$; and "share tenants," \$59. White farmers expended $\$ 96$ per farm, and colored farmers $\$ 20$.

Fertilizers purchased in 1899 cost $\$ 14,300$, an average of $\$ 0.74$ per farm, and a decrease since 1890 of 38.4 per cent. The average expenditure was $\$ 31$ for florists' establishments, $\$ 30$ for nurseries, and $\$ 2$ for sugar farms; and hay and grain, vegetable, live stock, fruit, and dairy farms expended less than $\$ 1$ each.

UINTA VALLEY AND UNCOMPAHGRE RESERVATIONS.

Uinta Valley and Uncompahgre reservations are located in the northeastern part of Utah, in Uinta and Wasatch counties. Uinta Valley reserve comprises an area of 3,186 square miles. Uncompahgre, with the exception of 20 square miles allotted to 83 Indians and a reserve of the mineral lands by the Government, has been opened up to settlement. The valleys of the Uinta river and its tributaries are fertile, well watered, and timbered. Agriculture is successful only through irrigation. Approximately one-tenth of the Uinta Valley reservation has a water supply sufficient to make it suitable for agriculture, but the remainder is well adapted to stock raising.
This is the home of the Uinta, White River, and Uncompahgre Ute, of Shoshonean stock, having a total population of 1,637 . They have begun to realize that industry is essential to their existence, and their desire to become self-supporting is constantly increasing. Agriculture is their principal occupation, and a continual improvement is perceptible. A few raise stock, others find employment in freighting Government supplies and in cutting and hauling logs. The majority still live in the "tepee," although a few log huts have been constructed. The Uinta and White River bands are dependent upon Government rations for 60.0 per cent of their subsistence, and the Uncompahgre for but 45.0 per cent, while annuity payments provide 10.0 per cent of the sustenance of the entire number.

Alfalfa is the most extensive crop of the Utah Indians, while wheat and oats constituted their product of cereals. Many cultivated gardens in which they raised potatoes, onions, melons, pumpkins and turnips, while a few also reported pease, beans, cabbages, and sweet corn. The majority of the 131 Indian firmers had from

10 to 50 acres each under cultivation, but a few had over 100 acres, and their farms compared favorably with those of white farmers in the same vicinity. All crops were raised by the aid of irrigation, and their system is in fairly good condition. There is approximately 65 miles of ditch on the reserve, covering about 60,000 acres of land.

These Indians have not taken advantage of the oppor-
tunity for stock raising which their land affords, and although a number have undertaken the industry, their herds are not large enough as yet to yield profit to the owners. The Uncompahgre possess small flocks of sheep, but by far the larger number on the reserve are owned by white renters. Their horses consist largely of Indian ponies, and of these they have an excessive number.

IRRIGATION STATISTICS.

More than one-half of Utah belongs to the Great Basin, an ancient lake bed extending from the middle to the western portion of the state and across Nevada into California, where the lofty Sierras interpose-a barrier to the plain. On the eastern borders of the basin, the wall-like Wasatch range divides the state into two great parts, widely different in topography and climate. East of this range is an extension of the plateau region of the Colorado, similar in many respects to that of Arizona. The plateau culminates at the foot of the Uinta Mountains, a lofty range extending across the northern boundaries of the state. Its surface is deeply scored by the streams rising among the snowclad peaks, and its configuration renders impossible the reclamation of extensive areas by irrigation.

The rivers for the most part of their courses flow across the plateau in deep canyons having precipitous sides, and it is only at points where they emerge in narrow valleys that the water can be utilized for irrigation. With the exception of a few favorable localities, the plateau region figures but slightly in the agricultural economy of the state. Its vast area is used only for grazing. All of the streams of the eastern slope of the Wasatch Mountains belong to the system of the Colorado of the West, and all of the precipitation not lost by evaporation finally reaches the Pacific Ocean.

The Great Basin has an elevation of from 4,000 to 6,000 feet above sea level, and is surrounded by mountains attaining altitudes of from 8,000 to 13,000 feet. It is a broad area of varied surface, containing many independent drainage districts. Within its boundaries are a number of mountain ridges of no great length, having a general northerly trend. Between these ranges are smooth valleys, the floors of which are built up of the débris washed from the mountains. Within the basin are several lofty plains areas which are called deserts. The largest are the Great Salt Lake and Carson deserts, on the north; and the Mojave and Colorado deserts, on the south. Of lesser importance are
the Escalante, the Sevier, the Amargosa, and the Ralston deserts. The general slope of the Great Basin is toward the south, its surface at the lower end lying below that of the ocean. It is a region essentially arid, with markedly deficient rainfall.

A peculiar interest is attached to the Great Basin in Utah from the fact that it is the location of the first irrigation enterprise of considerable importance in the arid West by the Anglo-Saxons. In 1847 the Mormon pioneers turned the waters of City Creek upon the parched soil of Salt Lake Valley. These pioneers came from the Middle West, and were wholly unacquainted with irrigation. Their hardships were numerous and severe in the first years of their settlement. The development of agriculture and irrigation in this valley presents the best example of the value of coöperation in the construction of irrigation works and in the distribution of water. Agriculture by the Mormons was intensive, the tendency from the first being to restrict the areas and to establish small communities. Naturally, the scanty water supply influenced this form of farming in noslight degree. The valley in which the first settlement was made continues to hold first place in the state, in points of population, wealth, and agricultural development. More than one-third of the population resides in this section. In 1899 the value of the land and buildings was nearly 30 per cent, and the value of products more than 25 per cent of that reported for the whole state.

Comparing the agricultural development of the Great Basin with the Plateau region of the state, it is noted that nearly 90 per cent of the total area reclaimed belongs to the former; and of the total of 629,293 acres irrigated in 1899 , only 65,889 acres are outside of the Great Basin. This acreage is widely distributed, being found in isolated tracts extending from Uinta county in the northeast to Washington county in the southwest.

Table A is an exhibit, by counties, of the number of irrigators and the acreage irrigated in 1899 and 1889, with percentages of increase.

Table A.-NUMBER OF IRRIGATORS AND ACRES IRRIGATED IN 1899 AND 1889, WITH PERCENTAGES OF INCREASE, BY COUNTIES.

counties.	NUMBER OF IRRIGATORS.			acres irrigated.		
	1809	1880	Per cent increase.	1899	1880	Per cent increase.
The Strte ${ }^{1}$	17,924	9,724	84.3	629,293	263, 473	138.8
Beaver.	293	200	46.5	11,462	7,682	49.2
Boxelde	794	359	121.2	29,708	10,472	183.7
Cache.	1,582	908	74.2	58,658	30,923	89.7
Emery ${ }^{2}$	142	264	116.3	6,356 21,840	7344	283.9
Davis	902	585	54.2	25,106	12,866	95.1
Garfield	215	82	162.2	10,745	2, 234	381.0
Grrnd.	97	56	73.2	2,992	1,139	162.7
Iron.	203	193	5.2	5,620	3,539	58.8
Juab	312	85	267.1	10,612	1,946	445.3
Kane	193	107	80.4	3,321	1,798	84.7
Millard	627	304	106.2	30, 535	8,199	272.4
Morgan	277	233	18.9	8,649	5,298	63.3
Piute ${ }^{8}$	187	143	209.8	10,161	5,299	263.4
Rich..	265	184	44.0	38,901	17,266	125.3
Salt Lake	2,110	1,264	66.9	54,598	25, 392	115.0
San Juan	49	, 38	28.9	1,573	777	102.4
Sanpete	1,550	1,155	34. 2	61,460	30,938	98.7
Sevier.	921	311	196.1	36, 133	11,547	212.9
Summit	553	276	100.4	28, 595	10, 140	182.0
Tooele	408	267	52.8	9,487	5,766	64.5
Uinta	531	186	185.5	20,185	7,611	165.2
Utah'.	2, 675	1,161	130.4	74, 872	25, 236	196.7
Wasatch	483	259	86.5	17, 614	6,475	172.0
Washingto	453	176	157.4	7,904	2,251	251.1
Weher	1,417	928	52.7	33,111	21,335	55.2

${ }_{2}^{1}$ Exclusive of Indian reservations.
${ }^{2}$ Part of Emery taken to form Carhon in 1894.
3 Wayne county formed from part of Piute in 1892.
During the ten years ending with 1899 the number of irrigators in the state, exclusive of Indian reservations, increased from 9,724 to 17,924 , or 84.3 per cent, and the number of acres irrigated, from 263,473 to 629,293 , or 138.8 per cent.

In Table B the number of irrigated farms is compared with the total number of farms, and the number of irrigated acres with the total number of inproved acres.

Table B.-COMPARISON OF IRRIGATED FARMS WITH TOTAL NUMBER OF FARMS AND OF IRRIGATED ACREAGE WITH TOTAL IMPROVED ACREAGE, JUNE 1, 1900.

counties.	NUMBER Of FARMs.			NUMBER OF improved acres.		
	Total.	Irrigated.	Per cent irrigated.	Total	$\begin{aligned} & \text { Irriga- } \\ & \text { ted. } \end{aligned}$	Per cent irrigated.
The State ${ }^{2}$	19,245	17,924	93.1	1,027, 226	629,293	61.2
Beaver	301	293	97.3	14,821	11, 462	77.3
Boxelder	1,017	794	78.1	90, 703	29, 708	32.8
Cache.	1,795	1,582	88.1	166,272	58, 658	35.3
Carbon	144	122	84.7	8,780	6,356	72.4
Davis	938	902	96.2	59,575	25,106	88.1
Emery	458 237 1	449 215	98.0 90.7	25,918 13,652	21,840 10,745	84.3 78.7
Grand	121	97	80.2	4,748	2,992	63.0
Iron..	235	203	86.4	7,746	5,620	72.6
Jurb.	356	312	87.6	26,351	10,612	40.3
Kane	213	193	90.6	6,214	3,321	53.4
Millard	676	627	92.8	39,153	30,535	78.0
Morgan	299	277	92.6	11,368	8,649	76.1
Piute.	189	187	98.9	12,349 48,053	10,161 38,901	82.3 81.0
Rich.....	2,276 2,208	185 2,110	96.0 95.6	48,053	38,901	81.0
Salt Lake	2, 208	2, 110	95.6 57.6	74,042 4,360	54,573	36.1
Sanpete	1,618	1,550	95.8	91,971	61, 460	66.8
Sevier	946	921	97.4	41, 315	36,133	87.5
Summit	608 487	553 408	91.0 83.8	35,296 27,057	28,595 $\mathbf{9 , 4 8 7}$	81.0 35.1

Table B.-COMPARISON OF IRRIGATED FARMS WITH TOTAL NUMBER OF FARMS AND OF IRRIGATED ACREAGE WITH TOTAL IMPROVED ACREAGE, JUNE 1 , 1900-Continued.

COUNTIEs.	NUMBER Of farms.			NUMBER OF IMPROVEO ACRES.		
	Total.	$\begin{aligned} & \text { Irriga- } \\ & \text { ted. } \end{aligned}$	Per cent irrigated.	Total.	$\underset{\substack{\text { lrriga. } \\ \text { ted }}}{\text {. }}$	Per cent irrigated
Uinta	559	531	95.0	24,089	20,185	83.8
Utah.	2,760	2,675	96.9	100, 170	74,872	74.7
Wasatch ...	492	483	98.2	21, 947	17,614	80.3
Washington.	477	453	95.0	10, 866	7,904	72.7
Wayne.	271	256	94.5	12,202	9,095	74.5
Weher	1,479	1,417	95, 8	48, 208	33, 111	68.7

Of the total number of farms in the state, irrigation was practiced on 17,924 , or 93.1 per cent. Of the total improved area, 1,027,226 acres, 629,293 acres, or 61.2 per cent, were irrigated during the year 1899.

In Table C is shown the acreage and production of all crops and of irrigated crops in 1899.

Table C.-ACREAGE AND PRODUCTION OF ALL CROPS AND OF IRRIGATED CROPS, 1899.

CROPS.	acreage.			Unit of measure.	Production:		
	Total.	Irrigated.	Per cent irrigated.		Total.	Irriga-	Per cent irrigated.
All crops	686, 374	537, 588	78.3				
	11,517	9,684	84.1	Bushels.	250,020	226, 8 د̇8	90.7
Wheat........	189, 235	108, 630	57.4	Bushels.	3,413,470	2, 554, 248	74.8
Oats...............	43,394	40,351	93.0	Bushels.	1,436,225	I, 362, 746	94.9
Barley...........Rye.........	8,644	6,085	70.4	Bushels..	252, 140	216,416	85.8
	2,866	55, 21.9	42.5	Tons.....	28, 630	17,165	60.0
Wild, salt, or prairie grasses.	71,065	55,162	77.6	Tons.	88,690	82, 211	92.7
Millet and Hun-	2,604	1,934	74.3	Tons.	3,376	2,681	79.4
garian grasses. Alfalfa or lu- cerne.	268,229	233, 218	86.9	Tons.	681,515	637,360	93.5
clover...........	1,357	1,334	98.3	Tons.	2,995	2,977	99.4
Other tame end cultivated grasses.	38,999	34,972	89.7	Tons.	66,587	61,872	92.9
Grains cut green for hay.	3,324	2,551	76.7	Tons.....	4,290	3,479	81.1
	12,465	11, 407	57.1	Tons.	-4,111	23,135	71.1
Forage crops Dry beans	176	163	92.6	Bushels..	1,806	1,727	95.6
Dry pease..........	143	138	96.5	Bushels..	2,694	2, 640	98.0
	10,433	9,792	93.9	Bushels..	1,483, 570	1,418,771	95.6
Onions ...		167	95.4	Bushels..	53,440	51,777	96.9
Miscellaneous vegetahles.	5,848	5,424	92.7				
Sorghum cane... Sorghum sirup ..	371	290	78.2	Tons.....	${ }^{3} 101$	${ }^{3} 46$	45.5
				Gallons.-	28,017	-24,950	89.1
Sugar heets.	7,546	7,546	100.0	Tons.	385,914	385, 914	100.0
Small fruits Grapes.	1,052	$\begin{array}{r}960 \\ 4 \\ \hline\end{array}$	91.3	Centals			
	416, ${ }^{4} 436$	416, 013	100.0	Bushels..	397, 863	397,863	100.0
Other crops......	472	120	25.4				

1 Not including area of "duplicate forgge crops" (cornstalks and cornstrip-
pings.) $\begin{aligned} & \text { Including cornstalks and corn strippings. }\end{aligned}$
${ }^{3}$ Amount sold.
4 Estimated from number of vines or trees.
Of the 686,374 acres in crops, 537,588 acres, or 78.3 per cent, were irrigated. The crops produced on irrigated land were, hay and forage, 330,578 acres, or 61.5 per cent of the total; cereals, 165,969 acres, or 30.9 per cent; vegetables, 15,684 acres, or 2.9 per cent; orchard fruits, 16,013 acres, or 3.0 per cent; other crops, 9,344 acres, or 1.7 per cent. The value of irrigated
crops was, total, $\$ 7,462,370$; hay and forage, $\$ 3,654,114$; cereals, $\$ 1,940,012$; vegetables, $\$ 840,814$; orchard fruits, $\$ 261,155$; other crops, $\$ 766,275$. The principal crops represented in the value of "other crops" were sugar beets, $\$ 365,163$; flowers and nursery products, $\$ 164,977$; grass seed, $\$ 114,238$.

Of the total irrigated area, 624,186 acres were watered from streams by gravity diversion ditches and 5,177 acres were irrigated from wells. The total cost of construction of the well systems was $\$ 142,996$.

In Table D is shown the principal statistics of irrigation from streams in 1899.

Table E.-ACREAGE IRRIGATED FROM STREAMS IN 1899, WITH NUMBER AND LENGTH OF DITCHES, AND COST OF IRRIGATION SYSTEMS SUPPLIED WITH WATER FROM STREAMS BY GRAVITY DIVERSION.

counties.	$\underset{\text { of }}{\text { Number }}$ ditches.	Length of ditches in miles.	Number of acres irrigated from streams.	COST Of CONSTRUCTION of irrigation sysTEMS.	
				Total.	Average per acre irrigated in 1899.
The State.	928	2,838	624,186	85, 722, 306	$\$ 9.17$
Beaver	43	64	11,452	45,724	3.99
Boxelder	41	191	29,671	1,291,773	43.54
Cache.	31	129	58, 532	162, 250	2.77
Carbon	22	42	6,329	29,335	4.64
Davis..	41	116	23,417	283, 894	12.12
Emery.	22	154	21,840	385, 750	17.66
Garfield	35	93	10,745	33,560	3.12
Grand	18	${ }^{36}$	2,817	10,765	3.82
Iron.	19	28	5,416	5,530	1.02
Juab	20	61	10,607	147, 720	13.93
Kane.	16	29	3,321	22, 825	6.87
Millard	35	131	30,374	225, 800	7.43
Morgan	25	27	8,649	28,057	3.24
Piute.	32	58	10,154	32,180	3.17
Rich.....	31	130	38,901	117,040	3.01
Salt Lake.	40	$22^{2} 2$	54,212	806,675	14.88
San Juan	9	21	1,567	47,150	30.09
Sanpete.	78	20 s	61,268	272,500	4. 45

Table E.-ACREAGE IRRIGATED FROM STREAMS IN 1899, WITH NUMBER AND LENGTH OF DITCHES, AND COST OF IRRIGATION SYSTEMS SUPPLIED WITH WATER FROM STREAMS BY GRAVITY DIVERSION-Continued.

COUNTIES.	Number of ditches.	Length of ditches in miles.	Number of acres irrigated from streams.	COST OF CONSTRUCTION OF IRRIGATION SYSTEM8.	
				Total.	Average per acro irrigated in 1899.
Sevier	32	205	35,982	\$295, 240	\$8.21
Summit	110	133	28,424	99,805	3.51
Tooele	18	110	9,281	42, 600	4.59
Uinta	15	91	20,185	121,825	-6. 03
Utah	83	155	73,643	572, 905	7.78
Wasatch	19	67	17,614	64, 160	3.64
Washington	32	101	7,886	123, 115	15.61
Wayne	26	70	9,095	63,505	6.98
Weber.	35	166	32,804	390,583	11.91

In 1899 there were operated 928 irrigation systems receiving water from streams by gravity diversion. The total cost of construction was $\$ 5,722,306$, or an average cost per acre irrigated in 1889 of $\$ 9.17$. Bear River canal system, which cost $\$ 1,250,000$ and which was designed to irrigate 75,000 acres, is of comparatively recent construction, and in 1899 only 17,000 acres of the land under the system were irrigated. Exclusive of this system, the average cost of construction per acre irrigated was $\$ 7.37$. The average cost of majntenance per acre for the state was $\$ 0.24$. The total length of the main canals and ditches operated in 1899 was 2,838 miles.

The average value per acre of all farms, June 1, 1900, was $\$ 9.75$, and of farms on which irrigation was practiced, $\$ 10.42$. The average value per acre of irrigated land was $\$ 37.40$.

Twelfth Census of the United States.

Census Bulletin.

AGRICULTURE.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Virginia, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of differont products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land, under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.
The farms of Virginia, June 1, 1900 , numbered 167,886 , and were valued at $\$ 271,578,200$. Of this amount, $\$ 70,963,120$, or 26.1 per cent, represents the value of buildings, and $\$ 200,615,080$, or 73.9 per cent, the value of land and improvements other than buildtings. On the same date the value of farm implements and machinery was $\$ 9,911,040$, and of live stock, $\$ 42,026,737$. These values, added to that of farms, give $\$ 323,515,977$, the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal
products." The total value of all such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 86,548,545$, of which amount $\$ 27,846,803$, or 32.2 per cent, represent the value of animal products, and $\$ 58,701,742$, or . 67.8 per cent, the value of crops, including forest products cut or produced on farms. The "total value of farm products" for 1899 exceeds that for 1889 by $\$ 44,304,087$, or 104.9 per cent.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the produers. In 1899 the reported value of products fed was $\$ 13,002,810$, leaving $\$ 73,545,735$ as the gross farm income for that year. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Virginia, in 1899, it was 22.7 per cent.
As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

The statistics presented in this bulletin will be treated in greater detail in the final report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Virginia.

Very respectfully,

Chief Statistician fir Agriculture.

GENERAL STATISTICS.

Virginia has a total land area of 40,125 square miles, or $25,680,000$ acres, of which $19,907,883$ acres, or 77.5 per cent, are included in farms.

The surface of the state is level in the southeast, and mountainous in the northwest and west, where it is traversed by the Blue Ridge and other ranges of the Appalachian Mountains. Extending westward from the Atlantic Ocean, the state is divided into six physical regions, known as Tidewater, Midland, Piedmont, Blue Ridge, Great Valley, and Appalachian, which rise in successive terraces, and, differing in altitude, soil, and products, have all the climatic variations of the temperate zone.

The soil is especially adapted to truck farming in the Tidewater and Midland, to tobacco in the south central portion of the state, and to orchard fruits, cereals, and grasses in the Piedmont and the Shenandoab Valley. Stock raising is an important and growing industry in the north central and western parts, where the blue grass flourishes. The Potomac, Rappahannock, York, James, and New rivers, together with their tributaries, afford excellent drainage.

NUMBER AND STZE OF FARMS.

The following table gives, by decades since 1850, the number of farms, the total and average acreage, and the percentage of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	Number of farms.	NUMBER OF ACRES IN FARMS.				Per cent of farm land improved.
		Total.	Improved.	Unimproved.	Average.	
1900.	167,886	19,907, 883	10, 094, 805	9,813,078	118.6	50.7
1890.	127, 600	19, 104, 951	9, 125, 545	9,979, 406	149.7	47.8
1880.	118,517	19, 835, 785	8,510,113	11, 325, 672	167.4	42.9
1870.	73,849	18, 145, 911	8,165, 040	9,980, 871	245.7	45.0
$1860{ }^{1}$	92,605	31, 117, 036	11, 437, 821	19,679,215	336.0	36.8
$1850{ }^{1}$.	77,013	26,152, 311	10, 360, 135	15, 792, 176	339.6	39.6

${ }^{1}$ Including the territory now embraced in West Virginia.
During the Civil War period one-third of Virginia was incorporated in the new state of West Virginia. The territory withdrawn contained $10,896,379$ acres in farms, consisting of $2,346,127$ acres of improved land and $8,550,252$ acres of unimproved land, which should be considered in comparing the figures for the various census years. Making allowance for this reduction in area, the tables show a loss in total farm acreage during the decade, 1860 to 1870 , of $2,074,746$ acres, of which the state has recovered all but about 300,000 acres.
Between 1850 and 1900 the number of farms more than doubled, the decade from 1860 to 1870 being the only one reporting a decrease. During the last ten
years there was a gain of 40,286 farms, or 31.6 per cent. The number of farms has increased faster than the total acreage, involving a decrease in the average size, which has been continuous since 1850 .

farm property and products.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF PRODUCTS: 1850 TO 1900.

YEAR.	Total value of farm property.	Land. improvements, and buildings.	Implements and machinery	Live stock.	Farm products. ${ }^{1}$
1900.	\$323, 515, 977	\$271, 578, 200	89, 911, 040	\$42, 026, 737	\$86, 548,545
1890.	294, 488, 569	254, 490, 600	6,593, 688	33, 404, 281	42, 244, 458
1880.	247, 476, 536	216,028, 107	5,495, 114	25, 953,315	45, 726, 221
$1870{ }^{2}$	246,132, 550	213, 020, 845	4,924, 036	28,187, 669	851, 774,801
$1860{ }^{4}$.	428, 957,006	371,761, 661	9, 892, 296	47, 803, 049	
$1850{ }^{4}$.	257, 079, 974	216,401, 543	7,021, 772	33, 656,659	

${ }_{2}$ For year preceding that designated.
${ }^{2}$ Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years they must be diminished one-fifth.
${ }^{4}$ Including the territory now embraced in West Virginia.
Great development is shown for the decade from 1850 to 1860 , but on account of the territorial change previously mentioned, the state lost territory whose farm property was valued in 1860 at $\$ 101,891,915$, of which $\$ 87,526,087$ represented the value of land, buildings, and improvements; $\$ 12,392,680$, that of live stock; and $\$ 1,973,148$, that of implements and machinery. Taking these deductions into consideration, the table shows that since 1860 there have been gains of $\$ 6,616,368$ in the value of live stock, and $\$ 2,491,892$ in the value of implements and machinery; but a decrease in the value of land, buildings, and improvements of $\$ 12,657,374$. The total value of farm property is $\$ 3,549,114$ less than in 1860.

In the last ten years the total value of farm property has increased $\$ 29,027,408$, or 9.9 per cent; that of land, improvements, and buildings, $\$ 17,087,600$, or 6.7 per cent; that of implements and machinery, $\$ 3,317,352$, or 50.3 per cent; and that of live stock, $\$ 8,622,456$, or 25.8 per cent. The value of farm products for 1899 is more than double that of ten years before. Part of this increase, and of that in implements and machinery, is doubtless the result of a more detailed enumeration in 1900 than heretofore.

county statistics.

Table 3 gives a statement of general agricultural statistics by counties.

Table 3.-NUMBER and adreage of farms, and Values of specified classes of farm property, June 1, 1900, WITH GROSS INCOME (PRODUCTS OF 1899 NOT FED TO LIVE STOCK) AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	nomber of farms.		acres in farms.		values of farm property.				Gross income (products of 1899 not fed to live stock).	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Land and im provements (except buildings).	Buildings.	Implements and machinery.	Live stock.		Lahor.	Fertilizers.
The State	167,886	164, 074	19, 907, 883	10,094, 805	\$200, 615, 080	\$70, 963, 120	\$9, 911, 040,	\$42,026, 737	\$73, 545, 735	87,790, 720	\$3,681,790
Accemac	$\begin{array}{r} 2,772 \\ 2,636 \\ 379 \\ 516 \\ 1,361 \end{array}$	2,7062,590	190,861396,624	93,210249,409	$3,947,030$$4,143,410$	$1,320,090$$2,210,160$	181,270227,290	499,426857,452	1, $1,728,584$	2194, 780	119,10038,410
Albemarle.											
Alexandria		355	11,561	8, 074	2,086, 8240	$\begin{aligned} & 464,890 \\ & 221,120 \end{aligned}$	41,870	73, 266	188,644	32, 860	6,840
Alleghany.		499	110,328	30,861			39, 900	169, 325	200, 366	19,360	2,860
Amelia....		1,339	193, 183	79,671	917,900	461,100	66,310	199,621	451,210	40,350	33,790
Amherst.	2,1591,2782,	2,076	241,685193,932	132,14084,602	1,637,720	646,380393,300	87,63064,810	407,928190,495	928,943	57,52031,180	22,21034,650
Appomattox											
Augusta	2,768	2,714	410, 978	276,459	8, 290, 170	3,173,950	489, 090	1, 375,140	2,022, 169	287,240	137,810
Bath.		501	182, 603	46,443	1,105,260	367,090	49,720	258,245	240,770	22,080	3,630
Bedford	4,030	3,990	432,479	249, 956	3,205, 810	1,272, 230	188, 260	861,408	1, 738, 159	79,730	38,640
Bland	660	619	149,499	54,210	1,464, 720	220,030	$\begin{array}{r} 38,970 \\ 134,290 \end{array}$	357,341	$\begin{aligned} & 338,884 \\ & 703,322 \end{aligned}$	27,810	4,30023,010
Botetourt	1,374	1,357	190,578	103, 953	2,260,880	726, 810		452,957317,686		69,940	
Brunswick	2,372	2,344	320,072	132, 408	1,026, 410	482,960	99, 710		898, 394 $\mathbf{3 3 5}, 884$	91,220	54, 230
Buchanan	1,542	$\begin{aligned} & 1,508 \\ & 1,734 \end{aligned}$	200,918	40,722104,010	961,450863,810	195, 370	29,40070,850	280, 615		10,49053,560	52035,940
Buckingham						452, 820		248,109	386,884 586,889		
Camphell	1,992	1,9492,456	271,135	126,999153,922	$1,604,330$$1,408,600$	616,160615,240	121,420118,290	376,843412,213	935,262691,661	68,87068,010	47,78026,710
Caroline	2,492		301,475								
Carroll	3,030	$\begin{array}{r} 2,968 \\ , 434 \end{array}$	268, 299	150,694 35,285	$\begin{array}{r} 2,025,450 \\ 696,170 \end{array}$	538,130 200,830	$\begin{aligned} & 96,820 \\ & 31,870 \end{aligned}$	$\begin{array}{r}576,463 \\ 98,191 \\ \hline\end{array}$	789,437 172,086	31,130 28,050	18,690 3,690
CbarIotte.	1,763	1,734	255, 841	103, 858	$\begin{aligned} & 696,170 \\ & 900,420 \end{aligned}$	564,690	73,680	283, 432	702, 197	88,800	62,020
Cbesterfield	1,494	1,485	194,489	70,378 82,980 8	1,919,200	$\begin{aligned} & 970,750 \\ & 696,940 \end{aligned}$	$\begin{aligned} & 116,230 \\ & 103,230 \end{aligned}$	$\begin{aligned} & 307,604 \\ & 456,909 \end{aligned}$	652,741614,067	69,050	
Clarke	492									107,99011,400	
Craig		4871,2811,31	$\begin{array}{r}86,720 \\ 217,528 \\ \hline 10,274\end{array}$	38,656149,184	$\begin{aligned} & 2,190,070 \\ & 1,079,480 \\ & 2,627,870 \end{aligned}$	$\begin{aligned} & 205,500 \\ & 927,910 \end{aligned}$	$\begin{array}{r} 32,120 \\ 136,520 \end{array}$	$\begin{aligned} & 247,753 \\ & 707,087 \end{aligned}$	$\begin{aligned} & 257,472 \\ & 764,097 \end{aligned}$		$\begin{array}{r} 31,730 \\ 2,650 \\ \hline \end{array}$
Culpepe	1,390									127,520	45,000
Cumberla		1,350	166, 274	74,055	766,030	344, 450	57,690	180, 038	420,544	49, 170	32,460
Dickenson.	1,229	1,206	162,420	35,637	878, 080	212, 690	17,540	212,127	240, 258	7,610	350
Dlnwiddie.	2,059	2,017	283,752	102,016	1,276,540	582, 500	105, 250	296, 329	780, 964	66, 390	40,730
Elizabetb City	276	272	15,074	10,361	668,280	141, 430	24,040	79, 327	184,406	23, 880	5,770
Fspex.	1,634	1,587	145,033	77,781	873,100	422,910	54,960	244, 704	381,876	41, 150	10,070
Fairf	1,831	1,796	188, 397	108, 182	3, 674, 240	1,636,860	206, 270	530,211	1,036,690	149,560	51,160
Fruquier	2,256	2,219	389, 801	291,734	6, 082, 860	2, 052,390	228,780	1, 616,010	1,445,113	198, 890	90, 950
Floyd	2,284	2,235	234, 384	149, 407	2, 286, 480	667,840	116,070	556, 981	706,700	27, 110	11,550
Fluvanna	1,329	1, 305	151, 052	73, 808	753, 810	467,470	66,570	254, 084	435,523	36,490	17,140
Franklin	3,732	3,641	395, 873	169,159	1,995, 400	745, 070	130, 240	616, 162	1,173,243	63,960	34,030
Frederick	1,603	1,584	247,636	161,113	3,869,720	1,389,460	197,840	637, 601	993, 426	105,710	46,210
Giles .	1,033	1,020	139,759	75,192	1,668, 810	458,010	68,430	467,324	524,211	37,490	4,940
Gloncester	1,926	1,913	105, 894	55, 918	, 930,250	687, 850	76, 820	233, 472	404,548	34,920	9,770
Goocbland	1,323	1,316	149,556	68,840	1,073, 250	434, 070	64,480	234, 619	366,869	66,210	12,180
Grayson	2,608	2, 552	254,248	143,738	2,924,990	728,490	126,110	754,963	795, 641	51, 710	6,440
Green	796	792	83, 227	52,279	653,470	237, 740	35,470	187, 784	281, 347	20, 310	4,540
Greenesvi	1,201	1,147	150, 052	65,570	678, 240	230,370	47,600	143,790	458,986	65,400	16,430
Halifax	4,092	3, 899	492, 103	239,614	2, 322, 810	1,106,960	174, 180	564, 189	1,778,983	197,000	131,790
Hanover	2,506	2, 457	262, 997	130,450	1, 813,520	886,710	136, 150	465, 133	1,012,985	111,640	40, 910
Henrico	1,370 1,911	1,383 1,875	120,961 210,482	67, 672	4,068,440	1,526,820	163, 770	378, 212	1069,918	198, 990	28,900
Henry.	1,911	1,875	210,482	72,673	938,840	367, 260	58, 200	246, 363	651,394	37,460	35,450
Higbland	718	676	209, 044	92,411	2,429,970	351,230	64, 480	558,362	449, 894	19,810	6,250
Isle of Wight	1,511	1,486	156, 867	61,775	-882, 170	488, 060	64, 610	219, 373	829, 696	105,280	53,610
James City	, 566	554	69, 363	22,374	606, 090	177, 900	33,470	79, 593	177, 364	28, 710	10,980
King and Quee	1,730	1,672	171,009	76,573	681,740	369, 910	55,870	233, 717	344, 048	16, 660	8,290
King George	1,125	1,052	103,529	67,039	705, 840	264, 580	61,290	211, 375	346,580	21,130	11,190
King William	1,004	991	131,859	64,076	781, 400	322, 320	46, 010	202,419	303, 032		7,590
Lancast	1,092	1,069	63, 970	32, 004	657, 670	418,790	55, 330	141,887	279, 658	33, 650	12,830
	2,807	2,690	243, 331	135, 165	3,163, 830	590,780	80, 960	732, 380	923, 227	42,040	2,840
Louisa.	1,948	1,933	318,902	251, 874	6,649, 690	2,488, 870	295, 910	1,621,639	1, 817,414	292, 150	107,490
Louisa.	2,550	2,491	270, 011	111,889	1,288, 930	834,250	97,680	387, 710	526, 702	40,680	23,720
Lunenhurg	1,707	1,680	233, 851	85, 067	785, 850	464, 950	66,190	241,355	622,775	65,640	44,430
Madison.	1,223	1, 213	172, 814	107, 047	1,604, 510	594, 850	76,070	397, 015	527, 692	73,400	17, 390
Mathews...	1,438	1,410 3,065	$\begin{array}{r}43 \\ 383,580 \\ \hline 80\end{array}$	25,334 163,270	$1,795,120$ $1,643,320$	616,300 853,730	50,940 120,100	156, 164	313,032	24, 060	6,430
Middlesex.	1,352	1,307	68,147	163,131 37,1	1,6438,030	853,730 432,030	120,100 52,070	440,028 136,525	$1,161,791$ $\mathbf{2 7 3}, 891$	120,860 21,690	72,490 11,800
Montgomery	1,230	1,215	193,987	111,842	2, 816, 420	655, 050	83,310	480, 307	533, 263	37,100	14,170
Nansemond	2,129	2,064	179, 116	74, 074	1, 527,170	790, 960	101, 800	301, 987	1,506,981	290, 430	210, 610
Nelson New	1,841	1,791	240,494 102,719	113,672 39,452	1,667, 320	640,980	80, 290	334, 507	1704, 593	48, 370	15, 130
Norfo	1,447	1,376	128,034	-39, 434	442, 890 $4,483,680$	202,440 917,360	27,000 145,130	104, 856	211,573 $2,018,545$	19,230 398,850	6,000 308,600
Northampton..	975	964	86, 991	47,352	1,646, 910	755, 050	92, 050	231,855			157,400
Northumberland	1,572	1,545	100, 714	52,767	1,926,640	536, 130	79,980	217, 988	416, 002	41,070	26,010
Nottoway	1,353	1,332	177, 058	72,222	955,510	496, 170	56, 410	189, 320	418, 946	46, 850	26, 450
Orange	1,258	1,240	178, 021	103,710	1,794, 520	812, 420	124,460	458, 322	689,467	92, 220	31,330
Page...	980	969	126,244	70,088	1,943,490	592,040	95, 200	342, 072	583, 324	64, 090	27,910
Patrick .	2,572	2,525	244, 587	97, 116	1,129, 040	353, 000	60, 180				
Pittsylvania	4,885	4,823	590, 810	280, 466	3, 390,070	1,693,660	193, 050	760, 365	2,471, 212	203,670	189,890
Prince Edward	1,707	+ 910	144, 445	56, 629	814,650	424, 990	54, 490	175, 421	391, 233	36, 850	16,940
Prince George	1,184	1,107	1952,124	81,291 7025	850,110 886,360	523,030 401,540	65,240 69,180	228,706 175,367	622,673 528,455	79,590 63,690	49,060 18,560
Princess Anne.	1,432	1,415	118,529		1,787,950						
Prince William	1,261	1,231	174, 812	97, 202	1, 674,400	835,670	109,660 99,100	424, 647	$1,055,293$ 578,361	176,380 69,760	79,370
Rappahannock	${ }_{977}^{942}$	${ }_{944}^{930}$	166,840	911,397	3, 301, 150	624,990	92,630	662, 764	608;458	63, 140	16, 320
Richmond....	1,101	994 1,087	173,656 96,370	117,552	2,153, 6440	556, 110	84, 870	622, 199	649, 742	81,160	21,870
		1,08	96,370	48, 524	644, 400	331, 640	47,460	174,993	286, 148	23,900	14, 290

Table 3.-NUMBER AND ACREAGE OF FARMS, AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH GROSS INCOME (PRODUCTS OF 1899 NOT FED TO LIVE STOCK) AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES-Continued.

counties.	nomber off		acres in farms.		valuds of farm property.				Gross income (products of 1899 not fed to ivestock).	expenditures.	
	Total.	$\begin{aligned} & \text { With } \\ & \text { build- } \end{aligned}$ ings.	Total.	Improved.	Land and im provements (except builings).	Buildings.	$\begin{gathered} \text { Implements } \\ \text { and } \\ \text { machinery. } \end{gathered}$	Live stock.		Labor.	Fertilizers.
Roanoke... Rockbridge	1,139	1,107	${ }^{143,328}$	82,600	\$2, 107, 870	8704,100	\$105,040	\$330, 993	\$604,889		
Rockingham	3, ${ }_{3}^{1,679}$	3, 1,244	265,997 345,856	160,533 240 122	3,447,460	1,064, 340	161,290	658,168	1,079, 111	83, 230	1616,390 41,590
Russell	2,289	2,211	292, 397	161, 395		, 6676	436, ${ }^{4800}$	1, $1,043,525$	${ }^{2}, 2,273,990$	213,740 5 5 5	105,880
Scott	3,435	3,351	297, 355	149, 672	2,636,200	676, 670	69, 300	1,676,923	1,906, 383	25,', 220	8, 7180
Shenaudoah.	${ }_{1}^{2,382}$	2,364	234,695	140, 887	4, 659, 880	1,865, 030	250, 520	771,622	1,319,077	113,070	61,870
Southampton	- $\begin{aligned} & 1,650 \\ & 2,683\end{aligned}$	1,495 $\mathbf{2}, 595$	- 216,746	(113,465	(3,634, 860	$\begin{array}{r}1819,110 \\ 803 \\ 80 \\ \hline 850\end{array}$	104,600	${ }_{644}^{694}$, 2522	, 744,992	78, 430	19,100
Spottsylvania	1,734	1,689	207,557	88, 732	${ }_{1}^{1,540,140}$	- 803,850	116,020 100 000	345, 482	1,254, 292	199, 390	87,820
Stafford	1,297	1,286	139,626	67,263	761,080	347, 490	56,900	${ }_{23,684}$	581,647 382,408	- ${ }_{24,950}$	26,160 16,960
Surry.	1,094	1,003	110,461	43,938	699, 820	363,200	53,530	148,535	446, 613	55,710	18,210
Sussex.	1,391	1, 1,920	227,222 280,116	81,376 165,338	-956,380	359,540	61, 880	187, 808	542,964	65, 650	26, 450
Warren	${ }^{1} 804$, 783	115,003		1,592,230	-785,440	80, 140	1, 41979039	874,974 765966	88,970	10,460 22380
Warwick	150	144	12,705	5, 358	372, 620	62,010	8,540	${ }_{29}{ }^{29}$, 738	756,340	67,180 9,100	22, 1,910
ashington.	3,383	3,322	316, 175	192, 051	4, 436, 950	1,091,670	157,520		1,247, 814		
estmorelan	${ }_{1}^{1,246}$	${ }^{1,212}$	1187, ${ }^{1285}$		1898,970	381,490	${ }_{26}^{62,770}$	${ }^{210,343}$	413,980	35, 070	20, ${ }^{39} 8$
Wythe	1,326	1,289	244,443	- 137,963	${ }_{4}^{1,4959,700}$	- ${ }_{\text {933, }}$	- ${ }^{239,000}$	243,619 749,615	318,479	${ }_{111,180}$	
York	1,139	1,094	52, 974	24,345	, 498,680	269,740	36,390	125,402	210, 200	16, 130	35,820 5,820
Alexandria eity	11	10	948	743		11, 820	${ }^{600}$	6,609	4,506	900	
Buena Vista city	${ }_{3}^{9}$	${ }_{3}^{9}$	1,543	${ }^{1,100}$	$\begin{array}{r}50,470 \\ 1 \\ \hline 900\end{array}$	7,510	1,150	4,0: ${ }^{\text {a }}$	-6,402	$\begin{array}{r}470 \\ 250 \\ \hline\end{array}$	
Charlottesville city	${ }^{13}$	${ }^{13}$	2,842	2,148	74 7,400	37,950	1,840	4,386	5 5,839	1,450	340
Danville city ..	13	12	273	229	26,360	9,550	1,890	1,400	6,948	600	100
Fredericksburg city			522		15, 350	18,000	1,130	833	3,782	550	
Lynchburg city	${ }_{6}^{11}$	${ }_{11}^{6}$	445 105	${ }_{76}^{386}$	18,250 7 7	7,500 7	1,100	3,001	16,239	880	50
Newport News cit	7	6	693	304	372, 800	6,780	580	1,420	${ }_{3}^{2,234}$	10	
Norfolk city	18	11	749	675	201, 650	19,700	8,770	7,027	29,069	${ }_{9}^{1,410}$	6,070
Petersburg city.			2,236	1,811			2,080			2,340	
Portemouth city	4	4			84,200	4,800	200	1,586	4,057	710	10
Radford city.	38	32	3,007	2,497	${ }^{92} 23,50$	38,270	2,620	16,301	26,534	1,920	900
Richmond city	8	8	356	271	22,000	7,350	670	1,075	2,389	1,560	110
Roanoke city.........	7	7	$\begin{array}{r}37 \\ 355 \\ \hline\end{array}$	37 310	2,590 59,620	1,570	4, ${ }^{120}$	3,778	1,366		
Staunton city ${ }_{\text {Williamsburg elit.... }}$	4	${ }_{4}^{4}$	263	${ }_{166}$	- ${ }^{18,030}$	1, 650	- ${ }^{4,040}$	${ }^{6,848}$	7,726 4 4 10	1,750	120
Winchester city..	12	11	250	192	18,900	16,200	1,260	1,049	3 3,604	1,940	160

In the last decade the number of farms increased in all counties except Clarke, Montgomery, and Warwick. A decrease in the acreage of farm land is reported in less than one-fourth of the counties, while a smaller number show losses in the acreage of improved land. The decrease reported in improved area is due to a more intensive cultivation of smaller areas of farm land and to the use of a more strict definition of the term " improved land" by the Twelfth than by any preceding census. The average size of farms for the state is 118.6 acres, ranging from 30.0 acres in Mathews county to 325.5 acres in Bath county. The largest farms are found, as a rule, in the western counties, devoted to cereals and stock raising, and the smallest in the southeastern counties.

Between 1890 and 1900 the value of farms increased in three-fourths of the counties. The decreases reported are mainly in the southwestern counties. For the state the average value of farms, including land, improvements, and buildings, is $\$ 1,618$. Nearly all counties report increases in the value of implements and machinery, and only five counties report decreases in the amounts invested in live stock.
The average amount paid per farm for labor in 1899 varied from less than $\$ 10$ to more than $\$ 100$, the former
expenditure being reported from counties devoted mainly to dairying, and the latter, from a few western live-stock counties and some eastern counties containing numerous truck farms. The majority of counties, however, showed little variation from the state average. Clarke, Charles City, Rockingham, and Shenandoah counties alone reported a smaller expenditure for fertilizers in 1899 than in 1889.

FARM TENURE.

Table 4 gives a comparative statement of farm tenure for 1880,1890 , and 1900 , showing the number and percentage of farms operated by owners and by tenants. Tenants are divided into two groups--"cash tenants," who pay a rental in cash or a stated amount of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.
In Table 5 the tenure of farms in 1900 is given by race of farmer, and "farms operated by owners" are subdivided into groups designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the re-
mainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

- YEAR.	Total number of farms.	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPERATED BY-		
		Owners. ${ }^{1}$	Cash tenants.	Share tenants.	Owners. 1	Cash tenants.	Share tenants.
1900	167.886	116,290	16,649	34,947	69.3	9.9	20.8
1890	127,600	98,311	11,985	22, 304	73.1	9.4	17.5
1880	118,517	83,531	13,392	21,594	70.5	11.3	18.2

${ }^{1}$ Inclnding " part owners," "owners and tenants," and "managers."
Table 5.-NUMBER and PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

RACE.	Total number of farms.	Owners.	$\begin{gathered} \text { Part } \\ \text { owners. } \end{gathered}$	Owners and tenants.	Managers.	Cash tenants.	Share tenants.
The State....	167,886	102, 269	10,382	1,504	2,135	16,649	34,947
White Colored i	123,052	79,460 29	6,759	1, 370	1,897	9,758	23,808
Colored		22,809			$238{ }^{\circ}$		

Part 2.-PER cent of farms of specified tenures.

The State..	100.0	60.9	6.2	0.9	1.3	9.9	20.8
White Coloredi	100.0	64.6	5.5	1.1	1.5	7.9	19.4
	100.0	50.9	8.1	0.3	0.5	15.4	24.8

${ }^{1}$ Including 39 Indians.
In the period from 1880 to 1900 the total number of farms increased 41.7 per cent, and in the last decade, 31.6 per cent. Since 1890 the number of farms operated by owners has increased 24.6 per cent; by cash tenants, 38.9 per cent; and by share tenants, 56.7 per cent. The percentages in Table 4 indicate that the number of farms operated by owners has not increased so rapidly during the last ten years as the number of tenant farms.
In $1900,73.3$ per cent of the farms of the state were operated by white farmers and 26.7 per cent by colored farmers. Of the white farmers, 71.2 per cent own all or a part of the farms they operate, and 28.8 per cent operate farms owned by others. The corresponding percentages for colored farmers are 59.3 and 40.7.
In 1890, 35.0 per cent of all tenants were cash tenants, and in $1900,32.3$ per cent. This slight variation shows there has been little change in the relative proportions of the tenant classes.

No previous census has reported the number of farms
operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.
Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RACE OF PARMER, ANDTENURE.	Number of farms.	NUMBER OF ACRES IN FARME.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	167, 886	118.6	19, 907, 883	100.0	\$323, 515,977	100.0
White	123, 052	143.7	17,678,765	88.8	298, 986, 961	92.4
Colored ${ }^{1}$	44, 834	49.7	2, 229, 118	11.2	24,529,016	7.6
Owners..	102, 269	121.6	12,438,460	62.5	208, 352, 925	64.4
Part owners.	10, 382	107.0	1,111,067	5.6	19,799, 511	6.1
Owners and tenants..	1,504	178.6	268, 668	1.3	4, 123, 688	1.3
Managers.............	2,135	369.4	788, 638	4.0	18,439, 117	5.7
Casb tenants	16,649	104. 4	1,738,423	8.7	25, 807, 231	8.0
Share teuants .	34, 947	10i. 9	3,562,627	17.9	46, 993, 505	14.5

${ }^{1}$ 1ncludes 39 Indians.
Table 7.-AVERAGE Values OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

race of farmer, and tenure.	average values per farm of-					Per cent of gross income on total investmentin farm property.
	Ferm property, June 1, 1900.				Gross income (products of 1899 not led to live stock).	
	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State...	\$1,195	$\$ 423$	\$59	\$250	\$438	22.7
White Colored 1 \qquad	1,513	532 123	73 21	312 80	528 192	$\begin{aligned} & 21.7 \\ & 35.0 \end{aligned}$
Owners..	1,220	477	66	274	451	22.1
Part owners	1,203	376	60	268	440	23.1
Owners and tenants	1,714	578	87	363	633	23.1
Managers.........	5,756	1,753	190	938	1,273	14.7
Cash tenants	1,046	292	41	171	381	24.6
Share tenants	887	258	37	168	367	27.3

${ }^{1}$ Includes 39 Indians.
The value of the farm property of colored farmers is $\$ 24,529,016$, more than one-half the total number owning the farms they operate. With the exception of 39 Indians, the colored farmers of the state are negroes.

Farms operated by share tenants have the smallest average area, 101.9 acres, and those conducted by managers the largest, 369.4 acres. A number of the farms operated by managers are adjuncts of public institutions, while others are conducted for wealthy individuals in connection with their summer homes. These farms, as a rule, are favorably located and highly improved, and
the average values of their several forms of farm property, shown in Table 7, are much larger than those of any other tenure group. The ratio which their gross income bears to the total value of their farm property is, however, smaller than for any other group. This is due to the high average valuation of the farm property and to the fact that some of these farms are not cultivated for profit. The high percentage of gross income shown for colored farmers is due to the smaller size and consequent more intensive cultivation of their farms, and the low value of their farm property, or capital invested. More than one-fourth of the farmers are colored, but the value of the farm property they operate is only 7.6 per cent of the total value for the state.

FARMS CLASSIFIED BY AREA.
Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

AREA.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NUMBER OF ACRES INFARME.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	$\begin{gathered} \text { Yer } \\ \text { cent. } \end{gathered}$
The State.	167, 886	118.6	19,907,883	100.0	\$323, 515, 977	100.0
Under 3 acres	1,671	1.8	2,999	(1)	880, 414	0.3
3 to 9 acres	12,898	5.9	75,504	0.4	5, 456,122	1.7
10 to 19 acres	18, 334	13.4	245,754	1.2	9,421,688	2.9
20 to 49 acres	35,644	31.6	1,125,988	5.7	25, 867, 053	8.0
50 to 99 acres	33, 948	70.0	2, 376, 444	11.9	42, 349,071	13.1
100 to 174 acres	32, 466	126.4	4,102,998	20.6	65, 986,691	20.4
175 to 259 acres	15,348	209.4	3, 213, 708	16.2	49,649, 212	15.3
260 to 499 acres	12,377	340.3	4, 211,477	21.2	62,426,138	19.3
500 to 999 acres	4,100	638.1	2,616,261	13.1	36,282,926	11.2
1,000 acres and over..	1,100	1,760.7	1,936,750	9.7	26, 196, 662	7.8

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

ares.	aterage values per farm of-					Per cent of gross income oul total investment in farm property.
	Farm property, June 1, 1900.				Grossincome(produetsof 1899not fedto livestock).	
	Land and improvements (except buildings).	Buildings.	```\ lmple-```	Live stock.		
The State.......	\$1,195	\$423	\$69	\$250	\$438	22.7
Under 3 acres.	196	270	15	46	108	20.6
3 to 9 acres.............	182	169	15	57	108	25.5
10 to 19 acres..........	244	176	21	73	151	29.3
20 to 49Reres............	404	190	27	105	228	31.4
50 to 99 acres...........	744	289	44	170	349	27.9
100 to 174 acres........	1,242	454	70	266	510	25.1
175 to 259 acres........	2,031	694	103	407	726	22.4
260 to 499 acres........	3,242	1,035	140	627	1,010	20.0
500 to 999 acres.........	5,896	1, 626	206	1,121	1,428	16.1
1,000 acres and over..	16,363	3,337	388	2,818	2,900	12.7

The group of farms containing from 260 to 499 acres each comprises a larger total acreage than any other group, but the group containing 100 to 174 acres each represents the greatest value in farm property.

Except for farms of less than 3 acres, the average values increase with the size of the farms. For the group of farms of less than 3 acres each the average values are relatively high, as this group includes many of the florists' establishments of the state and also a large number of city dairies. The incomes from these industries depend less upon the acreage of land used than upon the amount of capital invested and the amounts expended for labor and fertilizers.
The average gross income per acre for the various groups classified by area are as follows: Farms under 3 acres, $\$ 60.41 ; 3$ to 9 acres, $\$ 18.41 ; 10$ to 19 acres, $\$ 11.24$; 20 to 49 acres, $\$ 7.22$; 50 to 99 acres, $\$ 4.98 ; 100$ to 174 acres, $\$ 4.04 ; 175$ to 259 acres, $\$ 3.47 ; 260$ to 499 acres, $\$ 2.97$; 500 to 999 acres, $\$ 2.24$; and 1,000 acres and over, \$1.65. It will be noted that the average gross income per acre decreases as the farms increase in size.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop, and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm; if vegetables are the leading crop, constituting 40 per cent of the value of such products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40 per cent of their income from any one class of products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED by principal source of income, with percentAGES.

PRINCIPAL SOURCE OF INCOME.	Number of farms.	NUMBER OF $\triangle C R E S$ INFARMB.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	167,886	118.6	19, 907, 883	100.0	\$323, 515, 977	100.0
Hay and grain	37,469	134.6	5, 043, 288	25.3	96, 905, 538	30.0
Vegetables	9, 047	66.1	697, 728	3.0	19,300,556	6.0
Fruits.	1,851	110.2	203,941	1.0	4,769, 134	1.5
Live stock	41, 156	134.0	6,513,798	27.7	106,510,584	32.9
Dairy produce.........	1,624	135.2	219, 581	1.1	8,618,313	2.7
Tobacco .-.............	19,466	128.8	2,506,848	12.6	21,481,571	6.6
Cotton	916	97.4	89,197	0.6	734, 345	0.2
Sugar..................	6	32.5	195	(1)	2,666	$\left.{ }^{1}\right)$
Flowers and plants .-	56	7.3	409	${ }^{1}$	427, 913	0.1
Nursery products.....	45	114.2	5,138	(1)	448,320	0.1
Miscellaneous.........	56,250	101.8	5, 727,810	28.8	64,317,037	19.9

Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPLL SOURCE OFINCOME.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Grossincome(productsof 1899not fed tolivestock).	
	Landand improvements (except buildings).	Buildings.		Live stock.		
The state.	81, 195	\$423	\$ 59	8250	8438	22.7
Hay and grain.	1,686	547	76	277	470	18.2
Vegetables	1,413	483	68	169	715	33.5
Fruits	1,693	587	68	229	665	25.8
Live stock.	1,607	506	69	406	455	17.6
Dairy produce........	3,388	1,168	144	607	996	18.8
Tobacco.	620	288	45	151	476	43.2
Cotton.	448	190	35	129	323	40.3
Sugar.	182	80	16	166	96	21.8
Flowers and plants...	2,652	4,578	373	38	3,517	46.0
Nursery products.....	7,529	2,004	211	219	4,180	42.0
Miscellaneous........	657	287	41	158	319	27.9

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms deriving their principal income from flowers and plants, $\$ 481.64$; nursery products, $\$ 36.61$; vegetables, $\$ 10.82$; dairy produce, $\$ 7.37$; fruits, $\$ 6.03$; tobacco, $\$ 3.70$; hay and grain, $\$ 3.49$; live stock, $\$ 3.39$; cotton, $\$ 3.32$; miscellaneous, $\$ 3.14$; and sugar, $\$ 2.97$. The wide variations shown in the averages and percentages of gross income are due largely to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens, the average expenditures for such items as labor and fertilizers represent a far larger percentage of the gross income than in the case of "hay and grain," "live stock," or "miscellaneous" farms. Were it possible to present the average net incomes, the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK:
Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

value of products NOT FED TO LIVE stock.	Number of farms.	NUMRER OF ACRES INFARMS.			value of farm PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Total.	Per cent.	Total.	Per
T'he State.	167, 886	118.6	19, 907,883	100.0	\$323, 515, 977	100.0
	680	63.9	43, 428	0.2	641,040	0.2
\$50 to $\$ 9$.	$\begin{array}{r}9,631 \\ 18,558 \\ \hline\end{array}$	28.8	277, 374	1.4	3,240,650	1.0
\$100 to \$249	18,552	35.6	r 660,785	3.3	7,717,410	2.4
\$250 to \$499	14, 540	113.6	$3,236,159$ $5,061,491$	16.3	38,641, 440	12.0
$\$ 500$ to $\$ 999$	27,617	186.2	5, 142, 809	2.88	$62,89.5,747$ $81,263,570$	19.4 25.1
\$1,000 to \$2,499.	12,566	315.3	3, 962,057	19.9	85, 863,020	26.5
\$2,500 and over.	2,247	678.1	1,523,780	7.7	43, 253, 100	13.4

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

value of products NOT PED TO LIVE STOCK.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross in-comeproductsof 1899not fed tolivestock).	
	Land and improyements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State.	\$1,195	\$423	859	\$250	$\$ 438$	22.7
\$0.........--............	650	162	14	117		
\$1 to \$19	199	93	9	35	29	8.8
\$50 to \$99	232	110	13	61	72	17.4
\$100 to \$249	42.2	181	23	116	166	22.3
\$250 to \$499 -	848	337	47	180	355	25.1
\$500 to $\$ 999$.	1,800	660	97	386	688	23.4
\$1,000 to $\$ 2,499$.	4,334	1,436	204	859	1,456	21.3
\$2,500 and over .-----.	13,372	3,201	460	2,216	4,539	23.6

The absence of income in the first group is due in part to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The persons in charge of such farms on June. 1, 1900, could not always give definite information concerning the products of the preceding year. The same statement is true, also, of some of the farms with reported incomes of less than $\$ 100$. To this extent the reports fall short of giving a complete statement of farm income in 1899. Other farms with small reported incomes are doubtless summer resorts or the country residences of city merchants and professional men who derive their principal incomes from other than agricultural pursuits.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the census of 1900 . The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with previous census reports.

The value of all live stock on farms, June 1, 1900, was $\$ 42,026,737$. Of this amount, 36.5 per cent represents the value of horses; 24.2 per cent, that of neat cattle other than dairy cows; 15.8 per cent, that of dairy cows; 7.0 per cent, that of mules; 6.1 per cent, that of swine; 5.0 per cent, that of sheep; 4.5 per cent, that of poultry; and 0.9 per cent, that of all other live stock.
No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, the value of domestic animals not on
farms would be $\$ 2,486,687$, and the value of all live stock in the state, exclusive of poultry and bees not on farms, was approximately $\$ 44,513,424$.
Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.
${ }_{2}$ Including Guinea fowls.
CHANGES IN LIVE STOCK ON FARMS.
The following table shows the changes since 1850 in the numbers of the most important domestic animals.
Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

YEAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	281, 876	543,636	298,522	47,886	392, 125	946,443
1890.	273, 634	473, 700	242,512	37,533	495, 313	796,691
1880.	243, 061	443,123	218,838	33,598	497, 289	956,451
1870.	188, 471	323, 272	152, 899	26,903	370, 145	674,670
$1860{ }^{2}$	330, 713	713,754	287,579	41,015	1,043,269	1,599,919
$1850{ }^{2}$	317,619	758, 650	272,403	21,483	1,310,004	1,829,843

${ }_{1}^{1}$ Lambs not included.
${ }^{2}$ lncluding the territory now embraced in West Virginia.
Continuous gains are shown for horses and mules since 1870 , but not until 1900 did they regain the numbers reported prior to the Civil War. Changes in the character of agricultural industries of the state since the war have caused less attention to be given the production of meat and wool, so that all neat cattle, sheep, and swine are reported in smaller numbers than in 1850. The numbers of dairy cows and other neat cattle have in-
creased regularly but moderately since 1870 . The number of sheep has decreased steadily since 1880 , with a decline of 20.8 per cent in the last decade. Swine have fluctuated in number from decade to decade, the ten years succeeding 1890 showing an increase of 18.8 per cent. Other classes show increases in numbers for the last decade as follows: Dairy cows, 3.0 per cent; other neat cattle, 14.8 per cent; horses, 23.1 per cent; mules and asses, 27.6 per cent.

In 1900, the enumerators were instructed to report no fowls under three months old, a limitation not made in previous enumerations. This probably accounts, in part, for the following apparent decreases in the numbers of all classes of donestic fowls in the last decade: Ducks, 60.6 per cent; turkeys, 56.5 per cent; geese, 41.9 per cent; chickens, 30.2 per cent.

ANIMAL PRODUCTS.
Table 16 is a summarized statement of animal prodncts for 1899.

Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS, IN 1899.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds	2,020,735	\$409,602
Mohair and goat hair	Founds.	343	113
Milk-.....	Gallons...	${ }^{1} 105,068,428$	
Butter	Pounds.	19, 905,830	26,999, 994
Cheese	Pounds	31,697	
Eggs .	Dozens	25,550, 460	2,836, 899
Poultry			3, 744, 654
Honey	Pounds	1,708, 320	195, 886
Wax	Pounds	60,110	195,886
Animals sold.			$7,800,124$
Animals slaughtered			5,859, 581
Total.			27,846, 803

[^151]The value of the animal products of 1899 was $\$ 27,846,803$. Of this amount, 49.1 per cent represents the value of animals sold and animals slaughtered; 25.1 per cent, that of dairy produce; 23.6 per cent, that of poultry products; 1.5 per cent, that of wool, mohair, and goat hair; and 0.7 per cent, that of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms was $\$ 13,659,655$, or 15.8 per cent of all farm products, and 18.6 per cent of the gross income. Of the farmers in the state reporting live stock, 138,538 , or 88.5 per cent, report animals slaughtered, the average value per farm being $\$ 42.30$. Sales were reported by 70,706 farmers, or 42.1 per cent of all in the state, the average receipts per farm being $\$ 110.32$. In obtaining these reports the enumerators were instructed to secure
from each farm operator a statement of the amount received from the sale of live animals in 1899, less the amount expended for animals purchased during the same year.

DAIRY•PRODUCE.

In $1899,126,784$ farmers, or 75.5 per cent of all in the state, reported dairy products. Of the $\$ 6,999,994$ given in Table 16 as the value of dairy products, $\$ 5,151,473$, or 73.6 per cent, represents the value of dairy products consumed on farms, and $\$ 1,848,521$, or 26.4 per cent, the amounts received from sales of such products. Of the latter amount, $\$ 944,496$ was received from the sale of $6,889,183$ gallons of milk, $\$ 869,314$, from 5,238,202 pounds of butter; $\$ 32,323$, from 59,838 gallons of cream; and $\$ 2,388$, from 24,310 pounds of cheese.
The production of milk in 1899 was $26,924,969$ gallons greater than in 1889 , a gain of 34.5 per cent. The amount of butter made on farms increased 10.9 per cent, and that of cheese made on farms decreased 71.0 per cent in the same time.

POULTRY AND EGGS.

The value of poultry products in 1889 was $\$ 6,581,553$, of which 56.9 per cent represents the value of poultry raised, and 43.1 per cent that of eggs produced. The number of eggs produced was 11,992,889 dozens greater in 1899 than in 1889 , a gain of 88.5 per cent. Rockingham and Shenandoah counties were first in the production of eggs, each reporting more than a million dozens.

wool.

In 1899 more wool was reported than by any census since 1860 . The gain since 1889 was 39.4 per cent. This increase is, however, more apparent than real, owing to the fact that the fleeces of 139,572 sheep were omitted from the table in 1890, but included in a general estimate of wool shorn after the censusenumeration.

HONEY AND WAX.

The production of honey in 1899 was 11.6 per cent, and that of wax 36.3 per cent greater than in 1889. Pittsylvania, Bedford, and Franklin counties were first in apiarian products.

HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.

Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals for each group, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

TABLE 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

CLASSES.	Horses.			DAIRY COWS.		
	Farms reporting.	Number.	Aver- age per farm.	Farms reporting.	Number.	Aver- age per farm.
Total.....--.-....	123, 347	298, 522	2.4	126,792	281,876	2.2
White farmers \qquad Colored farmers.	96, 552	259,558	2.7	104, 562	253, 373	2.4
	26, 795	38,964	1.5	22, 230	28,503	1.3
Owners ${ }^{1}$ \qquad Managers	88,364	221,127	2.5	91,402	211,944	2.3
	1,726	8,208	4.8	1,635	8,048	4.9
Cash tenants......	11, 142	21,982	2.0	9,846	19,400	2.0
Share tenants............	22, 115	47,205	2.1	23,909	-42,484	1.8
Under 20 acres 20 to 99 acres	15,634	20,616	1.3	16, 452	20,263	1.2
	49,952	86,875	1.7	51,575	84,505	1.6
100 to 174 acres 175 to 259 acres	27,605	69,334	2.5	28, 325	65,963	2.3
	13,783	44,710	3.2	14, 049	42, 349	3.0
260 acres and over	16,373	76,987	4.7	16,391	68,796	4.2
Hay and grain	26,615	78, 566	3.0	26,803	68, 748	2.6
Vegetable. Fruit.	6,884	13,953	2.0	4,815	8,175	1.7
	1,305	3,276	2.5	1,277	2,558	2.0
Live stock	33,189	94,006	2.8	36,548	97,348	2.7
Dairy .-	1,400	6, 935	5.0	1,624	15, 093	9.3
	14,161	27, 638	2.0	13,300	18, 322	1.4
Cotton Miscellaneous ${ }^{2}$	578	869	1.5	559	772	1.4
	39,215	73,279	1.9	41,866	70,860	1.7

${ }^{1}$ lncluding "part owners"' and "owners and tenants."
${ }^{2}$ Including sugar farms, florists' establishments, and nurseries.

CROPS.

The following table gives the statistics of the principal crops grown in 1899:

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

[^152]Of the total valne of crops, cereals contributed 40.5 per cent; hay and forage, 13.1 per cent; tobacco, 12.3 per cent; miscellaneous vegetables, 8.0 per cent; forest products, 6.5 per cent; orchard fruits, 4.5 per cent; potatoes, 4.2 per cent; peanuts, 3.9 per cent; sweet potatoes, 2.9 per cent; small fruits, 1.3 per cent; and all other products, 2.8 per cent.

The average values per acre of the various crops are as follows: Flowers and plants, $\$ 1,669$; nursery products, $\$ 179$; small fruits, $\$ 87$; potatoes, $\$ 49$; sweet potatoes, $\$ 42$; tobacco, $\$ 39$; sorghum cane and sorghum sirup, $\$ 24$; broom corn, $\$ 20$; peanuts, $\$ 19$; cotton and cottonseed, $\$ 15$; orchard fruits, $\$ 13$; hay and forage, $\$ 13$; dry beans, $\$ 10$; dry pease, $\$ 10$; and cereals, $\$ 8$.

The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production required a relatively great amount of labor and large expenditures for fertilizers.

cereals.

The following table is an exbibit of the changes in cereal production since 1849.

Table 19.-ACREAGE aND PRODUCTION OF CEREALS: 1849 TO 1899.
Part 1.-ACREAGE.

YEAR. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899.	2,768	19,251	1,910,085	275,394	31,534	927, 266
1889.	2,051	5,170	1,600,690	495,508	52, 063	737,510
1879.	859	16,463	1,768,127	563, 443	48,746	901,177

Part 2.-BUSHELS PRODUCED.

1899.	53, 340	244,321	36,748,410	3,269, 430	246,834	8,907,510
1889.	40,982	41,199	27,172,493	5,695, 100	397,394	7,904,092
1879.	14, 223	136,004	29,119,761	5, 333, 181	324,431	7,826,174
1869	7,259	45,075	17,649,304	6,857,555	582, 264	7, 398,787
18592.	68, 846	478,090	38,319,999	10, 186, 720	944, 330	13, 130, 977
18492.	25, 437	214,898	35,254, 319	10, 179, 144	458,930	11,212,616

1 No statistics of acreage were secured prior to 1879.
${ }_{2}$ lncluding the territory now embraced in West Virginia.
Of the total land surface of the state, 12.3 per cent was devoted to cereals in 1899. The total area in cereals was $2,892,992$ acres in 1889, and $3,166,298$ acres in 1899, an increase of 9.4 per cent. During the last ten years the area in corn has increased 19.3 per cent; wheat, 25.7 per cent; buckwheat, 272.4 per cent; and barley, 35.0 per cent; while that in oats decreased 44.4 per cent, and that in rye, 39.4 per cent.
In $1899,60.3$ per cent of the total acreage in cereals was devoted to corn; 29.3 per cent, to wheat; 8.7 per cent, to oats; 1.0 per cent, to rye; and 0.7 per cent, to buckwheat, barley, rice, and Kafir corn. Corn is the most important, being reported by 156,703 farmers, or 93.3 per cent of the total number in the state. Pittsylvania, Fauquier, Loudoun, Halifax, Caroline, and Accomac counties, in the eastern part, report nearly one-seventh of the total acreage in corn. Augusta and Rockingham, in the north, contain more than oneeighth of the wheat acreage and three-fifths of the bar-
ley acreage, while the southern counties of Bedford, Franklin, Halifax, and Pittsylvania report one-fifth of the acreage devoted to oats. Frederick and Carroll counties lead in the production of rye, and Carroll, Floyd, Grayson, and Smith counties, in the production of buckwheat.

HAY AND FORAGE.

In 1900, 115,910 farmers, or 69.0 per cent of the total number, reported hay and forage crops, from which, exclusive of cornstalks and corn strippings, they obtained an average yield of 1.0 tons per acre. The total area in hay and forage in 1899 was 612,962 acres, or 1.3 per cent greater than ten years before.

In 1899 the acreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 2,696 acres and 2,922 tons; millet and Hungarian grasses, 13,315 acres and 15,294 tons; alfalfa or lucern, 349 acres and 521 tons; clover, 104,124 acres and 105,640 tons; other tame and cultivated grasses, 442,070 acres and 437,436 tons; grains cut green for hay, 40,531 acres and 44,329 tons; crops grown for forage, 9,877 acres and 21,837 tons; and cornstalks and corn strippings, 623,174 acres and 315,100 tons.

In Table 18 the production of cornstalks and corn strippings is included under "hay and forage," but the acreage is included under " corn," as the forage secured was an incidental product of the corn crop.

TOBACCO.

According to the census of $1850,56,803,227$ pounds of tobacco were produced in Virginia in 1849. In all subsequent decades the crop has undergone great fluctuations. The census of 1860 showed a gain over that of 1850 of $67,165,085$ pounds, or 118.2 per cent, but the next census showed a decline of $86,881,948$ pounds, or 70.1 per cent. Between 1870 and 1880 there was a gain of $42,902,504$ pounds, or 115.7 per cent, while the decade between 1880 and 1890 was marked by another decline, the loss being $31,466,213$ pounds, or 39.3 per cent.

The present census shows that in 1899 tobacco was grown in Virginia by 44,872 farmers, who obtained from 184,334 acres a yield of $122,884,900$ pounds. This was a gain of 73,755 acres, or 66.7 per cent, over the crop area of 1889, and an increase in production of $74,362,245$ pounds, or 153.3 per cent, in the last ten years. The total value of the crop was $\$ 7,210,195$, an average of $\$ 160.68$ for each farm reporting. The average yield per acre in 1899 was 667 pounds, against 439 pounds in 1889 , and 568 pounds in 1879 . The average area for each farm on which tobacco was grown was 4.1 acres.

The tobacco crop of 1899 was distributed over 88 counties of the state, the leading county being Pittsylvania, with an area of 29,806 acres. The next in rank was Halifax, and the third Mecklenburg. These three counties together contributed 34.7 per cent of the total acreage and 30.5 per cent of the total produc-
tion. The counties next in order were Bedford, Char'lotte, Campbell, Henry, Amherst, Warren, Prince Edward, Lunenburg, Franklin, and Appomattox. These 13 counties together furnished 72.4 per cent of the acreage and 70.3 per cent of the entire production of the state.

cotton.

The following table is a statement of the changes in cotton production since 1859.

Table 20.-ACREaGE and PRODUCTION OF COTTON: 1859 TO 1899.

- Year. ${ }^{1}$	ACREAGE.		PRODUCTION.		
	Total.	Per cent of increase.	$\begin{gathered} \text { Commer- } \\ \text { cial } \\ \text { bales. } \end{gathered}$	Pounds.	Per cent of increase.
1899.	25,724	134.4	10,789	5,166,630	101.5
1889.	39, 213	${ }^{1} 12.9$	5,375	2,563,875	271.1
1879.	45,040		19,595	8,876,535	11,076.4
$1869{ }^{\circ}$				-79,422	298.6
$1859{ }^{\circ}$.				5,663,515

[^153]In 1873, Virginia produced the largest crop of cotton reported for that state by any census. The decrease shown for 1869 was the direct result of the effects of the Civil War. The decade ending in 1889 witnessed another decrease in the production of cotton amounting to 71.1 per cent.

In 1899, 4,761 farmers devoted an area of 25,724 acres, or 0.3 per cent of the total improved farm land of the state to cotton, an average of 5.4 acres per farm. From this land was produced $5,166,630$ pounds of cotton, an average of 201 pounds per acre. The total value of this crop, including the value of the cotton seed, was $\$ 381,548$, an average of $\$ 80.14$ per farm and $\$ 14.83$ per acre. This value constituted 0.5 per cent of the gross farm income.
Of the 118 counties in the state, only 24 report cotton. Those devoting the greatest area to this crop were Brunswick, Greenesville, Southampton, Mecklenburg, and Sussex, ranking in the order named and reporting 91.1 per cent of the total acreage. They are located in the south central and southeastern parts of the state.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 are shown in the following table:
Table 21.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

Freits.	number of trees.		bughels of frutt.	
	1900	1890	1899	1889
Apples..	¢, 190,025	4, 253, 364	9, 835, 982	8,391,425
Apricots	4, 2,950	- 1,793	9,838, 678	8, 1,024
Peaches.	- 269,690	132,631	188, 693	100,217
Pears..	1, 2931,288	1,218,219	357,339 88,400	$1,052,000$ 51,553
Plums and prunes.	118, 193	16,022	21, 167	- 2,886

The total number of fruit trees in 1890 was $5,744,946$, while in 1900 there were $10,828,777$, showing an increase of $5,083,831$, or 88.5 per cent. The rates of increase for the several varieties are as follows: Plums and prunes, more than sixfold; pears, 136.9 per cent; cherries, 103.3 per cent; apples, 92.6 per cent; apricots, 64.5 per cent; and peaches, 59.2 per cent.

Of the total number of trees reported in 1900, 75.6 per cent were apple trees; 17.9 per cent, peach trees; 2.7 per cent, pear trees; 2.5 per cent, cherry trees; and 1.3 per cent, apricot, plum and prune, and unclassified trees, the last class, which is not included in the table, numbering 17,518 trees, and yielding 5,142 bushels of fruit.

The value of orchard products, given in Table 18, includes the value of 43,995 barrels of cider, 16,414 barrels of vinegar, and $2,302,480$ pounds of dried and evaporated fruits.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 by the 11,147 farmers reporting them was 8,796 acres, an average of 0.8 acres per farm. Of the total, 7,821 acres, or 88.9 per cent, were devoted to strawberries, which yielded $12,270,300$ quarts. Of this fruit, 72.4 per cent of the acreage and 73.1 per cent of the yield were reported by Norfolk, Princess Anne, and Accomac, three extreme eastern counties bordering on Chesapeake Bay. The acreages and productions of the other berries were as follows: Blackberries and dewberries, - 444 acres and 532,830 quarts; raspberries and Logan berries, 365 acres and 424,110 quarts; gooseberries, 66 acres and 75,140 quarts; currants, 39 .acres and 42,060 quarts; and other small fruits, 61 acres and 79,480 quarts.

VEGETABLES.

The total value of vegetables grown in 1899, including potatoes, sweet potatoes, and onions, was $\$ 9,083,274$, of which 27.5 per cent represents the value of potatoes; 18.9 per cent, that of sweet potatoes; 1.6 per cent, that of onions, and 52.0 per cent, that of miscellaneous vegetables.

Potatoes were grown in 1899 by 83,780 farmers, or 49.9 per cent of the total number in the state. The area devoted to this crop in 1889 was 36,412 acres, and that in $1899,51,021$ acres, a gain of 40.1 per cent.
In the growing of miscellaneous vegetables, 97.285 acres were used. Of this area, the products of 55,561 acres were not reported in detail. Of the remaining 41,724 acres, 10,105 acres were devoted to cabbages; 9,815 acres, to tomatoes; 9,297 acres, to watermelons; 3,028 acres, to muskmelons; 2,015 acres, to sweet corn; 1,861 acres, to spinach; 1,603 acres, to cucumbers; 1,222 acres, to beans; 1,131 acres, to pease; and 1,647 acres, to other vegetables.

PEANDTS.

Peanuts were grown in 1899 by 11,572 farmers, or 6.9 per cent of the total number in the state. The area devoted to their cultivation was $116,91 \pm$ acres, and the product secured therefrom $3,713,347$ bushels. Increases of 98.3 per cent in acreage and 216.9 per cent in production are shown for the last decade. The average yield per acre was 19.9 bushels in 1889 and 31.8 in 1899.

The leading counties are Southampton, Nansemond, Isle of Wight, Sussex, and Prince George, ranking in the order named, and reporting, in the aggregate, 76.3 per cent of the total acreage.

SORGHUM CANE.

The present census shows that in 1899 sorghum cane was grown by 19,304 farmers on 8,039 acres, an average of 0.4 acres for each farm reporting. From this area they sold 2,320 tons of cane for $\$ 6,012$, and from the remaining product manufactured 555,321 gallons of sirup, valued at $\$ 190,903$. This was a decrease in acreage from that of 1889 of 16.1 per cent. The total value of sorghum-cane products of 1899 was $\$ 196,915$, an average of $\$ 10.20$ for each farm reporting, and of $\$ 24.50$ per acre.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 143 acres, and the value of the products sold therefrom was $\$ 238,712$. These flowers and plants were grown by 134 farmers and florists, of whom 56 made commercial floriculture their principal business. These 56 proprietors had invested in land, buildings, implements, and live stock $\$ 427,913$, of which $\$ 256,375$ represents the value of buildings. Their sales of flowers and plants amounted to $\$ 191,845$, and they obtained other products valued at $\$ 5,145$. They expended for labor $\$ 44,350$, and for fertilizers $\$ 4,295$. The average annual income for each farm reporting, including products fed to live stock, was $\$ 3,521$.

In addition to the 56 principal fiorists' establishments, 3,028 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of $2,887,643$ square feet, making, with the 596,617 square feet belonging to the florists' establishments, a total of $3,484,260$ square feet of land under glass.

NURSERIES.

The total value of the nursery products sold in 1899 was $\$ 214,988$, reported by the operators of 89 farms. Of this number 45 derived their principal income from the nursery business. They had 5,138 acres of land, valued at $\$ 338,790$; buildings worth $\$ 90,175$; inplements and machinery worth $\$ 9,480$; and live stock worth $\$ 9,875$. The value of their products in 1899 , exclusive of products fed to live stock, was $\$ 188,116$, of which $\$ 178,016$ represents the value of nursery products and $\$ 10,100$ that of other products. The expenditure for labor was $\$ 41,155$, and for fertilizers, $\$ 4,609$. The average income for each farm reporting, including the value of products fed to live stock, was $\$ 4,281$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 7,790,720$, an average of $\$ 46$ per farm. The average expenditure was $\$ 915$ for nur'series, $\$ 792$ for florists' establishments, $\$ 134$ for dairy farms, $\$ 112$ for vegetable farms, $\$ 78$ for fruit farms, $\$ 53$ for hay and grain farms, $\$ 44$ for livestock farms, and $\$ 43$ for tobacco farms. "Managers" expended on an average $\$ 275$; "owners," $\$ 48$; "cash tenants," \$43; and "share tenants," \$29. White farmers expended $\$ 60$ per farm and colored farmers, $\$ 10$.
Fertilizers purchased in 1899 cost $\$ 3,681,790$, an average of $\$ 22$ per farm and an increase since 1890 of 58.7 per cent. The average expenditure was $\$ 102$ for nurseries, $\$ 90$ for vegetable farms, $\$ 77$ for florists' establishments, $\$ 34$ for tobacco farms, $\$ 31$ for dairy farms, $\$ 30$ for fruit farms, $\$ 21$ for hay and grain farms, and $\$ 14$ for live-stock farms.

Twelfth Census of the United States.

Census Bulletin.

AGRICULTURE.

MISSOURI.

Hun. William R. Merriam,
 Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Missouri, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land, under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It also includes the house in which the farmer resides and all other buildings used by him in connection with his farming operations.

The farms of Missouri, June 1, 1900, numbered 284,886 and were valued at $\$ 843,979,213$, of which amount $\$ 148,508,490$, or 17.6 per cent, represents the value of buildings, and $\$ 695,470,723$, or 82.4 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 28,602,680$, and of live stock, $\$ 160,540,004$. These values added to that of farms give $\$ 1,033,121,897$, the " total value of farm property."

The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal
products." The total value of such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 219,296,970$, of which amount $\$ 97,841,944$, or 44.6 per cent, represents the value of aninial products, and $\$ 121,455,026$, or 55.4 per cent, the value of crops including forest products cut or produced on farms. The total value of farm products for 1899 exceeds that for 1889 by $\$ 109,545,946$, an increase of 99.8 per cent, but a part of this gain is doubtless due to a more detailed enumeration in 1900 than in 1890.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 57,952,360$, leaving $\$ 161,344,610$ as the gross farm income. The ratio which this latter amount bears to the "total value of farm property" is referred to as the "percentage of gross income upon investment." For Missouri, in 1899, it was 15.6 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Missouri. Very respectfully,

AGriculture in missouri.

GENERAL STATISTICS.

Missouri has a total land area of 68,735 square miles, or $43,990,400$ acres, of which $33,997,873$ acres, or 77.3 per cent, are included in farms.

The surface of Missouri is divided into two unequal portions by the Missouri River, which takes a zigzag course from west to east across the state. That part lying south of the river includes about two-thirds the area of the state and is of a varied nature. Its eastern portion is low and swampy and subject to frequent overflows by the Mississippi River and its tributaries. Above the swamps are limestone bluffs which extend westward. but are less precipitous as they approach the Osage River. In the south and west are the Ozark Mountains, rendering this region broken and hilly, the isolated peaks varying in height from 500 to 1,000 feet, and inclosing many fertile valleys. The northern part of the state is generally rolling prairie.

The immediate valley of the Missouri has a rich alluvial soil of great fertility, while other portions have soils, which are very productive, practically without fertilization.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades, since 1850 , the number of farms, the total and average acreage, and the per cent of farm land improved:

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NOMBER OF ACRES IN FARMS.				Per cent of farm land improved.
		Total.	Improved.	Unimproved.	Average.	
1900.	284, 886	33, 997, 873	22,900, 043	11,097,830	119.3	67.4
1890.	238, 043	30,780, 290	19, 792, 313	10,987,977	129.3	64.3
1880.	215, 575	27, 879, 276	16, 745, 031	11, 134,245	129.3	60.1
1870.	148, 328	21,707, 220	9, 130,615	12,576, 605	146.3	42.1
1860.	92,792	19, 984, 810	6, 246, 871	13, 737, 939	215.4	31.3
1850.	54,458	9, 732, 670	2,938,425	6,794,245	178.7	30.2

The number of farms reported, June 1, 1900, was more than five times as great as that reported in 1850, and 19.7 per cent greater than in 1890 . The total acreage of farm land, also, has rapidly increased, the
gain for the last decade being 10.5 per cent. Since 1860 the number of farms has gained faster than the total acreage, involving a decrease in the average size of farms and indicating a progressive division of farm holdings. A steady increase is shown in the acreage and per cent of improved land.

FARM PROPERTY AND PRODUCTS.
Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850.

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF FARM PRODUCTS: 1850 TO 1900.

Year.	Total value of farm property.	Land, improvements, and build. ings.	Implements and machinery.	Lire stock.	Farm products. ${ }^{1}$
1900.	\$1,038, 121, 897	\$843,979, 213	\$28, 602, 680	\$160, 540,004	\$219, 296,970
1890.	786, 390,253	625, 858, 361	21, 830,719	138, 701,173	109, 751, 024
1880.	489, 521, 663	375,633,307	18, 103, 074	95, 785, 282	95, 912, 660
$1870{ }^{2}$.	492, 789, 746	392,908, 047	15, 596, 426	84, 285,273	${ }^{3} 108,035,759$
1860.	293, 037, 307	230, 632, 126	8, 711,508	53, 695, 673	
1850.	87, 094, 648	63, 225, 543	3,981, 525	19, 887, 580	

${ }_{2}^{1}$ For year preceding that designated
${ }^{2}$ Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years they must be diminished one-fifth.
${ }^{3}$ Includes betterments and additions to live stock.
Since 1850 the total value of farm property has increased $\$ 946,027,249$, and in the last decade $\$ 246,731,644$, or 31.4 per cent. For the same decade the gain in the value of land, improvements, and buildings was $\$ 218,120,852$, or 34.9 per cent; in that of implenients. and machinery, $\$ 6,771,961$, or 31.0 per cent; and in that of live stock, ${ }_{\oplus}^{4} 21,838,831$, or 15.7 per cent. The value of the farm products of 1899 was nearly twice that of 1889. A portion of this increase, and of that shown for implements and machinery, is doubtless the result of a more detailed enumeration in 1900 than in previous census years.

COUNTY STATISTICS.
Table 3 gives an exhibit of general agricultural statistics by counties.

Table 3.-NUMBER and acreage of farms and values of specified classes of farm property, June 1, 1900, WITH GROSS INCOME (PRODUCTS OF 1899 NOT FED TO LIVE STOCK), AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	number of farms.		acres in farms.		values of farm propeaty.				Gross income (prod not fed to live stock)	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Land and im provements (except buildings)	Buildings.	Implements and machincry	Live stock.		Labor.	Fertilizers
The Sta	284,886	275,634	33,997,873	22,900,043	8695, 470, 723	\$148, 508,490	\$28,602,680	\$160, 540, 004	\$161, 344, 610	\$9, 803,610	\$370,630
Adair.	$\begin{array}{r} 2,696 \\ 2,562 \\ 2,56 \\ 2,149 \\ 2,770 \\ 3,709 \end{array}$	$\begin{aligned} & 2,616 \\ & 2,505 \\ & 2,505 \\ & 2,713 \\ & 3,607 \\ & 3,613 \end{aligned}$			$\begin{array}{r}6,275,060 \\ 10,056,550 \\ 14,0,95,800 \\ 9,300,370 \\ 3,905,280 \\ \hline\end{array}$		$\begin{aligned} & 240,580 \\ & 359,580 \\ & 397,920 \\ & 316,970 \end{aligned}$	1,685, 966	1,299,	43, 810	1,100
${ }_{\text {Alta }}^{\text {Andrew }}$								2,443, 3 3,435	2, 276,975 $3,047,080$	- 115,230	860 8,500
Andrain								2,330,374	1,818, 251	104,410	920
Barry...						872,400	241, 140.	970, 054	1,287, 112	69, 880	940
Barton	2,5904,070	$\xrightarrow{2,484}$	347, 553	311, 0	6, 956,760	1,191, 860	278,610	1,586,996	1,370, 958	46,520	6803,140
Bates			513,842			2,111,630		2,753,030		129,070	
${ }^{\text {Branton }}$	2,575 2,298 $\mathbf{2}, 28$	2,533 2,259	$\begin{array}{r}367,747 \\ \mathbf{2 7 4 , 2 8 2} \\ \hline\end{array}$	$\begin{aligned} & 190,928 \\ & 129,470 \end{aligned}$	$\begin{aligned} & 3,859,910 \\ & 1,693,050 \end{aligned}$	1, ${ }^{2} 541,540$	209, 370	1, 2889,251	1,045, ${ }^{1550}$	$\begin{array}{r}39,760 \\ \hline 23,700 \\ \hline\end{array}$	1,160
Boone.	3,540	$3{ }_{3}^{2,425}$	${ }_{408}{ }^{274}$, 386	301, 732	$1,693,050$ $8,266,060$		164,500 34,560	2,260,535	2,060,652	133, 780	10,500 1,070
Buchana	2.584	2,459	233, 372	177,312	11,345,780	1,876,930	330, 290	1,754, 086	2,006,522	146, 510	4,210
Butler.	1.577	1,546	154,127	55,664	1,009, 030	289,010	80,610		471,128	30, 760	
cald		$\begin{array}{r}2,205 \\ 3,501 \\ \hline 2\end{array}$	2783,927 8895 84,905	$\begin{array}{r}246,077 \\ 340,989 \\ \hline 889\end{array}$	$8,459,630$ $7,069,828$	$\begin{aligned} & 1,736,740,70 \\ & 1,899,730 \end{aligned}$	305, 440	2,278, 811	2, 117, 039	109,920	1,63030
Camden	2,069	2,006			$\begin{aligned} & 7,069,828 \\ & 1,525,800 \end{aligned}$		30,860 94,660	${ }_{6}^{2,25,402}$	2, 6179,447		
Cape Girard	$\begin{aligned} & 2,576 \\ & 3,692 \\ & 3.654 \\ & 3,525 \\ & 3,765 \\ & 2,765 \end{aligned}$	2,514	348,957	211,544	6, 124,490	1,664,590	383,110	999,291	1,409, 527	92,670	6,720
Carrolil		3,531	419,245	${ }^{371,073}$	12,130, 430	2, 154,640	422, 030	2, 486,775	2,519,153	144,000	3,950
carter			64,084	22, 873	388, 730	100, 300	29, 440	187,036	198,508	9,250	530
Cedar.		3,727 2	- ${ }_{279}^{411,784}$	363,474 185,840	$11,172,190$ $3,724,830$	2, 2719,630	391,580 202,540	$2,1841,262$ $1,055,549$	2,488,520	129,770 43,750	3,300 1,110
Chariton	3,805	3,690	450,367	350, 567	11,016,820	2,251, 700	435, 380	2,541,637	2,257, 662	30	3,420
Christia	2,648	2,570	258,208	149, 140	3,060,550	710,550	189, 0	782,577	2994,448	60	1,360
Clark	$\begin{array}{r}2,514 \\ 2,203 \\ \hline 2,5\end{array}$	$\begin{array}{r}2,381 \\ 2,115 \\ \hline 1\end{array}$	-3075,491	224,651 197,550	\% $7,318,290$	$1,424,830$ 1,66288 1	${ }_{229}^{281,580}$	1, 555,014 2,085	$1,405,111$ $1,788,656$	83,180 116,100	1,950 2,960 2
Clinto	2,024	1,940	273,704	251, 250	8 8,120,050	1,738,600	283, 000	2,707, 170	2,009, 790	164,860	1,170
Cole	1,700	1,655	224,754	119, 476	3,420,970	1,042, 110	240,290	671,483	962,301	41,100	2,070
Crawfor	退				$\begin{aligned} & 2,59,1,610 \\ & 4,676,280 \\ & 4, \end{aligned}$	$\begin{gathered} 2,084,820 \\ 5840 \\ 884,410 \end{gathered}$	$\begin{aligned} & 3,72,670 \\ & 22,470 \\ & 21,640 \end{aligned}$			146, 270	1,380
Dade									600,611 $1,218,612$	33,320 39,510	
Dallas	2,397	2,335	294,434 257,765	125, 231	$\begin{aligned} & 4,676,280 \\ & 1,816,980 \end{aligned}$	$\begin{aligned} & 814,410 \\ & 522,270 \end{aligned}$	-119, 220	1, 680,318	1, ${ }_{618} \mathbf{6 1 8 , 1 7 5}$	25, 170	${ }^{6} 1,110$
Daviess	3,308	3,1342,2982,29	353,670	279,050	9,950, 520	2,013,640	367, 180	2,525,595	2, 126,973	98,070	1,700
Dekal	2,377		${ }^{261,394}$	222, 284	8 8,39,0		250, 150	2,075,752		72, 630	1,11001620
Dent.	${ }^{1,748}$	1,735		$\begin{aligned} & 12,51,585 \\ & 101,878 \\ & 101 \end{aligned}$		376,2904829696,900600	103, 1390	545, 5291,530	587, 468	${ }^{33,770}$	
Dunklin	2,542	2,427	$\begin{aligned} & 318,101 \\ & 143,640 \end{aligned}$				133, 150.	${ }_{681,774}$		73, 100	${ }_{960}$
Franklin	3,853	3,795	466, 698	263, 711	16,490	2,640, 780	511,440	1,447, 273	2, 245,167		350
Gascoua	1,799		294,972	109, 491	2,913,040	1,150,670	272, 800	680, 502	848		${ }^{470}$
Gentry			300,589	227,449	8,112,970	1,519,770	320,790	2, 362,186	1,987, 794	73,790	3,180
Grundy.	$\begin{aligned} & 4,320 \\ & 2,298 \end{aligned}$	2, 21206	272, 601	197, 884	6, 228,710	1, $1,276,390$	- 232,420	1, $1,751,710$	1,493,275	132,40 7660	- 71.6800
Harrison	3,836	3,705	$\begin{aligned} & 448,941 \\ & \hline 47,720 \\ & 2179797 \\ & 265,920 \end{aligned}$	$\begin{aligned} & 328,598 \\ & 870,966 \\ & 101897 \\ & 224,997 \end{aligned}$	$6,888,440$ 9 $9,309,420$ $2,03,710$ $9,918,610$ $6,523,120$	$\begin{aligned} & 1,951,620 \\ & 1,854,500 \\ & 44,2620 \\ & 1,646,710 \end{aligned}$	436,690 99, 370 330,660	$\begin{aligned} & 3,145,983 \\ & 2,089,658 \\ & 6,09,039 \\ & 2,097,982 \end{aligned}$	2, 267, 862	67, 110	
Henry.	3,447 1,768	3,325 1,700							2,00i, 257	${ }^{132,820}$	4,200
Holt.	2,256	2,175							1,955,506	-11, 120	(300
Howa	2,037	1,981				1,779,880		1,594, 836	1,658,606	164,080	1,640
Howell	3,065	3,030	${ }^{417,170}$	153,701	3, 821, 160	910,850	201,360	729,028	904,	8,600	
${ }_{\text {Jran }}^{\text {Jackson }}$	- 8880	\% 843		-41,784	20, 716,06060	272, 220	${ }_{4}^{47,770}$	307,276	302,	12,270	
Jasper	3,054	${ }_{2,892}$	342, 191	${ }^{270} \times 236$	${ }_{9}^{20,581,900}$	4, 623,760	419, 50	2,	3,532, 744	279, 110	5,230
Jefferson	2,596	2,576	344, 176	156,055	4, 945, 650	1,804, 810	298,540	${ }^{\text {, } 963 \text { ', } 181}$	1, 434,679	109, ${ }^{\text {130 }}$	4, 800
Johnson	3,869	3,701	488,131	411,544	10, 431, 130	2,158,150		2,367,			
Lanox.ede	¢, 2,138	$\stackrel{2}{2,037}$	309,244	252, 685 181,942	6,767, 650	1,423,880	302,710	1,878, 980	1,449,634	60, 370	1,500
Lafayette	3,043	2, 2,975	367, 526	326, 718	13,597, 200	2, 953,000	- 480,490	2, 889,762	-812,225	-31, ${ }^{380}$	${ }^{1}, 070$
Lawrence	3,414	3,271	352, 120	264, 343	7,262, 110	1, 392,030	323, 580	1,228,361	1,699, 616	84, 190	8 8,060
Lewis		${ }_{2}^{2}, 151$		255, 437	6,779, 670	1,463,220		1,511,894	1,248,094		
Linn	2,763 2,925	2,692 $\mathbf{2 , 7 5 4}$ 1	$\begin{array}{r}256,643 \\ 393,454 \\ \hline\end{array}$	252,984 304,720	$5,936,250$ $9,297,810$ 10	- $1,476,550$	289,750 3885 10	1, $1.41,071$	1, 6059,242	73,640	11,870
Livingsto	2, 752	2,613	321,068	246, 638	9,544,440	1,702,390	310,600	2, ${ }^{2}$, 8988 , 748	1,939,038	97,600	4, 890
McDonald	2,066	1,958	186,532	87,712	1,770, 370	1430, 340	128,210	-597,275	${ }^{\text {, }} 726,173$	31, 200	1,850
Macon.	${ }^{4,233}$	4,095	486,180		8, 990, 560	2, 132, 340	400, 110	2, 471,	1,944,6		
Maries	${ }_{1}^{1,619}$	1,609	147,711 248,466	6,2425 92,440	1, 1 ,52, 110	${ }_{3}^{345,310}$	101, 650	385,	499,	19,140	6,860
Marion	2, 222	1,929	2667,621	199, 445	6, 175, 720	1,550, 300	234, 520	1, 4827 , 2126	515, 647	23,800	
Mercer	2,507	2,413	291, 917	235,774	5,597,270	1,140,510	260, 580	1,997, 038	1,627, 199	- 59,230	1,810
Miller	2,251					579,360	133, 180				
Moniteau.	2,150	1,100 2,069	139, 891	$\begin{array}{r}97,453 \\ \hline 183,348\end{array}$	5,271,210	382, 9	137, 490	${ }_{582}$ 2,147	721,868	${ }_{94,200}$	1,100
Monroe.	3,217	3,049	${ }_{405,567}$		\| ${ }^{5,058,945} 8$	退1,233,500	- $\begin{array}{r}271,500 \\ 316,730\end{array}$	1,108, 168	1,219, 889	52,280	1,140
Montgomery	2,264	2,196	302, 932	207, 008	$5,134,040$	1,302, 120	229, 800	1, 296,986	1,186, 844	$\begin{aligned} & 64,910 \\ & 67,280 \end{aligned}$	3,816
Moran.	${ }^{2,013}$	1,929	267,457	139,649	3, 104,410	951,010	180,020	1,028,980			
Newton.	3 3,043	2,967	-280, 406	193, 560	S, 2655,300	-	1035,930	544, 269	692, 659		4,270
Nodawa	4,490	4,323	556, 122	486,462	20, 792,940	3, 573,190	718,640	5,037,408	- 4 4,467\%,336	79,140 288160	$\stackrel{6,560}{ }$
Oregon	1,880	1,888	224, 877	86,426	1,491,630	392,220	105, 260	-473,671	4, 575,298	228,810 20	2,110
Osage.	$\xrightarrow{2,022}$	1,922	341,103 275,293	137, 186	3, 5850, 8880	1,033,350					
Pemiscot	1,201	1,102	85, 844	${ }_{47} 761$	1, 185, 130	228, 290	68, 68.320	490,878 446,610	431,341 570,329	13,180	${ }^{200}$
$\xrightarrow{\text { Perry }}$	1,936	1,916	259, 259	139, 945	4,022, 610	952, 450	252, 230	6451,690	1, $\begin{array}{r}\text { j77, } \\ \text { 1, } 0743 \\ \hline\end{array}$	33,920 61,670	100
	2,935	2,824	408, 515	344,869	10,256, 860	$\underline{2}, 170,850$	316, 640	2, 127, 882	2, 237, 849	143,480	4,790

Table 3.-NUMBER AND acreage of Farms and Values of specified classes of farm property, june 1, 1900, WITH GROSS INCOME (PRODUCTS OF 1899 NOT FED TO LIVE STOCK), AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES-Continued.

countres.	NUMBER OF FARMS.		ACRES IN FARMS.		Values of farm property.				Gross income (products of 1899 not fed to live stock).	EXPENDITURES.	
	Total.	With buildings.	Total.	1 mproved .	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
Phelps.	2,013	1,963	254, 286	106, 241	\$2, 016, 140	\$497, 000	8124, 170	\$573,686	8627,215	\$21, 990	8660
Pike..	2,873	2,807	397,274	294, 947	8,091,890	2,017,650	311,980	1,891,047	1,945,630	139, 830	2,420
Platte	2,042	1,963	261, 435	182,567	9,019, 870	1,711,430	326, 960	1,710,380	1,845, 315	137,040	2,520
Polk.	3,673	3,589	360, 871	234, 426	4,766, 860	1, 128,020	254, 460	1,350, 729	1,266, 691	30,590	1,830
Pulaski	1,512	1,447	195,117	75,660	1,338, 670	324,530	82,910	1, 480,687	1,505, 131	23,030	1,380
Putnam	2,596	2, 492	326,747	246, 194	6,362,010	1,084, 460	245,880	1,905,026	1,257,031	59,240	2,510
Ralls	1,996	1, 914	287, 995	230, 819	5,856, 220	1, 283, 170	229, 550	1,461, 202	1,347,589	82, 290	2,290
Randolph	2,460	2, 382	287,491	224,515	6,072,770	1,619,090	263, 150	1,633,529	1,222, 136	67,610	1,790
Ray	3,321	3, 172	340,866	288, 627	10, 299, 790	1,833, 320	381, 720	2,521,971	2,375, 463	119, 170	3,500
Reynolds	1,165	1,145	120,374	50,271	689,950	231, 830	64,870	460,219	388,645	13,830	350
Ripley.	1,740	1,686	159,723	63,496	725, 380	234,530	72,790	. 372,258	404,126	12,850	570
St. Charles	2,297	2,228	300, 171	220,491	8, 308,590	1,967,310	371,310	1, 107, 798	1,800, 226	214,750	8,540
St. Clair --	2,851	2,770	347,511	219,404	4, 495,640	1,020,840	230, 710	1,278,211	1,206, 036	65,060	4,790
Ste. Genevieve	1,364	1, 329	230, 494	94,600	$2,138,160$	722, 070	143, 860	- 469,070	682,213	30, 410	4,600
St, Francois	1,277	1,259	207, 685	97, 765	2,857,400	754, 100	138,020	571,629	691,825	60,990	11,610
St. Louis.	3,908	3,840	'253, 065	197, 558	25, 449, 140	4,783,890	701, 360	1,163, 438	3,173,535	421, 130	30,550
St. Louis city	826	805	11,561	9,305	6, 405, 260	1,294, 420	164,430	-363, 681	1,622,169	209, 860	15,660
Saline.	3,638	3,521	438,976	384, 236	15,403, 040	2,845,060	452, 350	3,140,827	3,023, 368	266, 230	14,050
Schuyler	1,654	1,595	198,530	162, 867	4, 222,590	867, 350	191,240	1,208, 585	,913,861	25,170	1590
Scotland.	2,118	2,077	277, 789	222,498	6,813,910	1,332, 250	260, 240	1,711,759	1,293, 079	37,540	1,290
Scott.	1,341	1,293	181,897	125,094	3,847,200	633,450	221, 730	630, 434	942, 152	102,650	2,820
Shannon	1,311	1,293	158, 024	50, 665	899,890	245, 960	62, 140	343, 645	357, 140	24, 400	670
Shelby	2,475	2,385	307,514	245, 638	6, 366, 540	1,552, 220	296, 220	1,872,036	1,533, 439	55, 240	2,770
Stoddard	2,873	2,761	227, 417	142,759	2,742,440	617,880	151, 230	859,963	1,140, 155	65,830	1,590
Stone	1,627	1,584	170,582	73,127	1,399,360	316,090	103,840	547, 825	584, 760	21,990	290
Sullivan	3,101	3,002	402, 871	323, 868	8,458,950	1,562,570	278,980	2,731,171	1,777,578	79,270	1,040
Taney	1,671	1,633	241,408	66,988	1,138, 060	299,550	67, 610	535,245	-458,650	13, 060	20
Texas	3, 729	3,639	505, 288	185, 681	2, 528, 410	774,000	168,290	798,888	851, 414	42,100	3,330
Vernon	3,988	3,855	484, 744	408, 694	9, 304, 010	1,992, 160	377, 560	2,098, 994	2, 056,509	123, 530	3,030
Warren	1,358	1,342	217,684	116, 770	3,324,140	1,062, 660	227, 560	681,068	831, 036	70,250	2,020
Washington	1,724	1,705	213, 130	93,743	2, 124,920	607,510	140, 560	608, 752	677,756	39,230	11,470
Wryne	1,733	1,681	197, 413	83, 02:	1,277, 910	420,890	97, 710	596, 343	633, 100	27,970	530
Webster	2,500	2, 452	263,286	143, 960	2, 696,760	718,000	152,320	741, 523	823, 329	32,920	3,240
Worth	1,549	1,462	164, 829	119,169	4,287, 820	703, 420	164, 540	1,235, 657	1,069,430	40, 130	80
Wright	2,726	2,649	326,582	139, 272	2,039, 400	549, 160	126, 880	-591,160	665, 326	38,350	2,070

All counties report increases in the number of farms in the last decade. Only five counties, Dunklin, Iron, Lincoln, Madison, and Washington, report decreases in farm area. It is probable that the decrease in improved acreage reported by a few counties is due to the use of a more strict definition of the term "inproved" by the Twelfth than by any preceding census. The smallest farms are in the cotton counties, and in those where there are numerous vegetable farms and florists' establishments, and the largest, where cereals and live-stock raising are the chief agricultural pursuits. The average size of farms for the state is 119.3 acres, and varies from 14.0 acres in St. Louis city to 169.0 acres in Ste. Genevieve county.
Except Cole and Dallas counties, all report an increased total value of farms in the last ten years. The average value of farms for the state is $\$ 2,963$. Most counties show increases in the value of implements and machinery, the average per farm being $\$ 100$. The value of live stock increased in nearly all counties, only eight reporting a smaller value in 1900 than in 1890.

FARM TENURE.

Table 4 gives a comparative exhibit of farm tenure for 1880,1890 , and 1900 . The farms operated by tenants are divided into groups designated as farms operated by "cash tenants," who pay a cash rental or a stated amount of labor or farm produce, and farms
operated by "share tenants," who pay as rental a share of the products.
In Table 5 the tenure of farms for 1900 is given by race of farmer. "Farms operated by owners" are subdivided into four groups designated as farms operated by "owners," "partowners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by ịndividuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or nore individuals, one owning the farm or a part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; (t) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.
Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

year.	Total number of farms.	number of farms operateo by-			PER CENT OF FARMS OPER-ATED By-		
		$\begin{aligned} & \text { Own- } \\ & \text { ers. } \end{aligned}$	Cash tenants.	Sbare tenants.	Owners. ${ }^{1}$	$\underset{\text { tenants. }}{\text { Cash }}$	Share tenants.
1900	284, 886	197, 989	31, 230	55,667	69.5	11.0	19.5
1890	238, 043	174,285	23, 525	40, 233	73.2	9.9	16.9
1880	215,575	156,703	19,843	39,029	72.7	9.2	18.1

[^154]TAble 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

race.	Total number of farms.	Owners.	$\begin{gathered} \text { Part } \\ \text { owners. } \end{gathered}$	Owners and tenants.	Managers.	$\begin{aligned} & \text { Cash } \\ & \text { ten- } \\ & \text { ants. } \end{aligned}$	Share tenants.
The State. White Colored ${ }^{1}$	284,886	159, 223	31,747	5,188	1,831	31, 230	55,667
	279,933	157, 322	31, 040	5,136	1,794	30, 399	54, 242
	4,933			52	37	831	1,425

Part 2.-PER CENT OF FARMS OF SPECIFIED TENURES.

The State.	1000	55.9	11.2	1.8	0.6	11.0	19.5
White	100.0	56.2	11.1	1.8	0.6	10.9	19.4
	100.0	38.4	14.3	1.0	0.7	16.8	28.8

${ }^{1}$ Comprising 3 Indians and 4,950 negroes.
Between 1890 and 1900 the number of farms operated by owners increased 23,704 , or 13.6 per cent; cash tenant farms increased 7,705 , or 32.8 per cent; and share tenant farms, 15,434 , or 38.4 per cent. In 1890 , 63.1 per cent of all tenants were share tenants, and in 1900, 64.1 per cent.

Of the farmers of the state, 98.3 per cent are white and 1.7 per cent, colored. Of the white farmers, 69.1 per cent own all or a part of the farms they operate; 30.9 per cent operate farms owned by others. For colored farmers the corresponding percentages are 53.7 and 46.3.

The number of cash tenants exceeds that of share tenants in a number of counties where the farms are more intensively cultivated and more valuable than elsewhere. They are chiefly situated near the principal cities and are generally north of the Missouri River.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFLED BY RACE OF FARMER AND BY TENURE.
Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.
Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED by Race of farmer and by Tenure, with PerCENTAGES.

RACE of FARMER, AND TENURE.		number of acres in FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State..	284, 886	119.3	33, 997, 873	100.0	\$1, 033, 121, 897	100.0
White	$\begin{array}{r} 279,933 \\ 4,953 \end{array}$	$\begin{array}{r} 120.5 \\ 54.8 \end{array}$	$\begin{array}{r} 33,726,480 \\ 271,393 \end{array}$	$\begin{array}{r} 99.2 \\ 0.8 \end{array}$	$\begin{array}{r} 1,025,151,594 \\ 7,970,303 \end{array}$	99.2 0.8
Owners.	159, 223	127.4	20,281, 378	59.7	596, 225, 314	57.7
Part owners	31,747	135.0	4, 284,841	12.6	136, 140, 257	13.2
Owners and tenants.	5,188	163.2	846, 931	2.5	25, 047, 302	2.4
Managers.	1,831	354.2	648,597	1.9	23, 094, 383	2.2
Cash tenants........	31,230	93.1	2,908,443	8.5	117,554, 213	11.4
Share tenants	55,667	90.3	5,027,683	14.8	135, 060, 428	13.1

${ }^{1}$ Comprising 3 Indians and 4,950 negroes.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

The value of farm property of the colored farmers is $\$ 7,970,303$, an average value of $\$ 1,609$ per farm, or about one-half the average value of farms operated by white farmers, $\$ 3,662$. The higher percentage of gross income for the farms of colored farmers does not indicate superior farm management, but is due to the smaller average area and consequent more intensive cultivation of these farms, and to the smaller value of farms or capital invested. For farms of the same area white farmers obtain slightly larger percentage of gross income, though for every form of farm property their farms show average values.

Farms operated by share tenants have the lowest average area, 90.3 acres, while those operated by managers have the highest, 354.2 acres. As a rule the latter are favorably located, highly improved, and sometimes not primarily cultivated for profit when adjuncts of public institutions or when conducted by wealthy individuals in connection with their summer homes. This should account for the comparatively low percentage of gross income for this group.

FARMIS CLASSIFIED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIfied by area, with percentages.

AR	Numfarms.	NUMBER OFACRES IN FARMS.			value of farm PROPERTY.	
		Average.	Total.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$	Total.	Per cent.
Tbe State.	284,886	119.3	33,997, 873	100.0	\$1,083, 121, 897	100.0
Under 3 acres.	1, 469	1.8	2,682	(1)	2,670, 825	0.3
3 to 9 acres.	6,333	6.3	40,179	0.1	8, 092, 619	0.8
10 to 19 acres	11, 286	13.8	155,332	0.5	13,863, 223	1.3
20 to 49 acres	56, 931	35.6	2, 028,673	6.0	75,355, 286	7.3
50 to 99 acres.	78, 933	74.5	5, 885, 823	17.3	182,619,027	17.7 28.7
100 to 174 acres	78.941	133.9	10,573,397	31.1	296, 589,385	28.7
175 to 259 acres.	29, 014	210.2	6,097,961	17.9 17.8	$183,200,387$ $182,400,410$	17.7
260 to 499 acres.	18,117 3,268	334.0 639.7	$6,051,799$ $2,090,466$	17.8 6.1	$182,400,410$ $63,525,369$	17.7 6.1
1,000 acres and over.	- 594	1,804.0	1,071,561	3.2	24,805,366	2.4

- ${ }^{1}$ Less than one-tenth of 1 per cent.

Table 9.-average values of specified "Classes OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

The group of farms containing from 100 to 174 acres each, comprises the largest percentage of the total farm acreage, and also the largest percentage of the total value of farm property. In this group the average values of the various forms of farm property approach nearest to the averages for the state. Except for farms under 3 acres, the average values of the several forms of farm property generally advance with the size of the farm. For farms of less than 3 acres the average value of buildings exceeds that of land and improvements, as this class includes most of the florists' establishments and many city dairies.
The average gross incomes per acre for the various groups are as follows: Farms under 3 acres, $\$ 396.76$; 3 to 9 acres, $\$ 36.73 ; 10$ to 19 acres, $\$ 15.04 ; 20$ to 49 acres, $\$ 7.43 ; 50$ to 99 acres, $\$ 5.51 ; 100$ to 174 acres, $\$ 4.45$; 179 to 259 acres, $\$ 4.34 ; 260$ to 499 acres, $\$ 4.02 ; 500$ to 999 acres, $\$ 3.86$; and 1,000 acres and over, $\$ 2.83$. The relatively high gross income per acre for farms of less than 3 acres is due to the fact that the incomes of the florists' establishments and city dairies, of which this group is largely composed, do not depend so much upon the acreage of land used as upon the amount of capital invested in buildings, implements, and live stock, and the amounts expended for labor and fertilizers.

FARMS CIASSIFIED BY PRINCIPAL SOURCE OF INCOME.

In Tables 10 and 11 farms are classified by prïncipal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop and constitutes at least 40 per cent of the total value of the products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables are the leading crop, constituting 40 per cent of the value of the products not fed to live stock, the farm is designated as a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40.0 per cent of their income from any one class of farm products. Farms reporting no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

principal source OF INCOME.	Number of farms.	number of acres in FARMS.			VALUE OF FARM PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Total.	Per cent.	Total.	Per cent.
The State.....	284,886	119.3	33, 997, 873	100.0	\$1, 033, 121, 897	100.0
Hay and grain	76, 733	118.8	9,118, 904	26.8	280, 269, 603	27.1
Vegetables..	4,267	36.1	153, 868	0.5	16, 254, 188	1.6
Fruit	2,592	80.9	209, 666	0.6	8, 421, 362	0.8
Live stock.	151,451	133.0	20, 148, 833	59.3	618, 720, 308	59.9
Dairy produc	6,021	95.9	577,575	1.7	27, 660, 208	2.7
Tobacco	264	74.6	19,696	0.1	596, 140	(1)
Cotton.	2,236	50.4	112,676	0.3	2,904,796	0.3
Sugar................	118	71.2	8,405	(1)	197,575	(1)
Flowers and plants.	183	3.4	618	(1)	1,088, 436	0.1
Nursery products...	116	83.2	9,650	(1)	872, 140	0.1
Miscellaneous .-..--	40,905	88.9	3,637,982	10.7	76,137,141	7.4

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE of income.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	Implements chinery.	Live stock stock.		
The State.	\$2,441	\$521	\$100	\$564	\$566	15.6
Hay and grain.	2,663	469	104	417	563	15.4
Vegetables	3,013	537	91	168	522	13.7
Fruit	2, 323	616	88	222	510	15.7
Live stock....	2, 635	599	110	741	640	15.7
Dairy produce	3,151	680	102	661	644	14.0
Tobacco	1,475	360	63	360	478	21.2
Cottou.	833	189	45	232	485	37.3
Sugar.	1,115	247	77	235	384	22.9
Flowers and plants. -	3,053	2,689	160	45	2,285	38.4
Nursery preducts....	5,687	1,441	204	186	3,141	41.8
Miscellaneons	1,238	309	62	252	286	15.4

For the several classes of farms the average value per acre of products not fed to live stock are as follows:

For farms deriving their principal income from flowers and plants, $\$ 676.74$; nursery products, $\$ 37.76$; vegetables, $\$ 14.48$; cotton, $\$ 9.62$; tobacco, $\$ 6.40$; fruit, $\$ 6.30$; sugar, $\$ 5.39$; live stock, $\$ 4.81$; hay and grain, $\$ 4.74$; and miscellaneous products, $\$ 3.22$.

The wide variations shown in the averages and percentages of gross income are largely due to the fact that in computing gross income no deductions are made for expenses involved in operations. For florists' establishments, nurseries, and market gardens, the average expenditure for such items as labor and fertilizers, represents a far greater percentage of gross income than for "hay and grain," "live-stock," or " miscellaneous" farms. If it were possible to present the average net incomes, the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

Tables 12 and 13 present data ${ }^{\text {relating to farms clas- }}$ sified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

value of pronucts Not FeD to Live sTock.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	NUMBER OF ACRES IN FARMS.			Yalue of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
Thestate.	284, 886	119.3	33, 997, 873	100.0	\$1, 033, 121, 897	100.0
\$0.	1,448	95.3	138,025	0.4	3, 163,580	0.3
81 to $\$ 49$	7,093	54.3	384, 938	1.1	5, 721, 880	0.5
\$50 to \$99	15, 290	56.3	861,561	2.5	13, 194,240	1.3
\$100 to \$249	64, 540	71.3	4,604,733	13.6	85, 583, 280	8.3
\$250 to \$499	86, 461	96.9	8,374, 040	24.6	208,514, 680	20.2
\$500 to \$999	72,495	139.2	10,092,572	29.7	324,525,650	31.4
\$1,000 to \$2,499.....	32, 417	225.1	7,296, 719	21.5	288, 263,777	27.9
\$2,500 and over	5,142	43 6. 7	2,245,285	6.6	104, 154, 810	10.1

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

value of products Not fed to live stock.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property,'June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and im-provements (except ings).	Buildings.	lmple- ments and machinery.	Live stock.		
The State.	\$2,441	\$521	\$100	\$564	\$566	15.6
	1,538	187	33	427		
\$1 to \$49	558	122	23	104	31°	3.8
\$50 to \$99.	573	143	28	119	70	8.2
\$ $\$ 250$ to $\$ 499 . . .$.	$\begin{array}{r}854 \\ 1,585 \\ \hline\end{array}$	219 379	43	210	170	12.8
\$500 to \$999	3, 024	662	133	369	358 688	14.8 15.4
\$1,000 to \$2,499	6,131	1,194	213	1,354	1,417	15.4
\$2,500 and over.	13,694	2,257	355	3,950	4, 338	21.4

The absence of income in the first group is due, in part, to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The persons in charge of such farms, on June 1, 1900, could not always give definite information concerning the products of the preceding year. The same statement is true, also, of some of the farms with reported incomes of less than $\$ 100$. To this extent the reports fall short of giving a complete exhibit of farm income in 1899. Some of the farms with small reported incomes are doubtless the suburban or summer homes of city merchants and professional men who derive their principal income from other than agricultural pursuits.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with previous census reports.

Table 14 presents a summary of live-stock statistics.
Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

LIVE STOCK.	Age in years.	ON FARMS.			NOT ON FARMS.
		Number.	Value.	Average valne.	Number.
Calves	Under 1.	633,317	\$6, 943, 267	\$10.96	13,410
Steers	1 and under 2.	386, 809	8, 713, 534	22.53	2,320
Steers	2 and under 3 .	363, 775	12, 451, 823	34.23	3,388
Steers	3 and over....	148, 965	6, 818, 862	45.77	10,624
Bulls	1 and over....	43,390	1,921, 821	44.29	978
Heifers.	1 and under 2.	312,749	6, 040, 589	19.31	2,922
Cows kept for milk	2 and over....	765, 386	23, 514, 794	30.72	49,192
Cows and heifers not kept for milk.	2 and over....	324,198	9,252, 117	28.54	1,436
	Under 1.......	58,177	1,277,129	21.95	1,299
Horses	1 and under 2.	63,214	2,070,506	32.75	1,109
Horses	2 and over...-	845, 646	38, 747, 179	45.82	127,105
Mule colts	Under $1 . . .$.	41,424	1,140, 502	27.53	262
Mules.	1 and under 2.	47,111	1,939, 879	41.18	${ }_{12} 415$
Mules	2 and over....	194,984	12, 401, 901	63.60 126.68	$\begin{array}{r}12,065 \\ \hline 658\end{array}$
Asses and burros.	All ages .-...	8,777	1,111, 893	126.68 2.36	$\begin{array}{r}-658 \\ \hline 805\end{array}$
Lambs-....-......	Under1.......	423,510	1999,349	2.36	+ 805
Sheep (ewes) --.......-	1 and over....	587,757	2,060, 859	3.51 3.83	7,210
Sheep (rams and wethers).	1 and over...	75,946 $4,524,664$	290,638 $16,533,935$	3.83 3.65	692 109,678
Swine..... Goats	All ages	$4,524,664$ 24,487	16,533, 63,786	2.65	109,988
Fowls: ${ }^{1}$ Chickens ${ }^{2}$		14, 903, 601			
Turkeys.		466, 665	¢5,720, 359		
Geese		428,307	[5,720,359		
Ducks.		278,140			
Bees (swarms of)		205, 110	508, 217	2.48	.--.....
Unclassified			16,065		
Value of all live stock.			160,540, 004		

[^155]The value of all live stock on farms, June 1, 1900, was $\$ 160,540,004$. Of this amount, 32.5 per cent represents the value of neat cattle other than dairy cows;
26.2 per cent, that of horses; 14.6 per cent, that of dairy cows; 10.3 per cent, that of swine; 9.6 per cent, that of mules; 3.6 per cent, that of poultry; 2.1 per cent, that of sheep; 0.7 per cent, that of asses and burros; and 0.4 - per cent, the value of all other live stock.

No reports were received of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, however, the value of live stock not on farms was $\$ 9,649,952$. Exclusive of poultry and bees not on farms, the total value of live stock in the state was $\$ 170,189,956$.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the changes since 1850 in the numbers of the most important domestic animals:

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

YEAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	765, 386	2, 213,203	967, 037	292, 296	663, 703	4,524,664
1890.	851,076	2, 118,640	946, 401	251, 714	950, 562	4,987,432
1880.	661,405	1, 419,527	667, 776	192,027	1,411, 298	4, 553, 123
1870.	398,515	755, 180	493, 969	111,502	1,352, 001	2, 306, 430
1860.	345, 243	823, 741	361,874	80, 941	937,445	2, 354,425
1850.	230,169	561, 341	225, 319	41,667	762,511	1,702,625

For the fifty years following 1850 every class of live stock, except sheep, shows a great increase in numbers. Between 1850 and 1880 the number of sheep increased. decade by decade, but since that time each succeeding decade shows a larger decrease.

In 1900 dairy cows, sheep, and swine were reported in smaller numbers than in 1890, and other classes of live stock show but small increases, owing to the excellent market for all classes of live stock just previous to the time of enumeration, and the high prices at that time. (See Table 14.) For the year 1899, 55.2 per cent of the value of all animal products for the state was derived from the sale of live animals, greatly reducing the flocks and herds.

Compared with the census of 1890 , that of 1900 shows the following increases: Mules and asses, 16.1 per cent; neat cattle other than dairy cows, 4.5 per cent; horses, 2.2 per cent. Sheep decreased 30.2 per cent; dairy cows, 10.1 per cent; and swine, 9.3 per cent.

In 1900 the enumerators were instructed to report no fowls under 3 months old, which limitation was not made in previous census reports. This probably accounts for the apparent decreases in the numbers of all domestic fowls. Compared with the figures for 1890, the census of 1900 shows decreases in numbers of fowls as follows: Ducks, 55.7 per cent; turkeys, 49.8 per cent; geese, 49.6 per cent; and chickens, 34.6 per cent. The increased production of eggs indicates that there have been increases in the numbers of most kinds of fowls.

ANIMAL PRODUCTS.

Table 16 is a summarized statement of the products of the animal industry in 1899.
Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS, IN 1899.

products.	Unit of measure.	Quantity.	Value.
Wool......	Pounds.	4, 145, 137	\$822,871
Mohair and goat hair	Pounds.	10, 203	2,798
Milk	Gallons.	${ }^{1} 258,207,755$	
Butter	Pounds	45,509, 110	215,042,360
Cheese	Pounds Dozens		
Eggs...	Dozens	85, 203,290	8,315,371 9, 525, 252
Pouney	Pounds	$3,018,929$	348,604
Wax ...	Pounds	69, 258	54, 018,809
Animals sold			54,018,809
Animals slaughtered			9,765,879
Total.			97,841,944

1ncludes all milk produced, whether sold, consumed. or made into butter or cheese.
meludes the value of all milk sold or consumed and of butter and cheese made.
The value of animal products for the year 1899 was $\$ 97,841,944$, of which amount 65.2 per cent represents the value of animals sold and animals slaughtered on farms; 18.2 per cent, that of poultry and eggs; 15.4 per cent, that of dairy produce; 0.8 per cent, that of wool, mohair, and goat hair; and 0.4 per cent, the value of boney and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

- The value of animals sold and animals slaughtered on farms for the year 1899 was $\$ 63,784,688$, or 39.5 per cent of the gross farm income. Atchison county is first in amount of sales, reporting $\$ 1,407,838$ received by 1,610 farmers from the sale of live animals, and seven other counties of the state report sales amounting to more than a million dollars each. Of all farmers reporting live stock, 228,531 , or 82.3 per cent, reported animals slaughtered, the average value per farm being $\$ 42.73$; and 199,935 , or 72.0 per cent, reported sales, the average receipts per farm being $\$ 270.18$. In securing the reports of animals sold on farms, the enumerators were instructed to obtain from each farmer a statement of the amount received from the sale of live animals less the amount paid in 1899 for such animals purchased during the same year.

DAlkY PRODUCE.

Of the total value of dairy produce given in Table 16, 65.1 per cent represents the value of such produce consumed on farms, and 34.9 per cent the receipts from sales. Of the latter amount, $\$ 2,985,872$ was received from the sale of $25,954,163$ gallons of milk; $\$ 2,123,750$, from $14,298,011$ pounds of butter; $\$ 129,159$, from 248,542 gallons of cream; and $\$ 17,459$, from 245,092 pounds of cheese. The amount of milk produced in 1899 was $64,276,652$ gallons greater than in 1889, a gain of 33.1 per cent. The amounts of cheese and butter made on farms increased, respectively, 12.1 per cent and 5.6 per cent in the same time.

POULTRY AND EGGS.

The total value of the products of the poultry industry in 1899 was $\$ 17,840,623$. Of this amount, 53.4 per cent represents the value of poultry raised, and 46.6 per cent, that of eggs produced. There were 85,203,290 dozens of eggs reported in 1900, 60.3 per cent more than ten years before. Twenty-seven counties reported more than a million dozens of eggs each, Franklin county making the largest report.

wOOL.

The largest report of wool for the state was made in 1880. Between 1880 and 1890 there was a considerable decrease, but the census of 1900 indicates an increase of 2.6 per cent since 1890. This increase is probably more apparent than real, owing to the fact that in 1890 the fleeces of at least 277,627 sheep were omitted from the table but included in a general estimate of the wool shorn after the census enumeration. The average weight of fleeces increased, in that time, from 6.0 pounds to 6.1 pounds.

HONEY AND WAX.

In 1899 there were $3,018,929$ pounds of honey and 69,258 pounds of wax reported, a decrease since 1890 of 32.8 per cent in honey and 8.5 per cent in wax.

HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.
Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

1ncluding " part owners" and "owners and tenants "

CROPS.

The following table gives the statistics of the principal crops grown in 1899:

Table 18.-ACREAGE, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

Crops.	Acres.	Unit of measure.	Quantity.	Value.
Corn.	7,423,683	Bushels	208, 844, 870	\$61, 246, 306
Wheat	2,056,219	Bushels.	23, 072,768	13,520, 012
Oats	916, 178	Bushels.	20,545,350	4,669, 185
Barley	1,727	Bushels.	28,969	11, 232
Rye	21,233	Bushels.	220,338	103, 192
Buckwheat	2,715	Bushels.	21,480	12,079
Kafir corn.	1,990	Bushels.	38,497	12, 836
Flax seed	100,952	Bushels.	611, 888	519, 929
Clover see		Bushels.	58,737	220,759
Grass seed		Bushels	219, 760	202,636
Hay and forage	3,481, 506	Tons...	4,326,896	20,467, 501
Cotton...	45,596	Bales.	26, 776	849, 199
Cottonseed		Tons.	15,593	65, 059
Tobacco	4,361	Pounds	3,041,996	218,991
Hemp		Pounds.	2,000	100
Hops	$\left.{ }^{2}\right)$	Pounds.	383	57
Broom corn	10,219	Pounds.	3,693,370	159, 988
Peanuts.	271	Bushels.	6,679	6,407
Dry beans	4,376	Bushels.	45,647	73,850
Dry pease	5,319	Bushels.	54,763	66,701
Potatoes.	93,915	Bushels.	7,786,623	2,756,695
Sweet potatoes	9,844	Bushels.	743, 377	424,470
Onions	1,383	Bushels.	259, 272	155,877
Castor beans	6,622	Bushels	31,966	31,177
Miscellaneous veg	114,853			6,388, 460
Maple sirup		Gallons	5,474	5,271
Maple sugar.		Pounds.	12,056	1,288
Sorghum cane	30,997	Tons-..-	22,166	62,967
Sorghum sirup		Gallons	1,990,987	597, 667
Small fruits	14,860			1,050,811
Orchard fruits.	${ }^{3} 471,349$	Bushels		42,944,175
Grapes.	${ }^{3} 4,938$	Centals	137,837	5314,807
Figs		Pounds		20
Nuts				19,838
Forest products				4, 442, 131
Flowers and plan				409,890
Seeds.........	156			15, 416
Nursery products	2,972			349,449
Miscellaneous.	195			68,609
Total	14,827, 620			121,455, 026

${ }^{1}$ Exclusive of 7,760 tons, valued at $\$ 76,258$, sold in seed cotton and included with the cotton.
${ }^{2}$ Less than 1 acre.
${ }^{3}$ Estimated from number of trees or vines.
${ }_{5}^{4}$ lncluding value of cider and vinegar.
Of the total value of crops, cereals, including Kafir corn, contributed 65.5 per cent; hay and forage, 16.8 per cent; vegetables, including potatoes, sweet potatoes, and onions, 7.2 per cent; fruits and nuts, 3.6 per cent; forest products, 3.7 per cent; and all other products, 3.2 per cent.

The average values per acre of the various crops are as follows: Flowers and plants, $\$ 2,265$; nursery products, $\$ 118$; small fruits, $\$ 69$; tobacco, $\$ 50$; miscellaneous vegetables, $\$ 47$; sweet potatoes, $\$ 43$; potatoes, $\$ 29$; sorghum cane and sirup, $\$ 21$; cotton, $\$ 20$; broom corn, $\$ 16$; dry beans and pease, $\$ 14$; hay and forage, $\$ 6$; castor beans, $\$ 6$; and flaxseed, $\$ 5$. The crops yielding the highest average returns per acre were grown upon highly improved land. Their production required a relatively great amount of labor and large expenditures for fertilizers.

CEREALS.
The following table is a statement of the changes in cereal production since 1849:

Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.

Part 1.-ACREAGE.

Year. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899.	1,727	2,715	7, 423,683	916,178	21,233	2,05¢, 219
1889.	1,504	2, 802	6,072, 121	1,676,706	24,283	1,946, 785
1879..	6,472	5,463	5,588, 266	968,473	46, 484	2,074,394

Part 2.-BuSHELS PRODUCED.

1899.	28,969	21,480	208, 844, 870	20, 545, 350	220,338	23,072, 668
	34,863	28, 440	196, 999,016	39, 820, 149	308, 807	30, 113, 821
1879	123,031	67,640	202, 414,413	20,670, 958	535,426	24,966,627
1869.	269, 240	36,252	66,034,075	16, 578, 313	559,532	14,315, 926
1859.	228,502	182, 292	72, 892, 157	3,680, 870	293,262	4, 227, 586
1849.	9,631	23,641	36, 214, 637	5, 278, 079	44, 268	2,981,652

The total area devoted to cereals in 1879 was $8,689,551$ acres; in 1889, 9,724,201 acres; and in 1899, 10,421,755 acres. This was a gain in the last decade of 7.2 per cent. The increases in area devoted to cereals in the past decade were: Corn, 22.3 per cent; barley, 14.8 per cent; and wheat, 5.6 per cent. The decreases were: Oats, 45.4 per cent; rye, 12.6 per cent; and buckwheat, 3.1 per cent. The total number of bushels produced in 1899 was $252,733,775$, or nearly six times the number produced in 1849 , which was $44,551,808$.

Of the total area in cereals in 1899, 71.2 per cent was devoted to corn; 19.7 per cent, to wheat; 8.8 per cent, to oats; 0.2 per cent, to rye; and 0.1 per cent, to buckwheat and barley.

The operators of 259,420 farms, or 91.1 per cent of the total number in the state, reported corn; 89,941 , or 31.6 per cent, reported wheat; and 83,411 , or 29.3 per cent, reported oats. Nodaway county leads in the acreage and production of corn, oats, and barley. Franklin county produced the most wheat, and Clark county the most buckwheat and rye.

HAY AND FORAGE.

In $1900,176,893$ farmers, or 62.1 per cent of the total number in the state, reported hay or forage crops. Exclusive of cornstalks and corn strippings, they obtained an average yield of 1.17 tons per acre. The total area in hay and forage for 1899 was $3,481,506$ acres, or 21.3 per cent greater than ten years before.

In 1899 the acreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie
grasses, 167,959 acres and 196,288 tons; millet and Hungarian grasses, 166,709 acres and 230,995 tons; alfalfa or lucern, 2,239 acres aud 5,409 tons; clover, 377,228 acres and 493,364 tons; other tame and cultivated grasses, $2,563,365$ acres and $2,829,485$ tons; grains cut green for hay, 124,515 acres and 151,967 tons; crops grown for forage, 79,491 acres and 154,691 tons; cornstalks and corn strippings, 258,552 acres and 264,697 tons.

In Table 18 the production of cornstalks and corn strippings is included under "hay and forage" but the acreage is a part of that given for "corn," as the forage secured was only an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 may be seen in the following table:

Table 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRCITS.	number of trees.		BUSHELS OF FRUIT.	
	1900	1890	1899	1889
Apples.	20,040,399	8, 150, 442	6,496, 436	8,698, 170
Apricots	16, 190	6,250		
Cherries..	679,985	381, 185	62,708	88,444
Peaches..	4,557, 365	1, 899, 474	61,006	1,667, 789
Pears.	548, 702	84,741	58,449	58,683
Plums and prunes..	745,187	152,686	111, 603	40,388

Of the farmers of the state, 119,605 , or 42.0 per cent, report orchard fruits in 1900. Since 1890 there has been a large general increase throughout the state in the number of fruit trees. Apple trees increased 145.9 per cent; peach trees, 127.9 per cent; apricot trees, 159.0 per cent; and cherry trees, 78.4 per cent. There are more than six times the number of pear trees reported in 1890, and rearly five times as many plum and prune trees. The largest gains in the numbers of apple and peach trees have been in the southern part of the state.
Of all fruit trees in 1900, 75.2 per cent were apple trees; 17.1 per cent, peach trees; 2.8 per cent, plum and prune trees; 2.1 per cent, pear trees; 2.5 per cent, cherry trees; 0.3 per cent, apricot and unclassified fruit trees. The latter class, which is not included in the table, numbered 69,973 , and yielded 14,716 bushels of fruit.

The value of orchard products, given in Table.18, includes the value of 29,545 barrels of cider, 10,050 barrels of vinegar, and $1,327,660$ pounds of dried and evaporated fruits. Comparisons of yields or of their values, when made by decades only, are of little significance, as the yield of any given year is largely dependent upon the nature of the season.

All counties of the state reported fruit trees, and a majority show marked increases since 1890 . The south-
ern counties reported the largest numbers of apple and peach trees.
cotron.
The following table is a statement of the changes in cotton production since 1859:

Table 21.-ACREAGE AND PRODUCTION OF COTTON: 1859 TO 1899.

year.	acreage.		PRODUCTION.		
	Total.	$\begin{gathered} \text { Per cent } \\ \text { of } \\ \text { increase. } \end{gathered}$	$\begin{aligned} & \text { Commer } \\ & \text { cial } \\ & \text { bales. } \end{aligned}$	Pounds.	Per cent of increase.
1899....	45,596	120.4	25,576	12, 865, 944	70.1
1889.	57,260 32	78.3	15, 856	7, 563, 312	${ }^{1} 17.8$
1889.	32,116		20,318	9, 204, 540,764	$1,602.0$ 197.0
1859.				18,328,660	

${ }^{1}$ Decrease.
In 1899, 4,691 farmers devoted an area of 45,596 acres to the production of cotton, an average of 9.7 acres per farm. From this land was obtained 12,865,944 pounds of cotton, an average of 2,743 pounds per farm and 282 pounds per acre. The total value of this crop, including the value of the cottonseed, was $\$ 904,258$, an average or $\$ 192.76$ per farm, and $\$ 19.83$ per acre.
The counties which devoted the largest area to cotton are Dunklin, Pemiscot, Stoddard, New Madrid, and Ozark, ranking in the order named, and reporting 91.2 per cent of the total acreage. Dunklin alone reported 56.3 per cent of the total acreage. With the exception of Ozark, these counties adjoin, and are located in the extreme southeastern corner of the state.

VEGETABLES.

The value of all vegetables grown in the state in 1899, including potatoes, sweet potatoes, and onions, was $\$ 8,725,502$. Aside from the land devoted to potatoes, sweet potatoes, and onions, 114,853 acres were used in the growing of miscellaneous vegetables. Of this area the products of 74,663 acres were not reported in detail. Of the remaining 40,190 acres, concerning which detailed reports were received, 14,487 acres were devoted to watermelons; 10,277 , to tomatoes; 5,963 , to cabbages; 4,733 , to sweet corn; 2,113, to muskmelons; 1,293, to cucumbers; 278, to pumpkins; 187, to beans; 129, to lettuce; 127, to pease; 106, to spinach; and 497, to other vegetables.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 was 14,860 acres, distributed among 48,517 farms. The value of the fruits grown was $\$ 1,050,811$, an average of $\$ 22$ per farm. The acreages and productions of the various berries were as follows: Strawberries, 7,498 acres and $13,018,460$ quarts; blackberries and dewberries, 4,441 acres and $5,121,860$ quarts; rasp-
berries and Logan berries, 1,660 acres and 1,940,850 quarts; gooseberries, 731 acres and 865,870 quarts; currants, 194 acres and 223,730 quarts; and other berries, 336 acres and 314,150 quarts.

tobacco.

According to the census of 1850 Missouri produced $17,113,784$ pounds of tobacco. The census of 1860 shows a gain of $7,972,412$ pounds, or 46.6 per cent. In every decade since 1860 there has been a greater or less decrease in the crop in the state. Between 1860 and 1870 there was a decrease of $12,765,713$ pounds, or 50.9 per cent. Between 1870 and 1880 there was a decline of 2.5 per cent, and between 1880 and 1890, a decline of $2,590,834$ pounds, or 21.6 per cent.

The present census shows that in 1899 tobacco was grown in Missouri by 10,475 farmers, who obtained from 4,361 acres a yield of $3,041,996$ pounds, valued at $\$ 218,991$. This was a decrease in area for the last decade of 6,989 acres, or 61.6 per cent, and in production, of $6,382,827$ pounds, or 67.7 per cent. The average area for each farm on which tobacco was grown was a little over two-fifths of an acre. Tobacco was grown in 114 counties of the state, the area ranging from 1 acre in New Madrid county to 751 acres in Chariton county.

SORGHUM CANE.

The present census shows that in 1899 sorghum cane was raised by 48,951 farmers on 30,977 acres of land, an average of 0.6 acre for each farm reporting. From this area they sold 22,166 tons of cane for $\$ 62,967$, and from the remaining product manufactured $1,990,987$ gallons of sirup, valued at $\$ 597,657$. There was a decrease in acreage in ten years of 14.6 per cent. The crop reached its highest point in 1879 , when a production of $4,129,595$ gallons of sirup was reported.

FLAX.

Flax was grown in 1899 by 5,730 farmers, or 2.0 per cent of the total number in the state. Since 1889 the area devoted to this crop has increased from 56,421 to 100,952 acres, or 78.9 per cent, and the yield, in bushels of seed, from 450,831 to 611,888 , or 35.7 per cent. The total value of the crop was $\$ 519,929$. The average yield per acre was 8.0 bushels of seed in 1889 , and 6.1 in 1899. The average acreage per farm devoted to this crop was 17.6 , and the average value of crop per farm, $\$ 90.74$.

Almost the entire crop was grown near the western border south of the Missouri River. The leading counties in both acreage and production are Bates, Cass, Barton, Vernon, Johnson, and Henry, ranking in the order named.

CASTOR BEANS.
Castor beans were grown in 1899 by 495 farmers, who devoted to their cultivation 5,622 acres and secured therefrom a product of 31,966 bushels, an average of 5.7 bushels per acre, and valued at $\$ 31,177$. Of the total acreage, 97.2 per cent was reported from the southwestern counties of Vernon, Barton, and Cedar, ranking in tho order named.

BROON CORN.

In 1899, 10,219 acres, reported by 1,978 farmers, produced $3,693,370$ pounds of brooni corn, valued at $\$ 159,988$. This is a gain in product, since 1890 , of $2,642,231$ pounds, or 251.4 per cent, and an increase of 290.3 per cent in acreage. More than half of the total product was grown in the four west central counties of Henry, Bates, Benton, and St. Clair.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 181 acres, and the value of products sold therefrom was $\$ 409,890$. These flowers and plants were grown by 270 farmers and florists. Of this number, 183 made commercial floriculture their principal business. These 183 proprietors had invested, in the aggregate, $\$ 1,088,436$, of which $\$ 558,775$ represents the value of land and improvements other than buildings; $\$ 492,200$, the value of buildings; $\$ 29,240$, that of implements and machinery; and $\$ 8,221$, that of live stock. Their sales of flowers and plants amounted to $\$ 400,136$, and they secured other products valued at $\$ 18,088$. They expended for labor $\$ 86,720$, and for fertilizers, $\$ 4,181$.

In addition to the 183 principal florists' establishments, 1,088 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of $1,988,860$ square feet, making, with the $1,137,540$ square feet belonging to the florists' establishments, a total of $3,126,400$ square feet of land under glass.

NURSERIES.

The total value of nursery products sold in 1899 was $\$ 349,449$, reported by the operators of 259 farms and nurseries. Of this number, 116 derived their principal income from the nursery business. They had 9,650 acres of laud, valued at $\$ 659,770$; buildings worth $\$ 167,125$; implements and machinery, $\$ 23,640$; and live stock, $\$ 21,605$. Their total income, exclusive of products fed to live stock, was $\$ 364,356$, of which $\$ 333,366$ represents the value of nursery stock, and $\$ 30,990$, that of other products. The expenditure for labor was $\$ 91,348$, and for fertilizers, $\$ 2,715$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899 was $\$ 9,803,610$, an average of $\$ 34$ per farm. The average expenditure was $\$ 787$ for nurseries, $\$ 474$ for florists' establishments, $\$ 70$ for fruit farms, $\$ 63$ for vegetable farms, $\$ 54$ for dairy farms, $\$ 38$ for live-stock farms, $\$ 31$ for hay and grain farms, $\$ 24$ for cotton farms, $\$ 22$ for tobacco farms, and $\$ 14$ for sugar farms. "Managers" expended on an average, \$266; "owners," \$37;
"cash tenants," $\$ 34$; and "share tenants," $\$ 16$. White farmers expended $\$ 35$ per farm, and colored farmers, $\$ 13$.

Fertilizers purchased in 1899 cost $\$ 370,630$, an average of $\$ 1.30$ per farm, and more than five times the amount expended in 1890. The average expenditure was $\$ 23$ for nurseries and florists' establishments, $\$ 6$ for regetable farms, $\$ 4$ for fruit farms, and $\$ 1$ for hay and grain, live-stock, dairy, tobacco, and sugar farms.

Twelfth Census of the United States.

Census Bulletin.

AGRICULTURE.

MISSISSIPPI.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Mississippi, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that--
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides and all other buildings used by him in connection with his farming operations.

The farms of Mississippi, June 1, 1900, numbered 220,803 , and were valued at $\$ 152,007,000$. Of this amount, $\$ 37,150,340$, or 24.4 per cent, represents the value of buildings, and $\$ 114,856,660$, or 75.6 per cent, the value of land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 9,556,805$, and of live stock, $\$ 42,65 \overline{7}, 222$. These values, added to that of farms, give $\$ 204,221,027$, the "total value of farm property."

The products derived from domestic animals, poultry, and bees, including animals sold and animals slaugh-
tered on farms, are referred to in this bulletin as "animal products." The total value of such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 102,492,283$, of which amount $\$ 17,608,507$, or 17.2 per cent, represents the value of animal products, and $\$ 84,883,776$, or 89.8 per cent, the value of crops, including forest products. The total value of farm products for 1899 exceeds that for 1889 by $\$ 29,149,288$, or 39.7 per cent.
The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 11,748,625$, leaving $\$ 90,743,658$ as the gross farm income. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Mississippi in 1899 it was 44.4 per cent.
As no reports of expenditure for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.
The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Mississippi. Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN MISSISSIPPI

gENERAL STATISTICS.

Mississippi has a total land area of 46,340 square miles, or $29,657,600$ acres, of which $18,240,736$ acres, or 61.5 per cent, are included in farms.
From the northeast corner of Mississippi, where the land is slightly rugged, the surface gradually slopes, with many undulations, west to the Mississippi River and south to the Gulf of Mexico. The broad, low ridge thus formed extends nearly north and south through the state, and divides the waters which flow into the Mississippi from the affluents of the Tombigbee, Pearl, and Pascagoula rivers. On this ridge are large tracts of arable land, much of which is under cultivation, while other portions are covered by forests. To the west is doubtless the most desirable farm land of the state, extending from Vicksburg to the north state line, and including all that portion between the Mississippi and Yazoo rivers. To the east are broad, gently rolling prairie lands, exceedingly fertile, yielding large crops of corn and cotton.

The state has several varieties of soil, most of which are fertile and productive. Among these are the brown loam of the central table-land; the rich, black, calcareous soil of the prairie region; the sandy loam with a clayey or sandy subsoil, south of the central ridge; and the yellow loam of the northeast. All of these except the last two are unusually rich, and may easily be kept in a high state of cultivation without the use of fertilizers.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850 , the number of farms, the total and average acreage, and the per cent of farm land improved.

$$
\text { TABLE 1.-FARMS AND FARM ACREAGE: } 1850 \text { TO } 1900 .
$$

year.	Number of farms.	number of acres in farms.				Per cent of farm land improved.
		Total.	Improved.	Unimproved.	Average.	
1900.	220, 803	18,240, 736	7,594, 428	10,646, 308	82.6	${ }^{41.6}$
1890.	144, 318	17,572,547	6, 849,390	10,723, 157	121.8	39.0
1880.	101, 772	15,855, 462	5, 216,937	10,638,525	155.8	32.9
1870.	68,023	13, 121, 113	4, 209, 146	8,911,967	192.9	32.0
1860...	42, 840	15, 839, 684	5, 065,755	10,773, 929	369.7	32.0
1850..	33, 960	10,490,419	3,444, 358	7,046, 061	308.9	32.8

The number of farms reported, June 1, 1900, was more than six times as great as the number reported in 1850 and 53.0 per cent greater than in 1890 . The total acreage, however, has gained only 73.9 per cent since

1850 , and 3.8 per cent since 1890 , showing that the number of farms has increased faster than the total acreage, involving a general decrease in the average size of farms. The percentage of farm land iniproved is somewhat greater than ten years ago, but little change being shown for any decade before 1880 .

FARM PROPERTY AND PRODUCTS.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, heginning with 1850 .

Table 2.-Values OF SPECIFIED CLASSES OF Farm PROPERTY AND OF PRODUCTS: 1850 TO 1900.

YEAR.	Total value of farm property.	Land, improvements, and buildings.	$\begin{aligned} & \text { lmplements } \\ & \text { and } \\ & \text { machinery. } \end{aligned}$	Live stock.	Farm products. 1
1900	\$204, 221, 027	\$152,007, 000	\$9,556, 805	\$42, 657, 222	\$102, 492, 283
1890	167, 328, 457	127, 423, 157	5,968,865	33, 936, 435	73, 342, 995
1880	122, 016, 268	92,844,915	4, 885, 636	24, 285,717	63, 701, 844
$1870{ }^{2}$	116, 113, 447	81, 716,576	4,456, 633	29, 940, 238	${ }^{3} 73,137,953$
1860	241, 478, 571	190, 760, 367	8,826,512	41,891, 692	
1850	79,905,223	54, 738, 634	5,762,927	19,403, 662	.

1 For year preceding that designated.
${ }^{2}$ Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years they mast be diminished one-fifth.
${ }^{3}$ Includes betterments and additions to live stock.
The remarkable growth of agriculture in the decade from 1850 to 1860 , the disastrous effects of the Civil War, and the subsequent partial recovery of the state, are interesting facts shown in the above table. The total value of farm property is even now less than it was in 1860, but the value of implements and machinery and of live stock has reached the highest point in the history of the state.
The gain in the last decade in the total value of farm property was $\$ 36,892,570$, or 22.0 per cent. The value of land, improvements, and buildings increased $\$ 24,583,843$, or 19.3 per cent; that of implements and machinery, $\$ 3,587,940$, or 60.1 per cent; and that of live stock, $\$ 8,720,787$, or 25.7 per cent. The value of the farm products of 1899 was 39.7 per cent greater than the value reported for 1889. A portion of this increase and of that shown for implements and machinery, is doubtless the result of a more detailed enumeration in 1900 than in previous years.

COUNTY STATISTICS.

Table 3 gives an exhibit of general agricultural statistics by counties.

Table 3.-NUMBER and acreage of farms, and values of specified classes of farm property, June 1, 1900, WITH GROSS INCOME (PRODUCTS OF 1899 NOT FED TO LIVE STOCK), AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	S'mber of farms.		acres in farms.		values of farm property.				Value of products not fed to live stock.	expenditures.	
	Total.	With buildings.	Total.	Improved.	Land and improvements (except buildings).	Buildiugs.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
The State..	220,803	211,299	18,240, 736	7,594,428	\$114, 856,660	837, 150, 340	89, 556, 805	842, 657, 222	\$90, 743, 658	33, 917, 256	\$932,098
Adams	2,583	2,525	141, 222	73,756	1,114,520	461,580	112,890	464,572	1,280,026	89,930	4,070
Alcorn	1,944	1,871	198, 371	71, 203	822, 240	292, 980	85, 730	396, 964	672, 448	11,690	9,320
Amite	3, 288	3,116	325, 269	122, 868	1,327,780	597,500	149, 935	580, 110	1,405, 225	54, 340	41,310
Attala	4,381	4,167	385, 003	150, 341	1,543,880	653,450	156,735	679, 127	1,484, 558	34, 102	9,006
Benton	1,867	1,782	216, 101	64,844	638,710	280,070	61,480	345, 528	634,641	1,370	920
Bolivar	5,515	5,245	246, 143	185, 746	5,892.190	1,189, 260	312,860	1,159,902	3,269,798	331,830	25,080
Calhoun	3,097	2,875	307,537	92, 168	1,147, 480	416, 410	109, 620	628,197	996, 600	12,210	710
Carroll	3,424	3,270	312,698	128, 561	1,730,660	527,980	165,780	668, 276	1,352, 176	54,570	1,810
Chickasaw	2, 894	2,512	256,839	124,490	1,584,060	482, 430	133,500	605, 517	1, 134,497	29,980	1,580
Choctaw.	2,189	2.087	217, 591	70,290	696,070	326,890	83,410	408, 692	744,388	22,370	7,500
Claiborne	2,970	2,879	222,490	116, 624	1,393,790	490, 000	140, 610	553, 126	1,111,750	38,120	2, 830
Clarke.	2,308	2, 266	232, 888	73,488	775,850	421, 720	85, 830	412, 059	820,542	33,850	27,180
Clay	2,815	2,686	198,812	111, 929	1,595, 120	419, 040	127,070	567, 652	1, 125,082	18,950	620
Coahom	4,055	3,945	195, 494	121,905	4,337, 050	873, 120	218,745	830,688	2,365, 867	192,790	8, 190
Copiah	4.500	4,187	392,514	176,814	2,008,880	969, 690	255, 410	883,628	1,973, 137	54, 274	59,594
Covington.	1,966	1,946	252, 427	59,664	794,470.	455, 870	88,650	384, 465	748, 350	24,030	30,230
De Soto.	3,726	3,645	257, 771	151,066	2, 262,390	780,860	166,910	736, 242	1,667,155	59,150	2,030
Franklin	1,903	1,856	243, 107	66,096	846, 060	317,350	76.540	403, 653	843, 772	21, 990	10,230
Greene	733	731	139,945	16,709	301, 060	170, 100	33,350	232, 593	176, 436	3,530	15,510
Grenada.	1,948	1,884	216,224	87,175	1,025,670	303,140	74,460	403,188	764,995	41,710	660
Hancock	530	521	75, 855	6,014	199, 910	131,940	26,980	241, 829	170, 339	5,390	5,580
Harrison	713	${ }^{711}$	88, 898	9,353	337,900	209, 270	31, 810	266,307	269, 311	13,430	15,440
Hinds.	6,607	6,140	394, 046	251, 369	3,000, 080	1,069, 500	288, 750	1,258,124	2,748, 643	63, 470	11,850
Holmes	5,140	5,080	359, 859	203, 480	2,902, 600	880,120	212, 325	904, 285	2,287, 731	56,782	8,936
1ssaquena	1,646	1,593	90,676	55, 052	1, 456, 110	413, 870	110,085	334, 035	887, 071	34, 702	786
1 lawamba	2,259	2,193	272,395	80,228	691, 300	264,530	87, 780	451,626	747, 445	10,280	8,210
Jackeon	544	540	126, 370	8,239	352, 130	185, 450	31, 130	221, 653	192, 249	10, 120	11,210
Jasper.	2, 254	2,199	294, 657	82, 259	775, 660	360, 790	72, 130	469, 234	864, 435	29, 270	29,580
Jefferson	3,575	3,469	219,018	112,110	1,296,080	580, 940	140,590	642, 117	1,558,058	144,580	4.640
Jones...	1,561	1,527	218, 314	44.078	646, 830	326, 130	7,370	348, 454	666,410	18,060	42,970
Kemper	3,314	3,148	312,641	122,562	1,205,500	531,520	119,940	621, 930	1,247,194	48,080	31,970
Lafayette.	3,871	3,655	346, 743	127,915	J, 880, 120	53,310	171, 260	696, 649	1, 419, 478	31,690	970
Lauderdale	3, 358	3,215	315,542	130,159	1,616,880	675, 9330	135, 620	6223,959	1,388, 146	66,130	46,230
Lawrence	2,510	2,446	276, 683	92, 662	810,010	386, 610	93,830	461,692	974, 052	39,310	30, 900
Leake	2,756	2,667	302, 264	102, 736	886, 180	394, 860	101,720	468, 227	966, 529	35,620	16,710
Lee.	3,501	3,323	238, 491	134, 379	1,585,950	510,440	137,480	710, 790	1,356, 017	29,630	1,160
Leflore	4,266	3,973	192, 108	117,013	3, 430, 180	658,020	189, 870	622, 761	2,032, 187	103,592	3.056
Lincoln	${ }^{2,316}$	2, 196	221,388	87,007	883,050	520,990	144, 455	498, 584	961,807	18,212	38,116
Lowndes	3,467	3,419	${ }_{341}^{242,982}$	150, 057	2, 280, 2660	703, 940	196.830	687,598	1,486, 173	63,070	12, 370
Madison	4,717	4,565	341,388	218,172	2,600,660	882, 420	180, 060	878, 489	1,860,708	117, 190	8,790
Marion	1,781	1,754	236,333	54, 156	634,450	293, 710	83,570	399, 339	612,585	18,690	22,110
Marshall	4,516	4, 322	379, 098	82,581	1,733, 630	813,720	181, 610	803, 901	1,751, 664	37,760	2,520
Monroe	4,854	4,615	372,738	187, 404	3, 013,680	848,950	245, 290	877, 675	2,009, 066	71,100	11,810
Montgomery	2,394	2, 277	215, 967	91, 375	933,650	380, 710	94,850	478, 328	-860, 035	30, 990	4,210
Nesboba...	2,256	2,126	266, 491	74, 470	702, 680	353, 120	78,030	439, 445	817, 228	29,450	20,550
Newton	3,277	3,225	299,641	114,928	1,135,760	543, 230	109, 860	605,696	1,165, 741	48,770	41,710
Noxubee.	4,412	4,289	318, 005	193, 390	2,265, 590	735, 720		893, 056	1,581, 046	39, 920	4,220
Oxtibbeha.	3,163 4,744	3,034 4,582	207, 893	119, 809	1,505,580	474, 130	124,370	618,648	1,075, 212	35,'550	+990
Pcarl River	491 4	4,582 481	3381,010 81	187,182 9,241	$12,244,980$ 192,260	744,170 106,010	192,890 23,370	955,150 213,380	$1,794,735$ 160,182	23,500 3,480	690 5,670
Perry .	1,148	1,108	195, 034	24, 872	557,390	298, 020	72,120	367, 169	420, 195	4,490	
Pike..	2,550	2, 365	276,739	96, 570	985, 630	573, 220	130,210	514, 273	1, 130, 446	40, 810	47, 160
Pontotoc	3,368	3, 265	240,326	85, 333	1,172,560	407, 530	102, 620	573, 898	1,097, 450	18,730	300
Prentiss	2,591 1,031	2, 13004	222,236 66,813	74,436 23,363	929, 970 703,290	321, 270	104,510 56,480	477, 040	863, 305	18,090	6,920
Quitman	1,031	1,004	66, 813	23,363	703, 290	125, 360	56,480	190,900	536, 930	29, 040	150
Rankin.	3,398	3,229	330,501	310,356	1,252, 800	466, 750	134,960	669,996	1, 106,997	38, 424	26,112
Scott....	2,083 2,043	1,983 2,019	236,061 $80,36 \%$	70,943	599,310	330, 910	-72, 205	376,662	687,820	25,922	19,756
Simpson	2, 161	2,024	222,949	74,281	2,222,100	463,300 301,320	125,510 63,440	416,466 369,313	1,356,880	81,260	1,690
Smith	2,400	2,205	270, 831	75,602	749,490	335,620	73,430	421,041	698, 362	25,840 19,310	22, 4220
Sunflower	2,705	2,639	1222,965\%	73,696	2, 435, 210	477, 530	108,610	650, 913	1,078,430	79, 510	
Tallahatchie	3, 289	3,193	179, 426	95, 611	2,157, 490	531, 410	117,560	624, 651	1,508, 418	12,204	240
Tate	3,704 2,288 1	3,557 2,154 1	218,840 238,980	$\begin{array}{r}120,504 \\ 72,576 \\ \hline\end{array}$	1,722, 88.810	563,630 302 180	$\begin{array}{r}136,710 \\ 72 \\ \hline 156\end{array}$	665, 292	1,404,020	16, 020	480
Tishomingo.	1,625	1, 487	208, 907	46,114	- 416,980	368,190 160	72,560 41,870	392,147 285,890	$\begin{aligned} & 733,201 \\ & 483,103 \end{aligned}$	9,710 4,560	2,250 4,980
Tunica	2,902	2,853	144,968	93,438	2, 973,140	455, 930	122,060	520, 470	1,846, 019		
Union	2,895	2,634	218,437	82, 641	1, 051,830	359, 400	119,265	546, 722	1,946, 446	205, 470	460 890
Warren.	4,058	3,649	2221, 851	116,942	2, 176,090	627, 210	182, 500	706, 681	1,794,695	144, 370	1,960
Washington	6,853	6, 668	265, 138	197,896	6, 767,530	1,657,240	896, 370	1,372,594	3, 4 44, 632	306, 802	2, 1,400
Wayne ..	1,790	1,753	207, 212	40, 266	471, 900	1287,410	80, 130	1,322, 677	-464, 661	19,130	18,426
Webster	$\square 262$	2,133	240, 567	80,511	711, 220	813, 430	73,220				
Winston..	23.687	2, 600	268, 544	109, 247	1,337, 840	484,730	184,815	578, 595	1,196, 863	82,280	6,850
YalobLsh	2,743	2,619	251, 3340	96,581	800,900 $1,218,360$	351,890 432,880	97,360 125,240	425,348 521,320	1909,761	26, 490	16,220
Yazoo.	6,741	6,549	428, 145	238,098	4, 749, 260	1, 2261,420	$\stackrel{124,240}{346}$	521, 1, 323,842	$1,111,704$ $3,493,122$	19,280 239,850	1,530

Increases in the number of farms in the last decade are reported for all counties except Issaquena. The total acreage of farm land increased in two-thirds of the counties, while the remaining counties show decreases. The decrease in improved acreage reported for nearly one-fifth of the counties is due to a more intensive cultivation of smaller areas of farm land, and to the use of a more strict definition of the term "improved" by the Twelfth than by any preceding census. The average size of farms for the state is 82.6 acres, ranging from 38.7 acres in Washington county to 232.3 acres in Jackson county. The average size of farms is, as a rule, largest in the southern counties, and smallest in the northern counties having the greatest acreages; in cotton.

Between 1890 and 1900 the total value of farms decreased in nearly one-sixth of the counties, these, with one exception, being in the northern part of the state. For the state, the average value of farms was $\$ 688.43$. Issaquena alone reported a decrease in the value of implements and machinery, and every county but De Soto, Issaquena, and Monroe reported a gain in the value of live stock.

Very few counties reported large average expenditures per farm for labor in 1899. The amount varied from less than $\$ 1$ per farm in Benton county to over $\$ 70$ per farm in Tunica county. In the counties reporting low averages, cultivation was not intensive and farmers exchanged labor or paid in produce. One-third of the counties, usually those reporting large expenditures in 1889, showed a decrease in the total expenditures for fertilizers in 1899.

FARM TENURE.

Table 4 is an exhibit of farm tenure for 1880,1890 , and 1900 , sho ving the number and per cent of farms operated by owners and by tenants. Tenants are divided into two groups: "Cash tenants," who pay a rental in cash or in a stated amount of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.

In Table 5 the tenure of farms in 1900 is given by race of farmer, and "farms operated by owners" are subdivided into groups designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it and the other, or others, owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

Y EAR.	Total number of ferms.	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPERATED BY-		
		Owners. ${ }^{1}$	Cash tenants.	Share temants.	Owners. ${ }^{1}$	Cash tenants.	Share tenants.
1900.	220,803	82, 951	70,699	67,153	37.6	32.0	30.4
1890	144,818	68,058	30,366	45, 894	47.2	21.0	31.8
1880.	101,772	57,214	17,440	27, 118	56.2	17.1	26.7

I Including "part owners," "owners and tenants," and "managers,"

Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

PART 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

Race.	Total number of of firms	$\begin{aligned} & \text { Own- } \\ & \text { ers. } \end{aligned}$	Part owners.	Owners Rnd tenants.	Managers.	Cash tenants.	Share tenants.
The State. .White \ldots.-.......	220,803	75, 981	5,431	609	930	70,699	67,153
	$\begin{array}{r} 92,124 \\ 128,679 \end{array}$	57,613 18,368	$\begin{aligned} & 2,972 \\ & \mathbf{2 , 4 5 9} \end{aligned}$	$\begin{aligned} & 463 \\ & 146 \end{aligned}$	$\begin{aligned} & 823 \\ & 107 \end{aligned}$	$\begin{aligned} & 13,505 \\ & 57,194 \end{aligned}$	16,748 50,405
Indian Negro	$\begin{array}{r} 328 \\ 128,351 \end{array}$	$\begin{array}{r} 102 \\ 18,266 \end{array}$	$\begin{array}{r} 2 \\ 2,457 \end{array}$	146	107	$\begin{array}{r} 50 \\ 57,144 \end{array}$	174 50,231

PART 2.-PER CENT OF FARMS OF SPECIFIED TENURES.

The State.White	100.0	34.4	2.5	0.3	0.4	32.0	30.4
	100.0	62.5	3.2	0.5	0.9	14.7	18.2
Colored.	100.0	14.3	1.9	0.1	0.1	44.4	39.2

In the period from 1880 to 1900 the total number of farms increased 117.0 per cent, and in the last decade, 53.0 per cent. Since 1890 , the number of farms operated by owners has increased 21.9 per cent; by cash tenants, 132.8 per cent; and by share tenants, 46.3 per cent. The percentages shown in Table 4 indicate that the number of farms operated by owners has not increased so rapidly since 1880 as the number operated by tenants.
In $1900,41.7$ per cent of the farms of the state were operated by white farmers and 58.3 per cent by colored farmers. Of the white farmers, 66.2 per cent owned all or a part of the farms they operated and 33.8 per cent operated farms owned by others. The correspouding percentages for colored farmers are 16.3 and 83.7, respectively.

In 1890, 39.8 per cent of all tenants were cash tenants, and in $1900,51.3$ per cent. Generally in the counties where most of the farmers are white, share tenants outnumber cash tenants; but in those counties where colored farmers predominate, the proportion of cash tenants is greater.
No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.
Tables 6 and 7 presenc the principal statistics for farms classified by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

race of farmer, AND TENURE.	Number of farms.	NUMBER OF ACRES IN PARMS.			valoe of parm PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Total.	Per cent.	Total.	Per cent.
The Strte.	220, 803	82.6	18,240, 736	100.0	\$204, 221, 027	100.0
White	92, 124	133.9	12,337,537	67.6	117, 733, 593	57.7
Negro	128, 351	45.9	5, 886, 075	32.3	86,390, 974	(1). 3
Indian.	328	52.2	17,124	0.1	96, 460	(1)
Owners.	75, 981	148.3	11, 265, 023	61.8	100, 196,000	49.1
Part owners	5,431	111.0	602, 674	3.3	5, 808, 863	2.8
Owners and tenants.	609	148.0	90, 130	0.5	694,683	0.3
Manngers.......	930	555.0	516,176	2.8	8, 756, 607	4.3
Cash tenants	70,699	50.1	3,541,828	19.4	53,739, 987	26.3
Share tenants	67,153	33.1	2, 224,905	12.2	35,024,887	17.2

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

bace of farmer, AND TENORE.	average values fer farm of-					Per cent of gross income on tatal investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	1mplements and machinery.	Live stock.		
The State...	\$520	\$168	$\$ 44$	$\$ 193$	$\$ 411$	44.4
White	649	277	68	284	469	36.7
Negro	429	91	26	128	370 182	54.9 61.8
Owners.	658	291	71	299	486	36.8
Part owners...........	563	207	53	247	418	39.0
Ownera and tenants..	560	224	55	302	455	39.8
Managera.............	6,048	1,582	522	1,264	1,640	17.4
Cash tenants.	470	104	31	155	403	52.9
Sbare tenants	337	74	17	94	318	60.9

In 1900, 32.4 per cent of the total acreage was operated by colored farmers, while about one-tenth was actually owned by them. The value of the farms operated by colored farmers was 42.3 per cent of the total, although the value of farms owned by them was only about one-twelfth. The large per cent of gross income shown for colored farmers in Table 7 is due to the snaaller size and consequent more intensive cultivation of their farms and to the lower value of their farm property, or capital invested. It is due also to the systems of tenure widely used in Southern states, under which the most fertile areas of the large plantations are rented in small tracts to negroes and appear as the farms of colored tenants, while the large unimproved areas, on which few products are raised and
which contain the valuable buildings of the plantation, are retained by the proprietor and appear as the farms of white owners.

Farms conducted by share tenants have the smallest average area, 33.1 acres, and those of managers, the largest, 555.0 acres. These latter farms, as a rule, are favorably located and highly improved, many being large cotton plantations, and the average values of the various forms of farm property, shown in Table 7, are much larger for this class than for any other group classified by tenure. The ratio which the gross income of these farms bears to the total value of farm property is, however, smaller than for the other groups, due to the high average valuation of farm property or capital invested.

farms classified by area.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND Value of farm property, June 1, 1900, ClassiFIED BY area, with percentages.

ArEA.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	Number of acreg in farms.			value of farm PROPERTY.	
		A verage.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Total.	Per cent.
The State.	220, 803	82.6	18,240, 736	100.0	\$204, 221, 027	100.0
Under 3 ncres.	499	2.2	1,085	${ }^{(1)}$	370, 227	0.2
3 to 9 scres ..	6,242	6.9	43, 018	0.2	2, 299, 814	1.1
10 to 19 acres	35,529	15.0	532,517	2.9	15,016,084	7.4
20 to 49acres.	85, 934	31.0	2,667,004	14.6	51,540, 352	25.2
60 to 99 acres.	39,469	71.1	2,806,402	15.4	33, 696, 365	16.5
100 to 174 acres.	31, 380	136.6	4,287,219	23.5	35, 154, 413	17.2
175 to 259 acres.	10,331	210.2	2,171, 850	11.9	17,480, 208	8.6
260 to 499 acres.	8, 099	337.6	2, 734,103	15.0	21,027,518	10.3
500 to 999 acres.	2,461	636.4	1,566,195	8.6	13,983, 622	6.8
1,000 acres and over .	859	1,666.3	1,431,343	7.9	13, 652, 424	6.7

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-average values of specified classes of FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

Area.	AVERAGE VALUE PER FARM OF-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improve- menta (except huild- ings).	Buildings.	Implementa and machinery.	Live stock.		
The State.	\$520	\$168	844	\$193	\$411	44.4
Under 3 acres	145	382	22	193	177	23.8
3 to 9 neres..	159	120	15	74	135	36.6
10 to 19 acrea	250	73	15	85	246	58.3
20 to 49 acrea	361	90	25	124	361	60.2
50 to 99 acres	461	150	42	201	453	53.1
100 to 174 neres	570	226	56	268	477	42.6
175 to 259 acres	869	362	90	371	573	33.9
260 to 499 acres	1,382	552	136	526	724	27.9
500 to 999 acres	3,409	1, 072	305	896	1,190	20.9
1,000 acres and over ..	10,813	2,347	698	2,035	2,911	18.3

The total acreage is greatest for the group of farms containing 100 to 174 acres, but the group containing
from 20 to 49 acres reports the greatest value of farm property.

For the group of farms of less than 3 acres, the average values given in Table 9 are relatively high, as this group contains many of the florists' establishments of the state, and a number of city dairies. It should be borne in mind that the income from these industries depends less upon the acreage of land used, than upon the amount of capital invested in buildings, implements, and live stock, and the expenditures for labor and fertilizers.
The average gross incomes per acre for the various groups classified by area are as follows: Farms under 3 acres, $\$ 81.36 ; 3$ to 9 acres, $\$ 19.57 ; 10$ to 19 acres, $\$ 16.44 ; 20$ to 49 acres, $\$ 11.62 ; 50$ to 99 acres, $\$ 6.37$; 100 to 174 acres, $\$ 3.49 ; 175$ to 259 acres, $\$ 2.73 ; 260$ to 499 acres, $\$ 2.14 ; 500$ to 999 acres, $\$ 1.87 ; 1,000$ acres and over, $\$ 1.75$.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.
Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm; if vegetables are the leading crop, constituting 40.0 per cent of the value of products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40.0 per cent of their income from any one class of products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

principal source of INCOME.	Number of farms	NUMBER OF ACRES in FARMS.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State	220,803	82.6	18,240, 736	100.0	\$204, 221, 027	100.0
Hay and grain	6,757	106.0	715, 939	3.9	9, 981,418	4.9
Vegetables	2,473	62.8	155, 351	0.9	2,237, 985	1.1
Fruits..	301	137.0	41,239	0.2	539, 619	0.3
Live stock	9,117	170.6	1,555, 120	8.5	16, 216, 290	8.0
Dairy produ	2,965	121.1	359, 048	2.0	4,599,781	2.3
Tobacco	59	70.7	4,172	(1)	50, 375	(1)
Cotton.	163,234	65.7	10, 725,601	58.8	133, 019, 349	65.1
Rice	19	148.3	2,817	(1)	29,485	(1)
Sugar	49	146.6	7,185	0.1	55,126	(1)
Flowers and plants	11	2.7	30	(1)	25, 427	${ }^{1}$
Nursery products.	[14	125.1	1,761 $4,672,483$	${ }_{2}^{(1)}{ }^{25.6}$	66,460 $37,399,708$	${ }_{18}{ }^{18} 8$
Miscellaneous .	35,804	130.5	4,672,483		37,399, 708	18.3

[^156]Table 11.-AVERage values of specified Classes OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

The importance of cotton growing in this state is shown by the fact that cotton plantations comprise 58.8 per cent of the total area in farms and 65.1 per cent of the total value of farm property.
For the several classes of farms the average values per acre of the products not fed to live stock are as follows: Farms deriving their principal income from flower's and plants, $\$ 388.47$; nursery products, $\$ 15.52$; tobacco, $\$ 6.60$; cotton, $\$ 6.47$; fruits, $\$ 5.88$; vegetables, $\$ 5.83$; rice, $\$ 3.23$; hay and grain, $\$ 2.95$; sugar, $\$ 2.94$; miscellaneous, $\$ 2.88$; dairy produce, $\$ 2.51$; and live stock, $\$ 2.36$.
The wide variations shown in the averages and in the percentages of gross income are largely due to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens the average expenditures for such items as labor and fertilizers represent a far larger percentage of the gross income than in the case of "hay and grain," "live-stock," or "misceilaneous" farms. Were it possible to present the average net incomes the variations shown would be comparatively slight.
farms dlassified by reported value of products NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED YALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

VAluE of Products NOT FED TO LIVE stock.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	NUMBER OF ACRES IN FARMS.			Value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	220,803	82.6	18,240, 736	100.0	\$204, 221, 027	100.0
\$0...	2,766	32.6	90, 078	0.5	1,325,010	0.7
\$1 to \$49	6,089	35.6	216, 826	1.2	2,2:20,460	1.1
\$50 to \$99	9,727	43.1	419,504	2.3	3,971, 270	1.9
\$100 to \$249	60, 394	52.3	3, 157, 039	17.3	29,650, 870	14.5
8250 to $\$ 499$	89,539	74.2	6,647,933	36.5	69, 224, 530	33.9
\$500 to \$899	43, 030	121.0	5, 205, 842	28.5	$60,371,427$	29.6
\$1,000 to \$2,499	8,063	220.3	1, 776, 341	9.7	24,532,490	12.0
\$2,500 and over	1,195	608.5	727, 173	4.0	12,924, 970	6.3

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

VALUR OF PRODUCTS NOT FED TO LIVE sTCCK.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	```Imple- ments and machin- ery.```	Live stock.		
The State.	\$520	\$168	\$44	\$193	\$411	44.4
$\$ 0$.	318	75	15	71	…	
81 to 849	215	72	13	65	26	7.0
$\$ 50$ to $\$ 99$	226	86	17	79	75	18.3
\$100 to \$249	268	94	21	108	189	38.5
\$250 to \$499	423	143	34	173	379	48.9
\$500 to \$999	795	242	66	300	687	48.9
\$1,000 to \$2,499	1,731	669	164	579	1,251	41.1
\$2,500 and over	6,903	1,802	618	1,493	4,146	38.8

The absence of income in the first group is due in part to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The persons in charge of such farms on June 1, 1900, could not always give definite information concerning the products of the preceding year. The same statement is true, also, of some of the farms with reported incomes of less than $\$ 100$. To this extent the reports fall short of giving a complete statement of farm income in 1899. Other farms with small reported incomes are doubtless the country homes of city merchants and professional men, who derive their principal incomes from other than agricultural pursuits.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the census of 1900 . The age grouping
of neat cattle was determined by their present and pros. pective relation to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in previous census reports.

Table 14 presents a summary of live-stock statistics.
Table 14.—NUMBER AND VALUE OF DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

I.IVE STOCK.	Age in years.	ON FARMS.			NOT ON FARMS.
		Numher.	Value.	Average value.	Number.
Calves	Under 1.......	238, 601	\$1,157, 630	44.85	9,935
Steers	1 and under 2.	63, 962	525,015	8.21	2,189
Steers	2 and under 3.	35, 111	404, 282	11.51	1,245
Steers	3 and over....	43, 149	1,040,517	24.11	3, 404
Bulls.	1 and over....	17,601	288, 883	16.41	486
Heifers.	1 and under 2.	89,985	899,800	10.00	2,515
Cows kept for milk	2 and over....	299, 318	6,408,246	21.41	16,899
Cows and heifers not lept for milk.	2 and over....	85, 629	1,346, 548	15. 73	1,346
Colts	Under1.	17,089	367, 069	21.48	401
Horses	1 and under 2.	14,489	495, 714	34.21	372
Horses	2 and over....	197, 733	10,020, 068	50.67	14,960
Mule colts	Under 1.......	7,581	220, 146	29.04	76
Mules.	1 nnd under 2.	12, 286	606, 409	49.36	154
Mules..-. -	2 and over....	194, 392	13,302, 252	68.43	4,132
Asses and burros....	All ages-	1,773	216, 609	122.17	244
Lambs .-............	Under 1.......-	76,162	107, 166	1.41	759
Sheep (ewes)	1 and over-...	162,188	289, 401	1.78	1,598
Sbeep (rams and wethers).	1 and over....	74,282	138, 378	1.86	702
Swine	All rges	1,290, 498	2,963,573	2.30	23,126
Goats	All nges	55,388	45,594	0.82	1,895
Fowls: 1 Chickens?		5,194, 856			
Turkeys...		5,189,698			
Geese...		357,963	\} 1,655,319		
Ducks.........		95, 668			
Bees (swarms of)		95, 257	158, 603	1.66	
Value of all live stock.			42, 657, 222		

1 The number reported is of fowls over three months old. The value is for all, old and young.

The total value of live stock on farms, June 1, 1900, was $\$ 42,657,222$, of which amount 33.1 per cent represents the value of mules; 25.5 per cent, that of horses; 15.0 per cent, that of dairy cows; 13.3 per cent, that of other neat cattle; 6.9 per cent, that of swine; 3.9 per cent, that of poultry; 1.3 per cent, that of sheep; and 1.0 per cent, that of all other live stock.

No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, however, the value of the domestic animals not on farvis is $\$ 1,7+0,471$. Exclusive of poultry and bees not on farms, the total value of the live stock in the state is approximately $\$ 44,397,693$.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the change since 1850 in the number of the most important domestic animals:

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

Year.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep, ${ }^{1}$	Swine.
1900.	299,318	574,038	229,311	216,032	236,470	1, 290,498
1890	310, 159	604,619	155,050	156,755	451, 779	1,163,141
1880	268, 178	449, 157	112,309	129,778	287, 694	1,151,818
1860.	173, 207,646	327,176 522,263	$\begin{array}{r}90,221 \\ 117 \\ \hline 151\end{array}$	85, 886	232,732	814,381
1850.	214, 231	519, 739	117,571	110,723 54,547	352,632 304,929	$\begin{aligned} & 1,532,768 \\ & 1.582,734 \end{aligned}$

${ }^{1}$ Lambs not included.
The census of 1900 shows an increase in the number of dairy cows of 39.7 per cent since 1850 , but a decrease of 3.5 per cent in the last decade. The apparent decrease was due to the restriction in 1900 of the term "dairy cows" to those "kept for milk" exclusively, while many cows which were milked at some time in the year were included among the 85,629 "cows and heifers not kept for milk." The increase in all dairy products confirms this statement.
"Other neat cattle" show an increase in number of 10.4 per cent since 1850 , and a decrease of 5.1 per cent since 1890. The number of horses has increased 98.6 per cent in the last half century, and that of mules, nearly four times. Sheep have decreased 22.4 per cent, and swine, 18.5 per cent. In the last decade the number of horses has increased 47.9 per cent; mules, 37.8 per cent; and swine, 10.9 per cent; while sheep have decreased 47.7 per cent in the same time.

In comparing the poultry report of 1900 (see Table 14) it should be borne in mind that in 1900 the enumerators were instructed to report no fowls under three months old, while in 1890 no such restriction was made. Compared with the figures for 1890 , the present census shows an increase of 50.1 per cent in the number of ducks reported, and decreases in the number of other fowls as follows: Geese, 24.6 per cent; chickens, 7.8 per cent; and turkeys, 2.4 per cent.

AN1MAL PRODUCTS.

Table 16 is a summarized statement of the animal products of 1899.
Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS, IN 1899.

PRODUCTS.	Unit of measure.	Quantits.	Value.
Wool	Pounds	779,310	\$114,758
Mohair and goat hair	Pounds	268	84
Milk..	Gallons.........	$197,030,385]$	
Butter	Pounds.	18,881, 236	${ }^{2} 6,064,513$
Cheese	Pounds.	28,572)	
Eggs	Dozens	18, 942, 070	1,871,765
Poultry			2,387, 484
Honey.	Pounds	1, 048, 490$\}$	113, 021
Wax	Pounds	49, 170	
Animals sold			$\begin{aligned} & 2,208,466 \\ & 4,818,416 \end{aligned}$
Total			17,608,507

[^157]The value of the animal products of the state in 1899 was $\$ 17,608,507$, of which amount 39.9 per cent represents the value of animals sold and animals slaughtered on farms; 34.4 per cent, that of dairy products; 24.2 per cent, that of poultry and eggs; 0.8 per cent, that of wool, mohair, and goat hair; and 0.7 per cent, that of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms, $\$ 7,026,882$, was 7.7 per cent of the gross farm income. Of all farmers reporting domestic animals, 138,390, or 65.9 per cent, reported animals slaughtered, the average value per farm being $\$ 34.82$; and 52,189 . or 24.8 per cent, reported sales of live animals, the average receipts per farm being $\$ 42.32$.

DAIRY PRODUCE.

In 1899 the proprietors of 2,965 farms, or 1.3 per cent of the farms of the state, derived their principal income from the sale of dairy produce. The production of milk in 1899 was $46,227,014$ gallons greater than in 1889 , the gain being 91.0 per cent. The quantity of butter made on farms increased 45.4 per cent in the same time, and that of cheese nearly six times.
Of the $\$ 6,064,513$ given in Table 16 as the value of dairy produce, $\$ 5,334,225$, or 88.0 per cent, represents the value of such produce consumed on farms, and $\$ 730,288$, or 12.0 per cent, the receipts from sales. Of the latter amount, $\$ 443,956$ was received from the sale of $2,654,703$ pounds of butter; $\$ 279,968$, from $2,041,443$ gallons of milk; $\$ 4,864$, from 8,191 gallons of cream; and $\$ 1,500$, from 11,192 pounds of cheese.

poultry and eegs.

Of the $\$ 4,259,249$ given as the value of poultry products, $\$ 2,387,484$, or 56.1 per cent, represents the value of poultry raised, and $\$ 1,871,765$, or 43.9 per cent, the value of eggs produced. There were $18,942,070$ dozen eggs produced in 1899 , a gain of 66.3 per cent since 1889. This tends to confirm the statement made in the discussion of Table 15, that the apparent decrease in the numbers of fowls is due to a difference in methods of enumeration.

WOOL.

Perry county leads in the production of wool, with Pearl liver second. The production of wool increased in the forty years preceding 1890, with the exception of the decade 1860 to 1870 , but in 1900 both sheep and wool showed marked decreases, that of wool for the last decade being 24.9 per cent. This decrease was probably more marked than the percentage indicates, as the fleeces of at least 76,843 sheep were omitted from the tables in 1900 , but included in a general estimate of wool shorn after the census enumeration. The average weight of fleeces increased from 2.8 pounds in 1889 to 3.1 pounds in 1900 .

HONEY AND WAX.
In $1890,822,673$ pounds of boney and 21,962 pounds of wax were reported, while in 1900 there were $1,048,490$ pounds of boney and 49,170 pounds of wax. Yazoo, Attala, Copiah, Bolivar, and Lauderdale counties, ranking in the order named, lead in apiarian products.

HORSES, MULES, AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.
Table 17 presents, for the leading groups of farms, the number of farms reporting borses, mules, and dairy cows, and the average number of these animals per farm. In compuiting the averages presented, only those farms which report the kind of live stock under consideration are included.

Table 17.-HORSES, MULES, AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

clarses.	HORSES.		mules.		Dairy cows.	
	Farms reporting.	Average per farm.	Farms reporting.	A verage per farm.	Farms report ing.	A verage per farm
Total	127,033	1.8	119,983	1.8	139,307	2.1
White farmers. Colored farmers	67, 816	2.0	47,280	2.4	76,821	2.6
	59,217	1.5	72,703	1.4	62,486	1.6
Owners ${ }^{1}$	63,601	2.1	45, 429	2.2	70,853	2.6
Managers............	736	3.9	779	11.1	708	5.0
Cash tenants	39,793	1.6	42,978	1.5	39,448	1.7
Share tenants	22,903	1.4	30,797	1.3	28,298	1.5
Under 20 acres. 20 to 99 acres.	15,647	1.3	17,714	1.1	14,390	1.6
	68,450	1.6	68,008	1.5	76,917	1.7
100 to 174 acres....... 175 to 259 acres.	24,398	2.0	18,481	1.9	27,754	2.4
	8,532	2.3	7,087	2.4	9,603	3.0
175 to 259 acres....... 260 acres and over...	10,006	3.2	8,693	4.6	10,643	4.4
Hay and grain	3,296	1.9	2,632	2.6	2,924	2.3
Vegetable	1,610	1.7	981	1.6	1,314	2.3
	226	2.1	145	2.1	234	2.6
Live stoc	7,271	2.5	4,614	3.4	7,912	3.1
	2,306	2.2	1,001	2.4	2,965	4.9
Cotton	85,996	1.7	94,402	1.7	93,061	1.9
Miscellaneous ${ }^{\text {2 }}$......	26,328	1.9	16,208	1.9	30,897	2.4

[^158]In Mississippi, as in all states where much of the farm labor is performed by negroes, and where cotton is a staple crop, large numbers of mules are used as work animals. If the numbers of horses and nules be combined, the average number of work animals per farm compares favorably with the corresponding figures for the more intensively cultivated farms of New England.

CROPS.

The following table gives the statisties of the principal crops grown in 1899:

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

CROPS.	Acres.	Unit of measure.	Quantity.	Value.
Corn.	2,276,313	Bushels....	38, 789,920	\$18,873, 934
Wheat	6,447	Bushels....	37,257	$30,743$
Oats	87,066	Bushels.	862, 805	383, 683
Barley	32	Bushels.	330	203
Rye	103	Bushals.	963	755
Broom corn	214	Pounds.	143,750	6,950
Rice	2,095	Founds.	739, 222	28,564
Kafir corn	9	Bushels.	277	136
Clover seed		Bushels.	130	432
Grass seed		Bushels.	379	600
Hay and forage	99,261	Tons..	164,650	1,459,879
Cottonseed.		Tons.	1634,083	6,692,027
Cotton..	2, 897, 920	Bales	1, 313,798	47, 340,314
Tobacco	203	Pounds ...	62,760	9,225
Hops	${ }^{2}$)	Pounds...	-15	- 2
Peanuts	5,853	Bushels..	95,738	89,350
Dry beans	1,149	Bushels....	11,162	11,672
Dry pease	69,490	Bushels...	590,537	567, 279
Potatoes .	6,370	Bushels.	398,272	245, 777
Sweet potatoes	38,169	Bushels.	2,817,386	1,458,490
Onions	233	Bushels.	26,243	24,058
Miscellaneous Yegetables	50,356			2,807,652
Sugar cane .-....-.-......-----	11,552	Tons.	122,384	
(a) Cane sold.		Tons.	85,914	23,918
(b) Cane kept for seed		Tous...	45,809	161,084
(c) Sugar made		Pounds	18,930	893
(d) Sirup and molasses made.		Gallons.	1,413, 219	618,975
Sorghum cane.	15,734	Tons.	33, 366	10,052
Sorghum sirup		Gallons	1,162, 269	313,365
Small fruits	1,549			141, 009
Grapes.	4426	Centals	10,706	539, 277
Orchard fruits	440,304			6440,118
Tropical fruits				1,226
Nuts..				17,158
Forest products				3, 023,626
Flowers and plants	62			26,907
Seeds..	4			153
Nursery products	181			31,305
Miscellaneous.	19			3,035
Total	5,611,114			84, 883, 776

${ }^{1}$ Exclusive of 14,137 tons, valued at $\$ 149,145$, sold in seed cotton, and included with the cotton.
${ }^{2}$ Less than one acre.
${ }^{8}$ Sold as cane.
4 Estimated from number of vines or trees.
б Including value of raisins, wine, etc.
o Including value of eider and vinegar.

Of the total value of crops, cotton, including seed, contributed 63.6 per cent; cereals, including Kafir corn and rice, 22.8 per cent; forest products, 3.6 per cent; miscellaneous vegetables, 3.3 per cent, hay and forage, 1.7 per cent; sweet potatoes, 1.7 per cent; and all other products, 3.3 per cent.
The average values per acre of the various crops are as follows: Flowers and plants, $\$ 434$; nursery products, $\$ 173$; onions, $\$ 103$; miscellaneous vegetables, $\$ 56$; tobacco, $\$ 45$; potatoes, $\$ 39$; sweet potatoes, $\$ 38$; broom corn, $\$ 32$; cotton, $\$ 16$; hay and forage, $\$ 15$; peanuts, $\$ 15$; orchard fruits, $\$ 11$; dry beans, $\$ 10$; and cereals, \$8. The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production requires a relatively great amount of labor and large expenditures for fertilizers.

COTTON.
The following table is an exhibit of the changes in cotton production since 1849 .

Table 19.-ACREAGE AND PRODUCTION OF COTTON: 1849. TO 1899.

${ }^{1}$ Decrease.
In 1859 the amount of cotton produced was nearly three times that of 1849 . The Civil War, occurring during the next decade affected all industries, and the quantity of cotton grown decreased 54.2 per cent. From 1869 to 1889 it increased rapidly, and although only a slightly increased acreage was shown for 1899 , the production showed a gain of 16.8 per cent for the last decade. Decreases in acreage are noted for many of the counties located in the southern and western parts of the state.

In 1899, 186,999 farmers devoted to cotton an area of $2,897,920$ acres, and 38.2 per cent of the improved farm land of the state, an average of 15.5 acres per farm. From this land was produced $643,339,470$ pounds of cotton, an average of 222 pounds per acre, 13,883 pounds per square mile of land surface of the state, and 415 pounds per capita. The total value of the product, including the value of the seed, was $\$ 54,032,341$, an average of $\$ 288.94$ per farm, and $\$ 18.65$ per acre. This value constituted 59.5 per cent of the gross farm income.

All the counties in the state are reported as raising cotton, those devoting the greatest number of acres to this product being Yazoo, Washington, Hinds, Bolivar, Noxubee, Holmes, Monroe, and Panola, ranking in the order named and reporting 25.1 per cent of the total acreage.

CEREALS.
Table 20 presents an exbibit of the changes in cereal production since 1849.

Table 20.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.

PART 1.-ACREAGE.

Year. ${ }^{1}$	Barley.	Corn.	Oats.	Rice.	Rye.	Wheat.
	328044	$2,276,313$$1,706,352$$1,570,550$	$\begin{array}{r} 87,066 \\ 133,361 \\ 198,497 \end{array}$	2,0951,5433,501	103406806	6,4472,51943,524
1889.						
1879.						

${ }^{1}$ No statistics of acreage were secured prior to 1879 .

Table 20.-ACREAGE AND PRODUOTION OF CEREALS: 1849 TO 1899-Continued.
PART 2.-BUSHELS PRODUCED. ${ }^{1}$

year.?	Barley.	Corn.	Oats.	Rice.	Rye.	Wheat.
1899.	330	38,789,920	862,805	739,222	963	37,257
1889.	875	26,148,144	1,362, 290	676,746	3,544	16,570
1879.	348	21,340,800	1,959, 620	1,718, 951	5,134	218,890
1869.	3,973	15,637, 316	414,586	374,627	14, 852	274, 479
1859.	1,875	29,057,682	221, 235	809, 082	39,474	587,925
1849.	228	22,446, 552	1,508,288	2,719,856	4,606	137, 990

${ }^{1}$ Rice reported in pounds.
${ }^{2}$ No statistics of acreage were secured prior to 1879.
The total area devoted to cereals in 1879 was $1,816,922$ acres; in $1889,1,844,261$ acres; and in $1899,2,372,065$ acres; an increase for the twenty years of 30.6 per cent. The acreage given for 1899 includes 9 acres devoted to Kafir corn, The increases in the areas devoted to the various cereals in the decade 1889 to 1899 were: Wheat, 155.9 per cent; rice, 35.8 per cent; and corn, 33.4 per cent. The decreases were: Rye, 74.6 per cent; barley, 60.0 per cent; and oats, 34.7 per cent.

Exclusive of rice the total number of bushels reported in 1849 was $24,097,664$; and for $1899,39,691,275$; an increase of 64.7 per cent in the half century. The production of rice shows a decrease in the same time of 72.8 per cent.

Of the total area under cereals in $1899,95.9$ per cent was devoted to corn; 3.7 per cent, to oats; and 0.4 per cent, to wheat, rice, rye, barley, and Kafir corn.

Corn, wheat, oats, and rye were reported from nearly all parts of the state. Kafir corn was grown in the 3 counties of Benton, Copiah, and Tippah. Rice was grown in 48 counties, of which the 6 counties of Copiah, Lawrence, Lincoln, Marion, Rankin, and Simpson furnished 60.5 per cent of the entire acreage.

HAY AND FORAGE.

In 1900, 43,012 farmers, or 19.5 per cent of the total number, reported hay or forage crops. Excluding cornstalks and corn strippings, they obtained an average yield of 1.3 tons per acre. The total acreage in hay and forage for 1899 was 99,261 , or 50.0 per cent greater than ten years before. Of this acreage 49.2 per cent, or 48,848 acres, produced 65,138 tons of grains cut green for hay.

In 1899 the acreages and yields of the various other kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 6,753 acres and 7,965 tons; millet and Hungarian grasses, 1,397 acres and 2,369 tons; alfalfa or lucerne, 99 acres and 201 tons; clover, 2,940 acres and 3,500 tons; other tame and cultivated grasses, 34,157 acres and 42,638 tons; crops grown for forage, 5,067 acres and 7,521 tons; and cornstalks and corn strippings, 146,709 acres and 35,318 tons.

In Table 18 the production of cornstalks and corn strippings is included under "hay and forage," but the acreage is part of that given for "corn," as the forage secured was only an incidental product of the crop.

SUGAR CANE.

Table 21 presents a comparative exhibit of the acreage of sugar cane, and the production of sugar and sirup: 1849 to 1899.

Table 21.-ACREAGE OF SUGAR CANE AND PRODUCTION OF SUGAR AND SIRUP: 1849 TO 1899.

YEAR. ${ }^{1}$	Acreage in cane.	SUGAR.		SIRUP.	
		Production	Average yield per acre in pounds.	Production	Average yield per acre in gallons.
1899	11, 552	18,930	1.6	1,413,219	122.3
1889	12,694	67, 860	5.3	1,524, 024	120.1
1879	4,555	21, 600	4.7	536, 625	117.8
1869		58,800		152,164	
1859		607, 200		10,016	
1849		465, 600			

${ }^{1}$ No statistics of acreage were secured prior to 1879.
The present census shows that in 1899 sugar cane was grown by 26,300 farmers on 11,552 acres, an average of 0.44 acre for each farm reporting. From this area they sold 5,914 tons of cane for $\$ 23,918$, and from the remaining product manufactured 18,930 pounds of sugar, valued at $\$ 893$, and $1,413,219$ gallons of sirup and molasses valued at $\$ 618,975$. This was a decrease in acreage since 1889 of 8.9 per cent. The total value of sugarcane products was $\$ 643,786$, an average of $\$ 24.48$ for each farn reporting, and of $\$ 55.73$ per acre. The value of sugar was 4.7 cents per pound, and of sirup and molasses 43.8 cents per gallon.

In addition to the above it is estimated that 45,809 tons of cane, valued at $\$ 161,084$, were kept for seed.

SORGHUM CANE.

Sorghum cane was grown in 1899 by 25,183 farmers on 15,734 acres, an average of 0.62 acre for each farm reporting. From this area they sold 3,366 tons of cane for $\$ 10,052$, and from the remaining product manufactured $1,162,269$ gallons of sirup, valued at $\$ 313,365$. The total value of sorghum-cane products was $\$ 323,417$, an average of $\$ 12.84$ for each farm reporting, and of $\$ 20.56$ per acre.

orchard frutits.

The changes in orchard fruits since 1890 may be seen in the following table:

Table 22.—ORCHARD TREES AND FRUITS: 1890 AND 1900.

Fruits.	NUMBER Of trees.		BUSHELS Of frutt.	
	1900	1890	1899	1889
Apples..	705,796	357, 309	249, 035	
Apricots	5,109	${ }^{9} 961$, 772	605,781
Peaches..	$\begin{array}{r}30,186 \\ \hline\end{array}$	7,579	2,352	3,861
Pears...	$\begin{array}{r}1,856,748 \\ 177,824 \\ \hline\end{array}$	878,569 27,107	252,305 36,923	1, 324,854
Plums and prunes	689, 053	501,392	36,923 66,793	18,531 107,502

In 1890 the total number of fruit trees was $1,772,917$; in 1900 there were $3,499,818$, showing an increase for the decade of $1,726,901$, or 97.4 per cent. There were more than six times as many pear trees, more than five times as many apricot trees, and nearly four times as many cherry trees reported in 1900 as in 1890. Peach trees increased 111.3 per cent; apple trees, 97.5 per cent; and plum and prune trees, 37.4 per cent, in the last decade.

Of the total number of fruit trees in $1900,53.0$ per cent were peach trees; 20.2 per cent, apple trees; 19.7 per cent, plum and prune trees; 7.1 per cent, pear, cherry, apricot, and unclassified fruit trees. The latter class, which is not included in the table, numbered 35,102 trees and yielded 2,747 bushels of fruit.

The value of orchard fruits, given in Table 18, includes the value of 480 barrels of cider, 388 barrels of vinegar, and 19,290 pounds of dried and evaporated fruits. Comparisons of the yields of orehard fruits, or of their values, are of little importance, as the yield of any given year depends largely upon the nature of the season.

The northern half of the state reports the largest number of the various kinds of fruit trees and shows large increases since 1890. The southern half of the state is better adapted to the cultivation of the tropical fruits. Peach trees, however, are reported from every county, the increase being quite general throughout the state. The six counties which rank above the others in the number of these trees and report 23.3 per cent of the total number, are Madison, Lee, Hinds, Prentiss, Tippah, and Copiah counties.

tropical fruits.

The Twelfth Census reports 12,739 fig, 2 lemon, 3,696 orange, and 4 pomelo trees. Two hundred and sixty farms reported fig trees, with a yield of 61,600 pounds, valued at $\$ 1,226$. For the other tropical fruit trees no products were reported.

SMALL FRUITS.

The total area devoted to small fruits in 1899 was 1,549 acres, distributed among 2,292 farms, an average of 0.7 acre per farm. Of the total area 1,383 acres, or 89.3 per cent, were devoted to strawberries yielding $1,546,570$ quarts. The acreages and productions of the other berries were as follows: Blackberries and dewberries, 84 acres and 97,030 quarts; raspberries and Logan berries, 49 acres and 56,020 quarts; currants, 3 acres and 2,830 quarts; gooseberries, 1 acre and 590 quarts; and other small fruits, 29 acres and 32,440 quarts.

VEGETABLES.

The total value of regetables grown in 1899, including potatoes, sweet potatoes, and onions, was $\$ 4,535,977$, of which 32.2 per cent represents the value of sweet
potatoes; 5.4 per cent, that of potatoes; 0.5 per cent, that of onions; and 61.9 per cent, that of miscellaneous vegetables.

Sweet potatoes were grown in 1899 by 67,490 farmers, or 30.6 per cent of the total number in the state. The area devoted to this crop in 1889 was 44,188 acres, and in $1899,38,169$ acres, a decrease of 13.6 per cent. They were grown most extensively in the southern part of the state.

In the growing of miscellaneous vegetables 50,356 acres were used. Of this area the products of 38,357 acres were not reported in detail. Of the remaining 11,999 acres, 6,253 acres were devoted to watermelons; 2,587 acres, to tomatoes; 1,614 acres, to cabbages; 622 acres, to muskmelons; 244 acres, to cucumbers; 224 acres, to beans; and 455 acres, to other vegetables.

PEANUTS.

Peanuts were grown in 1899 by 8,417 farmers, who devoted to their cultivation 5,853 acres, and secured therefrom a product of 95,738 bushels, an average of 16.4 bushels per acre. Increases of 198.6 per cent in acreage and 132.5 per cent in production are shown for the last decade. All counties of the state reported peanuts; Clarke, Mouroe, Marion, and Lauderdale leading. The average acreage per farm was 0.7 , and in but few counties exceeded 1 acre.

товассо.

The tobacco crop of Mississippi, like that of many other states, has been subject to great fluctuation. The state produced in 1849, 49,960 pounds of tobacco. The census of 1860 showed a gain over this amount of 109,181 pounds, or 218.5 per cent. The census of 1870 showed a falling off from this of 98,129 pounds, or 61.7 per cent. Between 1870 and 1880 the production increased from 61,012 to 414,663 pounds, a gain of 353,651 pounds, while between 1880 and 1890 there was a decrease of about the same number of pounds, or 85.0 per cent.
The present census shows that in 1899 tobacco was grown in Mississippi by 1,119 farmers, who obtained from 203 acres a yield of 62,760 pounds. This was a gain of 649 pounds, or 1.0 per cent over the crop of 1889 , from an area 31 acres less than that of 1889 . The total value of the crop was $\$ 9,225$, or an average of $\$ 8.24$ for each farm revorting.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 42 acres, and the value of the products sold therefrom was $\$ 26,907$. These flowers and plants were grown by 53 farmers and florists. Of this number, 11 made commercial floriculture their principal business. They had invested in the aggregate $\$ 25,427$, of which $\$ 7,200$ represents the value of the land and improvements other than buildings; $\$ 16,650$, the value of buildings; $\$ 790$, that of implements and machinery; and $\$ 787$, that of live stock. Their sales of flowers and plants amounted to $\$ 10,669$, and they reported other products ralued at $\$ 985$. They expended for labor $\$ 2,985$ and for fertilizers $\$ 90$. The average gross income for each farm reporting was $\$ 1,059$.

In addition to 10 of the 11 principal florists' establishments, 276 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 61,290 square feet, making, with the 58,890 square feet belonging to the florists' establishments, a total of 120,180 square feet.

NURSERIES.

The total value of nursery stock sold in 1899 was $\$ 31,305$, reported by the operators of 53 farms and nurseries. Of this number, 14 derived their principal income from the nursery business. They had 1,751 acres of land, valued at $\$ 46,560$; buildings worth $\$ 15,265$; implements and machinery, $\$ 1,510$; and live stock, $\$ 3,125$. Their total income, inclusive of products fed to live stock, was $\$ 28,458$, of which $\$ 21,978$ represents the value of nurstry stock, and $\$ 6,480$ that of other products. The expenditure for labor was $\$ 6,800$, and for fertilizers, $\$ 895$. The average income for each farm reporting, including products fed to live stock, was $\$ 2,033$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 3,917,256$,' an average of $\$ 18$ per farm. The average expenditure was highest on the most intensively cultivated farms, being $\$ 486$ for nurseries, $\$ 271$ for florists' establishments, $\$ 88$ for fruit farms, $\$ 35$ for hay and grain farms, $\$ 30$ for live-stock farms, $\$ 23$ for vegetable farms, $\$ 20$ for dairy farms, $\$ 19$ for tobacco farms, $\$ 17$ for cotton
farms, $\$ 14$ for sugar farms, and $\$ 7$ for rice farms "Managers" expended on an average, $\$ 331$; "owners," $\$ 27$; "cash tenants," $\$ 15$; and "share tenants," $\$ 6$. White farmers expended $\$ 28$ per farm, and colored farmers, $\$ 10$.

Fertilizers purchased in 1899 cost $\$ 932,098$, an average of $\$ 4$ per farm, and an increase since 1890 of 18.1 per cent. The average expenditure was $\$ 64$ for nurseries, $\$ 15$ for sugar farms, $\$ 13$ for vegetable farms, $\$ 12$ for fruit and rice farms, $\$ 8$ for florists' establishments, $\$ 6$ for live-stock and dairy farms, $\$ 5$ for tobacco farms, $\$ 4$ for hay and grain farins, and $\$ 3$ for cotton farms.

IRRIGATION STATISTICS.
Irligation does not occupy an important place in the agriculture of Mississippi. In 1899, on three farms, 40 acres were irrigated-30 acres in rice and 10 acres in truck and small fruits. The irrigating systems cost $\$ 2,825$. The most extensive plant is reported from

Lauderdale county, and consists of a reservoir capable of irrigating 150 acres, which was made by damming a ravine. A large spring in the hill by the plantation furnishes the supply, which is stored in the reservoir, and thence directed by means of pipes and ditches to the land to be irrigated. This irrigating system complete cost $\$ 2,500$. On this farm 4 aores in cabbage produced 30,000 heads; 1 acre in asparagus, 2,000 bunches; 1 acre in celery, 2,000 bunches; 2 acres in strawberries, 10,000 quarts; and 1 acre in rice, 4,000 pounds. The value of the irrigated crops on 10 acres was approximately $\$ 1,800$, or $\$ 180$ per acre.

The alluvial lands of the state are undoubtedly adapted to the cultivation of rice, but this industry occupies the attention of the agriculturist only to a limited extent. The introduction of modern systems of irrigation would tend greatly to promote the extension of the areas in this crop, and would increase the average yield per acre, which is now only 352 pounds for the state.

Twelfth Census of the United States.

Census Bulletin.

No. 226.
WASHINGTON, D. C.
July 3, 1902.

AGRICULTURE.

TENNESSEE.

Hon. William R. Merriam,
 Director of the Census.

Sir: I have the honor to transmit herewith, for publigation in bulletin form, the statistics of agriculture for the state of Tennessee, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.
A "farm," as defined by the Twelfth Census, includes all the land, under one management, used for raising crops and pasturing live stock, together with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.

The farms of Tennessee, June 1, 1900, numbered 224,623 , and were valued at $\$ 265,150,750$. Of this amount $\$ 63,136,960$, or 23.8 per cent, represents the value of buildings, and $\$ 202,013,790$, or 76.2 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 15,232,670$, and of live stock, $\$ 60,818,605$. These values, added to that of farms, give $\$ 341,202,025$, the "total value of farm property."

The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal products." The total value of such products, together
with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 106,166,440$, of which amount $\$ 35,421,198$, or 33.4 per cent, represent the value of animal products, and $\$ 70,745,242$, or 66.6 per cent, the value of crops, including forest produts cut or produced on farms. The "total value of farm products" for 1899 is approximately twice that for 1889 , but a part of this increase is doubtless due to a more detailed enumeration in 1900 than in 1890.
The "gross farm income" is obtained by deducting the value of the products fed to live stock on the farms of the producers from the total value of farm products. In 1899 the reported value of products fed was $\$ 18,430,310$, leaving $\$ 87,736,130$ as the gross farm income for that year. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Tennessee in 1899 it was 25.7 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.
The statistics presented in this bulletin will be treated in greater detail in the report on agriculture for the United States. The present publication is designed to present a summarized advance statement for Tennessee.

Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN TENNESSEE.

GENERAL STATISTICS.

The total land area of Tennessee is 41,750 square miles, or $26,720,000$ acres, of which $20,342,058$ acres, or 76.1 per cent, are included in farms.

Tennessee is divided into three sections-east, middle, and west. East Tennessee extends from the bordering mountains of the Appalachian system to the crest of the Cumberland Plateau, and contains some of the highest ridges of the mountain system, and a valley region of about 100 miles in width, the valley being broken by many minor elevations and depressions.

The middle section is formed by extensions of the Cumberland Plateau at the north and south, reaching as far west as the northern course of the Tennessee River. This extension, known as the Highland Rim, incloses a depression 5,450 square miles in area, resembling the bed of a drained lake and called the Central Basin.
The western division extends from the West Tennessee River to the Mississippi. The eastern part of this section contains ridges and bluffs, and the western is composed of the alluvial bottom lands of the Mississippi, interspersed with numerous lakes and swamps.
The soil in the west is sandy, mellow, and generally fertile, while the black loams of the Mississippi bottom lands are the richest in the state. The greatest diversity of soil is found in east Tennessee, only the valleys and river bottoms having high fertility. The soil of the Cumberland Plateau is sandy, porous, and not very productive, but the rich limestone soils of the Central Basin produce abundantly.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850, the number of farms, the total and average acreage, and the per cent of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	Number of farms.	NUMBER OF ACRES IN FARMS.				Per cent of farm land improved.
		Total.	Improved.	Un- improved.	Average.	
1900.	224, 623	20, 342, 058	10,245,950	10, 096, 108	90.6	50.4
1890.	174, 412	20, 161, 583	9,362, 555	10,799, 028	115.6	46.4
1880.	165, 650	20, 666, 915	8, 496, 556	12,170,359	124.8	41.1
1870.	118, 141	19, 581, 214	6,843,278	12,737,936	165.7	34.9
1860	82, 368	20,669, 165	6,795, 337	13, 873, 828	250.9	32.9
1850.	72, 735	18,984, 022	5,175, 173	13,808, 849	261.0	27.3

The total number of farms reported in 1900 was over three times as great as in 1850 and 28.8 per cent greater
than in 1890. The total acreage has not increased rapidly, the gain since 1850 being but 7.2 per cent, and in the last decade but 0.9 per cent. These changes have resulted in a continuous decrease in the average size of farms, indicating a progressive division of farm holdings and a more complete utilization of the soil. The area of improved land has increased continuously since 1870 and at a more rapid rate than the total farm acreage, the per cent of farm land improved being greater in 1900 than in any previous census year.

FARM PROPERTY AND PRODUCTS.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF PRODUCTS: 1850 TO 1900.

${ }^{1}$ For year preceding that designated.
${ }^{2}$ Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years they must be diminished one-fifth.
${ }^{8}$ Includes betterments and additions to live stock.
The above table shows the remarkable growth of agriculture in the half century from 1850 to 1900 . The increase in the total value of farm property since 1890 was $\$ 28,310,375$, or 9.0 per cent. The increase in the value of land, improvements, and buildings was $\$ 22,450,210$, or 9.3 per cent; in that of implements and machinery, $\$ 5,295,790$, or 53.3 per cent; and in that of live stock, $\$ 564,375$, or 0.9 per cent. The value of farm products in 1899 was 92.4 per cent greater than the value reported for 1889. A part of this increase, and of that shown for implements and machinery, is doubtless the result of a more detailed enumeration in 1900 than in previous years.

COUNTY sTatistics.
Table 3 gives an exhibit of general agricultural statistics by counties.

Table 3.-NUMBER AND ACREAGE OF FARMS AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{counties.} \& \multicolumn{2}{|l|}{nomber of farms.} \& \multicolumn{2}{|l|}{acres in farms.} \& \multicolumn{4}{|c|}{values of farm property.} \& \multirow[b]{2}{*}{Value of products not stock.} \& \multicolumn{2}{|l|}{expenditures.} \\
\hline \& Total. \& \({ }_{\text {With }}^{\text {Wiid- }}\) ings. \& Totai. \& Improved. \& Land and im provements (except \& Buildings. \& \[
\begin{aligned}
\& \text { Implements } \\
\& \text { and } \\
\& \text { machinery. }
\end{aligned}
\] \& Live stock. \& \& Lahor. \& Fertilizers. \\
\hline The \& 224,623 \& 276, 550 \& 20,342,058 \& 10,245,950 \& \$202,013,790 \& 863,136,960 \& \$15, 232,670 \& \$60,818,605 \& \$87, 736,130 \& 84,730, 370 \& 8898,070 \\
\hline Anderso \& 1,595 \& 1,584 \& 180, \& 70, 295 \& 1,381, 210 \& 386,100 \& 85, 620 \& 378, 428 \& 491, 557 \& 26, 260 \& 2,070 \\
\hline Benton \& 1,916 \& 1,762 \& 204,047 \& 70, 420 \& 5, 876787 \& 1, 2944,930 \& \({ }_{77,710}\) \& 1, 4444,690 \& 1, 600,840 \& 10,510 \& 8,970 \\
\hline Bledsoe \& \& \({ }^{1} 946\) \& 140,101 \& 50,493 \& 1,102, 790 \& 235,040 \& 57, 730 \& 321, 410 \& 392, 626 \& 18,900 \& 6,580 \\
\hline Blount \& 2,161 \& 2,125 \& 277,982 \& 131, 944 \& 2,447, 520 \& 633,750 \& 184,070 \& 612,447 \& 912,555 \& 42,660 \& 22,900 \\
\hline Bradley \& 1,728 \& 1,636 \& 192,081 \& 93,040 \& 1,405,600 \& 476,850 \& 133, 210 \& 393,091 \& 824,636 \& 17, 830 \& 16,310 \\
\hline Campbel \& \& \& 167, 969 \& 68,392 \& 1,031, 660 \& 328,170 \& 67,010 \& 384, 623 \& 477,608 \& 18,710 \& 4,380 \\
\hline Cannow \& 1,950 \& 1,852 \& 155,225 \& 74, 363 \& 1,395, 270 \& 416, 080 \& 110,340 \& 648, 196 \& 713,424 \& 34,590 \& 3,500 \\
\hline Carroll \& 3,785
2,027 \& \(\begin{array}{r}3,637 \\ 1,980 \\ \hline\end{array}\) \& 320,326
134,888 \& \begin{tabular}{|c}
173,287 \\
55,687
\end{tabular} \& \(1,977,500\)
\(1,598,660\) \& 738,340
606,770 \& 227,620
79,760 \& 907,579
311,614 \& 1,278,611 \& \begin{tabular}{l}
32,940 \\
2988 \\
\hline 8
\end{tabular} \& 1,740
13,160 \\
\hline Cheatham \& 1,562 \& \& \& \& \& \& \& \& \& \& \\
\hline Chester.. \& 1,603 \& 1,472 \& - 153,418 \& \& 1,276 \& 456,930 \& 112,050 \& 361, 389 \& 560, 78 \& 32,100 \& 13, 690 \\
\hline Claiborne \& 2,809 \& 2,689 \& 222, 5 \& 113, 634 \& 1,438, 580 \& \({ }_{493}\) \& 89, 240 \& 662, 13 \& 763,080 \& 22, 210 \& 3,830 \\
\hline Clay \& 1,350 \& 1,277 \& 143, 013 \& 57, 803 \& , 718,040 \& 168,980 \& 56, 130 \& 288,616 \& 371,668 \& 13, 520 \& 2,180 \\
\hline Cocke \& 2,534 \& 2,471 \& 216, 048 \& 107,441 \& 1,873, 810 \& 444,000 \& 109,570 \& 618,115 \& 737, 800 \& 32,760 \& 7,990 \\
\hline ffee \& 1,956 \& 1,900 \& 193,788 \& 97, 420 \& 1,675,760 \& 463,730 \& 146, 140 \& 634, 835 \& 735, 124 \& 34,710 \& 20,060 \\
\hline Cruckett. \& 2, 1,036 \& 1,448 \& 161,499 \& 97, 984 \& 1,465,680 \& \({ }^{648,600}\) \& \({ }^{202,} \mathbf{4} 4070\) \& 754, 131 \& 1,009, 796 \& 35, 810 \& 6, 810 \\
\hline Davidson \& 3,316 \& 3,223 \& 302, 844 \& 177,337 \& 9,663,080 \& 3,059,980 \& 470, 5000 \& 1,486, 389 \& 2,083,062 \& 272,860 \& \({ }_{9}^{2,160}\) \\
\hline Decatur \& 1,819 \& 1,626 \& 180,457 \& 57,091 \& 918,970 \& \({ }_{245,040}\) \& 76, 450 \& 1,376,280 \& 6601,808 \& 16,810 \& 670 \\
\hline Dekalb. \& 2,446 \& 2,359 \& 193,331 \& 96, 212 \& 1,655,140 \& 436, 910 \& 121,130 \& 672,621 \& 919,880 \& 20,630 \& 3,610 \\
\hline Dicks80 \& 2,209 \& \({ }^{2}, 164\) \& \({ }^{237}\),881 \& 88,676 \& 1,263, 410 \& 519, 660 \& 141,350 \& 570, 259 \& 709, 613 \& 30,160 \& 7,920 \\
\hline Dyer \& 2,861 \& 2,781 \& 212,214 \& 125, 676 \& 3,108,670 \& 864, 810 \& 249, 170 \& 1,063, 128 \& 1,340, 453 \& 60, 290 \& 2,160 \\
\hline Fayete. \& +, 972 \& 4,642 \& 380,121
177,022 \& \(\begin{array}{r}205,741 \\ 37,607 \\ \hline\end{array}\) \& \(\begin{array}{r}\text { 2, } \\ 50776,440 \\ \hline\end{array}\) \& 821,110
140,680 \& 237,690
45,230 \& \(1,036,648\)
211,847 \& 1,816,226 \& 11, 040 \& 1,660 \\
\hline Frankl \& 2,342 \& 2,273 \& 254,441 \& 128,983 \& 2, 274,880 \& \& \& \& \& \& \\
\hline bsoi \& 6,486 \& 5,168 \& 354,011 \& 234, 310 \& 4,233,760 \& 1,504,500 \& 439, 810 \& 1,483,964 \& 2, \(1,319,961\) \& 86,760 \& 6,620 \\
\hline Grainger \& 4,276
2
2,069 \& 4, \({ }_{2}^{4,116}\) \& \begin{tabular}{l}
340,702 \\
177829 \\
\hline
\end{tabular} \& 224,783
103,479 \& \(4,445,400\)
1,319860 \& \& \begin{tabular}{l}
329,370 \\
104 \\
\hline 1800
\end{tabular} \& \& 1,784,432 \& -82,630 \& 4,400 \\
\hline Greene \& 4,188 \& 4,069 \& 355,948 \& 229, 823 \& 3,880, 430 \& 1,266,850 \& 270, 450 \& 1,016,556 \& 1,396,985 \& 65, 260 \& 40,670 \\
\hline Grundy. \& 534 \& 522 \& 69,406 \& \& \& 126, 920 \& 40,500 \& 145,395 \& 198,158 \& 9,600 \& 2,990 \\
\hline mb \& 1,207 \& 1,166 \& 107,071 \& 76,183 \& 1,385,170 \& 464, 130 \& 101,660 \& 338, 828 \& 624,582 \& 34, 520 \& 20,250 \\
\hline Hamilton \& 1,665 \& \begin{tabular}{|c}
1,620 \\
1,582
\end{tabular} \& 138,182 \& 67,794 \& 2, 231,480 \& 568,680 \& 131, 880 \& 408, 449 \& 696,166 \& 81,460 \& 10,420 \\
\hline Hardeman \& -1,623 \& 3,176 \& 348,521 \& 130,694 \& 1, \(1,6661,240\) \& - 641,410 \& r0,
1760
1730 \& 324,485
76865 \& 470,001
\(1,289,556\) \& 15,410 \& \\
\hline \& \& \& \& \& \& \& \& \& \& \& \\
\hline Hardin \& 3,024 \& 2,796 \& 258,720 \& 102,635 \& 1,601,180 \& 465,890 \& 142,880 \& 714,644 \& 950, 666 \& 17,030 \& \\
\hline Hawkins \& 边 \begin{tabular}{l}
3,263 \\
3,653 \\
\hline
\end{tabular} \& \({ }_{3}^{3,165}\) \& \& 150, \({ }^{1559}\) \& 2, \(2,157,470\) \& 876,630
791,470 \& 149,390
222,430 \& \begin{tabular}{l}
773,048 \\
941,602 \\
\hline
\end{tabular} \& \({ }_{1}^{1,094,150}\) \& 68,620 \& 18,480 \\
\hline Henderso \& 3,008 \& 2,859 \& 298,990 \& 109, \({ }^{\text {c76 }}\) \& 1, 138,900 \& 362, 370 \& 132, 220 \& 629,923 \& 1, 412,473 \& 42,610
20 \& 2,280 \\
\hline Henry .. \& 3,540 \& 3,344 \& 320,498 \& 172, 809 \& 2,593, 840 \& 892,540 \& 252, 220 \& 933,018 \& 1, 328, 399 \& 42,920 \& 8,530 \\
\hline Hickman \& 1,883 \& 1,850 \& 242,816 \& 87,673 \& 1,720, 250 \& 624,080 \& 140,500 \& 719, 719 \& 978,028 \& 42,780 \& 3.930 \\
\hline Houston \& \& \& 76,410

235,369 \& 25,714

69.095 \& , 363,770 \& | 137,490 |
| :--- |
| 392,170 | \& 34,640

106,610 \& 174,607 \& 199, 120 \& 6,480 \& 410

\hline Jackson \& 2, \& 1,604

2,270 \& - 178,842 \& | 69.095 |
| :--- |
| 81,560 | \& \& 392,170

349,830 \& - \& | 1932,034 |
| :---: |
| 544,751 | \& 694,659

768,987 \& 39,040
2980
2980 \& ${ }^{2,100}$

\hline James. \& 719 \& , 677 \& 86,517 \& 38,236 \& ${ }^{1}$ 729, 990 \& 154,890 \& 44,590 \& 172, 219 \& 276, 402 \& 29, ${ }^{292}$ \& ${ }_{6,430}^{1,600}$

\hline Jefferson \& 2,162 \& 2,081 \& | 188,557 |
| :--- |
| 12, 570 | \& 125,618 \& 2,681,490 \& 800, 880 \& 173, 610 \& 696, 225 \& 1,014,949 \& 64,040 \& 27, 370

\hline Kıoxi... \& 1,829 \& 1,390
3,790 \& - 129,670 \& -5,992 \& li, $1,644,290$ \& - 404,380 \& ${ }^{60,680}$ \& 302, 337 \& 418,081 \& 24, 930 \& 2,910

\hline Lake \& ${ }^{696}$ \& ${ }_{5} 518$ \& 54, 285 \& 42,372 \& 1,301,080 \& 1,173,170 \& 44, 535 \& ${ }_{290}$ \& ${ }^{1,7866,824}$ \& 188,770 \& 83,230

\hline Lauder \& 3,086 \& 2,790 \& 215,'965 \& 119,545 \& 2,340,470 \& 668,030 \& 190, 930 \& 823,464 \& 1,461, 265 \& 128,720 \& 2,000

\hline Lawrence \& 1,724 \& 1,693 \& 219, 282 \& ${ }_{5}^{68,563}$ \& ${ }^{931,640}$ \& 312, 640 \& 99,610 \& \& 450,689 \& \&

\hline Lewis \& $\begin{array}{r}540 \\ 3,69 \\ \hline\end{array}$ \& $\begin{array}{r}505 \\ 3,407 \\ \hline\end{array}$ \& -62,282 \& 15, 967 \& -350,600 \& 89,160 \& 31,700 \& 138,196 \& 150,286 \& 3,190 \& 1,310

\hline Loudon. \& 1,206 \& 1,169 \& 139, 819 \& ${ }_{81}, 356$ \& 1, 4848,560 \& 1, ${ }_{429,470}$ \& 111, 990 \& 1, 3446,049 \& 1,486,453 \& 62,700 \& 7,110

\hline McMinn \& 2,642 \& 2,477 \& 268,704 \& 149,149 \& 1,995, 310 \& 661,290 \& 188,640 \& 622,849 \& ${ }_{982,532}$ \& $\xrightarrow{43,390}$ \& 23,850

\hline McNairy \& 3,012 \& 2,764 \& 291, 422 \& 87,743 \& 1,066,020 \& \& 123, 670 \& 637, 497 \& 941,565 \& \&

\hline Madison \& 2,132
3,672 \& 2,084
3,460 \& - 1768,1380 \& 78,384
157,657 \& 2, 9367 , 0450 \& 368,670
774,360 \& 97,
1630

1690 \& $\begin{array}{r}466,946 \\ 883,925 \\ \hline 8\end{array}$ \& $\begin{array}{r}\text { 690, } 000 \\ 1,4885 \\ \hline 159\end{array}$ \& 18, ${ }^{1890}$ \& | S, 670 |
| :--- |
| 200 |

\hline Marion \& 1,186 \& 1,185 \& 123, 181 \& 50,154 \& 1,238, 750 \& 350, 260 \& 84, 790 \& 855,228 \& 1,461,085 \& - ${ }_{22,110}$ \& 4, 480

\hline Marshall \& 2,703 \& 2,600 \& 229,482 \& 136,927 \& 3,290, 210 \& 1,031,030 \& 238, 230 \& 1,026, 241 \& 1,100, 766 \& 66,030 \& 3,200

\hline Maury. \& 3,945 \& 3,741 \& 368,104* \& $\underset{\substack{283,671 \\ 64 \\ \hline 18}}{ }$ \& 7, 886,920 \& 1,879, 660 \& 425, 830 \& 1,683,806 \& 2,092,705 \& 152, 890 \& 1,680

\hline Monroe \& 2,384 \& 2,314 \& 286, 223 \& 120,950 \& 1,912, 220 \& 583, 580 \& $\begin{array}{r}76,060 \\ 152,640 \\ \hline\end{array}$ \& \& 461,926 \& 24,680 \& 4, 690

\hline Montgomery \& 3,494 \& 3,365 \& 321,368 \& 204, 103 \& 3,781, 660 \& 1,451,170 \& 248,780 \& 982, 888 \& 1,681,426 \& 144,230 \& ${ }_{31,920}$

\hline Moore. \& 918 \& 844 \& 68,743 \& 43, 195 \& 897, 300 \& 235,450 \& 69,460 \& 294,049 \& +14,527 \& 13,710 \& ${ }_{400}$

\hline Morgan \& 1,143 \& 1,125 \& 126,113 \& 38,092 \& 510,460 \& 243,060 \& 46,830 \& 248,215 \& 286,950 \& 12,150 \&

\hline Overton \& 3, \& ${ }^{3,061}$ \& 304, 879 \& \& 5,624,770 \& 1,264, 270 \& 424,090 \& 1,315, 725 \& 1,943, 905 \& 105, 090 \& 3,450

\hline Perry \& 1,319 \& 1,228 \& 194, 481 \& 45,065 \& 1,128,010 \& 275,340 \& 71,800 \& 3476, 461 \& 532, 520 \& 22, ${ }_{200}$ \& 3,610

\hline Pickett \& 926 \& 892 \& 88,026 \& 37,680 \& 322,390 \& 115, 830 \& 32, 870 \& 179, 137 \& 246,547 \& 9,540 \& 2,400

\hline \& 1,130 \& 1,112 \& 131, 051 \& 44,022 \& 664,140 \& 205, 450 \& 62, 200 \& \& \& \&

\hline ${ }_{\text {Putina }}$ \& 2,616
1,131 \& 2,530
1,104 \& - 209,388 \& 93,015
65,377 \& 1,064, ${ }^{1,1760}$ \& 414,950 \& 122,280 \& 554, 501 \& 749, 072 \& 18,950 \& 5 5,950

\hline Roane \& 1,883 \& 1,796 \& 198,034 \& 95,005 \& 1,6417,590 \& ${ }_{496,080}$ \& 111, 500 \& | 383,249 |
| :--- |
| 447 | \& ${ }^{432}$, 695 \& 36, 240 \& ${ }^{5,180}$

\hline Roberts \& 3,290 \& 3,247 \& 278,608 \& 196,142 \& 8,877,860 \& 1,443,260 \& 333, 620 \& 847, 754 \& 1,646,505 \& 116,
1860 \& 93,660

\hline Rutheriord \& 4,336 \& 4,197 \& 361, 299 \& \& 6,360,270 \& 1,700,060 \& \& 1,458,283 \& \& \&

\hline Scott \& 1,389 \& 1,364 \& 164,743 \& -39,728 \& 545,220 \& 210,880 \& 42, 620 \& 1, 273 , 694 \& 1, 352,410 \& ${ }_{11,920}$ \& 10,200
2,110

\hline Sevie \& 3,193 \& 3,135 \& \& 19,850
114,794 \& ${ }^{425,290}$ \& 99, 950 \& 31,480 \& 187, 113 \& 167, 191 \& 7,470 \& 2,030

\hline y. \& 6,887 \& 6,664 \& 377, 689 \& 248, 181 \& 6,246,'940 \& 2, 005 , 430 \& 432, 500 \& 1,549,000 \& - ${ }^{1927,494}$ \& -39,060 \& 8,140

\hline
\end{tabular}

Table 3.-NUMBER AND aCREAGE OF FARMS AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES--Continued.

codntirs.	NUMBER OF FARMS.		ACRES IN FARMS.		VAlues of farm property.				Value of products not fed to live stock.	EXPENDITURES	
	Total.	With buildings.	Total.	lmproved.	Land and improvements (except buildings).	Buildings.	1mplements and machinery.	Live stock.		Labor.	Fertilizers.
Smith	2,665	2,538	203, 870	115, 240	\$2, 866, 900	\$859, 750	\$167, 190	\$981,803	\$1,133, 523	\$46,280	$\$ 970$
Stewart.	1,900	1,818	197, 694	83, 199	1,046,500	458,310	125,480	574,465	757, 206	36,170	4,290
Suilivan.	2,732	2,655	238, 148	150,084	2,715,310	968,390	179,680	658,568	887,667	52, 240	28,420
Sumner	3,280	3,217	312, 740	187, 509	4, 179,030	1,529,930	290,570	1, 251, 684	1,316,486	90, 200	11, 260
Tipton.	4, 168	3,875	244, 561	155, 956	2, 752, 630	1, 011,940	253,190	1, 007, 163	1,889, 057	76,610	2,640
Trousdale	810	796	71,457	42, 431	880, 670	307, 850	54,990	329, 209	318, 879	13,630	340
Unicoi.	678	637	52,551	18,960	422,150	164,010	30,610	110,308	168,087	22, 290	1,060
Union	1,952	1,801	152,918	80, 654	944, 640	312,360	73, 880	363, 288	535, 406	22,340	2,630
Van Buren	482	467	83, 401	24,229	306, 510	100,080	25,730	134, 270	155, 137	4,290	1,430
Warren....	2,301	2,234	233,466	122,426	1,790,540	711,460	214,270	578, 929	967,922	39,710	39,930
Washington	2,457	2,402	186, 073	132, 789	2,473,060	957,930	186,760	581, 785	854,874	79,170	36,310
Wayne	1,717	1,640	231,708	62,488	984, 250	282, 520	84, 560	445, 216	495, 152	23,260	910
Weakley	5,010	4,821	343,005	214,172	3, 889, 540	1,454,420	422.670	1,365, 647	2, 206, 326	142,140	6,060
White ...	1,794	1,763	182,104	97,324	1,248, 310	416,990	119,310	478,787	601,804	24,730	10,390
Williamson	3,152	8,083	340, 886	182, 179	6, 046, 420	1,610,980	345, 200	1,284,082	1,646, 293	155,590	3,380
Wilson	3,880	3,756	364,731	202,990	4,861,860	1,577, 260	323,140	1,598,047	1,776,404	88,090	3,410

All counties report an increase in the number of farms in the last decade, and nearly two-thirds of the counties report an increase in total farm area. The decrease reported in improved acreage for some of the counties is due to a more intensive cultivation of the soil, and to the use of a more strict definition of the term "improved land" by the Twelfth than by any preceding census. The average size of farms varies in different sections, being 54.8 acres in Shelby county and 182.1 acres in Fentress county. As a rule, the counties reporting large acreage in cotton contain the smallest farms.

Increases in the total value of farms between 1890 and 1900 are reported by over four-fifths of the counties. For the state, the average value of farms in 1900 was $\$ 1,180$. The increase in the value of implements and machinery was relatively greater and more general than for any other item of farm property. Live stock increased in value in three-fourths of the counties, while the decreases reported for the remaining counties are slight.

FARM TENURE.

Table 4 gives a comparative exhibit of farm tenure in 1880,1890 , and 1900 . The farms operated by tenants are divided into two groups designated as farms operated by "cash tenants," who pay a cash rental or a stated amount of labor or farm produce, and farms operated by "share tenants," who pay as rental a share of the products.
In Table 5 the tenure of farms for 1900 is given by race of farmer, the farms operated by owners being subdivided into groups designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others;
(3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive a fixed salary from the owners for their supervision and other services.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 to 1900.

YEAR.	Total number of farms.	number of farms operATED BY-			PER CENT OF FARMS OPERATED BY-		
		Owners. ${ }^{1}$	Cash tenants.	Share tenants.	Owners. ${ }^{1}$	Cash tenants.	Share tenants.
1900	224,623	133,483	28, 348	62,792	59.5	12.6	27.9
1890	174, 412	120,622	19,762	34,028	69.2	11.3	19.5
$1880 . .$.	165,650	108, 454	19, 266	37, 930	65.5	11.6	22.9

${ }^{1}$ lncluding "part owners," "owners and tenants," and "managers."
Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

race.	Total number farms.	Owners.	Part owners.	Owners and tenants.	Managers.	Cash tenants.	Sbare tenants.
The State.	224, 623	114,929	13,652	3,616	1,286	28,348	62,792
	190,728	107, 327	11,962	3,482	1,204	17,439	49, 314
Colored.	33,895	7,602	1,690	134	82	10,909	13, 478
Indian	12 33,883	7 ${ }^{4}$	1,690	134	82	10,908	13,471

Part 2.-PER CENT OF FARMS OF SPECIFIED TENURES.

The State	100.0	51.2	6.1	1.6	0.6	12.6	27.9
	100.0	56.3	6.3	1.8	0.6	9.1	25.9
Colored	100.0	22.4	5.0	0.4	0.2	32.2	39.8

Since 1880 the total number of farms has increased 58,973 , or 35.6 per cent. Since 1890 the number of owners has increased 12,861 , or 10.7 per cent; that of cash tenants, 8,586 , or 43.4 per cent; and that of share tenants, 28,764 , or 84.5 per cent. The percentages in Table 4 show that the number of farms operated by share tenants has increased at a greater rate than those operated by owners and cash tenants.

Of the farms of the state, 84.9 per cent are operated by white farmers, and 15.1 per cent by colored farmers. Of the white farmers, 64.4 per cent own all or part of the farms they operate, and 35.6 per cent operate farms owned by others. For colored farmers the corresponding percentages are 27.8 and 72.2. Of the colored farmers, 12 are Indians and the remainder negroes. The Indians own 4 of their farms and rent 7 of them as share tenants.
No previous census has reported the number of farms operated by "part owners," " owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.
Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

Race of Farmer, andtenure.	Number of farms.	NUMBER OF ACRES IN FARMS.			value of farm PROPERTY.	
		Average.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Total.	Per cent.
The State......... White farmers Colored farmers ${ }^{1} . .$.	224,623	90.6	20,342,058	100.0	\$341, 202, 025	100.0
	190,728	98.5	18,791, 962	92.4	314, 459, 889	92.
	33, 895	45.7	1,550,096	7.6	26, 742,136	7.8
Owners. Part owners. Owners and tenants. Managers. Cash tenants Share tenants	114, 929	111.3	12, 786,547	62.9	205, 994, 435	60.4
	13,652	90.1	1,229, 892	6.0	21,866,948	6.
	3,616	140.4	507,536	2.5	8, 288, 974	2.
	1,286	298.4	383, 754	1.9	7,927,543	2.3
	28, 348	66.5	1, 884, 992	9.3	35, 747,086	10.5
	62, 792	56.5	3,549,337	17.4	61, 377, 039	18.0

${ }^{1}$ lncluding 12 Indians.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

RACE OF FARMER, ANDTENURE.	average values per farm of-					Percent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (prodnets of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	Impleand ma. chinery.	Live stock.		
The state	8899	$\$ 281$	\$ 968	$\$ 271$	$\$ 391$	25.7
White farmers. Colored farmers	$\begin{aligned} & 970 \\ & 500 \end{aligned}$	312 107	$\begin{aligned} & 73 \\ & 38 \end{aligned}$	294 144	409 285	24.8 36.2
Owners..	1,012	367	83	330	438	24.4
Pert owners...........	,966	280	76	280	413	25.8
Owners and tenants..	1,331	439	109	413	522	22.8
Managers............	4,053	1,139	192	780	1,237	20.1
Cash tenants	801	188	51	221	376	29.8
Share tenants	634	139	40	164	281	28.8

Colored farmers controlled 7.6 per cent of the total acreage and 7.8 per cent of the total value of farm property. The average values of all forms of farm property are less for colored than for white farmers. The high per cent of gross income for colored farmers is a result of the smaller average area of their farms and the more intensive cultivation which is generally given to smaller farms. It is due in some degree, also, to the lower values of the farm property for this group, as the total value of farms, or capital invested, is used as a base in the computation.

Farms operated by managers have the highest average values of all forms of farm property, for many of this class are large cotton plantations, while some are farms connected with state institutions. The ratio which the gross income bears to the total value of farm property is, however, smaller than for any other group. This is due to the high average valuation of these farms and the fact that some of them are not cultivated for profit.

FARMS CLASSIFIED BY AREA.
Tables 8 and 9 present the principal statistics for farms classified by area.
Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

AREA.	Number of farms.	NUMBER OF ACRES IN FARMS.			Value of farm PROPERTY.	
		Average.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$
The state.	224, 623	90.6	20,342,058	100.0	\$341, 202,025	100.0
Under 3 acres.	1,123	2.2	2,498	(1)	623,399	0.2
3 to 9 acres .	9,902	6.4	62,917	0.3	4,546,506	1.3
10 to 19 acres	25,517	14.3	364,695	1.8	12,150,603	3.6
20 to 49 acres	61, 442	31.5	1,937, 942	9.5	45, 173, 189	13.2
50 to 99 acres	57,265	68.7	3, 935, 990	19.4	72,485,325	21.3
100 to 174 acres	42, 476	126.5	5,371,931	26.4	85,278,279	25.0
175 to 259 acres	15,108	207.5	3,134,766	15.4	48,416,248	14.2
260 to 499 acres	9,166	336.2	3,081,484	15.2	46,692,634	13.7
500 to 999 acres	2, 058	624.6	1,285,879	6.3	15,819,883	4.6
1,000 acres and over ..	566	2,057.3	1,164,456	5.7	10,015, 959	2.9

Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

The group of farms containing from 20 to 49 acres includes a larger number of farms than any other, but the group " 100 to 174 " acres constitutes the largest part of the total acreage and value.

With a few exceptions, the average values of all forms of farm property increase with the size of the farms. For the group of farms of less than 3 acres each, the average values are comparatively high, as this group includes 10 of the 32 florists' establishments of the state, besides many market gardens, poultry farms, and city dairies. The income from these industries is determined not so much by the area of land used, as by the capital invested and the amounts expended for labor and fertilizers.

The average gross incomes per acre for the various groups, classified by area, are as follows: Farms under 3 acres, $\$ 74.64 ; 3$ to 9 acres, $\$ 20.16 ; 10$ to 19 acres, $\$ 11.66 ; 20$ to 49 acres, $\$ 8.21 ; 50$ to 99 acres, $\$ 5.27 ; 100$ to 174 acres, $\$ 3.89 ; 175$ to 259 acres, $\$ 3.36 ; 260$ to 499 acres, $\$ 2.97 ; 500$ to 999 acres, $\$ 2.47$; and 1,000 acres and over, \$1.39.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.
Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If for any farm 40 per cent of the products not fed to live stock consists of hay and grain, the farm is designated a "hay and grain" farm. Should 40 per cent of the total value of products consist of vegetables, the farm is designated a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive their principal income from any one class of farm products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCE OFINCOME.	Number of farms.	NUMBER of acres in FARMS.			VALUE OF FARMPROPERTY.	
		Avexage.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Total.	Per cent.
The State	224,623	90.6	20,342,058	100.0	8341, 202, 025	100.0
Hay and grain.	62,608	97.6	6, 107,664	30.0	119,843, 688	35.1
Vegetables	2, 602	43.9	114, 267	0.6	4, 694,338	1.4
Live stock	65,546	100.5	6,585, 194	32.4	110, 025,387	32.3
Dairy produce	1,850	91.7	169,663	0.8	7, 158, 200	2.1
Tobacco ..	6,172	80.5	496, 922	2.5	9,539, 315	2.8
Cotton.	28,007	60.2	1,686,647	8.3	25, 895,859	7.6
Sugar.	85	53.5	4,646	${ }^{1} 1$	80,875	(1)
Flowers and plant	32	10.5		(1)	314,935	0.1
Nursery products.	${ }_{56}^{57}$	120.0	- $\begin{array}{r}6,840 \\ 5,76412\end{array}$	${ }_{24}$	459,306 61	0.1
Miscellaneous..	56, 268	89.7	5,046,712	24.8	61,128,674	17.9

${ }^{1}$ Less than one-tenth of 1 per cent.

Table 11.-A VERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE OF INCOME.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State..	8899	\$281	868	\$271	8391	25.7
Hay and grain	1,234	325	82	273	437	22.8
Vegetables	1,133	426	73	172	385	21.4
Fruits . . .	859	340	77	201	568	38.4
Live stock	924	325	75	355	392	23.4
Dairy produce	2,319	854	126	570	717	18.5
Tobsacco	2,896	333	77	240	509	33.0
Cotton..................	557	142	42	184	369	39.9
Sugar...................	645	141	36	129	232	24.4
Flowers and plants...	6,078	3,369	256	139	5,242	53.3
Nursery products.....	5,726	1,805	276	251	8,624	107.0
Miscellaneous........	605	, 215	53	213	8, 309	28.4

For the several classes of farms the average values per acre of products not fed to live stock are: For farms deriving their principal income from flowers and plants, $\$ 500.75$; nursery products, $\$ 71.87$; vegetables, $\$ 8.77$; dairy produce, $\$ 7.81$; fruits, $\$ 6.43$; tobacco, $\$ 6.33$; cotton, $\$ 6.13$; hay and grain, $\$ 4.48$; sugar, $\$ 4.34$; live stock, $\$ 3.91$; and miscellaneous, $\$ 3.44$.
The wide variations shown in the averages and percentages of gross income are due largely to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens, the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than in the case of "hay and grain," "live-stock," or "miscellaneous" farms. Were it possible to present the average net incomes, the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUOTS

 NOT FED TO LIVE STOCK.Tables 12 and 13 present data relating to farms classified by reported value of products not fed to live stock.
Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

VALUE of PRODUCTSNOT FEDSTO LIVESTOCK.	Numfarms.	NUMBER OF ACRES INFARMS.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State	224, 623	90.6	20,342, 058	100.0	\$341, 202,025	100.0
80.	1,124	56.0	62,937	0.3	778, 260	0.2
\$1 to \$49	7,217	32.1	231, 488	1.1	2,641, 470	0.8
\$50 to \$89	16,732	36.9	617,852	3.0	7, 435, 910	2.2
\$100 to \$249	73, 621	65. 4	4, 082, 017	20.1	51, 039, 208	15.0
\$250 to \$499	76,016	86.4	6, 565,313	32.3	95, 959, 082	28.1
\$500 to 8999	37, 401	139.8	5, 227,039	25.7	94, 962, 480	27.8
\$1,000 to \$2,499.	11,046	248.0	2,738,923	13.5	64, 996, 970	19.0
\$2,500 and over	1,466	557.0	816, 489	4.0	23, 388, 645	6.9

Table 13.-AVERAGE VaLUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

value of products NOT FED TO LIVE sтоск.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 notfed to live stock).	
	Land and imments (except ings).	Buildings.	Impleand machinery.	Live stock.		
The State.....	$\$ 899$	\$281	\$68	\$271	\$391	25.7
	528	80	14	70		
\$1 to \$49......	225	72	13	56	28	7.6
\$50 to \$99.....	259	88	17	80	72	16.2
\$100 to \$249	386	134	29	144	176	25.3
\$250 to \$499	709	236	61	256	348	27.6
\$500 to \$999	1, 504	474	123	438	667	26.3
\$1,000 to \$2,499	3,752	1,040	241	851	1, 402	23.8
\$2,600 and over	10,520	2,771	495	2,168	4,451	28.0

There were 1,124 farms reporting no income in 1899. Some of these farms are summer or suburban homes, some are farms partially abandoned in 1899 , while others had changed owners or tenants, and the persons in charge June 1, 1900, were unable to give definite information concerning the products of the preceding year. To this extent the reports fall short of giving a complete statement of farm income in 1899.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with previous census reports.
Table 14 presents a summary of live-stock statistics.
Table 14.-NUMBER of domestic animals, fowls, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND average values, and number of domestic aniMALS NOT ON FARMS.

LIVE STOCK.	Age in years.	on farms.			NOT ON Farms.
		Number.	Value.	Average value.	Number.
Calves	Under 1.......	236,000	\$1,606,949	\$6. 81	12,246
Steers	1 and under 2.	110, 368	1,432,689	12.98	2,183
Steers	2 and under 3.	68,301	1, 236, 363	18.10	1,168
Steers	3 and over...	20, 127	490,640	${ }^{24.38}$	1,034
Heifers	1 and under 2 .	94, 224	1,243, 158	24.59 13.19	2,106
Cows kept for milk	2 and over...	321, 676	8, 137, 474	${ }_{26.30}^{19}$	30,273
Cows and heifers kept for milk....	2 aud over		961,527		
Colts	Under 1.-.	23,853	663, 620	27.82	799
Horses	1 and under 2.	23,109	993, 396	42.99	643
Horses	2 and over....	305, 426	18,024, 601	59.01	37, 774

Table 14.-NUMBER OF DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMAJS NOT ON FARMS-Continued.

LIVE STOCK.	Age in years.	ON FARMS,			NOT ON FARMS.
		Number.	Value.	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { value. } \end{aligned}$	Number.
Mule colts	Under 1-.....	24, 681	\$724,603	\$29.36	261
Mules.	1 and under 2.	28,674	1,284, 211	44.79	311
Mules.	2 and over....	200, 302	14, 191, 731	70.85	10,019
Asses and burros.	All ages	8,852	703,702	79. 50	543
Lambs	Under1.......	188, 207	389,743	2.97	1,249
Sheep (ewes)	1. and over	256, 082	651, 780	2.55	1,570
Sbeep (rams and wethers)	1 and over....	51,772	137,901	2. 66	. 8.447
Swine.....................	All ages .-....	1,976,984	4,838,713	2.45 1.50	82,912
Goats	All ages ...-.	25,884	38,938	1.50	1,457
Cbickens ${ }^{2}$.		6,184, 210			
Turkeys.		193, 397	2, 275, 864		
Geese...		391,698	2, 270,804		
Ducks.		202, 432			
Bees (swarms of)........		225, 788	486,536	2.15	
Unclassified.....-.			12, 310		
Value of all live stock...........			60, 818, 605		

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.
and young.
$=$ guinea fowls.
The value of all live stock on farms, June 1, 1900, was $\$ 60,818,605$. Of this amount, 32.4 per cent represents the value of horses; 26.6 per cent, that of mules; 13.4 per cent, that of dairy cows; 12.0 per cent, that of other neat cattle; 8.0 per cent, that of swine; 3.7 per cent, that of poultry; 1.9 per cent, that of sheep; and 2.0 per cent, that of all other live stock.

No reports were secured of the value of live stock not on farms, but it is probable that such animals had higher average values than those on farms. Allowing the same averages, however, the value of all domestic animals not on farms was $\$ 4,245,914$, and the total value of live stock in the state, exclusive of poultry and bees not on farms, was approximately $\$ 65,064,519$.

CHANGES IN LIVE STOCK ON FARMS.
The following table shows the changes since 1850 in the numbers of the most important domestic animals.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

Y EAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	321,676	590,507	852, 388	262, 609	307, 804	1,976,984
1890	345, 311	620,028	311,842	203,639	540,996	1,922,912
1880.	303, 900	479,774	266, 119	173,498	672, 789	2,160,495
1870.	243, 197	400, 499	247, 254	102, 983	826, 783	1, 828, 690
1860.	249,514	515, 218	290, 882	126,345	773, 317	2,347, 321
1850.	250,456	500, 306	270,636	75,303	811, 591	3,104, 800

With the exception of sheep and swine, larger numbers of all classes of live stock are reported for 1900 than for 1850. Every class shows fluctuations from decade to decade, but a general increase in the number
of horses and mules has been reported, while the raising of meat-producing stock for market has declined in importance.

For the decade following 1890 the following increases in numbers are shown: Mules and asses, 28.9 per cent; horses, 13.0 per cent; and swine, 2.8 per cent; with the following decreases: Sheep, 43.1 per cent; dairy cows, 6.8 per cent; and other neat cattle, 4.8 per cent.

The apparent decrease in numbers of dairy cows is probably due to the term "cows and heifers kept for milk" being restricted in 1900 to those milked at the time of enumeration, while many cows milked at some time in the year, but dry at the time of enumeration, were classed with "cows and heifers not kept for milk," and consequently with "other neat cattle." The increased production of milk in 1899 tends to confirm this statement.

The enumerators in 1900 were instructed to report no fowls under three months old, which limitation was not made in former census reports. This fact probably accounts for the following decreases in numbers of all classes of domestic fowls in the decade 1890 to 1900: Turkeys, 55.1 per cent; geese, 49.7 per cent; chickens, 48.7 per cent; and ducks, 44.1 per cent.

ANIMAL PRODUCTS.

Table 16 is a summarized statement of the animal products of 1899.

Table 16.-QUANTITIES AND VALUES of SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1899.

Products.	Unit of measure.	Quantity.	Value.
Wool.	Pounds.	1,395, 295	\$263,351
Mohair and goat hair	Pounds.	1, 1,486	- 428
Milk	Gallons.	1147, 336, 961	
Butter	Pounds.	29,091, 696	28,028,466
Cheese	Pounds.	26,622	
Eggs	Dozens	31, 807, 990	3,115,335
Poultry			4,282,740
Honey	Pounds.		
Wax.	Pounds.............	79,590	259,691
Animals sold			11, 121, 141
Animalsslaughtered			8,350,046
Total value			35, 421, 198

[^159]The value of the animal products for 1899 was $\$ 35,421,198$. Of this amount, 55.0 per cent represents the value of animals sold and animals slaughtered on farms, 22.7 per cent, that of dairy produce, 20.9 per cent, that of poultry and eggs, 0.7 per cent, that of wool, mohair, and goat hair, and 0.7 per cent, that of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms in 1899 was $\$ 19,471,187$, or 18.3 per cent of the value of all farm products. Of all farmers in the state, 182,375 , or 81.2 per cent, report animals slaughtered, the average value per farm being $\$ 45.79$. Animals sold were reported by 122,331 farmers, or 54.5 per cent of the total number, the average amount received per farm being $\$ 90.91$. In obtaining these reports, the enumerators were instructed to secure from each farm operator a statement of the amount received from sales in 1899, less the amount paid for animals purchased during the same year.

DAIRY PRODUCE.

The production of milk in 1899 was $39,679,845$ gallons greater than in 1889, a gain of 36.9 per cent. Butter made on farms increased in amount 2.7 per cent, and the production of cheese decreased 61.9 per cent in the same time.

Of the $\$ 8,028,466$ given in Table 16 as the value of dairy produce, $\$ 6,518,283$, or 81.2 per cent, represents the value of such products consumed on farms, and $\$ 1,510,183$, or 18.8 per cent, the amount received from sales. Of the latter amount, $\$ 819,203$ was received from the sale of $5,192,022$ pounds of butter; $\$ 676,996$, from 5,549,194 gallons of milk; $\$ 12,341$, from 22,566 gallons of cream; and $\$ 1,643$, from 15,673 pounds of cheese.

POULTRY AND EGGS.

Of the $\$ 7,398,075$ given as the value of poultry products in 1899, 57.9 per cent represents the value of poultry raised, and 42.1 per cent that of eggs produced. There were 8,635,677 dozen more eggs reported in 1899 than in 1889, a gain of 37.3 per cent. This increase in production of eggs tends to confirm the statement made elsewhere that the apparent decrease in number of chickens is due to a difference in methods of enumeration.

WOOL.

The production of wool for the state was greatest in 1879 , followed by a great decrease in the following decade and a decrease of 2,371 pounds, or less than 0.2 per cent, since 1889. The decrease in the last decade was probably more marked than the small percentage indicates, owing to the fact that in 1890 the fleeces from at least 95,343 sheep were omitted from the tables, but included in a general estimate of the wool shorn after the census enumeration. Wool was reported from about one-sixth of all farms reporting live stock in 1899.

HONEY AND WAX.

The production of honey in 1899 was $2,404,550$ pounds, and of wax 79,590 pounds, which, compared with $2,284,155$ pounds of honey and 63,290 pounds of wax in 1889 , shows an increase in ten years of 5.3 per cent in honey and 25.8 per cent in wax.

HORSES, MULES, AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.

Table 17 presents, for the leading groups of farms, the number of farms reporting borses, mules, and dairy cows, and the average number of these animals per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES, MULES, AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

Classes.	Horses.		mules.		dairy cows.	
	Farms reporting.	Average per farm.	Farms reporting.	A verage per farm.	$\begin{aligned} & \text { Farms } \\ & \text { report- } \\ & \text { ing. } \end{aligned}$	Average per farm.
Total	158, 355	2.2	112,385	2.3	179, 025	1.5
White farmers	138, 689	2.3	96, 945	2.4	159, 681	1.8
Colored farmers	19,666	1.7	15, 440	1.6	19,344	1.5
Owners ${ }^{1}$.	102, 248	2.4	71, 751	2.5	115,784	1.9
Managers.	977	3.9	803	5.0	1,006	6.4
Cash tenants	19,850	1.9	14,696	1.9	20,230	1.7
Share tenants	35, 280	1.8	25,135	1.8	42,005	1.4
Under 20 acres.	17,660	1.4	8,715	1.4	20,630	1.3
20 to 99 acres	82, 520	1.9	55,623	1.7	94, 2.26	1.5
100 to 174 acres	34, 876	2.6	27,605	2.4	38,923	2.0
175 to 259 acres	12,968	3.1	11,085	3.1	14,185	2.4
260 acres and over	10,331	4.1	9,357	4.8	11,061	3.7
Hay and grain	42,427	2.3	30,303	2.4	46, 077	1.8
Vegetables.	1,689	1.9	957	1.9	1,431	1.6
Fruits.	952	1.9	536	1.8	998	1.7
Live stock	52,388	2.5	34,992	2.4	58,156	1.8
Dairy .	1,518	4.2	772	2.7	1.850	7.0
Tobacco	3,895	2.0	4,162	2.2	4,573	1.4
Cotton	17,436	1.8	14,550	1.8	18,115	1.6
Miscellaneous ${ }^{\text {a }}$	38, 050	1.9	26,113	2.2	47, 825	1.7

Including "part owners" and "owners and tenants."
2 Including sugar farms, florists' establishments, and nurseries.
In Tennessee, as in other states where cotton is a staple crop and much of the farm labor is performed by negroes, large numbers of mules are used as work animals. For most classes of farms, the average numbers of mules and horses are about equal, but on farms operated by managers, and on farms of the largest area, more mules than horses are reported. This is due to the fact that these two classes include a relatively large number of cotton plantations.

If the number of horses and mules be combined, the average number of work animals per farm compares favorably with the corresponding figures for the more intensively cultivated farms of New England.

CROPS.

The following table gives the statistics of the principal crops grown in 1899.

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

crops.	Acres.	Unit of measure.	Quantity.	Value.
corn.	3, 374, 574	Bushels.	67,307,390	\$28, 059,508
Wheat	1, 426, 112	Bushels.	11, 924,010	7,882, 697
Oats	235, 313	Bushels.	2, 725,330	887, 940
Barley	1,590	Bushels.	21, 636	11, 273
Rye	16, 556	Bushels..	107, 912	68,381
Buck whea	1,173	Bushels.	8,597	4,690
Broom corn	3,444	Pounds.	1,015,460	47,252
Kafir corn	10	Bushels.	257	103
Flaxseed	1	Bushels.	7	7
Clover seed		Bushels.	7,414	34,145
Grass seed		Bushels.	76,952	70, 332
Hay and forage	645,617	Tons.	802,720	6,811,577
Cotton seed	623,137	Tons.	234, 592	8, ${ }^{974,} \mathbf{1 9 4}$, 642
Tobacco	71, 849	Pounds.	49,157, 550	2,748,495
Hops		Pounds.	307	
Peanuts	19,534	Bushels..	747,668	392,648
Peppermin		Pounds..	170	
Dry heans	5,563	Bushels..	48,736	57,660
Dry pease.	82,841	Bushels.	760, 663	767, 840
Potatoes.	27,103	Bushels.	1,404, 097	817, 419
Sweet potatoes	23, 374	Bushels.	1,571,575	883, 620
Onions	1,124	Bu	147, 679	106, 421
Miscellaneous vege	74,284			3, 339, 132
Maple sirgar.				
Maplesirup...		Gallons Tons.	321,886	61,793
Sorghum sirup	31,064	Gallons.	2,047,655	585, 336
Small fruits.	12,944			593, 092
Grapes.	41,413	Centals	43,551	${ }^{5120,199}$
Orchard fruits.	${ }^{4} 208,625$			${ }^{6} 1,479,915$
Tropical fruits.				112
Nuts.........-				5,828
Forest products.				5, 086,624
Flowers and plants Seeds	140			176, 458
Nursery products	2,838			474,133
Miscellaneous	17			3,573
Total	6, 890, 550			70, 745, 242

1 Exclusive of 22,561 tons, valued at $\$ 230,571$, sold in seed cotton and included with the cotton.
${ }^{2}$ Less than 1 acre.
3 Sold as cane.
4 Estimated from number of vines or trees.
5 Including value of raisins, winc, etc.
6 Including value of cider, vinegar, etc.

Of the total value of crops, cereals, including Kafir corn, contributed 52.2 per cent; cotton and cottonseed, 13.0 per cent; hay and forage, 9.6 per cent; forest products, 7.2 per cent; miscellaneous vegetables, 4.7 per cent; tobacco, 3.9 per cent; orchard fruits, 2.1 per cent; potatoes, 1.2 per cent; sweet potatoes, 1.2 per cent; dry pease, 1.1 per cent; sorghum cane and sorghum sirup, 9.0 per cent; and all other products, 2.9 per cent.

The average values per acre of the various crops are as follows: Flowers and plants, $\$ 1,257$; nursery products, $\$ 167$; onions, $\$ 95$; grapes, $\$ 85$; miscellaneous vegetables, $\$ 45$; tobacco, $\$ 38$; sweet potatoes, $\$ 38$; potatoes, $\$ 30$; sorghum cane and sorghum sirup. $\$ 21$; peanuts, $\$ 20$; cotton and cotton seed, $\$ 15$; broom corn, $\$ 14$; hay and forage, $\$ 11$; dry beans, $\$ 10$; dry pease, $\$ 9$; cereals, including Kafir corn, $\$ 7$; and orchard fruits, $\$ 7$.

The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production requires a relatively great amount of labor and large expenditures for fertilizers.

CEREALS.

The following table shows the changes in cereal production since 1849.

Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.
Part 1.-acreage.

Year. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899.	1,590	1,173	3, 374, 574	235, 313	16,556	1,426, 112
1889.	3,585	1,231	2, 791, 324	588,138	26,443	877, 361
1879.	2,600	4,907	2, 904, 873	468,566	32,493	1,196,563

Part 2.-bushels produced.

1899	21,636	8,597	67, 307, 390	2,725,330	107, 912	11,924,010
1889	63, 866	7,143	63, 635, 350	7,355, 100	165, 621	8,300,789
1879	30,019	33,434	62, 764, 429	4, 722, 190	156, 419	7, 331, 353
1869.	75,068	77,437	41, 343,614	4, 513, 315	223,335	6, 188, 916
1859.	25, 144	14,481	52,089, 926	2,267, 814	257,989	5, 459, 268
1849.	2,737	19,427	52,276, 223	7,703,086	89,137	1,619,386

${ }^{1}$ No statistics of acreage were secured prior to 1879.
The total area devoted to cereals in 1879 was $4,610,002$ acres; in 1889, 4,288,082 acres; and in 1899, $5,055,318$ acres, an increase in twenty years of 9.7 per cent. The increases in area under cereals in the decade from 1889 to 1899 were: Wheat, 62.5 per cent, and corn, 20.9 per cent. The decreases were: Oats, 60.0 per cent; barley, 55.6 per cent; rye, 37.4 per cent; and buckwheat, 4.7 per cent. The total number of bushels produced in 1849 was $61,709,996$, and in $1899,82,094,875$ bushels, an increase of 33.0 per cent in tifty years.

Of the total area devoted to cereals in 1899, 66.7 per cent was devoted to corn; 28.2 per cent, to wheat; 4.7 per cent, to oats; and 0.4 per cent, to rye, barley, and buckwheat.

Corn, wheat, and oats are reported from all the counties. Barley is reported from 53 counties of the 96 , Davidson, Maury, Williamson, and Washington reporting 62.3 per cent of the total area. Rye is cultivated in 92 counties, Bedford, Lincoln, Moore, and Giles counties, in the south, reporting over one-third of the total acreage. Johnson and Carter, on the northeastern border, report approximately one-half of the entire area in buckwheat.

HAY AND FORAGE.

In $1900,118,357$ farmers, or 52.7 per cent of the total number, reported bay or forage crops. Excluding cornstalks and corn strippings, they obtained an average yield of 1.05 tons per acre. The total area in hay and forage for 1899 was 645,617 acres, or 13.0 per cent greater than ten years before.
The acreages and yields of the various kinds of hay and forage in 1899 were as follows: Wild, salt, and prairie grasses, 11,528 acres and $10,44 \pm$ tons; millet and Hungarian grasses, 97,576 acres and 104,690 tons; alfalfa, or lucern, 654 acres and 1,173 tons; clover, 104,134 'acres and 106,829 tons; other tame and cultivated grasses, 218,821 acres and 222,795 tons; grains cut green for hay, 181,318 acres and 184,946 tons; crops grown for forage, 31,586 acres and 48,573 tons; and cornstalks and corn strippings, 303,057 acres and 123,270 tons.

In Table 18 the production of cornstalks and corn strippings is included under "hay and forage," but the acreage is included under "corn," as the forage secured was an incidental product of the corn crop.

COTTON.

The following table is a statement of the changes in cotton production since 1849.

Table 20.-ACREAGE AND PRODUCTION OF COTTON: 1849 TO 1899.

year.	acreage.		Production.		
	Total.	Per cent of increase.	$\begin{gathered} \text { Commer- } \\ \text { cial } \\ \text { bales. } \end{gathered}$	Pounds.	Per cent of increase.
1899.	623,137	${ }^{1} 16.6$	234, 592	117, 504, 070	29.3
1889.	747, 471	3.4	190, 579	90,906,183	139.3
1879.	722,562		330, 621	149,771, 313	89.8
1869. 1859.				78, 719,428	140.2 69.5
1849.				77, 812,800	69.5

In 1899, 53,405 farmers seeded an area of 623,137 acres to cotton, an average of 11.7 acres per farm, or 6.1 per cent of the total improved land. From this land was produced $117,504,070$ pounds of cotton, an average of 2,200 pounds per farm, 189 pounds per acre, and 58 pounds per capita. The total value of this crop, including the value of the cottonseed, was $\$ 9,166,688$, an average of $\$ 171.64$ per farm, and $\$ 14.72$ per acre. This value constituted 10.4 per cent of the gross farm income.
The counties devoting the greatest number of acres to cotton were Shelby, Fayette, Tipton, Haywood, Hardeman, Madison, and Lauderdale, ranking in the order named, and reporting 64.8 per cent of the total acreage.

orchard frutts.

The changes in orchard fruits since 1890 may be seen in the following table.

Table 21.—ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRUITS.	NUMBER OF TREES.		BUSHELS OF FRUIT.	
	1900	1890	1899	1889
Apples	7,714,053	5,020,400	5,387,775	7,283,945
Apricots	4,528	2,977 68,715	11.681	19 423
Cherries	217, 917	66,715	11,688	19,636
Peaches	2,749, 203	2,347,699	77,678	2,555,099
Pears	263, 585	96, 729	43, 609	49,923
Plams and prunes	712, 256	454, 421	73,315	105,359

The total number of trees in 1890 was $7,990,941$, and in $1900,11,708,629$, an increase in the decade of $3,717,688$ trees, or 46.5 per cent. Increases are shown for the decade as follows: Cherries, 217.1 per cent; pears, 172.4 per cent; plums and prunes, 56.7 per cent; apples, 53.7 per cent; apricots, 52.1 per cent; and peaches, 17.1 per cent.

Of the total number of trees in $1900,65.9$ per cent were apple trees; 23.5 per cent, peach trees; 6.1 per cent, plum and prune trees; and 4.5 per cent, cherry, pear, apricot, and unclassified fruit trees-the latter class, which is not included in the table, numbering 47,087, and yielding 5,412 bushels of fruit.

The value of the orchard products given in Table 18 includes the value of 9,372 barrels of vinegar, and $2,538,810$ pounds of dried and evaporated fruits manufactured on farms. Comparisons of yields or their values, when made by decades only, have little significance, owing to seasonal variations.

Knox county in the eastern part of the state, Warren county in the central, and Wilson in the northern, report the largest numbers of apple trees, showing 10.7 per cent of the total number. The largest number of peach trees is reported from Knox and Hamilton counties, and the five counties of Williamson, Knox, Davidson, Maury, and Wilson, ranking in the order named, report 27.8 per cent of the total number of pear trees. McNairy, Henderson, and Jackson counties report 18.1 per cent of the total number of plum and prune trees. Apricots received little attention.

SMALL FRUITS.

The total area devoted to the cultivation of small fruits in 1899 was 12,944 acres, distributed among 17,416 farms. Of the total area, 11,548 acres, or 89.2 per cent, were devoted to strawberries, yielding 13,683,840 quarts. They were raised chiefly in Gibson, Hamilton, Weakly, Rhea, and Crockett counties, which reported 74.0 per cent of the acreage and 68.1 per cent of the production. The acreage and production of the other berries were as follows: Blackberries and dewberries, 733 acres and 839,210 quarts; raspberries and Logan berries, 471 acres and 448,170 quarts; gooseberries, 114 acres and 150,620 quarts; currants, 12 acres and 13,190 quarts; and other small fruits, 66 acres and 65,090 quarts.

VEGETABLES.

The total area used in the cultivation of vegetables, including potatoes, sweet potatoes, and onions, in 1899, was 125,885 acres. Of the total acreage 59.0 per cent was devoted to miscellaneous vegetables, 21.5 per cent to potatoes, 18.6 per cent to sweet potatoes, and 9.0 per cent to onions. Aside from the land devoted to potatoes, sweet potatoes, and onions, 74,284 acres were used in the growing of miscellaneous vegetables. Of this area, 54,387 acres were included in family gardens or farms, the vegetable products of which were not reported in detail. Of the 19,897 acres concerning which detailed reports were received, 9,064 were devoted to watermelons; 4,341 , to cabbages; 2,536 , to tomatoes; 1,587 , to muskmelons; 719, to sweet corn; 562 , to beans; 496, to cucumbers; and 592 , to other vegetables.

PEANUTS.
Peanuts were grown in 1899 by 4,546 farmers, who devoted to their cultivation 19,534 acres and received therefrom a product of 747,668 bushels. Increases of 20.3 per cent in acreage and 42.9 per cent in production are shown for the last decade. The average yield per acre was 32.2 bushels in 1889 and 38.3 bushels in 1899.
The counties of Perry, Humphreys, Benton, Decatur, Hickman, and Wayne, lying in the Tennessee River Valley and ranking in the order named, report 98.5 per cent of the total acreage in this crop.

TOBACCO.

According to the census of 1850 Tennessee produced in $1849,20,148,932$ pounds of tobacco, while that of 1860 showed a gain of $23,299,165$ pounds, or 115.6 per cent. The reports of 1870 showed a decline of $21,982,645$ pounds, or 50.6 per cent. Between 1870 and 1880 there was a gain of 36.8 per cent, and between 1880 and 1890, a gain of 23.8 per cent.

The present census shows that in 1899 tobacco was grown in Tennessee by 27,960 farmers, who obtained from 71,849 acres a yield of $49,157,550$ pounds, valued at $\$ 2,748,495$. This was an increase in area since 1889 of 20,378 acres, or 39.6 per cent, and, in production, of 12,789,155 pounds, or 35.2 per cent. The average yield per acre in 1899 was 684 pounds, against 707 pounds in 1889, and 707 pounds in 1879. The average value was 5.6 cents per pound. The average area in tobacco for each farm on which it was grown was 2.6 acres.

The tobacco crop of 1899 was distributed over every county of the state. The leading county was Montgomery, with 17,593 acres; the next in rank being Robertson and Weakly counties, with 13,488 acres and 12,858 acres, respectively. These three counties together contributed 61.2 per cent of the entire acreage, and 64.2 per cent of the entire production.

SORGHUM CANE.

The present census shows that in 1899 sorghum cane was grown by 45,461 farmers, on 31,364 acres, an average of 0.69 acre for each farm reporting. From this area they sold 21,886 tons of cane for $\$ 61,793$, and from the remaining product manufactured $2,047,655$ gallons of sirup, valued at $\$ 585,336$. This was a decrease in acreage since 1889 of 22.2 per cent.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1889 was 140 acres, and the value of the products sold therefrom was $\$ 175,979$. These flowers and plants were grown by 93 farmers and florists. Of this number 32 made commercial floriculture their principal business. These 32 proprietors reported a glass surface of 525,780 square feet. The
capital invested in land, buildings, implements, and live stock was $\$ 314,935$, of which $\$ 107,800$ represents the value of buildings. Their sales of flowers and plants amounted to $\$ 157,008$, and the value of their other products was $\$ 10,742$. They expended $\$ 28,920$ for labor and $\$ 3,150$ for fertilizers. The average value for each farm reporting, including products fed to live stock, was $\$ 5,288$.
In addition to the 32 principal florists' establishments, 445 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 504,295 square feet, making, with the 394,335 square feet belonging to the florists' establishments, a total of 898,630 square feet.

NURSERIES.

The total value of nursery stock sold in 1899 was $\$ 474,133$, reported by the operators of 159 farms and nurseries. Of this number 57 derived their principal income from the nursery business. They bad 6,840 acres of land, valued at $\$ 326,385$; buildings worth $\$ 102,880$; implements and machinery worth $\$ 15,730$; and live stock worth $\$ 14,311$. Their total income, exclusive of products fed to live stock, was $\$ 491,566$, of which $\$ 451,213$ represents the value of nursery stock, and
$\$ 40,353$ that of other products. The expenditure for labor was $\$ 72,380$, and for fertilizers, $\$ 3,165$. The average income from each farm reporting, including products fed to live stock, was $\$ 8,767$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 4,730,370$, an average of $\$ 21$ per farm. The average expenditure was $\$ 1,270$ for nurseries, $\$ 904$ for florists' establishments, $\$ 81$ for dairy farms, $\$ 64$ for fruit farms, $\$ 47$ for vegetable farms, $\$ 35$ for tobacco farms, $\$ 25$ for hay and grain farms, $\$ 21$ for live-stock farms, $\$ 16$ for cotton farms, and $\$ 4$ for sugar farms. "Managers" expended on an average $\$ 160$; "owners," $\$ 26$; "cash tenants," $\$ 17$; and "share tenants," $\$ 9$. White farmers expended $\$ 24$ per farm, and colored farmers, $\$ 7$.

Fertilizers purchased in 1899 cost $\$ 898,070$, an average of $\$ 4$ per farm and an increase since 1890 of 148.7 per cent. The average expenditure was $\$ 98$ for florists' establishments, $\$ 56$ for nurseries, $\$ 13$ for tobacco farms, $\$ 8$ for vegetable farms, $\$ 6$ for hay and grain farms, $\$ 5$ for dairy farms, $\$ 3$ for fruit and live-stock farms, and $\$ 1$ for cotton farms.

Twelfth Census of the United States.

Census Bulletin.

AGRICULTURE.

LOUISIANA.

Hon. William R. Merriay,
 Directur of the Ciensus.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture in the state of Louisiana, taken in accordance with the prorisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.
A "farm," as defined by the Twelfth Census, includes all the land, under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.
The farms of Louisiana, June 1, 1900, numbered 115,969 , and were valued at $\$ 141,130,610$, of which amount $\$ 33,400,400$, or 23.7 per cent, represents the value of buildings, and $\$ 107,730,210$, or 76.3 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 28,536,790$, and of live stock $\$ 28,869,506$. These values, added to that of farms, give $\$ 1: 9,536,906$, the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this builetin as "animal products." The total value of all such prod-
ucts, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 72,667,302$, of which amount $\$ 10,012,759$, or 13.8 per cent, represents the value of animal products, and $\delta 62,654,543$, or 86.2 per cent, the value of crops, including forest products cut or produced on farms. The total value of farm products for 1899 exceeds that for 1889 by $\$ 18,323,349$, or 33.7 per cent.
The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 6,528,470$, leaving $\$ 66,138,832$ as the gross farm income. The ratio which this latter amount bears to the "total value of farm property" is referred to in the text as the "percentage of gross income upon investment." For Louisiana in 1899 it was 33.3 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

The statistics presented in this bulletin will be treated in greater detail in the final report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Louisiana.

Very respectfully,

Chief Statisticion for Agriculture.

AGRICULTURE IN LOUISIANA

GENERAL STATISTICS.

Louisiana has a total land area of 45,420 square miles, or $29,068,800$ acres, of which $11,059,127$ acres, or 38.0 per cent, are included in farms.

The greater part of the surface of Louisiana is low and level. South of New Orleans, and for 120 miles north of that place, the land along the Mississippi is below the surface of the river at high tide, being protected by levees from inundation. The northern and western portions of the state are diversified by low hills, consisting of pine barrens.

From an agricultural standpoint there is very little waste land in the state. With its rich, alluvial delta, its fertile uplands, and its heary and well-distributed rainfall, Louisiana presents conditions highly favorable to varied agriculture and horticulture. The only lands whose cultivation is not practicable, except at a great cost, are portions of the coast marsh lands, which, however, afford fine pasturage. The river bottoms are exceedingly productive, and the alluvial lands, which vary from 10 to 40 feet in depth, are easily drained and of an inexhaustible fertility. The uplands are rich, but the prairies are better suited for grazing than for agriculture.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850, the number of farms, the total and average acreage, and the per cent of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

Y'EAR.	Number of farms.	NUMBER OF ACRES IN FARMS.				Per cent of farm land improved.
		Total.	Improved.	$\begin{aligned} & \text { Lnim- } \\ & \text { proved. } \end{aligned}$	Average.	
1900.	115,969	11, 059, 127	4, 666,532	6,392, 395	95.4	42.2
1890.	69,294	9,544, 219	3, 774,668	5,769,551	137.7	39.5
1880.	48, 292	8, 273,506	2, 739,972	5,533,534	171.3	33.1
187.	28,481	7,025, 817	2, 045,640	4,980,177	246.7	29.1
1860.	17,328	9,298,576	2,707,108	6,591, 468	536.6	29.1
1850.	13,422	4,989,043	1,590, 025	3,399,018	371.7	31.9

The number of farms increased rapidly throughout the half century, the rate of gain for the last decade being $67 . t$ per cent. During the decade 1850 to 1860 the total farm area almost doubled. The effect of the Civil War is plainly shown in the report of 1870 , which shows a decreased farm acreage from which the state did not recover until 1890 . Since 1860 the average size of farms has steadily decreased. The per cent of farm
land improved shows an increase for each decade since 1870. These changes indicate a more intensive cultivation and a more complete utilization of the soil.

farm próperty and products.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1, (ॅ).

Table 2.-Values of specified Classes of farm PROPERTY AND OF FARM PRODUCTS: 1850 TO 1900.

YEAR.	Total value of farm property.	Land, im. provements, and buildings.	$\begin{aligned} & \text { Implements } \\ & \text { and } \\ & \text { machinery. } \end{aligned}$	Live stock.	Farm products. ${ }^{1}$
1900	\$198,536,906	\$141, 130,610	\$28, 536,790	\$28,869, 506	\$72, 667, 302
1890	110,447, 005	85, 381, 270	7,167,355	17,898,380	54, 343,953
1880	76,770,547	$58,989,117$	5,435, 525	12,345,905	42,883,522
$1870{ }^{2}$	91, 303, 942	$68,215,421$	7,159,333	15, 929,188	-. $352,006,622$
1860	247, 981, 827	204, 789,662	18,648, 225	24, 546,940	
1850	98, 543,611	75, 814,398	11,576,938	11,152, 275	

i For year preceding that designated.
2 Valies for 1870 were reportedin depreciated currency. To reduce to specie basis of other years they must be diminished one-fifth.
${ }^{3}$ Includes betterments and additions to live stock.
The remarkable growth of agriculture in the decade from 1850 to 1860 , the disastrous effects of the Civil War, and the subsequent partial recovery of the state, are the most interesting features of the above table. While the total value of farm property is still below that of 1860 , the loss is wholly in the value of land, improvements, and buildings, as the values of implements and machinery and of live stock show decided gains.

In the last ten years the total value of farm property has increased $\$ 88,089,901$, or 79.8 per cent. In the same time the value of land, improvements, and buildings increased $\$ 55,749,340$, or 65.3 per cent; that of live-stock, $\$ 10,971,126$, or 61.3 per cent, and nearly four times as great values, for implements and machinery were reported in 1900 as in 1890 . The value of farm products for 1899 exceeds that for 1889 by $\$ 18,323,349$, or 33.7 per cent. Part of the increase in the value of implements and machinery is doubtless due to a more detailed enumeration in 1900 , than in previous census years.

PARISH STATISTICS.

Table 3 gives a statement of general agricultural statistics by parishes.

Table 3.-NUMBER AND ACREAGF OF FARMS AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY PARISHES.

PAPISHES.	NCMBER OF FAPMS.		ACRES IN FARMS.		values of farm property.				Value of products not fed to live stock.	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Landand improvements (except buildings).	Buildings.	$\begin{aligned} & \text { Implements } \\ & \text { and } \\ & \text { machinery. } \end{aligned}$	Live stock.		Labor.	Fertilizers.
Tbe State.---...	115, 969	110, 796	11,059,127	4, 666, 532	S107, 730, 210	\$33, 400, 400	\$28, 536, 790	\$28, 869, 506	\$66, 138, 832	\$10,692, 710	\$1,076,890
Acadia	$\stackrel{2}{2}, 481$	$\stackrel{-2}{7} 373$	276,490	143, 354	3,413,830	599, 340	354, 150	906, 171	1, 983, 760	237,080	2,860
Ascension	1, 200	1, 157	115,914	61,519	2,514,980	981, 270	1, 550, 330	585,697	1,061,033	251, 640	73,610
Assumption	456	422	111,180	64, 331	4,105,940	1,347, 360	2,314, 960	513, 913	1, 610, 913	619,580	86,630
Avoyelles	4,674	4, 502	194, 841	117,171	3,836, 780	941, 830	342, 300	838, 812	2, 097,357	104, 350	5,610
Bienville.	2,392	2. 261	300,563	109, 729	815,150	328,070	92,000	421, 660	717,248	35, 600	7,870
Bossier	3,212	3,058	278,524	128,423	-2,671,490	579,210	145, 160	553, 824	1,534, 390	93, 720	2,940
Caddo.	4,648	4,246	348,957	179,649	3,789,560	1,051,180	178,560	875, 953	1,975, 827	129,720	4,180
Calcasieu	2,594	-2,487	511, 254	134,480	2, 730, 400	620, 450	286, 150	1,204, 682	1,517, 122	129, 190	12,870
Caldwell	1, 070	1,037	136,099	42, 169	651,400	228, 720	84, 300	244, 681	323, 060	14, 040	1,100
Cameron	508	521	197, 608	22,617	781,020	174,770	53,950	557,518	349, 033	14,350	780
Catahoula	-2, 273	$\stackrel{2}{2}, 181$	197,031	59,657	737,400	340, 420	78,230	517, 465	868,892	12,450	220
Claiborne	3,595	3,415	418, 276	206, 131	1,345, 250	525, 270	132,160	629,578	1,324, 826	46,370	9, 590
Concordia	1,631	1,598	152,800	65, 998	1,339,340	392, 500	101, 320	364, 801	1,271, 959	98,930	9,750
De Soto.	3,865	3,662	344,487	170,327	1,817, 830	496,870	126, 240	581, 036	1,089, 856	45,730	2,750
East Baton Rouge	2,477	2,423	198,253	100,152	1,675,270	684, 670	385,950	584, 635	1,265, 470	196, 420	10,840
East Carroll ...	1,917	1,855	107,087	61,835], 388,630	377,600	93,090	299, 883	1,011,792	115,150	5,700
East Feliciana.	2,395	2, 351	187,245	96, 127	1,070,900	519, 110	98, 710	438, 355	1,099,982	74, 850	36,490
Franklin	1,455	1,395	153, 484	43,950	784, 660	261, 650	58,530	364,781	474,127	42,920	490
Grant.	1,397 1.828	1,352	123,386 149,577	41,867 40,209	560,570 930,950	235,010 042,380	66, 050	262, 128	559, 644	8,060	1,240
lberville.	746	709	110,499	61,171	3,044,630	1,191,210					
Jackson.	1,497	1,445	195, 171	55, 501	482, 760	1, 177, 700	-101, 780	504, 205	1,389,609	633,510	44,860
Jefferson	461	444	39,610	17, 880	1,336, 240	332, 160	-94, ${ }^{\text {960 }}$	231,059	430,515	12, 560	1,080
Lafayette.	3, 088	2,920	154,921	116,452	2,851,600	732, 960	296, 220	203, 985	717,655	225,960	18,850
Latourche	1,035	994	220,779	67,238	4,234, 960	1,589, 140	2,618, 060	678,229	2,275,043	688, 350	9,350 91,850
Lincoln.	2,213	2, 146	245, 962	116,143	951, 490	362, 290	88,180	373,996	787, 414	21,530	4,330
Livingston	1,217	1,166	139, 875	31, 802	441,060	204,230	54, 930	236, 463	324, 472	10, 880	4, 450
Madison..	2,489	2.368	131, 086	71,097	1, 582, 040	525,970	134, 800	371, 537	922, 900	117,370	- 250
Morehouse	- 2, 39.5	2,303	171, 863	86,929	$1,475,030$	356, 080	122, 510	446,511	1,213, 694	17, 100	3,240
Natchitoches	4,262	4,064	316,071	125, 341	2, 297, 340	724,060	185, 730	794,684	1,765,983	153, 930	5,950
Orleans.	836	807	16,224	7,167	1,780,960	749, 530	273,740	330,109	1,318,396	187,220	13,610
Ouachita	1,720	1,633	181, 920	78,150	1, 323, 510	482, 150	134, 200	426,366	1,178, 149	128, 140	13, 780
Plaquemines	-728	-671	211, 490	34, 144	1, 468, 240	716,240	1, 149,410	209, 801	-957, 597	381, 210	25, 340
Pointe Coupec	3,772	3, 623	174,380	102, 924	3,224, 040	1,050,580	472,950	708, 373	2,038,698	272, 340	5,270
Rapides ...	4, 249	3,833	285, 369	117, 568	3,610, 360	862,050	545, 490	1,017, 197	2,340, 416	4 158,710	27,050
Red River	1,702	1,595	131, 059	60, 055	996,840	2256, 110	57,170	255, 077	727, 671	37,900	2,580
Richland	1,936	1,857	109, 736	49, 506	815,940	245, 960	57, 410	328, 255	659, 396	48,200	2, 100
Sabine...	2,267	2,096	219, 475	$8 \mathrm{D}, 432$	645, 210	243, 200	66,170	393, 472	733, 374	15,730	1,470
St. Bernard	210	197	43,683	11,479	577,050	221,280	38,190	129, 681	339, 862	153,830 133	11,710
St. Charles	333	318	54.130	31,973	904, 450	178,150	353, 230	187, 802	908, 591	200,310	2,090
St. Helena	1, 274	1, 255	131, 484	38,583	497,540	194, 390	52,050	220,980	400,869		
St. James	361	347	95, 499	53,506	2, 277,760	757, 830], 203, 180	412, 914	1,456,399	14,440 660,480	66,550
St. John the Buptis	311	306	65,507	35, 026	2,054,430	615,940	1,192, 030	222, 353	1,016, 174	660,480 497,800	66,100 40,700
St. Landry .	7,549	7,367	480, 444	292,894	4,364, 370	1,117,600	1, 527, 760	1, 484, 191	2,661,539	182, 660	40,700 23,140
St. Martin	2,032	1,956	114,515	69,040	1,841, 800	389,700	368,310	-478, 766	-930,277	77,310	5,520
St. Mary .	609	573	184,126	92,389	6,359, 810	1, 916, 700	3,561, 860	816, 920	2, 781,500	1,187,280	
St. Tammany	397	+395	87,667	19,491	226, 290	116,730	32, 350	171,382	-186,428	1, 18,200	$\begin{aligned} & 6,040 \\ & 7,130 \end{aligned}$
Jangipahoa	1,615	1,550 2,297	163,686 181,398	38,146 89	1,027, 760	545,970	106,560	393, 123	684, 254	66,680	38,920
Tensas......	2,391 748	$\begin{array}{r}2,297 \\ \hline 735\end{array}$	181,398 168,379	89,964 52,780	$2,039,600$ $3,477,260$	697,570 921,320	148,640 $1,798,040$	515,946	1, 479, 380	210,480	3800
Terrebonne	748	735	168, 379	52,780	3,477, 260	921, 320	1,798,040	457,806	2,036,887	823, 410	101,350
Union	2,703	2, 524	356,918	129,045	919,910	319,550	91,390	421,474	911,828	29,790	
Vermilion	2,656	2,571	$\cdot 295,044$	136, 875	3,134, 470	578, 790	336, 550	973, 065	1,277,480	29,790 96,610	4,260 880
Vernon....	1,057	1,038	130, 871	26, 203	391,930	147, 630	46,360	269, 750	261,305	96,010 5,160	4, 4,590
Washington	1.442	1,404	224, 540	48,775	570,550	302, 600	69,580	328,768		23, 200	4,590 27,740
Webster	2,136	2,030	221,210	93,829	641,940	294, 860	64,560	318,650	579,515 663,749	23,600 30,330	27,740 8.110
West Baton Rouge	769	741	59, 091	39,750	1,866,120	759, 100	1, 154, 400	323, 121			
West Carroll.	733	723	49,001	21,688	1,273,390	102, 780	1, 29, 090	151,118	878,681 300,047	367,150 10,160	17,990
West Feliciana	2,325	2, 296	146,761	66, 574	1,216,080	516, 830	92, 440	428,080	300,047 987,183	10,160 39,720	
Winn...........	1,587	1,527	246,327	54,327	1, 544,100	225,580	63, 860	428,080	987,183 427,488	39,720 15,430	$\begin{aligned} & 6,550 \\ & 2,840 \end{aligned}$

An increase since 1890 in the number of farms is reported for all parishes except Assumption and St. James. Ahout one-third of the parishes report decreases in farm area, all of these except Red River parish being in the eastern part of the state. The decreased improved acreage reported for some of the parishes is due to a more intensive cultivation of smaller areas of farm land, and to the use of a more strict definition of the term "improved" by the Twelfth than by any preceding census. The average size of farms for the state is. 95.4 acres, ranging from 19.4 acres in Orleans parish to 354.1 acress in Cam-
eron parish. The larger farms are, as a rule, in the parishes containing a number of rice and sugar plantations, and the smaller farms in the cotton-growing parishes.

For the state, the average value of farms (including land, improvements, and buildings) is $\$ 1,217$. Ninetenths of the parishes report increased total values of farms in the last decade. Only four parishes-Concordia, Red River, St. Bernard, and Tensas-report decreases in the value of inuplements and machinery. The same number of parishes report smaller values of live stock.

FARM TENURE.

Table 4 is an exhibit of farm tenure for 1900 , showing the number and per cent of farms operated by owners and by tenants. Tenants are divided into two groups: "Cash tenants," who pay a rental in cash or in a stated amount of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.

In Table 5 the tenure of farms in 1900 is given by race of farmer, and "farms operated by owners" are subdivided into groups designated as farms operated hy "owners," "part owners," "owners and tenants," and "managers." These groups comprise, respectively: (1) Farms operated hy individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it and the other, or others, owning no part, but receiving for supervision or labor a share of the products: and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

1 Including "part owners." "owners and tenants," and " managers."
Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

PART 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

Part 2.-PER CENT OF FARMS OF SPECIFIED TENURES.

The state...	100.0	38.6	2.3	0.3	0.9	24.9	33.0
White.	100.0	62.7	3.0	0.5	1.7	13.4	18.7
Colored ${ }^{1}$.	100.0	14.5	1.5	0.1	0.1	36.5	47.3

[^160]In the period from 1880 to 1900 the total number of farms increased $1+0.1$ per cent, the gain in the lastdecade being 67.4 per cent. Since 1890 the number of farms operated by owners has increased 26.5 per cent; by cash tenants, 146.2 per cent; and by share tenants, 101.5 per cent. The percentages shown in Table 4 indicate that the number of farms operated by owners has not increased so rapidly since 1880 as the number operated by tenants.

In 1900, 49.8 per cent of the farms were operated by white farmers, and 50.2 per cent, by colored farmers. Of the white farmers, 66.2 per cent owned all or part of the farms they operated, and 33.8 per cent operated farms owned by others. The corresponding percentages for colored farmers are 16.1 and 83.9 .

In 1890, 61.8 per cent of all tenants were share tenants, and in 1900, 57.0 per cent. The relative number of farms rented for cash or for a share of the products is determined largely by the race of farmers and the kind of crops grown. In the parishes along the Mississippi River, where colored farmers predominate, and where cotton and cane are the principal products, cash tenants equal or exceed share tenants, while in the western parishes, where more diversified farming prevails, share tenants outnumber cash tenants. In parishes where local contract systems prevail, the distinction between cash and share tenure is hard to draw.
No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

farms classified by race of farmer and by tenube.

Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.
Table 6.-NUMBER AND ACREAGE OF FARMS AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED.BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

race of farmer, and tenure.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NOMBER OF ACRES INfarms.			Value of farm PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Total.	$\begin{aligned} & \text { Per } \\ & \text { eent. } \end{aligned}$	Total.	Per cent.
The State.	115, 969	95.4	31, 059, 127	100.0	\$198, 536,906	100.0
White farmers.	57, 809	150.7	8,711,079	78.8	160, 506, 608	80.8
Negro farmers. ${ }^{\text {Indian }}$ farmers ${ }^{\text {a }}$	58,096 64	40.3 73.2	$\begin{array}{r} 2,343,365 \\ 4,683 \end{array}$	21.2	$37,995,093$ 35,205	19.2
Owners..	44, 715	151.7	6,782, 742	${ }_{6} 1.3$	94, 092, 053	47.4
Part owners	2, 634	130.8	344, 483	3.1	6,630,651	3.3
Owners and tenants.	352	115.3	40,582	0.4	701,237	0.4
Managers.	1,034	941.7	973, 721	8.8	43,966,519	22.1
Cash tenants	28,922	49.1	1,420,053	12.8	26, 405, 049	18.3
Share tenants	38,312	39.1	1,497,546	13.6	26,741,397	13.5
		luding	Chinese.			

Table 7.-AVERAGE Valde of Specified classes of FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IY FARM PROPERTY, CLASSIFIED BY RACE $\cap \mathrm{F}$ FARMER AND BY TENURE.

RLCE OF FARMER, AND TENURE.	average values per farm of-					Per cent of gross income on total investment in farm property.
	: Farm property, June 1, 1900.				Gross income (products of 1899 not fed to liye stock).	
	Land and improvements (except buildings).	Buildings.	lmplements and machinery.	Live stock.		
The State.	$\$ 929$	\$288	$\$ 246$	$\$ 249$	\$571.	33.3
White farmers.	1,445	481	468	382	812	29.2
Negro farmers.	416	96	25	117	330	50.5
Indian farmers ${ }^{1}$	347	59	17	128	259	47.1
Owners...............-.	1,105	385	258	356	062	31.5
Part owners .-..-- - .-	1,343	459	349	366	734	29.1
Owners and tenants.-	.1,052	364	176	400	658	33.0
Managers..............	19,701	-6,784	13,345	2, 691	9,008	21.2
Cash tenants	564	143	44	162	425	46.5
Share tenants	462	97	25	114	334	47.8

${ }^{1}$ Including 2 Chinese.
In 1900, 21.2 per cent of the total acreage was operated by colored farmers, while less than 10 per cent was actually owned hy them. The value of the farms operated by colored farmers was 19.1 per cent of the total state value of farm property, while the value of farms actually owned by negroes was less than 5 per cent. The large per cent of gross income shown in Table 7 for colored farmers ls due to the smaller size and consequent more intensive cultivation of their farms, and to the lower value of their farm property or capital invested. It is also due in some degree to the fact that in many cases the most productive part of the plantations are rented in small areas to negroes and appear as the farms of colored tenants, while larger areas of less fertile land, comprising the remainder of the plantation, appear as the farms of white owners. The valuable buildings are all on the part retained, which tends to reduce the rate of income by increasing the base used in the computation.

Farms conducted by share tenants have the smallest average area, 39.1 acres, and those of managers the largest, 941.7 acres. The farms conducted by the lastnamed class are, as a rule, favorably located and highly improved, and the average values of the various forms of farm property, shown in Table $\overline{7}$, are much larger. for this than for any other tenure group. The ratio which the gross income of these farms bears to the total value of farm property, however, is smaller than for the other groups, owing to the high average valuation of the land and buildings.

FARMIS CLASSTFIED BY AREA.

Tables 8 and : 9 present the principal statistics for farms classified ly area.

Table S.-NUMBER AND ACREAGE OF FARMS, AND value of fary property, June 1, 1900, Classified by area, with percentages.

Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARII PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

Area.	AVEGAGE VALUES 1'ER FARM OF-					Per cent of gross income on total investmentin farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live atock).	
	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The State......-	\$929	\$288	\$246	\$249	\$571	33.3
Under 3 acres.	752	524	62	268	832	51.8
3 to 9 Reres	310	166	23	94	190	32.1
10 to 19 acres	275	94	19	92	291	60.7
20 to 49 acres	404	109	29	135	369	54.6
50 to 99 acres	629	190	51	239	483	43.5
100 to 174 acres	756	237	66	297	536	39.5
175 to 259 acres	1,318	379	116	433	694	30.9
260 to 499 acres	2, 271	696	314	657	1,357	34.5
500 to 999 acres -	6,124	1,907	1,950	1, 260	2,324	20.7
1,000 Reres and over .-	30,966	9,740	18,648	4, $\mathbf{1}^{\prime} 29$	11,407	18.0

The group of farms of 1,000 acres and over contains the largest percentage of the total farm area. Over one-half of these farms are sugar or cotton plantations, and 288 of them are operated by managers. They report the highest average values of all forms of farm property and products, but on account of the high valuation of the property, the percentage of gross income on total investment is smallest for this group, though the gross income is in itself far in advance of that of any other group.
For the two groups of farms containing less than 10 acres each the average values given in Table 9 are relatively high, as these groups contain most of the florists' establishments of the state and a number of city dairies, poultry farms, and market gardens. It should be borne in mind that the income from these industries depends less upon the acreage of land used than upon the amount of capital invested in buildings and implements, and the amount expended for labor and fertilizers.

The average gross incomes per acre for the various groups classified by area are as follows: Farms under 3 acres, $\$ 569.72 ; 3$ to 9 acres, $\$ 28.51$; 10 to 19 acres, $\$ 20.23 ; 20$ to 49 acres, $\$ 12.38 ; 50$ to 99 acres, $\$ 6.90$; 100 to 174 acres, $\$ 3.90 ; 175$ to 259 acres, $\$ 3.31 ; 260$ to 499 acres, $\$ 3.95 ; 500$ to 999 acres, $\$ 3.51 ; 1,000$ acres and over, 84.96 .

farms classified by principal source of inoone.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the bay and grain raised on any farm exceeds that of any other crop, and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables are the leading crop, constituting 40 per cent of the value of the products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40 per cent of their income from any one class of products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.
Table 10.-NUMBER AND ACREAGE OF FARMS, AND Valle of farm property, June 1, 1900, CLAssified BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PHNCIPAI SOLRCEOF INCOME.	Number of farms.	number of acaes in FARNS,			value of farm PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { Age. } \end{aligned}$	Total.	Per cent.	Total.	Per cent.
The state.	115,969	$9 \overline{2} .4$	11,059, 197	100.0	\$198,536,906	100.0
Hay and grain	6,003	101.8	610,831	5.5	11,913,632	6.0
Vegetables	2,596	55.	143,326	1.3	3,995,789	2.0
Fruits	613	84.1	51,560	0.5	861,297	0.4
Live stock	7,119	153, 1	1, 089,753	9.9	13,263,763	6.7
Dairy produce	1,640	90.7	149,256	1.4	4, 708, 806	2.4
Cobacco....	76 79.468	64.3 71,9	4,886 $5,712,170$	${ }_{51}{ }^{1} 7$	67, 12355,143	34.0
Rice....	2.73	163. 1	445,713	4.0	10,011, 143	5.0
Sugar.	3.870	312.6	1,209, 837	10.9	70,430,069	35.5
Flowers ard plants.-	40	3.8	151	(1)	150, 720	0.1
Nursery products...	15	140.3	2,104	(1)	94,830	(1)
Miscellaneous....	11.790	139.1	1,639,540	14.8	15,478, 481	7.8

${ }^{1}$ Less than one-tenth of 1 per cent.

Table 11.-AVERAGE Values of specified Classes OF FARII PROPERTY, AND AVERAGE GROSS INCOME PER FARN, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE OF income.	average values per farm of-					Per cent of gross income on total investment in farm property
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improve- ments (except build ings).	Buildings.	Implements hnd ma-chinery.	Live stock.		
The State.......	\$929	\$288	\$246	\$249	\$571	33.3
Hay and grai:1	1,170	- 401	190	224	279	14.1
Vegetables	965	358	61	155	508	33.0
Fruits	743	387	68	207	549	39.1
Live stock.	929	341	108	485	368	19.8
Dairy produc	1,579	641	120	521	846	29.6
Tobacco.	800	414	64	284	508	31.4
Cotton.	501	- 141	37	170	422	49.7
Rice.	2, 460	1127	303	467	1,581	43.2
Sugar...............	-2,544	2,849	5. 579	1,227	4,304	23.6
Flowers and pha: $1 . .$.	2,717		129	33	1,911	50.7
Nursery product.	4,333	1,480	268	241	4,291	67.9
Miscellareous.	735	239	T2	267	349	26.6

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms deriving their principal income from flowers and plants, $\$ 506.16$; nursery products, $\$ 30.59$; sugar, $\$ 13.77$; rice, $\$ 9.70$; dairy produce, $\$ 9.33$; vegetables, $\$ 9.21$; tobacco, $\$ 7.91$; fruits, $\$ 6.53$; cotton, $\$ 5.87$; hay and grain, $\$ 2.7 \pm$; miscellaneous, $\$ 2.51$; and live stock, 82.41 .

The wide variations shown in the averages and in the percentages of gross income are largely due to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than in the case. of "hay and grain," "live stock," or "miscellaneous" farms. Were it possible to present the average net incomes, the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUCT: NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

value of products NOT FED TO live stock.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	number of acres in FARMS.			Value of farm PROPERTY.	
		Average.	Total.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$	Total.	Per cent.
The State.	115,969	95.4	11,059,127	100.0	\$198, 536,906	100.0
80.	2,285	55.9	127,744	1.1	1,888,580	0.9
\$1 $10 \$ 49$	5,039	46.1	232,399	2.1	2,568, 180	1.3
\$50 to \$93	7,447	49.3	367,437	3.3	3, 915, 710	2.0
\$100 to \$249	32, 631	58.3	1,901,788	17.2	19,564,770	9.9
\$250 to \$499	40, 302	72.4	2,917,805	26.4	35,491, 014	17.9
\$500 to \$999	20, 117	106.7	2,146,264	19.4	31,658, 672	15.9
\$1,000 to \$2,499	5, 721	212.1	1,213,432	11.0	21,365, 840	10.8
82,500 and over	2,427	886.8	2, 152,258	19.5	82, 084, 140	41.3

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTALINVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED YALUE OF PRODUCTS NOT FED TO LIVE STOCK.

The absence of income in the first group is due in part to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The persons in charge of such farms on June 1, 1900, could not always give definite information concerning the products of the preceding year. The same statement is true, also, of some of the farms with reported incomes of less than $\$ 100$. To this extent the reports fall short of giving a complete statement of farm income in 1899.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals:
was adopted for the census of 1900 . The age grouping for neat cattle was determined by their present and prospective relations to the dairy indnstry and to the supply of meat products. Horses and mules are classified lyy age, and neat cattle and sheep by age and sex. The new classification permits very close comparison with previous census reports.

Table 14 presents a summary of live-stock statistics.

Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

I.IVE STOCK.	Age in years.	on farms.			NOT ON FARMS.
		Number.	Value.	Average value.	Number.
Calves	Under 1	169,825	\$817, 872	\$4. 82	7,380
Steers	1 and under 2.	57,344	470, 339	8.20	1,618
Steers	2 and under 3.	30,094	343, 357	11.41	879
Steers	3 and over....	26,589	586,360	22.05	3,117
Bulls.	1 and over....	10,783	207, 261	19.22	377
Heifers.	1 and under 2.	66,076	620,250	9.39	1,993
Cows kept for milk....	2 and over....	184, 815	3,607,033	19.52	12, 449
Cows and heifers not kept for milk.	2 and over....	124, 769	1,928, 52-4	15.46	1,532
Colts...................	Under 1	13,510	166,312	12.31	556
Horses	1 and under 2.	12,076	274,190	22.71	534
Horses	2 and over..	168,786	6, 184, 115	36.64	25, 255
Mule colts	Under 1	2,325	52, 950	22.77	79
Mules.	1 and under 2.	6,225	293, 765	47.19	104
Mujes	2 and over...	135,420	10,290,267	75.99	6,829
Asses and burros.	All ages		51, 685	75.67	270
Lambs	Under 1	50,610	49,746	0.98	316
Sheep (ewes)	1 and over	114,414	185, 840	1.62	960
Sheep (rams and wethers).	1 and over	54, 8:20	97, 454	1.78	793
Swinc.	All bges	788,425	1,494,284	1.90	24,392
Goats ${ }_{\text {Fowls }: 1 ~}^{\text {a }}$	All ages	38,308	35,697	0.93	2,091
Chickens ${ }^{2}$		3, 890,563			
Turkeys		115,921			
Geese		169, 93i	1,057, 889		
Ducks........		123,059			
Bees (swarms of)		35,231	54,316	1.54	
Value of all live stock..........			28,869, 506		

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.

2 Yncluding Guiner fowls.
The value of all live stock on farms, June 1, 1900, was $\$ 29,869,506$. Of this amount, 36.8 per cent represents the value of mules; 23.0 per cent, that of horses; 17.2 per cent, that of neat cattle other than dairy cows; 12.5 per cent, that of dairy cows; 5.2 per cent, that of swine; 3.7 per cent, that of poultry; and 1.6 per cent. that of all other live stock.

No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same average values, however, the value of live stock not on farms would be $\$ 1,962,128$, and the total value of live stock in the state, exclusive of poultry and bees not on farms, would be approximately $\$ 30,831,63 \pm$.

CHANGES IN LIVE STOCK ON FARMS.

The following table shows the changes since 1850 in the number of the most important classes of live stock.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 to 1900.

YEAR,	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	184815	485.480	194, 372	144,653		
1890.	167.223	413. 880	126, 777	148,028	186, 167	788,425 569,985
1880.	146, 454	324, 147	104,428	76,674	135, 631	633, 489
1870.	102.076 129.662	238, 185	59,738	61,338	118,602	338,326
1850.	129.662 105,076	387,145 469,766	78,703 89,514	91,762	181,253	634,525
	105,076	469,766	89,514	44,849	110,333	597, 301

In the Civil War decade all classes of live stock show decreases in numbers, but by the year 1880 practically all, with the exception of neat cattle, had regained the numbers reported in 1850. Uninterrupted progress since 1870 is shown in the numbers of all neat cattle, horses, and mules. For the last decade increases in number are as follows: Dairy cows, 10.5 per cent; other neat cattle, 17.3 per cent; horses, 53.3 per cent; mules and asses, 64.3 per cent; and swine, 38.3 per cent. A decrease of 9.1 per cent in the number of sheep is shown for the last decade.
Although the enumerators in 1900 were instructed to report no fowls under three months old, and no such limitation was made in previous census reports, the last decade shows the following increases in the numbers of fowls: Ducks, 83.4 per cent; chickens, 73.2 per cent; turkeys, 55.2 per cent; and geese, 13.8 per cent.

ANIMAL PRODUCTS.

Table 16 is a sumnarized statement of the products of the animal industry in 1899.

Table 16.-QUANTITIES AND Values OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1899.

PRODLCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds.	547, 641	\$90,317
Mohair and goat hair	Pounds	385	92
Milk	Gallons	139, 251, 413	
Butler	Pounds	4,918, 229	24, 168,015
Cheese	Pounds	135, 104	
Eggs	Dozens	12, 820,290	1,281, 713
Poultry			1,425,116
Honey.	Pounds	426,490	45, 200
Wax	Pounds	20,440	40,200
Animals sold........			1,072,869
Animals slaughtered.			1,929,437
Tolal.			10,012, 759

[^161]The value of animal products in 1899 was $\$ 10,012,759$, or 13.8 per cent of the value of all farm products, and 15.1 per cent of the gross farm income. Of the total value, 41.6 per cent represents the value of dairy products; 30.0 per cent, that of animals sold and animals slaughtered on farms; 27.0 per cent, that of poultry and eggs; 0.9 per cent, that of wool, mohair, and goat hair; and 0.5 per cent, that of honey and wax.

DAIRY PRODUCE.

In 1899, 1,646 farmers, or 1.4 per cent of all in the state, derived their principal income from the sale of dairy produce. Of the $\$ 4,168,015$ given in Table 16, as the value of all dairy produce, $\$ 3,059,959$, or 73.4 per cent, represents the value of such produce consumed on farms, and $\$ 1,108,056$, or 26.6 per cent, the receipts from sales. Of the latter amount, $\$ 986,824$ was received from the sale of $4,356,979$ gallons of milk; $\$ 109,774$, from 564,250 pounds of butter; $\$ 8,770$, from 116,177 pounds of cheese; and $\$ 2,688$, from 3,853 gallons of cream.

The great progress in dairying since 1890 is shown by the fact that in 1900 more than three times as much milk, twice as much butter and thirty-four times as much cheese made on farms, were reported as in 1890.

ANIMALS SOLD ANI ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms in 1899 was $\$ 3,002,306$, or 4.1 per cent of the value of all farm products. Animals slaughtered were reported by 48,339 farmers, or 41.7 per cent of all in the state, the average value per farm being $\$ 39.91$. Sales of animals were reported by 17,600 farners, or 15.2 per cent, the average value per farm being $\$ 60.96$. In obtaining these reports the enumerators were instructed to secure from each farm operator a statement of the amount received from sales in 1899 , less the amount paid for animals purchased during the same year.

POULTRY AND EGGS.

The production of eggs in 1899 was more than twice as great as in 1889. The three parishes, St. Landry, Vermilion, and Lafayette are first in poultry products, each reporting more than 800,000 dozen eggs for the year 1899. The total value of poultry products was $\$ 2,706,829$, of which 52.6 per cent represents the value of poultry raised, and 47.4 per cent, that of eggs produced.
wool.
Each decade since 1870 shows an increased production of wool, the product of 1899 being 106,955 pounds greater than that of 1889 , a gain of 24.3 per cent. The following parishes in the southern part of the state, ranking in the order named, report more than half the state total of wool for 1899: Calcasieu, Vernon, St. Tammany, St. Landry, Rapides, Tangipahoa, and Washington.

HONEY AND WAX.

In 1899 there were reported 426,490 pounds of honey and 20,440 pounds of wax, while in 1889 the production was 271,962 pounds of honey and 8,584 pounds of wax.

HORSES, HULES, AND DAIRY COWS ON SPECIFIED CLASSES OF. FARMS.
Table 17 presents, for the leading groups of farms, the number of farms reporting horses, mules, and dairy
cows, and the average number of these animals per farm. In computing the averages presented, only those farms which report the kind of live stock under consideration are included.

Table 17.-HORSES, MULES, AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

Cl. 4 ŞSES.	Horses.		muldes.		datay cows.	
	Farms reporting.	Average per lurm.	Farms reporting.	Average per larm.	Farms reporting.	Average per larm.
Total	82,289	2.4	53,948	2.7	63, 967	2.9
White larmers	48,130	2.8	24,858	4.0	43, 270	3.4
Colored Iarmers	34,159	1.8	29,090	1.5	20,697	1.9
Owners ${ }^{1}$.	40,536	2.8	22,044	3.1	37, 957	3.4
Managers	837	5.4	810	26.1	711	5.5
Cash tenants	19,360	1.9	15,145	1.9	11,782	2.3
share tenants	21,556	1.9	15, 949	1.6	13,517	1.8
Under 20 acres	14, 229	1.7	8,688	1.2	7,500	2.7
20 to 99 acres.	44,857	2.1	29,266	1.8	33, 529	2.3
100 to 174 acres.	12,942	2.6	7,924	1.9	12,855	3.1
175 to 259 acres.	4,127	3.1	2,961	3.1	4,258	3.8
260 acres and ove	6,134	4.8	5,109	10.9	5,825	5.3
Hay and grain	4,098	2.2	2,110	3.3	2,857	2.5
Vegetable.	1,873	1.8	729	2.3	1,070	2.3
Fruit	508	1.9	115	1.7	424	2.8
Live stock.	6,322	3.7	2,714	2.8	6,002	3.5
Dairy..	1,469	3.1	441	2.7	1,646	9.6
Cotton.	52, 362	2.1	39, 307	1.9	38,278	2.5
Rice	2,311	4.0	1,268	5.0	1,710	3.1
Sugar	3,342	3.1	3,314	10.9	2,367	3.1
Miscellaneous ${ }^{2}$	10,004	2.6	3,950	2.3	9,613	3.1

${ }^{1}$ lncluding "part owners" and "owners and tenants."
${ }^{2}$ Including tobacco farms, florists' establishments, and nurseries.
In Louisiana, as in all states where cotton is a staple crop and much of the farm labor is performed by negroes, large numbers of mules are used as work animals. For most classes of farms the average number of mules exceeds that of horses. If the numbers of horses and mules be combined, the average number of work animals per farm compares favorably with the corresponding figures for the more intensively cultivated farms of New England.

crops.

The following table gives the statistics of the principal crops grown in 1899.

Table 18.-ACREAGE, QUANTITIES, AND VALUES OF PRINCIPAL FARM CROPS 1N 1899.

CROPS.	Acres.	Unit of measure.	Quantity.	Value.
Corn.	1,343,756	Bushels.	22,062,580	\$10, 327, 723
Wheat	214	Bushels.	2,345	1,888
Oats.	28,033	Bushels.	316, 070	117,312
Barley	16	Bushels.	110	61
Rye	55	Bushcls.	372	323
Broom corn	107	Pounds.	41,120	2,130
Rice.....	201,685	Pounds	172,732, 430	4, 044, 489
Grass seed		Bushels.	264	35
Hay and forage	97, 136	Tons.	248, 601	1,353,118
Cottonseed		Tons.	13388,388	3,481,669
Cotton.	1,376,254	Bales	709,041	23, 523,143
Tobacco	275	Pounds.	102, 100	-20,488
Peanuts Dry beans	3,107	Bushels.	45,733	44,785
Dry pease	15,190	Bushels.	3,371 146,298	3,948 156,843
Potatoes.	9, 220	Bushels...	549, 280	309,082

1 Exclusive of 11,515 tons, valued at $\$ 118,490$, sold in seed cotton and in-
uded with the cotton.

Table 18.-acreage, quantities, and values of PRINCIPAL FARM CROPS IN 1899-Continued.

CROPS.	Acres.	Unit of measure.	Quantity.	Value.
Sweet potatoes	27,372	Bushels.	1, 865, 482	\$859,733
Onions	1,655	Bushels.	152,683	106, 426
Miscellaneous vegetables..	24,801			1,647, 424
Sugar cane..--.......-...-	276,966	Tons.	3, 137, 338	
a. Cane sold.		Tons.	1,038, 496	3,583, 507
b. Cane kept ior sced...		Tons.	1,013, 984	3,488, 633
c. Sugar made		Pounds.	156, 072, 199	6,399, 187
d. Molasses made		Gallons.	6,213, 859	782,271
e. Sirup made.		Gallons.	1,552, 641	428,684
Sorghmm canc...	987	Tons....	11, 160	3,423
Sorghum sirup		Gallons.	48,727	14,944
Small fruits	1,408			172,803
Grapes.--	285	Centals	1,770	85,927
Orchard fruits.	212,686			4225,476
Tropical Iruits.				8,727 51,457
Nuts.....				51,457
Forest products.				1,381, 867
Flowers and plants.	89			76,628
Seeds...........	36			5,000
Nursery products.............	276			63,593
Miscellaneous................	7			16,331
Total...-............ .	3,421,751			62,654,543

1 Sold as cane.
2 Estimated from number of vines or trees.
alncluding value of raisins, wine, etc.
4 Including value of cider, vinegar, etc.
Of the total value of crops, cotton and cottonseed contributed 43.1 per cent; sugar cane and sugar canc products, 23.3 per cent; cereals, including rice, 23.1 per cent; miscellaneous vegetables, 2.6 per cent; hay and forage, 2.2 per cent; forest products, 2.2 per cent; sweet potatoes, 1.4 per cent; and all other products, 2.1 per cent.

The average values per acre of the various crops are as follows: Flowers and plants, $\$ 861$; nursery products, $\$ 230$; small fruits, $\$ 123$; tobacco, $\$ 75$; miscellaneous vegetables, $\$ 66$; onions, $\$ 64$; sugar cane and sugar cane products, $\$ 53$; potatoes, $\$ 34$; sweet potatoes, $\$ 31$; cotton and cottonseed, $\$ 20$; sorghum cane and sorghum sirup, $\$ 20$; orchard fruits, $\$ 18$; peanuts, $\$ 14$; dry pease, $\$ 10$; and cereals, including rice, $\$ 9$.

The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production requires a relatively great amount of labor and large expenditures for fertilizers.

COTTON.

The following table is a statement of the changes in cotton production since 1849.

Table 19.-ACREAGE AND PRODUCTION OF COTTON: 1849 TO 1899.

year.	acricage.		production.		
	Total.	Per cent or increase.	Commerclalbales.	Pounds.	Per cent of increase.
1899.	1,376, 854	8.4	709,041	349, 760,572	11.2
1889.	1, 270,154	46.9	659, 180	314, 428, 860	36.5
1879	864,787		508,569	230,381,757	51.3
1859.			350, 832	152, 261, 088	${ }^{1} 56.0$
1849.			77,738 178,737	$346,093,410$ $71,494,800$	384.1
			17,787	71,494,800	

${ }^{1}$ Decrease.

In 1859 Louisiana produced more than four times the amount of cotton reported for 1849 , but in the next decade the state suffered from the effects of the Civil War, and the cotton crop decreased 56.0 per cent. The decades following have shown a rapid increase, though the percentage of gain has become smaller with each succeeding census. The parishes in which decreases are shown for the last decade are located in the northeastern part of the state.

In $1899,88,328$ farmers reported a total area of 1,376,254 acres devoted to cotton, 29.5 per cent of the total improved farm land of the state, and an average of 15.6 acres per farm. This land produced $349,760,572$ pounds of lint, an average of 254 pounds per acre, 7,701 pounds per square mile of land service for the state, and 253 pounds per capita. The total value of the crop of 1899 , including both lint and seed, was $\$ 27,00 t, 812$, the average value of these products being $\$ 305.73$ per farm reporting and $\$ 19.62$ per acre.

The parishes having the largest area devoted to cotton in the last decade were St. Landry, Caddo, Claiborne, Bossier, De Soto, Natchitoches, Avoyelles, Morehouse, and Pointe Coupee, ranking in the order named, and reporting 39.6 per cent of the total acreage.

SUGAR CANE.

Table 20 presents a comparative statement of the acreage of sugar cane and the production of sugar and sirup: 1849 to 1899.

Table 20.-ACREAGE OF SUGAR CANE AND PRODUCTION OF SUGAR AND SIRUP: 1849 TO 1899.

YEAR. ${ }^{1}$	Acreagein cane.	SUGAR.		SIRUP.	
		Produetion in pounds.	Average yield per acre in pounds.	Production in gallons.	Average yield per acre in gallons.
1899	276,966	156, 072, 199	563.5	7,766,500	28.0
1889	198,694	292, 124, 050	1,508.2	14,341,081	74.0
1879	181, 592	206,047, 200	1,134. 7	11,696,248	64.4
1869		96, 847, 200		4, 585, 150	
1859		266, 071, 200		13, 439,772	
1849		271, 201, 200		.	

I No statistics of acreage were secured prior to 1879.
Of the $3,421,751$ acres of land under cultivation in $1899,277,903$, or 8.1 per cent, were used for growing cane for the production of sugar, molasses, and sirup. Of this acreage, 276,966 , or over 99.7 per cent, were devoted to cane, which, because it was introduced from the West Indies, is often called the West India cane, but is more often designated "ribbon cane," from its appearance. The remaining 937 acres, or 0.3 per cent, were used for growing sorghum cane, sometimes, though improperly, spoken of as Chinese sugar cane, by reason of its introduction from China.
number and character of farms raising cane.
Of the 115,969 farms reported in Louisiana, June 1, $1900,13,870$, or 12.0 per cent, raised cane used for mak-
ing sugar or sirup. Of this number 11,763, or 84.8 per cent, grew sugar cane, with an average area per farm reporting of 23.5 acres, and 2,107 , or 15.2 per cent, grew sorghum cane, the average area per farm being 0.4 of an acre. The area devoted to sugar cane has increased 42.9 per cent, while that devoted to sorghum cane has decreased 46.6 per cent since 1889. In addition, 11 large plantations and a great number of smaller farms raised cane used for seed, but made no sugar or sirup. The record of these operations with growing cane was not given upon the schedules.

The total farm value of sugar cane and sorghum cane in 1899, including in that total the receipts from sales of cane, the value of sugar cane reserved for seed and that of sugar, sirup, and molasses made by planters from cane which they grew, but not including the value of the sugar, etc., made from purchased cane, was $\$ 14,645$, 649 . Of this amount, $\$ 14,627,282$ represents the value of sugar cane and its products, and $\$ 18,367$ that of sorghum cane and its products. The average value, as above described, of sugar cane per farm growing it, was $\$ 1,243$, while the average of sorghum cane was less than $\$ 9$; the average values per acre being $\$ 52.81$ and $\$ 19.60$, respectively.

Of the 11,774 farms growing sugar cane, 3,870 made its cultivation their principal source of income, and are here spoken of as sugar farms. The remainder, 7,904 , made the growing of sugar cane a subordinate branch of agriculture. Sorghum is grown by few, if any, farmers as their principal source of income, but only as an incidental product in connection with other farming operations. It is principally grown in parishes in which the sugar cane does not flourish, Claiborne and Union parishes reporting 39.4 per cent of the total acreage and 46.4 per cent of the total value of the product.

Of the farmers growing sugar cane in 1899, 281 manufactured sugar and molasses therefrom. Of that number, 274 manufactured large quantities, while the manufacturing operations of the remaining 7 were insignificant.

Sirup was manufactured on 5,332 farms, and on 6,150 cane was sold, but no sugar or sirup manufactured. Cane was raised by many farmers from whom no reports were received. Their cane fields were so badly injured by frost that they harvested barely sufficient cane for seed, and as they sold no cane and made no sirup or sugar, the enumerators thought there was nothing to report. Among the plantations having expensive sugarhouses and machinery, there were 18 that made no sugar in 1899, owing to the frost and its consequent damage to cane. There were also 6 of the same class of plantations which, by reason of the frost, raised no cane excepting that reserved for seed, but purchased from others for sugar making. There were also 22 plantations that grew cane and made sirup exclusively. These 46 plantations in this bulletin will be grouped with the 274 which in 1899 manufactured
sugar in large quantities, and are referred to as the 320 leading plantations. In this connection mention is made of 8 central refineries, 6 producing sugar and 2 reducing sirup to sugar for farmers but not cultivating any cane. They are considered as part of the sugar industry of the state, but not to be included in the statistics of agriculture proper. Of the $27 \pm$ plantations making sugar in considerable quantities in 1899, 79 grew cane but did not purchase any, and 195 grew cane and also purchased it.

Of the $2,123,354$ tons of cane converted into sugar by these plantations in 1899, 1,072,468 tons were grown by the manufacturers of the sugar on their own land by labor hired by themselves; 314,361 tons were grown on the plantations by tenants and purchased from them by the planter for use in his sugarhouse; and 736,425 tons were purchased by then and by the 8 central refineries from others. Of the total cane converted into sugar, 56.7 per cent was grown by the manufacturers, 8.6 per cent by the tenants, and 34.7 per cent by others. In the crop year 1898 the 351 central factories and large plantations converted $4,677,174$ tons of cane into sugar. Of that quantity, $2,844,321$ tons, or 60.8 per cent, were grown by owners of the sugarhouses; 350,699 tons, or 7.5 per cent, by their tenants; and $1,482,154$ tons, or 31.7 per cent, were purchased from others. No tabulation was made of the relative amount of cane converted into sirup in 1898 or 1899 that was grown by the planters making it, by tenants, or purchased from others.

VALUE AND INCOME OF SUGAR PLANTATIONS.

The 3,870 plantations and farms making the sugar industry their principal source of income in Louisiana constituted only 3.3 per cent of the total number. They contained $1,209,837$ acres of land, or 10.9 per cent of all land. The lands with their improvements, exclusive of buildings, had a value of $\$ 33,063,960$; the value of the buildings was $\$ 11,027,060$; implements and machinery, including apparatus for making sugar and railroads for handling cane, $\$ 21,591,940$; and the live stock, $\$ 4,747,109$; making a total fixed capital of $\$ 70,430,069$, or 35.5 per cent of all the fixed capital in Louisiana agriculture. The corresponding investments of 79,468 cotton farms was $\$ 67,505,143$, and of the other 32,631 farms, $\$ 60,601,694$. The sugar farms numbered 3.3 per cent of all, and controlled 35.5 per cent of all the fixed capital; the cotton plantations numbered 68.5 per cent, and controlled 34.0 per cent of the capital; and the other plantations constituted 28.2 per cent of all, and controlled 30.5 per cent of all capital.
The sugar plantations reported farm products, including those fed to live stock, of a value of $\$ 18,019,470$; the cotton plantations, of $\$ 36,823,212$; and other plantations, $\$ 17,824,620$. The products not fed, or gross farm income, for the three classes of farms amounted to $\$ 16,656,300, \$ 33,523,192$, and $\$ 15,959,340$, respec-
tively. These were 23.6, 49.7, and 26.3 per cent, respectively, of the total fixed capital invested in each class.

The expenditures of those 3,870 farms making sugar their chief source of income were, for labor, $\$ 6,931,470$, and for fertilizers, $\$ 709,970$, making a total of $\$ 7,641,440$, or 45.9 per cent of the gross income of the farms, or the value of products less those fed to live stock. The cane kept for seed had a value at the sugarhouse for sugar making of $\$ 3,430,930$. Mention is made of this large value to show the immense relative and actual cost of seeding to the Louisiana sugar planter as compared with that of the planters of Hawaii and Cuba. In Hawaii the tops are utilized for seed, and in Cuba the lands need reseeding, as a rule, only once in twenty years or more, the cost in either case being comparatively small. The $\$ 3,430,930$ represents, therefore, the added cost of sugar making in Louisiana for a single year as compared with Hawaii and Cuba, and shows why under equal terms otherwise the planters of Louisiana can not compete successfully in sugar production with those of the islands mentioned. This value of the seed cane is not to be included with that of labor and fertilizers in the total expenses of the farm, because it is already included in the value of the labor and fertilizers used in its production. No reports were secured of the expenses of the 3,870 sugar farms outside of those of labor and fertilizers. Such statements were obtained, however, from 328 of the most important plantations and central factories which converted into sugar the cane grown in 1899.

COST OF RAISING CANE AND MAKING SUGAR.

The 320 leading planters in Louisiana who grew cane extensively in the year 1899 reported expenses for growing the $1,072,468$ tons of cane grown by them on their own plantations, as follows: For labor, including salaries, $\$ 4,194,862$; for fertilizers, $\$ 468,589$; for feed purchased, $\$ 481,502$; for maintenance and labor on plantation railroads, $\$ 116,276$-a total of $\$ 5,261,229$, and an average of $\$ 4.91$ per ton utilized for sugar making. The average contract rate at which cane was purchased by the sugarhouses in 1899 was $\$ 3.56$. After making allowance for the unreported farming expenses alluded to above, there was a margin loss of more than $\$ 1.35$ a ton of cane converted into sugar in the field operations of 1899. This loss was owing to the severe frost that visited Louisiana in the early part of the year, and so damaged the crop as to leave many planters with barely sufficient cane for seed. The crop year 1898 presented many sharp contrasts with that of 1899. The year 1898 was a very wet season, the cane grew luxuriantly, and after deducting the usual amount for seed there was left a large quantity for delivery to the sugarhouses. The planters who grew only $1,072,468$ tons in 1899 for sugar making delivered to the sugarhouses in the preceding year twice that amount, or
$2,844,321$ tons. The cultiration of the land, including the planting of the cane, cost about the same in the two years, the only extra expense for 1898 being for cutting and handling the extra quantity of cane. The contract price for the cane was $\$ 3.41$ per ton, and this, with the great quantity raised, left a margin of profit in the field operations.

Of the large sugarhouses located on plantations and of central refineries purchasing all the cane converted by them, 351 were in operation for reducing the crop of 1898 , and 310 were in operation for reducing the crop of 1899. The expenses of operating the 351 sugarhouses for the crop of 1898 (exclusive of the cost of cane purchased) were as follows: For labor, including salaries, $\$ 3,548,982$; for fuel, $\$ 1,688,295$; for mill supplies, $\$ 106,162$; for freight expenses, $\$ 291,309$; for taxes, $\$ 43 \overline{7}, 398$; and insurance, interest, repairs, rent of office, and miscellaneous expenses, $\$ 1,842,197$; total, $\$ 7,914,343$. This was an average, for each of the $4,677,174$ tons converted into sugar, of $\$ 1.69$.

For the crop of 1899 the expenses of the sugarhouses were: For labor and salaries, $\$ 1,316,814$; fuel, $\$ 644,665$; mill supplies, $\$ 50,627$; freight, $\$ 134,172$; taxes, $\$ 305,355$; and insurance, interest, repairs, and miscellaneous expenses, $\$ 949,935$; total, $\$ 3,401,568$; an average of $\$ 1.60$ for each of the $2,123,354$ tons converted into sugar.

For the crop year 1898 the sugar output had a value of $\$ 5.19$ per ton of cane converted; in 1899, $\$ 7.11$. There was, therefore, a small margin of gain in the sugarhouse operations connected with the crop of 1898, and a large gain for those of 1899 . The small gain in the former year was due to the large content of water and the small content of sugar caused by the exceedingly wet season, while the large profit of the succeeding year came from the reverse conditions. Considering the field and sugarhouse work as a unit, the raising of cane and converting it into sugar yielded a good net profit in both 1898 and 1899. The exact amount of the former profit can not be determined from the reports, but in 1899 the growers of cane lost $\$ 1.35$ a ton on all they raised, and the manufacturers of sugar made $\$ 1.95$ on every ton of cane bandled at the arerage cost of purchase. The net profit in the industry was the difference, or 60 cents a ton for the cane converted, from which must be deducted the interest on investment and allowance made for unreported expenses above mentioned. This profit was enjoyed by only the 310 owners of plantations and central refineries reducing cane. The other 3,568 farmers growing cane as their principal source of income suffered a rery great loss. In both the crop years, 1898 and 1899, the largest protit was realized by the establishment with the most modern appliances; some of the others lost moner both years.

PLANT AND RATTOON CANE.

In the crop year 1899 the area of cane used for sugar making and seed by the 320 leading plantations was,
for plant cane, 59, 246 acres; first year rattoon, 61,977 acres; and for serond year rattoon, 5,922 acres. Of tons of cane used for sugar making there were, of plant cane, $873,31 \overline{6}$ tons; first year rattoon, 189,211 tons; and second year rattoon, 9,942 tons. Reserved for seed, plant cane, 96,025 tons; first year rattoon, 339,410 tons; and second year rattoon, 33,069 tons. The per cent of all cane used on these 320 plantations for seed in 1899 was 30.4.

sugar and molasses made in 1899.

The total quantity of sugar made in Louisiana from cane grown in 1899 was $319,166,396$ pounds, valued ist $\$ 13,099,559$. Of sirup there was made a total of $2,480,856$ gallons, valued at $\$ 564,842$. In addition, the planters reported 923,466 gallons of sirup, valued at $\$ 157,391$, that was later converted in factories into sugar. Of molasses there was produced $11,703,877$ gallons, valued at $\$ 1,277,384$. Of the sugar, $8,874,929$ pounds were made by the old process of the open kettle and $310,291,467$ pounds by modern processes: $251,789,270$ pounds were classed as firsts, $47,984,887$ pounds, as seconds, and $10,517,310$ pounds, as thirds.
For the crop year 1898 there was produced on the large plantations and in the central refineries for cane grown and purchased, a total of $556,994,942$ pounds of sugar, valued at $\$ 22,197,168$, and $24,164,689$ gallons of molasses, ralued at $\$ 1,661,897$, and $2,774,961$ gallons of sirup, valued at $\$ 432,481$. Of the sugar made by modern processes, $437,370,968$ pounds were firsts; $87,523,291$ pounds, seconds; and $14,196,078$ pounds, thirds; $17,904,605$ pounds were made by the open kettle process.

losses to planters by frosts in 1899.

The very heary frost of the early part of 1899 destroyed a large part of the cane planted in the fall of 1898 , and extensively injured the rattoon cane, which constitutes a large part of the crop in Louisiana. The effect of this injury was far reaching; it not only greatly shortened the crop used for sugar making, but by destroying the stubble (rattoon cane), made necessary the replanting of a much larger area than usual, requiring the saring of a greatly increased quantity of cane for seed.

The reports furnished hy the proprietors of the 320 large plantations considered in this report show an estimated loss of $297,491,494$ pounds of sugar, or very nearly one-half of the entire crop, a cause amply sufficient to account for the net loss of 81 cents per ton, sustained by the growers.

cereals.

Table 21 is a statement of the changes in cereal production since 1849.

Table 21.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.

Part 1.-ACREAGE.

YEAR. ${ }^{1}$	Barley.	Corn.	Oats.	Rice.	Rye.	Wheat.
1899.	16	1. 343,756	28,033	201, 685	55	214
1889.	41	837, 516	27,023	84, 377	73	41
1879.		742,728	26,861	42,000	201	1,501

Part 2.-BUSHELS PRODUCED. 2

1899.	110	22,062, 580	316,070	172, 732,430	372	2,345
1889.	598	13, 081, 954	297, 271	75, 645, 433	374	257
1879		9,889,689	229, 840	$23,188,311$	1,013	5,034
1869.	1,226	7,596,628	17,782	15,854,012	984	9,906
1859.	224	16853,745	89,377	6,331,257	36,065	32,208
1849		10,266, 373	89,637	4, 425, 349	475	417

${ }_{2}^{1}$ No statistics of acreage were secured prior to 1879.
2 Rice reported in pounds.
The total area devoted to cereals in 1879 was 813,291 acres; that in 1889, 949,071 acres; and in $1899,1,573,759$ acres, an increase for the twenty years of 93.5 per cent. The increases in the areas devoted to the various cereals in the decade from 1889 to 1899 were as follows: Wheat, over fivefold; rice, 139.0 per cent; corn, $60 . \pm$ per cent; and oats, 3.7 per cent. Rye decreased 24.7 per cent, and barley, 61.0 per cent.

Of the total area under cereals in $1899,85.4$ per cent was devoted to corn; 12.8 per cent, to rice; 1.8 per cent, to oats; and less than one-tenth of 1 per cent to wheat, rye, and barley.

Exclusive of rice, the total number of bushels of cereals reported in 1849 was $10,356,902$, and in. 1899 , $22,381,477$, an increase of 116.1 per cent in the balf century. The production of rice in 1899 was about thirty-nine times as great as in 1849.

Corn and oats were reported from nearly all parts of the state. Wheat was grown in 11 parishes in the northeru and central portions of the state, the two parishes of Bienville and De Soto contributing 56.5 per cent of the total acreage. Rye was grown in 10 parishes in the northern part of the state, and barley in 3 parishes, Caddo parish furnishing 87.5 per cent of the total acreage of the latter cereal.

The introduction of improved machinery has resulted in a transfer of the rice-growing industry from the Mississippi delta parishes, where the subsoil is too soft to permit the use of heavy modern reapers, to the southwest prairie parishes where an impervious clay subsoil soon becones solid after the water is drawn off. Assumption, Ascension, and St. Mary parishes, which in 1890 reported 15.4 per cent of the total production, in 1900 re ported only 1.5 per cent of the total. Acadia, Calcasieu, and Vermilion contributed 23.5 per cent of the crop of 1889 and 68.3 per cent of the crop of 1899.

hay and forage.

In $1900,14,635$ farmers, or 12.6 per cent of the total number, reported hay and forage crops. Exclusive of cornstalks and corn strippings, an average yield of 1.7
tons per acre was obtained. The acreage in hay and forage in 1899 was 97,136 , or 252.2 per cent greater than ten years before. Of the area mown, 66,823 acres, or 68.8 per cent, produced 112,481 tons of grains cut green for hay.

In 1899 the acreages and yields of the various other kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 5,086 acres and 6,278 tons; millet and Hungarian grasses, 426 acres and 728 tons; alfalfa or lucern, $2 ; 365$ acres and $\pm, 156$ tons; clover, 1,637 acres and 2,769 tons; other tame and cultivated grasses, 14,724 acres and 19,606 tons; forage crops, 6,075 acres and 17,425 tons; cornstalks and cor'n strippings; 84,607 acres and 85,158 tons.

In Table 18 the production of cornstalks and corn strippings is included under "hay and forage," but the acreage is included under." corn," as the forage secured was an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 are shown in the following table.

Table 22.-~ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRUITS.	NUMBER OF TREES.		HUSHELS OF FRUIT.	
	1900	1890	18!9)	1589
Apples	138,833	101,848	68,735	117,748
Apricots.	674	584	89	469
Cherries.	2,976	750	336	401
Peaches.	758,877	317,182	153,808	310,217
Pears.	74,669	9, 807	29,405	3,993
Plums and primes.	, 186, 158	91,602	29, 082	17,977

In $1900,7,288$ farmers reported $1,168,792$ fruit trees, while in 1890 the total number of trees was 521,723 , the increase in the decade being 647,069 , or 124.0 per cent. The number of pear trees has increased to nearly eight times that reported in 1890. The gains in the other varieties were as follows: Cherry trees, 296.8 per cent; peach trees, 139.3 per cent; plum and prune trees, 103.2 per cent; apple trees, 36.3 per cent; and apricot trees, 15.4 per cent.

Of the total number in $1900,64.9$ per cent were peach trees; 15.9 per cent, plum and prune trees; 11.9 per cent, apple trees; 7.3 per cent, pear, apricot, cherry, and unclassified fruit trees, the laist-named class, which is not given in Table 20, numbering 6,605 trees and yielding 1,032 bushels of fruit.

The three adjacent parishes of Claiborne, Lincoln, and Webster, in the extreme northern purt of the state, report' 29.3 per cent of the total number of trees. Morehouse parish, in the northeastern part of the state, is the only parish reporting no fruit trees in 1900. ' The southeastern parish of Jefferson, which reported no fruit trees in 1890 , reported more than 6,000 trees in 1900, ranking first in the number of cherry trees, As a rule, however, the semitropical fruits receive more
attention in the southern part of the state than do the temperate fruits.

The value of orchard products, given in Table 18, includes the value of 101 barrels of cider, 77 barrels of vinegar, and $\check{5}, 020$ pounds of dried and evaporated fruit. The quantity of fruit produced in any given year is determined largely by the nature of the season. Comparisons between the crop of 1889 and that of 1899 bave little significance, because in the latter year there was an almost complete failure of peaches and apricots, and very small yields of other fruits.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 was 1,408 acres. distributed among 932 farms, an average of 1.5 acres per farm. Of the total acreage, 1,395 acres, or 99.1 per cent. were devoted to strawberries, with a production of $1,841,800$ quarts, 90.2 per cent of these berries being raised in"Tangipahoa parish, where the average area per farm reporting was 2.4 acres. The production of other berries was as follows: Blackberries and dewberries, 10,170 quarts; raspberries and Logan berries; 110 quarts; gooseberries, 50 quarts; currants, 50 quarts; and other small fruits, 4,330 quarts.

VEGETABLES.

The total area used in the cultivation of vegetables, including potatoes, sweet potatoes, and onions, in 1899 was 63,098 acres. Of the acreage, 43.4 per cent was devoted to sweet potatoes; 14.6 per cent, to potatoes; 2.6 per cent, to onions; and 39.4 per cent, to miscellaneous vegetables. To sweet potatoes 29,014 farmers devoted 27,372 acres, producing $1,865,482$ bushels, an average of 68.2 bushels per acre. They were grown throughout the state, but the southwestern parishes of Acadia, Calcasieu, Iberia, St. Landry, and St. Martin report 25.9 per cent of the product, and 32.1 per cent of the acreage. The area devoted to potatoes was 9,220 acres, yielding 549,280 bushels, an average of 59.6 bushels per acre.
The total area devoted to miscellaneous regetables was 24,851 acres, of which the products grown on 14,648 acres were not reported in detail. Of the remaining 10,203 acres, 2,705 acres were devoted to water melons; 1,993, to cabbages; 1,297 , to sweet corn; 1,021 , to muskmelons; 807, to cucumbers; 697, to tomatoes, 619, to beans; 288 , to radishes; 162 , to pease; 155 , to beets; 135 , to turnips; and 324, to other vegetables.

TOBACCO.

According to the census of 1850 , Louisiana produced in $1849,26,878$ pounds of tobacco. The census of 1860 showed a gain of 13,062 pounds, or 48.6 per cent, and that of 1870 , a loss of 24,399 pounds, or 61.1 per cent. Between 1870 and 1880 there was an increase of 40,413 pounds, or 260.0 per cent, while in the next decade there was a decline of 9,109 pounds, or 16.3 per cent.

The present census shows that in 1899 tobacco was grown in Louisiana by 022 farmers, who obtained from 275 acres a yield of 102,100 pounds. This was an increase over the crop area of 1889 of 166 acres, or 152.3 per cent, and a gain in production of 55,255 pounds, or 118.0 per cent. The total value of the crop was $\$ 20,488$, an average of $\$ 39.25$ for each farm reporting. The average area for each farm reporting was about one-half acre. The average yield per acre in 1899 was 371 pounds, against 430 pounds in 1889 and 221 pounds in 1879. The average value was 20 cents per pound.

Tobacco was grown in 1899 in 30 parishes of the state. The leading parish was St. James, which furnished 53.5 . per cent of the entire area and 52.6 per cent of the entire production of the state.

PEANUTS.

Peanuts were grown in 1899 by 2,467 farmers who devoted to their cultivation 3,107 acres and secured therefrom a product of 45,713 bushels, an average of 14.7 bushels per acre. The acreage has increased approximately fourteenfold, and the production eightfold, since 1889 . Of the total acreage, 78.3 per cent was reported from 12 extreme western and northern parishes. The parishes of Calcasieu, Claiborne, De Soto, Union, Lincoln, and Jackson, ranking in the order named, report the largest areas.

floriculture.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 356 acres, and the value of the products sold therefrom was $\$ 76,628$. These flowers and plants were grown by 74 farmers and florists, of whom 40 made commercial floriculture their principal business. They had invested in the aggregate $\$ 150,720$, of which $\$ 108,675$ represents the value of land and improvements other than buildings, $\$ 35,575$ that of buildings, $\$ 5,140$ that of implements and machinery, and $\$ 1,330$ that of live stock. The value of their products in 1899 was $\$ 76,510$, of which $\$ 70,310$ represents the value of flowers and plants, $\$ 80$ the value of products fed to live stock, and $\$ 6,120$ the value of other products. The expenditure for labor was $\$ 12,030$, and for fertilizers $\$ 800$. The average income per farm of all products was $\$ 1,913$.
. In addition to the 40 principal florists' establishments, ± 8 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 151,962 square feet, making, with the 43,357 square feet belonging to the florists, establishments, a total of 195,320 square feet.

NUPRERIES.

The total value of nursery stock sold in 1899 was $\$ 63,593$, reported by the operators of 43 farms and nurseries. Of this number, 15 derived their principal income from the nursery business. They had $2,10 \pm$
acres of land, valued at $\$ 65,000$; buildings worth $\$ 22.200$; implements and machinery, $\$ 4,020$: and live stock, $\$ 3,610$. Their total income was $\$ 65,668$, of which $\$ 57,508$ represents the ralue of nursery stock; $\$ 1,310$ the value of products fed to live stock; and $\$ 6,850$, the value of other products. They expended $\$ 10,770$ for labor and $\$ 815$ for fertilizers. The average gross income for each farm reporting was $\$ 4,378$, and the average income per acre, exclusive of the products fed to live stock, was $\$ 30.59$.

LABOR AND FERTILIZERS.
The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 10,692,710$, an average of $\$ 92$ per farm. The average was $\$ 1,791$ for sugar farms, $\$ 718$ for nurseries, $\$ 368$ for rice farms, $\$ 301$ for florists' establishments, $\$ 76$ for hay and grain farms, $\$ 68$ for dairy farms, $\$ 62$ for vegetable farms, $\$ 59$ for fruit farms, $\$ 34$ for tobacco farms, $\$ 26$ for live-stock farms, and $\$ 19$ for cotton farms. "Managers" expended on an average, $\$ 3,677$; "owners," $\$ 104$; "cash tenants," $\$ 38$; and "share tenants," $\$ 17$. White farmers expended $\$ 17 t$ per farm, and colored farmers, \$11.

Fertilizers purchased in 1899 cost $\$ 1,076,890$, an average of $\$ 9$ per farm, and an increase since 1890 of 18.8 per cent. The average expenditure was $\$ 183$ for sugar farms, $\$ 54$ for nurseries, $\$ 22$ for fruit farms, $\$ 20$ for florists' establishments, $\$ 9$ each for hay and grain, and vegetable farms, $\$ 6$ for tobacco farms, $\$ 5$ for dairy farms, $\$ 3$ for live-stock farms, and $\$ 2$ for cotton farms.

IRRIGATION STATISTICS.

During the periods preceding the census year of 1890 and continuing up to 1894-5, the areas in rice were mainly on the lowlands along the lower Mississippi River and its outlying bayous. Being comparatively level and low, with a slope from the streams, these lands are subject to overflow unless protected by dikes to confine the river to its channel. Drainage is as essential as irrigation and the ditches are made to serve the double purpose of carrying water upon the land for irrigation and drawing it off when the crop is ready for harvest.
The water supply for the lowlands is obtained in various ways, the most common being by means of a flume, or "dahl," in the river levee, constructed on much the same principle as the trunk which is used in the Carolinas in irrigating plantations on tidal streams. The "dahl" was formerly made of sound 3 -inch cypress plank of one length. This was supported by three brick walls built so as to extend some distance below the top of the woodwork to keep out crawfish and muskrats, which would otherwise work along the flume and create openings in the levee. The present flumes, under the requirements of a state law, are made of iron without brick supports or mortar protection and are not as substantial or satisfactory in all cases as those of cypress.

The land cultivated in many of the plantations was formerly planted to sugar cane. As it lies below the surface of the river, siphons are replacing the flumes and take the water from the river over the levees. The siphon is usually made of boiler iron, heavy enough to be calked the same as a steam boiler. Powerful steam pumps, taking the water from the river and bayous, are used on several of the large plantations.

Another method of irrigation is by the use of tiles, which are placed at a certain distance below the surface. By stopping these at the lower end of the field, the water is forced up through a layer of earth until irrigation is no longer required, when the plugs are withdrawn and the water passes off the land through the tiles. This system is especially advantageous in a season of excessive rainfall. All of these methods are expensive and failures are numerous owing to inadequate drainage, breaks in the levees, and frequent floods.

The discovery, a few years ago, that a vast area in the southwestern part of the state is admirably adapted to the cultivation of this cereal, revolutionized the growing of rice in this country and placed Louisiana far in the lead among the rice-producing states. This rice belt, extending north from the Gulf for a distance of 20 to 90 miles, is an undulating, gently sloping prairie, having ten navigable rivers and numerous lakes and bayous, and comprising over 12,000 square miles in Louisiana and Texas. At first the rice was cultivated in an exceedingly primitive way, the land being laid off in blocks and equares and irrigated with rain water collected and stored for use when needed. The success of this metbod, while not extraordinary, attracted many farmers and the country began to develop rapidly. It was found that "Providence" rice, as all rice grown by the aid of rain water is called, was not always a profitable crop. Experiments proved the value of abundant irrigation and quickly demonstrated that the prairie soil, when sufficiently watered, was unequaled for rice growing. This marked the beginning of the real development of this industry, which has made wonderful progress in the three years preceding the census. In 1899 the acreage in rice in southwest Louisiana was more than 77 per cent of that of the state.

Rice irrigation on the prairies is comparatively simple. Throughout the region are numerous ridges slightly higher than the rest of the land. It is upon these ridges that the canals are built, varying in width from 20 to 100 feet. Branching from the main canals are the laterals which run to outlying farms. The pumping plants at the head of the canals lift the water from the streams, whence it is carried in the main canal to the point of dirersion on the land. More than one pumping plant is required on some of the large canals, owing to the necessity of several lifts to get the water into the canal.

The land to be planted in rice is usually broken and
leveled in December and January, levees turned up around the fields, and cross levees put in, the levee work being accomplished by means of a large plow made for the purpose. Rice may be planted any time from February to June. One and one-fourth bushels of seed are used per acre, being sown broadcast or drilled, as preferred. When the rice reaches a height of from 6 to 8 inches, the water is turned on the land to a depth of 2 to 10 inches to secure the best results. Stooling begins when the rice is about 11 inches high. The water is kept on the land until the heads are filled, when the levees are cut and the water turned off to permit the rice to ripen and the ground to become dry enough for the harvester. Herein the prairie region possesses a distinct advantage over the delta lands. In the former the crop is barvested the same as wheat in the Northwest, while in the latter, owing to the moist soil, harvesting must be done with the sickle and requires many laborers and much time.

The numerous pumping plants, drawing millions of gallons daily from the streams and bayous, in many places have lowered the water levels, and some alarm was occasioned as to the future of the water supply. It was then ascertained that this region is underlaid with inexhaustible beds of water-bearing gravel, and flowing wells or wells with pressure sufficient to bring the water nearly to the surface are employed in large numbers to augment the supply. Many of these are of sufficient capacity to supply water to 100 acres of rice without diminution in their flow. A well and pumping outfit sufficient to irrigate 200 acres cost from $\$ 1,500$ to $\$ 2,000$. It is estimated that not less than 25,000 acres were irrigated in 1899 from wells.
The following table gives, by parishes, the number, length, and cost of the principal canals and ditches, and the acreage irrigated in 1899.

Table A.-RICE IRRIGATION STATISTICS, 1899.

${ }^{1}$ Siphon irrigation; no large ditches used except for drainage.

Irrigation of vegetables was reported on 6 farms having a total irrigated area of 48 acres. Wells supplied water for 24 acres, 8 acres were irrigated from streams by means of gravity diversion ditches, and 16
acres from streams by means of siphons. The total cost of construction of these systems was $\$ 755$, or an average cost of $\$ 23.44$ per acre.

Census Bulletin.

MANUFACTURES.

GLASS MANUFACTURE.

Hon. William R. Merriam,

Director of the Census.
Sir: I transmit herewith, for publication in bulletin form, a report on glass manufacture, prepared under my direction by Mr. Shirley P. Austin, of Pittsburg, Pa., acting in the capacity of an expert special agent of the division of manufactures of the Census Office.
The statistics of glass manufacture were reported in 1880 and 1890 under four subdivisions, that is: Plate glass, window glass, glassware, and green and black glass. A separate schedule was prepared for each subdivision. In 1900 it was decided to assign the reports for the industry to two classes of products: Building glass, including plate glass, all varieties of cast and rolled sheet glass, and window glass; and pressed and blown ware and bottles and jars, including all pressed or blown flint glassware, and bottles and jars of flint, green, or amber glass.
The statistics seem to show a satisfactory rate of growth in the several branches of the industry, notwithstanding the fact that in nearly all lines the domestic manufacturers have been compelled to meet a vigorous foreign competition. The development of the industry has been marked by a noteworthy increase in the use of tank furnaces, and mechanical processes in lieu of hand work, which have resulted in an increased output combined with greater economy of operation. The distribution of the factories has depended to a considerable extent upon the supply of natural gas, the discovery of new fields being marked by an influx of glass factories from other localities having less favorable advantages in respect to fuel.

The statistics are presented in 14 tables: Table 1, comparative figures for the industry at the several censuses; Table 2, the statistics for idle establishments; Table 3, value of new construction; Tables 4 and 5 , comparative statistics, by states, and by classes of products, respectively, 1880 to 1900; Table 6, rank of states according to value of products, with per cent of total value, 1880 to 1900 ; Tables 7 and 8, comparative statistics of the manufacture of building glass and the manufacture of pressed and blown glass and bottles and jars, respectively, by states, 1890 and 1900; Table 9 , number of bottles manufactured, classified by capacity, by states; Table 10, imports and exports of glass; Table 11, comparative summary of materials used, 1890 and 1900; Tables 12, 13, and 14, presenting detailed statistics of the combined industry, the manufacture of building glass, and the manufacture of pressed and blown glass and botties and jars, respec tively.
In drafting the schedules of inquiry for the census of 1900, care was taken to preserve the basis of comparison with prior censuses. Comparison may be made safely with respect to all the general heads of the inquiry except those relating to capital, salaried officials, clerks, etc., and their salaries, the average number of employees, and the total amount of wages paid. Live capital, thát is, cash on hand, bills receivable, unsettled ledger accounts, raw materials, stock in process of manufacture, finished products on hand, and other sundries, was first called for at the census of 1890. No definite attempt was made, prior to the census of 1890 , to secure a return of live capital invested.

Changes were made in the inquiries relating to employees and wages, in order to eliminate defects found to exist on the form of inquiry adopted in 1890. At the census of 1890 the average number of persons employed during the entire year was called for, and also the average number employed at stated weekly rates of pay, and the average number was computed for the actual time the establishments were reported as being in operation. At the census of 1900 the greatest and least number of employees were reported, and also the average number employed during each month of the year. The average number of wage-earners (men, women, and children) employed during the entire year was ascertained by using 12, the number of calendar months, as a divisor into the total of the average numbers reported for each month. This difference in the method of ascertaining the average number of wageearners during the entire year may have resulted in a rariation in the number, and should be considered in making comparisons.
At the census of 1890 the number and salaries of proprietors and firm members actively engaged in the business or in supervision were reported, combined with clerks and other officials. In cases where proprietors and firm members were reported without salaries, the amount that would ordinarily be paid for similar services was estimated. At the census of 1900 only the number of proprietors and firm members actively engaged in the industry or in supervision was ascertained, and no salaries were reported for this class. It is therefore impossible to compare the number and salaries of salaried officials of any character for the two censuses.
Furthermore, the schedules for 1890 included in the wage-earning class overseers, foremen, and superintendents (not general superintendents or managers), while the census of 1900 separates from the wageearning class such salaried employees as general superintendents, clerks, and salesmen. It is possible and probable that this change in the form of the question
has resulted in eliminating from the wage-earners, as reported by the present census, many high-salaried employees included in that group for the census of 1890. With the exception of several other changes in the special features of the schedule, the investigation has been conducted along the lines followed at the census of 1890 .
In some instances the number of proprietors and firm members, shown in the accompanying tables, falls short of the number of establishments reported. This is accounted for by the fact that no proprietors or firm members are reported for corporations. The reports show a capital of $\$ 61,423,903$ invested in the 355 establishments reporting for the industry. This sum represents the value of land, buildings, machinery, tools, and implements, and the live capital utilized, but does not include the capital stock of any of the corporations. The value of the products is returned at $\$ 56,539,712$, to produce which involved an outlay of $\$ 2,792,376$ for salaries of officials, clerks, etc.; $\$ 27,084,710$ for wages; $\$ 3,588,641$ for miscellaneous expenses, including rent, taxes, etc.; and $\$ 16,731,009$ for materials used, mill supplies, freight, and fuel. It is not to be assumed, however, that the difference between the aggregate of these sums and the value of the products, is, in any sense, indicative of the profits in the manufacture of the products during the census year. The census schedule takes no cognizance of the cost of selling manufactured articles, or of interest on capital invested, or of the mercantile losses incurred in the business, or of depreciation in plant. The value of the product given is the value as obtained or fixed at the factory. This statement is necessary in order to avoid erroneous conclusions from the figures presented.'

Very respectfully,

Chief Statistician for Manufactures

GLASS MANUFACTURE.

By Shirley P. Austin, Expert Special Agent.

The manufacture of glass in this country dates almiost from the arrival of the first English colonists in what is now the United States. One of the earliest attempts, if not the first, at manufacturing in the original thirteen colonies was directed toward the production of glass, and a glass works erected for that purpose in 1608 or 1609 , and located about a mile from Jamestown, Va., was probably the first manufactory erected in America by the English colonists. In 1608 the London Company sent glassworkers to America to operate the plant, and in the following year some of the products constituted a part of the first cargo of goods exported from this country. ${ }^{1}$ This first glass factory probably produced bottles exclusively. Its career was brief, as in 1617 it was reported fallen into decay, and later was swept entirely away in the Indian massacre of 1622. In 1620 a subscription list was started in Jamestown to erect a factory for the manufacture of glass beads, the currency among the Indians, and in 1621 the London Company sent Italian workmen for this plant, which seems to have been located some distance from Jamestown, as it escaped the massacre of 1622 , and is referred to as late as 1623 . In 1639 a glass factory was located at Salem, Mass., and previous to this, although the exact date is not known, glass was first made in New York on Manhattan Island. ${ }^{2}$ The first mention of a glass factory in Pennsylvania is contained in a very vague reference in a letter written by William Penn in 1683. The progress of the industry during the colonial period was slow and financial reverses were the rule. The scarcity of glass during the Revolutionary War stimulated factory erection, and early in the Nineteenth century the industry assumed much prominence, being confined largely to Massachusetts, New York, eastern Pennsylvania, New Jersey, and Maryland. These early factories were usually situated within easy access to forests, from which

[^162]the fuel supply was obtained. Not until the erection of the first factory west of the Allegheny Mountains, at Pittsburg in 1797, was coal used as a fuel in glass manufacture, and it was many years before it came into general use. ${ }^{3}$ The Atlantic seaboard long beld supremacy in the manufacture of glass, but with the westward spread of population and the discovery of rich fuel resources in western Pennsylvania, West Virginia, Ohio, and Indiana, the center of the industry has steadily moved westward and the bulk of the production has been for some time west of the Alleghenies.

This report, with the statistical tables accompanying it, includes only establishments manufacturing glass from the crude material and does not include the large number of separate establishments engaged in the reworking of glass, such as silvering, beveling, cutting, engraving, decorating, etc. A number of the glass establishments, however, carry on these processes in direct connection with the manufacture of the " metal" in the same factory, and such establishments are included.

The inquiry into glass manufacture for this census was based on the following classification of the industry: (1) Building glass, all establishments making common window glass, plate glass, and all rarieties of cast and rolled sheet glass; (2) pressed and blown glass, all establishments manufacturing pressed or blown flint glassware, tableware, jellies, tumblers, goblets, lamps, chimneys, lantern globes, gas and electric lighting ware, stem ware, opal ware, cut glass, etc.; (3) bottles and jars, all establishments manufacturing bottles and jars in flint, green, or amber glass. It has been found necessary to combine the last two divisions, as several firms reported production in both these branches.
Table 1 is a comparative summary of the statistics for the industry as returned at the censuses of 1850 to 1900, inclusive, with the percentages of increase for each decade.

[^163]Table 1.-COMPARATIVE SUMMARY, 1850 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

-	Date of census.						PER CENT OF INCREASE.				
	1900	1890	1880	1870	1860	1850	$\begin{gathered} 1890 \\ \text { to } \\ 1900 \end{gathered}$	$\begin{gathered} 1880 \\ \text { to } \\ 1890 \end{gathered}$	$\begin{gathered} 1870 \\ \text { to } \\ 1880 \end{gathered}$	$\begin{gathered} 1860 \\ \text { to } \\ 1870 \end{gathered}$	$\begin{gathered} 1850 \\ \text { to } \\ 1860 \end{gathered}$
Number of establishments	355	294	169	201	112	94	20.7	74.0	${ }^{1} 15.9$	79.5	19.1
Capital...	\$61, 423, 903	\$40, 966, 850	\$18, 804, 599	\$14, 111, 642	\$6, 133,666	\$3,402,350	49.9 107.1	117.9	33.3	130.1	80.3
Salaried officials, clerks, etc., n	2,268	21,095	(3)	(3)	(3) ${ }^{3}$	(a) ${ }^{\text {a }}$ (${ }^{\text {a }}$	107.1	
Salaries	¢2, 792, 376	2 \$1, 232, 561	$\left.{ }^{8}\right)$			${ }^{8}{ }_{5}^{5}$) 668	126.6				59.1
Wage-earners, average number	52, 818	44,892	24,177	15,822	9,016	5,668	17.7	85.7	52.8	75.5	59.1 38.6
Total wages....................	\$27, 084, 710	\$20, 885,961	\$9, 144, 100	67, 846, 425	\$2, 903, 832	\$2, 094,576	29.7	128.4 102.9	16.5 54.5	170.2 31.3	38.6 57.3
Men, 16 years and over	42, 173	36,064	17,778	13) 11,505	8,765	5,571	16.9	102.9	54.5	31.3	57.3
Wages......	\$24, 901, 238	\$19, 546, 351	(3) 741	(3) $^{(3)} 715$	${ }^{(3)} 251$	(3) 97	27.4	154.4	3.6	184.9	
Women, 16 years and over	3,529	1.,885	$\left.{ }^{8}\right)^{741}$	$\text { (3) } 715$	(3) 251	(3) 97	87.2 152.8	154.4	3.6	184.9	158.8
Wages...-.-. ${ }_{\text {Children, }}$	$\$ 840,001$ 7,116	$\$ 332,245$ 6,943	${ }^{(8)} 5,658$	${ }^{(3)} 3,602$	$\left(\begin{array}{l}3 \\ (3)\end{array}\right.$	(3) (3)	152.8 2.5	22.7	67.1		
Chages.-.-.................	\% $81,343,476$	\$1, 007, 365	${ }^{(3)}$, 658	$(3)^{3,602}$	(3)	(3)	33.4				
Miscellaneous expenses	\$3, 588, 641	\$2, 267, 696	(4)	(4)	(4)	(4)	68.3				
Cost of materials used	\$16, 731,009	\$12,140,985	\$8, 028, 621	86, 133, 168	\$2, 914, 303	\$1,566,833	37.8	51.2	30.9	110.5	87.2
Value of products....	\$56, 539, 712	\$41, 051,004	\$21, 154, 571	\$19,235, 862	\$8, 775, 155	\$4,641, 676	37.7	94.1	10.0	119.2	89.1

${ }_{3}^{1}$ Decrease. $\quad 2$ Includes proprietors and firm members, with their salaries; number only reported in 1900, but not included in this table. (See Table 12.) ${ }^{3}$ Not reported separately. 4 Not reported.

The remarkable growth of the glass making industry in the last half century is shown in Table 1. With the exception of a decrease in the number of establishments between 1870 and 1880, the table shows a steady increase in every item from 1850 to 1900. From 1850 to 1900 the number of establishments increased 261, or 277.7 per cent. The great improvement in factory construction and equipment and the broadening of the scope of the business during the same period are indicated by the increase in capital from $\$ 3,402,350$ in 1850 to $\$ 61,423,903$ in 1900 , or $1,705.3$ per cent. The number of wage-earners has increased from 5,668 in 1850 to 52,818 in 1900 , or 831.9 per cent; and wages paid, from $\$ 2,094,576$ in 1850 to $\$ 27,084,710$ in 1900 , or $1,193.1$ per cent. During the same period the cost of materials used has increased from $\$ 1,556,833$ to $\$ 16,731,009$, or 974.7 per cent; and the value of products, from $\$ 4,641,676$ to $\$ 56,539,712$, or $1,118.1$ per cent.

The growth from 1890 to 1900 was vigorous, as shown by an increase of 20.7 per cent in number of active establishments, and of 49.9 per cent in capital invested. The increase in capital was largely caused by the general introduction during the decade of the tank melting furnace, which necessitates much more costly and permanent factory construction and equipment than the pot furnace, which it is fast supplanting.

Of the total cost of materials used in $1900, \$ 16,731,009$, the principal item was the cost of packages and package materials, which was $\$ 3,390,627$, and in 1890 was $\$ 1,853,462$, an increase of $\$ 1,537,165$, or 82.9 per cent. This large increase was caused in part by the demand for a neater package for finished products in nearly all lines of glass manufacture, created by increased competition, and by the more general use of the carton package for lamp chimneys, shades, globes, and the great variety of high-grade glassware, and the increased use of paper between sheets in packing building glass. In addition to the above package materials, establishments manufacturing pressed and blown ware, bottles, and jars reported in $1900, \$ 1,522,917$ as the cost of caps, metal trimmings, and rubber supplies. The cost of
these materials was not reported separately at the census of 1890 , but there has been an enormous increase in their consumption.

The total cost of fuel in 1900 was reported as $\$ 3,203,146$. Of this amount, natural gas cost $\$ 1,575,278$; coal, $\$ 1,074,074$; and oil, $\$ 409,158$; the remainder being divided between coke and wood. A number of establishments, particularly in Indiana, reported little or no cost for fuel, as they were either getting "free gas" as an inducement for location, or owned the source of their supply, and reported the small cost of maintenance under the item of general expense. Hence there was a large amount of natural gas used as fuel which was not reported.

Soda ash is the third largest item of cost in materials used, 157,779 tons being reported, at a cost of $\$ 2,259,939$. In 1890, 96,777 tons were reported, costing $\$ 3,108,233$. The average cost per ton in 1900 was $\$ 14.32$, and in $1890, \$ 32.12$. While the quantity of soda ash used in glass manufacture during the decade increased 63 per cent, the cost decreased 27.3 per cent. The comparison shows the benefits derived by the glass industry from the development of the American sodaash manufacture in the last ten years, a development that received the greater share of its impetus from men actively connected with the glass industry.

The increase in the value of products between 1890 and 1900 was 37.7 per cent, but it is safe to say the increase in the quantity of products was in excess of that, especially in the output of bottles, jars, and glassware, owing to the general introduction of the tank melting furnace and the adoption of improved mechanical equipment. The number of pieces of glassware, bottles, jars, etc., manufactured, was not reported at the census of 1890 . It is therefore impossible to make a comparison with such data at the present census. The total production of plate glass, rough and polished, in 1890, was $12,206,942$ square feet; and in $1900,17,512,262$ square feet, an increase of 43.5 per cent. There were $2,773,824$ square feet of cathedral glass manufactured in 1890 , and $8,846,361$ square feet in 1900 , or an
increase of 218.9 per cent. The quantities of skylight and wire glass manufactured in 1900 were $3,679,694$, and $1,2 \dot{9} 5,504$ square feet, respectively. No report was made of these products at the census of 1890 . In 1890 there were $3,768,884$ boxes. of window glass manufactured, and 4,341,282 boxes in 1900, an increase of only 15.2 per cent. The comparatively small increase is explained by the much shorter "run" of factories
during the "fire" covered by the present census, the average "run" being about six months in 1900 and nearly ten months in 1890. In addition, a large percentage of the available capacity of the factories was idle in 1900 for want of workmen.

Table 2 shows the idle establishments, by states, with the capital invested and the equipment of the factories, for 1900 .

Table 2.-IDLE ESTABLISHMENTS, BY STATES: 1900.

	United States.	Illinols.	Indiana.	Kentucky.	New Jersey.	New York.	Ohio.	Pennsylvania.	Washing. ton.	West Virginia.
Number of establishments Capital	$43,544,536$	\$258,000	\$121, $03{ }^{7}$	870,581	$\begin{array}{r} 8 \\ \$ 84,700 \end{array}$	\$337,900 ${ }^{4}$	\$308,018	\$1, 968,582	860,000	\$335, 720
Equipment and character of works: Furnaces, number.	41	8			6		8	13		6
Pots, number..	488	140			42		87	156-......-	63
Tanks- Continuous, number	27	1	- 6		3	4	2	10		10
Rings, number	248	$\begin{array}{r}6 \\ \hline 18\end{array}$	46		29	52	15	90	-..-.......	10
Pot capacity, number	592	18	92		82	132	30	218 4		20 2
Intermittent or day, number Pot capacity, number	16 139		31 4	3 18	11		2 4	4 18	[10	2 12
Pot capacity, number Flattening ovens, number	$\begin{array}{r}139 \\ 38 \\ \hline 8\end{array}$	$\ddot{2}$	41	18	36 11	10	4	18	10	12
Monkey ovens, number ...	82						30	2		
Blow furnaces, number .	20				2	4		12		2
Casting tables, number ..	6	3						16		
Annealing ovens, number	67 3	4	12	29	4			16		1
Clay grinding mills, number.	2							2		
Grinding machines, number.......................	13				3 2		5	5	------	
Polishing machines, number	3 167	15			2 5			43		
Shops, number	167	15 8	51 16	11 6	5 1	26 4	16 22	45		6
Glory holes, number	118	8 8	14	6	12	20	29	47		23
	11						1			10
Decorating lebrs, number..........................	2						1	1		
Hand presses, number .-........................	56			5			3	29	-------.	19
Mechanical presses, number	12	--..-				10		7		5
Blowing macbines, number...................	10					10		13		2
Finishing machines, number	15						10	13		2
Crimping macbines, number---........	16						1	0		2
Sand-blast machines, number. Grinding machines for fruit-jar tops, num-	3									
ber ..	4		1					3	----.---.	

In addition to the 355 active establishments reported in 1900, Table 2 shows that 60 establishments, with a capital of $\$ 3,544,536$, were reported as idle during the census year. These establishments were located as follows, by states: Illinois, 6; Indiana, 7; Kentucky, 2; New Jersey, 8; New York, 4; Ohio, 8; Pennsylvania, 19; Washington, 1; West Virginia, 5. Only those idle establishments that seemed reasonably certain of being. again put in operation in the near future are included in Table 2. No account was taken of the many dismantled and abandoned glass factories in the country.
Of the 60 idle establishments reported, 41, with a capital of $\$ 2,296,587$, were for the manufacture of pressed and blown ware or bottles and jars. The equipment of these establishments was as follows: 22 furnaces of 257 pots; 19 continuous tanks of 152 rings, or 304 pots capacity; 11 intermittent or day tanks of 120 pots capacity; 118 glory holes; 61 annealing ovens; 117 lehrs: 11 decorating kilns; 2 decorating lehrs; 56 hand presses; 12 mechanical presses; 10 blowing machines; 15 finishing machines; 16 crimping machines; 3 sand-blast machines; and 4 machines for grinding fruit jar tops. The remaiuing 19 idle establishments were building-glass factories, which reported a total capital of $\$ 1,247,949$, and the following equipment: 19 furnaces of 231 pots; 8 continuous tanks of 96 rings or 288 pots
capacity; 5 day tanks of 19 pots capacity; 38 flattening ovens; 32 monkey ovens; 20 blow furnaces; 6 casting tables; 6 annealing ovens; 3 bending ovens; 36 lehrs; 13 grinding machines; 3 polishing machines; and 2 clay grinding mills.
In addition to the establishments that were idle throughout the census year, a certain portion of the furnace equipment of active establishments was reported as idle. In active building glass factories, 29 pot furnaces with 471 pots, and one intermittent or day tank furnace of 7 pots capacity were reported as idle. In active pressed and blown ware and bottle and jar factories, 31 pot furnaces with 336 pots, 14 continuous tank furnaces with 79 rings of 158 pots capacity, and 16 intermittent or day tank furnaces of 76 pots capacity were reported as idle. The entire idle furnace equipment of active establishments in both branches of glass manufacture was as follows: 60 pot furnaces with 807 pots, 14 continuous tank furnaces with 79 rings of 158 pots capacity, and 17 intermittent or day tank furnaces of 83 pots capacity. It should be stated in this connection that this idle equipment is included in all tables presenting such data in this report, except Table 2. Adding the statistics of active establishments to those shown in Table 2 gives a total of 415 active and idle establishments in the United States, with a capital of
$\$ 64,968,439$. The combined equipment of all establishments is as follows: Furnaces, 492; pots, 5,595; continuous tanks, 233; pot capacity of continuous tanks, 4,525 ; intermittent or day tanks, 163; pot capacity of intermittent or day tanks, 1,040 ; flattening ovens, 323 ; monkey ovens, 34 ; blow furnaces, 279 ; casting tables, 106; annealing ovens, 936 ; bending ovens, 12 ; clay grinding mills, 73; grinding machines, 240 ; polishing machines, 297 ; shops, 4,145; glory holes, 1,537; lehrs, 1,480; decorating kilns, 116 ; decorating lehrs, 25; hand presses, 971 ; mechanical presses, 61; blowing machines, 179 ; finishing machines, 155 ; crimping machines, 510 ; mechanical polishers, 16; sand-blast machines, 76; grinding machines for fruit jar tops, 141.
Table 3 presents the value of new construction, by states, during the census year. Only the value of additions to existing factories is given in the table, not including ordinary repairs and the value of new plants constructed.

Table 3.-NEW CONSTRUCTION, BY STATES: 1900.

states.	Cost of new construction (additions to old works, not including ordinary repairs) during census year.
United States	\$578, 917
Georgia.	2,500
Indiana.	43,448
Michigan.	4,848
New Jersey.	22,664
New Yorlx	37,429
Ohio..	26,141
Pennsylvania	184, 682
West Virginia	12, 201
Wisconsin	69,000

Table 4 presents comparative statistics of glass manufacture, by states, for the years 1880, i 890 , and 1900.

Table 4.-COMPARATIVE STATISTICS, BY STATES: 1880 TO 1900.

states.	Year.	Number of estab-lishments.	Capital.	salaried officials, CLERKS, ETC.		average number of wage-earners and total wages.							
				Number.	Salaries.	Total.		Men, 16 years and over.		Women, 16 years and over.		Children, under 16 years.	
						Average number.	Wages.						
United States .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 355 \\ 294 \\ 2194 \end{array}$	$\begin{array}{r} \mathbf{3 6 1 , ~} 423,903 \\ 40,966,860 \\ 219,329,699 \end{array}$	$\begin{gathered} 2,268 \\ 11,095 \\ \left({ }^{3}\right) \end{gathered}$	$\begin{gathered} \$ 2,792,376 \\ 12,232,561 \\ \left({ }^{8}\right) \end{gathered}$	$\begin{aligned} & 52,818 \\ & 44,892 \\ & 24,177 \end{aligned}$	$\begin{array}{r} \$ 27,084,710 \\ 20,885,961 \\ 9,144,100 \end{array}$	$\begin{gathered} 42,173 \\ 36,064 \\ 17,778 \end{gathered}$	$\begin{gathered} \$ 24,901,283 \\ 19,546,351 \\ (3) \end{gathered}$	$\begin{array}{r} 3,529 \\ 1,885 \\ 7,741 \end{array}$	$\begin{gathered} \$ 840,001 \\ 332,245 \\ \left({ }^{3}\right) \end{gathered}$	$\begin{aligned} & 7,116 \\ & 6,943 \\ & 5,658 \end{aligned}$	$\begin{gathered} \$ 1,343,476 \\ 1,007,365 \\ \left.\mathbf{B}^{(}\right) \end{gathered}$
Illinois.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	6 13 6	$\begin{array}{r} 2,181,801 \\ 1,721,878 \\ 425,000 \end{array}$	$\begin{array}{r} 75 \\ { }^{73}{ }^{75} 8 \end{array}$	$\begin{aligned} & 110,100 \\ & 44,710 \\ & \left({ }^{(}\right) \end{aligned}$	3,304 2,762 782	$\begin{array}{r} 1,621,286 \\ 1,188,051 \\ 342,027 \end{array}$	2,607 2,215 632	$\begin{aligned} & 1,496,891 \\ & 1,121,526 \\ & (3) \end{aligned}$	148 20	$\begin{aligned} & 28,456 \\ & 3,860 \\ & { }^{(3)} \end{aligned}$	$\begin{aligned} & 649 \\ & 527 \\ & 100 \end{aligned}$	$\begin{aligned} & 95,939 \\ & 62,665 \\ & \left({ }^{8}\right) \end{aligned}$
Indiana....................	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 110 \\ 21 \\ 4 \end{array}$	$\begin{array}{r} 12,775,389 \\ 3,656,663 \\ 1,442,000 \end{array}$	$\begin{array}{r} 509 \\ \left({ }^{(3)} 79\right. \end{array}$	$\begin{array}{r} 649,227 \\ 76,682 \end{array}$ ${ }^{(a)}$	13,015 3,010 862	$\begin{array}{r} 7,226,047 \\ 1,469,149 \\ 284,207 \end{array}$	10,910 2,633 695	$\begin{gathered} 6,808,042 \\ 1,422,104 \\ \left({ }^{8}\right) \end{gathered}$	$\begin{array}{r} 634 \\ 197 \\ 53 \end{array}$	$\begin{gathered} 129,808 \\ 27,811 \\ \left({ }^{3}\right) \end{gathered}$	$\begin{array}{r} 1,471 \\ 180 \\ 114 \end{array}$	$\begin{gathered} 288,197 \\ 19,234 \\ \left(^{2}\right) \end{gathered}$
Kentucky..................	$\begin{array}{r} 41990 \\ 51890 \\ 51880 \\ \hline \end{array}$	5	795, 000			622	150, 322	364	(9)	11	${ }^{8}$)	147	(8) ${ }^{\text {a }}$
Maryland .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 7 \\ 11 \\ 7 \end{array}$	$\begin{aligned} & 581,086 \\ & 871,111 \end{aligned}$ $406,000$		$\begin{aligned} & \dot{38}, 976 \\ & 12,176 \\ & (3) \end{aligned}$	$\begin{array}{r} 742 \\ 1,397 \\ 612 \end{array}$	$\begin{aligned} & 339,518 \\ & 696,560 \\ & 234,254 \end{aligned}$	562 1,045 524	$\begin{aligned} & 313,920 \\ & 650,921 \\ & (3) \end{aligned}$	54 24	8,673 6,864 $\left.{ }^{3}{ }^{3}\right)$	$\begin{array}{r} 126 \\ 328 \\ 88 \end{array}$	$\begin{aligned} & 16,925 \\ & 38,775 \\ & \left({ }^{3}\right) \end{aligned}$
Massachusetts	$\begin{array}{r} 1900 \\ 1890 \\ 1880 \end{array}$	$\begin{array}{r} 5 \\ 6 \\ 10 \end{array}$	$\begin{aligned} & 258,949 \\ & 365,051 \\ & 723,000 \end{aligned}$	$\begin{array}{r} 39 \\ \left({ }^{(3)}{ }^{18}\right. \end{array}$	$\begin{aligned} & 28,060 \\ & 17,774 \\ & \left({ }^{(}\right) \end{aligned}$	$\begin{aligned} & 387 \\ & 496 \\ & 946 \end{aligned}$	$\begin{array}{r} 188,674 \\ .201,653 \\ 383,342 \end{array}$	$\begin{aligned} & 343 \\ & 455 \\ & 828 \end{aligned}$		$\begin{aligned} & 19 \\ & 19 \\ & 58 \end{aligned}$	$\begin{aligned} & 4,392 \\ & 3,732 \\ & \left.{ }_{(8)}{ }^{3}\right) \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & 60 \end{aligned}$	$\begin{aligned} & 5,046 \\ & 2,700 \\ & (3) \end{aligned}$
Missourl	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 2,198,316 \\ & 2,201,353 \\ & 1,430,000 \end{aligned}$	$\begin{array}{r} 26 \\ { }_{(3)}{ }^{26} \\ \hline 9 \end{array}$	$\begin{aligned} & 47,448 \\ & 54,082 \\ & \left.{ }^{3}\right) \end{aligned}$	$\begin{array}{r} 650 \\ 1,113 \\ 965 \end{array}$	$\begin{aligned} & 341,376 \\ & 542,157 \\ & 381,098 \end{aligned}$	$\begin{array}{r} 648 \\ 1,016 \\ 709 \end{array}$	$\begin{aligned} & 340,825 \\ & 624,373 \\ & (3) \end{aligned}$	36	(9)	2 97 220	$\begin{aligned} & 650 \\ & 17,784 \\ & (3) \end{aligned}$
New Jersey	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 26 \\ & 34 \\ & 22 \end{aligned}$	$\begin{aligned} & 6,397,662 \\ & 3,744,894 \\ & 2,568,021 \end{aligned}$	$\begin{aligned} & 317 \\ & { }_{(8)}{ }^{152} \end{aligned}$	$\begin{gathered} 284,960 \\ \underset{(8)}{282,619} \end{gathered}$	$\begin{aligned} & 5,383 \\ & 6,688 \\ & 3,578 \end{aligned}$	$\begin{aligned} & 2,462,745 \\ & 2,730,100 \\ & 1,300,038 \end{aligned}$	4,366 4,601 2,762	$\begin{aligned} & 2,278,306 \\ & 2,605,798 \\ & \left.{ }_{\left({ }^{(}\right)}\right) \end{aligned}$	$\begin{array}{r} 170 \\ 42 \\ 46 \end{array}$	$\begin{gathered} 32,726 \\ \left.{ }_{\left({ }^{\prime}\right)}{ }^{3}\right) \\ \hline \end{gathered}$	$\begin{array}{r} 847 \\ 1,045 \\ 770 \end{array}$	$\begin{aligned} & 151,713 \\ & 116,897 \\ & (3) \end{aligned}$
New York	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 27 \\ & 30 \\ & 29 \end{aligned}$	$\begin{aligned} & 2,242,834 \\ & 2,297,699 \\ & 1,875,600 \end{aligned}$	$\begin{array}{r} 117 \\ { }_{(8)}^{17} \end{array}$	$\begin{gathered} 139,698 \\ 61,413 \\ (3) \end{gathered}$	$\begin{aligned} & 2,556 \\ & 3,229 \\ & 3,078 \end{aligned}$	$\begin{aligned} & 1,305,264 \\ & 1,42,626 \\ & 1,046,812 \end{aligned}$	2,207 2,587 2,116	$\begin{gathered} 1,239,971 \\ 1,319607 \\ (3)< \end{gathered}$	$\begin{aligned} & 73 \\ & 92 \\ & 50 \end{aligned}$	$\begin{gathered} 17,831 \\ 17,025 \\ \left({ }^{3}\right) \end{gathered}$	$\begin{aligned} & 282 \\ & 650 \\ & 912 \end{aligned}$	$\begin{aligned} & 47,462 \\ & 85,994 \\ & (3) \end{aligned}$
Ohio	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 28 \\ & 59 \\ & 19 \end{aligned}$	$\begin{aligned} & 5,451,513 \\ & 4,094,677 \\ & 1,172,850 \end{aligned}$	$\begin{array}{r} 199 \\ { }_{(3)}^{216} \end{array}$	$\begin{gathered} 249,029 \\ 230,823 \\ \left({ }^{(}\right) \end{gathered}$	$\begin{aligned} & 4,546 \\ & 6,435 \\ & 1,688 \end{aligned}$	$\begin{array}{r} 2,067,384 \\ 2,901,255 \\ \mathbf{6 4 4}, 520 \end{array}$	3,505 $\mathbf{5 , 0 5 3}$ 1,170	$\begin{aligned} & 1,844,958 \\ & 2,700,036 \\ & { }_{(3)}{ }^{(3)} \end{aligned}$	$\begin{array}{r} 405 \\ 638 \\ 81 \end{array}$	$\begin{gathered} 36,017 \\ 74,227 \\ { }^{(3)} \end{gathered}$	636 844 437	$\begin{aligned} & 126,409 \\ & 126,992 \\ & \left({ }^{2}\right) \end{aligned}$
Pennsylvania.............	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 119 \\ 99 \\ 77 \end{array}$	$\begin{array}{r} 28,287,187 \\ 20,469,049 \\ 7,609,706 \end{array}$	$\begin{array}{r} 842 \\ \left.{ }^{8}{ }^{4}\right)^{24} \\ \hline \end{array}$	$\begin{gathered} 1,110,383 \\ 518,640 \\ \left({ }^{(}\right) \end{gathered}$	$\begin{array}{r} 19,420 \\ 18,510 \\ 9,784 \end{array}$	$\begin{array}{r} 10,287,491 \\ 8,728,520 \\ 3,897,306 \end{array}$	$\begin{array}{r} 15,136 \\ 14,824 \\ 6,999 \end{array}$	$\begin{gathered} 9,338,261 \\ 8,090,926 \\ (3) \end{gathered}$	$\begin{array}{r} 1,546 \\ 749 \\ 294 \end{array}$	$\begin{gathered} 414,250 \\ 154,689 \\ (9) \end{gathered}$	$\begin{aligned} & 2,738 \\ & 2,937 \\ & 2,491 \end{aligned}$	$\begin{aligned} & 634,980 \\ & 482,905 \\ & \left({ }^{3}\right) \end{aligned}$
West Virginia.............	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	16 7 4	$\begin{array}{r} 1,338,084 \\ 825,313 \\ 650,622 \end{array}$	$\begin{array}{r} 85 \\ \text { (} \left.^{83}\right)^{34} \end{array}$	$\begin{aligned} & 97,551 \\ & 46,946 \\ & \left({ }^{3}\right) \end{aligned}$	$\begin{aligned} & 1,949 \\ & 1,371 \\ & 946 \end{aligned}$	$\begin{aligned} & 789,422 \\ & 611,079 \\ & 311,650 \end{aligned}$	$\begin{array}{r} 1,319 \\ 970 \\ 615 \end{array}$	$\begin{aligned} & 657,984 \\ & 446,349 \\ & \left({ }^{(}\right) \end{aligned}$	$\begin{aligned} & 468 \\ & 190 \\ & 100 \end{aligned}$	$\begin{gathered} 103,748 \\ 32,632 \\ \left({ }^{9}\right) \end{gathered}$	$\begin{aligned} & 162 \\ & { }_{211} \\ & 231 \end{aligned}$	$\begin{aligned} & 27,690 \\ & 32,098 \\ & { }_{(3)}{ }^{3} \end{aligned}$
All other states ${ }^{\circ}$.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \\ & 5 \end{aligned}$	$\begin{aligned} & 711,082 \\ & 829,262 \\ & 332,000 \end{aligned}$	$\begin{array}{r} 28 \\ { }_{(3)}{ }^{38} \end{array}$	$\begin{aligned} & 36,944 \\ & 38,196 \\ & (8) \end{aligned}$	$\begin{aligned} & 866 \\ & 881 \\ & 464 \end{aligned}$	$\begin{aligned} & 485,504 \\ & 494,811 \\ & 168,624 \end{aligned}$	$\begin{aligned} & 576 \\ & 665 \\ & 364 \end{aligned}$	$\begin{aligned} & 402,839 \\ & 469,490 \\ & \left({ }^{(}\right), 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 12 \end{aligned}$	$\begin{aligned} & 4,100 \\ & 3,000 \\ & \left({ }^{8}\right) \end{aligned}$	$\begin{array}{r} 278 \\ 202 \\ 88 \end{array}$	$\begin{aligned} & 48,665 \\ & 22,321 \\ & \left({ }^{3}\right) \end{aligned}$

[^164]8 Not reported separately.
4 No establishments reported.
Included in "all other state.
${ }^{6}$ Included in "all other states."

Table 4.-COMPARATIVE STATISTICS, BY STATES: 1880 TO 1890-Continued.

${ }_{1}$ Not reported in 1880.
 fornia,
sbire,
3 While the aggregate value for the respective states is the aggregate value of products reported for all branches of glass manufacture, this total can not be obtained by adding the amounts
"Included in "all other states."

Table 4.-COMPARATIVE STATISTICS, BY STATES: 1880 TO 1900-Continued.

states.	Year.	materials used-continued.							Products.
		Lime and qulcklime, bushels.	Limestome, tons.	Arsenic, ponnds.	Manganese, pounds.	Fire clay and pot clay pounds.	Pots (not including those made at works), number.	Cost of fuel. ${ }^{1}$	Aggregate value. ${ }^{2}$
New Jersey	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	248,654 198,086 174,680	8,577 3,397 455	$\begin{array}{r} 102,490 \\ 75,256 \\ 38,453 \end{array}$	$\begin{array}{r} 143,465 \\ 17,065 \\ 12,000 \end{array}$	$\begin{aligned} & 2,108,845 \\ & 3,841,290 \\ & 2,880,998 \end{aligned}$	$\begin{array}{r} 366 \\ 518 \\ 2,118 \end{array}$	$\begin{aligned} & 445,828 \\ & 384,951 \\ & (1) \end{aligned}$	$5,093,822$ $5,218,152$ $2,810,170$ 2, 810,170
New York..........	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	41,024 90,502 98,854	2,462	101,570 52,026 6,600	90,721 32,489 27,505	$\begin{aligned} & 1,033,200 \\ & 2,775,355 \\ & 1,837,650 \end{aligned}$	$\begin{array}{r} 475 \\ 450 \\ 1,661 \end{array}$	$\begin{aligned} & 227,158 \\ & \underset{(1)}{244,898} \end{aligned}$	$\begin{aligned} & 2,756,978 \\ & 2,723,019 \\ & 2,420,796 \end{aligned}$
Ohio	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	94,547 108,597 45,635	3,356 6,932	$\begin{array}{r} 228,587 \\ 375,196 \\ 28,916 \end{array}$	$\begin{array}{r} 76,117 \\ 124,581 \\ 16,436 \end{array}$	$\begin{array}{r} 2,549,910 \\ 7,141,278 \\ 848,025 \end{array}$	$\begin{aligned} & 1,199 \\ & 1,780 \\ & 835 \end{aligned}$	$\begin{aligned} & 249,405 \\ & 156,404 \\ & (1) \end{aligned}$	$\begin{aligned} & 4,547,083 \\ & 5,649,182 \\ & 1,549,320 \end{aligned}$
Pennsylvania.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 184,969 \\ & 268,674 \\ & 309,122 \end{aligned}$	38,309 20,248 1,124	$\begin{aligned} & 896,074 \\ & 746,393 \\ & 547,266 \end{aligned}$	$\begin{aligned} & 457,581 \\ & 216,910 \\ & 110,178 \end{aligned}$	$\begin{array}{r} 15,926,246 \\ 13.086,298 \\ 6,495,169 \end{array}$	$\begin{aligned} & 3,461 \\ & 3,223 \\ & 5,170 \end{aligned}$	$\begin{gathered} 1,421,710 \\ 858,281 \\ \left({ }^{1}\right) \end{gathered}$	$\begin{array}{r} 22,011,130 \\ 17,179,137 \\ 8,720,584 \end{array}$
West Vlrginia..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 19,660 \\ 14,107 \\ 7,533 \end{array}$	450	80,503 89,822	$\begin{array}{r} 58,944 \\ 16,450 \\ 8,518 \end{array}$	154, 940 662, 550 933, 720	$\begin{aligned} & 350 \\ & 170 \\ & 332 \end{aligned}$	$\begin{aligned} & 88,905 \\ & 54,885 \\ & \text { (1) } \end{aligned}$	$\begin{array}{r} 1,871,795 \\ 945,234 \\ 748,500 \end{array}$
All other states ${ }^{3}$.	1900 1890 1880	$\begin{aligned} & 39,705 \\ & 61,763 \\ & 13,825 \end{aligned}$	656 1,195	$\begin{array}{r} 20,300 \\ 23,300 \\ 930 \end{array}$	$\begin{array}{r} 32,624 \\ 23,260 \\ 400 \end{array}$	$\begin{aligned} & 373,000 \\ & 518,500 \\ & 437500 \end{aligned}$	$\begin{array}{r} 20 \\ 160 \\ 272 \end{array}$	$\begin{aligned} & 102,724 \\ & { }_{(1)}^{113,034} \end{aligned}$	$\begin{array}{r} 924,706 \\ 1,065,397 \\ 463,600 \end{array}$

PRODUCTS-continued.

Building glass.							Pressed and blown glass and bottles and jars, value.
Total value.	Window.		Plate.				
	50-foot boxes, number.	Value.	Total value.	Total cast, square feet.	Sold rough, square feet.	Polished plate made, square feet.	
$\begin{array}{r} 4 \$ 17,096,234 \\ 13,928,296 \\ 5,915,618 \end{array}$	$4,341,282$ $3,768,384$ $1,864,734$	$\begin{array}{r} \$ 10,879,355 \\ 9,058,802 \\ 5,047,313 \end{array}$	$\begin{array}{r} 586,194,279 \\ 54,869,494 \\ 5688,305 \end{array}$	$\begin{array}{r} 534,778,994 \\ 519,919,909 \\ 61,700,227 \end{array}$	$\begin{array}{r} 628,684 \\ 3,106,831 \\ 377,227 \end{array}$	$\begin{array}{r} 16,883,578 \\ 9,10,111 \\ 1,042,000 \end{array}$	$\begin{gathered} \$ 39,443,478 \\ 27,122,708 \\ 15,238,93 \end{gathered}$
							2, 810,398
373,343	115, 271	373, 343					$1,945,790$ 528,000
$5,711,948$ $\mathbf{1}, 831,745$ $\mathbf{7 2 5}, 797$	$1,701,729$ 360,114 91,759	4,176,587 885,745 229,397	$\begin{array}{r} 1,520,361 \\ 949,000 \\ 496,400 \end{array}$	$\begin{array}{r} 58,553,838 \\ 2,383,793 \\ 970,000 \end{array}$	$\begin{array}{r} 31,917 \\ 100,000 \\ 130,000 \end{array}$	$\begin{array}{r} 5,177,160 \\ \mathbf{1}, 758,248 \\ 642,000 \end{array}$	$\begin{array}{r} 9,045,935 \\ 1,163 ; 664 \\ 64,984 \end{array}$
.........							
3,512			3, 912	20,684	20,684		384,893
332,000	141,000	332,000					$\begin{aligned} & \text { 454, } 633 \\ & 674,900 \\ & 255,000 \end{aligned}$
$\begin{array}{r} 79,748 \\ 149,845 \end{array}$	- 41,866	104,002	$\begin{aligned} & 72,748 \\ & 45,843 \end{aligned}$	$\begin{aligned} & 669,375 \\ & 209,543 \end{aligned}$	$\begin{aligned} & 734,150 \\ & 209,543 \end{aligned}$		402,258 7040600
390, 550	24,000	68,000	322,590	5000000	17,000	400,000	529, 277
$\begin{array}{r} 274,011 \\ 1,316,170 \end{array}$	$\begin{aligned} & 124,541 \\ & 622,432 \end{aligned}$	$\begin{array}{r} 267,611 \\ 1,316,170 \end{array}$					4, 819,811 $3,901,982$
$\begin{array}{r} 1,316,170 \\ 729,155 \end{array}$	$\begin{aligned} & 622,432 \\ & 296,685 \end{aligned}$	$\begin{array}{r} 1,316,170 \\ 729,155 \end{array}$					$\begin{aligned} & 3,901,982 \\ & 2,081,015 \end{aligned}$
346,790	89, 522	243,085					2, 410, 188
540, 903	216,748	540,903					$\begin{aligned} & 2,000,842 \\ & 1,879,893 \end{aligned}$
671,422	200,854	519,187					3,875, 661
358,000	127, 120	-358,000					$\begin{aligned} & 4,073,385 \\ & 1,1,191,320 \end{aligned}$
$\begin{aligned} & 9,213,545 \\ & 6,406,924 \\ & 2,222,513 \end{aligned}$	$\begin{array}{r} 2,068,340 \\ 1,430,455 . \\ 780,283 \end{array}$	$\begin{aligned} & 5,301,131 \\ & 3,643,577 \\ & 2,222,513 \end{aligned}$	$\begin{array}{r}\text { 3, 912, } \\ 2,758 \\ \hline\end{array}$	$\begin{array}{r} 5 \quad 19,546,674 \\ 9,024,273 \end{array}$	$\begin{aligned} & 579,905 \\ & 515,177 \end{aligned}$	$\begin{array}{r} 10,877,250 \\ 5,849,519 \end{array}$	$\begin{array}{r} 12,797,585 \\ 10,772,213 \\ 6,498,071 \end{array}$
							$1,770,553$ 945,234 748,500
$\begin{array}{r} 878,518 \\ 4,300,709 \\ 90,000 \end{array}$	$\begin{array}{r} 156,296 \\ 1,355,883 \\ 30,000 \end{array}$	$\begin{array}{r} 371,754 \\ 3,208,310 \\ 90,000 \end{array}$	$\begin{array}{r} 761,504 \\ 1,092,399 \end{array}$	$\begin{aligned} & 6,658,482 \\ & 7,342,068 \end{aligned}$	$\begin{array}{r} 16,862 \\ 2,057,504 \end{array}$	$\begin{array}{r} 829,168 \\ 1,492,344 \end{array}$	$\begin{array}{r} 1,056,456 \\ 1,644,698 \end{array}$

[^165]Table 4.-COMPARATIVE STATISTICS, BY STATES: 1880 TO 1900-Continued.

${ }^{1}$ The equipment of glass manufacturing plants, other than furnaces and pots, not having been reported by state totals in 1880 , the comparison can be made only for the United States for that year.

2 Not reported in 1880 and 1890 .
a No establishments reported.
${ }^{4}$ Included in "all other states."
${ }^{4}$ Included establishments distributed as follows: 1900-California, 1 ; Colorado, 1; Delaware, 1 ; Georgia, 1 ; Michigan, 1; Virginia, 2; Wisconsin, 1 . 1890-California, 1; Colorado. 1; Delaware, 1; Georgia, 2; Kentucky, 2; Michigan, 1; Wisconsin, 1. 1880-California, 1; Connecticut, 1; Iowa, 1; Michigan, 1; New Hampshire, 1 .

Table 4.-COMPaRative statistics, BY STATES: 1880 TO 1900—Continued.

states.	Year.	equipment and characteristics of works-continued.									
		Grinding machines, number.	Polishing machines, number.	Shops, number.	Gloryholes, number.	Presses or pressing machines, number.	Finishing manumber	Crimping machines, number.	Grinding and engraving machines, number.	Horses and mules number.	Wagons, carts, and drays, number.
New Jersey...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	12		718 323	301 199	55 17	1	$\begin{aligned} & 22 \\ & 47 \end{aligned}$	98 122	111
New York.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	3	312 236	66 41	49 30	2	32	9 23	49 67	47 65
Ohio..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	12 13	10	613 441	$\begin{array}{r}93 \\ 130 \\ \hline\end{array}$	${ }_{243}^{125}$	59 21	35 57	5 258	18 31	18 38
Pennsylvania ...	$\begin{array}{r} 1900 \\ 1890 \\ 1880 \end{array}$	129	174	144 1,316	351 370	444	42 20	252	$\begin{array}{r}54 \\ 303 \\ \hline\end{array}$	134 213	126
West Virginia	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\stackrel{\rightharpoonup}{2}$		158 104	28 24	88	1	……10	10 60	${ }^{6}$	${ }_{12}^{6}$
All otber states ${ }^{1} .$.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	\cdots		78 78	37 6	1			1	30 29	19 24

Table 5 presents comparative statistics of glass man- $\mid 1890$, and 1900 , with the per cent of increase for each ufacture, by classes of products, for the years 1880, decade.

Table 5.-COMPARATIVE SUMMARY, BY CLASSES OF PRODUCTS, 1880 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE.

	Year.	Total.	$\underset{\substack{\text { Building } \\ \text { glass. }}}{ }$	Pressed and blown glass and bottles and jars.	per cent of increase.		
					Total.	$\underset{\text { Blass. }}{\text { Building }}$	Pressed and blown glass and bottles and jars.
Number of establishments ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	355 294 169	124 100 54	231 194 115	20.7 74.0	24.0 86.2	19.1 68.7
Capital .-..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & \$ 61,423,903 \\ & 840,966,850 \\ & 818,804,699 \end{aligned}$	$\begin{array}{r} \$ 26,617,122 \\ \$ 18,353,676 \\ \$ 7,290,155 \end{array}$	$\begin{aligned} & \mathbf{8 3 4}, 806,781 \\ & 822,613,274 \\ & \mathbf{8 1 1 , 6 1 4 ,} 444 \end{aligned}$	49.9 117.9	45.0 151.8	53.9 96.4
Salaried officials, clerks, etc., number	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} 2,268 \\ \text { (2) } \end{array}$	$\begin{array}{r} 615 \\ \text { (2) } \left.\quad \begin{array}{c} 692 \end{array}\right) \end{array}$	$\begin{array}{r} 1,653 \\ \left({ }^{(2)} \begin{array}{r} 803 \end{array}\right. \\ \hline \end{array}$	107.1	110.6	105.9
Salaries..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{gathered} 82,792,376 \\ \$ 1,232,561 \\ \left({ }^{2}\right) \end{gathered}$	8811,983 8338,112 (2)	$\begin{gathered} \$ 1,980,393 \\ \substack{\$ 894,449 \\ (2)} \\ \hline \end{gathered}$	126.6	140.2	121.4
Wage-earners, average number ...	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 52,818 \\ & 44,892 \\ & 24,177 \end{aligned}$	11,902 11,982 4,846	$\begin{aligned} & 40,916 \\ & 32,910 \\ & 19,331 \end{aligned}$	17.7 85.7	90.7 147.3	24.3 70.2
Total wages .	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{array}{r} \$ 27,084,710 \\ \$ 20, \\ 89,144,961 \\ 8800 \end{array}$	$\begin{aligned} & 89,029,673 \\ & 87,159,903 \\ & 82,431,789 \end{aligned}$	$\begin{gathered} \mathbf{8 1 8 , 0 5 5 , 0 3 7} \\ \$ 13,726,058 \\ \$ 6,712,311 \end{gathered}$	29.7 128.4	26.1 194.4	31.5 104.5
Men, 16 years and over	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 42,173 \\ & 36,064 \\ & 17,77 \end{aligned}$	$\begin{array}{r} 11,801 \\ 11,633 \\ 4,577 \end{array}$	$\begin{aligned} & 30,372 \\ & 24,431 \\ & 13,21 \end{aligned}$	16.9 102.9	1.4 154.2	24.3 85.1
Wages..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{gathered} \$ 24,901,283 \\ \$ 19,546,351 \\ \left({ }^{2}\right) \end{gathered}$	$\begin{aligned} & \$ 8,999,613 \\ & \$ 7,073,965 \\ & (2), 965 \end{aligned}$	$\begin{gathered} 815,901,620 \\ \$ 12,472,386 \\ \left({ }^{2}\right) \end{gathered}$	27.4	27.2	27.5.
Women, 16 years and over . ..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	3,629 1,885 741	20 67 92	3,509 1,818 649	87.2 154.4	370.1 827.2	98.0 180.1
Wages..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\$ 840,001$ $\$ 832,245$ (2)	$\begin{array}{r} \$ 4,901 \\ \$ 200,593 \\ \left({ }^{\$ 2}\right) \end{array}$	$\begin{aligned} & \$ 835,100 \\ & \$ 811,662 \\ & \left({ }^{2}\right) \end{aligned}$	152.8	${ }^{3} 76.2$	168.0
Children, under 16 years.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 7,116 \\ & 6,943 \\ & 6,658 \end{aligned}$	$\begin{array}{r} 81 \\ 282 \\ 177 \end{array}$	$\begin{aligned} & 7,035 \\ & 6,661 \\ & 5,481 \end{aligned}$	2.6 22.7	871.3 59.3	6.6 21.5
Wages.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & 81,343,476 \\ & 81,007,365 \\ & (2) \end{aligned}$	$\begin{gathered} \$ 25,159 \\ \$ 66,345 \\ \left({ }^{2}\right) \end{gathered}$	$\begin{gathered} \$ 1,318,317 \\ \$ 942,020 \\ (2) \end{gathered}$	33.4	${ }^{3} 61.5$	39.9

fornia, 1; Colorado, 1; Delaware, 1; Georgia, 2; Kentucky, 2; Michigan, 1; Wisconsin, 1. 1880-California, 1; Michigan, 1; Virginia, 2; Wisconsin, 1. 1890-Calishire, 1. ${ }_{2}$ 2 Not reported separately.
${ }^{3}$ Decrease.

Table 5.-COMPARATIVE SUMMARY, BY CLASSES OF PRODUCTS, 1880 TO 1900, WITH PER CENT OF INCREASE FOR EACH DECADE-Continued.

	Year.	Total.	Building glass.	Pressed and blown glass and bottles and jars.	PER CENT OF increase.		
					Total.	Building glass.	Pressed and blown glass and bottles and jars.
Miscellaneous expenses.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{gathered} \$ 3,588,641 \\ \$ 2,267,696 \\ (1), \end{gathered}$	$\begin{aligned} & \$ 1,865,865 \\ & \$ 1,069,545 \\ & (1), 545 \end{aligned}$	$\begin{gathered} \$ 2,222,776 \\ \$ 1,198,151 \\ (1), 1 \end{gathered}$	58.3	27.7	85.5
Cost of materials used..	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{gathered} \$ 16,731,009 \\ \$ 12,140,985 \\ \$ 8,028,621 \end{gathered}$	$\begin{aligned} & \$ 4,679,084 \\ & \$ 4,621,535 \\ & \$ 2,287,987 \end{aligned}$	$\begin{array}{r} 812,051,925 \\ \$ 7,519,450 \\ \$ 5,740,634 \end{array}$	37.8 51.2	1.2 102.0	60.3 31.0
Value of products.	$\begin{aligned} & 1900 \\ & 1890 \\ & 1880 \end{aligned}$	$\begin{aligned} & \$ 56,539,712 \\ & \$ 41,051,004 \\ & \$ \$ 1,154,51 \end{aligned}$	$\begin{gathered} \$ 17,096,234 \\ \$ 13,928,296 \\ \$ 5,915,618 \end{gathered}$	$\begin{aligned} & \begin{array}{l} \$ 39,443,478 \\ 827,122, \\ \$ 275,238,953 \\ \$ 15 \end{array} \end{aligned}$	37.7 94.1 ----1	$\begin{array}{r}22.7 \\ 135.4 \\ \hline . .\end{array}$	45\%4
Pot and tank furnaces, number.	1900 1890 1880	804 564 285	$\begin{array}{r} 241 \\ 195 \\ 82 \end{array}$	563 369 203 208	42.6 97.9	23.6 137.8	52.6 81.8
Pot capacity of furnaces, number	1800 1890 1880	9,941 4,932 2,421	3,726 $\mathbf{2 , 0 2 4}$ $\mathbf{7 4 1}$	6,215 2,908 $\mathbf{1}, 680$	101.6	84.1 173.1	113.7 73.1

${ }^{3}$ Not reported.

Tables t and 5 show large increases in the number of salaried officials and their salaries, between 1890 and 1900 , caused by the organization of large consolidations in the glass business within the last five years. The most interesting disclosure, however, is the widespread substitution of the tank for the pot furnace for melting glass. No statistics of tank furnaces appear in the report on glass manufacture at the census of 1890, although a number were in existence at that time. These tanks were then largely regarded as in the experimental stage, although it had been demonstrated in 1888 that their operation was a success, particularly in the manufacture of window glass. It was several years before glass manufacturers were convinced of the advantages of the tank over the pot furnace; but from 1890 on, the introduction of the tank has been steady and is the prominent feature of the progress of the American glass industry during the last decade. A larger production and a more uniform quality of glass are rendered possible by the use of the tank system of melting than by the pot-furnace system, especially in the manufacture of window glass and bottles and jars. Although the cost of the installation of the tank system is considerably greater than that of the pot system, the former is much more economical and regular in operation. In many departments of the glass industry it meets the demand for more glass for less money. The introduction of the continuous tank in the manufacture of bottles and jars has been fully as general as in the manufacture of window glass, and continuous and intermittent or day tanks are being more and more extensively used in the manufacture of common tumblers and jellies, opal ware, lantern globes, lamp founts, chimneys, shades, and globes, and novelties and specialties in pressed and blown ware.

The statistics of furnaces are of little value for comparative purposes, owing to the general introduction of the tank furnace during the last decade. The following comparisons have been made on the assumption that all furnaces reported in 1890 were pot furnaces; this is not strictly correct, as it is known that there were several tank furnaces in operation at that time, but they were not shown separately in the published statistics. The number of tank furnaces reported was small, however, and would not materially affect the comparisons.

Since 1890 there has been a decrease of 20 per cent in the total number of pot furnaces, 564 being reported in 1890 and 451 in 1900. In building glass, 195 pot furnaces were reported in 1890 and 193 in 1900, a decrease of only 2 , while the decrease in the number of pot furnaces for pressed and blown glass and bottles and jars was 111, or 30.1 per cent, 369 being reported in 1890 and 258 in 1900 . However, in 1900 there is a total increase for the United States of 353 tanks- 206 continuous and 147 day-making a gain in the total number of melting furnaces in 1900 over 1890 of 240 , or 42.6 per cent. In building glass, 34 continuous and 14 day tanks were reported in 1900, making an increase in the total number of furnaces for that class in 1900 of 23.6 per cent over the number reported in 1890. In the class of pressed and blown ware and bottles and jars, 172 continuous and 133 day tanks were reported in 1900 , making a gain of 52.6 per cent in the total number of furnaces in that division in 1900 over the total for 1890 .
By estimating the ring capacity of the continuous tank in building glass establishments as equal to 3 pots, and in pressed and blown glass and bottle and jar establishments as equal to 2 pots, and estimating the
ton capacity of the day tank in both classes as equal to a like pot capacity, the 353 tanks have a total capacity of 4,834 pots, 1,430 of which are in building glass factories and 3,404 in pressed and blown glass and bottle and jar factories. A comparison of the capacity of the pot furnaces reported in 1900 with the capacity reported in 1890 , shows an increase in capacity of 3.5 per cent; an increase in building glass capacity of 13.4 per cent; and a decrease in pressed and blown ware and bottle and jar capacity of 3.3 per cent. However, the total capacity of both pot furnaces and tanks for the entire industry in 1900 increased 101.6 per cent over 1890; of building glass capacity, 84.1 per cent; and of pressed and blown ware and bottles and jars, 113.7 per cent. The increase of only 23.6 per cent in the number of furnaces in building glass factories, with an increase of 84.1 per cent in the pot capacity, indicates the much
larger capacity of the average window tank than that of the tank used in the production of pressed and blown ware and bottles and jars, where the number of furnaces increased 52.6 per cent and the pot capacity increised 113.7 per cent. The day tank in building glass factories is used in the manufacture of skylight, tile glass, etc.

The general introduction of the tank for glass melting has created, within the past decade, a separate industry of considerable magnitude-the preparation of the clay for the construction of tanks. At the same time the manufacture of the glass melting pot has been transferred largely from the glass factory to a few establishments that make a specialty of its manufacture.

Table 6 presents the rank of states in glass manufacture as a whole from 1880 to 1890, according to value of products, with the percentages of total value of products for the United States.

Table 6.-RANK OF sTATES ACCORDING TO VALUE OF PRODUCTS: 1880 TO 1900, WITH PER CENT OF TOTAL VALUE.

states.	Rank.			value of products.			per cent of total value.		
	1900	1890	1880	1900	1890	1880	1900	1890	1880
United States..				\$56,539,712	\$41, 051, 004	\$21, 154, 571	100.0	100.0	100.0
Pennsylvania	1	1	1	22,011,130	17,179,137	8,720,584	38.9	41.8	41.2
New Jersey.	3	3	${ }_{2}^{8}$	14, $6,093,822$	6, 218, 152	2,810,170	26.1 9.0	7.3	3.7 13.3
Ohio...	4	2	4	4,547,083	5,649,182	1,549, 320	8.1	13.8	7.3
Illinois...	5	6	6	2, 834, 398	2, 372,011	1,901, 343	5.0	5.8	4.3
New York.	6	5	3	2,756,978	2, 723, 019	2,420, 796	4. 9	6.6	11.5
West Virginia	7	9	9	1,871,795	945, 234	748, 500	3.3	2.3	3.5
Missouri	8	8	5	765, 564	1,215, 329	919, 827	1.4	3.0	4.4
Maryland	9 10	7 10	10	557, 895	1,256,697	587, 000	1.0	3.1	2.8
Massachusetts	110	10	7	(1) 418	431,437	854,345	0.7	1.0	4.0
California	12	14	13	(1)	(1)	140,000			0.7
Virginia.	13			I)	(2)	${ }^{2}{ }^{2}$,			0.7
Delaware.	14	16		(1)	13	${ }^{2}$			
Georgia...	15	12		(1)	, 1				
Michigan.	16 17	17 15	14	${ }_{1} 1$	${ }_{1} 1$	90,000			0.4
Kentucky		11	i1	${ }^{2}$	(1)	388,405			
Connecticut.....			12	(2)	(2)	160,000			0.8
New Hampshire..			15	${ }_{(2)}^{2}$		70,000			(3) 0.3
All other states ${ }^{\text {a }}$.			16	$\stackrel{(2)}{22}_{924,706}$	($\stackrel{(2)}{2}$) $_{1,065,397}$	3,500	1.6	2.6	${ }^{(3)}$

${ }^{1}$ Included in " all other states."
2 Not reported.
${ }^{3}$ Less than one-tenth of 1 per cent.
4 Inclndes the following states: 1890-California, Colorado, Delaware, Georgia, Kentucky, Mtchigan, Wisconsin; 1900-California, Colorado, Delaware, Georgia, Michigan, Virginia, Wisconsin.

Glass manufacture was reported in 17 states in 1900; in 17, in 1890; and in 16, in 1880. Wisconsin, Virginia, Delaware, Georgia, and Colorado were not reported in 1880. Iowa, New Hampshire, and Connecticut dropped out of the producing column in 1890, but Wisconsin, Delaware, Georgia, and Colorado were added. In 1900, Virginia, the home of the first glass factory, was again reported. No reports of glass manufacture were made from Kentucky in 1900. Since 1900 glass factories have been projected in Washington, Kansas, Tennessee, and South Carolina.
Pennsylvania has occupied first place as a glassproducing state for the last three decades. The discovery of gas in Indiana attracted many factories early in the last decade, especially from Ohio, where the gas was practically exhausted for factory purposes after a few years' existence. As a result, in 1900 Indiana has changed places with Ohio as a glass-producing state, the value of its product in 1900 being nearly five times
that of 1890. New Jersey, the third state in 1900 and 1890, and the second in 1880, has held its prominent position by virtue of good sand deposits and advantageous geographical position, and largely from the fact that there are numerous native glass workers in the state not at all inclined to leave, even when better positions are offered elsewhere. There are indications, however, that this reserve on the part of the New Jersey workman is disappearing, and it is a question if the state will continue to hold its present position. West Virginia, which was ninth in glass manufacture in 1890, was seventh in the value of its glass products in 1900, increasing nearly 100 per cent during the decade. The excellent fuel resources of this state, in view of the rapid decline of the gas fields of Indiana, have recently greatly stimulated the growth of its glass manufacture, and will no doubt have the effect of placing it among the leading states in the industry.

The direction of the growth of the industry has
always closely followed the fuel supply. The evident failing of the gas supply in Indiana has fixed attention on the gas field of southeastern Kansas, and it is probable that in a short time the industry will be established in that section, although unfavorable freight rates and the refusal of the citizens to hold out tempting cash bonuses for the location of factories have so far kept the glass factory out of that field. Some establishments now in Indiana are likely to be soon moved to the gas fields of West Virginia or western Pennsylvania, and some have already been transferred into the coal fields of Indiana and Illinois and will operate with gas produced from the coal of these states. The largest factories in the Indiana gas field are likely to be soon equipped to operate with gas produced from coal, which will give the glass industry of the state a permanency
always lacking when cheap natural gas is the fuel used. During the present decade, owing to the absence of a great cheap fuel supply and the steady adoption of the producer gas-fuel system, many factories will be located at new points within convenient access to the great glass consuming sections, particularly in the West. The Pacific coast is attracting more and more attention as a field for glass manufacture, and the cheap fuel oil of southern California, coupled with the growing demand for a glass package from the fruit packers, will probably lead to a decided increase in the glass production of that state within a very short time.

BUILDING GLASS.

Table 7 presents comparative statistics, by states, for the building glass industry, for 1890 and 1900.

Table 7.-COMPARATIVE STATISTICS, BUILDING GLASS: 1890 AND 1900.

[^166]Table \%-COMPARATIVE STATISTICS, BUILDING GLASS: 1890 AND 1900—Continued.

[^167]Table 7.-COMPARATIVE STATISTICS, BUILDING GLASS: 1890 AND 1900-Continued.

[^168]Of the 124 establishments reporting for 1900,13 manufacture polished plate glass, 9 of which also make skylight; 11, rough, rolled, or ribbed glass, cathedral, wire, or skylight glass, or glass tiling and no plate glass; and 100, window glass.

Plate Glass.-The plate-glass establishments are located as follows, by states: 8 in Pennsylvania; 3 in Indiana; and 1 each in Missouri and Ohio. The total capacity of these plants is 53 furnaces with 1,100 pots, having an estimated capacity of $31,866,000$ square feet a year. However, only 696 pots were active during the census year, casting $21,172,129$ square feet of glass, $16,883,578$ square feet of which were polished, and 628,684 square feet sold as rough glass. In $1900,85.5$ per cent more polished plate glass was made than in 1890, while the prices at which it sold were 33.3 per cent under those of 1890 . In 1876, three years after the first substantial success in the manufacture of polished plate glass in the United States, the domestic production was about 600,000 square feet, and importations for consumption were $4,628,439$ square feet, indicating a total plate-glass consumption in the United States of $5,228,439$ square feet, against sales of foreign and domestic glass in 1900 of about $18,000,000$ square feet, the imports of plate glass for consumption for the year amounting to $1,064,079$ square feet.

After abortive attempts to successfully manufacture polished plate glass in this country, at Cheshire, Mass., in 1852-53, and at Lenox Furnace, Mass., in 1855-1871, ${ }^{1}$ the first successful production of polished plate glass occurred at the plant at New Albany, Ind., built in 1869 by Capt. J. B. Ford, and operated after 1872 by W. C. DePauw. Not until 1873 did the plant succeed in producing polished plate glass, and Mr. De Pauw stated ${ }^{2}$ that not until 1879 was it possible to produce the glass at a profit. This plant was dismantled at some time during the last decade because of unfavorable location and obsolete equipment. The manufacture of polished plate glass was commenced at Crystal City, Mo., in 1875, by the American Plate Glass Company, which company was reorganized the following year by the Hon. E. A. Hitcheock as the Crystal City Plate Glass Company, and has continued in successful operation since, the plant now being owned by the Pittsburg Plate Glass Company, which owned 10 of the 13 establishments reported in 1900. When Captain Ford left New Albany in 1872, ${ }^{3}$ he at once located a plant at Louisville, Ky., leaving there in 1875, and starting a plant at Jeffersonville, Ind. These 4 establishments were the ones reported at the census of 1880 .
The large profits made by these establishments caused a boom in plate glass factory erection, which was further stimulated by the discovery of gas in Indiana about 1890,

[^169]the success of natural gas in the manufacture of plate glass having been demonstrated in the factory built by Captain Ford at Creighton, Pa., in 1883. In 1893 Hon. E. A. Hitchcock stated before the Ways and Means Committee of the House of Representatives that there were 12 establishments manufacturing polished plate glass, located at Creighton, Tarentum, Charleroi, Ford City, Butler, Duquesne, and Irwin, in Pennsylvania; New Albany, Elwood, Kokomo, and Alexandria, in Indiana; and Crystal City, Mo. These establishments manufactured plate glass largely in excess of the consumption, and a period of low prices followed, that led, in 1895, to the consolidation of eight establishments under the head of the Pittsburg Plate Glass Company. The outside establishments were the DePauw, at New Albany, Ind.; the American, at Alexandria, Ind.; the Standard Plate Glass Company, at Butler, Pa.; and the Penn Plate Glass Company, at Irwin, Pa. The plant at New Albany was soon abandoned and that at Alexandria was closed, but on the burning of the factory at Irwin about two years ago, the Penn Plate Glass Company secured the factory at Alexandria, Ind., and now operates it as the American Plate Glass Company.
In 1897 the Marsh Plate Glass Company erected a plant at Walton (now Floreffe), Pa., to manufacture thin plate glass under the patents of George Marsh, which substituted a table for holding the plate by a vacuum process in place of plaster of paris, during the grinding and polishing. The Marsb Company claimed to be able to successfully manufacture polished plate glass in all popular glazing sizes as thin as one-sixteenth of an inch, and by their improved table and system of holding the glass, to practically eliminate all breakage. Before this claim was fully demonstrated, the plant was bought by the Pittsburg Plate Glass Company, and has since been used largely as an experimental factory. Experiments in the manufacture of thin plate glass are also being tried at the plant of the Pittsburg Company at Ford City, Pa. The Marsh Company was the first to successfully introduce the continuous lehr for annealing plate glass, a process that promises to soon displace the slower and more expensive annealing kiln system. A factory was erected near Toledo, Ohio, by the Edward Ford Plate Glass Company in 1900 , which was in operation only six months during the census year. This factory is equipped with a continuous lehr, and in the extensive use of electricity as motive power is an innovation.

The principal improvement in plate glass manufacture during the last decade was undoubtedly the successful introduction of the annealing lehr, as noted above, at the plant of the Marsh Plate Glass Company, at Walton, Pa. Although its introduction into the older plants has so far been slow, owing to the expense attending the abandonment of the costly kiln system in use at those plants, yet competition will soon have the effect of bringing the lehr into general use. Previous to the introduction of the lehr, the annealing
of plate glass was done in practically the same manner as at the commencement of the industry in this country. As soon as the cast is made the plate is introduced into the anncaling oven or kiln, a large, shallow, reverberatory furnace of brick, on the smooth floor of which the plate is laid. The kiln being heated to near the melting point and all openings tightly closed, it is allowed to cool gradually to a point where it is opened and the plate removed, the process requiring fully three days.

The plate glass annealing lehr averages about 200 feet in length, and starts from the casting table as a continuous, connected series of five kilns, after which it is the usual rod lehr common in window glass manufacture. The five stations at the start are on a solid hearth of especially prepared clay, giving an absolutely smooth, level bed. The whole interior of the lehr is brilliantly lighted by electricity, and the heat at any point can be controlled with the utmost nicety by the use of pyrometers. After the cast is made the plate is introduced into the first station of the lehr, where the temperature is near the melting point. In due time the plate passes into the second station, where the temperature is lower. So the plate passes through the five stations with a diminishing temperature. When the plate leaves the fifth station. it has become thoroughly "set," and passes to the rod lehr, which carries it along through decreasing temperatures until, three hours after the cast was made, the annealing process is complete, and the plate is taken out of the lehr ready for the grinding process. The time required to anneal a plate under the lehr system, compared with that under the kiln system-three hours as against three days-indicates the revolutionizing possibilities of the lehr, when cost of construction is also taken into consideration. A lehr that will anneal the product of 96 pots, or 96 plates of glass a day, costs about $\$ 20,000$ to build, and displaces 96 old-style threeplate kilns, which cost about $\$ 1,000$ each to build. The lehr takes up far less space than does the kiln system, and the building required for the lehr costs about $\$ 6,000$, as against $\$ 30,000$ for the construction of the proper building for the 96 kilns it would displace.

With the lehr, smaller pots are used and thinner and smaller plates cast, resulting in a great increase in the average size of the finished plate, as the smaller the original cast, the better are the chances for the plate going through the annealing, grinding, and polishing processes successfully without diminution of size. The lehr-annealed plate, is much straighter than that annealed in the kiln, owing to the solid hearth of the first five stations of the lehr; the floor of the kiln is much more liable to develop inequalities which misshape the plate. The thinness of the lehr-annealed plate means less time spent in grinding, and the smaller size of the rough plate, makes it possible to lay and relay the lehrannealed plate on the grinding and polishing tables, much quicker, and with less labor, than the kiln-annealed plate.
H. L. Dixon, the well-known glass furnace engineer, asserts that 90 per cent of the polished plate glass manufactured can be annealed in the lehr, the remaining 10 per cent being glass in extremely large sizes, requiring the old style kiln. He is convinced that it is only a question of time until the very largest sizes can be annealed in the lehr. It is claimed that actual practice has shown that the average size of the lehr-annealed glass, cast from small pots, is 90 square feet per plate when squared, while under the kiln system, with large pots and the attempt to continually cast extreme sizes, the average size of the plate taken from the kiln and squared is about 60 square feet, and when finished, about 18 square feet. In addition to the Iehr at Floreffe, Pa., the Pittsburg Plate Glass Company reported 3 lehrs at Ford City, Pa., 2 of the 3 being for large sizes and the third for small sizes of about 50 to 60 square feet. The Ford Plate Glass Company, near Toledo, Ohio, report 1 lehr that is said to operate successfully on sizes of 50 to 60 square feet. At Alexandria, Ind., the American Plate Glass Company have a lehr which is said to be working satisfactorily with plates from 75 to 80 square feet.

As is often the case with important inventions, the successful introduction of the lehr in plate glass manufacture came, not from experts, but from novices in the plate glass business, who carried it to success, while the plate glass manufacturers greeted it with derision and declared it impossible. Henry Fleckner, a veteran window glass factory manager of Pittsburg, was the man who first operated the lehr with success at Walton, and the successful operation of the lehrs at Ford City and Toledo, is said to be largely due to Eugene Morenus, a window glass factory manager, and Ralph Gray, a manufacturer of skylight glass.

In addition to the lehr, the Marsh Plate Glass Company at Walton introduced, in the Marsh patent table, the idea of reducing the temperature of the glass while being ground and polished, by the circulation of a constant flow of water under the table. This cooling device, which permits the operation of the grinders and polishers at a much higher speed, has been installed in several foreign factories by Mr. Marsh, and will no doubt soon be put into use in this country. The transfer tables introduced at Ford City, Pa., in the last decade, have added considerably to the rapidity and ease of production, as has also the extended use of electricity as a lifting and motive power. Prior to the adoption of the transfer table, the grinding and polishing tables were stationary, and after one side of the plate had been ground and polished, it was necessary to remove it from its bed of plaster to continue the process. The transfer table is movable from grinder to polisher, thus making it possible to grind and polish one side of a plate without turning it, effecting a great saving in time and decreasing the loss by breakage attending the operation of moving the plate from its bed of plaster of paris.

President John Pitcairn, of the Pittsburg Plate Glass Company, testified ${ }^{1}$ before the subcommission of the United States Industrial Commission, at Philadelphia, Pa., December 22, 1900, that since the inception of the plate glass industry in this country, the tendency of prices has been dowaward, except during 1900, when prices were increased, as a result of an average increase in the cost of raw materials of about 85 per cent, increased cost of manufacture, owing to the diminution of the gas supply, and the substitution of coal, and a better understanding among the manufacturers. He submitted the following table of prices, at periods of five years from 1875 to 1900:

SQUARE FEET.	1875	1880	1885	1890	1895	1900
1 to 3.	\$0.71	\$0.51	\$0.46	\$0.40	\$0.30	\$0.31
3 to 5	0.84	0.61	0.55	0.48	0.36	0.38
5 to 10	1.12	0.80	0.72	0.64	0.48	0.60
10 to 25.	1.49	1.06	0.96	0.85	0.63	0.81
25 to 50.	1.56	1.11	1.01	0.89	0.66	0.85
50 to 100.	1.69	1.21	1.09	0.97	0.72	0.90

During 1897, overproduction resulted in a demoralized condition of the industry, and prices were very low. The advance in prices from that time to 1900 was estimated by Mr. Pitčairn to amount to from 50 to 60 per cent. According to the same authority, about twothirds of the American plate-glass production is sold in sizes under 10 square feet and without profit, a very large part of this two-thirds being sold at a loss. This glass comes into competition with the imported German looking-glass plate, which is blown, ground, and polished, and imported largely into this country to be silvered and used in cheap mirrors. For several years the American plate-glass manufacturers have been meeting this glass, and by a special arrangement with the manufacturers of furniture and mirrors, have succeeded in displacing it with domestic plate glass of a better quality, at prices less than the cost of production. Since 1895 the bulk of the American polished plate glass has been sold direct to the consumer, the Pittsburg Plate Glass Company having established jobbing houses in nearly a score of the large cities, in which branch of the business $\$ 4,044,000$ was invested in 1900 .

For years and with but slightinterruptions, the plateglass manufacturing interests of Europe have been closely allied as to regulation of prices and adjustment of production. As the business of the plate-glass industry in the United States has never been extended beyond the home market, cooperation on that account has not been considered valuable by the European interests; hence, this market has been a "dumping ground" for the surplus European production, and exceptionally low prices have been made on foreign glass for the United States. During the census year prices on stock sizes of European polished plate glass were 36 per cent lower for the United States than for England, while

[^170]polished plate glass imported into the United States from France, averaged only about 50 per cent of the prices quoted in that country. The fact that the European surplus is placed in this market at a price ${ }^{*}$ below average cost, accounts for the heavy importations of polished plate glass. In face of this the domestic production in 1900 increased 85.5 per cent over that of 1890 , evincing the steady acquisition of the home market for the domestic product. The production of polished plate glass in Europe in 1900 was given by Mr. Pitcairn in his testimony, in the following table, which shows the regulation of production by giving the productive capacity, and the actual output of the several factories:

names of companies.	Producing capacity, square feet.	Actual output, square feet.
Belgium:		
Auvelais.	5, 000, 000	2,500,000
St. Roch	5,000,000	2,600,000
Monstier	3,300, 000	1,600, 000
Charleroi	2, 900, 000	1,400,000
Oignies	2,200, 000	1,100,000
Courcelles	2, 100, 000	1,100,000
Roux.	1,900,000	1, 100, 000
Floreffe	1,500,000	700,000
St. Gobain	800,000	400,000
Total, 9 factories.	24,700, 000	12,400,000
France:		
St. Gobain (4 factories)	7,500,000	3,800, 000
Nord...	3, 700, 000	1,800, 000
Aniche Boussoit	1, 700,000	1, 400, 000
Assevent	-800,000	800,000
Total, 8 factories.	15, 300, 000	7,800,000
Germany:		
Stolberg and Mannheim	4,700,000	2, 400,000
Eckamp	2, 600,000	1,300, 000
Schalke	2,000,000	1,000,000
Herzogenrath	1,900,000	1,000, 000
Perz-Urbach	1,600,000	
Frieden...	1, 200, 000	600,000 300,000
Total, 8 factories.	14,700,000	6,600, 000
England:		
Pilkington Brothers.		4, 200, 000
London and Manchester		2, 300, 000
British.		900, 000
Total, 4 factories	17,900,000	7,900,000
Austria:		
Stanka.1........		
St. Gobain (Bilen)		
Total, 2 factories	12,300,000	1,100,000
Russia:		
LaKash		1,100,000
Moscow		700,000
Midi..		
Total, 4 factories	13,200,000	3,200,000
1taly:	800,000	800,000
Grand total.	68,900, 000	39, 800,000

${ }^{1}$ Producing capacity of each factory not reported separately.
The average wages paid in plate glass manufacture in the United States, during the year 1900, was estimated by Mr. Pitcairn to be about 200 per cent higher than in England, and about 300 per cent higher than in Belgium. In support of the latter claim he presented the following table, giving a comparison of American and

Belgian wages in the plate glass industry in 1900, the Belgian figures being compiled by the European representative of the Pittsburg Plate Glass Company:

	$\left\lvert\, \begin{gathered} \text { Amorienn } \\ \text { rate per } \\ \text { month } \\ \text { mays. } \\ \text { days. } \end{gathered}\right.$		$\begin{gathered} \text { Per cent } \\ \text { American } \\ \text { higher than } \\ \text { Belgian. } \end{gathered}$
Melters...	882.50	(28.95	${ }^{185.0}$
Stowers	70.50 70.50 0		44,0
Furnact cleaner	60.00	20.26	. 0
Kiln dressers	69.00	${ }^{20.26}$. 0
Casting and	57.00	${ }^{20.26}$. 0
Cuters	${ }^{86} 40$	${ }^{20.26}$	326.0
Bookers.	57\% 00	${ }_{20.26}^{20.26}$	181.0
Teamers,		-	21.0
Foremen, day Horem	${ }_{12121}^{121.20}$	- 28.95	318.0 318.0
First grinders.	82.80	${ }^{23.16}$	
Second grinders.	${ }_{\text {coseme }}^{680}$	$\underset{\substack{23.16 \\ 23.16}}{ }$	
Second layers	68.40	9.65	699.0
Canal men.	52.20	${ }^{20.26}$	158.0
Santehers --	${ }_{71.00}$	${ }_{20.26}$	250.0
Foremen, nig	${ }^{12112.20}$		${ }_{382.0}^{250}$
Second layers	95.76	${ }_{2}^{23.16}$	${ }_{313.0}^{318}$
Third layers.	${ }_{79.36}^{90.00}$	${ }_{23.16}^{23.16}$	${ }^{2843.0}$
Mixers.	78.12	17,37	350.0
Plaster wheeiers	${ }_{72.00}^{45.00}$	${ }_{20.26}^{20.26}$	122.0 25.0
Mataners.	${ }_{54}{ }^{4} .72$	${ }_{20} 20.26$	255.0
Examiners	75.00	${ }^{20.26}$	${ }^{2720.0}$
Canters.	${ }_{42.00}$	11.37	141.0
${ }_{\text {Blockers }}$	${ }^{45} 5000$	17.37	cisich
Fraceremen			
${ }^{\text {Examiners }}$ Cuters..		${ }^{28.95}$	10.0 180.0 180
Gang men			
Washer, helper -			
Engineers	${ }_{97}^{63.00}$	${ }_{\text {26.05 }}$	274.0
Bricklayers	${ }^{97} \mathbf{9 0} 50$	退 23.18	116.0
Laborers. ${ }_{\text {Lipen }}$			
Slacker			
Pot makers.		-28.95	${ }_{179.0}^{149.0}$
producers: 85.00 28.95 194.0			
Foremen.	85.00	28.95	194.0

About 66 per cent of the wage-earners in the plateglass industry are native Americans. At the commencement of the industry in the United States it was necessary to get foreign workmen of experience, but the American is so much quicker to learn and is so much more steady, that he is preferred at present.

All of the improvement made in the manufacture of plate glass in this country during the last twenty-five years, aside from some details in the construction of machinery, has been for the purpose of increasing the size of the plates cast and improving the quality of the glass. Until very recently the same methods have been employed for casting, annealing, grinding, and polishing that have been in use for years. The liability of
breakage during the finishing process that has attended the attempts to cast extremely large-sized plates, has resulted in a very great reduction in the average size of finished plates. The use of smaller pots, casting smaller and thinner plates for annealing in lehrs, and the adoption of new machinery for grinding and polishing, will undoubtedly result in a considerable decrease in the cost per square foot, and an increase in average size of finished plates, along with a material decrease in undesirable small sizes. A few large pots will be sufficient to supply the demand for extremely large sizes. In the manufacture of plate glass, the use of tank melting furnaces in connection with fining-pot furnaces, is likely to appear in the near future, and the size of the plates cast can then be regulated at will. The possibilities of such a process in connection with the continuous lehr, can scarcely be estimated. The introduction of the continnous lehr, has largely reduced the high ratio formerly existing between cost of construction and capacity of plate-glass factories, and has already resulted in the entrance of 6 new companies, into the field; 4 of the projected factories being in Pennsylvania, and 1 each in Michigan and Illinois.

Cathedral Glass.-There were 8,846,361 square feet of cathedral glass manufactured in 1900, valued at $\$ 567,252$, compared with $2,773,824$ square feet in 1890 , valued at $\$ 279,407$, an increase in quantity of 218.9 per cent, and in value of 103 per cent. The quality of this product has been brought to such perfection, that not only has the domestic market been largely supplied, but a good export trade has been developed with Germany, England, and France. The superiority of colors is increasing the demand for American cathedral or opalescent glass, from the leading foreign art centers. During the census year, 4 establishments in New York, Indiana, and Illinois reported export shipments direct from factories to the value of $\$ 13,432$.

Wire Glass.-The manufacture of wire glass has been established in the United States on a firm basis during the last decade, and it is probable that this branch of the building glass industry will reach large proportions in the next few years. The quantity manufactured during the census year was $1,295,504$ square feet, valued at $\$ 129,051$. During the year several shipments were made to England, but exact details could not be secured. The industry is yet in its infancy. Wire glass, which is made by casting two sheets of glass with a wire net imbedded between them, has been recognized as a perfect fire retardent, especially adapted for partitions, fire shutters, skylights, and glazing in all places subject to the stress of fire or storm. It is manufactured by 4 establishments, 3 in Pennsylvania and 1 in Missouri.

Skylight Glass, etc.-Although no statistics of skylight glass are shown in the report on glass manufacture at the Eleventh Census, it can be stated that the manufacture of this product has considerably increased, reaching $3,679,694$ square feet, ralned at $\$ 165,086$, in 1900.

Nearly all the plate-glass establishments make a specialty of its manufacture and 3 separate establishments produce it almost exclusively. The export trade in this glass is developing in an encouraging manner. The production of bent glass, for store fronts, show cases, etc., is becoming a prominent feature in connection with the production of plate glass, and there are several establishments, in addition, exclusively engaged in this business, which obtain the plate and window glass sheets from the factories and rework them, so are not included in this report. Of the 9 bending ovens included in this report, 5 are in Indiana and 4 in Pennsylvania. Within a few years the manufacture of glass tile has been introduced in this country on an extensive scale. One establishment is making it exclusively, while several others report it as a side line. Its use as a perfect sanitary wall, ceiling, and floor material gives promise of a large growth in this branch of glass manufacture.

Window Glass.-During the last decade a very great improvement has been made in the manufacture of window glass in the United States. This has been brought about by the introduction of the continuous tank furnace for melting the crude materials, in preference to the pot furnace which had been used exclusively since the start of the industry in this country in the early colonial days. Separate statistics of tank furnaces are not shown in the report on glass manufacture at the census of 1890, the tank prior to that date being largely an experiment in this country and in such limited use as to be deemed unworthy of special note at that census. At that time, however, the tank furnace was in successful use in Europe, especially in Belgium. The successful introduction of the tank furnace in the United States occurred at Jeannette, Pa., in 1888, and from 1890 it has been steadily displacing the pot furnace, until in $1900,54.5$ per cent of the capacity of active window-glass factories was contained in tank furnaces. The adoption of the tank has given the window-glass industry a permanency that was lacking when pot furnaces were used exclusively, and when the cost of construction was not great enough to prevent the ready abandonment of a plant for a more avantageous location. While the tank melting system is much more economical than the pot-furnace system, the cost of installation and other factory equipment is much greater. As a result the location of the tank factory is mgre apt to be selected with respect to permanency than is the case with the pot-furnace factory. The operation of tank furnaces by gas produced from coal has proven very satisfactory, both as to the quality of glass produced and cheapness of cost, indicating, in view of the failing supply of natural gas, the fuel likely soon to be in most general use.

The census year covered a portion of a period of great activity in window glass factory construction on a large and permanent scale, an activity possibly the
greatest in the history of the industry. For several years prior to 1900 the establishments operating the largest proportion of the capacity had been getting into closer relations as to regulation of prices and factory operation, resulting in the more or less constant maintenance of an exceptionally good price list. These high prices attracted new capital into the field, and during the census year there were over 30 factories reported which were built within two years. At the close of the census year about 30 window-glass factories were either building or definitely planned, notwithstanding the fact that during the year a close combination of establishments, controlling about 65 per cent of the total capacity, had been effected and prices had been sharply cut to discourage further erection of factories.

In 1900 there were 100 establishments reported as manufacturing window glass, an increase of 19 per cent over the number reported in 1890, and 104.1 per cent over the number reported in 1880 . Only 19 more melting furnaces were reported in 1900 than were reported in 1890 , but, owing to the greater capacity of the tank, the gain in total pot capacity was 87 per cent. In 1900 there were 165 melting furnaces reported, with a total capacity of 2,429 pots; 146 furnaces of a total capacity of 1,299 pots in 1890 ; and 76 furnaces with a capacity of 665 pots in 1880 ; showing a gain since then of 117.1 per cent in number of furnaces, and 265.3 per cent in pot capacity. In 1900 the production was $4,341,282$ boxes, valued at $\$ 10,879,355$; in $1890,3,768,884$ boxes, valued at $\$ 9,058,802$; and in $1880,1,864,734$ boxes, valued at $\$ 5,047,313$. There is indicated an increase of 15.2 per cent for 1900 over 1890 in the number of boxes produced, and an increase of 20.1 per cent in the total value of products. Compared with 1880 , the number of boxes produced in 1900 increased 132.8 per cent, and the total value of product increased 115.5 per cent. The average value of a box of window glass (50 square feet), according to the census returns in 1900 was $\$ 2.51$; in $1890, \$ 2.40$; and in 1880, $\$ 2.71$.

Of the 165 furnaces with a total capacity of 2,429 pots reported in 1900, 36 were tank furnaces of a total capacity of 1,327 pots and 129 were pot furnaces that contained 1,102 pots, a decrease from the number of pot furnaces and their total capacity as reported in 1890 , of 11.6 per cent and 15.2 per cent, respectively. The great increase in capacity in 1900 over 1890 is confined entirely to the tank furnace, but the total production of 1900 compared with 1890 is not in keeping with this increase, owing to the greatly restricted operation of the factories in 1900 , due to a "fire" averaging about six months as against a "fire" of ten months in 1890.
The distribution of the window glass capacity of active establishments in furnaces and pot capacity for

1900 is shown in the following statement, by states, in the order of their inuportance in capacity:

STates.	Number of estab-lishments.	Total of furnaces.	Total pot capacity	Number of tank furnaces.	Pot capacity.	Numpotiur naces.	Number of pots.
United States.	100	165	2, 429	36	1,327	129	1,102
Indiana	46	83	1,109	17	601	66	508
Pennsylvania	32	48	960	14	588	34	372
Ohio Je......	6	10	128	\bigcirc	66	8	62
New Jersey	4 5	6 5	96 40	3	72	3 5	24 40
Maryland	2	5	28			5	28
West Virginia	2	3	22			3	22
Delaware.	1	2	16			2	16
Massachusetts	1	2	18			2	18
Illinois.	1	1	12			1	12

The bulk of the capacity of Indiana was in the counties of Grant, Blackford, Madison, Delaware, and Jay, located in the "gas belt." The capacity in Pennsylvania was largely confined to the Pittsburg district and McKean county. The Obio plants were at Barnesville, Lancaster, Findlay, and Quaker City. The largest proportion of the capacity located in New Jersey was in Cumberland county. In New York there were 5 factories, 3 of which were in Ithaca, and 1 each in Canastota and Durhamville. The 2 factories in Maryland were located in Baltimore. There was 1 factory in Delaware, located at Wilmington. The only plant in Massachusetts, which was originally established in 1853, was at Berkshire. About 75 per cent of the total capacity was controlled from Pittsburg, Pa., the headquarters of the American Window Glass Company, and about ten other companies. The former owned 39 plants during the census year.

At the close of the census year there was either building or definitely planned new capacity amounting to over 600 pots. Over 100 of these new pots were located in West Virginia; nearly 250 in the district of McKean county, Pa.; about 75 in the coal fields of Illinois and Indiana; 75 in southern New Jersey; and about 75 in the "gas belt" of Indiana.
One feature of the manufacture during the census year was the notable scarcity of skilled workmen. This scarcity, together with the increase in the capacity of the plants, made the total capacity greatly exceed the supply of skilled workmen available for its operation in the four divisions of the work, gathering, blowing, flattening, and cutting. The supply of workmen was about sufficient to operate 2,000 pots, and owing to the strong organization of the men and their strict rules of admission, no considerable relief was possible. The result was that the skilled workmen dominated the industry as seldom before in the history of the trade. The wage scales were the highest in years, and most profitable inducements were offered in addition by manufacturers to secure men for their plants. Every window-glass factory in the country operates under union rules, and the wage scales are settled for each
"fire" at conferences of committees representing the manufacturers and the union.
The 5 companies of a "miscellaneous" character shown in Table 13 were all cooperative and engaged in the manufacture of window glass, most of them having been established within the census year, and were financially supported by the union, which loaned money proportioned on the pot capacity of each plant. There were 2 establishments of this character reported in the pressed and blown ware and bottle and jar branch of the industry. It should be stated, in this connection, that there were in the glass industry in addition 9 incorporated establishments of a cooperative character operating under charters, which in all the tables are included under the bead of corporations. They are in all essential particulars cooperative associations. This movement toward cooperation arose from the desire to secure more work during the year, the capacity of the factories having been for some time so much in excess of current consumption that the "run" of the factories had been getting less each year, averaging about six months where it was formerly ten. The past record of cooperation in the window glass industry of the United States has been unsatisfactory, all going well as long as the market conditions were good, but financial ruin usually appearing with any depression in the trade. The indications at present are very favorable for cooperative manufacture, and it will probably spread very rapidly in the industry in the near future. The greatest impetus it receives comes from the scarcity of workmen, which is leading manufacturers to organize companies in which a large share of the stock is held by the workmen, who are thus less likely to be tempted away by offers from other manufacturers.
Along with these quasi-cooperative companies many real cooperative companies, composed entirely of the men in the factory, are being established, especially among the Belgian workmen, who form a considerable proportion of the entire working force. The windowglass workers compose the only body of organized workmen in the building-glass manufacturing industry of this country, there being no organization among the plate-glass workers, from whom very little skill is required, machinery doing practically all the work in the factory.

The question of machinery is beginning to agitate the window-glass industry. So far, practically the entire process of manufacture requires skilled hand labor. The growing scarcity of workmen has stimulated efforts to perfect a mechanical process which will do the work now done by the gatherer and blower, and it is probable that eventually the smaller sizes of window glass will be successfully manufactured by machinery.

The average normal consumption of window glass in the United States is estimated at $5,400,000$ boxes a year. A considerable portion of this demand is supplied by innported glass, chiefly from Belgium. This market
han for years received the surplus window glass of that country, and any advance in American prices at once results in increased importations. The 50 -foot box of single strength foreign glass weighs about sixty-two and one-half pounds, and the 50 -foot box of double strength, about ninety-two and one-half pounds. In reducing the number of pounds of imported glass to boxes, the average weight of a box is placed at 70 pounds, and it is estimated that 25 per cent of the total glass imported is double strength. The total importation of window glass for the year ending June 30, 1900, was $51,343,339$ pounds, or 733,476 boxes, valued at $\$ 1,555,924$. There were imported $47,202,267$ pounds in 1899; $38,908,992$ pounds in 1898; $55,961,813$ pounds in 1897; $53,182,301$ pounds in 1896; $40,786,279$ pounds in 1895; $52,437,068$ pounds in 1894; $63,715,989$ pounds in 1893; $72,682,127$ pounds in 1892; $58,932,738$ pounds
in 1891; and $73,112,550$ pounds in 1890. A strike, which was threatened in the Belgian factories at the close of 1900 , caused a sharp decrease in the importation of window glass in 1901. The quantity imported during the year ending June 30, 1901, was $27,285,607$ pounds.

The American window glass exported during the year ending June 30, 1900, was valued at $\$ 36,218$, and in 1899 at $\$ 32,690$. The domestic glass can not compete with the cheaper foreign glass, yet an increasing quantity of American window glass is going into Mexico, Canada, and the West Indies.

PRESSED AND BLOWN GLASS AND BOTTLES AND JARS.

Table 8 presents comparative statistics, by states, of the manufacture of pressed and blown glassware and bottles and jars, for 1890 and 1900.

Table 8.-COMPARATIVE STATISTICS, PRESSED AND BLOWN GLASS AND BOTTLES AND JARS, BY STATES: 1890 AND 1900.

states.	Year.	Number of estab-lishments.	Capital.	SaLARIED offiCIATS, CLERKS, ETC		average number of wage-earners and total wages.							
						Total.		Men, 16 years and over.		Women, 16 years and over.		Children, under 16 years.	
				Number.	Salaries.	Average number.	Wages.						
United States.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	$\begin{aligned} & 231 \\ & 194 \end{aligned}$	$\begin{aligned} & \$ 34,806,781 \\ & 22,613,274 \end{aligned}$	1,653 1803	+1, 980,393	40,916 32,910	$\begin{array}{r} 8: 18,055,037 \\ 13,726,058 \end{array}$	30,372 24,431	$\begin{array}{r} 915,901,620 \\ 12,472,385 \end{array}$	3,509 1,818	$\begin{gathered} \$ 835,100 \\ 311,652 \end{gathered}$	$\begin{aligned} & 7,035 \\ & 6,661 \end{aligned}$	$\begin{array}{r} 81,318,317 \\ 942,020 \end{array}$
1llinois.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	5 8	$\begin{aligned} & 2,143,558 \\ & 1,353,978 \end{aligned}$	$\begin{aligned} & 71 \\ & 28 \end{aligned}$	106,600 40,210	3,291 2,291	$1,515,785$ 937,515	2,594	$1,491,391$ 871,420	$\begin{array}{r}148 \\ 20 \\ \hline\end{array}$	$\begin{array}{r} 28,456 \\ 3,860 \end{array}$	$\begin{aligned} & 549 \\ & 524 \end{aligned}$	$\begin{aligned} & 95,939 \\ & 62,235 \end{aligned}$
Indiana	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	59 10	$\begin{array}{r} 5,694,974 \\ 659,463 \end{array}$	285 7 7	375,122 30,305	$\begin{aligned} & 9,103 \\ & 1 ; 480 \end{aligned}$	$\begin{array}{r}\text { 3,974, } \\ \mathbf{5 5 4 ,}, 628 \\ \hline\end{array}$	$\begin{aligned} & 7,002 \\ & 1,134 \end{aligned}$	$3,557,923$ 514,903	$\begin{aligned} & 634 \\ & 180 \end{aligned}$	$\begin{array}{r} 129,808 \\ 21,951 \end{array}$	1,467 166	$\begin{array}{r} 286,497 \\ 17,756 \end{array}$
Maryland	1900 1890	5 5	$\begin{aligned} & 479,534 \\ & 371,205 \end{aligned}$	29 10	36,576 9,768	$\begin{aligned} & 657 \\ & 762 \end{aligned}$	$\begin{aligned} & 275,354 \\ & 358,783 \end{aligned}$	477 448	$\begin{aligned} & 249,755 \\ & 317,005 \end{aligned}$	$\begin{aligned} & 54 \\ & 24 \end{aligned}$	$\begin{aligned} & 8,673 \\ & 6,864 \end{aligned}$	$\begin{aligned} & 126 \\ & 290 \end{aligned}$	$\begin{aligned} & 16,925,914 \end{aligned}$
Massachusetts.	$\begin{array}{r} 19900 \\ { }_{2} 1890 \end{array}$	4	265, 945	38	27,660	37 F	179,329	331	169,891	19	4,392	25	5,046
New Jersey.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	22	$\begin{aligned} & 5,178,672 \\ & 2,776,971 \end{aligned}$	$\begin{aligned} & 309 \\ & 130 \end{aligned}$	$\begin{aligned} & 278,634 \\ & 116,331 \end{aligned}$	$\begin{aligned} & 5,163 \\ & 4,506 \end{aligned}$	$\begin{array}{r} 2,299,500 \\ \mathbf{2 , 0 0 9}, 916 \end{array}$	$\begin{aligned} & 4,136 \\ & 3,553 \end{aligned}$	$\begin{aligned} & 2,115,061 \\ & 1,888,694 \end{aligned}$	$\begin{array}{r} 170 \\ 42 \end{array}$	$\begin{array}{r} 32,726 \\ 8,405 \end{array}$	$\begin{array}{r} 847 \\ 1,011 \end{array}$	$\begin{aligned} & 151,713 \\ & 112,817 \end{aligned}$
New York	1900 1890	20		106 45	124,538 52,400	2,328	$1,140,973$ $1,054,934$	1,975	$1,075,992$ 952,903	73 92	$\begin{aligned} & 17,831 \\ & 17,025 \end{aligned}$	$\begin{aligned} & 280 \\ & 544 \end{aligned}$	$\begin{aligned} & 47,150 \\ & 85,006 \end{aligned}$
Ohio.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	21	$\begin{aligned} & 3,412,379 \\ & 2,979,987 \end{aligned}$	$\begin{aligned} & 174 \\ & 163 \end{aligned}$	$\begin{array}{r} 226,459 \\ 171,519 \end{array}$	$\begin{aligned} & 4,059 \\ & 6,134 \end{aligned}$	$\begin{array}{r} 1,691,378 \\ 2,037,452 \end{array}$	$\begin{aligned} & 3,028 \\ & 3,752 \end{aligned}$	$\begin{aligned} & 1,468,952 \\ & 1,886,233 \end{aligned}$	$\begin{aligned} & 405 \\ & 538 \end{aligned}$	$\begin{aligned} & 96,017 \\ & 74,227 \end{aligned}$	$\begin{aligned} & 636 \\ & 844 \end{aligned}$	$\begin{aligned} & 126,409 \\ & 126,992 \end{aligned}$
Pennsylvania	1900 1890	73	$\begin{aligned} & 13,626,067 \\ & 10,743,199 \end{aligned}$	$\begin{aligned} & 535 \\ & 320 \end{aligned}$	$\begin{aligned} & 675,368 \\ & 373,488 \end{aligned}$	$\begin{aligned} & 12,961 \\ & 13,111 \end{aligned}$	$\begin{aligned} & 5,580,771 \\ & 6,469,828 \end{aligned}$	$\begin{aligned} & 8,768 \\ & 9,652 \end{aligned}$	$\begin{array}{r} 4,658,460 \\ 4,898,848 \end{array}$	1,526 699	$\begin{aligned} & 409,349 \\ & 139,956 \end{aligned}$	$\begin{aligned} & 2,667 \\ & 2,760 \end{aligned}$	$\begin{aligned} & 512,962 \\ & 431,024 \end{aligned}$
West Virginia	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	14	$\begin{array}{r} 1,265,624 \\ 825,313 \end{array}$	$\begin{aligned} & 80 \\ & 34 \end{aligned}$	93,016 46,946	$\begin{aligned} & 1,886 \\ & 1,371 \end{aligned}$	$\begin{array}{r} 734,676 \\ 511,079 \end{array}$	$\begin{array}{r}1,258 \\ \hline 970\end{array}$	$\begin{aligned} & 603,817 \\ & 446,349 \end{aligned}$	$\begin{aligned} & 468 \\ & 190 \end{aligned}$	$\begin{array}{r} 103,748 \\ 32,632 \end{array}$	$\begin{aligned} & 150 \\ & 211 \end{aligned}$	$\begin{aligned} & 27,111 \\ & 32,098 \end{aligned}$
All other states ${ }^{3}$.	$\begin{aligned} & 1900 \\ & 1890 \end{aligned}$	8 13	$\begin{array}{r} 841,125 \\ 1,395,267 \end{array}$	$\begin{aligned} & 27 \\ & 46 \end{aligned}$	$\begin{aligned} & 35,420 \\ & 63,482 \\ & \end{aligned}$	$\begin{aligned} & 1,093 \\ & 1,650 \end{aligned}$	$\begin{aligned} & 563,042 \\ & 791,941 \end{aligned}$	$\begin{array}{r} 803 \\ 1,306 \end{array}$	$\begin{aligned} & 510,377 \\ & 745,031 \end{aligned}$	$\begin{aligned} & 12 \\ & 33 \end{aligned}$	$\begin{aligned} & 4,100 \\ & 6,732 \end{aligned}$	$\begin{aligned} & 278 \\ & 311 \end{aligned}$	$\begin{aligned} & 48,565 \\ & 39,178 \end{aligned}$

1 Includes proprietors and firm members, with their salaries; number only reported in 1900, but not included in this table. (See Table 14.)
${ }^{2}$ Included in "a other states."
${ }^{3}$ Includes establishments distributed as follows: 1900-California, 1; Colorado, 1; Georgia, 1; Michigan, 1; Missouri, 1; Virginla, 2; Wisconsin, 1. 1890-California, 1; Colorado, 1; Georgia, 2; Kentucky, 2; Maryland, 2; Massachusetts, 2; Missouri, 2; Wisconsin, 1.

Table 8.-COMPARATIVE STATISTICS, PRESSED, AND BLOWN GLASS AND BOTTLES AND JARS, BY STATES: 1890. AND 1900-Continued.

[^171]Table 8.-COMParative statistics, Pressed and blown glass and bottles and Jars, by states: 1890 AND 1900-Continued.

1 Included in "all other states."
${ }^{2}$ Includes establishments distributed as follows: 1900-California, 1: Colorado, 1; Georgia, 1; Michigan 1 ; Missouri, 1; Virginia, 2; Wisconsin, 1. 1890-California, 1; Colorado, $1 ;$ Georgia, 2; Kentucky, 2; Maryland, 2; Massachusetts, 2; Missouri, 2; Wísconsin, 1.

Table 8 shows that there were 231 establishments engaged in the manufacture of pressed and blown ware and bottles and jars during the census year, as compared with 194 in 1890, an increase of 19.1 per cent. Of the number in operation in the census year, 84 manufactured pressed and blown flint and lime glassware, such as tableware, jellies, common tumblers, goblets, lamps, chimneys, lantern globes, shades, globes, gas and electric lighting goods, blown tumblers, stem ware, bar ware, opal ware, cut glass, etc. The remaining 147 establishments manufactured bottles and jars in every variety of flint, green, and amber glass. As several establishments had products in both of the above classes and a fair division of their business in each branch could not be made, it was necessary to consolidate the reports of the two divisions. The total value of pressed and blown ware and bottles and jars in 1900 was 45.4 per cent in excess of that reported in 1890 , the totals being $\$ 39,443,478$ and $\$ 27,122,708$, respectively. Of the total value of pressed and blown ware and bottles and jars in 1900, 55.9 per cent was the value of bottles and jars and 44.1 per cent that of pressed and blown ware, as shown in Table 14. Of the total value of all glass manufactured during the census year, the value of bottles and jars was 38.3 per cent and that of pressed and blown ware, 30.2 per cent.
Pennsylvania ranks first with 32.4 per cent of the total value of products in the manufacture of pressed and blown ware and bottles and jars in 1900. It was first also in 1890 , with 39.7 per cent of the total value of products. Indiana, owing to its natural gas, ranked second in 1900 , with 22.9 per cent, and sixth in 1890 , with 4.3 per cent of the value of products. New Jersey was third in both 1900 and 1890 , with 12.2 and 14.4 per cent of the value of products, respectively. Ohio was in fourth place in 1900 , with 9.8 per cent of the value of products, but in 1890 was second, by reason of its gas fields, with 15 per cent of the total value of products. Illinois in 1900 retained the rank held in 1890 , fifth place, while New York dropped from fourth place in 1890 to sixth place in 1900 , on account of the western movement of the factories during the last decade. Reference to Table 14 shows that Pennsylvania leads in the production of pressed and blown ware, reporting 49.5 per cent of the total value of products, while Ohio and Indiana, the next two in rank, report 16 per cent and 15.8 per cent, respectively. West Virginia and New York report 8.1 per cent and 6.9 per cent, respectively. Indiana was the leading state in 1900 in the manufacture of bottles and jars, showing 29.2 per cent of the total value of products; New Jersey, 20.5 per cent; Pennsylvania, 19.2 per cent; Illinois, 12.4 per cent; New York, 5.5 per cent; and Ohio, 4.9 per cent.

The number of establishments reported in 1900 as engaged in the manufacture of pressed and blown lime and flint glassware and bottles and jars was 65.1 per cent of the total number of glass-manufacturing estab-
lishments of all kinds. In 1890 they were 66 per cent of the total number. The amount of capital invested in this branch of the industry in 1900 showed an increase of 53.9 per cent over 1890. The average nunber of wage-carners employed in 1900 was 24.3 per cent greater than in 1890 , while the total amount of wages paid showed an increase of 31.5 per cent over 1890. There was an increase of 24.3 per cent in the average number of men employed and 27.5 per cent in their wages; the number of women increased 93 per cent and their wages 168 per cent. The increase in the number of women employed was due largely to the development of the manufacture of decorated ware during the last decade, giving employment to many young women. The average number of boys (practically all children in glass factories are boys) increased only 5.6 per cent and their wages 39.9 per cent. The small increase in the number of boys between 1890 and 1900 was due largely to the strict enforcement of the truant school laws in the principal glass-manufacturing states, which caused a great scarcity of boys, particularly in the bottle factories, and also largely accounted for the increase of 39.9 per cent in wages. The difficulty of obtaining boys is confined to establishments making pressed and blown ware and bottles and jars, practically none being employed in building-glass factories. Their chief duty is to carry the ware from the blower or presser to the annealing department and to attend to the molds, important items in the operation of the factory, so that their absence causes a general curtailment of production.

One result of this state of affairs was a general effort to invent means for dispensing with boy labor. One apparently practicable plan to this end is the use of a portable sheet-iron box or oven, capable of being kept at a satisfactory temperature, into which the ware is placed as it comes from the mold. When the "iron boy" is filled, two laborers carry it to the annealing department and unload the ware into the annealing ovens or lehrs. In this way, it is claimed, several laborers can handle the production of the factory with as much speed and at less cost than when boys are employed. As a result of a recent scarcity, the plan of employing young women or girls was agitated, but this aroused such a storm of indignant protest from all workers that it was never put into operation.
The total cost of materials used in 1900 in pressed and blown ware and bottle and jar manufacture was 60.3 per cent greater than in 1890 . The total cost of fuel reported in 1900 is 54.4 per cent in excess of the total reported in 1890, the reported value of natural gas used being 82.2 per cent greater; however, a number of establishments owning their source of supply in 1890 and 1900 made practically no report of cost for gas fuel, but charged the expense against cost of maintenance. A remarkable increase in the use of oil as a fuel is shown, the number of gallons used being 659.1
per cent greater in 1900 than in 1890 , while the cost increased 533.4 per cent. The average cost per gallon in 1900 was 3.2 cents, as compared with 3.9 cents in 1890. Ninety-four and three-tenths per cent of the quantity of fuel oil reported as used in glass manufacture in 1900 was used by the factories which manufactured pressed and blown ware and bottles and jars. A large number of small tanks operated with fuel oil, and a large quantity was used in the glory holes, the number of which in the entire industry in 1900 was 61.3 per cent in excess of the number reported in 1890. There was an increase of 57.3 per cent in the quantity of coal used and an increase of only 7.8 per cent in the cost. The average cost per ton in 1900 was $\$ 1.52$, as compared with $\$ 222$ per ton in 1890. The increased use of the tank furnace, with coal-gas producers using a cheap grade of slack coal, was the cause in a large measure of this decided decline in the average cost per ton.

The total number of furnaces in this branch of glass manufacture in 1900 shows an increase of 52.6 per cent over the number reported in 1890 , and the total pot capacity increased 113.7 per cent; of this capacity, 54.8 per cent is contained in continuous and day or intermittent tank furnaces, which were of insignificant number prior to 1890 . The use of the continuous tank in this branch of the industry is confined almost entirely to the bottle and jar trade, only 10 being reported in the pressed and blown ware establishments. Bottles of all kinds are being made from the continuous tank, and the bulk of the fruit jar and beer bottle production is made in this manner. Within the last few years flint glass for bottles and jars of such a fair quality has been made in the tank furnace that, taken in connection with the cheaper cost of production and the increased output, flint glass made in tanks for bottleware is rapidly superseding the pot-made flint glass. The adoption of the tank for manufacturing flint-glass bottles has been so general that at the close of the census year the flintglass bottle blowers, numbering over 2,000 , who since 1878 had been joined in a trades union with workmen in 13 other branches of the flint-glass trade, were preparing to leave that association and join with the green bottle blowers' union. This step was finally taken one year later by a large number.

A small decrease in the total number of annealing ovens in use in pressed and blown ware and bottle and jar manufacture was reported in 1900 as compared with 1890, and at the same time the number of annealing lehrs increased 71.1 per cent, showing that the annealing oven is being displaced by the faster and more economical lehr. The principle of the oven method of annealing is the gradual reduction of the heat, while the lehr method is based on the principle of gradually withdrawing the glass from the heat. The new method lends itself more readily to scientific exactness in securing results and, being continuous in operation, makes it
possible to handle the increased output of the factory in much less time and at smaller cost.

The manufacture of bottles and jars is the oldest branch of the glass industry in this country, the first glass factory, at Jamestown, Va., in 1608, probably operating exclusively on bottles. It has always formed a prominent part of the industry and in the last decade has made greater progress than any other branch of glass manufacture. The tank furnace, machinery, and improved factory equipments and facilities have resulted in a large increase in the value of products.

Specialization is the prevailing characteristic. A few years ago it was customary for each establishment to manufacture a large variety of ware, and the workman as a rule was accustomed to make a little of everything; but it is now the tendency to restrict the output of the factory to a particular article, and the workman is an expert in one branch of his trade, the general workman having given way to the specialist capable of maintaining the highest speed. This specializing tendency is particularly marked in the manufacture of fruit jars and beer bottles. For years bottles were made in connection with window glass from the same furnace. A survival of this is present in the trade to-day with 5 establishments, manufacturing both window glass and bottles; separate furnaces are used, however.

In no branch of the glass industry has the use of machinery made so great a change as in bottle and jar manufacture during the last decade, and especially the last four years. This applies particularly to the manufacture of fruit jars and wide-mouth ware, such as vaseline jars, jam jars, etc. Prior to 1890 the manufacture of machine-made wide-mouth bottles or jars was largely experimental, and practically no fruit jars had been made by machinery. Since that date the enormous production of small wide-mouth articles, such as vaseline jars, of which one establishment in New York uses $10,000,000$ yearly, has been made almost entirely by machines, while fully 90 per cent of the fruit jars are machine-made, and it is only a question of a very short time until the fruit jar will be made exclusively in this manner. The results so far attained indicate that in a few years the bulk of the entire wide-mouth bottle production will be made by machinery.

Prior to the use of machinery, the method of manufacture of wide-mouth ware was to gather the glass from the furnace on a blowpipe, forming it to a suitable preliminary shape in a block or on a marver, and then inserting the glass in a mold and blowing to the desired form. After separating the glass from the blowpipe, a ragged edge of superfluous glass remained attached to the neck of the article, which had to be chipped and ground off to make the product salable. The manufacture of the Mason fruit jar, which since it was patented, in 1858 , has constituted 90 per cent of the fruit jar production, has been most completely revolutionized by machinery. Prior to 1896 the glass was gath-
ered from the furnace upon a blowpipe, was then blocked or rolled in a hollow block to get a preliminary shape, then swung by the blower and blown up, rolled on a flat slab or marver, and again blown until it was just large enough to admit of being inserted in the blow mold. The mass of glass was then put into the mold and blown up, so as to completely fill the mold and form a collar of surplus glass extending above the top of the jar about an inch and a quarter. Above this collar was the remainder of a thin bubble into which the blower had formed the glass outside the mold so as to separate it from the blowpipe. This collar and bubble constituted the "blow-over," which had to be removed before the jar was marketable. After being annealed the jar was taken by a workman who, with a file, chipped off most of the "blow-over" and then filed it down as smooth as possible, leaving about one-sixteenth of an inch of the collar remaining, which was finally removed from the jar by the grinding machine. Then the jar had to receive a thorough washing by hand to remove all particles of broken glass and sand resulting from the chipping and grinding. After being carefully dried, the jar was at last ready to pack. The speed with which it was necessary to perform the operations of chipping, grinding, washing, and drying made the risk of breakage great, being estimated at the rate of from 8 to 20 per cent.

By the use of machinery the costly "blow-over" is a a oided by first pressing the neck of the jar to finished form and then forming the body of the jar by blowing, so that when the jar leares the blow mold to be annealed it is, so far as form is concerned, a marketable article. The process patented July 11, 1882, by Philip Arbogast, of Pittsburg, Pa., has been the basis for all machinery used in the manufacture of jars and wide-mouth bottles. He employed two separate molds, a press mold and a blow mold. Sufficient glass to make the desired article was taken from the furnace on a solid rod or punty and dropped into the press mold, the required quantity being separated from the mass on the punty by shears in the hands of a workman. A lever operated by the workman then brought down a plunger into the mold, pressing the mouth or neck of the article to finished form and pressing a wind cavity in the dependent mass of glass to aid in the blowing operation. The plunger being withdrawn, the mold was opened, and the ring inclosing the pressed neck with the dependent mass of glass was carried to the blow mold and inserted, after which the body of the article was blown up to the desired form. From 1884 to 1893 this process was followed in a small way on large candy and druggists' jars, wide-mouth bottles, vaseline and jam jars, milk jars, and tableware, such as bowls, pitchers, sugars, and creams, but the principal products were large drug and candy jars, which, after having the necks pressed to the finished form, were taken out of the press mold and greatly increased in size by manipulation of the blower
before being placed in the blow mold. In 1893 the process began to be more extensively used on vaseline jars.

The idea of dispensing with the manual operation of transferring the glass from one mold to another was patented in England in 1886, both molds being combined into one by the use of sliding parts. About the same time the idea of placing a series of molds on a revolving table was also patented in that country, and patents were granted in the United States in 188.9 on both devices, but they were never put into practical use. In 1896 an American combined the consolidated mold and rotary table. On a rotating table is placed a series of five separate, duplicate, double molds, each mold containing an outer blow section having a ring integral with it in which the neck of the article is pressed, and a telescopic press section rising within the blow section and receiving the glass, forming, with the neck of the blow section, a press mold. The glass is dropped into the combined mold when in this press mold position, and the table rotated, bringing the mold under the plunger, which enters it and presses the neck, and wind cavity into the dependent mass of glass. The plunger is withdrawn, and another rotation of the table brings the mold under the blow stem, the telescopic press section of the combined mold having dropped in the meantime, exposing the glass blank within the blow section. The bottom plate is inserted and the air admitted to expand the glass blank to the form of the blow mold. The next rotation of the table brings the mold to where it is opened by a boy, and the finished article is taken out and removed to the annealing oven.

All of the above operations are performed simultaneously, a finished article being produced at each rotation of the table. On such a machine the first commercially successful machine-made Mason fruit jar was manufactured in July, 1896, at the plant of the Atlas Glass Company at Washington, Pa. The numerous jar and wide-mouth bottle machines now in use have either separate blow and press molds arranged near together on a revolving table so that the shifting of the glass from one to the other is almost instantaneous, or have the molds combined in one. In all, the basic principle is the pressing of the finished neck and the subsequent blowing of the body. Compressed air for blowing and electricity for motive power have added much to the speed of the operation. The machine has a much greater productive capacity than is possible by the old hand method of blowing, and has reduced the cost of manufacture more than a third. Loss by breakage has been reduced to a minimum, while the finish of the ware is far superior to that of the handmade article.
So far, the manufacture of narrow neck bottle ware by machinery is not beyond the experimental stage in this country, although commercial success is claimed in Germany and Russia. The claim is made by the best authorities that the manufacture of narrow neck bot-
tles by machinery will soon be perfected and become as general as the mechanical production of wide-mouth ware. The method employed at present in making narrow neck bottles is to gather a suitable amount of glass from the furnace on the blowpipe, to roll it on a marver or turn in a block, to swing and blow and again roll on the marver to give it the proper form for insertion in the mold, where it is blown, forming the body and neck of the bottle. The article is then taken from the mold and carried to the glory hole, where the top of the neck is reheated and the ring or lip of the bottle neck is formed by the workman with a finishing tool, after which the bottle is ready for annealing. The greatest advance made so far in the mechanical production of narrow neck ware has been in the finishing process, although the finishing machine, as yet, is used to but a limited extent.

The number of fruit jars reported in 1900 was 789,298 gross of differentsizes-pints, quarts, and half gallonsvalued at $\$ 2,935,036$. It is estimated that about 90 per cent of these were the Mason patent jar, which has a screw threaded neck for a metallic cap which presses down a rubber band on the shoulder of the jar, making a perfect seal. The other jars manufactured were more expensive kinds with special sealing devices, of which that with an all-glass top was the favorite. There were 34 establishments engaged in the manufacture of fruit jars during the census year, 6 of which made that class of ware exclusively. The largest fruit jar plant in the world, with a daily capacity of 240,000 jars, all machine-made, is in Indiana. Comparison with the statistics of the last two censuses shows a great development in this branch of the industry, caused principally by the introduction of the continuous tank in the last decade and the adoption of machinery within the last four years. In $1890,268,978$ gross of fruit jars were reported, valued at $\$ 1,390,430$. There was an increase of 193.4 per cent in the number manufactured in 1900 over 1890. The average value per gross in 1900 was $\$ 3.72$ as compared with $\$ 5.17$ in 1890 , a decrease of 28 per cent in the value per gross.

The statistics of fruit jars manufactured at the census of 1880 are incomplete, yet the total of 148,271 gross reported for Pennsylvania, New York, and New Jersey probably comprised very nearly the production of the entire country. The increase in the quantity manufactured in 1900 over 1880 was 432.3 per cent. No fruit jars were reported in Indiana in 1880; but this state headed the list in 1890 with 83,270 gross, valued at $\$ 440,657$, or 31 per cent of the total production, and also in 1900 with 559,549 gross, valued at $\$ 2,106,250$, or 70.9 per cent of the total production. Pennsylvania, which was first in 1880 in the manufacture of fruit jars, 67,770 gross having been reported, was third in 1890 , with a product of 47,250 gross, valued at $\$ 233,125$, and second in 1900 , with 115,000 gross, valued at $\$ 436,104$. Ohio was second in the manufacture of fruit jars in 1890
by reason of the discovery of natural gas, 60,726 gross, valued at $\$ 296,065$, having been reported, while in 1900 the number had dwindled to 2,000 gross of a special kind, valued at $\$ 8,000$. In 1880 there were 51,749 gross reported as manufactured in New Jersey; in 1890, 33,406 gross, valued at $\$ 181,410$; and in 1900 this state reached third place, with 61,871 gross, valued at $\$ 192,467$. In New York there were 28,752 gross manufactured in 1880; in 1890 there were reported 9,500 gross, valned at $\$ 55,000$; and 31,235 gross, valued at $\$ 128,965$, in 1900 , an increase in the number manufactured of 228.8 per cent over 1890. The statistics for Illinois show a large decrease in fruit jars manufactured since 1890 , the number reported in 1900 being 1,500 gross, valued at $\$ 9,000$, compared with 20,750 gross in 1890 , valued at $\$ 103,798$. In West Virginia, from which no fruit jars were reported in either 1880 or 1890 , there were manufactured 14,643 gross, valued at $\$ 43,750$, in 1900 .

At the close of the census year large quantities of fruit jars, roughly estimated at 340,000 gross, were being held in stock and were controlled by a selling agency formed among the principal manufacturers. A large portion of this stock was neld by one firm, which had thousands of jars stacked in an open field. This stock had accumulated for several years and was held in prospect of the approaching failure of the natural gas and the consequent advance in prices.

The manufacture of prescription bottles, vials, and druggists' ware was carried on by 77 establishments in 1900, several of the largest factories in the country being operated almost exclusively on this class of goods. The value of these products in 1900 was 21.5 per cent of the total value of all bottles and jars manufactured. The statistics reported in 1890 of bottles and jars manufactured are of no value for comparative purposes, as they were not complete. However, the total number of bottles reported in that year, exclusive of beer bottles, was $2,170,961$ gross. The average value per gross of this class of ware in 1900 was $\$ 1.92$, which was a considerable reduction from the value per gross in 1890. This was due to the increased quantity of ware produced from the continuous tank furnace. Of the total quantity of this class of ware manufactured in the United States in 1900, 30.2 per cent was made in New Jersey, constituting 28 per cent of the total value, the average value per gross for the state being $\$ 1.79$. Indiana ranked second, with 25.7 per cent of the total quantity and 25.4 per cent of the total value of the products, the average value per gross for the state being $\$ 1.90$. Pennsylvania, by reason of much of the product of that state being of higher grade, closely followed Indiana in the value of the products, producing 25.4 per cent of the total value and 22.7 per cent of the total quantity, the average value per gross being $\$ 2.12$. In Illinois 11 per cent of the total quantity and 8.7 per cent of the total value was manufactured, the average value per gross for
the state being \$1.52. A large part of the southern trade was supplied by that state. The manufacture of homeopathic vials was carried on by 4 glass making establishments. These vials were also made during the census year in a large number of small shops where the tubing is bought and reworked. No account of these shops is taken in this report. The American prescription bottle has no superior in form and finish, and is far in advance of the ware manufactured abroad. Export shipments of this class of ware direct from factories in 1900 were reported to Canada, Australia, South and Central America, Cuba, Great Britain, France, Africa, East Indies, China, and Japan, of a total value of $\$ 93,094$, which represented only a portion of the actual exportation, as the most of the trade was done through exporting houses.

The manufacture of beer, soda, and mineral water bottles in 1900 was reported by 75 establishments in 15 states, the total value of which was $\$ 5,075,068$, or 23.4 per cent of the total value of all bottles and jars manufactured. Several establishments were employed almost exclusively in the manufacture of beer and soda bottles, the bulk of the trade being done by them. Plans were being prepared at the close of the census year for 6 new establishments to manufacture beer and soda bottles exclusively, while increases of capacity among established plants were general, nearly all being in the line of continuous tanks. Demand for ware in the census year was extraordinary, the home consumption being unusually large, while large quantities of bottles filled with beer were shipped to Cuba and the far East. The export trade in beer and soda bottles with Mexico reached its highest development during the census year, direct factory shipments aggregating $21,1 \pm 7$ gross, valued at $\$ 66,333$, being reported for that country. The manufacture of mineral water bottles largely increased during the decade and was unusually large during the census year. By far the largest part of the production in this branch of the industry was made from the continuous tank furnace.

The general use of the tank and better facilities for the maintenance of a high rate of speed by the workmen have resulted in a great increase in the average factory output within the last ten years, yet consumption at the close of the census year was demanding still greater capacity, and prices were at a high point. In 1890 a production of 204,948 gross of beer bottles was reported, the figures probably not being complete, but showing nearly all of the country's production in that year; this was exceeded in 1900 by Illinois alone, with 4 establishments reporting. As in 1890, Illinois in 1900 was first in the manufacture of beer, soda, and mineral water bottles, with 26.3 per cent of the total value and 30.1 per cent of the total quantity manufactured in the United States. Pennsylvania ranked second in value of products, with 17.8 per cent of the total, but the quantity manufactured was only 10.9 per cent of the
total quantity. Establishments in Ohio reported 12.6 per cent of the total value and 16.2 per cent of the total number of gross, while the production in New York constituted 9.9 per cent of the total quantity and 9.3 per cent of the total value. A large percentage of the total value and quantity was reported under the head of "all other states," which came chiefly from Wisconsin and Missouri, each having a large establishment devoted to the exclusive manufacture of this class of ware. California, Colorado, Georgia, Michigan, and Virginia were the other states included under this head. New Jersey, with a production slightly less in quantity, led Indiana in the total value of beer, soda, and mineral water bottles manufactured. Following Indiana in this class of ware were Maryland, West Virginia, and Massachusetts, in the order named.
There were 81 establishments engaged in the manufacture of flasks and liquor bottles in 1900 , the total value of the products being 11.1 per cent of the total value of bottles and jars manufactured, Indiana heading the list with 50.2 per cent of the total value and 61.4 per cent of the total quantity. There were several small establishments equipped with tank furnaces in this state operating exclusively on flasks with very cheap gas fuel, and cheap unorganized labor, that created considerable demoralization in prices and in the trade of the old establishments. To counteract this, the American Flint Glass Workers' Union, to which the organized flask workers belong, at the close of the census year was erecting a tank factory in Indiana to be operated exclusively on flasks, which were to be sold at prices to compete with these new firms, and thus to either force them out of the business or cause them to uaintain prices and working conditions equal to those in force among organized manufacturers. This movement is unique in the history of trades unions, and is based on the principle that there is greater economy and efficiency in direct business competition than in the old method of taking men out on strike and supporting them on a relief roll. Pennsylvania was next to Indiana in the manufacture of flasks and liquor bottles, 14.5 per. cent of the total quantity and 18.6 per cent of the total value being manufactured in that state. Liquor bottles and flasks were also manufactured in California, Georgia, Illinois, Maryland, Massachusetts, Michigan, New Jersey, New York, Ohio, Virginia, West Virginia, and Wisconsin.
The manufacture of milk jars or bottles is practically a development of the last decade. The demand has steadily increased, causing a corresponding increase in the furnace capacity used in the manufacture of this class of ware. The manufacture of milk jars was reported in 1900 by 31 establishments, 13 of which were located in Pennsylvania. The total value of milk jars of all sizes manufactured in 1900 was 3.4 per cent of the total value of all bottles and jars manufactured. The average value per gross for the United States was
\$4.99. The mechanical production of milk jars is commercially possible, and it is probable that a large part of the product will be made by machinery during the present decade. The manufacture of milk jars was one of the most rapidly expanding branches of the glass trade at the close of the census year, the overwhelming merits of such a package for milk becoming more widely recognized and the demand steadily increasing. Pennsylvania led the productive list, with 55.1 per cent of the total quantity and 59.6 per cent of the total value. The percentages of the total quantity and total value of milk jars manufactured in the other states in 1900, are as follows: New Jersey, 13.5 per cent of the quantity and 14.7 per cent of the value; Indiana, 13.4 per cent of the quantity and 7.6 per cent of the value; Illinois, 5.1 per cent of both quantity and value; New York, 4.7 per cent of the quantity and 4.6 per cent of the value; Ohio, 4.1 per cent of both quantity and value; West Virginia, 3.1 per cent of the quantity and 3.2 per cent of the value.

The manufacture of bottles for patent and proprietary medicines is largely confined to the states of New Jersey, lllinois, and Indiana, although 47 establishments in 8 states were reported as engaged in the manufacture of such products. The value of bottles for patent and proprietary medicines manufactured in 1900 was 12 per cent of the value of bottles and jars of all kinds reported. The combined production of New Jersey, Ilinois, and Indiana was 88.6 per cent of the total quantity for the United States. Bottles of this kind are made of a cheaper grade than prescription bottles and are used in steadily increasing quantities, a large quantity being exported filled. New Jersey for a long period has been first in the manufacture of this class of ware, and in 1900 there was reported from that state 46.4 per cent of the total quantity and 53.7 per cent of the total value for the United States. From Illinois was reported 23.4 per cent of the total quantity and 19 per cent of the total value; and from Indiana 18.9 per cent of the total quantity and 14.5 per cent of the total value. Bottles for patent and proprietary medicines were also manufactured in Pennsylvania, New York, Ohio, Maryland, and Georgia.

The manufacture of bottles and jars for the packing and preserving industries, exclusive of the enormous production of fruit jars, has steadily advanced during the past decade, owing to the remarkable growth of the above interests and the increasing recognition of glass as the ideal package. In this branch of the bottle and jar industry the value of the product in 1900 was 9.8 per cent of the total value of all bottles and jars manufactured, and 45 establishments in 10 states reported. The products covered a wide range of glass food packages, the average value being $\$ 2.70$ per gross. The manufacture of machine-made ware in this line is increasing, although constituting as yet a very small proportion of the total. The 3 leading states in the
manufacture of bottles and jars for packers and preservers were New Jersey, Indiana, and Pennsylvanıa. In New Jersey, 35.6 per cent of the quantity and 29.3 per cent of the value of these products was manufactured; in Indiana, 31.6 per cent of the quantity and 32.4 per cent of the value; and in Pennsylvania, 14.5 per cent of the quantity and 19.8 per cent of the value. Illinois followed, with 10.3 per cent of the quantity and 9.2 per cent of the value. This class of ware was also manufactured in Ohio, New York, California, West Virginia, Maryland, and Georgia; these states reporting in the order given as to quantity and value of product.

The number of demijohns and carboys manufactured in 1900 was 88,243 dozens, valued at $\$ 206,061$. The average value per dozen for the several states varied with the proportion of the state's output of the more expensive carboy or the cheaper demijohn, the average value of the carboy being about twice that of the demijohn. New Jersey was first in the value of demijohns and carboys manufactured in 1900 , with 42 per cent of the total value, followed by Illinois with 23.8 per cent of the total value, Pennsylvania with 17.9 per cent, and New York with 9.2 per cent. Under the head of " all other products," bottles and jars which were not specified, valued at $\$ 940,277$, were reported. A large variety of ware was embraced under this head. During the census year the manufacture of large glass jars and retorts for laboratory use and for water coolers was successtully accomplished in this country, the process having been brought from France.

There was no such close organization of manufacturing interests in the bottle and jar industry during the census year as in the plate glass, window glass, and tableware industries. Eastern and western manufacturers of bottles have relied upon a common understanding to regulate prices, with varying success, particularly in some lines such as flasks and prescription bottles. The manufacture of beer bottles was controlled by a few firms, and very satisfactory results in keeping prices uniform were the rule. The prices of fruit jars were regulated by a selling agency agreement among controlling manufacturing interests. The workmen in both the green and flint bottle and jar trades were well organized and their rules as to duration of factory operation and a uniform scale of wages, which affected a large majority of the factories in all branches of glass manufacture, were the strongest factors in maintaining uniformity of prices. The green bottle blowers' organization, the Glass Bottle Blowers' Association, organized about 1877 , is one of the best managed and most progressive trades unions in the United States, and had a membership of about 4,000 and about $\$ 100,000$ in cash in the treasury at the close of the census year. The organization of flint or prescription bottle blowers numbered about 1,500 , and formed a branch of the American Flint Glass Workers' Union, one of the largest trades unions in the country. The scale of
wages and the duration of the summer stop of the factories are fixed each year at a meeting of a joint committee representing organized workers and manufacturers. The only company stores in the glass trade in 1900 were in the bottle and jar branch of the industry. There were 10 of these stores, but in only two instances were the glass workers compelled to trade with them, as had been customary a short time before, the blowers' union having conducted a successful strike chiefly against the company store system. In 1890, 20 company stores were reported, 11 in connection with factories making bottles and jars and glassware, 8 in window glass works, and 1 in the plate glass branch. In 1880 there were 27 reported, as follows: 13 in connection with factories making bottles and jars and glassware, 12 in window glass works, and 2 in the plate glass branch.
Table 9 is a statement, by states, of the number of bottles manufactured, classified by capacity.

Table 9.-number of bottles manufactured, ClasSIFIED BY CAPACITY, BY STATES: 1900.

STATES.	Bo'tties.		
	4-ounce and under, number of gross.	4 to $16-$ ounce, inclusive, number of gross.	Over 16-ounce, number of gross.
United States	2,462,694	3,055, 204	1,228,719
California.	4,600	22.486	25, 187
Georgia..	13,000	17, 000	7,350
lllinois.	428, 077	430,636	239,285
Indiana	562,345	872,318	199,947
Maryland	113,898	48,960	8,969
Massachusetts		4,865	1,561
Michigan .	3,876	10,425	1,670
Missouri .		46, 667	23, 333
New Jersey	764,385	614, 385	130,046
New York.	57,321	196, 790	254, 074
Ohio -.....	74,015	195, 054	94, 338
Pennsylvania	405,528	496, 670	199, 310
Virginia	34,000	22,000	9,000
West Virginia	1,649	34,948 42,000	6,649 28,000
Wisconsin. .		42,000	28,000

It is possible that the statistics presented in the above table are not strictly accurate, as several establishments were unable to furnish more than an estimate of the number of bottles of each size manufactured. The total number of the three classes of bottles exceeds the total number reported in Tables 12 and 14 as "prescriptions, vials, and druggists' ware," "beers, sodas, and minerals," "liquors and flasks," and "patent and proprietary." This is probably accounted for by the fact that a large number of bottles included in the statement were not reported under either of the foregoing classifications, but were reported on the schedule under " all other products."
Pressed and Blown Glassware.-Pressed and blown lead and lime glassware manufactured in the United States is characterized by purity of color, excellence of design and finish, and cheapness of cost. The United States has been preeminent in the manufacture of pressed glassware ever since the invention of the process, which
occurred about 1827 at a little plant in Sandwich, Mass., as the result of a suggestion of a carpenter who knew nothing of glass manufacture. His idea that molten glass could be pressed into any desired shape was at first regarded as absurd by experienced glass manufacturers. ${ }^{1}$ Prior to this all glassware was blown, either offhand or in a mold, which required much greater skill and more time than the pressing operation.

About 37 years after the first glass press was constructed another important discovery was made, which so improved the composition of the batch for lime glass: that, in purity and brilliancy, lime glassware was made to rival the more expensive lead glassware. Lime glass had been used in Europe and England for centuries in the manufacture of window glass, bottles and jars, and common tableware, and from an early period it had been used in the United States in the manufacture of tableware. But it was so inferior in purity and luster that it could not compete with lead glass, and was restricted to the cheapest and lowest grade of ware.

In 1864 , according to the authority noted above, William Leighton sr., a glass manufacturer of Wheeling, W. Va., by the substitution of bicarbonate of soda for soda ash, and a better proportion of the materials in the batch, manufactured a lime glass that equaled in beauty the finest lead glass. This placed lime glass on a basis of competition with lead glass at less than onehalf the cost. The almost immediate effect was a complete revolution in the manufacture, the production of lime glass rapidly increasing, while that of lead glass for tableware was soon reduced to a comparatively small quantity. The lime glass was not only cheaper, but had to be worked quicker than the lead glass, resulting, in connection with the use of the press, in a largely increased output.
The quantity of pressed ware manufactured has been greatly increased in the last decade by the removal of the arbitrary limit placed on the number of pieces to be made in a "turn" by the worker, and by the improvement of the old-style press by adding a rotating table carrying a series of molds, and operated by steam, compressed air, or electricity. The effectiveness of these improvements has been further increased by elaborating on the old wind system for cooling molds and workers. This iucrease in the speed of the old press without changing its basic form, and in that of the fire polishing and finishing operation, have been the notable changes during the last twenty years.
The effort to increase rapidity of production, especially in the last decade, was the principal characteristic of the pressed-ware trade. So well has this succeeded by the use of the improved press and continuous tank, that it has resulted in a large increase in the quantity manufactured, of common tumblers and jelly glasses, cheap, unfinished tableware, common lamps, etc., and a

[^172]large reduction in cost, although the best grade of pressed ware is still made on the old hand press. For years American pressed tableware has been unrivaled in brilliancy and in its close imitation of the real cat glass, the fire-polish finish being the greatest factor in this success. In beauty and variety of design, pressed tableware has equaled if not surpassed the roal cut ware, new designs being produced each year in great profusion and at large cost.

During the last decade great mechanical progress has been made in the blown glass branch of the industry, but not to such an extent as in the production of fruit jars. Since 1897 a large number of thin blown tumblers have been made by machinery, and the same machine has been successfully applied to the manufacture of lamp chimneys, although trade conditions have restricted its advantages and prevented its operation in the manufacture of the latter to the extent reached on tumblers. In the manufacture of both tumblers and lamp chimneys, the machine greatly increases the output and lessens the expense of skilled labor. The machine has a circular table revolving around a central column or standard, the table carrying a series of duplicate molds, usually six. After the ball of glass has been gathered from the furnace on the blowpipe to the size required for the desired article, it is placed in the mold, which is closed, and the blowpipe held in place perpendicularly over the mold by a clamping device at the top of the machine, which engages with the upper end of the blowpipe. Over the mouthpiece of the pipe is placed a rubber hose which leads to a supply of air, furnished either by a compressing pump, or, if light pressure is required, as with some tumblers, by a fan system. The mechanical rotation of the table admits the air into the pipe, which is kept revolving, and blows up the glass in the mold until it is ready to be turned out for the finishing process. Ingenious mechanism regulates the air pressure. The entire operation is performed with great rapidity and it is claimed that the output of the machine is limited only by the ability of the workmen to supply the glass. The mechanical finishing of ware is now engaging the special attention of manufacturers, and a completely mechanical process, requiring small labor cost to perform the entire operation of finishing the ware after its removal from the blowpipe or mold, is the object sought. Manufacturers generally are of the opinion that more real progress will result from improvements in the finishing process than from further improvements in the mechanical process of making the ware. While the high-speed machine is a success on ordinary ware, both pressed and blown, the manufacture of high-grade ware seems to require the sympathetic touch of the skilled workman.

The manufacture of pressed and blown ware in 1900 was done almost entirely in Pennsylvania, Ohio, Indiana, West Virginia, and New York, only 3.7 per cent of the total value of such products being reported in

Massachusetts, Illinois, Maryland, New Jersey, and Colorado. Specialization in manufacture was carried far in many lines, particularly in the manufacture of chimneys, tumblers, and lamps. Competition in nearly all lines was very active, particularly during the latter part of the decade, creating a strong tendency toward concentration of capacity along special lines, so as to manufacture at the lowest possible cost. The more rapid and safer handling of the ware, economy of working space in the factory, and facilities and conveniences for adding to the efficiency of the working force were considerations that received the greatest attention. Competition was so intense at the opening of the census year that all previous agreements between manufacturers as to prices were useless, and consequently prices of pressed and blown ware were unusually low. This was the principal cause of the formation of two close consolidations and additional general associations for the regulation of prices. The result was a decided improvement in prices during the latter half of the year. In July, 1899, a consolidation was effected of 7 establishments which manufactured lamp chimneys exclusively, and on November 1, 1899, 19 large pressed and blown ware establishments, equipped with about onehalf of the available capacity of the United States, making a general line of tableware, tumblers, and novelties, came under the control of one central company. In 1891 a similar consolidation of 13 tableware establishments, principally in the immediate neighborhood of Pittsburg, Pa., was formed, and the number of plants was increased later. During the census year this company operated only 6 factories, 3 of which were in Pittsburg.
In the early part of the census year nearly all the manufacturers of pressed and blown ware agreed in forming an association to effectively maintain prices, and so successful was this association that on many articles unusually low prices, caused by sharp competition, were succeeded by quite profitable prices, which were well maintained. The association in attaining this end enlisted the aid of the jobbers by the establishment of a liberal rebate system, similar in some respects to the plan adopted by the consolidation of window glass manufacturers in the same year, although the latter went to the extent of forming the jobbers into an incorporated body pledged to cooperate with the manufacturing interests. The several consolidated companies engaged in the manufacture of glass established their headquarters in Pittsburg, which city, although it had lost nearly all the glass factories that had made it famous as the center of American glass manufacture, controlled more completely than ever, at the close of the census year, the manufacture of glass in the United States. Pittsburg was also the headquarters of all the glassworkers' associations, except that of the green bottle blowers, which was at Philadelphia. A large majority of the skilled workmen in the pressed and blown ware
industry were members of the American Flint Glass Workers' Union, which was organized in 1878, and embraced the workmen in 14 different branches of the trade. The membership was about 7,000 and the treasury contained about $\$ 100,000$. By means of this organization the manufacture was carried on under a practically uniform wage scale and with concerted action as to factory operation.

The manufacture of tableware, which consists of pressed and blown articles in sets ranging from two or three pieces to over a hundred, of very great variety of form and size, was confined to the 4 states of Pennsylvania, Ohio, Indiana, and West Virginia, in the order named. Twenty-seven establishments reported products valued at $\$ 2,617,784$, or 15.3 per cent of the total value of all ware made in the pressed and blown division of the industry, and numbering $65,514,100$ separate pieces. There was a very great variety in the value of the different kinds of ware, but the average value per 100 pieces for the United States was $\$ 4$.

In Pennsylvania 55.7 per cent of the total quantity, and 60.6 per cent of the total value, was manufactured, and the average value per 100 pieces in that state was $\$ 4.35$. A large proportion of the product for the state was manufactured in the Pittsburg district. In Ohio 23 per cent of the total quantity, and 25.5 per cent of the total value, was reported, and the average value was $\$ 4.43$ per 100 pieces. The great bulk of the product was manufactured in the valley of the Ohio River. By the substitution of glass of a cheap quality made in tanks for glass made in pots, and worked with the press at higher speed than customary, and by dispensing with the fire-polishing operation, a class of cheap unfinished tableware and other glassware was manufactured in Indiana during the closing years of the last decade. This largely accounts for the fact that only 11.1 per cent of the total value of tableware manufactured in the United States, compared with 19.3 per cent of the quantity, was made in that state. The average value per 100 pieces was $\$ 2.31$. The manufacture of tableware in West Virginia was conducted entirely along the banks of the Ohio River, and 2 per cent of the total quantity, and 2.8 per cent of the total value, was manufactured there, at an average value of $\$ 5.48$ per 100 pieces. A considerable proportion of the product was blown ware.

Considerable rivalry exists among the manufacturers of pressed tableware in the production of attractive designs and decorations. Most of the ware is in imitation of cut ware, and so highly has the art been developed that a careful examination is frequently required to detect the difference. It is the custom with a majority of the establishments to offer new designs at the opening of each year, a large amount of money being expended to secure these designs and to prepare the required molds. The profitable life of a design, unless it is unusually popular, is limited to one season, its place being taken by some new idea expected to bet-
ter catch the popular fancy. A popular design will, in one season, prove extremely profitable, while the losses on unpopular designs are so great as to make the expression of the public's favor an exceedingly interesting matter to the manufacturers. Popular favor has changed in the last decade from imitation cut ware to plain ware, and from that to highly decorated ware, but the imitation cut ware has been in most constant demand, although within the last few years colored ware and plain crystal with gold decorations have been strongly favored. Within the last half of the decade the manufacture of colored ware, to compete with the influx of imported Bohemian ware, has been assuming shape, and it seems probable that this profitable field will not much longer be left wholly undisputed to the foreign manufacturer.

Tableware has long formed a large proportion of the exports of glass from the United States, by reason of its superiority of color and design. The export branch of the business received special attention in 1900 , traveling representatives having been sent through South America, Australia, and the United Kingdom, and a number of permanent agencies were established by the larger interests. For a long period large quantities of American tableware have been used in Canada, and a field of large proportions is being opened in Australia, one glass manufacturing establishment during the census year, having made a single direct shipment to that country of 10 cars, or about $1,500,000$ pieces, a small part of which was common lamps. Thirteen establishments reported exports direct from factory of a total value exceeding $\$ 100,000$, to Canada, Anstralia, Mexico, South America, Cuba, Hawaii, England, and Germany. This represented only a small part of the total exports of tableware during the census year, as the bulk of the trade was done through exporting houses. A growing tendency has been noted on the part of the manufacturers to export direct from the factories, and foreign needs are being closely studied with a view to the increase of the export trade in the future.

Jelly glasses and pressed tumblers and goblets, $102,528,600$ pieces in number, valued at $\$ 2,007,386$, were manufactured by 28 establishments in 5 states in 1900. The value of such ware was 11.8 per cent of the total value of all pressed and blown ware manufactured in the United States. The average value was 23 cents per dozen.

In Pennsylvania 36.4 per cent of the total quantity and 39.5 per cent of the total value was manufactured, and the average value for the state was 25.5 cents per dozen. The proportion manufactured in Indiana was 31.4 per cent of the total value and 35.7 per cent of the total quantity, at an average value of 21 cents per dozen. From Ohio was reported 9.6 per cent of the total value and 19.7 per cent of the total quantity, at an average value of 23 cents per dozen. The remaining 9.5 per cent of total value and 8.2 per cent of total quantity
was manufactured about equally in Maryland and West Virginia, at an average value of 27 cents per dozen. At the close of the census year two large establishments, intended solely for the manufacture of jelly glasses and tumblers, were being built in West Virginia, and a large establishment was being erected in Ohio for the manufacture of the same class of ware by machinery and methods that were expected to still further reduce the cost and increase the possible output.

At the censuses of 1880 and 1890 incomplete returns were made of the manufacture of tumblers and goblets. In 1880, 46,415 dozen "tumblers" were reported from Massachusetts, 409,713 dozen from Ohio, and 2,500,000 dozen from Pennsylvania. In 1890, 5,438,700 dozen "tumblers and goblets," valued at $\$ 555,273$, were reported as manufactured in Ohio; and 2,481,600 dozen, valued at $\$ 780,059$, in Pennsylvania. The use of jelly glasses and tumblers in the packing trade is steadily increasing and there has been a steady growth in the exports.

Lamps manufactured in 1900 numbered 807,765 dozens, valued at $\$ 1,498,675$, or $\$ 1.86$ per dozen. They were in many varieties, from the most common pressed lamps to those ornately fashioned, and their value was 8.8 per cent of the total value of all pressed and blown ware. By far the largest proportion consisted of the commonest pressed grades. The manufacture was confined to 6 states and 27 establishments, several of which made a specialty of highly decorated lamps. The largest factory in the world making decorated lamps exclusively was located in Pennsylvania. Great progress was made during the last decade in the manufacture of decorated lamps of a medium grade, and this branch of the industry is receiving increased attention.

In Pennsylvania 65.6 per cent of the total value and 56.4 per cent of the total quantity was manufactured, at an average value of $\$ 2.16$ per dozen. The largest proportion of Ohio's total product was common lamps; the quantity manufactured was 23.7 per cent of the total quantity, and the value 12.4 per cent of the total value, with an average value of 97 cents per dozen. In West Virginia, with the bulk of the production of decorated lamps, 18.4 per cent of the total value and 7.6 per cent of the total quantity was manufactured at an average value per dozen of $\$ 4.47$. The lamps manufactured in Indiana were largely of a cheap grade; the quantity manufactured was 10.1 per cent of the total quantity, and the value 2.9 per cent of the total value, at an average value of 53 cents per dozen. Lamps were manufactured also in New York and Massachusetts, the product of the former state being largely common lamps, and that of the latter a better grade of ware.

The use of the tank in lamp manufacture has made possible a considerable reduction in cost from that of the old pot-melting method which was in general use in 1890. The manufacture of pressed lamps has been steadily increasing, resulting in a large reduction in the cost of the common article.

The value of lamp chimneys manufactured in 1900 was $\$ 2,719,583$, the greatest in value of any single product reported under the pressed and blown glass branch of the industry, and was 15.9 per cent of the value of all pressed and blown glassware. The manufacture was reported in 6 states, but 90.4 per cent of the total value of products was manufactured in Indiana, Pennsylvania, and Ohio. The average value per dozen for the United States was 39 cents. Indiana led, with a product constituting 45.1 per cent of the total quantity and 44 per cent of the total value, the average value being 38 cents per dozen. Pennsylvania was second with 26.6 per cent of the total quantity and 23.5 per cent of the total value, at an average ralue of 35 cents per dozen. The quantity of lamp chimneys manufactured in Ohio was 21.9 per cent of the total, and the value 22.9 per cent; the average value per dozen was 42 cents. The remaining states in which lamp chimneys were manufactured were Illinois, New York, and Massachusetts. There were 27 establishments engaged in the manufacture.
A comparison of the statistics for 1900 with the incomplete statistics for 1890 and 1880 shows how the manufacture of chimneys has moved westward, following the natural gas and cheap fuel, and also gives some idea of the extent the production has been curtailed by the increased use of gas and electric light. The total number reported in 1890 was $7,534,473$ dozens, valued at $\$ 1,816,016$, and distributed as follows: Ohio, $4,025,120$ dozens, valued at $\$ 541,836$; Pennsylvania, 2,885,841 dozens, valued at $\$ 1,017,639$; New York, 623,512 dozens, valued at $\$ 256,541$. In 1880 the total number reported for the United States, no value being given, was $4,463,140$ dozens, distributed as follows: Pennsylvania, 2,719,649 dozens; New York, 888,639 dozens; Ohio, 743,140 dozens ; and Massachusetts, 111, 712 dozens. No lamp chimneys were reported as manufactured in Indiana in either 1880 or 1890 ; this state was first, however, in 1900 in this branch of the industry, and succeeded Ohio, which was the leading state in 1890. This change in the relative positions of these two states was coincident with a similar change in the supply of natural gas. A decrease of 8.4 per cent in the total quantity manufactured in the United States is shown from 1890 to 1900 , while the total value in 1900 exceeds that of 1890 by 49.8 per cent; this was due largely to the extremely low value reported for the product of Ohio in 1890, which was more than one-half of the total quantity reported at that time.

During the last decade the improvement in the manufacture of lamp chimneys was shown by better quality and a greater variety of design. There has been a large increase in the use of higher grade chimneys of special design. Special attention has been given to the package for fine grade ware, and a large number of such chimneys have, within the last few years, been packed in separate cartons, resulting in a decided improvement in appearance and in safety of shipment.

The manufacture of lamp chimneys by the blowing machine was limited to two factories in 1900, and in only one of these plants was it carried on extensively, being confined largely to a cheap class of goods. Machine-blown lamp chimneys will probably represent a large proportion of the production in the near future, although it is questioned if the bigher grades of chimneys will not require hand work. During 1900 the lamp chimney market was fairly well regulated by an agreement between the largest manufacturing interests, but a number of small establishments in Indiana were causing demoralization in lime glass chimneys, or the cheap grade of goods. During the census year the tank furnace became a factor in the manufacture of the common lime glass chimneys, 4 tanks being reported. Great strides had also been taken toward improved factory equipment for handling the ware; lehrs operated by electricity, electric conveyors to take the ware from the lehr to the packer and then to the stock room or car, were among the improvements made, together with a great increase in the rapidity of the finishing operation. A good export trade has been developed in this branch of the industry. Large shipments have been made for many years by export houses, but during the census year the manufacturers renewed attempts to reach the export trade direct, and a special effort to introduce the American lamp chimney into England was successful, 66,667 dozen chimneys being reported as sent direct from factory to England during the year. The remainder of the exports that were shipped direct from the factories were sent to South America and Mexico.

Lantern globes were manufactured during the census year in 6 states by 27 establishments, and the number reported was $1,044,816$ dozens, valued at $\$ 497,021$, or 2.9 per cent of the total value of all pressed and blown ware manufactured. The average value per dozen was 48 cents, the average value by states ranging from 25 cents to $\$ 1.17$ per dozen, depending upon the quality of the ware. There were two establishments employed exclusively in the manufacture of lantern globes, one in Indiana and one in West Virginia. The percentages of the product manufactured in the leading states, of the total for the United States, are as follows: Indiana, 52.4 per cent of the quantity and 35.4 per cent of the value, with an average value per dozen of 32 cents; New York, 15.5 per cent of the quantity and 38.2 per cent of the value, with an average value per dozen of $\$ 1.17$; Ohio, 13.7 per cent of the quantity and 14 per cent of the value, with an average value per dozen of 49 cents; West Virginia, 12.6 per cent of the quantity and 6.6 per cent of the value, with an average value per dozen of 25 cents; Pennsylvania, 5.6 per cent of the quantity and 5.4 per cent of the value, with an average value per dozen of 46 cents. A small proportion was manufactured also in Massachusetts. Indiana and West Virginia supplied the great balk of the out-
put of cheap lantern globes, while New York led in the manufacture of ware of a higher grade. There were no statistics of the manufacture published at the census of 1890 , but a great increase has been made during the decade. During the census year very active competition on the cheaper grades of lantern globes was developed. More than 10,000 dozen lantern globes were reported in 1900 as exported direct from the factories to Mexico and Central America; this represented but a small part of the total exportation.

The manufacture of pressed and blown shades, globes, electric bulbs, and glassware for gas and electric lighting ranked third in value of products in the pressed and blown ware branch of the industry in 1900 , being 14.6 per cent of the total. The shades and globes ranged in quality from the plain pressed Welsbach gas article to the most costly and artistic products in fine plain and colored glass, richly decorated, engraved, or etched. The manufacture of glassware for the Welsbach gas light had developed to a very large extent. Electric glassware, such as incandescent bulbs and are globes, formed a large item, although foreign competition in that line was quite active. The manufacture of gas and electric glassware has been largely a development of the last decade, and it is now one of the specialized lines of the industry. Although the increased use of gas and electricity has curtailed the use of the oil lamp in some quarters, yet a tendency has been shown toward the use of fancy lamps with highly decorated or ornamented shades and globes, more for decorative effect, probably, than real use, and this has greatly stimulated the production of globes and shades of a much higher quality in general than was ever before manufactured. The total production of shades, globes, and gas and electric goods in 1900 was manufactured in 7 states, from 3 of which, Pennsylvania, New York, and Ohio, 94.9 per cent of the total value was reported. There were 30 establishments engaged in the manufacture of these goods on a more or less extensive scale. The average value per dozen for the United States was 93 cents, the average value by states varying as the bulk of the output was cheap gas and electric ware or decorated shades and globes.

From Pennsylvania was reported 32 per cent of the total quantity and 58.1 per cent of the total value, the average value per dozen being $\$ 1.70$. Large quantities of medium-priced globes and shades, cheap gas goods, and a valuable production of globes and shades of the finest quality were manufactured in that state. In New York a large quantity of high-grade shades and globes, and a large output of electric bulbs were manufactured. The quantity of articles of this class manufactured was 11.7 per cent of the total, and the value 20.8 per cent, with an average value per dozen of $\$ 1.66$. A large number of electric bulbs was manufactured in Ohio, which was third in rank as to value of products, but was far in the lead as to quantity, with 52.3 per cent
of the total quantity reported and 16 per cent of the total value, the average value per dozen for the state being 28 cents. Shades, globes, and gas and electric goods were manufactured also in West Virginia, Massachusetts, Indiana, and New Jersey. Decorated shades and globes constituted the larger part of the product in West Virginia, and the product in Indiana was electric and gas ware, at an average value of 13 cents a dozen. Shades and globes were manufactured in Massachusetts, and in New Jersey the product was entirely electric bulbs. Great improvements have been made in the last few years in the package for shades and globes, nearly all the better grade being packed in separate cartons. The export trade has had a steady growth, but complete statistics were not obtained from the factories. A total of 44,200 dozen articles in this branch of the industry, mostly electric ware, was reported in 1900 as shipped direct from the factories to Canada, the West Indies, South America, and Australia. By far the largest proportion was exported to Canada.

Blown tumblers, stemware, and bar glasses, 6,127,367 dozen in number, were reported in 1900 by 17 establishments in 4 states. These products constituted 9.4 per cent of the value of all pressed and blown ware manufactured. The average value per dozen for the United States was 26 cents. The manufacture of this class of ware has become greatly concentrated, 94.3 per cent of the total value of products being reported from Pennsylvania and West Virginia. The percentages of the total quantity and total value manufactured in the two leading states are as follows: Pennsylvania, 57.3 per cent of the quantity and 69.3 per cent of the value, with an average value of 31 cents per dozen; West Virginia, 37.4 per cent of the quantity and 25 per cent of the value, with an average value of 17 cents per dozen. The remainder of the product was manufactured in Ohio and Indiana, the average value per dozen in Ohio being 25 cents, and in Indiana, 34 cents. The returns do not embrace the total production of blown tumblers, as many were reported under "cut glass," having received light cutting. A large proportion of the lower grade of blown tumblers manufactured in Pennsylvania was made on the blowing machine, but practically all the finer grades were made by hand. Great improvements in the finishing of this class of ware have been made in the last few years, and much of the "crackingoff" is done by a machine on which a gas jet is used in place of a wire, one machine, operated by a boy, having a capacity of 9,000 tumblers a day. Improvements in grinding machinery bave made it possible for two girls with one machine to grind 22,500 dozen tumblers in a week. For a long period blown tumblers, stemware, and bar goods have formed a large item in glass exports, being shipped to the principal countries of the world in steadily increasing quantities.
Decorated opal or porcelain glassware was very much
in favor with the public during the closing years of the last decade. It was made into small-piece sets, in an endless variety of novelties and toilet articles. In 1900 the manufacture of $3,750,443$ dozen pieces was reported, representing 9.3 per cent of the total value of pressed and blown glassware manufactured. In large part the decorations were of the cheapest kind, the average price per dozen for the United States being 42 cents. Twenty-six establishments in 6 states reported its manufacture, and 90.7 per cent of the total value of the products was made in Pennsylvania and West Virginia. Establishments in Pennsylvania made 78 per cent of the total quantity and 76.8 per cent of the total value, and in West Virginia 12.8 per cent of the total quantity and 13.9 per cent of the total value. Establishments in Indiana, Obio, Massachusetts, and New York were engaged also in manufacturing this class of ware. The great demand for decorated opal or porcelain glassware developed within the last half of the decade, and in 1900 its manufacture formed a prominent part in the operations of some of the largest pressed ware establishments in the country, leading to a large increase in the decorating facilities of those plants. The craze for opal ware was decreasing at the close of the census year and the production gave evidence of soon returning to normal proportions.

Cut glassware, 134,726 dozen pieces in number, valued at $\$ 672,463$, an average of $\$ 4.99$ a dozen, was reported by 12 establishments in 1900. This report does not cover the numerous glass-cutting establishments in which the basic material used is the glass blank and in which the manufacture consists merely in reworking the glass. A large portion of the cut glass reported from Pennsylvania and West Virginia was light-cut articles, such as tumblers, although there was 1 establishment in Pennsylvania engaged largely in the manufacture of cut ware of the highest grade. The percentages of the total quantity and total value manufactured in the several states are as follows: Pennsylvania, 42.2 per cent of the total quantity and 46.3 per cent of the total value, at an average value of $\$ 5.48$ per dozen pieces; Massachusetts, only 2.5 per cent of the total quantity but 21.8 per cent of the total value, the average value of $\$ 44$ per dozen indicating the manufacture of the richest cut ware; the same is true of Ohio, with only 2.2 per cent of the total quantity and 18.7 per cent of the total value, an average value per dozen of $\$ 43.45$. In West Virginia, with its large production of blown ware, practically all light cutting was done, the product averaging $\$ 1.23$ per dozen in value; the product of that state was 23 per cent of the total quantity, but only 13.1 per cent of the total value.

West Virginia was first in the number of pieces manufactured, although its product was practically all of the cheapest kind. A small product was also reported from Indiana. The largest part of the cutglass manufactured was made in establishments in which the glass was re-
worked only, and is not included in this report. A list of such establishments, published at the close of the census year, giving the number in each state, was as follows: New York, 21; Pennsylvania, 13; Illinois, 4; Connecticut, 2; and Massachusetts, Rhode Island, New Jersey. West Virginia, and Michigan, 1 each. The industry has had a large growth in the last decade, particularly during the latter part of it, the number of establishments having doubled and the number of frames operated more than trebled. The demand has steadily increased and the market widened as prices hare been lowered by competition. The popularity of pressed ware in imitation of cut ware shows the widespread desire for the real cut article. An improvement that will probably be made in the industry is the manufacture of the blank by pressing, increasing the speed of manufacture fourfold over the blowing process. It was for a long time the practice to import the blanks from France for most of the finest grade of ware cut in this country, but the domestic blank is now conceded by competent judges to be equal, if not superior, and is steadily supplanting the imported article. The superiority of American rich cut glass is generally acknowledged at home and abroad.

The amount reported as the value of all other pressed and blown ware products, $\$ 1,384,945$, includes a large variety of articles for different purposes. One item that has come into prominence during the last few years is the manufacture of prismatic glass for increasing the diffusion of sunlight in buildings. The product of the only establishment manufacturing glass play marbles in the United States, located in Ohio, is included in this total.

The value of all products other than glass reported by establishments manufacturing pressed and blown ware and bottles and jars was $\$ 690,562$, a large item being packages, particularly for lamp chimneys. According to some manufacturers, the profit in certain lines of chimneys lies entirely in the sale of the package.

MATERIALS.

Table 10 is a comparative summary of the quantity and cost of the materials used, with percentages of in crease, for 1890 and 1900.

Table 10.-QUANTITY AND COST OF MATERIALS USED, 1890 AND 1900, WITH PER CENT OF INCREASE.

	1900	1890	Increase.	Per cent of increase
Total cost.	\$16,731, 009	\$12,140, $98 \overline{\text { a }}$	\$4, 590, 024	37.8 57.5
Glass sand, tons.	581,720 $\$ 846,822$	$\begin{array}{r}\text { 369, } \\ \$ 899 \\ \hline 988\end{array}$	212, 1	15.9
Soda ash, tons.	157,779	96,777	61,002	63.0
Cost.......	\$2, 259, 939	\$3,108, 233	1 \$848, 294	127.3
Salt cake, tons	53,257	38,092	15, 165	39.8
Cost.....	\$518,590	\$604,179	1885,589	114.2 53.2
Nitrate of soda, ons	10,770 $\mathbf{8 2 0}, 987$	7,031 $\$ 278,291$	3,739 $\$ 42,646$	53.2 15.3
	Decrease.			

Table 10.-QUANTITY AND COST OF Materials used, 1890 AND 1900, WITH PER CENT OF INCREASE-Con.

The cost of materials used in the combined industry of glass manufacture in 1900 was 37.8 per cent greater than in 1890. In nearly all the principal materials, a comparison of returns for 1900 with those for 1890 shows a large increase in the quantity used and a decided decrease in the average cost per unit, notwithstanding the fact that in 1900 the prices of practically all glass-making materials were sharply advanced. An increase of 57.5 per cent is shown in the total number of tons of glass-melting sand reported used in 1900 over $1890,581,720$ tons being reported in 1900 and 369,328 in 1890. On the other hand, a decrease of 5.9 per cent in total cost is shown in 1900 from 1890, the total cost in 1890 being $\$ 899,998$, while in 1900 the total cost was $\$ 846,822$. The average cost per ton in 1900 was $\$ 1.46$ compared with $\$ 2.44$ in 1890. Glass sand of very fine quality in practically inexhaustible supplies, is found in many parts of the country, although the chief sources of supply are still, as they have been for many years, the Juniata Valley in Pennsylvania; Hancock county, West Virginia; the Fox River district in Illinois; and St. Charles, St. Louis, and Jefferson counties in Missouri. By far the largest proportion of the glass sand used comes from these deposits, although southern New Jersey still furnishes sand for a number of factories in the East, and sand of the finest quality still comes from Berkshire, Mass. The cost of transportation and the fine quality of more available deposits have considerably restricted the output from the latter locality. During the census year a considerable quantity of good glass sand came from Westmoreland county, Pennsylrauia.
The preparation of sand for the glass factories became a highly specialized business during the last decade, about a score of establishments being exclusively engaged in the industry, with elaborately equipped plants representing large investments. The active competition which developed among these establishments is:
principally accountable for the large decrease in price in 1900 compared with 1890. Eight establishments in the Juniata Valley were merged under one head during the census year and prices on all grades of sand were sharply raised. Many glass manufacturers, however, had contracted for their supply for the season during the period of low prices, and, in addition, two of the largest manufacturing interests were mining and preparing their own sand to a large extent, making it cost them considerably below the average. Competition has led to the greatest care and attention in the preparation of the glass sand and the maintenance of a high quality.
The supply of soda ash for glass manufacture formerly came almost entirely from England; but during the last decade, through the development of the Solvay process, practically all soda ash used in glass making was of domestic manufacture, coming mainly from Syracuse, N. Y., and near Detroit, Mich. A large plant was projected during the census year at Barberton, Ohio, by glass manufacturing interests. One of the greatest advances in the domestic manufacture of soda ash was the establishment during the decade of large works at Wyandotte, Mich., by glass manufacturers to directly supply their wants. The number of tons of soda ash reported in 1900 was 157,779 , compared with 96,777 tons in 1890, an increase of 63 per cent, while the total cost in 1900 was $\$ 2,259,939$, compared with $\$ 3,108,233$ in 1890 , a decrease of 27.3 per cent. The average cost per ton in 1900 was $\$ 14.32$, compared with $\$ 32.12$ in 1890. The demand for soda ash in 1900 was unusually large, exhausting the domestic supply and greatly increasing importations. This abnormal demand came from outside the glass industry, the textile industry using a large quantity, and is shown by the large increase of importations in 1900 over 1899 . As reported by the Bureau of Statistics of the Treasury Department, imports entered for consumption were $80,118,967$ pounds, valued at $\$ 665,104$, in 1900 , compared with $41,844,101$ pounds, valued at $\$ 304,549$, in 1899.

The salt cake used in glass making twenty years ago was nearly all imported, but the greater portion of the amount consumed in the census year was of domestic manufacture, many large chemical manufacturers furnishing it, to the almost total exclusion of the foreign product. Competition has lowered the average cost per ton 38.6 per cent from 1890 to 1900 , the average cost per ton for the respective years being $\$ 15.86$ and $\$ 9.74$. The number of tons used in 1890 was 38,092 , costing $\$ 604,179$, compared with 53,257 tons in 1900 , costing $\$ 518,590$, an increase in quantity of 39.8 per cent and a decrease in cost of 14.2 per cent.

Practically the entire supply of nitrate of soda used in glass manufacture in the United States comes from South America. The number of tons used in 1890 was 7,031 , costing $\$ 278,291$, compared with 10,770 tons in

1900, costing $\$ 320,937$, an increase in quantity of 53.2 per cent and in cost of 15.3 per cent. In 1890 the average price per ton was $\$ 39.58$, compared with $\$ 29.80$ in 1900 .
The number of tons of limestone used in glass manufacture in 1900 was 91,015 , costing $\$ 181,717$, or an average of $\$ 2$ per ton, compared with 45,482 tons in 1890 , costing $\$ 136,450$, or an average cost of $\$ 3$ per ton. The increase in the quantity used in 1900 over 1890 was 100.1 per cent, and in cost 33.2 per cent. Ohio and Indiana were the principal sources of supply.

The quantity of lime used in 1900 was 794,679 hundredweight, costing $\$ 147,901$, compared with 743,765 hundredweight in 1890 , costing $\$ 150,092$, an increase in 1900 over 1890 of 6.8 per cent in quantity and 1.5 per cent in cost. The average cost per hundredweight in 1890 was 20.2 cents, and in 1900 was 18.5 cents. Much of the lime is wood-burned and ground and bolted, the industry being highly developed in Seueca county, Ohio, and vicinity.

England has been the chief source of the supply of arsenic used in glass manufacture. Recently, however, the imports from that country have been greatly reduced by the supply from the gold fields of Britisi. Columbia. At the close of the census year, movements were in progress which promised to result in the development of the manufacture in this country, and it is confidently asserted that in a few years the glass industry will be supplied entirely by arsenic of domestic manufacture. In 1890, 1, 823,007 pounds were reported, costing $\$ 61,575$, and in $1900,2,349,261$ pounds, costin γ $\$ 112,630$, an increase of 28.9 per cent in the quantity and 82.9 per cent in the cost.
Manganese, which comes largely from Saxony, was used in 1890 in glass making to the extent of 610,915 pounds, costing $\$ 31,080$, compared with $1,493,538$ pounds in 1900 , costing $\$ 57,493$, an increase in quantity of 144.5 per cent and in cost of 85 per cent. The average price per pound was 5.1 cents in 1890 and 3.2 cents in 1900 .
The proportion of litharge manufactured in the United States for use in glass manufacture is steadily increasing, but a large proportion is still imported from England. The quantity used in 1890 was $5,501,559$ pounds, costing $\$ 300,096$, compared with $8,386,106$ in 1900 , costing $\$ 490,200$, an increase in quantity of 52.4 per cent and in cost of 63.3 per cent. The average cost per pound in 1890 was 5.5 cents and in 1900 was 5.8 cents.
There were $2,544,978$ pounds of potash or pearlash, which was supplied principally from Germany, used in 1890 , costing $\$ 135,047$, compared with $4,406,211$ pounds in 1900 , costing $\$ 186,847$, an increase in quantity of 73.1 per cent and in cost of 38.4 per cent. The average cost per pound in 1890 was 5.3 cents and in 1900 was 4.2 cents.

A notable increase is shown in the consumption of
packages and packing materials in 1900 over 1890 . The cost of such materials in 1890 was $\$ 1,853,462$ compared with $\$ 4,913,544$ in 1900 , an increase of 165.1 per cent. The neatness of the package received special attention during the latter part of the decade, and great inprove-
ment has resulted, compared with the practice followed formerly.

IMPORTS AND EXPORTS OF GLASS.

Table 11 presents the value of the different kinds of glass imported and exported from 1869 to 1900 , inclusive.

Table 11.-VALUE OF GLASS IMPORTED AND EXPORTED: 1869 TO 1900. ${ }^{1}$

Y EAR.	IMPORTS.										EXPORTS.		
	Total value.	Bottles, vials, carboys, etc. ${ }^{2}$	Cylinder and common window glass, unpolished.	Cylinder and crown glass, polished.		Plate glass.			Glass plates or disks for optical instruments. 4	All other.	Total value.	Window glass. ${ }^{6}$	All other.
				Unsilvered.	Silvered ${ }^{3}$	Fluted, rolled, or rough.	Cast, polished, unsilvered.	Cast, polished, silvered.					
1900.	\$5, 037,931	8464,483	\$1, 555, 924	\$539, 082	\$286	\$7,915	\$226,295	\$12,413	\$125,449	\$2, 106,084	81, 936, 119	\$36, 218	\$1, 899, 901
1899	4, 303, 660	371, 394	1,275, 184	521,957	622	9,528	233, 190	419	119, 832	1,771,534	1,503, 651	32,690	1,470,961
1898.	3,782, 617	338, 861	1, 953, 116	569, 380	66,768	9, 880	161,637	562	107, 572	1, 574, 841	1, 211, 084	23, 480	1,187, 604
1897.	5,603,868	600,308	1,181,696	301, 412	772, 296	18,245 23,486	285,485 773,250	21,870 34,119	94,242 92,628		1,208, 1827		
1896.	7,528, 420	382, 101	1,067,999	190,704	1,158,321	23,486	773,250	34, 119	92, 628	3,805,812	1,062, 225	14,994	1, 047, 231
1895.	6,627, 473	531, 904	835,790	61,212	782,778	23,990	684, 131	16, 740	85,794	3,605, 194	946,381	11, 140	935, 241
1894.	5,288,697	506,183	1,067,787	22, 114	786, 004	38,121	449, 086	75, 106	71, 881	2,272, 215	${ }_{973}^{922,072}$		902,761
1893.	8,082,639	739, 037	1,496, 326	91,559	1,679, 185	70,493	829, 596	154, 404	60,898 69	2, ${ }^{2}, 485,103$	942,302	10, 238	932, 064
1892.	$8,828,952$ $8,463,985$	827,761 926,010	$1,674,679$ $1,475,338$	158,464 91,248	$1,549,968$ $1,912,391$	56,162 78,030	887,626 $1,351,808$	188, 115	-69,988	2, 3446,472	868, 374	11, 244	857,130
1890	7,411,343	912,704	1,461,736	74,546	1, 529,401	84,715	931,323	249, 819	58,830	2, 108,269	882, 677	8,910	873, 767
1889.	7,724,662	825, 411	1,444,982	91, 105	756,577	130, 172	983, 316	1,243,455	10, 741	2, 238, 903	894, 200	16, 864	877,336
1888.	7, 867, 263	815, 564	1, 397, 898	95, 147	59, 208	131,224	1,258,736	1,801,514	12, 588	-2,295, 434	881, 628	10,733	870,895
1887.	7,336,771	739, 240	1,420,159	85, 500	1,262	90, 899	1,191,134	1,647,154	16, 876	2, 144, 547	883, 578	10,246 8,24	867,549 765,632
1886	6, 358,085	609, 435	1,360,955	27,807		107,057	907, 267	1,528, 379	19,988	1,797, 197	773,878	8,246	765,632
1885.	6,256,194	590, 160	1,630,844	18,287	189	118, 693	900, 461	1,192,147		1,805,413	783, 915	10,055	773,860
1884.	7,552,498	521, 787	2,431, 068	28, 695		101, 777	959, 817	1,387,728		2,121, 626	8899756		${ }_{998,857}$
1883	7,762,543		1,736, 700	62,630		62, 898	1, 145, 709	1,226, 432		3, 3 , 036,402			864, 235
1882.	6, 634, 371		1,387, 257	27,117		56,407 32,422	$1,183,482$ 979,452	$\begin{aligned} & 943,706 \\ & 833,385 \end{aligned}$		$3,036,402$ $2,560,303$	864,235		766,022
1881.	万, 878, 025		1,414,709	57,754		32,422	979,452	833,385		2,50,303	78,022		
1880	5,221, 511		1,439,447	15,601		23, 799	835,496	911,144		1,997,024	749, 866		749,866
1879	3,222, 479		595, 070	11, 110		6,527	699,459	575, 549		1,334,764	768, 644		768,644
1878.	3,345, 149		812,612 $1,006,456$	7,168 8,482		5,685 14,405	188,5,823 $1,263,864$	572,066 552,899		1,090,680	658,061		658, 061
1877	3, 936, 786		1,006, 456										
1876.	4, 806,948		1,292,020	5,448		-29,069	1,358, 881 1,620,032	$773,423$ $887,847$		$\begin{aligned} & 1,348,107 \\ & 1,572,765 \end{aligned}$	628,121 691,310		628,121 691,310
1875	5, 805, 115		$1,656.040$ $1,881,368$	21,166 14,933		47,265 34,237	1,620,032	887,847 961,512		1,710,005	631, 827		631, 827
1874 1873	$6,257,964$ $7,420,044$		1, 881,368	14,933 21,217		34, 380	1,550, 857	823,076		2,230,986	627,56'2		627,562
			2, 103,827	23, 931			1,063, 810	803, 487		1, 821,960	547, 112		547,112
1872.	- $4,869,620$		1,447, 292	16,738		26, 191	919,435	651,487		1, 208,477	466,447		466, 447
1870	4, 157,634		1,459,067	18,501		24, 684	820,252	615,347		1,219,783	530,654 580		530,654 580,718
1869.	3, 895,739		1,466, 138	25,885		22,173	717,952	625,338		1,038,253	580,718		580, 78

1 Reports of United States Treasury, Bureau of Statistics.
Reports of United States Treasury, Blassware imported previous to 1 isbu.
${ }_{3}$ Included in "unsilvered cylinder and crown glass, polished" previous to 1885.
${ }_{4}^{3}$ Not separately reported previous to 1886 .
${ }_{5}^{4}$ Not separately reported in "all other" glass and glassware exported previous to 1884.

The import figures presented in Table 11 for "cylinder and crown glass, polished," and plate glass, silvered and unsilvered, show the great victory the American manufacturers of polished plate glass have gained in superseding the foreign article, particularly the foreign mirror plate, by glass of domestic manufacture. The silvered, polished crown glass is styled German lookingglass plate, while the silvered polished plate glass is what is commonly known as French mirror plate. The German plate is lighter and inferior to the French plate and is nearly all imported under 5 square feet in dimensions, while the French plate is of larger sizes. From 1869 to 1889 , inclusive, the value of importations of French mirror plate was nearly equal to the imports of polished plate glass unsilvered, the aggregate value of the French mirror plate during the twenty-one years being $\$ 20,557,075$ while the value of the unsilvered polished plate was $\$ 22,901,144$. Previous to 1885 the
importations of the German mirror plate are included in the table with the unsilvered polished cylinder and crown glass, the larger part of the polished cylinder and crown imported to that date being employed for car windows and similar uses where a glass thinner than ordinary plate and of better quality than common window glass was desired. The importations of silvered German mirror plate previous to 1889 were inconsiderable, but in that year their value increased from $\$ 59,208$ in 1888 to $\$ 756,577$, or $1,177.8$ per cent.

The year 1889 marked the beginning of the decline of the importations of French mirror plate and the growth of the importations of German plate. The value of imported French silvered plate in 1890 was only $\$ 249,819$, a decrease of 79.9 per cent from the previous year; this was due in part to the introduction of American plate, but more to the remarkable increase in importations of the cheaper German plate.

The value of the German silvered plate inıported in the same year increased $\$ 772,824$, or 102.2 per cent over 1889 . For the next seven years, German silvered plate importations exceeded in value the combined value of silvered and unsilvered polished or French plate. The plate glass manufacturers of the United States during this time were directing their competition against the more profitable field filled by the French silvered and unsilvered plate, so that the German plate had nearly a clear field. However, an increase of plate glass productive capacity in the United States in $189 \pm$ produced a period of low prices that caused large reductions in the value and number of square feet of all foreign plate imports, reducing the value of imported French mirror plate 51.4 per cent from 1893 to 1894; German silvered plate 53.2 per cent; polished plate and rough plate, each 45.4 per cent; and unsilvered polished cylinder and crown glass 75.6 per cent. From this period of low prices a better organization of the American plate glass manufacture developed, a consolidation of individual companies controlling a large percentage of the capacity being formed; and the fight against foreign glass was carried on so successfully that from 1894 French mirror imports have dwindled to insignificant proportions, being, in 1900, 83.5 per cent less than in 1894 and 95 per cent less than in 1890. During 1895 and 1896 imports of polished plate, unsilvered, increased to some extent, caused largely by the sale in the United States at low prices of surplus foreign stock. After 1896, however, the American manufacturing interests lined up more closely against the foreign trade, and since then the value of imported polished plate has been gratifyingly small, showing in 1900 a decrease of 70.4 per cent from 1896 and 79.8 per cent under the total value of 1890 .

While German mirror import values received a decided check in 1894 and 1895, the next two years witnessed a revival and a change in the form of importation, an increased quantity being imported unsilvered, to be silvered by American mirror makers. Table 11 shows a marked decrease in the value of silvered German plate imports in 1897 and a considerable increase in the unsilvered imports. American competition has made it advantageous to have the silvering done in this country. With French mirror plate practically excluded, the plate-glass manufacturers of the United States took up the German mirror plate problem, and by selling superior polished plate to the mirror trade at cost, or less, reduced the value of German plate imports, unsilvered and silvered, nearly one-half in 1897, and at present have stopped the importation of the German silvered plate even more completely than they have the French product. In 1900 practically all the German plate was imported unsilvered, and was much less than the total quantity, silvered and unsilvered, annually imported from 1890 to 1897.

A portion of the imported polished cylinder and
crown glass comes in competition with domestic window glass for car windows, but the expected development of the manufacture of thin polished plate glass in this country may probably supplant the foreign article for high-quality and light-weight glazing purposes. Ninetyfive and five-tenths per cent of the total quantity of unsilvered polished cylinder and crown glass imported in 1900 was shipped from Germany, the remainder being divided among Austria-Hungary, Belgium, France, Netherlands, and the United Kingdom. Of the total quantity of fluted, rolled, and rough plate imported in 1900, the United Kingdom supplied 91.3 per cent and France, Belgium, and Germany, the remainder. The importation of polished plate glass is controlled by an European syndicate, and is apportioned among the various producing countries; Belgium furnishing, in 1900, 80.2 per cent of the total quantity; Germany, 8.1 per cent; and the United Kingdom and France, practically all the remainder. The extent of the importation is determined largely by trade conditions abroad, this market being used for the disposal of surplus products, with slight regard to price. New York is the principal port of entry for plate glass.
The value of importations of fluted, rolled, and rough plate has steadily decreased, being, in $1900,90.7$ per cent less than in 1890. The total value of such imports in 1900 was nearly equaled by the direct export shipments of one American skylight factory.

Window glass importation values have maintained comparative regularity during the last thirty years. The total value of window glass imported during the decade ending with 1880 was $\$ 14,993,860$; from 1880 to $1890, \$ 15,686,308$; and from 1890 to 1900 the value was $\$ 12,583,779$. While the total value of window glass imported during the last decade was less than that of each of the two preceding decades, the value in 1900 exceeded that in 1890 by 6.4 per cent; 1880 by 8.1 per cent; and 1870 , by 6.6 per cent. The number of pounds imported in 1900, as reported by the United States Treasury Bureau of Statistics, was $51,343,339$, which, estimating 70 pounds to the 50 -foot box, 25 per cent double strength, equals 733,476 boxes, or 16.9 per cent of the quantity manufactured in the United States in that year. The number of pounds imported during each of the preceding ten years was as follows: 1899, $47,202,267$; 1898, 38,908,992; 1897, 55,961,813; 1896, $53,182,301$; 1895, 40,786,279; 1894, 52,437,068; 1893, $63,715,989 ; 1892,72,682,127 ; 1891,58,932,738$; 1890, $73,112,550$. The imports, 92.7 per cent of which come from Belgium and the remainder from the United Kingdom, Germany, and France, are regulated largely, as in plate glass, by the condition of the foreign market. The Continental and far Eastern markets are the most profitable fields for Belgian window glass, and if the demand in these markets is weak and a surplus stock accumulates in Belgium, increased shipments to the United States follow. Belgian glass, the product of
cheaper labor, constantly acts as a check on windowglass prices in the United States, for unless the demand abroad is unusually strong, the first announcement of high prices in this country results in an increase of exports. The foreign window glass, as in the case of plate glass, was for a long time credited with superior quality, especially as to finish, but in both cases that claim has been disproven in the progress of the American plate and window glass manufacture during the last decade. In 1900 Boston, Mass., was the principal entry port for foreign window glass, followed by New York, N. Y. The entry ports for the South are St. Louis, Mo.; Baltimore, Md.; Newport News, Va.; and New Orleans, La. Previous to 1901 most of the window glass used on the Pacific coast was of foreign manufacture, entering principally at San Francisco. The cheapness of ballast freight rates of wheat-carrying ships returning to the Pacific coast, compared with the expensive overland freight rates from the domestic window-glass factories, gave the foreign glass a great advantage, but American manufacturers, by a decided differential in price and systematic distributing arrangements, have succeeded lately in steadily reducing the importations to that section of the country.
The value of imports of bottles, vials, carboys, etc., has shown an almost constant decrease from year to year during the last ten years. The total value in 1900 was $\$ 464,483$, or 49.1 per cent less than in 1890. About one-half of the total importation consists of bottles filled with liquors, mineral waters, etc., and the principal exporting countries are Germany, France, AustriaHungary, and the United Kingdon, in the order named. The importation of empty bottles, therefore, is very small in comparison with the domestic output. New York and Baltimore are the chief entry ports, but many unfilled bottles enter at San Francisco, coming over at cheap rates in returning wheat-carrying ships. Boston, New Orleans, and Philadelphia, also have large receipts.

The importation of optical glass bas steadily increased, the development of the photographic camera being a strong stimulant. A large portion of the total importation enters in the New York camera district at Rochester, N. Y. Germany furnished 43.7 per cent of the total value in 1900; the United Kingdom, 33.7 per cent; and France, 22.6 per cent. Attempts have been made in this country to make optical glass, but the manufacture has never passed beyond the experimental stage, and at present even experimenting has ceased. The time and care required and the uncertainty as to results attending every melt, in face of the free entry of these products from countries long skilled in the art, make the manufacture of optical glass an unattractive proposition to glass manufacturers in the United States.

A large proportion of the $\$ 2,106,084$ reported as the value of "all other" glass imports in 1900, was that of fancy decorated Bohemian glassware, much of it made to sell at low prices. The fancy colored and decorated
ware, of the Bohemian order, is as yet but a small item in glass manufacture in the United States, although a large quantity is purchased. Increased attention is being given to it, and such success was achieved in its manufacture during the census year by at least one firm, that it will very likely have a vigorous growth during the next few years. Decorated opal or porcelain glass has met with great favor in this country for several years, and in addition to the large quantity of home manufacture, a considerable quantity has been imported, mostly from Germany. Germany has a large trade in chemical glassware for laboratory use, and, with England and France, is finding a rich and almost undisputed field here for that class of ware. The manufacture of chemical ware has been carried on in the United States in a small way, but a recent movement among American chemists in favor of home manufacture has caused more or less agitation among glass manưfacturers, and gives promise of leading to a determined attempt on the part of one or two firms, to establish the industry on a larger scale in this country.

Great progress has been made in recent years in the manufacture of expensive "art glass" of the highest order. One of the exhibits which attracted considerable attention from glass men of all countries at the Paris Exposition was a new art glass manufactured by a firm in New York city. High-grade lamps, unsurpassed by any manufactured, have been produced in this country. Watch crystals, which are not manufactured in the United States, although it was attempted recently in West Virginia, are imported in large numbers of small aggregate value. The process of manufacture is simple, and it will in time probably form a part of the American industry. A thin round ball or bubble of glass is blown, and from this, with diamondpointed compasses, the circular disks are cut, which are then placed on properly shaped blocks and bent to the required shape by reheating. Of the total value of "all other" glass imports, 33 per cent comes from Germany, 28.1 per cent from Austria-Hungary, 23.1 per cent from France, 7.8 per cent from the United Kingdom, and 6.3 per cent from Belgium.

Table 11 presents, in addition to the value of imported glass, the value of glass of domestic manufacture exported annually, from 1869 to 1900, inclusive.
The exportation of all other than window glass has almost constantly increased from year to year since 1869, gaining 227.2 per cent in value during that period, and 117.4 per cent during the last decade. The gain in the ten years ending with 1890 over the ten preceding years was $\$ 1,830,612$, and between 1890 and 1900 over the ten preceding years, $\$ 2,922,065$. American glassware is exported to nearly every civilized country, 68 countries being reported by the Bureau of Statistics of the Treasury Department in 1900. Canada received 30 per cent of the total value in 1900; Mexico, 14.6 per cent; Australia, 12.8 per cent; Cuba, 8.2 per cent;
and the United Kingdom, 7.3 per cent. An inquiry as to exports was incorporated in the schedule used for the purpose of eliciting complete information as to the articles exported and their destinations; but as the largest part of the exporting is done through regular exporting houses, a very small portion goes direct from the factory with its destination known. The returns from factories, therefore, are very meager, but as far as they go, furnish an idea of the comprehensive scope of the glass export business. Beer and soda bottles, and plain and lettered prescription bottles, pressed tableware, lamp chimneys, and lantern globes constitute the bulk of the exports reported direct from factories. Bottles to the value of $\$ 161,300$ were reported as exported during the census year by 12 firms, $\$ 66,333$ of which was the value of beer and soda-water bottles exported to Mexico, where a fair trade has been developed recently in that line of ware. Plain and lettered prescription bottles are a large item in the exports, and 6 firms reported direct shipments to Canada, South and Central America, Mexico, West Indies, Great Britain, France, East Indies, Australia, China, and Japan. The bottle trade with the Philippines and Cuba is very large, principally in the form of bottles filled with beer and liquor. Direct tableware exports were reported by 16 establishments, amounting to \$137,982.

American pressed tableware is unexcelled in the markets of the world for color, workmanship, and finish, which make it the closest imitation of real cut ware, at such prices as, quality considered, place it in a class by itself. Export trade is receiving special consideration from some of the largest manufacturers of pressed ware, and the American sample room and traveling agent for pressed glassware are becoming more general abroad. The largest part of the lamp chimney exportation is done by jobbing houses, yet 4 factories reported direct shipments valued at $\$ 111,560$. About four-fifths of the quantity reported went to South America, where lamp chimneys made in the United States are in high favor. As' a result of a recent systematic introduction of the American lamp chimney in England and some of the continental countries, the exports in that direction are steadily increasing and have already reached a very satisfactory figure. American lantern globes are largely used in Central and South America. Canada, South America, and Australia are steadily increasing their consumption of American gas and electric glassware, such as globes and shades. Cathedral or opalescent glass valued at $\$ 13,432$ was reported as shipped direct from factory to Canada, Germany, England, and France, where, by reason of its superior colors and texture, it is preferred in the construction of art windows.

Exports of window glass show some increase during the last few years, but the lower cost of production in Belgium will, no doubt, continue to restrict, as in the
past, the foreign trade of the United States in this commodity. The exports are confined largely to Mexico, British America, and the West Indies. A plan has been discussed to operate the American window factories an extra time during the year at reduced wages to manufacture glass for export exclusively, but it has not met with favor from the workmen and from some of the manufacturers.

furnace improvement.

The greatest advance made in the American glass industry in the past decade has been in the improvement of the melting furnace in the direction of greater economy and rapidity in operation. The great feature of this development has been the widespread substitution of the tank for the pot furnace, 48.8 per cent of the total melting capacity of active plants reported during the census year being contained in tank furnaces. In the United States the tank is practically a creation of the last ten years, its standing prior to that time being experimental, though it had been used successfully abroad for a much longer period. So far Germany and Belgium have set the pace for American glass furnace construction.
The glass-melting furnace is a modification of the reverberatory furnace, the materials to be melted being exposed to the action of the flame, but not to the contact of the burning fuel. While numerous modifications exist, the furnaces generally used are of two styles, the pot furnace and the tank furnace. The former is adapted either for the use of open pots or for covered pots, and the latter is either a day tank, intermittent in its melting action, or a continuous tank in which the melting is continuous. The pot furnace contains a number of melting pots, large clay crucibles, each holding, on an average, a ton of molten glass. These pots are arranged immediately inside the breast wall of the furnace with room in the center of the furnace for combustion space. The batch, or mixture of the raw materials, is filled into these pots through an opening in the side of the furnace opposite each pot, and after the melting process is completed, the glass is gathered from the pots through these openings. The pot furnace used in the manufacture of plate glass is an exception in this respect, as the pots are removed bodily from the furnace by a crane and their contents poured on the casting table. In the tank furnace, pots are entirely dispensed with, the glass being melted and held on the hearth of the furnace itself, the flame sweeping across its surface. In the continuous tank there is a supply of molten glass at, all times, the batch being filled in at one end and the glass worked out continuously at the other end. The day tank requires a night or day to melt the glass, when it is worked out and the tank again filled with the batch, the operation being similar to the working of a pot furnace. The pot furnaces used in the manufacture of window glass,
plate glass, and bottles and jars are either square or oblong in form, and those for flint glass, tableware, etc., are round or oval.

The open-pot furnace for window glass and bottles and jars varies in length according to the number of pots used, its width being about three times the diameter of the pot. The pots vary in number from 4 to 12 , generally being 6 or 10 , placed in the furnace in 2 rows. Openings at the ends of the furnace permit the removal and replacement of broken pots. The crown of the furnace, forming the top of the combustion chamber, is preferably rather flat, but set high enough to allow adequate flame development and good distribution of the heat between and above the pots. In the direct-fired furnace, the fuel is on a grate set in the space between the 2 rows of pots, somewhat below the level of the bench on which the pots are placed. An arched passage-the cave-runs beneath the furnace for the admission of air to the grate, and there are frequently 2 caves crossing at right angles, so as to admit air from all directions. Neither flues nor regenerators are used when the fuel is fired direct, the draft being regulated by the beight of the stack of the furnace, which varies with different fuels employed. In the regenerative gas-fired furnace, the regenerators are so placed that in the event of a pot breaking, the molten glass can not reach them and obstruct the draft. The hot escaping gases from combustion pass from the combustion chamber through the checkerwork of bricks, which take up their heat and soon become very hot. The direction of the flame is reversed and the air for combustion enters through the hot regenerator, while the waste gases pass out through another regenerator. By a reversal of the direction of the flame every twenty or thirty minutes, the hot outgoing waste gases are constantly giving off their heat to the regenerators and the incoming air is constantly returning it to the furnace. In what is styled a recuperative gasfired furnace, no reversal of the current occurs. The waste gases pass out through a series of thin-walled flues, while the incoming air is admitted through a second series of thin-walled flues, and coming in contact with the first series of flues, absorbs the waste heat. In the gas-fired furnace the air and gas flues rise vertically at either end and terminate in ports at or below the hearth level. The flame traverses the furnace from one end to the other, describing the arc of a circle, or by lessening the draft, it can be made to completely fill the furnace. The open-pot furnace for plate glass is longer than that for window or bottle glass, as it usually holds 20 large pots. There is an opening in the wall of the furnace opposite each pot to allow its removal, bodily, for casting purposes. All plate-glass furnaces are gas fired, the air and gas flues ascending and terminating vertically or coming up vertically and turning so as to enter the furnace horizontally. With the use of the lehr in plate-glass manufacture. the ten-
dency is now toward smaller pots, which increases the number that may be placed in the furnace.

The covered pot furnace for flint glass is generally circular in form. The pots have a hood-like top, which projects to the opening in the breast wall of the furnace and through which the batch is filled in and the glass worked out. This hooded top entirely shields the contents of the pot from the flame. When old or broken pots are to be replaced, the wall of the furnace is removed enough to allow for the passage of the pot. The average life of the covered pot is several months, while that of the open pot is about six weeks; the length of time, however, in each case, may be more or less. It is possible to melt a much better quality of glass in the covered pot than in the open pot, as the hooded top excludes many impurities caused by combustion. The number of covered pots in a furnace is from 8 to 16 . In firing the open-pot furnace the aim is to develop in the combustion space between the pots and above them a solid flame, but with the covered pots, the flame must be divided so as to play close around each pot. To this end the flame is drawn from the center of the furnace to a series of flues at the breast wall, a flue being placed between each pot and the adjoining pot. The crown of the furnace comes just above the pots and the stack widens at the base sufficiently to take in the entire diameter of the furnace. The draft flues empty into the stack through the breast wall or through the crown. These furnaces are adapted for recuperative gas firing or direct coal firing. In the oval covered pot furnace the stack is at one side, as with the regenerative tank; greater economy of space in setting the pots is secured as well as better heating results. One method of treatment of the waste heat in a furnace of this kind is to convey it by a series of flues so as to heat the water system that heats the entire factory plant.

The first successful gas-fired glass-melting pot furnace was developed abroad in 1861, the solid fuel being converted into gas in a producer outside of the furnace. Several years were required to introduce this improvement into glass manufacture in this country. This application of gas is one of the chief improvements in modern glass making, making possible a saving in the cost of fuel of fully 50 per cent over the cost with the direct-fired furnace, greatly reducing the time of melt, improving the quality of the glass, and lengthening the life of the pot. However, the disadvantages attending the pot system of melting created a demand for a system to melt and blow the glass continuously; these disadvantages were the time lost with the pot system (fully one-half the time being spent in cooling and settling the metal, working out the glass, and reheating the furnace), and the constant loss incurred by breaking pots, one broken pot so disturbing the rest of the furnace that the full capacity is frequently unavailable for a considerable time. This led to the development of the tank furnace, which was used in Europe in 1861 and improved
in 1872. However, the general introduction of the tank into glass manufacture in the United States did not occur until 1888 , the successful operation of the continuous tank for window glass at Jeannette, Pa., in that year probably marking its actual introduction into the glass industry of this country. The chief advantages of the tank over the pot furnace are increased production, economy in operation, durability of furnace, regularity of working, and intensity of heat.

The day or intermittent tank is practically a pot furnace with one large open pot comprising the entire hearth, which is a square or oblong box built up of fire clay blocks and well ventilated on the bottom to prevent excessive wear and leakage occurring when the glass gets too hot or soft on the bottom. The air and gas are brought up through flues at one end and the products of combustion are discharged through flues at the other end. Either the regenerative or recuperative system can be used. There were 130 day tanks reported in operation during the census year, 117 of which were in establishments manufacturing bottles and jars and flint ware of all varieties, the average capacity of the tank in such establishments being 6 tons, equal to 6 pots; and 13 in establishments manufacturing skylight glass, glass tiling, rolled glass, and window glass. The greatest obstacle to the successful use of the day tank on flint glass has been the maintenance of color caused by the glass melting principally from the top, leaving the glass at the bottom of the tank less fluid and more refractory, but during the past decade this tank has been so improved that, at present, a very fair grade of so-called flint glass is in many cases being produced, at a great saving in cost over the pot-melting method. With these small tanks the use of gas for fuel probably produces the best results, but oil is being introduced for this purpose with a marked degree of success. ${ }^{1}$

The glass melting capacity of continuous tanks reported active in 1900 was 42.4 per cent of the total for the United States; pot furnaces with a total capacity of 4,300 pots were reported, day tanks of a capacity equivalent to 818 pots, and continuous tanks of a capacity equivalent to 3,775 pots, 2,476 of which were operated on bottles and jars and pressed and blown ware, and 1,299 on building glass. The continuous tank is confined largely to the manufacture of bottles and jars and window glass, 2 shifts being worked in the bottle trade and 3 in the window. The continuous regenerative melting tank contains an immense quantity of molten glass and is always full or nearly so. The window tank is oblong, four or five times as long as the width, with a capacity varying from 6 to 20 rings, each ring being equivalent to a capacity of 3 pots. The bottle tank is much shorter and wider than the window tank, and has an average of about 10 rings,

[^173]each ring being equivalent to a capacity of 2 pots. The average window tank has 8 rings, or a capacity of 24 blowers or pots. Inside it is 14 feet wide, 70 feet long, and 5 feet deep, and will contain about 425 tons of molten metal. The batch is filled in continuously at one end and drawn, melting as it goes, to the working holes at the other end, where it is worked out. Near the working end of the tank is a floating bridge of prepared clay, extending down about one-fourth of the depth of the tank, which breaks the surface of the mass of glass and acts as a purifier, the completely melted glass passing beneath the floater into the working end of the tank, while the impure glass, which rises to the top, is held in check until properly melted. The wall of the working end of the tank is pierced by working holes through which the glass is gathered, in front of each hole being a deep clay ling stationed in the glass, the refined metal coming into this ring through the bottom and being gathered from the ring by the workman. The bottom and sides of the tank are well ventilated, to lessen the strain on the structure. The regenerators are at either side of the tank foundations, and the flues lead to ports in the side walls or to ports that open through the crown, the flame entering the furnace above the surface of the glass and just beneath the crown. All arrangements are made with a view to developing a nearly continuous sheet of flame.

A modification of the continuous tank for window glass, styled the blow-over tank, was introduced into this country in 1900 , though in use abroad for a number of years. There were three or four such plants erected. By the use of the blow-over tank the blow furnace for "warming in" the roller of glass during the blowing operation is dispensed with, as the roller is "warmed in" directly over the mass of molten glass in the tank, the heat of the tank accomplishing this purpose, which effects a saving in fuel of about 50 per cent, for as much fuel is often required for the blow furnaces as for the melting tank. This improvement is made by lengthening the working end of the tank to permit a series of warming-in holes on each side between the floaters and the gathering holes. The results so far obtained with the blow-over tank will probably lead to its general introduction, as, in addition to the great saving in fuel cost, the heat is much more constant and uniform than with the blow furnace.

The use of oil as a fuel for glass melting has greatly increased during the last ten years. One of the most successful methods of oil firing is the use of the cheap, heavy oil of 34 to 40 specific gravity, practically a refinery by-product, with an air pressure of from 2 to 7 ounces per square inch. The air meets the flow of oil at the end of the burner and completely atomizes it in a spray, furnishing just enough oxygen to perfect combustion. Oil is advantageous as a clean fuel of high calorific value and perfect safety, but the cost restricts its general use. Benzine is largely used in certain
branches of the glass industry as fuel, being especially well adapted for fuel for glory holes, particularly in the manufacture of bottles, producing an intense uniform heat and requiring but little attention.

DETAILED STATISTICS OF GLASS MANUFACTURE.

The detailed statistics for the industry as reported are shown in Tables 12, 13, and 14; Table 12 presenting statistics of the entire industry; Table 13, of the manufacture of building glass; and Table 14, of the mannfacture of pressed and blown glass, and bottles and jars. These tables present separate totals for each state in which there were 3 or more establishments, and group the statistics for other states, so as not to disclose the operations of individual establishments. The establishments are classified according to the character of the ownership, which shows that in the building glass branch of the industry, 6 were owned by individuals, 11 by part-
nerships, 102 by corporations. and 5 were of a miscellaneous character; and in the manufacture of pressed and blown glass, and bottles and jars, 23 were owned by individuals, 49 by partnerships, 157 by corporations, and 2 were of a miscellaneous character. The employees are classified so as to show for salaried officials, clerks, etc., and for wage-earners separately the number and salaries or wages of men, women, and children, respectively, and also the average number of wageearners employed during each month of the year. Separate totals are shown for the different materials, presenting the quantity and cost of each; and the quantity and value of the several products manufactured, and the value of all other products, are given. The number of engines, water wheels, electric motors, and other forms of power in use, with their horsepower, are shown. The establishments are grouped in the tables according to the number of employees in each.

Table 12.-GLASS ManUFacture, BY states: 1900.

	United States.	Mlinois.	1ndiana.	Maryland.	Massa- chnsetts.	Missonri.	New Jersey.	New York.	Obio.	Pennsyl- vania.	West Virginia.	All other states. ${ }^{1}$
Number of establlshments	355	6	110	7	$\bar{\square}$	3	26	27	28	119	16	s
Character of organization:												
Individual	29		7	1			4	3	3	10	1	
Firm and limited partner-	60		5	2			4	6	4	31	3	3
Incorporated company	259	5	93	4	- 4	3	18	17	21	77	12	5
Miscelaneous.	-		5							1		
Capital: Total	761, 423,903	-2, 181,801	\$12, 775, 389	\$581,086	\$258,949	\$2,198, 316	\$5, 397, 662	\$2, 242,834	\$5, 451,513	\$28, 287, 187	\$1, 338, 084	\$711,082
Land	\$4,771,476	\$66,657	\$626, 095	\$49,618	\$33,000	\$251,081	\$ $\$ 330,136$	\$2242,675	\$440,375	\$2, 889,897	\$75,142	\$66, 800
Buitdings	\$16, 954, 293	\$524, 764	\$4,132, 329	\$144, 576	850, 047	\$668, 346	\$1,164,071	\$397,004	\$1,310,859	38, 021, 796	\$397,301	\$143, 200
Machinery, tools, and implements	\$14,247, 28.3	\$118,289	\$2,936, 890	\$66,559	\$35,150	§878,589	\$353, 600	\$300, 232	81,491,631	\$7, 683, 311	8234,532	\$148, 500
Cash and sundries..	\$25, 450, 851	31, 472,091	\$5,080,075	\$320, 333	\$140,752	\$400, 300	\$3,549,855	\$1, 302, 923	\$2, 208,648	89, 992, 1818	\$831,109	\$352, 582
Proprietors and firm members-	170		24									
Salaried officials, clerks, etc.: Total number	2,268	75	509	31	39	26		117			85	
Total salaries..................	52, 792,376	\$110, 100	\$649,227	\$38,976	\$28,060	\$47, 448	\$284,960	\$139,698	\$249,029	\$1,110, 383	\$97, 551	\$36, 944
officers of corporationsNumber	389 $\$ 936,835$	12 836,260	119 $\$ 271,147$	$\$ 9,710$	$\begin{array}{r} 8 \\ 99,869 \end{array}$	$817,400$	$\begin{array}{r} 51 \\ 883,540 \end{array}$	$\begin{array}{r} 29 \\ \$ 56,054 \end{array}$	$\begin{array}{r} 30 \\ \$ 68,639 \end{array}$	$\begin{array}{r} 107 \\ 8345,816 \end{array}$	$\begin{aligned} & 19 \\ & \$ 31,100 \end{aligned}$	$\begin{array}{r} 4 \\ \$ 7,300 \end{array}$
Salaries................... General superintendents,	\$936,835	\$36, 260	\$271,147	$\$ 9,710$	$\xi_{9} 9,869$	817,400	883, 540					
eral superintendents, Total number	1,879	63	390	25	31						66	24
Total salaries...	\$1, 855,541	\$73,840	\$378,080	\$29,266	\$18,191	830,048	\$201, 420	\$83,644	\$180,390	\$764,567	\$66, 451	\$29,644
$\xrightarrow[\text { Men- }]{\text { Number }}$				23				81	139	651		
Salaries.	\$1, 745,140	\$71,320	\$353,093	\$27,944	\$15, 326	\$28, 538	\$188, 740	\$80, 082	\$167,888	\$722,108	\$60,457	\$29, 644
Women-							32	7			13	
Salaries	\$110, 401	\$2, 520	\$24,987	\$1,322	\$2,865	\$1,510	\$12,680	\$3,562	\$12,502	\$42,459	\$5,994	
Wage-earners,including pieceworkers, and total wages:												
Greatest-number employed at any one time during the year	713	3,904	18,523	990	534	1,051	7,421	3,499	6,233	26,043	2,375	1,140
Least number employed at												
any one time during the year			14,669	751	373	720	4,637	2,373	4, 307	19,154	2,000	1,022
Average nnmber........................	52,818	3,304	13,015	742	387	650	5,383	2,556	4,346	19, 420	\% 1,949	1866 $\$ 455,504$
Total wages.	\$27,084, 710	\$1,621,286	\$7,226,047	\$339, 518	\$188,674	\$341, 375	\$2, 462, 745	\$1, 305, 264	\$2, 067, 384	\$10, 287,491	\$789,422	\$455,504
Men, 16 years and over-						648	4,366	2,201	3,505	15, 136	1,319	
Average number Wages	$\begin{array}{r} 42,173 \\ \$ 24,901,233 \end{array}$	$\begin{array}{r} 2,607 \\ \$ 1,496,891 \end{array}$	$\begin{array}{r} 10,910 \\ \$ 6,808,042 \end{array}$	\$313, 920	8179, 236	\$340, 825	\$2, 278, 306	\$1, 239,971	\$1, 844, 958	\$9,338, 261	\$657, 984	\$402,839
Women, 16 yeurs and over-										1,546	${ }^{468}$	${ }^{12}$
Average number Wages	$\begin{array}{r} 3,529 \\ \$ 840,001 \end{array}$	$\begin{aligned} & 148 \\ & \$ 28,456 \end{aligned}$	\$129,808	88,673	$\$ 4,392$		\$32, 726	\$17, 831	\$96, 017	\$414,250	\$103,748	\$4,100
Children, under 16 years-										2,738	162	278
Average number Wages	$\begin{array}{r} 7,16 \\ \$ 1,343,476 \end{array}$	$\begin{array}{r} 549 \\ \$ 95,939 \end{array}$	$\begin{array}{r} 1,471 \\ \$ 288,197 \end{array}$	$\begin{array}{r} 126 \\ \$ 16,925 \end{array}$	\$5,046	\$550	\$151, 713	\$47, 462	8126,409	\$534,980	\$27,690	\$48,565
Average number of wageearners, including pieceworkers, employed during each month:												
Men, 16 years and over-						526	5,344	2,488	4,132	18,680	1,407	700
January.	51,282 51 7	3,023 3,020	14,956	648	368	518	5,384	2,393	4,169	18,928	1,462	700
February	51,730 52,146	3,020 3,015	13, 447	699	330	516	5, 410	2,607	4,488	19,033	1,467	734
April.	52,044	2,995	14,017	713	303	716	4,848	2, 271	4,290 4,290	17,972	1,414	617
May	50,662	2,954	13,728	710	320	964	4.641	2,348	3,244	16, 483	1,150	546
June.	45, 847	2,806	12,687	198	2122	649	1,419	968	1,209	7,874	507	205
July .	17, 829	${ }_{665}^{662}$	3,921 4,183	192	239	693	1,969	1,033	1,632	9,410	1,214	205
Angnst	20,468		8,165	481	344	538	3,931	1,841	3,262	11,773	1,377	493
September	35,285 40,878	3,040	10,306	573	375	558	4,765	2,244	3,531	13, 502	1,431	560
October	43,042	3,051	10, 861	564	449	535	5, 316	2,501	3,541 4	14,042	1,448	714
December...................	44, 903	3,018	11,112	634	465	578	5,352	2,593	4.032	14, 14	1,487	71

Table 12.-GLASS MANUFACTURE, BY STATES: 1900—Continued.

	United States.	Illinois.	1ndiana.	Maryland.	Massachusetts.	Missouri.	$\begin{aligned} & \text { New } \\ & \text { Jersey. } \end{aligned}$	New York.	Ohio.	Pennsylvania.	West Virginia.	All otber states. ${ }^{1}$
Average number of wageearners, including pieceworkers, employed during each month-Continued.												
Women, 16 years and over-	8820	179	792	53	15		153	71		1,665	448	13
February	3,879	177	758	58	19		159	67	439	1,731	458	13
March...	3,984	177	810	62	19		166	83	487	1,704	463	13
April	3,890	177	806	57	20		160	90	479	1,625	463	13
May	3,486	167	625	58	20		181	98	427	1,469	433	13
June.	3,343	152	623	54	18		182	84	402	1,384	428	16
July.	1,850	24	197	25	8		147	44	193	1, 1,262	176 508	16
August	2,530	24	253	50	14		-93	60	261	1,262 1,572	508 557	15
September	3,428 3,907	172	442	59 61	21		135 175	56 67	444	1,572	557 557	
November	4,135	177	801	61	24		261	80	451	1,699	565	16
December	4,096	177	782	56	24		223	79	445	1,733	561	16
Children, under 16 years												
January ...	8,301	667	1,813	132	34		996	300	829	3, 040	160	330
February	8,463	659	1,878	136	35		993	286	840	3,139	176	${ }_{349}$
March	8,537	669 661	1,884 1,911	188	24		983 965	${ }_{334} 300$	832 819	3,142 8,210	176	349 347
May .	7,341	646	1,306	186	25	6	986	350	549	2, 749	171	367
June.	7,082	646	1,196	199	25	6	963	333	585	2,663	169	297
July.	2,397		+524	5	6	8	169	116	82	1,325	77	85
August	3,350		694	5	6	6	157	141	246	1,871	139	85
Septembe	6,146	650	1,101	60	24		789	239	464	2,393	182	44
October.	8,091	660	1,748	137	30		969	292	789	3,042	180	244
November. December	8,496 8,544	671 667	1,802 1,800	1128	32		1,124	329 366	797 796	3,107 3,169	173	${ }_{331}$
Miscellaneous expenses-												
Total.............	\$3, 588, 641	\$210,588	\$690, 165	\$26, 065	\$14, 243	\$98, 119	\$241,665	\$145, 505	\$165,512	\$1, 867, 879	\$112, 791 $\$ 100$	826,119 $\$ 5,200$
Rent of works-	\$29,195		\$780		\$500	\$154	683	88,945				
ternal revenue	\$236, 338	\$9,556	\$59,550	\$2, 040	\$3,155	\$6, 242	\$21,663	\$8,122	\$17,260	\$100, 838	\$4, 804	\$3,108
Rent of offices, insurance, interest, and all sundry												
expenses not hitherto included	\$3,264, 149	\$201, 032	\$625,835	\$24, 025	\$10,588	\$91, 723	\$212, 900	\$115,369	\$138, 184	\$1, 723,445	\$105,637	\$15,411
Contract work	858,959		\$4,000				86, 409	\$13, 069		\$31,131	\$1,950	\$2, 400
Aggregate cost	816, 731, 009	\$674,008	\$4, 582, 141	\$151, 500	\$137, 186	\$231,615	\$1, 488,700	\$899, 690	\$1,253, 164	\$6, 435, 463	\$593,251	\$284, 492
Glass sand, ton	581,720	32,978	179,367	3,493	1,622	10,366	1, 81,260	22,820	- 37, 707	- 191, 859	10,025	10, 223
Cost	\$846, 822	\$33, 381	\$241,075	\$6, 166	\$6,355	\$8,613	\$78, 521	\$46, 117	\$67, 035	\$329, 465	\$14, 203	\$15,891
Soda ash (carbonate of soda), tons	157, 779	12,017	48,629	1,601	194	3,048	20,630	7,508	11,072	46,398	2,847	3,835
	\$2, 259,939	\$164, 827	\$686, 471	\$23, 276	\$5,342	\$47,654	\$310,641	\$113, 586	\$156, 797	\$639,152	\$43, 724	\$68,569
Salt cake (sulphate of soda), tons.	53,257		14,371		125	226	697	1,453	1,751	34,297	337	
Cost......	\$518,590		\$183, 232		\$1,625	\$2, 311	\$7,478	\$13, 605	\$18, 428	\$287, 311	\$4,600	
Nitrate o	10,770	440	2,329	149	. 24		1,314	${ }^{1} 548$	1,259	4,330	${ }^{307}$	70
Cost	\$320,937	\$13,720	\$75, 243	\$5,000	$\$ 830$		\$21, 166	\$19,174	\$39, 634	\$132,389	\$10,982	\$2,800
Limestone,	91,015	4,815	27,993	185	100	4,112	8,577	2,462	3, 356	38,309	450	656
Cost.	\$181, 717	89,912	\$47, 882	\$1578	\$225	\$8,566	\$25, 471	\%6,826	\$66,536	\$71, 110	\$825	\$3, 786
Lime, hundr	794, 679	46,387	230, 148	15,128	659	610	198,923	32,819	75, 638	147,975	15,728	31, 764
Cost	\$147, 901	\$10, 175	877,599	\$1, 492	$\$ 112$	\$140	\$26, 873	\$8,885	\$14,712	\$37,946	\$4,057	\$5, 910
Arsenic, pound	2, 349, 261	45, 607	837, 487	4,621	7,789	24, 233	102,490	101,570	228, 587	896,074	80,503	20,300
Cost......	\$112, 630	\$2,173	\$40, 848	\$207	\$370	\$1,217	\$4,912	\$4,942	\$11,751	\$41,295	\$3,837	\$1,078
Carbon, tons	4,155	90	1,883		715	${ }^{18} 8$	20	61	133	1,926	13	6
Cost	817, 000	\$1,018	\$6,657		\$100	$\$ 540$	\$406	\$544	$\$ 660$	\$6, 950	\$155	870
Manganese,	1,493, 538	59,838	521,980 819,655	11,167	8,101	33,000	143,465	90,721	76, 117	457,581	58,944	32. 624
Cost Litharge(redlead) pounds	\$157, 493 $8.386,106$	81,960 115,600	819,655 $1,482,887$	${ }^{\text {\$ }}$ \$566	\$207	\$825	\$5,674	\$3,800	\$3,672	\$17, 474	\$2, 239	\$1,421
Litharge(red lead), pounds Cost	$8,386,106$ $\$ 490,200$	115,600 86,242	1,482,887	36,982 $\$ 1,857$	\$ ${ }^{364,448}$		72,049 83,918	822,130 848,137	2, 063, 000 \$17, 035	3,143,727	285, 283	
Potash or pearlash, pounds	4, 406, 211		453, 481	75,000	207,967		-60,270	469,186	-850, 171	$\begin{array}{r}\text { 4, } \\ 1,931,764 \\ \hline\end{array}$	\$20,583	
Cost-	\$186, 847		818, 564	\$3,000	\$8,994		\$2, 866	\$20, 503	\$34, 129	1, \$82, 234	\$16,557	
Grinding sand, tons	265, 438		71, 102			4,743	${ }^{433}$	50	6,897	182, 117	-46	
Cost	\$166, 040		\$37, 533			\$1,897	8519	\$120	\$2, 520	\$123, 186	\$265	
Rouge, pounds	837, 536		267, 345			20,980	1,300		14,987	532, 624	400	
Cost .-..........	\$22, 747	-	\$9, 061			\$693	\$41		8897	\$13, 971	484	
Plaster of paris, tor	23, 066		7,660			696		10	611	14,184	4	1
Cire cost	\$108,581		\$35, 104			\$3,799		\$71	\$1,311	\$68. 171	\$5 5	\$15
pounds................	32, 151, 017	642,000	8, 624, 298	245,900	66, 158	426, 520	$2,108,845$	1,033,200	2, 549,910	15, 926, 246	154,940	
Cost-	\$221, 183	85, 687	\$64, 394	\$1,390	8720	\$2,795	\$13,875	\$8,373	\$7,055	\$113,822	81,587	\$1,485
Pots, not includiag those made at works, number	8,941	309	2,429	164	116		366		1,199	3,461	350	20
Cost -....................	\$381,147	\$17,680	\$101,884	\$7,286	\$5,175	\$2,030	\$12,517	\$17,520	\$61,971	\$135, 765	817,999	\$1,320
Flattening stones, number.							14	1	, 24	146	- 4	
Fuel Cost	\$16,344		\$5,010		8200		\$316	$\$ 60$	\$1,550	\$9,049	\$160	
Total cost	\$3, 203, 146	\$155,400	\$355, 300	\$47, 980	\$33,047	\$75,689	\$445, 828	\$227, 158	\$249,405	\$1, 421, 710	\$88,905	\$102,724
Natural gas.	\$1,575, 278		\$361, 553					\$ $\$ 9,190$	\$110,616	\$1,016, 903	887,016	\$10,
Oil, gallons.	12,690, 8409	1,663,301	6	293, 107	371, 867	60,000	5, 098, 181	1,347,692	1,250,750	1, 116, 122	18,650	1,480,555
Cost Co...	$\$ 409,158$ 755,463	841,084 114,676	\$:115	$\$ 10,051$ 17,395	$\$ 15,619$ 4,136	$\$ 2,000$ 46,293	\$1159, 327	- $\$ 48,345$	1, \$31, 899	1, $\$$	\$ $\$ 585$	- $\$ 49,906$
Cost	\$1, 074,074	\$ 995,312	\$2,616	\$32, 804	4,136 $\$ 14,942$	46,293 $\mathbf{8 7 1}, 719$	104,926 $\$ 219,362$	68,959 $\$ 158,752$		300,484 $\$ 326,369$	1,271 81,304	19,963 $\$ 48,433$
All other fuel	\$144,636	\$19,004	\$1,016	\$8, 125	-\$2, 486	\$ $\$ 1,970$	\$ $\$ 667,139$	\$ $\begin{aligned} & \$ 158,762 \\ & \$ 10,871\end{aligned}$	\$102, $\mathbf{8 4}, 429$	$\$ 326,369$ $\$ 28,211$	\$1,304	$\$ 48,433$ $\$ 1.385$
Rent of power and heat.....-	\$62								,1,	- ${ }^{\mathbf{\$}} \mathbf{6 2}$		
Lamber, casks, barrels, boxes, and nails.............	\$2, 778, 025	\$104, 589	\$941,834	\$15,868	\$12, 191	\$17,840						
Cartons, wrapping paper, straw and hay					12,101	\$17,840	[193,800	\$127, 827	\$211,651	\$1,026,513	\$107, 050	\$18.812
Caps, metal trimmings, and	\$612,602	\$22, 571	\$290, 525	\$3,026	\$4, 193	\$2,773	\$22, 390	\$22, 305	\$49, 770	\$161, 012	\$32,562	\$1.475
rubber supplies Supplies usplin	\$1,622, 917	\$31,073	\$747,574	\$10,494	\$6,816		\$79,359	\$67,111	\$61, 212	\$405,045	\$101,983	\$12,250
tanks and furnaces...	\$531, 916	\$36,659	\$145,667	\$2, 107	\$2,803							
Mill supplies .-.............	\$138,434	\$1,126	\$ $\$ 156,846$	\$2, 667	\$692	81,938	83, 707	\$3,528	\$9,064	\$ $\$ 49,169$	\$18, 88.69	$\$ 11,739$ $\$ 1,107$
Ali other materials..........	\$991, 751	\$31, 674	\$137,133	\$12,463	\$20,679	\$30,906	\$109, 335	878,950	\$43,746	\$458,507	\$63,628	\$4, 732
Freight.	8894,088	\$24, 143	\$220, 935	\$6,177	\$2,012	\$7,316	\$71,950	\$29,924	\$63,449	\$406, 774	\$32,097	\$29,311

${ }^{1}$ Includes establishments distributed as follows: California, 1: Colorado, 1: Delaware, 1: Georgia, 1: Michigan, 1; Virglnia, 2: Wisconsin, 1.

Table 12.-GLASS MANUFACTURE, BY STATES: 1900-Continued.

	United States.	Illinois.	1ndiana.	Maryland.	Massachusetts.	Missouri.	New Jersey.	New York.	Ohio.	Pennsylvania.	West Virginia.	All other states. ${ }^{1}$
Products: Aggregate value	\$56,539,712	\$2,834,398	\$14, 757, 883	\$557, 895	\$418,458	\$765,564	$85,093, x=2$	82, 756,978	44, 547,083	822, 011, 130	\$1,871,795	8992, 706
Euilding glass-.............	W0,539, 712	\$2,834,398	\$14, 707,803	\$507,090	\$418, 408	\%60,504	85,093, \times -	12, 50,978	4,54,083	202,01, 100	4,81, 795	8-7, 706
Total value............. ${ }^{\text {\$ }}$	\$17,096, 234	\$24,000	85, 711,948	\$103, 262	\$16,200	\$505, 564	\$274, 011	\$346, 790	\$671, 422	\$9,218,545	\$101, 242	\$128, 250
boxes.	4,341,282	4,000	1,701,729	49,669	6,000		124,541	89,52"2	200, 854	2,068,340	40,144	6,483
Value................ \% $_{\text {\% }}$	\$10, 879, 355	\$24,000	\$4, 176, 587	8103, 262	\$15,000		8267, 611	\$243, 085	\$519, 187	95, 301, 131	\$101, 242	\$128, 250
Platal cast, square feet	34, 758, 994		8, 553, 433			5,628,860		543,282	486,340	19,546,674		
Rough sold, square feet.	628, 684		31,917			16,862				579, 905		
Value	\$75,887		\$4,780			\$3,075				\$68, 032		
Polished plate made, square feet	16,883,578		5, 177, 160			455, 222			373, 946	10, 877, 250		
value	\$5, 158, 598		\$1,415,224			\$152, 062			\$149, 2 C	\$3, 441,734		
Cathedral, square feet.	8,846, 361		2,000,000			5, 103, 079		543,282		1,200,000		
Value.............	\$567, 252		\$100, 000			\$349,558		\$46,694		871,000 $3,636,536$		
Skylight, square feet -- Value	$3,679,694$ $\$ 165,086$		5,616 $\$ 357$			10,976 $\$ 869$			26, ${ }^{2}, 665$	$3,616,536$ $\$ 161,203$		
Wire, square f	1,295, 504									1,295,504		
Value......	\$129,051									\$129, 051		
All other building glass.	\$121,005		\$15, 000		\$1,200		86,400	\$57,011		\$41,394		
Pressed and blown glassTotal value. \qquad	817, 076,125	\$131,618	\$2,691,787	\$100,000	\$382,091		\$21,300	81, 173,784	\$2, 738, 289	88, 453,550	\$1, 379, 706	\$4,000
Tableware, 100 pieces. .	655, 141	131,018	126,162	\$100,00					-150, 992	364,770	13, 217	
Value.	\$2,617, 784		\$291,060						-8668,469	\$1,585,870	\$72, 385	
Jellies, tumblers, and goblets, dozens ...	8,544,050		3,050,595	340, 000					1,681,584	3, 112,588	359, 283	
value	82,007,386		\$ $\$ 630,485$	\$100,000					\$392, 612	\$793, 902	\$90, 387	
Lamps, doz	8187,765		81, 972		2,020			15,599	191,084	$\begin{array}{r}\text { 455, } \\ \mathbf{8 9 8 3}, 45 \\ \hline 15\end{array}$	\% $\begin{array}{r}\text { 675, } \\ \text { 263 }\end{array}$	
Value	\$1,498, 675		843, 116		84,000 84,000			87,447 186,800	\% 118508,297	1,835, 119	\$275,363	
Chimneys, dozen	6, 901,192	173,931 $\$ 131,618$	3, $31,113,228$		84,000 $\$ 33,000$			1896,707	1, 8622,721	\$ $\$ 638,541$		
Value \%antern globes, dozens.	$\$ 2,719,583$ $1,044,816$	\$131,618	\$1, 196,996 547,971		833,000 2,000			162, 038	142, 800	58,275	131,732	
Value ...	\$497,021		\$176, 150		\$1,800			\$189, 629	\$69,589	\$26,920	\$32, 933	
Shades, globes, gas and electricgoods, dozens.	2,673,854		15,052		23,300		41,666	312,500	1,397, 814	856, 125	27,387	
Value.	\$2,497, 885		\$19,044		\$40,000		\$6, 600	\$520,000	\$398, 420	\$1, 452, 248	\$61,673	
Blown tumblers, stemware, and bar roods dozens.									214, 072	3, 512,552	2,288,580	
goods, dozens......	6, 6127,367		182, 1801						\$ 853,368	81, 107, 489	\$400,094	
Value	$\$ 1,598,652$ $3,750,443$		244,873,		3,000			1,000	96,597	2, 925,545	479,428	
Opalware	\$1,581,731		\$90, 322		\$4,000			\$1, 200	\$51, 656	\$1, 214, 472	\$219, 781	
Cut glass,	-134,726		325		3, 332				2,900 $\$ 126,000$	56,800 $\$ 311,189$	71,369 888,061	
Value	\$672, 463		$\$ 600$		\$146,613				\$126,000	\$311,189	\$88,061	
All other pressed and blown glass	\$1, 384, 445		\$206, 313		\$152,678		\$14,800	\$358,501	\$170, 157	\$339,467	\$139,029	\$4,000
Bottles and jarsTotal value.	\$21,676, 791	\$2, 678,780	\$6, 327, 468	\$346, 633	\$20, 167	\$260,000	\$4, 452, 219	\$1 195, 276,	\$1,058,955	\$4, 162, 990	\$381,847	\$792,456
Prescription vials and												
druggists' wares,		265, 918	624, 128	20,000			731,107	81, 803	76, 409	551,236	4,004	$\begin{array}{r} 69,327 \\ \$ 137,491 \end{array}$
value gro....	\$4, $2,425,697$	\$404,799	\$1,184, 397	\$94, 633			81,306,316	\$203, 734	\$155, 377	\$1,170,061	\$8,889	$\$ 137,491$
Beers, sodas, and min-								134,364	219, 422	147, 145	25,000	118,577
erals, gross	\$5,075, 068	$\begin{array}{r} 406,037 \\ 81,332,842 \end{array}$	\$347,836	$\begin{gathered} 18,004 \\ \$ 120,212 \end{gathered}$	\$626	\$260,000	\$408,661	\$495, 398	\$637,428	\$01, 129	\$92, 000	\$178,936
Liquors and farke.											43,058	27,823
gross ...	$\begin{array}{r}985,374 \\ \text { \$, } \\ 403,447 \\ \hline\end{array}$	31,168 8131,869	$\begin{array}{r} 604,798 \\ \$ 1,207,519 \end{array}$	$\begin{array}{r} 5,000 \\ \$ 20,000 \end{array}$	$\begin{array}{r} 6,298 \\ 819,541 \end{array}$		§153, 165	8110, 221	W67, 350	\$448,182	\$169, 852	\$85, 748
Value Milkjars gro	$\begin{array}{r}\text { \%2, } \\ \text { 146, } \\ 146,142 \\ \hline\end{array}$	8131,809 7,500	\$1, 19,561				19,798	6,938	6, 000	80,485	4,600 $\$ 23,000$	1,260 $\$ 7,560$
Mink jars, gross............ Value.................	- \$7729,008	\$37, 500	\$55,344				\$107,431	\$33, 863	$\$ 30,000$ 2,000	$\$ 434,310$ 115,000	\$23,000	$\$ 7,560$ 3,500
Fruit jars, gro	789,298	1,500	559, 549				\$192,467	\$128,965	\$8,000	\$436, 104	\$43,750	810,500
Value	\$2, 935, 036	\$9,000	\$2, 106, 250									
Patent and proprietary, gross	1, 296, 131	-302, 708	244,343 8378,301	500 $\$ 1,500$			- $\begin{array}{r}601,276 \\ .11,399,042\end{array}$	$\begin{array}{r} 57,224 \\ \$ 120,543 \end{array}$	20,000 $\$ 835,800$	$\begin{array}{r} 55,040 \\ \$ 142,193 \end{array}$		$\begin{array}{r} 15,000 \\ 8.30,000 \end{array}$
- Value	- $22,602,976$	\$495,597		\$1,500								
Packersand preservers, gross	- 784,588	$\begin{array}{r}80,739 \\ \hline 8195,691\end{array}$	247,731 $\$ 686,092$	5,007 $\$ 15,021$			278,960 $\$ 620,869$	11,430 $\mathbf{8 3 3}, 706$	25,000 $\$ 100,000$	$\begin{array}{r} 118,546 \\ \$ 419,947 \end{array}$	$\begin{array}{r} 10,242 \\ \$ 20,356 \end{array}$	$\begin{array}{r} 11,933 \\ \$ 27,539 \end{array}$
Value	\$2, 119, 221	\$195,691	\$686,092									
Demijohns and carboys, dozens.......	83,243	$\begin{array}{r}29,136 \\ \hline 848 \\ \hline\end{array}$					$\begin{array}{r} 18,689 \\ 886,645 \end{array}$	$\begin{array}{r} 10,929 \\ \$ 18,896 \end{array}$		17,815 $\$ 36,85 \pm$		$\begin{array}{r} 6,674 \\ \$ 14,682 \end{array}$
	- \$206, 061	\$48, 984								\$174,210		
All other bottles and jars.	. 8940,277	\$22, 498	\$361,729	\$95, 267			8177,623	\$49,950	\$35, 000	\$174,210	\$24,000	
Value of all other products.	. \$690,562		\$26,680	\$8,000			§346, 292	\$41,128	\$78, 417	\$181,045	\$9,000	
Comparison of products:												
Number of establishments reporting for both years...	252	8 ${ }^{6}$	$\begin{array}{r} 63 \\ 811,157,894 \end{array}$	$\begin{array}{r} 7 \\ \$ 557,895 \end{array}$	$\begin{array}{r} 3 \\ \$ 382,091 \end{array}$	8765, 564	$\begin{array}{r} 23 \\ \$ 4,927,447 \end{array}$	$\begin{array}{r} 23 \\ \$ 2,638,902 \end{array}$	$84,138,150$	$\$ 17,347,849$	\$1,628,027	8806,432
Valuc for census year- Value for preceding busi-	-847,184, 6	\$2,83		-557, 85					83, 316,665	\$15,364, 075	\$1,371,352	\$646,762
Value for preceding business year	-841, 959,668	\$2, 297,679	\$10,056, 153	\$532, 723	8430, 549	\$1,034, 253	\$4,539,963	\$2, 350,494	83, 310,603	415,384,075	, $1,37,352$	316,702
Equipment and characteristics of works:												
Pot furnaces-		9	116	10	4	4	- 27	24	- $\begin{array}{r}37 \\ 44 \\ \hline\end{array}$	143 1,758	\|r 144	3 38
Operated, number	4,300	117	1,220	91	38	60	- $\quad 200$	200 5	- 44	- $\begin{array}{r}1,158 \\ \hline 25\end{array}$	- 14	
Pots, number	60	1	[9	$\stackrel{2}{16}$			- 55	47	9\%	359	912	
Pots, number	- 807											
Tanks-							31	14	12	43	3	7
Continuous- Op -	. 192	11	71 564			$\stackrel{3}{20}$	- 293	. 115	- 95	- 404	4	47
Operated, number........	- 1,671	133	564 1,307			43	- 610	230	212	- 1,013	1	94
Pot capacity, number.	- 3,775	266	- 1,307			2	$2{ }^{-1}$			1	1	
Idle, number	- $\quad 14$		12			15	- 40			8	8	18
Rings, number. Pot capacity, number.	. 158		24			30	, 80					

${ }^{1}$ 1ucludes establisbments distributed as follows: California, 1; Colorado, 1: Delaware, 1; Georgia, 1; Michigan, 1: Virginia, 2; Wisconsin. 1.

Table 12.-GLASS MANUFACTURE, BY STATES: 1900 - Continued.

[^174]Table 13.-BUILDING GLASS, BY states: 1900.

	United Siates,	Indiana.	New Jersey.	New York	Ohio.	Pennsylvania.	All other states. ${ }^{1}$
Number of establishments.							
Cuaracter of organization: Individual	124	51	4	7	7	46	9
Firm and limited partnersilip	$1{ }^{6}$	2	1		2		
Incorporated company	102	45	1	$\frac{1}{6}$	5	38	$\frac{2}{6}$
Capital:		4		6	5		
Land.	\$25, 617,122	87,080,415	8218,990				
Buildings.	\$8, 170, 878	\$385, 283	828,000	816,450	$\$ 2,039,134$ $\$ 212,191$	¢ $\begin{gathered}14,661,120 \\ \$ 1,275,513\end{gathered}$	$\$ 2,283,428$ 8253,238
Machinery, toois, and implement	\% $39,523,538$	-$\$ 2,810,638$ $\$ 2,162,680$	年814, 5000	\$ 871,500	\% $\begin{aligned} & 8486,931 \\ & 89912\end{aligned}$	$94,831,176$ $5,425,846$	
Proprietors and firm members.	\$5, 902,106	\$1, 721,816	895, 490	\$207, ${ }^{\mathbf{8} 515}$	\$ 89418 , 8000	\$5, 425,846 $83,128,885$	8891,153 8399,480
Salaried officials, clerks, etc.:				6	2	- 8	
	8811,983 ${ }^{615}$	- 8274,105	\% $\begin{array}{r}8 \\ 86,326\end{array}$	11 815,160		\$435,075	40
Officers of corporations- Number	881,983	\$274, 105	86, 326	815, 160	\$22,570	\$435,015	858,807
General superintendents, managers, clerks, etc.- Total num	\$311,672	8105,898	\$1,200	84,700	87,825	$\begin{array}{r} 41 \\ 8173,449 \end{array}$	\$18,600 ${ }^{6}$
Total salaries		\$ ${ }_{\text {8168,207 }}^{192}$					
Men-				\$10,460	814, 745	8261,566	
Sularies.	${ }^{485}$	${ }_{8} 1788$	6			245	
Women-	8476,169	8159, 904	\$4,970	910,096	814, 295	8248,707	\$38,197
Number..			1				
Wage-earners, including pieceworkers, and total wages:		88,303	8156	\$364	\$450	812,859	\$2,010
ne time during the ycar.	19,343	${ }^{6,512}$	389	313	1,021	10,031	
Average number	${ }_{11}^{16,059}$	${ }_{3}^{5,519}$	${ }_{230}^{242}$	${ }_{228}^{263}$	912	8 8, 379	744
Total wages . ${ }_{\text {Men }} 16$ years and ${ }^{\text {a }}$	89,029,673	\$3, 251, 819	\$163,245	8164,291	\$376,006	\$4,766,720	8867, 692
Average number.							
Wages	88,999, 613	83, 250,119	8163,245	8163,979	8876,006 ${ }^{477}$	6,368 $84,679,801$	$\begin{array}{r} 692 \\ \$ 366,463 \end{array}$
Average number							
Children, under 16 years-	\$4,901					\& 4,901	
A verage number .-							
	\$25, 159	\$1,700		8312		\$22,018	\$1,129
employed during each month: Men, 16 years and over-							
January.	16,693	5,865	357	297	787	8,840	647
March .	16,743	5, 461	${ }_{357}^{357}$	305	${ }_{955}^{780}$	${ }_{8}^{8,985}$	492
April.	16,987	5,457	373	292	951	9,224	690
June.	17, 17.408	${ }^{6,806}$	384	${ }^{284}$	932	8,803	943
July	6,584	1,558	37	69	4	3,243	683
August.	5,717	1,545	${ }_{18}^{23}$	45	10	3,367	727
October.	5,761	${ }_{9}^{1,922}$	18	169	192	3,218	${ }^{242}$
November	8, 241	2, 605	240	${ }_{296}$	${ }_{229}$	4,402	${ }_{469}$
December.	9,823	2,845	260	297	649	5,227	645
women, 15 years and overJanuary							
February						24	
March .	27					27	-
May...	18					18
June	18					18	
Angust..	15					13	
September	17					17
October.	21						
November	18					18	
Children, under 16 years-	24						
January.....		3		2			
February	94	5		2		83	4
April...	93	5		2		82	4
May...	92	5		2		$7_{7} 7$	10
June.	91	4				64	8
August.	80	4		2		${ }_{68} 8$	6
September	\% 58	8		2		57	
October...	69	3		2		64	
December..	77						
Miscellaneous expenses: Total	\$1, 365, 865	\$348,665	\$12,141	\$14,569	\$19,505		
Rent of works.	\$86,314						${ }^{88554}$
Taxes, not including internal revenue.	\$104,969	832,387	\$841		8,291		86,651
Rent of offices insurance interest, and ail sunary expenses not hitherto included	$\$ 1,243,457$	\$316,278	811, 300	\$11,882	817,214	$\begin{aligned} & 8790,2718 \\ & \$ 70 \end{aligned}$	896,512
Materials Lentract work							
Aggregate cost.	84, ${ }^{1797,984}$	\$1, ${ }^{319,675}$	880,720 2,763	8120,748 2,977	$\$ 158,526$ $\overline{5}, 851$ 185	$\begin{array}{r}\text { \$2, 697,041 } \\ 95.176 \\ \hline\end{array}$	8296,374 11,453
Glass sand, ton Cost....	\$298, 879	\$102, 019	\$2, 833	83,773	87, 836	8172,003	\$10,415
Soda ash (carbonate of soda), tons	- 25,500	8,037 810683		\$1, 693	${ }_{89}{ }^{6669} 6$	- 168,206	841,181
Salt cake (sulphate of soda), tons.	- 52,789	14,158	-1, 500	1,453	1,751	-34, 239	841, 888
Sast.....................	8512,835	\$180,018	\$5,700	813, 605	818, 428	8286,548	\$8,536
Nitrate of soda, tons.. Cost............							
Cost.	$¢_{99,262}$	\$1,875		${ }^{81,056}$		${ }_{56,531}^{5631}$	
Limestone, tons.		\$31,987	\$850	81,621	83, 102	8662, 380	86,693
Lime hundredweights	${ }_{125,030}$	12,060	72,922		3,150	20, 185	${ }_{15} 1.713$
Cost....	\$12,315	\$1,745	\$2,373		\$482	83,919	\$3,796

1 1ncludes establishments distributed as follows: Illinois, 1; Maryland, 2; Massachusetts, 1; Missouri, 2; West Virginia, 2; Delaware, 1.

Table 13.-BUILDING GLASS, BY STATES: 1900-Continued.

${ }^{1}$ Includes establishments distributed as follows: $1 l$ linois, 1 ; Maryland, 2; Massachusetts, 1 ; Missouri, $2 ;$ West Virginia, 2; Delaware, 1 .
by adding the amounts given, as the report of certain products has been suppressed to avoid disclosing the operations manufacture, this total can not be obtained

Table 13.-BUILDING GLASS, BY STATES: 1900-Continued.

	United States.	Indiana.	New Jersey.	New York.	Ohio.	$\begin{aligned} & \text { Pennsyl- } \\ & \text { vanial- } \end{aligned}$	All other states. ${ }^{1}$
Power-Continued. Total horsepower-Continued.							
Total horsepower-Continucd. Owned-Continued.							
Water wheels, number	1						1
Horsepower........	12						12
Electric motors, number Horsepower........	5, 134	14			39		15
Other power, number.	5,628 6	368			3,520	1,258	
Horsepower......	440					440	
Rented-							
Electric, horsepower. .	1					1
Establishmer, horsepowerOtassifed by number of persons employed, not							
including proprietors and firm members: Total number of establishments.	124	51	4	7	7	46	9
5 to 20.......................	3	2					1
21 to $50 .$.	16	4	1	5	2	2	2
51 to 100...	43	24	1	2		12	4
101 to 250.	41	15	2		4	19	1
251 to 500..	13	4		1	7	1
501 to 1,000.....	8	2				6	

${ }^{1}$ Includes establishments distributed as follows: Illinois, 1; Maryland, 2; Massachusetts, 1; Missouri, 2; West Virginia, 2; Delaware, 1.
Table 14.-PRESSED AND BLOWN GLASS AND BOTTLES AND JARS, BY STATES: 1900.

	United States.	Illinois.	Indiana.	Maryland.	Massachusctts.	New Jersey.	New York.	Obio.	Pennsylvania.	West Virginia.	All other states. ${ }^{1}$
Number of establishments.	231	5	59	5	4	22	20	21	73	14	8
Cbaracter of organization:			5			3	3	1	10	1	
Individual-.-..................	23		6	1	1	3 3	4	4	24	3	3
Firm and limited partnership	157	5	47	4	3	16	12	16	39	10	5
Miscellaneous	2		1				1				
Capital:			\$5,694, 974	\$479,534	\$255,949	\$5,178,672	\$1,908, 799	\$3, 412,379	\$13,626,067	\$1,265, 624	\$841, 125
Total. Land	$\$ 34,806,781$ $\$ 2,600,798$	\$2,143, 8658	\$5,694, $\$ 240,812$	\$439,061	\$233, 000	\$0,1702, 136	\$ ${ }^{\$ 226,225}$	- $\$ 228,181$	\$1, 314, 384	$\$ 72,042$ 8348,301	$\$ 86,800$ $\$ 165,200$
Land....-......................................	87, 833,493	\$520, 764	\$1,321,693	\$104, 365	\$50,047	\$1,083,071	\$325,504	\$823,928	\$3, 190,620	\$348, 301	\$165,200
Macbimery, tools, and imple-	\$4, 723, 745	\$108, 289	\$774, 210	\$61,495	834, 150	\% 8339,100	$\$ 262,082$ $81,094,988$		$\$ 2,257,465$	$\$ 230,532$ $\$ 614,749$	$\begin{aligned} & \$ 156,000 \\ & \$ 433,125 \end{aligned}$
ments Cash sundries.......................-	\$19, 548, 745	\$1, 449, 448	\$3, 358, 259	\$281, 613	\$138,752	\$3, 454,365 14	\$1, 094, 988	\$1, 859, 848	$\$ 6,863,598$	\$614,749	$\begin{array}{r} 8433,125 \\ 8 \end{array}$
Proprietors and firm members.......	145										
Salaried officials, clerks, etc.: Total number.......................	1,653	71	285	$\stackrel{28}{ }$	[$\begin{array}{r}38 \\ \hline 960\end{array}$	[$\begin{array}{r}309 \\ \hline 8078\end{array}$	106 8124,538	174 $\$ 266,459$	535 $\$ 675,368$		$\begin{array}{r} 27 \\ \$ 36,420 \end{array}$
Total number..	81,980,393	\$106,600	\$375, 122	\$36,576	\$27,660	\$278, 634	\$124,538	\$226,459	\$675, 368	893,016	
Officers of corporations- Number................	302 $\$ 625,163$	\$36, 260	87 8165,249	\% $\begin{array}{r}6 \\ \\ \hline 9\end{array}$	89, $\begin{array}{r}7 \\ \hline\end{array}$	50 $\$ 82,340$	\$51, ${ }^{27}$	$\begin{array}{r} 25 \\ \$ 60,814 \end{array}$	$\begin{array}{r} 66 \\ \$ 172,367 \end{array}$	$\begin{array}{r} 17 \\ \$ 27,900 \end{array}$	$\begin{array}{r} 5 \\ 89,700 \end{array}$
Salaries	\$625, 163	\$36,260	\$165,249	\$9,710							
General superintendents, managers, clerks, etc.-		59	198	22	31	259	79	149	-503 469	${ }^{63}$	-26. ${ }^{22}$
Total number	\$1, 355, 230	\$70, 340	\$209, 873	\$26, 866	\$18, 191	\$196, 294	\$73, 184	\$165,645	\$503, 001	\$65, 116	\$26,720
Total salaries Men-	\$1,355, 230	\$10,340	W200,873	-26,80	-18, 22	228	73	121	406	50	22
Number	1, 162	- $\begin{array}{r}56 \\ \text { c68, }\end{array}$		\$25,544	\$15, 326	\$183, 770	\$69,986	\$153, 593	\$473,401	\$59,122	\$26,720
Salaries	\$1, 268,971	\$68,320	\$193,189	\$25,544	\$15,326	\$18, 70	\$60, 28	\$153,			
Women-				2	9	31	${ }^{6}$	- 28	63	${ }_{85} 13$	
Number. Salaries	189 386,259	\$2,020	\$16, ${ }^{384}$	\$1,322	\$2,865	\$12,524	\$3,198	\$12,052	\$29,600	85,994	- .-........
Wage-earners, incliding pieceworkers, and total wages:											
Greatest number employed at any		3,889	12,011	870	486	7,032	$\checkmark, 186$	5,212	16,012	2,266	1,406
one time during the year	52,370	3,88	12,011								
Least number employed at any one time during the year	37,601	3,639	9,150 9,103	631 657	327 375	4,395 5,153	2,110 2,328	3,395 4,069	10,775 12,961	1,891 1,886	1,288 1,093
Average number........................	818, $\begin{array}{r}40,916 \\ \hline\end{array}$	\% $\begin{array}{r}3,291 \\ \$ 1,615,786\end{array}$	\$3, 974, 228	\$275, ${ }^{654}$	\$179, 329	\$2, 299,500	\$1,140,973	\$1, 691, 378	\$5, 580,771	\$734,676	\$563, 042
Total wages................	\$18	\$1,615, 780	\$, 3 , 22	\$27,301							
Men, 16 years and over- A verage number...............		$2,594$	$\begin{array}{r} 7,002 \\ 4357023 \end{array}$	$\begin{array}{r} 477 \\ 8249.756 \end{array}$	331 $\$ 169,891$	$\begin{array}{r} 4,136 \\ \Re 2,115,061 \end{array}$	\$1, $\begin{array}{r}1,975 \\ \hline\end{array}$	3,028 $81,468,952$	8,768 $\$ 4,658,460$	\$ 8603,817	\$ $\$ 510,377$
Average number. Wages	$815,901,620$	$81,491,391$	\$3, 557,923	$\$ 249,756$	\$169,891	\&2,115,061	\$1,075,992	\$1,468, 95	\$4,658,460	4003,817	\$510,377
Women, 16 years and over-					19	170	73	405	1,526	- 468	12
Average number................	3,509 $\mathbf{4} 35,100$	\$28, $\begin{array}{r}148 \\ \hline 156\end{array}$	$\begin{array}{r} 634 \\ 8129,808 \end{array}$	\$8,673	84,392	\$32,726	\$17, 831	\$96,017	\$409,349	\$103,748	\$4,100
Wages .-.........................	\$8							636	2,667	160	278
Children, under 16 years- Average	7, 7 , 035	549 995,939	1,467 $\$ 286,497$	\$16, 126	$\begin{array}{r} 25 \\ \$ 5,046 \end{array}$	$\begin{array}{r} 847 \\ \$ 151,713 \end{array}$	\$47, 150	\$126,409	\$512,962	\$27,111	848,565
Wages	\$1,318, 317	\$95, 939	\$286, 4	\$16,925	\$5,046						
Average numberof wage-earners, including pieceworkers, employed											
during each month:				-				3,345	9,840	1,302	966
Men, 16 years and over-		3,008	8,091	516	343	4,987	2,191	3,389	9,943	1,357	966
January..............................	34,811	3,005	8,128	528	368	5,027	2,100	3,883 3,533	9,858	1,362	1,000
February	34,811	3,000	8,386	579	330	5,053 4,475	2,302	3,583 3,576	9,799	1,357	1,986
March	35,057	2,980	8,560	593	303	4, 4330	2, 387	3,358	9,169	1,309	883
April.	35,057 33,510	2,939	7,922	590	323	4,630 4,392	2,257	3,240	8,637	1,095	812
May..	31,439	2,791	7,317	588	310	4,392 1,382	2,909	1,205	4,631	1,507	205
June	31,439 12,245	2, 657	2,363	164	222	1,382 ${ }_{946}$	988	1, 622	6,043	1,214	205
July	14,751	660	2,638	196	239	1.946 3,913	1, 672	3,070	8,555	1,377	828
August	14, 484	3,025	6,243	457	344 373	4, 4 ,660	1,959	3,302	9,416	1,381	826
September	33,300	3,020	7,859	504 495	373 403	5,076	2,205	3,312	9,641	1,397	980
October ...	34, 801	3,086	8,256	495 514	417	5, 092	2,296	3,383	9,687	1,437	984
November	35, 080	3,008	8,267	514	417	5,052				448	13
Women, 16 years and over-	3,795	179	792	53	15	153	71 67	431 439	1, 1,707	458	13
Jannary	3, 855	177	758	58	19	159	83	487	1,677	463	13
February	3,957	177	810	62	19	166	90	479	1 1,603	463	113
March	3,868	177	806	57	20						

1 neludes establishments distributed as follows: California, 1; Colorado, 1; Georgia, 1; Michigan, 1; Missouri, 1; Virginia, 2; Wisconsin, 1.

Table 14.-PRESSED AND BLOWN GLASS AND BOTTLES AND JARS, BY STATES: 1900-Continued.

${ }^{1}$ Includes establishments distributed as follows: California, 1; Colorado, 1; Georgin, 1; Michigan, 1; Missouri, 1; Virgiuia, 2; Wisconsin, 1 .

Table 14.-PRESSED AND BLOWN GLASS AND BOTTLES AND JARS, BY STATES: 1900-Continued.

[^175]Table 14.-PRESSED and BLOWN GLASS AND BOTTLES AND JARS, BY STATES: 1900--Continued.

	United States.	1llinois.	Indiana.	Mary- land.	Massachusetts.	New Jersey.	New York.	Ohio.	Pennsylvania.	West Virginia.	All other states. ${ }^{1}$
Establishments classified by number of personsemployed, not including proprietors and firm members:											
Total number of establishments... Under $5 . ~$	231 1	5	59	5	4	22	20	21	73	14	8
5 to 20.	2							1	1		
	17		$\begin{array}{r}3 \\ 15 \\ \hline\end{array}$			2	4		6	2	
	50 98 ${ }^{\text {- }}$	15	1	2 2	4 9	5	3 8 8	12	4 3 4	4
251 to 500................................	45		10	1		3	4	7	11	4	3
501 to 1,000........................	13		2			3		2	6		
			1			1			1		

${ }^{1}$ Includes establishments distributed as follows: California, 1; Colorado, 1: Georgia, 1; Michigan, 1; Missouri, 1; Virginia, 2; Wisconsin, 1.

Census Bulletin.

agriculture.

TEXAS.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Texas, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land, under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.
The farms of Texas, June 1, 1900, numbered 352,190, and were valued at $\$ 691,773,613$. Of this amount, $\$ 100,222,811$, or 14.5 per cent, represents the value of buildings, and $\$ 591,550,802$, or 85.5 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 30,125,705$, and of live stock, $\$ 240,576,955$. These values, added to that of farms, give \$962,476,273, the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal prodacts." The total value of all such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 239,823,244$, of which amount $\$ 72,852,533$, or 30.4 per cent, represents the value of animal products, and $\$ 166,970,711$, or 69.6 per cent, the value of crops, including forest
products cut or produced on farms. The "total value of farm products" for 1899 exceeds that for 1889 by $\$ 128,123,814$, or 114.7 per cent, but a part of this gain is doubtless due to a more detailed enumeration in 1900 than in 1890.
The "gross farm income" is obtained by deducting the value of the products fed to live stock on the farms of the producers from the total value of farm products. In 1899 the reported value of products fed was $\$ 30,476,810$, leaving $\$ 209,346,434$ as the gross farm income for that year. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Texas in 1899 it was 21.8 per cent.

As no reports for expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.
Special reports as to the dimensions and cost of the leading irrigation ditches and canals, the area of land under them, methods for the artificial application of water to the growing crops, and other facts relating to irrigation were obtained by correspondence with farmers, engineers, and others. This correspondence was under the joint direction of Mr. F. H. Newell, chief hydrographer of the Geological Survey, acting as expert special agent for the division of agriculture, and Mr. Clarence J. Blanchard.
The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Texas.

Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN TEXAS.

GENERAL STATISTICS.

Texas has a total land area of 262,290 square miles, or $167,865,600$ acres, of which $125,807,017$ acres, or 74.9 per cent, are included in farms.

The surface of Texas is greatly diversified. From the low, sandy Gulf coast rises a terrace of rich, rolling land, called the " prairie belt." Then comes a series of gradual elevations reaching to the plateau and mountains of the west and north, where some of the peaks attain an elevation of 5,000 feet.

There are a great many varieties of soil, nearly all excellently adapted to grazing. The prairies have in general a sandy loam, the interior, a heavier brown and black loam, while in the northern part of the state are great areas of red lands. In the waste portions are cacti and thorny mesquite chaparrals.

The Gulf of Mexico receives the drainage from the southern and central parts, while the Red and Arkansas rivers convey the waters of the northern part of the state to the Mississippi. In the south and east the rainfall is ample, but for the remainder of the state it is unreliable.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850 , the number of farms, the total and average acreage, and the per cent of farm land improved:
Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	Number of farms.	NUMBER OF ACRES IN FARMS.				Per cent of farm land improved.
		Total.	Improved.	Unimproved.	Average.	
1900.	352, 190	125, 807, 017	19,576,076	106, 230, 941	357.2	15.6
1890.	228, 126	51, 406, 937	20,746, 215	30, 660,722	225.3	40.4
1880.	174, 184	36,292,219	12, 650,314	23, 641,905	208.4	34.9
1870.	61, 125	18, 396, 523	2, 964, 836	15, 431, 687	301.0	16.1
1860.	42,891	25,344, 028	2,650,781	22, 693,247	590.9 942.5	10.5
1850.	12,198	11, 496,339	643,976	10,852, 363	942.5	5.6

The number of farms reported in 1900 was nearly thirty times as great as the number in 1850 , and 54.4 per cent greater than in 1890. The total acreage of farm land has increased rapidly, being twice as great in 1900 as in 1890. The improved acreage shows a decrease of 5.6 per cent for the last decade, owing to
the use of a more strict definition of the term "improved land" in 1900 than in 1890 . The decrease in the percentage of farm land improved is due also to the acquisition of vast areas of new unimproved land for grazing purposes, resulting in a marked increase in the average size of farms. The increased acreages in crops indicate that there has been no actual loss of improved area.

FARM PROPERTY AND PRODUCTS.
Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF FARM PRODUCTS: 1850 TO 1900.

YEAR.	Total value of farm property.	Land, improvements, and buildings.	Implements and machinery.	Live stock.	Farm products. ${ }^{1}$
1900	\$962, 476, 273	\$691, 773, 613	830, 125, 705	\$240,576, 955	\$239,823, 244
1890	516, 977, 333	399, 971, 289	13, 746, 541	${ }^{3} 103,259,503$	111, 699, 430
1880	239, 828, 364	170, 468, 886	9, 051, 491	${ }^{3} 60,307,987$	65, 204, 329
$1870{ }^{2}$	100, 971, 937	$60,149,950$	3, 396, 793	37, 425, 194	${ }^{4} 49,185,170$
1860	137, 186, 219	88, 101, 320	6, 259, 452	42, 825,447	
1850	29,114,639	16,550, 008	2, 151, 704	10, 412, 927	

[^176]Every census year except the one following the Civil War shows a great growth in agriculture. The gain in the last decade in the total value of farm property was $\$ 445,498,940$, or 86.2 per cent. The increase in the value of land, improvements, and buildings was $\$ 291,802,324$, or 73.0 per cent; in that of live stock it was $\$ 137,317,452$, or 133.0 per cent; and in that of implements and machinery, $\$ 16,379,164$, or 119.2 per cent. The value of farm products in 1899 was more than twice as great as the value reported for 1889. A portion of this increase and of that shown for implements and machinery is doubtless the result of a more detailed enumeration in 1900 than in previous census years.

COUNTY STATISTICS.
Table 3 gives a statement of general agricultural statistics by counties.

Table 3.-NUMBER AND aCREAGE of FaRMS, AND VALUES OF SPECIFIED CLASSES OF FaRM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	NUMBER OF FARMS.		acres in farms.		values of farm property.				Value of products not fed to live stock.	EXPENDITURES.	
	Total.	With buildings.	Total.	1mproved.	Land and im provements buildings).	Buildings.	$\left\|\begin{array}{c} \text { Implements } \\ \text { and } \\ \text { machinery. } \end{array}\right\|$	Live stock.		Labor.	Fertilizers.
The State	352, 190	332, 810	125,807,017	19, 576,076	\$591, 550, 802	\$100, 222, 811	\$30, 125, 706	\$240, 576, 955	\$209, 346,434	\$12, 381, 905	\$124,716
Anderson.		$\begin{array}{r} 3,082 \\ 1,345 \\ 1,345 \\ 446 \\ 346 \end{array}$	$\begin{aligned} & 368,136 \\ & 921,626 \\ & 141,139 \\ & 142,199 \\ & 668,489 \end{aligned}$	$\begin{array}{r} 157,431 \\ 40 \\ 43,782 \\ 5,866 \\ 155,402 \end{array}$	$\begin{array}{r} 1,519,130 \\ 600,600 \\ 550,310 \\ 305,410 \\ 2,415,550 \end{array}$	$\begin{array}{r} 643,600 \\ 24,800 \\ 230,900 \\ 14,500 \\ 165,200 \end{array}$	$\begin{array}{r} 159,360 \\ 4,220 \\ 75,760 \\ 2,690 \end{array}$	818,650	1,429,007	46, 530	1,170
Angelina								-981, 309	- 4851,459		80
Aransas								52, 605	16,504	1,210	70
Archer ${ }^{1}$								1,447,733	189,997	40,010	730
Austin.	1728953,06455		326, 423	133,077	4,790, 220	1,300, 110	291, 810	1,151,560	1,819,042	34,480 42,630	1,720
ailey			306,666				700	378,210	22,		
andera	712	671	371,847	27, 842	967, 380	169,000	55,400	626,432	238,110	17,670	400
Bastrop		3,292	$\begin{aligned} & 389,154 \\ & 608,495 \\ & \hline 666,492 \\ & 5696,120 \\ & 649,850 \end{aligned}$	$\begin{array}{r} 168,004 \\ 47,032 \\ 52,776 \\ 323,864 \\ 122,629 \end{array}$		$\begin{array}{r} 807,700 \\ 126,740 \\ 269,770 \\ 1,71,180 \\ 1,023,720 \end{array}$	$\begin{array}{r} 190,330 \\ 47,090 \\ 59 \\ 542,250 \\ 54,270 \end{array}$			$\begin{array}{r} 52,270 \\ 16,2700 \\ 35,800 \\ 150,800 \\ 153,480 \\ 125,010 \end{array}$	290
${ }_{\text {Baylo }}{ }_{\text {Bee }}$		313 575									350
Bell		4,712									2,270
Bexar		2,315									1,650
${ }_{\text {Blanco }}^{\text {Borden }} \mathrm{i}$	$\begin{array}{r} 702 \\ 129 \\ 2,268 \end{array}$	$\begin{aligned} & 694 \\ & 126 \\ & 129 \end{aligned}$		1,452	1, 387, 940	286, 110		$\begin{array}{r}797,550 \\ \hline 106214\end{array}$	367,966 271, 28	13,780 30,920	50
Bosque				164, $\begin{gathered}11806 \\ 118,143\end{gathered}$	4, 4809,182 $1,206,580$	788, 998	288, 150	1, 500 , 884	1, 2577 , 440		1,830
Bowie	3,3691,721	a,$\substack{2,246 \\ 1,549 \\ 1,59}$				- 468,040	144, 140, 600	1,669, 588	1,202,036	18,16078,870	4,2101,210
Brazori			277, 180	73,558	2,749,710	620, 320		782, 985	637,008		
Brazos.	$\begin{array}{r} 2,613 \\ 177 \\ \text { 1,044} \\ 2,423 \\ 2,47 \end{array}$	$\begin{aligned} & 2,451 \\ & 59 \\ & 1, \\ & 1,950 \\ & 2,359 \end{aligned}$		$\begin{array}{r} 134,546 \\ 7943 \\ 113,4860 \end{array}$	$\begin{aligned} & 2,182,490 \\ & 1,36,990 \\ & 275,880 \\ & 2,758,880 \end{aligned}$	$\begin{array}{r} 513,690 \\ 68,810 \\ 41,610 \\ 507,440 \\ 531,620 \end{array}$	156, 000 12,640 17,960 203, 850	$\begin{array}{r} 714,802 \\ 1,803,485 \\ 445,709 \\ 1,073,078 \\ 696,809 \end{array}$	$\begin{array}{r} 1,133,661 \\ 268,629 \\ 82,039 \\ 1,040,040 \end{array}$	$\begin{aligned} & 90,480 \\ & 35,170 \\ & 4,570 \\ & 27,690 \\ & 27,690 \end{aligned}$	4,610
Hrewstey											
Brown.											50°
Burleson				123,961	3,059,990				1,247,804		430
Burnet.	1,4	1,323	512,885 288,411 260,425 1, 459, 070	$\begin{array}{r} 75,030 \\ 130,129 \\ 96,364 \\ 666,165 \\ 20,497 \end{array}$		$\begin{aligned} & 502,800 \\ & 754,440 \\ & 95,490 \\ & 979,190 \\ & 166,090 \end{aligned}$	$\begin{gathered} 168,980 \\ 218,310 \\ 18,580 \\ 131,800 \\ 40,270 \\ 40 \end{gathered}$			$\begin{array}{r} 21,180 \\ 164,030 \\ 180,060 \\ 25,900 \\ 87,450 \end{array}$	1,290
Caldwell	${ }_{2}^{2,594}$	${ }^{2,412}$									
llaban	${ }^{1,1760}$	1,113 ${ }_{493}$									
Cameron											
Camp	$\begin{array}{r} 1,339 \\ 57 \\ 3,271 \\ 76 \\ 727 \end{array}$	$\begin{array}{r} 1,256 \\ 56 \\ 3,131 \\ -72 \\ 317 \end{array}$	$\begin{gathered} 93,081 \\ 362,196 \\ 368,199 \\ \hline 981,272 \\ 366,362 \end{gathered}$	$\begin{array}{r} 57,065 \\ 44,663 \\ 164,78 \\ 12,781 \\ 11,681 \end{array}$	$\begin{array}{r} 509,420 \\ 493,200 \\ 1,18,290 \\ \hline 26,1,90 \\ 790,410 \end{array}$	$\begin{array}{r} 190,280 \\ 24,080 \\ 577,200 \\ 37,520 \\ 140,240 \end{array}$		$\begin{array}{r} 199,833 \\ 430,798 \\ 67,066 \\ 312,645 \\ 1,274,713 \end{array}$	$\begin{array}{r} 535,516 \\ 136,473 \\ 1,182,697 \\ 489693 \\ 434,590 \end{array}$	$\begin{aligned} & 38,080 \\ & 8,880 \\ & 5,870 \\ & 5,8,800 \\ & 5,2000 \end{aligned}$	840
Castro.											2,880
Chambe										22,080	670
Cherokee	$\begin{array}{r} 3,683 \\ 1,262 \\ 1,223 \\ 1 \\ 180 \end{array}$	$\begin{array}{r} 3,460 \\ 1,256 \\ 1,153 \\ 1 \\ 171 \end{array}$	340,814 486,983 637, 201 605, 842	$\begin{gathered} 148,970 \\ 27,541 \\ 191,671 \end{gathered}$	$\begin{aligned} & 1,644,550 \\ & 9,44,470 \\ & 4,462,460 \\ & 5,600 \end{aligned}$	673,021 613,160 613,160300	$\begin{aligned} & 142,899 \\ & 29,700 \\ & 204,740 \\ & 50 \end{aligned}$	$\begin{array}{r} 756,104 \\ 944,465 \\ 2,41,493 \\ 21,050 \end{array}$		$\begin{aligned} & 45,870 \\ & 21,400 \\ & 89,140 \\ & 100 \\ & 25,540 \end{aligned}$	1,660$\mathbf{2 5 0}$250
clay											
Cocbr											
				21, 274	1, 428, 150		67,750	962, 933	415,562		70
Coleman	$\begin{aligned} & 1,369 \\ & 6,651 \\ & 2189 \\ & 2,992 \end{aligned}$	$\begin{aligned} & 1,282 \\ & 6,200 \\ & 2023 \\ & 2,861 \\ & 719 \end{aligned}$	$\begin{aligned} & 807,872 \\ & 609,419 \\ & 689,492 \\ & \hline 473,241 \\ & 317,099 \end{aligned}$	89,031377,594271,494183,55541,9924	$\begin{array}{r} 3,577,714 \\ 14,994,400 \\ 5,995,660 \\ 5,079,500 \\ 2,330,960 \end{array}$		$\begin{aligned} & 151,610 \\ & 8810,030 \\ & 272,020 \\ & 254,260 \\ & \hline 50,20 \end{aligned}$		821, 102	84, 650	
Collin									5, 46881012	311, 3130	1,990
Colorado										116,750	
Comal							134, 810	1,600,281	, 593,777	43, 450	
Comanc	$\begin{aligned} & 3,548 \\ & 3,119 \\ & 3,307 \\ & 3,1202 \\ & \hline, 122 \end{aligned}$	$\begin{aligned} & 3,212 \\ & 102 \\ & \mathbf{1 0 2 9} \\ & 2,930 \end{aligned}$	$\begin{aligned} & 522,273,078 \\ & 846088 \\ & 470,818 \\ & 550,280 \end{aligned}$	$\begin{gathered} 167,423 \\ 26,184 \\ 225,179 \\ 206,555 \\ 7,758 \end{gathered}$	$\begin{aligned} & 3,600,400 \\ & 1,435,50 \\ & 6,656,500 \\ & 4,878,640 \end{aligned}$	726,000	278,660	1,285,073	1,567, 165	35, 170
Conche						(98,030	82. 140	${ }_{1}^{1,063,944}$	160,619	5,270	
Coryell						1, 895	${ }_{380}^{420,240}$	1,964, 1 , 23	2,276,939	121, 740	310
Cottle		119			4, 926 , 590	47, 890	14,970	,931, 231	-222, 590	18,590	
ne	$\begin{array}{r} 12 \\ 85 \\ 816 \\ 4 \\ 4,909 \end{array}$	$\begin{array}{r} 9 \\ 67 \\ 609 \\ 4,699 \\ 409 \end{array}$		iio	- 565,552	2,010	2,530				
Crockett					1,953,480	48,800	23,980	2,370,685	372, 496	69,020	
Crosby-...				6,985 1,280	661,300 59,500	47, 870	11,795	667,990	122,894	10,900	
Dallas ${ }^{1}$				294, 882	11,698,912	2, 229,500	632,730	2,533,393	8, ${ }^{\text {b556, }, 392}$	37,920 284,520	00
Dawson 1	$\begin{aligned} & 97 \\ & 2,364 \\ & 3,699 \\ & 2,137 \end{aligned}$	$\begin{array}{r} 3 \\ 99 \\ 2,220 \\ 3,291 \\ 2,063 \end{array}$	$\begin{aligned} & 825,772 \\ & 317,961 \\ & 145,151 \\ & \hline 28,468 \\ & 532,568 \end{aligned}$	$\begin{array}{r} 35 \\ 11,041 \\ 106,213 \\ 286,189 \\ 126,956 \end{array}$		$\begin{array}{r} 3,800 \\ 10910.650 \\ 1,470,520 \\ 1,4020 \end{array}$		6788,197 5488 882	90, 321	9,340	0
Dear ${ }^{\text {Deita }}$							17,120				
Deita							163,310	670, 567	1,236, 128	51,350	
Dewitt.							553, 930	1,978,767	2,680,983	168,420	
	19710510886832,510	$\begin{array}{r} 188 \\ 100 \\ 184 \\ 329 \\ 2,414 \end{array}$	$\begin{aligned} & 792,972 \\ & 904,496 \\ & 358,074 \\ & 728,911 \\ & 408,291 \end{aligned}$		$\begin{aligned} & 1,301,180 \\ & 1,601,{ }^{1,650} \\ & 53,9500 \\ & 1,1868,860 \\ & 2,893,560 \end{aligned}$	$\begin{gathered} 46,290 \\ 70,190 \\ 103,1060 \end{gathered}$$\begin{array}{r} 189,480 \\ 449,240 \end{array}$			1,561,803	108,	
Dimmit				$\begin{array}{r} 40,842 \\ 34,081 \\ 145,504 \\ 15,509 \\ 113,768 \end{array}$			$\begin{array}{r} 18,720 \\ 18,700 \\ 27,380 \\ 22,400 \\ 165 \end{array}$	1,485,		32, 860	
Donley								$\begin{array}{r}1,9897,156 \\ \hline 98\end{array}$	148,922	36,460 36,430	
Dustand								588, ${ }^{\text {a }}$ /14	234,819	36,480 18,130	10
Eastland								884, 163	1,010, 635	38, 230	
Ector ${ }_{\text {l }}$ Edward	25	${ }^{23}$					18,110	595, 876			
Elis	6,963	$\begin{array}{r}302 \\ 5,558 \\ \hline\end{array}$	994, 990	5,104	1,251, 150	97,080	35, 120	1,499,790	576,718	50,700	200
El Paso		, 305	945, 105	394,968	- 13.2979750	2, 2377,710	687,500	2,306,485	5,216,610	353, 600	318
ath	3,783	3,657	693,352	199,563	4,125, 670	926, 120	302,770	1,592,069	1,819,958	$\begin{aligned} & 16,780 \\ & 42,770 \end{aligned}$	780
Falls ${ }_{\text {Fannin }}$	4,523 7 202	4,334	383, 320	260,780	6,941,790	1,182, 810		1,448,075	3,127, 857		
Fayette	5,189	5,092	635, 448	346,288 221,173		$1,970,960$ $\mathbf{1}, 957,620$	692,210 488,670	2,162,029	4, 434, 277	222, 400	
Floyd.	519 286	506	623, 272	299, 801	1,344, 160	1, 190,870	481, 350	1, 7993,162	3, 516,8887	117, 38	1,830
		${ }^{-}$	651,483	18,607	914, 990	61,920	30, 330	1,337, 193	124,049	32, 030	
Fort Bend	${ }_{2}^{210}$	${ }^{208}$	497,754	23,959	892, 920	72,040					
Franklin	1,622	1,377	${ }_{118,588}$	189,909 59,847	5,218,690	690, 410	${ }^{543,740}$	1,153,703	989, 663	269, 480	260
${ }_{\text {Frios }}$	3,302	3,126	323, 851	159, 174	2, 232,710	655,250	164,830	-334,990	547,662	15,570	124
		385	836,733	38, 105	1, 934,960	201, 140	43,960	1,103,246	405, 196	49,040 480	176

Table 3.-NUMBER aND ACREAGE of FARMS, AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES-Continued.

${ }^{1}$ Includes some large live-stock ranches with portions of area in other connties.

Table 3.-NUMber and acreage of farms, and Values of specified classes of farm property, June 1 , 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES-Continued.

counties.	number of farms.		Acres in farms.		values of farm property.				Value of products not fed to live stock.	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
Mitchell 1.	232	225	946,607	17,334	\$1,879,870	\$104, 340	\$23, 630	\$1, 283, 983	\$328, 352	\$23, 340	
Montague	3,571	3,292	520, 329	210,634	3, 913,440	784, 940	286, 800	1,615,188	1, 676,757	61,720	
Montgomery	2,097	2,040	173, 243	71,089	1,035,940	357,670	104,500	463,458	845,767	30, 970	\$1,530
Moore		52	115,494	1,708	165, 450	20,370	5,120	231,279	25, 476	2,450	
Morris	1,126	1,079	102, 903	49,560	506, 100	213,850	53,700	256,431	469,734	7,360	
Motley ${ }^{1}$	209	209	924,565	8,432	1,435,040	87,500	17,610	1, 454,603	259, 070	27,330	
Nacogdoches	3,678	3,416	344, 707	140,247	1,642, 210	645, 890	159,080	788, 853	1,392,138	30,180	730
Navarro.	5,106	4,814	496, 675	301, 290	$8,004,790$	1,402, 970	466,680	2,082, 765	3, 463,160	153,280	880
Newton	921	908	109, 182	22, 397	274,000	70,710	14,480	265, 988	258, 620	6,660	1,620
Nolan	293	277	390, 372	179, 640	890,489	110,920	22, 250	626,504	144,360	10,580	
Nueces ${ }^{1}$	339	335	1,611,053	21,750	4,733,780	318,560	52,310	2, 360, 490	433, 838	53,440	
Ochiltree	71	67	156, 599	2,602	270,580	37,740	9,370	260,055	35,774	7,940	
Oldham	23	23	578,246	11,519	849,040	27,480	2,030	772, 383	94,756	20,640	
Orange	327	302	78, 128	14,530	440,630	108,440	29,560	217, 898	166. 349	17,160	780
Palo Pinto	1,271	1,184	461, 755	168,792	2,100, 820	335, 320	118,000	1,014,893	559, 745	18,440	
Panola	3,413	3,190	337, 713	140,931	1,151,360	547,390	126,150	541,682	1,123, 366	32,250	2,010
Parker.	3,529	3,208	512,809	193,912	4,027, 910	869,350	323, 560	1,537, 967	1,736,044	63,570	
Parmer	1	1	450,000	${ }^{350}$, 894,000	6,000	500	-402,887	44,020	4,200	
Pecos	95	82	2,158,547	5,346	1,447, 610	60,570	26,280	1,794,597	341, 992	92,680	
Polk	1,769	1,658	174,461	49,924	652,820	230,650	70,490	418,746	667, 763	13,480	280
Potter ${ }^{1}$	79	76	684, 304	7.414	1,054, 220	76,500	18, 170	968, 232	143, 910	21,350	
Presidio	83	67	711, 715	2,497	755, 170	42,100	12,920	743,857	144, 936	17, 420	
Rains.-1	1,037	1,001	92, 638	44,030	633, 710	161,890	61,520	332, 650	434,892	10,250	600
Randall ${ }^{1}$	96	92	577, 396	8,278	771, 710	108, 460	19,260	762,873	84,280	10,100	
Red Rive	5,003	4,453	252, 910	148,132	2,580, 190	529,140	179, 360	1,146, 888	2,086,425	27,740	1,290
Reeves	63	50	896,268	8,017	1,089, 640	51,570	11, 230	964, 463	238,669	31,210	
Refugio	139	130	479, 123	35, 870	2, 326, 590	78, 360	10,930	1, 045,350	274, 925	16,070	
Roberts.	59	57	401, 372	3, 676	460, 660	30,580	9,370	741,323	41,815	12,250	
Robertson	4,094	3,958	339, 470	202,367	3, 460,280	882,270	276, 690	1,035, 710	1,971,784	204,080	560
Rockwall	1,090	1,036	80,411	64,281	2,235,670	369,450	116,300	400,638	863,142	65, 360	550
Runnels ${ }^{1}$.	669	652	840,730	47,695	2, 495, 330	256,070	75, 880	1,426,199	516,928	20,000	
Rusk	4,338	3,994	393,749	181,590	1, 241,250	632,780	174, 110	1, 904,084	1,576, 608	32,590	4,520
Sabine.	1,065	-997	111,110	37,015	389, 600	157,030	33,010	205, 092	292,755	8,390	990
San Augustine	1,406	1,330	135, 465	51, 019	514, 760	180,270	42,900	261, 348	367,339	57,980	100
San Jucinto	1,471	1,393	120, 702	46,916	625,190	182, 020	56,470	362, 953	558, 572	15; 470	340
San Patricio.	190	154	402, 004	12,110	1,304,990	85, 870	20,780	598,783	226,707	24,140	
San Saba	1,021	962	568, 815	47,042	2,111,590	321,710	103, 930	1,353,742	569,451	20, 450	
Schleiche	${ }^{60}$	${ }_{5}^{60}$	730, 179	1,177	895,000	62, 520	18,180	1,109,771	136,154	25, 580	
Scurry ${ }^{1}$.	586	572	702,776	38,144	1,253, 330	140, 320	64,300	1, 030,826	834, 379	16,970	
Shackelford ${ }^{1}$	251	243	677,520	34,710	2, 326,560	175, 030	46,290	1,579, 310	473, 054	1,640	
Shelby..	3,218	3,004	291, 668	113,096	1,132, 980	539, 200	120,390	607,583	1,091,773	19,060	780
Shermar	18 4.993	-17	195, 315	2, 880	- 303, 940	40,160	9,020	710,520	214, 216	22,540	
Smith..	4,993 491	4,709 448	379,740 74,940	221,102 27,303	2, 340,330	920,640 72,490	226,560 36,160	924, 618	2, 102, 765	61,330	4,810
Starr	382	320	1,005,065	11,266	1,378,570	111,700	36,160 14,860	185,755 682,749	169,375 218,368	2,660 29,040	
Stephens	1,049	981	517,645	58,135	1,661,510	216,500	101, 360	1,041, 168	462,292	22,670	
Sterling	86	85	425,655	3, 4:29	1,004,650	67,400	26, 330	657, 410	156, 898	9,550	
Stonewa	381	344	468, 448	19,035	, 680,390	61,020	24,250	710,906	191,748	7,120	
Sutton-	93	92	928, 178	1,367	1,121,830	51, 710	17,660	1,266, 889	280, 070	41,290	
Swisher	186	183	447, 922	16210	725,680	80, 250	24,010	1,692,855	191, 193	12,910	
Tarrant.	3,656	3,348	513,502	242,952	8,760,350	1,445,540	465,530	1,978, 899	2, 480, 846	160,720	1,800
Taylor.	1,152	1,048	516,777	79,699	2,280, 220	1,296, 380	119, 790	1, 890, 349	- 5224,842	16,380	1,800
Terry Th........		${ }^{3}$	281,840	115	322,540	1,300	1,300	260,571	30, 533	7,600	
Tbrockmorton ${ }^{\text {1 }}$	${ }^{272}$	257	634, 660	30, 514	2,116,050	103,010	36,350	1,046, 104	289, 177	27,610	
Titus	2,099	1,899	151,881	78,935	899,480	278, 310	86,250	1,427,775	780, 525	11, 620	530
Tom Green	243	232	1,146,491	20, 862	2,330, 390	148,380	45, 150	1,689,680	277, 897	42,350	
Travis	3, 554	3,443	467,950	203, 715	$8,985,150$	1,570,070	422,060	1,560,964	3, 194, 455	353,640	2,200
Tyler.	1,199	1,221 1,147	104,190 322,969	41,221	379,570 408,620	187,760 177,010	52,880 43 460	410, 623	487, 463	14, 810	640
Upshur	2,711	2,457	241, 312	108,107	929, 710	177,010 362,780	43,460 121,430	270,111 499,910	408,322 983,351	11,220 16,390	5,510 200
Upton ${ }^{1}$	18	16	902, 592	85	936, 970	7,880	8,260	678,436			
Uvalde.	275	263	940,462	13, 851	2,045, 860	161,900	29,680	1,178, 841	266,412	27,880	
Valverde.	152	${ }^{141}$	1,798, 132	3,316	1,917, 310	91,950	20, 830	1, 229,254	266,570	116,210	
Victoria ${ }^{1}$.	4,208	3,951 1,129	376,600 603,258	194,514 126,720		827,180 583,800	247,220 97,180	$1,072,686$ $1,797,861$	$1,895,559$ 978,183	70,360	5,520
Walker	1,703	1,663	189, 521	72,943	863, 810						
Waller	2,000	1,951	186, 258	81, 531	1,822, 700	389,930	104,630	-449, 5226	711,746	25,280 30,470	510
Ward......	${ }^{167}$	147	423, 966	5,491	477, 450	23,040	8,730	281, 368	167,791	- ${ }^{3} \mathbf{8}, 478$	810 40
Webb..	4,309	4,097	- 3388,251	200,382	7,064, 220	1,603, 950	429,780	1,262,352	2,837,737	121,160	1,460
			1,238,262	21,072		111,600	34,370	1,002, 290	320, 371	38,670	
Wheeler	-, 119	2,000	438, 117	116,400	4,388, 550	610,030	155,870	1,008, 365	1, 160, 595	88,970	740
Wichita 1	423	103	480,280 580,017	11,889 106,152	706,630 $2,630,550$	35,870 240,150	13,910	723,580	247, 961	16,730	
Wilbarger	636	${ }_{603}$	401, 725	116, 221		$\begin{array}{r}240,150 \\ 247 \\ \hline 130\end{array}$	131,050	1,609, 936	649,519	36,950	
Williamson.	4, 403	4,140	652, 907	299,387	11, 835,303	2, 2 24, ${ }^{24,777}$	118,730	-933, 266	563,046	35,880	
Wilson ${ }^{1}$	1,785			102,819				2,202,464	4,581,689	371,550	750
Winkler	12	11	-67,537	102,819	2,634, 1500	505,530	115, 120	845,591	786, 232	41,080	
Wise Wood.	4,029	3,770	524, 451		4,741,040	3,280 $1,013,190$	1,240 323,740	- 230,174	40,383	2,350	
Wood.	3,094	2,940	275,187	$120,515$	4, $1,472,81,800$	$1,013,190$ 560,460	323,740 143,240	$1,626,751$ 637,301	$1,831,373$ $1,280,543$	57,650	
Yoakum				10					1,280, 33	40,300	1,730
Young.	899	853	495, 150	65, 289	1,840, 913	226, 240	92,820	154,507 $1,050,923$	82, 730	3,360	
Zapata.	204	119	201, 240	2, 2 , 452	1,829, 220	266,140	92,820 7,160	$1,050,923$ 274,326	473,700 26,603	21, 380	
Zavalla.	102	100	431, 672	2, 338	748,910	54,790	10,170	497,979	153, 238	7,480 4,180	

In the majority of counties the number of farms increased in the last decade. The few counties reporting decreases are situated in the western part of the state. The total area of farm land decreased in but eleven counties, while most of the remaining counties report remarkable increases. The decrease in improved acreage shown in a large number of the counties is due to a more intensive cultivation of smaller farm areas and to the use of a more strict definition of the term "improved land" by the Twelfth than by any preceding census. The average size of farms for the state is 357.2 acres, and varies from 50.6 acres in Red River county to 450,000 acres in Parmer county. The large average areas of farms are, as a rule, in the western part of the state, in the counties containing large live-stock ranches.

For the state, the average value of farms, (including land, improvements, and buildings) was $\$ 1,964$. Between 1890 and 1900 the value of farms decreased in but ten counties. With the exception of Atascosa, Calhoun, Hardeman, and Wilbarger, the value of implements and machinery increased in all counties, while Freestone and Limestone counties showed a decrease in the value of live stock.

The average expenditure for labor per farm in 1899 varied greatly. By far the highest expenditures were shown in the western counties, where there were numerous live-stock ranches, and the smallest amounts were paid in the eastern counties, containing large numbers of small cotton, dairy, and vegetable farms.

FARM TENURE.

Table 4 gives a comparative exhibit of farm tenure for 1880,1890 , and 1900. Tenants are divided into two groups: "Cash tenants," who pay a rental in cash or a stated share of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.

In Table 5 the tenure of farms for 1900 is given by race of farmer, the farms operated by owners being subdivided into 4 groups, designated as farms operated by "owners," "part owners," "owners and tenants," and " managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER and PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

Year.	Totalnumber of farms.	NUMBER OF FARMS OPERATED BY-			PER CENT of farms operated by-		
		Owners. ${ }^{1}$	Cash tenants.	Share tenants.	Owners. ${ }^{1}$	Cash tenants.	Share teanants.
1900 .	352,190	177, 199	25, 810	149,181	50.3	7.3	42.4
1890	228, 126	132,616	20,081	75, 429	58.1	8.8	331
1880	174,184	108, 716	12,089	53, 379	62.4	6.9	30.7

${ }^{1}$ Including "part owners," "owners and tenants," and "managers."

Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

PART 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

RACE.	Total number oI farms.	Owners.	Part owners.	Owners and tenants.	Managers.	Cash tenants.	Share tenants.
The State..	352, 190	151,954	21,005	1,680	2,560	25,810	149, 181
White	286,654	134, 829	18,107	1,564	2,469	17, 370	112, 315
Colored.	65, 536	17,125	2,898	116	91	8,440	36,866
Chinese	13					1	4
Indian	51					1	5
Negro	65,472	17,083	2,895	116	91	8,430	36,857

> PART 2.-PER CENT OF FARMS OF SPECIFIED TENURES.

The State.	100.0	43.1	6.0	0.5	0.7	7.3	42.4
White	100.0	47.0	6.3	0.5	0.9	6.1	39.2
Colored.....	100.0	26.1	4.4	0.2	0.1	12.9	56.3

In the period from 1880 to 1900 the total number of farms increased 102.2 per cent, and in the last decade 54.4 per cent. Since 1890 the number of farms operated by owners has increased 33.6 per cent; by cash tenants, 28.5 per cent; and by share tenants, 97.8 per cent. The percentages in Table t indicate that the number of farms operated by owners has not increased at so fast a rate since 1890 as the number of tenantoperated farms. Share tenants constituted 79.0 per cent of all tenants in 1890 , and 85.3 per cent in 1900, the large percentage being due to the fact that the greatest number of cotton and hay and grain farms are reported as being operated by share tenants.

In $1900,81.4$ per cent of the farms of the state were operated by white farmers and 18.6 per cent by colored farmers. Of the white farmers, 53.9 per cent own all or a part of the farms they operate, and 46.1 per cent operate farms owned by others. The corresponding percentages for colored farmers are 30.7 and $69: 3$.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.
Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERIY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RACE Of FARMER, AND TENURE.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NUMBER OF ACRES IN FARMS.			value of Farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	352,190	357.2	125, 807, 017	100.0	\$962, 476, 273	100.0
White farmers.	286, 654	425.5	121, 965,376	96.9	906,237, 063	94.2
Negro farmers.	65, 472	58.6	3,835,979	3.1	$56,180,207$	5.8
Indian farmers	51	95.2	4,854	(1)	37, 201	(1)
Chinese farmers.	13	62.2	808	(1)	21,802	(1)
Owners.	151, 954	253.5	38,520,509	30.6	420, 269, 976	43.7
Part owners	21,005	1,244. 6	26, 143, 033	20.8	129, 742, 464	13.5
Owners and tenants-	1,680	1327.7	550,519	0.4	5, 159, 859	0.5
Managers.	2,560	16,402.9	41, 991, 308	33.4	149,302,594	16.5
Cash tenants	25,810	291.2	7,516,154	6.0	54,792,498	5.7
Share tenants	149, 181	74.3	11,085,494	8.8	203, 208, 882	21.1

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

In all classes of farm property and in gross income white farmers show hy far the highest values, with Chinese farmers ranking second. Negro farmers show the greatest per cent of average gross income on total investment, with Chinese ranking second, for these two classes have comparatively little invested. Colored
farmers operate about one-fifth of the farms of the state, their farms constituting but 3.1 per cent of the total acreage and only 5.8 per cent of the total value of farm property.

Managers control the largest farms and more of the total area than any other class. The average values of all forms of farm property, and the average gross income are highest for farms operated by managers, but owing to the very large investments, the per cent of gross income is least. Owners operate a greater number of farms and control a greater part of the total value of farm property than any other class. Share tenants rank second in number of farms and total value, and first in per cent of gross income on investment.

FARMS CLASSIFIED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER and acreage of farms, and VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIfied by area, with percentages.

area.	$\begin{gathered} \text { Num- } \\ \text { her } \\ \text { of } \\ \text { farms. } \end{gathered}$	NUMBER OF ACRES IN Farms.			VALUE OF FARM PROPERTY.	
		A verage.	Total.	Per cent.	Total.	Per cent.
The State	352, 190	357.2	125, 807,017	100.0	\$962, 476, 273	100.0
Under 3 acres.	1,302	2.2	2,864	(1)	2,945, 115	0.3
10 to 19 acres	- ${ }_{\text {6,785 }}$	6.1 14.4	- 41,634		5, 077,533	0.5
20 to 49 acres	99,137	32.5	3,220,806	2.6	81, 316,594	1.1
60 to 99 acres	88,537	70.7	6,261,082	6.0	134, 544, 833	14.0
100 to 174 acres	71,392	129.6	9, 265, 798	7.4	158, 881, 773	16.5
175 to 259 acres	24,000	208.0	4,991,057	4.0	77, 956, 188	8.1
260 to 499 facres	20,001	343.1	6, 861,736	5.4	85, 575, 643	8.9
500 to 999 acres	10,183	660.9	6, 730, 336	5.3	63, 564, 773	6.6
1,000 acres and over	11,220	7,857.3	88,159,247	70.1	341, 995, 994	35.5

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-AVERaGE Values of specified CLASSEs of FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY; AREA.

AREA,	ayerage values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Grossincome(productsof 1899not fedto livestock).	
	Land and improvements (except buildings).	Buildings.	1mplements and machinery.	Livestock.		
The State......	\$1,680	\$285	\$85	\$683	\$694	21.8
Under 3 acres........	330	288	37	1,607	449	19.9
3 to 9 acres 10 to 19 acres.......	288 257	252	36	172	162	21.6
20 to 49 acres.	491	129	29 41	126	178	32.9
50 to 99 acres.	964	224	71	261	506	38.3 38.3
100 to 174 acres.......	1,426	318	99	382	626	28.2
175 to 259 acres.	2,123	451	135	539	746	23.0
260 to $499 \mathrm{acres........}$.	2,794	534	160	791	794	18.6
500 to 999 acres........	4,047	${ }_{646}^{646}$	188	1,361	886	14.2
1,000 acres and over'..	17,845	1,063	316	11,258	3,625	11.9

The group of farms containing from 20 to 49 acres represents a larger number of farms than any other, but the group containing 1,000 acres and over comprises nearly three-fourths of the total acreage and more than one-third of the total value. Three-fourths of the farms in the latter group are large live-stock farms with the highest arerage values for all forms of farm property and the largest gross income, but the lowest per cent of gross income on investment of any class. For the group containing less than 3 acres, the values are comparatively high, as this class includes many live-stock farms using the public domain for range, besides several city dairies, truck farms, and others supplying city markets. The average gross income per acre for the various groups classified by area are as follows: Farms contanning less than 3 acres, $\$ 204.27 ; 3$ to 9 acres, $\$ 26.34$; 10 to 19 acres, $\$ 12.37 ; 20$ to 49 acres, $\$ 9.68 ; 50$ to 99 acres, $\$ 7.15 ; 100$ to 174 acres, $\$ 4.83$; 175 to 259 acres, $\$ 3.59 ; 260$ to 499 acres, $\$ 2.32$; 500 to 999 acres, $\$ 1.34$; 1,000 acres and over, $\$ 0.46$.

farmi classified by principal source of income.

Tables 10 and 11 present the leading statistics relating to farms classified by principal source of income. If the value of hay and grain raised on any farm exceeds that of any other crop, and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables are the leading crop, constituting 40 per cent of such products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40 per cent of their income from any one class of farm products. Farms for which no income was reported in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRiNCIPAL SOURCEOF INCOME.	$\begin{aligned} & \text { Num- } \\ & \text { ber } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	number of acres in farms.			Valde of farm PROPERTY.	
		A verage.	Total.	$\underset{\text { Pent }}{\text { Per }}$	Total.	Per cent.
The State.	352, 190	357.2	125, 807, 017	100.0	\$962, 476, 273	100.0
Hay and grain	26, 132	194.5	5,083, 482	4.0	83, 777, 915	8.7
Vegetables.	4,258	89.6	381,379	0.3	7, 631, 451	0.8
Fruit	$\begin{array}{r}1,129 \\ 42 \\ \hline 624\end{array}$	95.5 $2,115.6$	90, 1074,837	0.1 71.7	$7,200,359$ $391,788,647$	0.3 40.7
Dairy produce	4,668	${ }^{2}, 100.1$	-934, 258	0.7	14, 115, 155	1.5
Tobacco....	160	140.4	22,462	(1)	603, 976	0.1
Cotton	228,606	98.3	22,473, 709	17.9	381,138, 388	39.6
Rice	125	632.0	79,006	0.1	946, 748	0.1
Sugar.	264	392.4	103,599	0.1	1,854,087	0.2
Flowers and plants...		4.0 67.6		(1)	306, 423	(1)
Nursery prodncts.....	44, 085	67.6 146.1	6, 441,614	$\stackrel{(1)}{5.1}$	rer 76, 357,	${ }^{(1)} 8.0$

[^177]Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE OF INCOME.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (prodnets of 1899 not fed to live stock).	
	Land and improvements (exeept bnildings).	Buildings.	Implements and machincry.	Live stock.		
The State.	\$1,680	\$285	\$85	\$683	\$594	21.8
Hay and grain.	2,226	370	144	466	630	19.7
Vegetables	1,090	355	74	273	457	25.5
Fruits Live stock.	1,8.40	549	100	346	692	24.4
Dairy produce	5,046 1,680	528	133	8,485	1,231	13.4
Tobacco .-.-.	1,680 2,622	504	105	735	599	19.8
Cotton.	2, 1224	475	94	584	959	25.4
Rice...	1,124	216	69	$2 \dagger 8$	509	30.5
Sugar	5,996	558	516	509	2,486	32.8
Flowers and plants.	5,011	1.770	1,007	426	897	12.8
Nursery products..	3, 365	1,143	167	47 198	1,548 4,027	33.3 82.6
Miscellaneous.	998	309	82	352	, 398	22.9

For the several classes of farms, the average values per acre of products not fed to live stock are as follows: For farms deriving their principal income from flowers and plants, $\$ 382.66$; nursery products, $\$ 59.60$; fruit, $\$ 7.24$; tobacco, $\$ 6.83$; cotton, $\$ 5.17$; vegetables, $\$ 5.10$; rice, $\$ 3.93$; hay and grain, $\$ 3.24$; dairy produce, $\$ 2.99$; miscellaneous, $\$ 2.73$; sugar, $\$ 2.29$; and live stock, $\$ 0.58$.
The wide variations shown in the averages and percentages of gross income are largely due to the fact that in computing gross incomes no deductions are made for expenditures. For florists' establishments, nurseries, and market gardens, the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than in the case of "hay and grain," "live-stock," or "miscellaneous" farms. Were it possible to present the average net incomes the variations shown would be comparatively slight.
farms Classified by reported value of products NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE OF FARMS, AND Value of farm property, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE stock, with Percentages.

value of products not fed to live stock.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	Number of acres in farms.			VALUE OF FARM PROPERTY.	
		Average.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Total.	Per cent.
The State.	352, 190	357.2	125, 807, 017	100.0	\$962, 476, 273	100.0
\$0.	5,767	1,039.4	5, 994, 216	4.7	21, 360, 960	2.2
\$1 to \$49.	10,600	216.6	2, 296,132	1.8	11, 819, 590	1.2
850 to $\$ 99$	14,608	187.1	2, 732,634	2.2	16, 265,440	1.7
\$100 to \$249.	72,948	124.8	9, 105, 624	7.2	81,385, 340	8.5
\$250 to \$499.	117,486	130.4	15, 325,287	12.2	171, 086, 092	17.8
\$500 to \$999	94,083	197.4	18,576,083	14.8	240, 430, 382	25.0
81,000 to \$2,499	32,030	525.3	16, 825,480	13.4	187, 927, 601	19.5
\$2,500 and over	4,668	11,772.0	54,951,561	43.7	232, 200, 868	24.1

Table 13.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY REPORTED YALUE OF PRODUCTS NOT FED TO LIVE STOCK.

VALUE OF PRODUCTS NOT FED TO I.IVE sTOCK.	Average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (prodnets of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	```Imple- ments and machin- ery.```	Live stock.		
The State.	\$1,680	\$285	485	\$683	\$594	21.8
80.	2, 032	131	40	1,501		
\$1 to \$49	681	117	30	284	24	2.2
\$50 to \$99.	681	137	34	251	70	6.3
\$100 to \$249.	684	149	40	243	181	16.2
\$250 to \$499.	860	207	62	327	368	25.3
\$500 to \$999..............	1,644	331	105	476	686	26.8
\$1,000 to \$2,499........	3,799	669	198	1,201	1,397	23.8
82,500 and over	28,994	1,812	585	18,352	9,057	18.2

Of the farms reporting no income in 1899, some were homesteads taken up too late for cultivation that year, some lay idle, others had crop failures, and some were summer homes conducted for pleasure and not for profit. Many were farms in charge, June 1, 1900, of persons who did not operate them in 1899, and could give no definite information concerning the crops of that year. To this extent the reports fall short of giving a complete exhibit of farm income in 1899.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined in accordance with their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in previous census reports.
Table 14 presents a summary of live-stock statistics.
Tabie 14.-DOMESTIC ANiMALS, FOWLS, and bees on FARMS AND RANGES, JUNE 1, 1900, WITH TOTAL AND aVErage Values, and number of domestic aniMALS NOT ON FARMS OR RANGES.

LIVE stock.	Age in years.	on farms and ranges.			$\begin{aligned} & \text { NOT ON } \\ & \text { FARME. } \\ & - \\ & \begin{array}{l} \text { Num } \\ \text { ber. } \end{array} \end{aligned}$
		Number.	Value.	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { value. } \end{aligned}$	
Calves	Under 1.	2, 1418, 261	\$19, 528, 804	\$9.09	
Steers	1 andl under 2.	457, 163	14, 007, 199	14.63	8,439
Steers	2 nut under 3.	5931603	12, 106, 522	20.39	2,719
Steers	3 and over....	341,286	9, ${ }^{\text {8, }} 183,7847$	27.17	4,690
Heifers	1 and under 2.	905, 835	$\begin{array}{r}8,183,295 \\ 13 \\ \hline 173,384\end{array}$	40.48	${ }_{9}^{1,196}$
Cows kept for milk.	yand over....	861,023	19,995, 327	${ }_{23.22}^{14}$	9, 63, 676
Cows and heifers not kept for milk.	2and over....	3,369, 440	66,661, 626	19.74	33,745

Table 14.-DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS AND RANGES, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS OR RANGES-Continued.

LIVE STOCK.	Age in years.	ON FARMS AND RANGES.			not On FARMS.
		Number.	Value.	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { value. } \end{gathered}$	Number.
Colts	Under 1.......	95,429	\$1, 099, 900	\$11. 53	2,417
Horses	1 and under 2.	96,825	1,623, 489	16. 77	1,797
Horses	2 and over....	1,077, 178	31, 773, 694	29.50	1 20,217
Mule colts	Under 1.......	32,544	649,984	19.97	413
Mules	1 and nuder 2.	41,089	1,284,649	31.27	643
Mules.	2 and over.-..	433, 657	23, 186,986	53.47	18,314
Asses and burros.	All ages	16,409	868, 747	52.94	2,446
Lambs	Under 1.......	449,358	620, 873	1.38	2,003
Sheep (ewes)	1 and over....	924, 174	2,037,517	2. 20	6, 487
Sbeep (rams and wethers).	1 and over....	515,766	1,323, 727	2.57	506
Swine....................	All ages	2, 665,614	7,605, 687	2.85	113, 267
Goats	All ages.....-	627, 333	923, 777	1.47	13,377
Fowls: 1 Cbickens?		13, 562, 302			
Turkeys.		648,671			
Geese		415,709	3,595, 24.3		
Dneks.......		234, 664			
Bees (swarms of)		392,644	$749,483$	1.91	$\therefore . .$.
Unelassified.....			4,295		
Value of all live stoek.			240,576,955		

${ }^{1}$ The number reported is of fowls orer 3 months old. The value is of all, old and young.
${ }^{3}$ Including Guinea fowls.
The value of live stock on farms and ranges, June 1, 1900 , was $\$ 240,576,955$, or 25.0 per cent of the total value of farm property. Of this amount, 59.5 per cent represents the value of neat cattle other than dairy cows; 14.3 per cent, that of horses; 10.4 per cent, that of mules; 8.3 per cent, that of dairy cows; 3.2 per cent, that of swine; 1.7 per cent, that of sheep; 1.5 per cent, that of poultry; and 1.1 per cent, that of all other live stock.

No reports were secured of the value of live stock not on farms and ranges, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, the value of domestic animals not on farms was $\$ 8,133,526$, and the total value of domestic amimals in the state, exclusive of poultry and bees not on farms, was approximately $\$ 248,710,481$.

CHANGES IN LIVE STOCK ON FARMS.

Table 15 presents the changes in the number of the most important classes of domestic animals since 1850.

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS AND RANGES: 1850 TO 1900.

year.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	861,023	8,567, 173	1,269,432	523,690	1, 439, 940	2,665,614
18902	1,003,439	5,198,113	1,026,002	227, 432	3, 454, 858	2,252,476
18802	606, 176	3, 478, 429	-805,606	132,447	2, 411, 633	1,950,371
1870	428,048	3, 0655,995	424,504	61, 322	714,351	1, 202,445
1850.	-617, 210	$2,934,228$ 112,303	325,698 76,760	63, 334	753,363	1,371,532
				12,463	100,530	692,022

The live-stock enumerations in 1880 and 1890 did not include domestic animals on ranges, and hence the figures for these years presented in the table are not strictly comparable with the figures for 1900. The number of animals on ranges in Texas and the Pan Handle in 1890 was estimated by special agents to be as follows: Dairy cows and "other neat cattle," $2,3 \pm 2,083$; sheep, 809,329 ; hoises, 99,838 ; swine, 2,744 ; mules and asses, 1,973 . In comparing the number of animals reported in 1900 with the number reported in 1890 , these estrmates are disregarded.

Four times as many dairy cows were reported in 1900 as in 1850, although the last decade shows a decrease of 14.2 per cent. It is probable that this decrease is more apparent than real, as many of the $3,369,880$ "cows and heifers not kept for milk" were doubtless cows milked for a time, but not "kept for milk" exclusively. The fact that twice as much milk was reported in 1900 as in 1890 supports this view.

The number of " other neat cattle" in 1900 is seventysix times as great as in 1850, the gain in the last decade being 64.8 per cent. The report for 1900 includes $2,148,261$ calves. It is uncertain whether or not calves were included in the reports for prerions census years. If not, their number should be deducted from the total for 1900 when making comparison with such reports. In that case the gain since 1890 would be 23.5 per cent.

The number of horses has increased steadily since 1850. In 1900 there were sixteen times as many as in 1850 , and 23.7 per cent more than in 1890 . With the exception of the Civil War period, the increase in number of mules has been constant, forty-two times as many being reported in 1900 as in 1850 , and more than twice as many as in 1890.

The nunber of sheep has fluctuated, but fourteen times as many were reported in 1900 as in 1850 . For the last decade a decrease of 58.3 per cent is shown. Nearly four times as many swine were reported in 1900 as in 1850 , and 18.3 per cent more than in 1890 .

In comparing the poultry report for 1900 (see Table 14) with that of 1890 , it should be borne in mind that in 1900 the enumerators were instructed to report no fowls under three months old, while in 1890 no such limitation was made. This fact explains, to a great extent, the comparatively small increases in numbers of chickens and turkeys, of 17.7 per cent and 21.0 per cent, respectively, and the decreases of 21.3 per cent and 40.0 per cent in the numbers of geese and ducks.

ANIMAL PRODUCTS.

Table 16 is a summarized exhibit of the products of the animal induntry.

Table 16.-QUANTITIES AND VALUES OF SPECIFIED
ANIMAL PRODUCTS, AND VALUES OF POULTRY
RAISED, ANIMALS SOLD, AND ANIMALS SLAUGH-
TERED ON FARMS, IN 1899.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds.	9,638,002	\$1,428,122
Mohair and goat hair	Pounds.	274,810	77,478
Milk	Gallons.	${ }^{1} 251,342,698$	
Butter	Pounds.	47, 991, 492	${ }^{2} 15,504,978$
Cheese	Pounds	136,133	
Eggs	Dozens	58, 040, 810	4,672,187
Poultry			5, 311,362
Honer	Pounds	4,780, 204	468,527
Wax --.--	Pounds	159,690	34, 357, 265
Animals slaughtered			$34,357,265$ $11,032,614$
Total.		硣	72, 852, 533

${ }^{1}$ Includes all milk produced, whether sold, eonsumed, or made into butter or cheese.
made. made.
In 1899 the value of animal products was $\$ 72,852,533$, or 30.4 per cent of the value of all farm products. Of this amount, 62.3 per cent represents the value of animals sold and animals slaughtered on farms; 21.3 per cent, that of dairy produce; 13.7 per cent, that of poultry and eggs; 2.1 per cent, that of wool, mohair, and goat hair; 0.6 per cent, that of honey and wax.

ANINALS SOLD AND ANIMALS SLAUGHTERED.

Animals slaughtered were reported by 238,255 farmers, or 67.6 per cent of all in the state, the average value per farm being $\$ 46.31$. Sales were reported by 141,533 farmers, or 40.2 per cent of the total number, the average receipts per farm being $\$ 242.75$. Crane county reported sales from 7 farms amounting to $\$ 197,061$, or an average of $\$ 28,151.57$ per farm. In obtaining these reports the enumerators were instructed to secure from each farm operator a statement of the amount received from sales in 1899, less the amount paid for animals purchased during the same year.

dairy produce.

In $1899,260,432$ farmers, or 73.9 per cent of the total number, reported dairy produce. Of the $\$ 15,504,978$ given in Table 16 as the value of dairy produce, 82.9 per cent represents the value of such produce consumed on farms, and 17.1 per cent, the receipts from
sales of dairy produce. Of the latter amount, $\$ 1,331,235$ was received from the sale of $7,928,646$ pounds of butter; $\$ 1,276,438$, from $8,091,205$ gallons of milk; $\$ 32,981$, from 46,406 gallons of cream; and $\$ 7,462$, from 76,148 pounds of cheese.
Twice as much milk was reported in 1900 as in 1890. The quantity of butter made on farms increased 49.5 per cent in the last decade, but that of cheese decreased 6.6 per cent.

POULTRY, EGGS, WOOL, HONEY, AND WAX.

Of the $\$ 9,983,549$ which is the value of poultry and eggs for 1899, 53.2 per cent represents the value of poultry raised, and 46.8 per cent, that of eggs produced. The production of eggs in 1899 was 78.8 per cent greater than in 1889.
The production of wool in 1899 was 35.4 per cent less than in 1889, although the average weight of fleeces increased in the same time from 3.9 pounds to 4.7 pounds.

The production of honey increased 45.5 per cent in the decade 1890 to 1900 , and twice as much wax was reported in 1900 as in 1890 .

horses and dairy cows on spectified classes of FARMS.

Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

classes.	Horses.			darry cows.		
	Farms reporting.	Number.	Aver age per farm.	Farms report ing.	Number.	Average per farm.
Total.	292, 988	1,269,432	4.3	260,437	861,023	3.3
White farmers ..	244,681	1,165,981	4.8	231,132	796, 442	3.4
	48, 357	103, 451	2.1	29,305	64, 581	2.2
Owners ${ }^{1}$	157,181	825,691	5.3	151,124	594,026	3.9
Managers	2, 287	77,784	34.0	1,744	19,672	11.8
	22, 423	81,448	3.6	16,498	47, 599	2.9
Share tenants........	111,094	284,509	2.6	91,071	199,726	2.2
Under 20 acres.	19,910	46,896	2.4	11,946	30,593	2.6
100 to 174 aeres.	146,299	352,038	2.4	126,675	286,553	2.3
	64,492	221,485	3.4	63,289	209, 013	3.3
175 to 269 acres...260 acres and over	22,488	101,437	4.5	22,220	96, 834	4.4
	39,799	547,576	13.8	36,307	238, 030	6.6
Hay and grain.	21,081	95,467	4.5	17,417	51, 198	2.9
Vegetable.	3,548	11,191	3.2	2,461	6,335	2.6
	837	3,099	3.7	816	2,232	2.7
Fruse stock	39,933	501,056	12.5	36,403	190,086	6.2
Dairy	4,141	20,220	4.9	4,668	43,685	9.4
Tubacco	, 112	527	4.7	100	287	2.9
	185, 557	505,255	2.7	160,760	442, 196	2.8
Cotton	111	423	3.8	- 74	157	2.1
	208	721	3. 5	174	581	3.3
Miscellaneous ${ }^{2}$.......	37,460	131,473	3.5	37,564	124,266	3.3

IIncluding " part owners" and "owners and tenants."
${ }^{2}$ Ineluding forists' establishments and nurseries.

CROPS.

The following table gives the statistics of the principal crops grown in 1899:

Table 18.-ACREAGES, QUANTITIES, AND VALUES of THE PRINCIPAL FARM CROPS IN 1899.

[^178]Of the total value of crops, cotton and cottonseed contributed 5 T. 9 per cent; cereals, including Kafir corn, 28.2 per cent; hay and forage, 4.4 per cent; miscellaneous vegetables, 3.1 per cent; forest products, 2.3 per cent; sweet potatoes, 1.0 per cent; orchard fruits, 0.8 per cent; and all other products, 2.3 per cent.

The average values per acre of the varions crops are as follows: Flowers and plants, $\$ 720$; nursery products, $\$ 150$; onions, $\$ 92$; small fruits, $\$ 78$; tobacco, $\$ 73$; grapes, $\$ 57$; miscellaneous vegetables, $\$ 46$; sugar cane and sugar-cane products, $\$ 41$; sweet potatoes, $\$ 39$; potatoes, $\$ 33$; sorghum cane and sorghum sirup, $\$ 21$; peanuts, $\$ 17$; broom corn, $\$ 16$; dry beans, $\$ 14$; cotton and cottonseed, $\$ 14$; orchard fruits, $\$ 11$; dry pease, $\$ 10$; hay and forage, $\$ 8$; and cereals, $\$ 7$. The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production requires a relatively great amount of labor, and large expenditures for fertilizers.
cotron.
The following table shows the changes in cotton production since 1849:

Table 19.-ACREAGE AND PRODUCTION OF COTTON: 1849 TO 1899.

In 1859 the total number of pounds of cotton produced in Texas was over eight times as great as the quantity reported for the previons census. During the next decade, the Civil War caused a depression in all industries and there was a decrease of 20.7 per cent. For the year 1879 there is recorded an increase of over $200,000,000$ pounds, and although the percentage of gain lessened in the following decade, there was a steady increase in both the area under cultivation and in the quantity of cotton grown.

In 1899, 284,037 farmers devoted to cotton $6,960,367$ acres, or 35.6 per cent of the total improved farm land of the state, and an average of 24.5 acres per farm. From this land was produced $1,292,404,967$ pounds of cotton, an average of 4,550 pounds per farm, 186 pounds per acre, and 424 pounds per capita.

The total value of this product, including the value of the cottonseed, was $\$ 96,729,304$, an average of $\$ 340.55$ per farm, and $\$ 13.90$ per acre. This value constituted 46.2 per cent of the gross farm income.

The counties devoting the greatest area to the production of cotton were Ellis, McLennan, Fannin, Hill, Navarro, Williamson, Falls, Milam, and Bell, ranking in the order named, and reporting 20.5 per cent of the total acreage. These counties are located in a belt extending north from Austin to the Red River. Little or no cotton is raised in the counties along the western border of the state or those in the extreme north or south.

Cereals.

Table 20 is a statement of the changes in cereal production since 1849.
Table 20.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.
PART 1.-ACREAGE.

YEAR. ${ }^{1}$	Barley.	Corn.	Oats.	Rice.	Rye.	Wheat.
	4,380	6,017,690	847, 225	8,711	3,984	1,027,947
1889.	2,782	3,079, 907	528,924	178	5,255	352, 570
1879.	5,527	2,468,587	238,010	335	3,326	373,570

Table 20.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899-Continued.

PART 2.-BUSHELS PRODUCED. ${ }^{1}$

Year. 2	Barley.	Corn.	Oats.	Rlce.	Rye.	Wheat.
1899.	80,366	109, 970, 350	24, 190,668	7,186,863	42,770	12,2660 320
1889.	48,152	69,112,150	12,581,360	108,423	62,370	4, 283, 344
1879.	72, 786	29,065,172	4,893,359	62,152	25,399	2, 567,737
1869.	44,351	20, 554,538	762, 663	63,844	28,521	415,112
1859.	67, 562	16,500,702	985,889	26,031	111,860	1,478, 345
1849.	4,776	6,028,876	199,017	88, 203	3, 108	41,729

${ }^{1}$ Rice reported in pounds.
${ }^{2}$ No statistics of acreage were secured prior to 1879.
The total area devoted to cereals in 1879 was $3,089,403$ acres; in 1889, $3,969,622$ acres; and in 1899, 6,932,791, an increase for the twenty years of 124.4 per cent. In addition to the acreages mentioned in the table, those for buckwheat in 1879, 1889, and 1899, and for Kafir corn in 1899 are included in these totals. The increase in the areas devoted to the various cereals in the decade from 1889 to 1899 were: Rice, approximately, fiftyfold; wheat, 191.6 per cent; corn, 62.9 per cent; oats, 60.2 per cent; and barley, 57.4 per cent. There was a decrease in acreage under rye of 24.2 per cent.

Of the total area under cereals in 1899, 72.4 per cent was devoted to corn; 14.8 per cent, to wheat; 12.2 per cent, to oats; 0.3 per cent, to Kafir corn; and 0.3 per cent, to barley, buckwheat, rice, and rye.

Corn, wheat, oats, rye, Kafir corn, and barley were reported from nearly all parts of the state. Buckwheat was grown in 9 counties only, and rice in 1,7 counties, in the southeastern part of the state. Of these 17 connties, 2, Jefferson and Orange, furnished 94.2 per cent of the entire acreage in rice.

HAY AND FORAGE.

In 1900, 95,371 farmers, or 27.1 per cent of the total number, reported hay or forage crops. Excluding cornstalks and corn strippings, they obtained an average yield of 1.6 tons per acre. The total acreage in hay and forage for 1899 was 938,024 , or 148.5 per cent greater than ten years before.
In 1899 the acreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 286,079 acres and 280,145 tons; millet and Hungarian grasses, 152,750 acres and 234,680 tons; alfalfa or lucern, 18,999 acres and 33,394 tons; clover, 1,940 acres and 3,344 tons; other tame and cultivated grasses, 63,605 acres and 88,645 tons; grains cut green for hay, 52,051 acres and 87,273 tons; crops grown for forage, 362,600 acres and 738,971 tons; cornstalks and corn strippings, 79,150 acres and 27,853 tons.
In Table 18 the production of cornstalks and corn strippings is included under " hay and forage," but the acreage is included under "corn," as the forage secured was an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 are shown in the following table:

Table 21.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

Frdits.	NUMBER Of trees.		bushels of fruit.	
	1900	1890	1899	1889
Apples.	1, 484, 846	622,801	591,985	742,993
Apricots	35,301 36,800	7,220 14,241	1,620	1,580
Peaches.	7, 248, 358	4, 486, 901	1, 400, 240	5, 106, 332
Pears	1,044, 680	37, 370	166,418	17,034
Plums and prunes	1,121, 589	688,995	180, 813	160, 256

The total number of fruit trees in 1890 was $5,857,528$. In 1900 there were $11,036,196$, showing an increase of $5,178,668$, or 88.4 per cent. The rates of increase for the decade are as follows: Apples, 138.4 per cent; apricots, 388.9 per cent; cherries, 158.4 per cent; peaches, 61.5 per cent; and plums and prunes, 62.8 per cent. The number of pear trees is 27 times as great as it was in 1890.
Of the total number of trees reported in 1900, 13.4 per cent were apple trees; 65.7 per cent, peach trees; 10.2 per cent, plum and prune trees; 9.5 per cent, pear trees; and 1.2 per cent, apricot, cherry, and unclassified trees. The last mentioned, which are not included in the table, numbered 64,622 trees, and yielded 16,466 bushels of fruit.
The value of orchard products, given in Table 18, includes the value of 1,764 barrels of cider, 1,386 barrels of vinegar, and 84,630 pounds of dried and evaporated fruits. All these orchard fruits are grown quite generally throughout the state, but 57.6 per cent of the pear trees are reported from the counties of Brazoria, Galveston, and Harris.

SMALL FRUITS.

Of the 3,904 acres devoted by 6,496 farmers to small fruits, 1,802 acres, or nearly one-half, were reported by Smith, Galveston, Brazoria, and Tarrant counties, all of which are situated in the eastern part of the state. Blackberries and dewberries occupied 2,394 acres, or 61.3 per cent of the total area, and yielded $2,701,750$ quarts. The acreages and productions of other berries were as follows: Strawberries, 1,361 acres and $2,344,220$ quarts; raspberries and Logan berries, 103 acres and 123,640 quarts; currants, 4 acres and 5,370 quarts; gooseberries, 1 acre and 760 quarts; and other small fruits, 41 acres and 33,180 quarts.

VEGETABLES.

The total value of vegetables grown in 1899 , including potatoes, sweet potatoes, and onions, was $\$ 7,674,798$, of which 22.0 per cent represents the value of sweet potatoes; 9.4 per cent, that of potatoes; 2.0 per cent that of onions; and 66.6 per cent, that of miscellaneous vegetables.

Sweet potatoes were grown in 1899 by 63,209 farmers, or 17.9 per cent of the total number in the state. The area devoted to this crop in 1889 was 52,506 acres, and in $1899,43,561$ acres, a decrease of 17.0 per cent.

In the growing of miscellaneous vegetables, 110,260 acres were used. The products of 68,849 acres were not reported in detail. Of the remaining 41,411 acres, 26,276 acres were devoted to watermelons; 5,781 acres, to muskmelons; 4,088 acres, to cabbages; 2,821 acres, to tomatoes; 952 acres, to sweet corn; 855 acres, to cucumbers; and 638 acres, to other vegetables.

SUGAR CANE.

Table 22 presents a comparative exhibit of the acreage of sugar cane and the production of sugar and sirup, 1849 to 1899.

Table 22.-ACREAGE OF SUGAR CANE AND PRODUCTION OF SUGAR AND SIRUP: 1849 TO 1899.

YEAR. ${ }^{1}$	Acreage in cane.	sugar.		SIRUP.	
		Production in pounds.	Average yield per acre in pounds.	Production in gallons.	Average yield per acre in gallons.
1899	17,824	2, 789, 250	156.5	987, 587	55.4
1889	16,284	5,482,080	336.6	2, 159,339	132.6
1879	10,224	5, 941, 200	581.1	810,605	79.3
1869		2, 424,000		246,062	
1859		6,118,800		408, 358	
1849 .		8,821,200		

${ }^{1}$ No statistics of acreage were secured prior to 1879.
The present census shows that in 1899 sugar cane was grown by 15,694 farmers on 17,824 acres, an average of 1.1 acres for each farm reporting. From this area they sold 54,758 tons of cane for $\$ 219,905$, and from the remaining product, manufactured 987,587 gallons of sirup and molasses, valued at $\$ 372,538$, and $2,789,250$ pounds of sugar, valued at $\$ 134,074$. This was an increase of 9.5 per cent in acreage over that reported for 1889. The total value of the sugar-cane products was $\$ 726,517$, an average of $\$ 46.29$ for each farm reporting, and of $\$ 40.76$ per acre. The average value of the sugar was 4.8 cents per pound, and of the sirup and molasses, 37.7 cents per gallon.

SORGHUM CANE.

Sorghum cane was grown in 1899 by 31,948 farmers on 26,803 acres, an average of 0.8 acre for each farm reporting. From this area they sold 88,933 tons of cane for $\$ 263,518$, and from the remaining product, manufactured 877,232 gallons of sirup, valued at $\$ 291,272$. This was a decrease in acreage from 1889 of 6.1 per cent. The total value of sorghum-cane products was $\$ 554,790$, an average of $\$ 17.36$ for each farm reporting, and of $\$ 20.70$ per acre. The average value per gallon was 33.2 cents.

TOBACCO.

The present census shows that in 1899 tobacco was grown by 1,746 farmers, who reported 1,443 acres, and a yield of 550,120 pounds, a gain in ten years of 241.1 per cent in acreage and 213.1 per cent in production. The production of 1899 was the largest ever reported. The next largest was in 1879, when 685 acres yielded 221,283 pounds. The average yield per acre in 1899 was 381.2 pounds, compared with 415.4 pounds in 1889. The total value of the 1899 crop was $\$ 104,694$, an average of $\$ 59.96$ for each farm reporting, and of $\$ 72.55$ per acre. The average value per pound was 19 cents. The crop was grown in 98 counties, Montgomery county leading, with 507 acres, or 35.1 per cent of the total.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 167 acres, and the value of the products sold therefrom was $\$ 120,249$. These flowers and plants were grown by 157 farmers and florists, of whom 66 made commercial floriculture their principal business. The capital invested in land, buildings, implements, and live stock was $\$ 306,423$, of which $\$ 116,825$ represents the value of buildings. Their sales of flowers and plants amounted to $\$ 93,259$, and they obtained other products valued at $\$ 8,910$. The expenditure for labor was $\$ 28,000$, and for fertilizers, $\$ 1,575$. The average income for each farm reporting (including products fed to live stock) was $\$ 1,551$.

In addition to 59 of the florists' establishments, 208 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 171,474 square feet, making, with the 223,106 square feet belonging to the florists' establishments, a total of 394,580 square feet.
nurseries.
The total value of nursery products sold in 1899 was $\$ 314,511$, reported by the operators of 223 farms and nurseries. Of this number, 73 derived their principal income from the nursery business. They had 4,932 acres of land valued at $\$ 245,650$, buildings worth $\$ 83,445$, implements and machinery worth $\$ 12,209$, and live stock worth $\$ 14,454$. Their total income, exclusive of products fed to live stock, was $\$ 293,945$, of which $\$ 264,425$ represents the value of nursery stock and $\$ 29,520$ that of other products. The expenditure for labor was $\$ 42,740$ and for fertilizers, $\$ 2,405$. The average income for each farm reporting (including products fed to live stock) was $\$ 4,074$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 12,331,905$, an average of $\$ 35$ per farm. About one-half of this amount was expended for labor on cotton farms and nearly one-third for labor on live-stock farms. The average expenditure was $\$ 585$ for nurseries, $\$ 452$ for rice farms, $\$ 424$ for florists' establishments, $\$ 112$ for tobacco farms, $\$ 93$ for live-stock farms, $\$ 89$ for sugar farms, $\$ 57$ for fruit farms, $\$ 47$ for hay and grain farms, $\$ 45$ for dairy farms, $\$ 32$ for vegetable farms, and $\$ 25$ for cotton farms. "Managers" expended, on an average, $\$ 833$; "owners," $\$ 34$; "cash tenants," $\$ 29$; and "share tenants," \$18. White farmers expended $\$ 41$ per farm, and colored farmers, $\$ 9$.

Fertilizers purchased in 1899 cost $\$ 124,716$, an average of only 35 cents per farm, but an increase since 1890 of 112.6 per cent. The average expenditure was $\$ 69$ for rice farms, $\$ 33$ for nurseries, $\$ 24$ for florists' establishments, $\$ 14$ for tobacco farms, $\$ 4$ for fruit farms, $\$ 2$ for vegetable, dairy, and sugar farms, and less than $\$ 1$ for hay and grain, live-stock, and cotton farms.

IRRIGATION STATISTICS.

Texas, with its vast area and greatly diversified topography and climate, contains areas well adapted to the successful cultivation of a wide variety of agricultural products. As the larger part of the state belongs to the humid region, irrigation has never been a prominent factor in agricultural development.

The arid region may be described as belonging to the drainage basin of the Rio Grande and Pecos rivers, and includes the counties of Pecos, Reeves, El Paso, Jeff Davis, Presidio, Brewster, and Ward. The elevation of this portion of the state varies from 2,000 to 6,000 feet and the annual precipitation ranges from 8 to 17 inches. The soil, particularly in the valley of the Rio Grande, is of exceeding fertility when sufficiently watered, and is adapted to the cultivation of almost all the agricultural products of the temperate and sub-
tropical climates. In this valley irrigation is of ancient origin, and on many of the canals the methods of irrigating have undergone little change in the last two centuries. The irrigation of general crops in Texas is confined largely to the region above described.

In 1899 the number of irrigators in arid Texas was 429 , or 32.4 per cent of all; the ditches had a length of 212 miles, or 47.1 per cent of the total length, and the cost of construction was $\$ 407,635$, or 39.7 per cent of the total cost of all the systems of the state. El Paso county, with six large canals having a total length of 92 miles, leads all others in the number of irrigator's and in the mileage of ditches.

At El Paso, after passing through a deep canyon in the Franklin Range, the Rio Grande flows out upon a broad valley which has a length of 60 miles and a gen-
eral elevation of 4,000 feet. The bed of the river at this point is unstable and is often changed several miles during a flood. The banks are generally low, affording an excellent opportunity for the intake of gravity ditches. Sixty miles below El Paso the valley of the Rio Grande suddenly contracts where the river passes through the Whitman Mountains. From this point down to Del Rio, a distance of 400 miles, its course is through canyons in a region of wild and picturesque scenery and no opportunities are presented for irrigation, except at one point in Presidio county, near Fort Leaton, where it flows out upon a narrow valley for about 25 miles. In this valley it receives from Mexico the waters of an important tributary - the Concho. At Del Rio and 50 miles below, near Eagle Pass, the Rio Grande supplies water for several canals. A number of pumping stations are used in the vicinity of Laredo, Carrizzo, Rio Grande, Hidalgo, and Brownsville.

For a number of years during the irrigating season there was a shortage of the water supply in the Rio Grande. In the census year it sufficed for only one irrigation in El Paso county, and no crops were harvested, except a small quantity of hay and forage which yielded but slight returns. The marked yearly decrease in the volume of the Rio Grande has been the cause of much distress and suffering in that part of the state which is dependent upon this stream for water. Although the ditches in El Paso county cover 30,000 acres of land, in 1899 crops were grown on only 4,826 acres, and the products generally were such as would mature with water received during the flood season. The Rio Grande Valley in this county, once one of the most fertile and productive in the country, is rapidly returning to its original state - that of a desert.
Large canals along the Rio Grande in Colorado and Mexico exhaust the normal flow, and until a system of reservoirs is constructed to hold the flood waters, most of the farms in this part of Texas will have to be abandoned. A reservoir site has been surveyed and its capacity is claimed to be sufficient to irrigate all the arable land for 40 miles below El Paso on both sides of the river. As its construction involves questions of international importance, this work can not be attempted with private capital.
The Pecos River, flowing through arid and semiarid Texas, irrigates considerable areas in the counties of Reeves, Ward, and Pecos. The canals are of great length and designed to irrigate large areas. The irrigated acreage under ditches is about 70,000 , and the irrigation systems have a total length of 104 miles and cost $\$ 231,800$. In 1899 the acreage irrigated by them was 15,465 .
In explanation of the small acreage cuitivated, it may be stated that from the constant use of the water of the Pecos River for irrigation in New Mexico, it has become impregnated with mineral matter which is injurious to
vegetable growth, and, until some remedy is found for this, the further extension of irrigated areas is not probable.

There are a number of irrigation systems in the valleys of the Colorado and Brazos rivers, several of considerable importance, used in the cultivation of forage crops, grain, orchard and small fruits, and truck. Many crops in this section were seriously damaged by severe floods early in June, 1899, and many irrigation plants were entirely destroyed. Some of the most important canals are at Menardville and San Angelo. During the census year in Tom Green and Menard counties there were 157 irrigators, operating 17 plants, costing $\$ 84,325$, having a length of 69.9 miles, and irrigating 7,563 acres.

In 1889 there were 623 irrigators in the state, and in $1899,1,325$, an increase of 112.7 per cent. Within the same period, the number of irrigated acres increased from 18,241 to 49,652 , or 172.2 per cent. Not including the area irrigated in rice, the increase in irrigated acreage in the state is 69.7 per cent.

The total value of all crops produced on irrigated land in 1899 was $\$ 539,212$, divided as follows: Rice, $\$ 224,315$; hay and forage, $\$ 101,569$; cereals, $\$ 64,107$; vegetables, $\$ 99,240$; orchard fruits, $\$ 17,175$; small fruits, $\$ 1,134$; all other crops, $\$ 31,672$.

The following table gives the number of irrigators and acreage irrigated in 1899, with the number and cost of construction of irrigation systems and the length of main ditches:

Table A.-NUMBER OF IRRIGATORS AND ACREAGE IRRIGATED IN 1899, WITH NUMBER AND COST OF CONSTRUOTION OF IRRIGATION SYSTEMS AND LENGTH OF MAIN DITCHES.

counties.	Number of irrigators.	Acreage irrigated.	irrigation systems.			
			$\begin{aligned} & \text { Num- } \\ & \text { ber. } \end{aligned}$	Cost of construction.		Total length, of main ditches.
				Total.	Average per acre irrigated.	
The State ${ }^{1}$...	${ }^{2} 1,325$	49,652	581	81, 027,608	\$20.70	449.9
Bexar	76	1,720	4	13, 600	7.91	16.0
Colorado	3	200	3	26, 000	130.00	1.0
Ei Paso	200	4, 826	6	192, 200	39.83	92.0
Irion................	35 37	760 5859	3	2,450	3.22	9.5
Jefferson	37 70	5,859 2,820	10	265, 000	45. 23	20.0
Orange.	19	2,352	4	30,400 29,337	10.78 12.47	18.8 7.0
Pecos.	17	4,568	7	27, 800	6.09	47.0
Presidio.	25	1, 404	4	8,550	6.09	6.6
Reeves..	33	6,757	7	19,000	2.81	23.0
San Saba..	28	464	15	3,825	8.24	7.2
Tom Greert	87	4,743	12	53,925	11.37	50.8
Uvalde...	9	366	9	5,500	15.03	6.5
Valverde	43	2,179	1	25, 000	11. 47	8.0
Ward Other counties (107)	131 512	4,148 6,486	${ }^{2}$	185, 000	44. 60	34.0
Other counties (107)	512	6,486	489	140, 021	21.59	102.5

${ }^{1}$ Irrigation reported from 122 counties,
${ }^{2}$ 1ncludes 95 irrigators from wells irrigating 385 acres; cost of plants approximately $\$ 17,193$.

The relatively high average cost of construction per acre irrigated in Colorado and Jefferson counties is
explained by the fact that the pumping plants have been only recently established and in 1899 were not utilized to their full capacity. The area capable of being irrigated by these systems is greatly in excess of that reported as irrigated in the census year.

RICE 1RRIGATION.

The rice, belt, which extends from Sabine county on the east to the Rio Grande on the southwest, includes all the counties bordering on the Gulf and several adjoining. Rice irrigation in Texas really began in 1897 , the industry receiving great impetus from the success of the planters in southwest Louisiana. As southeastern Texas is an extension of the ${ }^{r}$, rtile prairies which have proven so well adapted to the growing of this cereal in Louisiana, the areas in rice have increased greatly each year. The rice belt at present includes two well-developed zones, the Beaumont, and the Colorado River valley. Beaumont section is a level prairie which, until a few years ago, was not deemed of much value for agricultural purposes. The slope is rarely more than one foot to the mile and the elevation is about 250 feet above the sea level at distances from 50 to 125 miles from the Gulf. In 1899, with the exception of 200 acres in the Colorado Valley and a few small areas in other counties, all of the irrigated rice was grown in this section. Jefferson county reported 5,859 acres in rice, yielding $5,643,194$ pounds, or 67.3 per cent of the total acreage and 78.5 per cent of the total yield of the state. There were ten irrigation systems in this county, representing an expenditure for construction of $\$ 265,000$. The total length of the main ditches was 20 miles.

The methods of cultivating and harvesting rice in Texas are the same as those of southwestern Louisiana. The rice is sown broadcast or with drills, on comparatively high land, from April 15 to June 15. From $1 \frac{1}{4}$ bushels to $1 \frac{8}{4}$ bushels are sown to the acre, the land having been plowed and harrowed as for wheat. The rice lands are flooded after the rice is up to the height of from 3 to 6 inches, the water being kept on the land from 90 to 110 days. The water kills the grass and weeds and promotes the rapid growth of the plant. From 10 to 20 days before harvest, depending upon the growth and nature of the soil, the levees at the lower sides of the fields are opened and the water is drawn off by means of ditches. The rice is cut with self-binders and thrashed from the shock or stacked to suit the convenience of the farmers. The same kind of machinery is used in cultivating, harvesting, and thrashing rice as is used with wheat in the Northwest.

The following table shows the number of irrigated rice farms, the acreage, yield, and value of crop, 1899:

Table B.-IRRIGATED RICE, BY COUNTIES.

counties.	Farms reporting.	Acres.	Pounds.	Value.
Chambers	2	$\begin{array}{r}37 \\ 200 \\ \hline\end{array}$	9,360 300,000	$\$ 240$ 13,090
Colorado	1	35	113, 400	3,780
Jasper	2	52	27,135	706
Jefferson	37	5,859	5,643, 198	171,349
Liberty...	4	162	65,588	2,118
Newton	19	-347	1,017,934	32,917
Orange..	19 4	2, 4	1,03,400	32, 80
Waller..		2	1,750	65
Total	73	8,700	7,184, 461	224,315

Twelfth Census of the United States.

Census Bulletin.

AGRICULTURE.

0KLAH0MA.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the territory of Oklahoma, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-

Abstract

The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land, under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.

The farms of Oklahoma, June 1, 1900, numbered 62,495 , and were valued at $\$ 123,941,235$. Of this amount, $\$ 13,731,585$, or 11.1 per cent, represents the value of buildings, and $\$ 110,209,650$, or 88.9 per cent, the value of land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 6,573,015$, and of live stock, $\$ 54,829,568$. These values, added to that of farms, give $\$ 185,343,818$, the "total value of farm property."
The products derived from domestic animals, poultry, and bees, including animals sold and animals slaugh-
tered on farms, are referred to in this bulletin as "animal products." The total value of such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 45,447,744$, of which amount $\$ 18,582,351$, or 40.9 per cent, represents the value of animal products, and $\$ 26,865,393$, or 59.1 per cent, the value of crops, including forest products cut or produced on farms. The total value for 1899 exceeds that reported for 1889 by $\$ 45,007,369$, or more than one hundred times.

The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 8,109,946$, leaving $\$ 37,337,798$ as the gross farm income. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Oklahoma in 1899 it was 20.1 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.
The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Oklahoma.

Very respectfully,

Chief Statistician for Agricultur.

AGRICULTURE IN OKLAH0MA.

GENERAL STATISTICS.

Oklahoma has a total land area of 38,830 square miles, or $24,851,200$ acres, of which $15,719,258$ acres, or 63.3 per cent, are included in farms.

The surface of the territory is a high, gently rolling slope, whose elevation above sea level ranges from 500 to 4,000 feet. In the central portion of the territory are a few mountains, east of which are broad, fertile valleys. To the north and west are undulating uplands, requiring only irrigation to make them yield abundantly. The principal rivers extend generally from northwest to southeast, and afford sufficient water facilities for all sections.

The soil is mostly a rich red clay, or sandstone decomposition, mixed, in the valleys, with black alluvial deposits. It is of sufficient depth and character to render it almost inexhaustible, and needs no fertilization.

NUMBER AND SIZE OF FARMS.

Table 1 gives, for the years 1890 and 1900 , the number of farms, the total and average acreage, and the per cent of farm land improved.

TABLE 1.-FARMS AND FARM ACREAGE: 1890 AND 1900.

YEAR.	Number of farms.	number of agres in farms.				Per cent land im proved.
		Total.	Improved.	Unimproved.	A verage.	
1900	62,495	15,719, 258	5,511,994	10,207,264	251.5	35.1
1890	8,826	1,606,423	563, 728	1,042, 695	182.0	35.1

There were more than seven times as many farms in the territory in 1900 as in 1890 , with nearly ten times as great an area devoted to agriculture. The average size of farms almost doubled, but the ratio of improved and unimproved land remained unchanged.

FARM PROPERTY AND PRODUCTS.
Table 2 presents a summary of the principal statistics relating to farm property and products for the census years 1890 and 1900.

Table 2.-Values of specified Classes of Farm PROPERTY, AND OF FARM PRODUCTS: 1890 AND 1900.

${ }^{1}$ For year preceding that designated.
The last decade shows very great progress in all agricultural pursuits, with from fourteen to seventeen times as great amounts invested, and more than one hundred times as great a value of products in 1900 as in 1890 .

county statistics.

Table 3 gives an exhibit of general agricultural statistics by counties.

Table 3.-NUMBER aND acreage of farms, and Values of specified classes of farm property, June 1 , 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURE IN 1899 FOR LABOR, BY COUNTIES.

COUNTIES.	number of farms.		acres in farms.		Values of farm property.				Value of products not feed to live stock.	Expenditure for labor.
	Total.	With buildings.	Total.	1mproved.	Land and im provements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The Territory................	62,495	60,505	15,719, 258	5,511,994	\$110, 209, 650	\$13,731, 585	\$6,573,015	\$54, 829, 568	\$37, 337, 798	\$2,359,650
Beaver	663	628	574, 800	125, 442	1,028,460	206, 440	83,575	3, 050, 184	693,241	97, 290
Blaine.	1,985	1,779	375, 703	167, 244	2, 806,310	304, 330	202,580	-943, 206	800, 178	57,510
Canadian	2,043	1,964	519,335	370, 193	6, 008,670	833, 010	345, 120	1,513,768	1,957, 354	164, 360
Cleveland	2,206	2,157	309,571	171,597	3,184,910	570, 740	210, 110	-953, 151	1, 211, 173	53,330
Custer.	2, 354	2,295	455,815	144, 611	2,990,090	309, 190	155,870	1,350,573	660,543	24, 660
Day..	388	374	107,154	20,586	340,600	60,220	29,180	923, 076	265, 634	18,470
Dewey	1,968	1,927	343, 213	84,400	1,902, 260	210,420	101,570	1,049, 271	458,890	23,500
Garfield	3,744	3, 630	645, 844	424, 169	8, 001, 155	1, 120,600	552, 390	2,063, 919	2,769, 037	226, 020
Grant.	3, 411	3,322	605,554	425,901	6, 718, 600	814,490 392,920	470, 140	$2,062,688$ $2,501,594$	2,206,313	180,740 22,190
Greer	3,465	3,330	912,804	189, 582	3,272, 440	392,920	196, 950	2,501,594	1,063,731	22,190
Kay	2,748	2,709	480, 453	349, 281	8,729,570	1,203,570	531, 160	1, 988, 482	2,543, 743	238,860
Kingfisher	2,848	2,754	515,410	308, 505	5,614, 210	915,060	443,340	1,622, 071	1,879,557	147,770
Lincoln	4,451	4,315	578, 387	270,479	5,029,510	682,890	320,170	1,548,883	1,856,204	58,440
Logan	3,076	2,954	464, 774	254, 899	5,103,470	867, 450	347, 850	1, 324,314	1,719,697	87,820
Noble	1,648	1,625	347, 613	210, 054	4,412,930	450,000	275, 560	1,502,538	1,403, 128	157,470
Oklahoma	2,663	2,584	451, 582	249, 768	5, 318,820	819,920	345, 180	1,224, 599	1,558,778	123,210
Pawnee	1, 844	1,789	414,768	131,415	3, 109,290	296,400	166, 070	2,002, 491	647,741	46,240
Payne	3,128	3,080	437, 021	267, 035	4, 591, 350	618,490	237, 070	1,403,125	1,440,566	51,410
Pottawatomie	3,266	3,176	338,887	164,744	3,214, 170	466,400	231, 360	1,205, 074	1,350,830	48,150
Roger Mills.	1,251	1,216	267, 986	44,273	970,830	108,250	62,820	1,253,212	400,800	15,740
Washita	2,780	2,714	490,473	162, 721	3, 327, 320	454,870	168, 490	1,247, 402	790,020	18,940
Woods	7,277	7.105	1,352, 326	663,052	9, 074,865	1,161,575	696, 640	4, 785, 638	3,309, 360	168,110
Woodward	1,613	1,539	845,414	90,404	2,103,710	277,640	141, 270	4,429, 634	868,432	87,570
Osage and Kaw ${ }^{1}$	960	902	1,088,843	141, 252	3, 208,220	353, 920	145,950	5,685,553	3, 666, 113	66,280
Ponca and Otoe ${ }^{1}$	256	199	194, 852	58, 624	2, 081,840	67,710	65,800	286,689	166,002	136,930
Wichita, Kiowa, and Comanche ${ }^{\text {- }}$ -	459	438.	2,600,676	21, 763	8, 066,050	165, 080	56, 800	6,908,433	1,650,733	38,640

1 Indian reservation.

The number of counties in Oklahoma increased in the last decade from 8 to 23 , rendering comparisons by counties for the last two census years very difficult. The total acreage increased nearly tenfold, and more than doubled for all of the original counties but one. In three counties the improved acreage increased more than fivefold. The average size of farms is largest in the western counties where stock raising and cereal production are the principal industries, and smallest in the southeastern counties, which contain a number of cotton and vegetable farms, though the size does not vary greatly in any section of the territory. The size of farms on Indian reservations is larger than in the counties, bringing the territorial average up to 251.5 acres.

Many of the counties show more than a threefold increase over the total farm values reported ten years before. For the territory, the average value of farms in 1900 was $\$ 1,983$, more than double that reported in 1890. A large gain in the value of implements and machinery was reported for all counties. The value of live stock also shows a general increase, the average value per farm being more than twice as great as in 1890.

The expenditure for lahor in 1899 averaged $\$ 38$ per farm. It varied greatly in the different parts of the territory, being very much higher in counties containing many live stock and grain farms than in those devoted to general farming.

FARM TENURE.

Table 4 gives a comparative statement of farm tenure for 1890 and 1900 . The farms operated by tenants are
divided into two groups designated as farms operated by "cash tenants" and "share tenants." These groups comprise, respectively: (1) Farms operated by individuals who pay a rental in cash or a stated amount of labor or farm produce; (2) farms operated by individuals who pay as rental a stated share of the products.
In Table 5 the tenure of farms for 1900 is given by race of farmer, the farms operated by owners being subdivided into four groups designated as farms operated by "owners," "part owners," "owners and tenants," and "managers." These terms denote, repectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or a part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF
SPECIFIED TENURE: 1890 AND 1900.

YEAR.	Number of farms.	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPER-ATRD BY-		
		Owners. ${ }^{1}$	Cash tenants.	Share tenants.	Owners. ${ }^{1}$	Cash tenants.	Share tenants.
1900	62, 495	49,346	5, 020	8,129	79.0	8.0	18.0
1890	8,826	8,761	13	52	99.3	0.1	0.6

[^179]Table 5.-NOMBER AND PER CENT OF FARMS OF SPECIFIED TENURE, JUNE 1, 1900, CLASSIFIED BY RACF. OF FARMER.

PART 1.-NUMBER OF FARMS OF SPECIFIED TENURE.

RACE.	Total number of farms.	Owners.	Part owners.	Owners and tenants.	Managers.	Cash tenants.	Share tenants.
The Territory...	62, 495	42, 241	6,113	686	306	5,020	8,129
White	59,324	39, 863	6, 014	666	298	4,843	7,640
Negro.......................	$\begin{array}{r}2,256 \\ \hline 20\end{array}$	$\begin{array}{r}\text { 1, } 881 \\ \hline 197\end{array}$	5 94	[$\stackrel{2}{6}$	5 172	17 472

PART 2.-PER CENT OF FARMS OF SPECIFIED TENURE.

The Territory...	100.0	67.6	9.8	1.1	0.5	8.0	13.0
White	100.0	67.2	10.1	1.1	0.5	8.2	12.9
Indian	100.0	96.4	0.5	0.5	0.2	0.5	1.9
Negro	100.0	66.3	4.2	0.7	0.3	7.6	20.9

The number of farms operated by owners, June 1, 1900, was nearly six times as great as the number reported in 1890, the increase for the decade being 40,585 . This increase was less rapid than that in the total number of farms, hence, the per cent of farms operated by this class was 20.3 less than in 1890. The corresponding increase in the percentages of tenant-operated farms gives to cash tenants an increase of 7.9 , and to share tenants, 12.4. These great increases are largely due to the opening to settlement of large tracts of Government lands.

Of the total number of farms, 5.1 per cent are operated by colored farmers, of whom about one-third are Indians. Of the white farmers, 78.4 per cent own all or a part of the land they operate, while for colored farmers this percentage is 78.7.

The census of 1890 did not report the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the per cent of farms conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.
Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RACE OR FARMER, AND tendee.	Number of farms.	number of acres in FARMS.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The Territor	62,495	251.5	15,719, 258	100.0	\$185, 343, 818	100.0
White farmers.	59,324	256.5	15, 217,347	96.8	179, 895, 037	97.0
Indian farmers	- 915	256.8	234,954 26697	1.5	$2,527,455$ $\mathbf{2 , 9 2 1 , 3 2 6}$	1.4 1.6
Negro farmers.	2,256	118.3	266, 957			
Owners.	42,241	164.2	6, 935, 760	44.1	98, 401, 427	53.1
Part owners	6,113	445.1	2,720, 961	17.3	30, 8306	16.2
Owners and tenants....	686	191.1	131,115	0.8 11.7	$1,830,494$ $16,618,885$	1.0
Managers..............		6, 018.8	1,841, 2,835	18.7	22, 211,948	12.0
Cash tenants.	8, 8,129	564.8 154.3	1,254, 202	18.0 8.0	16, 214, 342	8.7
re tenau						

Table 7.-AVERaGe Values of specified Classes of FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Race of farmer, AND TENURE.	averame values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				$\begin{array}{\|c\|} \text { Gross } \\ \text { income } \\ \text { (products } \\ \text { of } 1899 \\ \text { not fed } \\ \text { to live } \\ \text { stock). } \\ \hline \end{array}$	
	Land and im-prove(except buildings).	Buildings.	Implements and machinery.	Live stock.		
The Territory.	\$1,764	\$220	\$105	\$877	\$597	20.1
White farmers.	1,800	224	108	900	616	20.3
Indian farmers	1,628	220	93	822	187	6.8
Negro farmers.	848	94	47	306	271	20.9
Owners....	1,476	213	99	542	477	20.5
Part owners	2,689	350	177	1,702	1,105	22.5
Owners and tenants..	1,709	243	105	611	566	21.2
Managers.	23, 716	818	280	29,496	10,960	20.2
Cash tenants	2,437	183	104	1,701	697	15.7
Share tenants..........	1, 322	157	78	438	392.	19.7

The average values of farm property for Indian farmers are but little lower than for white farmers, but the average and percentage of gross income are very much lower. All the averages are very much lower for negro farmers, but the per cent of gross income is highest for this group. This high rate of gross income is due to the smaller average area and more intensive cultivation of the farms of this group and to the low values of farm property or capital invested.
The farms operated by managers are larger, have more capital invested, and a much larger gross income than any other class. The ratio which the latter amount bears to the total value of their farm property is, however, smaller than for some other tenure groups, because of the high average valuation of land and buildings.

FARMS CLASSIFIED BY AREA.
Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

AREA.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (prodnets of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		
The Territory...	\$1,764	\$220	\$105	$\$ 877$	\$597	20.1
Under 3 acres.	260	203	28	6,245	237	3.5
3 to 9 acres.............	257	184	33	211	146	21.3
10 to 19 acres.	240	93	32	151	161	31.3
20 to 49 acres.	421	93	41	179	191	26.0
50 to 99 acres...........	825	139	62	279	312	23.9
100 to 174 acres.	1,445	198	96	482	458	20.6
175 to 259 acres.	2,092	289	149	672	736	23.0
260 to 499 ácres.	3,083	407	201	1,217	1,047	21.3
500 to 999 acres.	4,317	563	251	2,945	1,728	21.4
1,000 acres and over...	27,018	945	363	35,524	10,214	16.0

Over two-thirds of all farms in the state belong to the medium-sized class- 100 to 174 acres. The acreage of this group is about two-fifths and the value about one-half of the state total. Of the 581 farms containing 1,000 acres and over, 280 were operated by "part owners" and 108 by "managers," and of the total number 470 were "live-stock farms."

With a few exceptions, the average values of the several forms of farm property increase with the size of the farms. The high average value of live stock and large gross income for farms under 3 acres are due to the fact that most of this class are live-stock farms, whose operators use the public domain for range purposes, while others are dairy or truck farms. The incomes from these industries depend less upon the acreage of owned or rented land than upon the capital invested in buildings, implements, and live stock, and the amount expended for labor.
The average gross income per acre for the various groups classified by area is as follows: Farms under 3 acres, $\$ 118.55 ; 3$ to 9 acres, $\$ 18.78 ; 10$ to 19 acres, $\$ 10.13 ; 20$ to 49 acres, $\$ 5.47 ; 50$ to 99 acres, $\$ 4.02 ; 100$ to 174 acres, $\$ 2.91 ; 175$ to 259 acres, $\$ 3.52 ; 260$ to 499 acres, $\$ 3.07 ; 500$ to 999 acres, $\$ 2.47 ; 1,000$ acres and over, $\$ 1.10$.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop, and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm. If vegetables àre the leading crop, constituting 40.0 per cent of the value of such products, it is a "vegetable" farm. The farms of the other
groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40.0 per cent of their income from any one class of farm products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE I, I900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCE OF income.	Number of farms.	NUMBER OF ACRES IN FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The Territory	62,495	251.5	15, 719, 258	100.0	\$185, 343,818	100.0
Hay and grain	28,956	183.3	5, 306,366	33.8	80, 328, 015	43.3
Vegetables	528	147.0	77,640	0.5	848,737	0.5
Fruit...	161	134.4	21, 631	0.1	412, 020	0.2
Live stock	14,896	514.4	7,661, 781	48.7	74, 101, 280	40.0
Dairy produce	3,238	185.7	601, 135	3.8	6,442, 276	3.5
Tobacco.	. 20	253.8	5,076	(1)	50, 836	$\left.{ }^{1}\right)$
Cotton.	6,535	124.1	811, 237	5.2	8, 673,420	4.7
Sugar.	58	249.5	14,473	0.1	153, 798	0.1
Flowers and plants	7	4.6	32	(1)	25,145	(1)
Nursery products.......	26	102.9	2,675	(1)	92,739	(1)
Miscellaneous...........	8, 070	150.8	1,217,212	7.8	14,215, 552	7.7

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 11.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTALINVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE OFINCOME.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and im-provements (except ings).	Bnildings.	Impleand mechinery.	Live stock.		
The Territory ..	\$1,764	\$220	\$105	\$877	\$597	20.1
Hay and grain	1,924	246	128	476	595	21.4
Vegetables	1,107	150	61	289	396	24.7
Fruit	1,763	363	93	340	604	23.6
Live stock	2,333	252	110	2,280	957	19.2
Dairy produce........	1,103	154	69	664	192	9.7
Tobacco	1,520	363	105	554	430	16.9
Cotton.	889	116	56	266	341	25.7
Sugar.................	1,394	804	82	372	327	12.8
Flowers and plants...	1,793	1,643	142	14	1,150	82.0
Nursery products.....		648	121	105	2,936	82.3
Miscellaneous........	1,151	169	75	367	321	18.2

For the several classes of farms the average values per acre of products not fed to live stock are as follows: Farms whose operators derive their principal income from Howers and plants, $\$ 251.56$; nursery products, $\$ 28.54$; fruit, $\$ 4.49$; hay and grain, $\$ 3.24$; cotton, $\$ 2.75$; vegetables, $\$ 2.70$; live stock, $\$ 1.86$; tobacco, $\$ 1.69$; sugar, $\$ 1.31$; dairy products, $\$ 1.04$; and miscellaneous, \$2.13. In obtaining these averages the total acreage of each group was used and not the acreage in the crop from which the group is named.

The wide variations in the averages and percentages of gross income are largely due to the fact that in computing gross income no deductions are made for expenditures. Were it possible to present the average net income, the variations shown would be comparatively slight.

FARMS CLASSIFLED BY REPORTED VALUE OF PKODUCTS NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.--NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

VALUE OF PRODUCTS NOT FED TO LIVE sTOCK.	Number of farms.	NUMBER OF ACRES IN FARMS.			Value of farm PROPERTX.	
		Average.	Total.	$\begin{gathered} \text { Per } \\ \text { cent. } \end{gathered}$	Total.	Per cent.
The Territory.	62,495	251.5	15,719,258	100.0	\$185, 343, 818	100.0
80.	2,777	994.8	2, 762,461	17.6	16,233, 190	8.8
$\$ 1$ to \$49	3,454	156.9	541, 913	3.4	4,016, 150	2.2
850 to \$99	3,817	158.3	604,059	3.8	4,894,020	2.6
8100 to $\$ 249$	11,938	154.9	1,848,706	11.8	17,999,760	9.7
\$250 to \$499	16, 278	161.0	2, 620,581	16.7	33,089, 065	17.8
\$500 to \$999	16,490	190.8	3,145, 615	20.0	50, 896. 338	27.5
\$1,000 to \$2,499	6,862	270.7	1,857, 715	11.8	34, 618, 305	18.6
\$2,500 and over	879	2,648.7	2,338, 208	14.9	23, 696,990	12.8

Table 13.-average values of specified classes OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED by Reported value of products not fed to LIVE STOCK.

Most of the farms reporting no income for 1899 were homesteads taken up too late for cultivation during that year. The facts that of the 2,777 farms in this class 2,029 were from 100 to 175 acres in size, and that 2,084 of them were operated by owners, sustain this view. There were some farms, also, from which no reports of the products of 1899 could be secured, as the persons in charge June 1, 1900, did not operate the farms during
the preceding year and could give no information concerning the products of that year. To this extent the reports fall short of giving a complete exhibit of farm income in 1899.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the census of 1900 . The age grouping for neat cattle was determined by their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits a very close comparison with the figures published in the Eleventh Census.

Table 1t presents a summary of live-stock statistics.
Table 14.-NUMBER OF DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS.

LIVE Stock.	Age, in years.	ON FARMS.			NOT ON FARMS. \qquad Number.
		Number.	Value.	Aver- age value.	
Calves	Under 1.	300, 125	\$3, 208, 409	\$10.69	1,353
Steers	1 and under 2.	159, 651	2,961, 890	18.55	497
Steers	2 and under 3.	191, 340	4, 550, 770	23.78	97
Steers	3 and over....	306, 675	8,892, 081	29.00	41
Bulls.	1 and over....	22, 823	917,477	40.20	101
Heifers.	1 and under 2.	125,029	2,262,978	18.10	410
Cows kept for milk	2 and over.	165,852	5,045,668	30.42	3,761
Cows and heifers not kept for milk.	2 and over.	438,257	9, 943, 942	22.69	737
Colts-..............	Under 1.	26,933	423,331	15.72	374
Horses	1 and under 2.	28,382	656, 139	23.12	230
Horses	2 and over....	248,316	9, 535, 824	38.40	15,084
Mule colts	Under 1.......	6,272	162,288	25.88	127
Mules.	1 and under 2.	6,751	252, 457	37.40	88
Mules.	2 and over....	42,654	2, 413, 885	56.59	1,524
Asses and burros.	All ages	1,521	124,171	81.64	129
Lambs	Under 1.	22,823	39,255	1.72	14
Sheep (ewes)	1 and over.	35,641	105, 841	2.81	15
Sheep (rams and wethers).	1 and over.	10,894	34,642	3.18	11
Swine...................	All ages	584, 878	2, 380, 025	4.07	6,102
Goats	All ages	3,772	10,854	2.88	105
Fowls: ${ }^{1}$ Chickens ${ }^{2}$					
Turkeys.		2, 86,450			
Geese		12,934	900,743		
Ducks.		71,562			
Bees (swarms of)		1,910	6,998	3.66	
Value of all live stock.			54, 829, 568		

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.
${ }^{2}$ Including Guinea fowls.
The total value of all live stock on farms, June 1, 1900 , was $\$ 54,829,568$, of which 59.7 per cent represents the value of neat cattle other than dairy cows; 19.4 per cent, that of horses; 9.2 per cent, that of dairy cows; 5.2 per cent, that of mules; 4.3 per cent, that of swine; and 2.2 per cent, that of all other live stock. No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, however, the total value of the domestic animals not on farms, given in Table 14, is $\$ 888,806$. Exclusive of poultry and bees not on farms, the total value of live stock in the state is approximately $\$ 55,718,374$.

CHANGES IN LIVE STOCK KEPT ON FARMS.
The following table shows the changes since 1890 in the numbers of the most important domestic animals:

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1890 AND 1900.

YEAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{2}$	Swine.
$1900 \ldots \ldots \ldots \ldots .$. 165,852 189,756$1,543,900$ 110,199	303,631 25,554	57,198 4,923	48,535 16,565	584,878 21,962		

1 Lambs not included.
In the last decade the opening up and settlement of new lands have effected important changes in the numbers of all classes of live stock. In comparison with the figures of 1890 , the census of 1900 reports, approximately, ten times as many dairy cows; fourteen times as many other neat cattle; twelve times as many horses, mules, and asses; three times as many sheep; and twenty-seven times as nany swine.

Although in 1900 the enumerators were instructed to report no fowls under three months old, and in 1890 no such limitation was made, the later census shows, approxinuately, eighteen times as many geese, sixteen times as many ducks, fifteen times as many turkeys, and seven times as many chickens.

ANIMAL PRODUCTS.

Table 16 is a summmized statement of the products of the animal industry.
Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1899.

PRODUCTS.	Unit of measure.	Quantity.	Value.
Wool	Pounds..	278, 425	\$37, 750
Mobair and goat hair	Pounds.	693	-187
Milk.	Gallons.	147,439, 853	
Butter	Pounds	8,781, 359	22,481, 673
Cheese	Pounds	45, 264	
Eggs	Dozen	13, 724,900	1, 284,414
Poultry			1,302, 460
Honey.	Pounds	16,540	
Wax...	Pounds	400	2,257
Animals sold.			10,547, 764
Animals slaughtered			2,925,846
Total value			18,582,351

${ }^{1}$ Comprises all milk produced, whether sold, consumed, or made into butter or cheese.
${ }^{2}$ Comprises the value of milk sold and consumed, and of butter and cheese
made.
The value of animal products in 1899 was $\$ 18,582,351$, of which 72.5 per cent represents the value of animals sold and animals slaughtered on farms; 13.9 per cent, that of poultry and eggs; 13.4 per cent, that of dairy products; and 0.2 per cent, that of wool, mohair, boney. and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED ON FARMS.
Of all farmers reporting domestic animals, 35,702 , or 59.2 per cent, reported animals slaughtered, the average value per farm being $\$ 81.95$. Of all reporting domestic animals, 31,560 , or 52.3 per cent, reported sales, the average receipts per farm being $\$ 334$. 21 . The value of animals sold and animals slaughtered on farms was $\$ 13,473,610$, or 36.1 per cent of the gross farm income. In obtaining these reports the enumerators were instructed to secure from each farm operator a statement of the amount received from sales in 1899 , less the amount paid for animals purchased the same year.

DAIRY PRODUCE.

The production of milk in 1899 was $t 7,439,853$ gallons, thirty times as great as ten years before. There were made on farms in 1899 nearly twenty-three times as much butter, and more than twenty-eight times as much cheese, as ten years before.

Of the $\$ 2,481,673$ given in Table 16 as the value of dairy products, $\$ 1,821,125$, or 73.4 per cent, represents the value of such products consumed on farms, and $\$ 660,548$, or 26.6 per cent, the receipts from sales of dairy products. Of the latter amount, $\$ 358,347$ was received from the sale of $2,806,790$ pounds of butter; $\$ 293,976$, from $2,701,471$ gallons of milk; $\$ 4,969$, from 8,434 gallons of cream; and $\$ 3,256$, from 30,628 pounds of cheese.

POULTRY, EGGS, WOOL, HONEY, AND WAX.

The total value of the products of the poultry industry in 1899 was $\$ 2,586,874$, of which 50.3 per cent represented the value of poultry raised, and 49.7 per cent, the value of eggs produced. There were $13,724,900$ dozen eggs produced in 1899, nearly fourteen times the number reported in 1890.

More than four times as much wool was reported in 1900 as in 1890 , and the average weight of fleeces increased from 4.8 pounds in 1890 to 5.4 pounds in 1900 .

In $1899,16,540$ pounds of honey were produced, almost six times as much as ten years before, and 400 pounds of wax, sixteen times the product of 1889.

HORSES AND DAIRY COWS ON SPECIFLED CLASSES OF FARMS.

Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE $1,1900$.

classes.	Horses.			Datry cows.		
	Farms reporting.	Number.	Average per farm.	Farms report ing.	Number.	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { per } \\ & \text { farm. } \end{aligned}$
Total.........	56,574	303,631	5.4	46,559	165, 852	3.6
	53,946 2,628	280, 668	5.2	45, 335	163,196	3.6
Owners ${ }^{1}$						
Managers	44,989	244, 052	6.4	37,767	139,443	3.7
Cash tenants.	4, 476	5,507 $\mathbf{2 4 , 9 3 1}$	22.4 5.6	${ }^{164}$	${ }^{6} 693$	4.2
Share tenants.	6,863	29,141	5.6 4.2	3,611 5,017	12,369 13,347	3.4
Under 20 acres	537	2,062	3.8	329	828	2.5
20 to 99 acres...	7,723	26,019	3.2	5,761	14,506	2.5
175 to 259 acres.	38,801 3,414	137, 102	4.8	32, 008	110, 210	3.4
260 acres and over	6,099	68,999	6.0 11.3	5, 321	12,085 28,223	3.8 6.3
Hay and grain	25, 702	141,997	5.5			
Vegetable	, 449	1,964	4.4	$\begin{array}{r}19,738 \\ \hline 270\end{array}$	58,612 670	3.5 2.5
Fruit.	141	548	3.9	104	315	3.0
Dairy	14, 2316	100,489	7.1	12,731	56,049	4.4
Cotton	3,013 5,599	14,329	4.8 2.9	3, 238	18, 131	5.6
Miscellaneous ${ }^{\text {a }}$	7,434	-28,192	2.9 3.8	4,293 6,185	12,690 19,385	3.0 3.1

${ }^{1}$ Including "part owners" and "owners and tenants."
${ }^{2}$ Including tobacco farms, sugar farms, forists' establishments, and nurseries.

CROPS.

The following table gives the statistics of the principal crops of 1899:

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

CROPS.	Acres.	Unit of measure.	Quantity.	Value.
Corn	1,320,506	Bushels.	38,239,880	\$8,699, 271
Wheat	1,279, 826	Bushels.	18, 124,520	8,989,416
Oats	156, 619	Bushels.	5, 087, 980	1,079,862
Barley	16, 453	Bushels..	346, 730	80,153
Rye.	3,501	Bushels.	41, 220	16,519
Buckwhea	13	Bushels.	170	100
Kafir corn	63,455	Bushels.	1,110,473	228,401
Flaxseed	759	Bushels.	5, 050	4,562
Clover seed		Bushels.	178	728
Grass seed		Bushels.	3,752	2,021
Hay and forage	695, 313	Tons.--	1,146, 455	2,883,682
Cotton..	240,678	Pounds.	36, 006, 020	2,217,119
Cottonseed		Tons.	29, 207	250,815
Tobacco	39	Pounds.	11,880	1,531
Broom corn	12,366	Pounds..	3,418,490	129,813
Peanuts.	2,077	Bushels..	47,280	27,642
Castor beans	13,997	Bushels..	77,185	68,842
Dry beans	590	Bushels..	4,353	5, 000
Dry pease	7171	Bushels..	1,911	1,856
Potatoes.	7, 677	Bushels.	559, 532	288, 117
Sweet potatoes	2,512	Bushels.	195,799	96,040
Onions	$\begin{array}{r}434 \\ 20 \\ \hline 88\end{array}$	Bushels.	58,456	$39,958$ $865,857$
Miscellaneous vege	20,828 9,788			865,857 69,007
Sorghum cane.	9,788	Tons. .	25,327 81	69,007 24,825
Sorghum sirup		Gallons	81,891	$\begin{aligned} & 24,825 \\ & 63,519 \end{aligned}$
Small fruits...i	810 114,700			$\begin{array}{r} 63,519 \\ 2245,990 \end{array}$
Orebard fruits ${ }^{1}$	114,700 5,060	Centals.	61, 110	8128,500
Nuts....				, 352
Forest products				252, 951
Flowers and plants	9			6,574
Seeds............	169			4,825
Nursery products.	711			84,437
Miscellaneous...	2,248			17,108
Total	3, 971, 309			'26,885, 393

${ }_{1}$ Estimated from number of vines or trees.
2 Including value of cider and vinegar.
${ }^{5}$ Including value of wine, raisins, etc.
Of the total value of crops, cereals, including Kafir corn, contributed 71.1 per cent; hay and forage, 10.7 per cent; cotton, including seed, 9.2 per cent; vegeta-
bles, including potatoes, sweet potatoes, and onions, 4.8 per cent; fruit, 1.6 per cent; and all other crops, 2.6 per cent.

The average values per acre of the various crops were as follows: Flower's and plants, $\$ 730.44$; nur'sery products, $\$ 118.76$; onions, $\$ 92.07$; small fruits, $\$ 78.42$; miscellaneous vegetables, $\$ 41.57$; tobacco, $\$ 39.26$; sweet potatoes, $\$ 38.23$; potatoes, $\$ 37.53$; seeds, $\$ 28.55$; grapes, $\$ 25.40$; peanuts, $\$ 13.31$; broom corn, $\$ 10.50$; cotton, $\$ 10.25$; beans and pease, $\$ 9.01$; and cereals, $\$ 6.72$.

COTTON.

But three counties, Canadian, Cleveland, and Greer, reported cotton in 1889. The number of acres seeded to the crop in that year was 1,109 , and the quantity of cotton produced was 202,725 pounds, an average of 183 pounds per acre.

In 1899, 16,316 farmers devoted an area of 240,678 acres to the production of cotton, an average of 14.8 acres per farm. From this land was obtained 36,006,020 pounds of cotton, an average of 2,207 pounds per farm, and 150 pounds per acre. The total value of this crop, including the value of the cottonseed, was $\$ 2,467,934$, an average of $\$ 151.26$ per farm, and $\$ 10.25$ per acre. This value constituted 6.6 per cent of the gross farm income.

The counties having the largest area under cotton in 1899 were Lincoln, Pottawatomie, Cleveland, and Greer, ranking in the order named, and reporting, in the aggregate, 65.3 per cent of the total acreage. These counties are located in the central and extreme southwestern parts of the territory.

CEREALS.

The following table is a statement of the changes in cereal production since 1889:

Table 19.-ACREAGE AND PRODUCTION OF CEREALS: 1889 AND 1899.
PART 1.-ACREAGE.

YEAR.	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
$\begin{aligned} & 1899 . \\ & 1889 . \end{aligned}$	16,453 17	13	$1,320,506$ 13,307	156,619 4,446	3,501 110	$\begin{array}{r} 1,279,826 \\ 2,003 \end{array}$
PART 2.-BUSHELS PRODUCED.						
1899.	346,730	170	38, 239, 880	5,087, 930	41,220	18, 124, 520
1889.	112		234,315	76,194	1,052	30,175

The total area devoted to cereals in 1889 was 19,883 acres; and in 1899, 2,776,918 acres. The increases in the acreages devoted to cereals in the decade from 1889 to 1899 were very rapid, the gains ranging from over thirty to nearly one thousand fold. The total number of bushels produced in 1889 was 341,848 , while the p.oduction in 1899 was $61,840,450$ bushels, or more than 180 times as great.

Of the total area under cereals in $1899,47.6$ per cent was devoted to corn; 46.1 per cent, to wheat; and 6.3 per cent, to oats, barley, rye, and buckwheat.

Corn was extensively raised in 1899, Woods county alone producing $4,521,110$ bushels. Grant, Lincoln, Payne, Kay, and Garfield counties, and the Osage and Kaw Indian reservations, each reported over 2,000,000 bushels, and 10 others, each over $1,000,000$ bushels. Wheat was grown in nearly all counties, those in the Arkansas River valley showing the largest returns. Oats, barley, and rye were produced in large quantities in the Cimarron and Canadian River valleys, but very little attention was given to buckwheat.

Kafir corn was grown in 1899 by 4,747 farmers on 63,455 acres, an average of 13.4 acres for each farm reporting. From this area was obtained a yield of $1,110,473$ bushels, or an average of 17.5 bushels per acre. The total value of the crop was $\$ 228,401$, an average of $\$ 48.11$ for each farm reporting. The average value per bushel was $\$ 0.21$, and the average value per acre was $\$ 3.60$. The crop was grown in all parts of the territory, but 37.3 per cent of the entire acreage was furnished by the two counties of Greer and Woods.

HAY AND FORAGE.

In 1900, 36,693 farmers, or 58.7 per cent of the total number, reported hay and forage crops. Exclusive of cornstalks, they obtained an average yield of 1.6 tons per acre. The total acreage in hay and forage for 1899 was 695,313 acres. Of this acreage, 336,977 acres, or 48.5 per cent, produced 368,121 tons of wild, salt, and prairie grasses. The acreages and yields of the other kinds of hay and forage were as follows: Millet and Hungarian grasses, 33,327 acres and 60,788 tons; alfalfa or lucern, 15,116 acres and 27,563 tons; clover, 343 acres and 480 tons; other tame and cultivated grasses, 9,395 acres and 11,975 tons; grains cut green for hay, 25,039 acres and 58,446 tons; crops grown for forage, 275,116 acres and 609,923 tons; and cornstalks, 9,768 acres and 8,159 tons.

In Table 18 the production of cornstalks is included under "hay and forage," but the acreage is included under "corn," as the forage secured was an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1889 are shown in the following table:

Table 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

| FRUITS. | |
| :--- | ---: | ---: | ---: | ---: | ---: |

The number of trees reported in the territory in 1889 was only 719 , while in 1899 this number had increased to $8,962,971$. In $1900,61.6$ per cent of all fruit trees were peach trees; 22.9 per cent, apple trees; 4.5 per cent, cherry trees; 4.5 per cent, plum and prune trees; 2.6 per cent, apricot trees; and 3.9 per cent, pear, and unclassified trees.

A large percentage of the apples grown was reported in Payne, Lincoln, and Pottawatomie counties, in the southeastern part of the territory. Peaches are reported by 37,125 farmers, or 59.4 per cent of the total. Nearly one-balf of the trees are in the four north central counties of Woods, Garfield, Grant, and Logan. These counties also report very large percentages of each of the remaining varieties.
In addition to the trees shown in Table 20, unclassified orchard trees to the number of 172,397 are reported, with a yield of 1,136 bushels. The value of orchard products given in Table 18 includes the value of 646 barrels of cider, 519 barrels of vinegar, and 14,350 pounds of dried and evaporated fruits.

SORGHUM CANE.

The present census shows that in 1899 sorghum cane was raised by 2,367 farmers on 9,788 acres, an average of 4.1 acres for each farm reporting. From this area 25,327 tons of cane were sold for $\$ 59,007$, and from the remaining product 81,891 gallons of sirup, valued at $\$ 24,825$, were manufactured. This was an increase in acreage since 1889 of 8,944 acres, or over tenfold, and in production of 50,592 gallons, or 161.6 per cent, not including the product of the 25,327 tons of cane sold. The total value of the sorghum cane products was $\$ 83,832$, an average for each farm reporting of $\$ 35.42$. Tie average value per gallon was $\$ 0.30$. The crop was grown in 25 counties and reservations, Greer county leading with an area of 1,574 acres.

CASTOR BEANS.

Castor beans were grown in 1899 by 1,296 farmers, who devoted to their cultivation 13,997 acres, and secured therefrom a product of 77,185 bushels, an average of 5.5 bushels per acre. Of the total acreage, 94.0 per cent was reported from the central and eastern counties of Payne, Dewey, Lincoln, Pawnee, Logan, Garfield, Noble, and Custer, ranking in the order named.

V EGETABLES.

The total area devoted to vegetables in 1899, including potatoes, sweet potatoes, and onions, was 31,451 acres. Aside from the land devoted to potatoes. sweet potatoes, and onions, 20,828 acres were used in the growing of miscellaneous vegetables. Of this area, the products of 12,077 acres were not reported in detail. Of the remaining 8,751 acres, 4,469 acres were devoted to watermelons; 1,371 , to muskmelons; 1,019 , to sweet corn; 864, to cabbages; 690, to tomatoes; 263, to cucumbers; and 75 , to other vegetables.

SMALI FRUITS.

The total area used in the growing of small fruits was 810 acres. Of this area, 620 acres, or 76.5 per cent, were devoted to blackberries and dewberries, the total production of which was 646,320 quarts. The acreages and productions of the other berries were as follows: Strawberries, 124 acres and 197,290 yuarts; raspberries and Logan berries, 35 acres and 42,530 quarts; currants, 10 acres and 9,720 quarts; gooseberries, 8 acres and 7,550 quarts; and other berries, 13 acres and 13,300 quarts.

FLORICULTURE.

Floriculture in Oklahoma, as in all new states and territories, is a relatively unimportant industry. In 1899 the operators of 17 farms raised flowers and foliage plants valued at $\$ 6,574$, but of this number only 7 derived their principal income from this source. These 7 commercial florists had a gross income of $\$ 8,050$, of which $\$ 5,900$ was derived from flowers and plants, and $\$ 2,150$, from other products. The capital invested was $\$ 25,145$; of which $\$ 12.550$ was in land; $\$ 11,500$, in buildings; $\$ 995$, in implem.ents; and $\$ 100$, in live stock. The expenditure for labor was $\$ 800$.

In addition to the 7 principal florists' establishments, 23 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 5,598 square feet, making,
with the 20,422 square feet belonging to the florists' establishments, 26,020 siquare feet.

NURSERIES.

The total value of nursery stock sold in 1899 was $\$ 84,437$, reported by the operators of 78 farms and nurseries. Of this number, 26 derived their principal income from the nursery business. They had 2,675 acres of land, valued at $\$ 70,015$; buildings worth $\$ 16,835$; implements and machinery valued at $\$ 3,159$; and live sto 3 k worth $\$ 2,730$. Their total gross income was $\$ 76,333$, of which $\$ 72,743$ was derived from the sale of trees, shrubs, and vines, and $\$ 3,590$ from the sale of other farm products.

LABOR.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 2,359,650$, an average of $\$ 38$ per farm. The average was highest on the most intensively cultivated farms, being $\$ 455$ for nurseries, $\$ 114$ for florists' establishments, $\$ 51$ for live-stock farms, $\$ 47$ for hay and grain farms, $\$ 45$ for fruit farms, $\$ 26$ for sugar farms, $\$ 16$ for vegetable farms, $\$ 10$ for dairy and tobacco farms, and $\$ 9$ for cotton farms. "Manageirs" expended on an average \$689; "cash tenants," \$58; "owners," \$27; and "share tenants," $\$ 18$. White farmers expended $\$ 39$ per farm, and colored farmers, ${ }^{\$} 9$.

INDIAN RESERVATIONS.

The Indians of Oklahoma represent several linguistic stocks and many different tribes, having been collected from adjoining states and even remote regions. The Kiowa, Comanche, and a small band of Apache are the only native tribes of this locality. The lands of the following bands have been allotted and the surplus opened to settlement: Cheyenne and Arapabo, Iowa and Tonkawa, Mexican, Kickapoo, Tonkawa and Lipan, Pawnee, Absentee Shawnee and Potawatomi, Ottawa, Sac and Fox of the Missouri and Mississippi. There were still six reservations intact when the Twelfth Census was taken, Osage, Kaw, Ponca, Otoe, Wichita, and Kiowa and Comanche. The two last-named, however, have since been allotted and thrown open. Much of the Indian land is suitable either for cultivation or grazing and some Indians have made fair progress in the development of their allotments, but annuity payments and the returns from leased land have allowed many of them to live in idleness, and comparatively little attention is devoted to agriculture.

OSAGE AND KAW RESERVATIONS.

Osage reservation, embracing an area of 2,297 square miles, is situated in the extreme northeastern part of Oklaboma. Kaw, which adjoins it on the northwest,
was formerly a portion of the Osage reserve and contains $156 \frac{1}{4}$ square miles. The land included within these tracts was originally purchased by the Osage from the Cherokee of Indian Territory. The river bottoms and small valleys contain fine tracts of farming land, while the prairies and upland hills yield abundant prairie grass, thus making an excellent grazing country of vast extent.
The Osage (Siouan) are the largest, physically, and also the wealthiest Indians in the United States. The population of their reserve is $6, \bar{\tau} 17$, of which only about about one-third is Indian. Farming and stock raising have been their only occupations, but they have too much money to put any energy into agriculture, the majority preferring to live at the village in idleness. Their income from annuity payments and from farming and grazing leases amounts to over $\$ 200$ per man, woman, and child. Nearly every family has one or more farms rented to white men. The full bloods are still "blanket Indians" to a large extent, and very nonprogressive, although many can speak English. The mixed bloods, however, are more industrious, having well kept farms and stock. All speak English and have a common school education, while some of them are wealthy. Annuity payments furnish 92.0 per cent of the support of the Osage.

The Kaw, also of Siouan stock, are no more progressive than their neighbors, although they have to work to some extent, as they receive much less annuity money. Most of their farms are rented out and many of them live in idleness. The total population of the reserve is 768 , of which number less than one-third is Indian. Annuity payments constitute 75.0 per cent of their support.

Corn and wheat are the principal crops of the Osage and Kaw, and wild hay is cut in large quantities. Some farmers also raise Kafir corn, millet, and Hungarian grasses, and a few have small areas in sorghum cane. A number grow potatoes and small fruits, but vegetable gardens are not general. Orchards of apple, peach, pear, plum, and cherry trees are quite common among these Indians, and some cultivate grapes.
Of the 960 farms on the two reservations, only 133 are operated by Indians. The majority of Indian farmers cultivated from 50 to 300 acres, and one had 900 acres under cultivation. No allotments have been made on either reserve, and several intelligent Indians have taken advantage of this fact to occupy extensive tracts and enjoy the profits derived from their cultivation.
Most Indian farmers are well supplied with horses and cattle, and many own mules. A number have large herds of range cattle, and reported sales of live stock from $\$ 1,000$ to $\$ 3,000$. Dairy cows are found on the majority of farms, and on some, chickens and swine.

PONCA AND OTOE RESERVATIONS.

Ponca and Otoe reservations are situated in Noble county, in the northeastern part of Oklahoma, and contain 159 and $201 \frac{5}{8}$ square miles, respectively. The greater part of the former and more than one-half of the latter has been allotted. About nine-tenths of the Ponca and eight-tenths of the Otoe reserves are cultivable, as the land is largely prairie, with a rich, wellwatered soil, peculiarly adapted to wheat raising and suitable for cotton.

The Ponca, of Siouan stock, are agriculturists, but as they can readily lease their lands few have any desire to labor. The only perceptible progress seems to be in house building and many now have good homes with furniture, cooking utensils, and other modern conveniences. The population of the reserve is 1,537 , of which a little more than one-third is Indian.

The crops of the Ponca, Otoe, and Missouri are corn and wheat, and large quantities of wild prairie grass are cut. Many of the white tenants raised sorghum cane, and Kafir corn for forage, while some cultivated large areas of broom corn. Only 39 of the 256 farms on these two reserves were operated by Indians, an evidence of the prevalent leasing system. The majority of Indian farmers cultivated from 15 to 30 acres.

The Indian farmers owned no cattle, their live stock consisting principally of work horses.

wichita, kiowa, and comanche reservations.

Wichita, Kiowa, and Comanche reservations, which have been allotted and opened to settlement since 1900, are located in the extreme southern part of Oklahoma and adjoin the Chickasaw Nation on the west. Wichita, the more northern of the two, comprises an area of 1,162 square miles, while Kioma and Comanche contains 4,639 square miles. This is the most extensive grazing section of Oklahoma, embracing immense prairies, well watered and covered with native grasses, which will withstand a long drought. Walled valleys among the Kiowa mountains also furnish an excellent winter range, and large areas of grazing land are leased to white cattlemen. This tract is not generally adapted to cultivation, althougk fine farms are found in the bottom lands along streams. The soil is well suited to cotton, but only a very little of it has ever been grown, as the prevailing hot winds of summer and the uncertainty of rainfall are greatly detrimental to successful agriculture.
The Wichita (Pani Caddoan), with a few small bands of affiliated tribes, live on the reservation bearing that name, which has a population of 1,420 , about one-third of which is Indian. Having been largely dependent upon their own efforts for support, they are peaceable and more industrious than their neighbors, the Kiowa and Comanche, who, with a small band of Apache (Athapascan) and Delaware (Algonquian), inhabit the Kiowa and Comanche Reservation, which has a total population of 4,968 , two-thirds Indian.
Agriculture and stock raising are the principal industries carried on by the tribes on these two reservations, while a few are engaged in freighting Government supplies. The Wichita are the best farmers, and some who raise cattle are now able to support themselves from the returns of their sales of live stock. Fort Sill and the agency furnish a market for their principal crops, consisting of corn, prairie grass, millet, and Kafir corn. The latter will mature on the uplands where the drought would kill Indian corn, and is considered excellent forage. Some reported small areas in sweet potatoes, melons, and sweet corn, but garden vegetables are not generally raised. Considerable interest is taken in stock raising, and all Indian farmers own some range cattle, but few have dairy cows. A number are exclusively engaged in the industry and have acquired large herds. All have more Indian ponies than necessary, and a few farmers raise chickens and swine. There were 459 farms on the two reserves, of which 285 were operated by Indians. The majority of them cultivated from 10 to 70 acres, while a few had over 100 acres in cultivation.

IRRIGATION STATISTICS.

In the territory of Oklahoma the necessity for irrigation is not so imperative as in other states and territories near the one-hundredth meridian. The areas artificially watered in 1899 were principally confined to the counties in the extreme northwestern part of the territory.

More than one-half of the irrigated area is in Beaver county, a long, narrow strip of land extending west of the main part of the territory, across the northern end of the Texas Panhandle and bounded by Kansas, Colorado, New Mexico, and Texas. The Cimarron River, which rises in the mountains in the northeastern part of New Mexico, flows across the northwestern end of the county into Kansas. A number of ditches are taken out of the main stream and its tributaries. The principal branch of the Cimarron used for irrigation is Beaver Creek, which rises just over the border line of New Mexico, and flows in a general easterly direction
through the center of Beaver county, and diagonally across Woodward county. This stream and its,numerous spring-fed branches furnish an ample supply of water to the ditches taken from them. Its valley is narrow, but fertile, and the soil, when watered, is well adapted to the cultivation of all crops of the temperate zone.

The total acreage irrigated in the territory in 1899 was 2,759 acres. Of this, 139 acres were irrigated from wells by the use of pumping plants costing $\$ 2,200$. The remaining 2,620 acres were irrigated from streams. The principal crops grown on this land were alfalfa and vegetables, with some fruits.

The following table shows, by counties, the number of irrigators, the number of acres irrigated from streams and wells in 1899 , the value of irrigated and unirrigated arable land, and the number, length, and cost of construction of ditches:

Table A.-NUMBER OF IRRIGATORS, AND NUMBER OF ACRES IRRIGATED FROM STREAMS AND WELLS IN 1899, WITH VALUE OF IRRIGATED AND UNIRRIGATED ARABLE LAND, AND NUMBER, LENGTH, AND COST OF CONSTRUCTION OF DITCHES.

counties.	Number of irrigators.	acres irrigated.			averagearableacresLande		DItches.		
		Total.	$\begin{gathered} \text { From } \\ \text { streams. } \end{gathered}$	From wells.	Irrigated.	Unirrigated	Number.	Length in miles.	Cost of construction.
The Territory.	124	2,759	2,620	139			69	68	\$19,672
Beaver	54	1,393	1,290	103	\$37.28	\$2. 67	38	44	9,267
Woodward	18			35	32.48	4.30	20	20	

Census Bulletin.

No. 231.
WASHINGTON, D. C.
July 5, 1902.

AGRICULTURE.

WASHINGT0N.

Hon. William R. Merriam, Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of Washington, taken in accordance with the provisions of section 7 of the act of March 3, 1899.
This section requires that-
The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of occupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land under one management, used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, etc., connected therewith. It includes also the house in which the farmer resides, and all other buildings used by him in connection with his farming operations.
The farms of Washington, June 1, 1900, numbered 33,202 , and were valued at $\$ 115,609,710$. Of this amount, $\$ 16,299,200$, or 14.1 per cent, represents the value of buildings; and $\$ 99,310,510$, or 85.9 per cent, the value of the land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 6,271,630$, and of live stock, $\$ 22,159,207$. These values added to that of farms give $\$ 144,040,547$, the "total value of farm property."

The products derived from domestic animals, poultry, and bees, including animals sold and animals slaughtered on farms, are referred to in this bulletin as "animal products." The total value of such products, together with the value of all crops, is termed, "total value of farm products." This value for 1899 was $\$ 34,827,495$, of which amount $\$ 11,295,345$, or 32.4 per cent, represents tue value of animal products, and $\$ 23,532,150$, or 67.6 per cent, the value of crops, includ-
ing forest products cut or produced on farms. The "total value of farm products" for 1899 exceeds that for 1889 by $\$ 21,152,565$, or 154.7 per cent, but a part of this gain is doubtless due to a more detailed enumeration in 1900 than in 1890.
The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 5,209,040$, leaving $\$ 29,618,455$ as the gross farm income for that year. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For Washington in 1899 it was 20.6 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.

Special reports as to the dimensions and cost of the leading irrigation ditches and canals, the area of land under them, methods for the artificial application of water to the growing crops, and other facts relating to irrigation were obtained by correspondence with farmers, engineers, and others. This correspondence was under the joint direction of Mr. F. H. Newell, chief hydrographer of the Geological Survey, acting as expert special agent for the division of agriculture, and Mr. Clarence J. Blanchard.

The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for Washington.

Very respectfully,

Chief Statistician for Agriculture.

AGRICULTURE IN WASHINGTON.

GENERAL STATISTICS.

Washington has a total land area of 66,880 square miles, or $42,803,200$ acres, of which $8,499,297$ acres, or 19.9 per cent, are included in farms.

The state of Washington comprises two natural divisions. Eastern Washington, through which the Columbia River flows, includes all that portion of the state lying east of the Cascade Range. It is, in great part, composed of rolling plateaus, rising from its lowest portion, along the Columbia and Snake rivers, at an elevation of from 300 to 700 feet above sea level, to altitudes of 2,000 feet along the eastern boundary. The soil of this part of the state is generally of volcanic origin and very productive. The rainfall is not heavy, but commonly sufficient for agriculture without irrigation.

Western Washington differs widely in topography and climate from eastern Washington. The arable lands lie in a depression between the Cascade Range on the east and the Coast Range and Olympic Mountains on the west, a depression comprising Puget Sound and the valleys of Cowlitz, Clark and other rivers. The whole of western Washington enjoys an ample rainfall and is heavily forested.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1860 , the number of farms, the total and average acreage, and the per cent of farm land improved.

Table 1.-FARMS AND FARM ACREAGE: 1860 TO 1900.

YEAR.	Number of farms.	number of acres in farms.				Per cent of farm land improved.
		Total.	lmproved.	$\begin{gathered} \text { Un- } \\ \text { improved. } \end{gathered}$	Average.	
1900.	33,202	8,499,297	3,465,960	5, 033, 337	256.0	40.8
1890	18,056	4,179,190	1,820, 832	2, 358, 358	231.5	43.6
1880.	6,529	1,409,421	484.346	925, 075	215.9	34.4
1870.	3,127	649, 139	192,016	457, 123	207.6	29.6
1860.	1,330	366, 156	81,869	284,287	275.3	22.4

Between 1860 and 1900 the number of farms increased rapidly, the rate for the last decade being 83.9 per cent. The total area in farms is over twenty-three times as great as it was forty years ago, and more than double that of 1890. Since 1870 there has been a steady increase in the average size of farms, which is especially marked in the last decade, but this is largely the result of additions made to ranges, recently taken from the
public domain and enumerated as farm land for the first time in 1900. The gain in the percentage of farm land improved has been continuous throughout the period except in the last decade, for which a decrease is shown. This decrease is doubtless the result of a stricter construction of the term "improved land" in 1900 than heretofore, as the increased acreage devoted to all crops indicates that there has been an increase in the acreage actually improved.

FARM PROPERTY AND PRODUCTS.

Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1860 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY AND OF FARM PRODUCTS: 1860 TO 1900.

YEAR.	Total value of farm property.	Land, improvements, and buildings.	Implements and machinery.	Live stock.	Farm products. ${ }^{1}$
1900	\$144, 040,547	\$115, 609, 710	\$6,271,630	\$22,159,207	834, 827,495
1890	100, 724, 970	83, 461,660	3,150, 200	14,115,110	13,674, 930
1880	19, 655, 044	13,844, 224	968,513	4, 852, 307	4, 212,750
$1870{ }^{2}$	$6,362,235$ $3,508,155$	$3,978,341$ $2,217,842$	280,551 190,402	$2,103,343$ $1,099,911$	${ }^{8} 2,111,902$
1860.	$3,508,155$	2,217,842			

1 For year preceding that designated.

${ }^{2}$ Values for 1870 were reported in depreciated currency. To reduce to specle basis of other years they must be diminished one-fifth.
${ }^{3}$ Includes betterments and additions to live stock.
As shown in the above table, there has been a remarkable increase in the value of every form of farm property from 1860 to 1900 . In the last decade the gain in the total value of farm property was $\$ 43,315,577$, or 43.0 per cent. The increase in value of land, improvements, and buildings was $\$ 32,148,050$, or 38.5 per cent; in that of implements and machinery, $\$ 3,121,430$, or 99.1 per cent; and in that of live stock, $\$ 8,046,097$, or 57.0 per cent. The value of farm products shown for 1900 is 154.7 per cent greater than that reported for 1889 , but a portion of this increase is doubtless due to the fact that the enumeration of 1900 was more detailed and complete than that made by any previous census. The most important item enumerated in 1900, but not in 1890, is the value of animals sold and animals slaughtered on farms, which for 1899 amounted to $\$ 4,685,855$.

COUNTY STATISTICS.

Table 3 gives a statement of general agricultural statistics by counties.

Table 3.-NUMBER AND ACREAGE of FARMS, AND VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, JUNE 1, 1900, WITH VALUE OF PRODUCTS OF 1899 NOT FED TO LIVE STOCK, AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	SUMBER of farms.		ACres in farms.		values of farm property.				Value of products uot fed to live stock.	ExPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Land and improvements (except buildings).	Buildings.	1mplements and machinery.	Live stock.		Labor.	Fertilizers.
Tbe State	33, 202	32,222	8, 499, 297	3,465,960	¢99, 310,510	\$16, 299, 200	\$6,271,630	\$22, 159, 207	\$29,618,455	\$5, 280, 190	\$29, 165
Adams	783	747	494,452	275, 778	3,557, 850	328, 100	262, 090	612,971	746, 859	137,640	
Asotin.	533	520	128, 649	37,516	1,211,990	202, 230	73, 8:20	427, 320	314,784	63,507	718
Chehalis	600	572	85, 214	21, 726	1, 502, 310	327, 890	89,310	407,034	578,329	85, 177	
Chelan	457	443	94,135	14,034	882,480	129, 200	54, 920	226,477	254, 221	26,030	
Clallam.	395	394	52,667	10,108	722, 890	154,790	45, 980	160,989	251.870	22,840	180
Clarke.	1,873	1,808	192, 737	51,102	3,641,380	756, 340	173, 120	624,415	791,136	101,976	3,830
Columbia	706	693	262, 239	151,589	3, 849, 390	414,560	243,160	641,970	1, 140,033	207, 420	187
Cowlitz.	751	744	108,888	18,641	1,230,290	325, 520	60,960	332, 426	313,623	39,750	520
Douglas	854	815	421, 804	186, 232	2, 097, 150	281,350	219,740	949, 449	683, 903	98,980	200
Ferry...	62	62	15,767	3,833	199, 700	26,100	7,780	35,239	38,317	9,650	200
Franklin	61	45	101,547	4,788	91,860	8,860	6,310	168, 489	86, 873	16,800	
Garfield	521	511	257, 826	115, 211	2, 074, 230	250, 980	185, 190	559, 081	775, 356	150, 370	100
Island	254	234	30,705	9,368	679, 990	142, 780	38,460	130,122	197, 044	18,520	50
Jefferson	212	231	29,289	6,111	452,300	133, 810	29,660	124.429	161,552	22,350	
King	1,785	1,745	280, 558	42, 196	5, 622, 640	1,172,740	190, 530	754,637	1,238,835	244,540	9,140
Kitsap..	${ }_{6}^{446}$	442	29, 132.	5,204	489,940	155, 790	20, 160	91. 718	173,565	18,980	170
Kittitas.	699	664	199, 085	55,057	1, 838, 980	328, 590	138,530	880.320	827, 266	141,620	350
Klickitat	1,080	1,049	404, 947	115, 530	2,679, 200	458, 430	216, 330	1,007,380	1,045,749	142, 040	
Lewis..	1,786	1,772	224,755	53,558	2,773, 130	692,800	162, 520	702, 958	976. 8332	98,410	300
Lincoln	1,911	1,8'29	903, 997	516, 924	8, 282, 450	839, 920	642, 280	1,473, 528	2, 179, 851	419,990	100
Mason.	274	265	33, 636	5,718	445, 270	128,380	28,630	114,779	135, 874	16, 570	500
Okanogan	506	489	80,196	19,599	666, 830	127, 190	71, 810	504, 861	207,903	32,770	
Pacific.	342	341	51,936	8,123	621,880	179,620	29,420	182,725	211, 346	23,350	
Pierce	1,455	1,434	146,050	28,505	2, 599, 340	783,060	139,200	548,795	1,030,759	166,590	7,310
San Juan	338	336	50, 981	11,612	725,200	186, 440	44,880	148, 403	205, 461	16,640	
Skagit	889	880	87, 151	38,553	$2,956,110$	599, 200	169,570	542,027	1,043, 861	241,930	500
Skamania	239	233	39,851	4,060	306,870	63,730	12,080	85,584	83, 303	2,910	50
Snohomis	1,024	1,010	97,507	23,371	2, 248,440	532,690	111, 900	486,552	692, 376	28, 900	150
Spokane.	2,911	$\stackrel{2}{2}, 856$	655, 372	280,159	8,373,130	1,514, 330	573,190	1,367, 96.	2, 259,296	311,600	200
Stevens.	1,132	1,117	215, 041	57,582	1,602, 190	361,550	146,680	515,649	513, 424	64, 250	20
Thurston	665	656	128,822	24,018	1, 375, 410	336,300	84,890	379, 421	383, 701	26,620	1,540
Wahkiakum	247	$\stackrel{239}{ }$	32,564	4,458	469,680	130,090	23,510	117,264	149, 677	16.650	10
Walla walla	1,022	974	651,847	391, 719	10, 955,090	1,053,830	528,560	1, 442,837	2, 827.694	664,010	723
Whatcom	1,262	1,254	119,434	26,642	2,154,160	1,645, 190	134, 440	540,428	749, 217	45. 870	1,070
Wbitman	3,081	2,967	1,168, 817	711,975	14, 805, 620	1, 768, 070	978,610	2,669, 90.2	4,540,101	1,019,340	
Yakima........	1,293	1,210	542,376	104,680	4, 237, 340	622, 440	226, 290	1,675,306	1,547,649	411, 820	947
Colville and Spok	351	325	21,969	10,599	141, 340	43,280	50, 310	211,793	90, 986	10,750	100
Lummi ${ }^{1}$ - ${ }^{\text {a }}$ -	28	26	4,489	956	95, 720	15,340	5,580	14,976	12, 900		
Muckleshoot ${ }^{1}$.	30	28	3,252	467	52,630	6,830	2,170	5,061	577		
Queniult ${ }^{1}$	24	24	3,841	114	20,990	3, 320	1,030	3,345	1,857		
Swinomish 1	7			234	9,320		1,500	1,33:2	5,157	250	
Tulalip ${ }^{1}$	30 269	. 228	4, 296	317	41, 080	6,670	1,700	8,297	7,677		
Yakima	269	228	41,242	17,993	526,720	60,840	44, 830	275, 529	137, 886	52, 780	

${ }^{1}$ Indian reservation.

The number of farms increased in the last decade in all counties except Columbia and Garfield. In over one-half of the counties more than twice as many farms were reported. Kitsap county alone reports a decrease in its total farm area, all others showing substantial gains since 1890. The decrease reported in improved acreage in a few counties is due to the use of a more strict construction of the term "improved land" by the Twelfth than by any preceding census. The average size of farms for the state is 256.0 acres, and varies from 65.3 acres in Kitsap county to $1,66+.7$ acres in Franklin county. The average size of farms is largest in the eastern counties, where cereals and stoek raising are the leading agricultural pursuits. Two-thirds of the counties report increases in the value of farms in the last ten years. Of the counties reporting decreases only one is situated in the eastern part of the state. The average value of farms for the state is $\$ 3,482$.

Marked increases are reported for all eounties except Kitsap in the value of implements and machinery, and decreases in the value of live stock are reported for only the three eastern counties of Columbia, Garfield, and Spokane.
The expenditure for labor in 1899 averaged $\$ 159.03$ per farm. In the live-stock and cereal counties, the average was, as a rule, much higher than in the western counties, where diversified farming prevails.

FARM TENURE.

Table \pm gives a comparative statement of farm tenure for 1880,1890 , and 1900 . The farms operated by tenants are divided into two groups, designated as farms operated by "eash tenants," who pay a rental in cash or a stated amount of labor or farm produce, and "share tenants," who pay as rental a stated share of the products.

In Table 5 the tenure of farms for 1900 is given by race of farmer, and farms operated by owners are subdivided into 4 groups, designated. as "owners,"" "part owners," "owners and tenants," and "managers." These terms denote, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction and by the united labor of two or more individuals, one owning the farm or part of it, and the other or others owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURE: 1880 TO 1900.

YEAR.	Total number of farms	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPERATED BY-		
		Own-	$\begin{gathered} \text { Cash } \\ \text { tenants. } \end{gathered}$	Share tenants.	$\begin{aligned} & \text { Own- } \\ & \text { ers. } \end{aligned}$	$\begin{aligned} & \text { Cash } \\ & \text { tenants. } \end{aligned}$	Sbare tenants.
1900	33,202	28,425	2,341	2,436	85.6	7.1	7.3
1890.	18,056	16,529	541	986	91.5	3.0	5.6
1880 ...	6,529	6,058	209	262	92.8	3.2	4.0

${ }^{1}$ Including "part owners," "owners and tenants," and "managers."
Table 5.-NOMBER AND PER CENT OF FARMS OF SPECIFIED TENURE, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF farms of specifled tenure.

Race.	$\underset{\substack{\text { Total } \\ \text { number } \\ \text { of }}}{\substack{\text { and }}}$ farms	$\begin{gathered} \text { Own- } \\ \text { ers. } \end{gathered}$	Part owners.	$\begin{aligned} & \text { Owners } \\ & \text { and } \\ & \text { anants. } \end{aligned}$	Managers.	Cash tenants.	Share tenants.
The State.... White Colored \qquad	33,202	24,327	3.499	194	405	2,341	2,436
	$\begin{gathered} 32,112 \\ 1,090 \end{gathered}$	23, 3481	$\begin{array}{r}3,485 \\ 14 \\ \hline\end{array}$	191	403 2	2,271 70	2,416 20
Chinese........ Indian Negro..........	69 966 55	3 934 44	$\stackrel{2}{8}$	3	\cdots	$\begin{array}{r} 69 \\ 7 \\ 4 \end{array}$	5 13 2

PART 2.-PER CENT OF FARMS OF SPECIFIED TENURE.

The State...-	100.0	73.3	10.6	0.6	1.2	7.1	7.3
		72.7	10.8	0.6	1.3	7.1	7.5
Colored...............	100.0	90.0	1.3	0.3	0.2	6.4	1.8

The total number of farms increased 26,673, or 408.5 per cent, in the last two decades. Since 1890 the farms operated by owners increased 11,896 , or 72,0 per cent; farms operated by cash tenants, 1,800 , or 332.7 per cent; and farms operated by share tenants, 1,450 , or 147.1 per cent. This increase has been continuous through both decades, but was greater for cash tenants than for owners or share tenants, showing a growing sentiment in favor of the cash payment system.
Of the total number of farms, 96.7 per cent are operated by white farmers and 3.3 per cent by colored farm-
ers. Of the white farmers, 84.1 per cent own all or part of the farms they operate. For colored farmers the corresponding per cent is 91.6 , as most of them are Indians who have received allotments from the Government.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number of farms conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED BY RACE OF FARMER AND BY TENURE.

Tables 6 and 7 present the principal statistics for farms classified by race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PEROENTAGES.

RAGE OF FARMER, AND TENURE.	Number of farms.	NUMBER OF ACRES IN FARMS.			Value of Farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.--.-.	33,202	256.0	8,499,297	100.0	\$144, 040,547	100.0
White farmers.	32,112	260.9	8,378, 339	98.6	141, 831, 986	98.5
Negro farmers.......	55	146.6	8,008	0.1	131, 227	0.1
Indian farmers	966	115.1	111,180	1.3	1,847,635	1.3
Chinese farmers.....	69	25.7	1,770	(1)	229,699	0.1
Owners.	24,327	191.1	4, 648, 740	54.7	85, 300,698	69.2
Part owners	3,499	651.6	2, 279, 953	26.8	29, 038, 242	20.2
Owners and tenants.	194	362.3	70,295	0.8	1, 198, 362	0.8
Managers............	405	922.2	373,499	4.4	$5.242,025$	3.6
Cash tenants	2,341	199.5	467, 076	6.6	9, 468, 044	6.6
Share tenants	2,436	270.8	659, 734	7.8	13,793, 176	9.6

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

RACE of Farmer,and tenure.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross in-come(prodnctsof 1899not fedto livestock).	
	Land and improvements (except buildings).	Buildings.	$\xrightarrow[\substack{\text { ments } \\ \text { mand ma- }}]{\text { Imple- }}$ and ma- chinery.	Live stock.		
The State.	\$2,991	\$491	\$189	\$667	\$892	20.6
White farmers.	3, 052	501	191	672	911	20.6
Negro farmers........	1,696	307	72	311	323	13.5
lndian farmers	1,025	187	123	578	274	14.3
Chinese farmers.....	2,911	217	83	118	1,090	32.7
Owners......	2,335	460	155	556	714	20.4
Part owners	6,048	659	394	1,198	1,769	21.3
Owners and tenants..	4,458	624	276	819	1,303	21.1
Managers.	8, 403	1,402	382	2,756	2,133	16.5
Cash tenants	2,802	428	129	685	847	20.9
Share tenants	4,315	458	248	641	1,213	21.4

While colored farmers constitute 3.3 per cent of the total number in the state, they occupy but 1.4 per cent of the total area, and the farms they operate constitute but 1.5 per cent of the total value of farm property.

The average values of farm property and products and the per cent of gross income are very much lower for Indian and negro farmers than for white farmers, but the averages and percentages are high for Chinese farmers, as most of their farms are intensively cultivated market gardens.

Of the groups by tenure, the averages are generally highest for managers, but as a result of these high values the per cent of gross income is lowest. Many of these farms are large grain farms and cattle ranches, while some are operated by the state and county authorities in connection with eleemosynary and reformatory institutions.

FARMS CLASSIFIED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

area.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NUMBER OF acres in farms.			value of FARM PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Total.	Per cent.	Total.	Per cent.
The State.	33,202	256.0	8,499, 297	100.0	\$144, 040, 547	100.0
Under 3 acres	358	2.1	745	(1)	731, 892	0.5
3 to 9 acres	1,056	6.5	6,848	0.1	1,494, 718	1.0
10 to 19 acres	1,611	13.0	20, 878	0.3	2,683,183	1.9
20 to 49 acres	4, 240	34.1	144,567	1.7	8,005,016	5.6
50 to 99 acres	4,387	75.7	332,077	3.9	11,285, 002	7.8
10010174 acres	11,249	157.0	1,765,952	20.8	31,793, 870	22.1
175 to 259 acres	2, 4 , 900	217.4	-521,648	6.1	12,071,548	8.4
260 to 499 acres.	4,938	375.3	1,853,346	21.8	31,512,083	21.9
500 to 999 acres-	2,015	697.3	1, 405, 025	${ }^{16.5}$	22, 201, 175	15.4
1,000 acres and over .	948	2,582.5	2,448, 211	28.8	22, 262, 060	15.4

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

ArEa.	average values per farm of-					Percent ofgross im-comeon totalinvest-ment infarmproperty.
	Farm property June 1, 1900.				Grossincome(productsof 1899notfed tolivestock).	
	Land and im-provements (except build- ings).	Buildings.	Implements and machinery.	Live stock.		
The State.	\$2,991	\$491	\$189	$\$ 667$	\$892	20.6
Under 3 acres.	343	315	36	1,350	642	31.4
3 to 9 acres............	768	395	44	208	319	22.5
10 to 19 acres..........	1,022	388	60	196	347	20.9
20 to 49 acres..	1,165	368	76	279	410	21.8
50 to 99 acres.	1,652	414	109	397	558	21.7
100 to 174 acres.	1,855	389	128	454	681	20.6
175 to 259 acres..........	3,459	625	226	720	1,079	21.4
26010499 acres........	4,577	600	307	898	1,296	20.3
600 to 999 acres........	8,280	846	476	1,416	2,109	19.1
1,000 acres and over..	16,970	1,295	896	4,322	4,779	20.3

The group of farms containing from 100 to 174 acres each includes a larger number of farms than any other class, showing the frequency of quarter-section holdings. The group $" 1,1,(0)$ acres and over" constitutes a larger part of the total acreage than any other.

With a few exceptions the average values of all forms of farm property increase with the size of the farms. For the group of farms of less than 3 acres each all values are comparatively high, as this class contains a number of the florists' establishments of the state, and many market gardens, poultry farms, and city dairies. The high value of live stock for this group is due to the fact that it includes many ranges consisting of large areas of public domain, though the area actually owned or leased is less than 3 acres. The incomes from these industries are determined not so much by the area of owned or rented land used as by the amount of capital invested and the amounts expended for labor and fertilizers. The average gross incomes per acre for the various groups, classified by area, are as follows:

Farms under 3 acres, $\$ 308.39$; 3 to 9 acres, $\$ 49.18$; 10 to 19 acres, $\$ 26.81 ; 20$ to 49 acres, $\$ 12.05 ; 50$ to 99 acres, $\$ 7.37 ; 100$ to 174 acres, $\$ 3.70 ; 175$ to 259 acres, $\$ 4.96 ; 260$ to 499 acres, $\$ 3.45$; 500 to 999 acres, $\$ 3.02$; 1,000 acres and over, $\$ 1.85$. With the exception of the group of farms of 100 to 174 acres, which has a low average on account of the number of homesteads it contains, the average gross income per acre decreases regularly as the farms increase in size.

FARMS CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop, and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm; similarly, if vegetables are the leading crop, constituting 40.0 per cent of the total value of products not fed to live stock, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive their principal income from any one class of farm products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.
Table 10.-NUMBER AND ACREAGE OF FARMS AND VALUE OF FARM PROPERTY, JUNE 1 , 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PEINCIPAL SOURCEof income.	Number of farms	number of actes in FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	33,202	256.0	8,499, 297	100.0	\$144, 040,547	100.0
Hay and grain	10,396	377.5	3,924,178	46.2	69, 766, 405	48.4
Vegetables.	1,723	93.9	161,712	1.9	4,423, 136	3.1
Fruits	1,065	99.8	106,242	1.3	3,973, 805	2.8
Dairy produce	4,495	153.5	$2,477,278$ 689,785	29.1 8.1	${ }_{16,320,319}$	19.9 11.3
Sugar....	4	897.5	3,590	(i)	-146,946	0.1
Flowers and plants..	17	29.5	501	(1)	103, 610	0.1
Nursery products...	15	42.2	633	(1)	'93,084	0.1
Miscellaneons	7,874	144.2	1,135, 378	13.4	20,487, 709	14.2

${ }^{1}$ Less than one-tenth of 1 per cent.

Table 11.-AVERAGE VALUES OF SPECIFIED CLANSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME.

PRINCIPAL SOURCE OF INCOME.	average yakues per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				$\begin{array}{\|c\|} \hline \text { Gross } \\ \text { income } \\ \text { (products } \\ \text { of } 1899 \\ \text { not fed } \\ \text { to live } \\ \text { stock). } \\ \hline \end{array}$	
	Land and im-provements (except buildings).	BuildIngs.	Implements and machinery.	Live stock.		
The State..	\$2,991	8491	\$189	\$667	$\$ 892$	20.6
Hay and grain	6,080	575	335	721	1,398	20.8
Vegetables	1,815	397	96	259	646	21.3
Fruits .-...	2,728	606	124	273	806	21.6
Live stock................	2,108	443	140	1, 082	797	21.1
Dairy produce	2,331	499	132	1. 669	665	18.3
Sugar	29,450	3,500	1,387	2,399	8,195	22.3
Flowers and plants..	2,571	3,127	218	179	3,090	50.7
Nursery products.....	4,924	1,033	113	136	1,756	28.3
Miscellaneous	1,742	418	104	338	- 524	20.1

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms deriving their principal income from flowers and plants, $\$ 104.85$; nursery products, $\$ 41.61$; sugar, $\$ 9.13$; fruits, $\$ 8.08$; vegetables, $\$ 5.82$; dairy produce, $\$ 4.34$; hay and grain, $\$ 3.70$; miscellaneous, $\$ 3.63$; and live stock, $\$ 2.45$.

The wide variations shown in the averages and percentages of gross income are due largely to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than in the case of "hay and grain," "live-stock," or "miscellaneous" farms. Were it possible to present the average net incomes, the variations shown would be comparatively slight.

farms classified by reported valde of products NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.
Table 12.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPGRTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK, WITH PERCENTAGES.

value of products not fed to Live втоск.	Number of farms.	NUMBER OF ACRES IN FARMS.			VALUE OF FARM property.	
		Average.	Total.	$\begin{aligned} & \text { Per } \\ & \text { cent. } \end{aligned}$	Tȯtal.	Per cent.
The State.	33,202	256.0	8,499, 297	100.0	\$144, 040, 547	100.0
	1,173	174.1	204, 246	2.4	1,979,040	1.4
\$1 to $\$ 49$	1,205	122.2	147, 218	1.7	$1,599,640$ $2,504,800$	1.1
\$50 to \$ $\$ 109$.	5,641	118.1	666, 392	7.9	9,559, 430	6.6
\$250 to \$499	7,348	138.9	1,020,317	12.0	16,610,860	11.5
\$500 to \$999	7,338	194.7	1, 428, 762	16.8	26,619,177	18.5
\$1,000 to \$2,499.	6,385	343.1	2, 190,597	30.8.	$43,077,340$ $42,090,260$	29.9
\$2,500 and over.	2,389	1,100.4	2,628, 756	30.9	42,090,260	29.2

Table 13.-AVERAGE YALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN .FARM PROPERTY, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

There were 1,173 farmers reporting no income for 1899. Most of these farms are homesteads taken up too recently to have yielded any products in 1899. Some are suburban or summer homes, and many of them had changed owners or tenants, and the persons in charge, June 1, 1900, were unable to give definite information concerning the products of the preceding year. To this extent the reports fall short of giving a complete exhibit of farm income in 1899.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the Twelfth Census. The age grouping for neat cattle was determined by their present and prospective relation to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep by age and sex. The new classification permits of a very close comparison with previous census reports.
Table 14 presents a summary of live-stock statistics.
Table 14.-Number of domestic animals, fowls, and bees on farms and Ranges, June 1, 1900, with total and average values, and number of domestic animals not on farms or ranges.

live stock.	Age in years.	on farms or ranges.			NOT ON FARMS OR
		Number.	Value.	Average value.	Number.
Calves	Under 1	105, 130	\$889, 058	\$8.46	4,276
Steers.	1 and under 2.	39,340	698, 051	17.74	732
Steers	2 and under 3.	24,128	648, 161	26.86	398
Steers	3 and over....	9,096	330, 940	36.38	211
Bulls.	1 and over...-	7,489	269, 811	36.03	121
Heifers.	1 and under 2.	44,113	805, 325	18.26	1,274
Cows kept for milk	2 and over....	107, 232	4,076,189	38.01	11,809
Cowsand heifers not kept for milk.	2 aud over....	58,395	1, 722,503	29.50	300
Colts	Under $1 . . .$.	22,359	263, 658	11.34	381
Horses	1 and under 2	30,312	602,760	16.69	386
Horses	2 and over....	191,314	7,794,016	40.74	21,692

Table 14.-NUMBER OF DOMESTIC ANIMALS, FOWLS, AND BEES ON FARMS AND RANGES, JUNE 1, 1900, WITH TOTAL AND AVERAGE VALUES, AND NUMBER OF DOMESTIC ANIMALS NOT ON FARMS OR RANGESContinued.

LIVE STOCK.	Age in years.	ON FARMS OR RANGES.			$\begin{gathered} \text { NOT ON } \\ \text { FARMS } \\ \text { OR } \\ \text { RANGES. } \end{gathered}$
		Number.	Value.	Average value.	Number.
Mule colts	Under 1.	441	\$10,669	\$24.19	3
Mules....	1 and under 2	322	12,992	40.35	10
Mules.	2 and over....	1,927	114,524	59.43	394
Asses and burros.....	All ages	160	16,481	103.01	23
Lambs	Under 1.	371,851	728, 640	1.96	348
Sheep (ewes)	1 and over....	459,158	1,382, 745	3.01	597.
Sheep (rams and wethers).	1 and over....	98,864	-339,544	3.43	170°
Swine.................	All ages	181,535	830,704	4.58	5,569
Goats	All ages	2,876	10,757	3.74	132
Fowls: ${ }^{1}$ Chickens ${ }^{2}$.	,	1,196,639			
Turkeys..		1, 29, 155			
Geese ..		64,488	614,838		
Ducks.............		66, 433			
Bees (swarms of).....		30,870	106,841	3.46	
Value of all live stock.		-	22, 169, 207		

${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.
nea fows.
The value of all live stock on farms and ranges, June 1, 1900 , was $\$ 22,159,207$, of which 38.6 per cent represents the value of horses; 24.2 per cent, that of neat cattle other than dairy cows; 18.4 per cent, that of dairy cows; 11.1 per cent, that of sheep; 3.7 per cent, that of swine; and 4.0 per cent, that of all other live stock.
No reports were secured of the value of live stock not on farms or ranges, but it is probable that such animals have higher average values than those on farms. Allowing the same averages, however, the value of all domestic animals not on farms or ranges is $\$ 1,502,639$. Exclusive of poultry and bees not on farms, the total value of live stock in the state is approximately $\$ 23,661,846$.

CHANGES IN LIVE STOCK KEPT ON FARMS AND RANGES.
The following table shows the changes since 1860 in the number of the most important domestic animals:

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS AND RANGES: 1860 TO 1900.

year.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{1}$	Swine.
1900.	107, 232	287,691	243, 985	2,850	558, 022	181,535
1890.	70,721	184,413	153, 770	1,345	265, 267	90, 274
1880.	27,622	106, 932	45,848	626	292,883	46, 828
1870.	16,938	30, 316	11,138	943	44,063	17,491
1860..	9, 660	18,799	4,772	159	10,157	6,383

${ }^{1}$ Lambs not included.

In comparison with those of 1860 , the reports for 1900 show over eleven times as many dairy cows, over fifteen times as many other neat cattle, more than fifty times as many horses, nearly eighteen times as many mules, nearly fifty-five times as many sheep, and over twenty-eight times as many swine. The increase between 1890 and 1900 is indicated by the following percentages: Dairy cows, 51.6 per cent; other neat cattle, 56.0 per cent; horses, 58.7 per cent; mules and asses, 111.9 per cent; sheep, 110.4 per cent; and swine, 101.1 per cent.

The enumerators in 1900 were instructed to report no fowls under three months old, and in 1890 no such limitation was made, yet each class of fowls shows an increase in number. More than eleven times as many geese, and nearly five times as many ducks were reported in 1900 as in 1890. Turkeys increased in number 69.6 per cent, and chickens, 53.4 per cent in the same period of time.

ANIMAL PRODUCTS.

Table 16 is a summary of the products of the animal industry.

Table 16.-QUANTITIES AND VALUES OF SPECIFIED ANIMAL PRODUCTS, AND VALUES OF POULTRY RAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS AND RANGES IN 1899.

Pronucts.	Unit of measurc.	Quantity.	Value.
Wool.	Pounds.	5,268, 088	\$618,975
Mobair and goat harr	Pounds.	4,000	1,097
Milk.	Gallons.	${ }^{1} 50,182,415$	
Butter	Pounds	$7,372,106$ 151,669	23, 816,691
Eggs ...	Dozens	7,473, 790	1,259,225
Poultry			848, 291
Honey	Pounds	530,790 9,540	65, 211
Animals			3,517,053
Animals slaughtered			1,168,802
Total.			11,295,345

${ }^{1}$ Includes all milk produced, whether sold, consumed, or made into butter or cheese.
${ }^{2}$ lncludes the value of milk sold or consumed, and of butter aud cheese made.
The value of animal products in 1899 was $\$ 11,295,345$, or 32.4 per cent of the value of all farm products, and 38.1 per cent of the gross farm income. Of the total value, 41.5 per cent represents the value of animals sold and animals slaughtered; 33.8 per cent, that of dair'y products; 18.6 per cent, that of poultry and eggs; 5.5 per cent, that of wool, mohair, and goat hair; and 0.6 per cent, that of honey and wax.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

The value of animals sold and animals slaughtered on farms was $\$ 4,685,855$, or 15.8 per cent of the gross farm income. Of the whole number of farmers reporting domestic animals, 15,362 , or 48.9 per cent, reported sales of live animals, the average amount per farm being
$\$ 228.94$; and 17,106 , or 54.5 per cent, report animals slaughtered, the average value per farm being $\$ 68.33$. In securing reports of the sales of live animals the enumerators were directed to obtain from each farmer a statement of the amount received from sales in 1899, less the amount paid for animals purchased the same year.

DAIRY PRODUCE.

The production of milk in 1899 was $30,309,134$ gallons greater than in 1889 , a gain of 152.5 per cent. Butter made on farms increased 111.7 per cent in the last decade, and cheese made on farms, 112.8 per cent.
Of the $\$ 3,816,691$ given in Table 16 as the value of all dairy produce, $\$ 2,452,525$, or 64.3 per cent, represents the receipts from sales, and $\$ 1,364,166$, or 35.7 per cent, the value of such produce consumed on farms. Of the former amount, $\$ 1,476,720$ was received from the sale of $14,897,273$ gallons of milk; $\$ 882,344$ from $4,172,820$ pounds of butter; $\$ 78,441$ from 145,555 gallons of cream; and $\$ 15,020$ from 126,670 pounds of cheese.

POULTRY AND EGGS.

The total value of the products of the poultry industry in 1899 was $\$ 2,107,516$, of which amount 59.7 per cent represents the value of eggs produced and 40.3 per cent the value of fowls raised. Nearly five million dozen more aggs were produced in 1899 than in 1889, the rate of gain being 175.7 per cent.

WOOL.

Each decade since 1850 shows a marked increase in the amount of wool grown. More than three times as much wool was reported in 1900 as in 1890. But a part of this gain is only apparent, as the fleeces from a large number of sheep were omitted from the tables in 1890, but included in a general estimate of wool shorn after the enumeration. The average weight of fleeces increased from 6.3 pounds in 1890 to 9.1 pounds in 1900, which indicates improvement in the grade of sheep. The counties in the southeastern part of the state show the greatest increase in uumbers of sheep, and in quantities of wool produced.

HONEY AND WAX.

The quantity of honey produced in 1899 was 530,790 pounds, three times as much as ten year's before. There were 9,540 pounds of wax reported in 1899 , three times as much as in 1889 .

HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS.

Table 17 presents, for the leading groups of farms, the number of farms reporting horses and dairy cows, the total number of these animals, and the average number per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

Table 17.-HORSES AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

classes.	Horses.			DAIRY COWs.		
	Farms reporting.	Numher.	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { per } \\ & \text { farm. } \end{aligned}$	Farms reporting.	Number.	Average farm.
Total......	28,256	243,985	8.6	26,042	107, 232	4.1
	27,208 1,048	219,280 24,705	8.1 23.6	25,663 379	106,101 1,131	4.1 3.0
Owners 1	23,784	206,520	8.7	22,073	86,977	3.9
$\begin{aligned} & \text { Managers...... } \\ & \text { Cash tenants. } \end{aligned}$	331	7,149	21.6	298	2,116	7.1
	1,937	10,499	5.4	1,783	11,166	6.3
Share tenants............	2,204	19,817	9.0	1,888	6,973	3.2
Under 20 acres	1,909	24, 829	13.0	2,047	5,391	2.6
20 to 99 acres..100 to 174 acres	6,915	27,694	4.0	6,818	22,724	3.3
	9,565	53, 364	5.6	8,304	32, 339	3.9
175 to 259 acres.	2,237	16,510	7.4	2,075	11,287	5.4
260 acres and ove	7,630	121, 588	15.9	6,798	35, 491	5.2
Hay and grain.	9,350	113, 399	12.1	7,580	24,772	3.3
Vegetable	1,344	5,529	4.1	985	2,434	2.5
	829	3,324	4.0	714	1,531	2.1
Live-stoc	6, 688	79,317	11.9	6,236	25, 254	4.0
	3,873	19,638	5.1	4,573	35, 075	7.7
Miscellaneous ${ }^{2}$.	6,172	22,778	3.7	5,954	18,166	3.1

${ }^{1}$ lncluding " part owners" and "owners and tenants."
${ }^{2}$ lncluding forists' establishments, nurseries, and sugar farms.
CROPS.
The following table gives the statistics of the principal crops grown in 1899:

Table 18.-ACREAGES, QUANTITIES, AND VALUES OF THE PRINCIPAL FARM CROPS IN 1899.

CROPS.	Acres.	Unit of measure.	Quantity.	Value.
Corn	10,483	Bushels.	218,706	\$104, 263
Wheat	1,088, 102	Bushels..	21,187,527	9,028, 209
Oats	126, 841	Bushels..	6, 336,486	1,765, 547
Barley.	122, 298	Bushels...	3,641,056	1, 268,480
Rye	3, 077	Bushels..	44,945	23,566
Buckwhes	96	Bushels..	1,865	1,332
Flaxseed	149	Bushels.	850	767
Clover seed		Bushels.	12	54
Grass seed		Bushels.	825	1,492
Hay and forage	497, 139	Tons.....	827,413	5,881,088
Tobacco.		Pounds.	1,180	187
Hops	5,296	Pounds.	6,813,830	589, 582
Broom cora	67	Pounds.	20,000	1,000
Peanuts	(1)	Bushels.		15
Dry beans	296	Bushels.	3,830	7,034
Dry pease	3,573	Bushels...	91, 899	78, 124
Potatoes..	25,119	Bushels...	3,557,876	1,312,948
Sweet potatoes	52	Bushels.	4,672	2,250.
Onious	472	Bushels.	107, 111	73,623
Maple sirup.	13,376	Gallons	126	967,045
Sorghum cane.	28	Tons...	82	146
Sorghum sirup		Gallons	438	198
Sugar beets.	1,863	Tons.	6,149	26,176
Small fruits	2,915			326,646
Orchard frust	289,261	Bushels.	1,180,357	${ }^{3} 999,487$
Grapes	${ }^{2} 311$	Cental	11,947	${ }^{4} 27,242$
Nuts-.........				1,002, ${ }_{126}$
Flowers and plants	34			50, 450
Seeds..	86			11,667
Nursery products.	155			28,699
Miscellaneous.	15			${ }^{5} 1,784$
Total	1,991, 109			23,532,150.

[^180]${ }^{2}$ Estimated from number of vines or trees.
${ }_{4}$ Including value of cider, vinegar, etc.
${ }_{5}^{4}$ lncluding value of wine, raisins, etc.
${ }^{5}$ The greater part of this value was derived from products for which no acreage was reported.

Of the total value of crops, cereals contributed 51.8 per cent; bay and forage, 24.8 per cent; vegetables, including potatoes, sweet potatoes, and onions, 10.0 per cent; fruits, 5.7 per cent; forest products, 4.3 per cent; hops, 2.5 per cent; and all other crops, 0.9 per cent.

The average values per acre of the various crops are as follows: Flowers and plants, $\$ 1,483.82$; nursery products, $\$ 185.15$; seeds, $\$ 135.66$; small fruits, $\$ 112.06$; hops, $\$ 111.33$; grapes, $\$ 87.59$; miscellaneous vegeta" bles, $\$ 72.30$; potatoes, $\$ 52.27$; beans and pease, $\$ 22.01$; sugar beets, $\$ 14.05$; hay and forage, $\$ 11.73$; orchard fruits, $\$ 11.20$; and cereals, $\$ 9.02$.

CEREALS.

The following table is an exhibit of the changes in cereal production since 1859:

Table 19.-acreage and production of cereals: 1859 TO 1899.

Part 1.-ACREAGE.

vear. ${ }^{1}$	Barley.	Buckwheat.	Corn.	Oats.	Rye.	Wheat.
1899...	122, 298	96	10,483	126,841	3,077	1,088,102
1889....	51,551	27	9,583	65,089	1,763	372, 658
1879......	14,680	106	2,117	37,962	518	81,554

${ }^{1}$ No statistics of acreage were secured prior to 1879.
Part 2.-BUSHELS PRODUCED.

1899.	3,641,056	1,865	218, 706	5,336,486	44,946	21,187,527
1889.	1,269, 140	430	156, 413	2,273, 182	19,188	6,345, 426
1879.	566,537	2,498	39,183	1,571, 706	7,124	1,921, 322
1869.	55,787	316	21,781	255,169	4,453	217,043
1859.	4,621	707	4,712	134, 334	144	86, 219

The total area devoted to cereals in 1879 was 136,937 acres; in 1889, 500,671 acres; and in $1899,1,3500,897$ acres, nearly ten times the acreage reported twenty years before.

The increases in area under cereals in the decade 1889 to 1899 , were: Buckwheat, 255.6 per cent; wheat, 192.0 per cent; barley, 137.2 per cent; oats, 94.9 per cent; rye, 74.5 per cent; and corn, 9.4 per cent. The total number of bushels produced in 1859 was 230,737 , and in $1899,30,430,585$.

Of the total area devoted to cereals in $1899,80.5$ per cent was devoted to wheat; 9.4 per cent, to oats; 9.1 per cent, to barley; and 1.0 per cent, to corn, rye, and buckwheat.
The five counties, Whitnan, Lincoln, Wallawalla, Spokane, and Adams in the eastern part of the state ranking in the order named, reported 76.3 per cent of the total area under wheat, while Whitman, Skagit, and Spokane contributed one-half of the total acreage in oats. The adjoining counties, Whitman, Columbia, Garfield, and Wallawalla reported 73.1 per cent of the total area devoted to barley, and, substituting Chelan county for Garfield county, the same group furnished 62.7 per cent of the acreage under corn.

HAY AND FORAGE.

In $1900,26,738$ farmers, or 80.5 per cent of the total number, reported hay or forage crops. Exclusive of cornstalks, they obtained an average yield of 1.7 tons per acre. The total acreage in hay and forage for 1899 was 73.8 per cent greater than ten years before.

In 1899 the acreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 49,963 acres and 51,260 tons; millet and Hungarian grasses, 319 acres and 496 tons; alfalfa or lucern, 35,166 acres and 118,559 tons; clover, 18,484 acres and 40,054 tons; other tame and cultivated grasses, 158,872 acres and 301,656 tons; grains cut green for hay, 226,652 acres and 301,676 tons; crops grown for forage, 7,683 acres and 13,196 tons; and cornstalks, 522 acres and 516 tons.
In Table 18 the production of cornstalks is included under "hay and for"age," but the acreage is part of that given for "corn," as the forage secured was an incidental product of the corn crop.

orchard frutts.

The changes in orchard fruits since 1890 are shown in the following table:

Table 20.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

Fruits.	NUMBER OF TREES.		buShels of fruit.	
	1900	1890	1899	1889
Apples	2, 735, 024	315,479	728, 978	295, 196
Apricots	31,129	5,142	5,254	3,856
Cherries	210,516	22, 852	62,114	11,692
Peaches..	226,636	72, 701	80,990	63,497
Pears.....	310,597	32,513	78, 236	26,868
Plums and prunes.	1,290,845	85,657	229, 207	66,909

In 1900 over one-third of the farmers of the state reported orchard products worth $\$ 999,487$. Of this amount, Whitman county contributed $\$ 132,569$; Yakima, $\$ 108,696$; Spokane, $\$ 78,592$; King, $\$ 54,278$; Wallawalla, $\$ 52,767$; and Chelan, $\$ 50,640$.
Large increases are to be noted in the numbers of all kinds of trees during the last decade, the gain in the total number of trees being over $4,000,000$. In this period the number of apple trees has increased 2,420 ,345. In 1890, 59.0 per cent of all fruit trees in the state were apple trees, while in 1900 apple trees comprised but 56.9 per cent. The largest numbers of these trees are found in the southeastern counties of the state, Spokane leading.
Not only has the number of plum and prune trees increased more than fifteenfold during the decade, but the relative importance of these fruits has risen from 16.0 per cent of the total number of orchard trees in 1890 to 26.9 per cent of the number reported in 1900.
There were over nine times as many pear trees in 1900 as ten years before. More than one-third the total number of these trees was grown in Whitman, Wallawalla, and Spokane counties.
The total number of peach trees has more than tripled during the decade. This increase was very generally distributed, decreases being reported in but four counties. The largest numbers of trees were reported by Yakima and Whitman counties. Comparatively little attention was given to apricots. All counties show increases in cherries during the decade.

In addition to the trees given in Table 20, unclassified fruit trees to the number of 65,312 were reported, with a yield of 5,578 bushels of fruit. The value of orchard products given above includes the value of 1,102 barrels of cider, 416 barrels of vinegar, and 253,720 pounds of dried and evaporated fruits manufactured on farms.

VEGETABLES.

The value of all vegetables produced in the state in 1899, including potatoes, sweet potatoes, and onions, was $\$ 2,355,866$, of which the value of potatoes constituted 55.7 per cent. This important crop was reported by 21,539 farmers, or 64.9 per cent of the total number in the state. The largest acreages devoted to potatoes were in the southeastern counties of Spokane and Whitman.

Aside from the land devoted to potatoes, sweet potatoes, and onions, 13,376 acres were used in the growing of miscellaneous vegetables. Of this area, the products of 8,409 acres were not reported in detail. Of the remaining 4,967 acres, concerning which detailed reports were received, 1,146 acres were devoted to cabbages, 1,016 to carrots, 584 to turnips, 569 to sweet corn, 494 to watermelons, 338 to beets, 303 to tomatoes, 198 to muskmelons, and 319 to other vegetables.

SMALL FRUITS.

The total area used in the cultivation of small fruits in 1899 was 2,915 acres distributed among 9,638 farms. The value of the fruit grown was $\$ 326,646$, an average of $\$ 33.89$ per farm. Of the total area, 1,268 acres, or 43.5 per cent, were devoted to strawberries, the total production of which was $2,577,580$ quarts, grown principally in King, Pierce, Wallawalla, Spokane, and Clarke counties. The acreages and productions of the other berries were as follows: Raspberries and Logan berries, 625 acres and $1,134,970$ quarts; blackberries and dewberries, 388 acres and 808,340 quarts; currants, 238 acres and 416,170 quarts; gooseberries, 211 acres and 356,570 quarts; and other berries, 185 acres and 124,150 quarts.

sugar beets.

Washington had in 1900 but three counties reporting sugar beets, but the industry bids fair to become one of importance in the state. In 1899, 29 farms devoted to this crop an area of 1,863 acres, an average of 64.2 acres per farm: There were obtained and sold from this land 6,149 tons of beets, an average of 3.3 tons per acre, for which was received $\$ 26,176$, an average of $\$ 903$ per farm, $\$ 14$ per acre, and $\$ 4.26$ per ton. This crop was grown in the southeastern part of the state, Spokane county alone reporting 92.8 per cent of the total acreage.

HOPS.

The earliest report of hops for Washington was in 1860 , when the amount produced was 44 pounds. The industry has become one of great importance, as is shown by the rapid increase in the number of acres devoted to their production. For 1879,534 acres were reported; for $1889,5,113$ acres; and for 1899,415 farmers reported 5,296 acres, an average of 12.8 acres per farm. They obtained and sold from this land $6,813,830$ pounds of hops, an average of 1,287 pounds per acre, for which they received $\$ 589,582$, an average of $\$ 1,421$ per farm, $\$ 111$ per acre, and $\$ 0.09$ per pound.
The two counties producing the most hops in 1899 were Yakima and Pierce, which reported 66.0 per cent of the total acreage.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 34 acres, and the value of the products sold therefrom was $\$ 50,450$. These flowers and plants were grown by 35 farmers and florists, of whom 17 made commercial floriculture their principal business. These 17 had invested in land, buildings, implements, and live stock $\$ 103,610$, of which $\$ 53,160$ represents the value of the buildings. Their sales of flowers and plants amounted to $\$ 46,970$, and they secured other products valued at $\$ 5,560$. They expended $\$ 10,210$ for labor, and $\$ 985$ for fertilizers. The average gross income was $\$ 3,090$.
In addition to the 17 principal florists' establishments, 139 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 227,550 square feet, making, with the 125,820 square feet belonging to the florists' establishments, a total of 353,370 square feet of land under glass.

nurseries.

The total value of nursery products sold in 1899 was $\$ 28,699$. This was reported by the operators of 36 farms and nurseries, of whom 15 derived their principal income from the nursery business. They had invested in the aggregate $\$ 93,084$, of which $\$ 73,855$ represents the value of land and improvements other than buildings; $\$ 15,495$, that of buildings; $\$ 1,690$, that of implements; and $\$ 2,044$, that of live stock. Their sales of nursery products amounted to $\$ 24,256$, and they obtained other products worth $\$ 2,082$. Their expenditure for labor was $\$ 4,910$, and for fertilizers, $\$ 20$. The average gross income was $\$ 1,756$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 5,280,190$, an average of $\$ 159$ per farm. The average expenditure was $\$ 1,788$ for sugar farms, $\$ 601$ for florists' establishments, $\$ 327$ for nurseries, $\$ 310$ for hay and grain farms, $\$ 109$ for fruit farms, $\$ 96$ for live-stock farms, $\$ 86$ for vegetable farms, and $\$ 83$ for dairy farms. "Managers"
expended on an average, $\$ 683$; "share tenants," $\$ 260$; "cash tenants," $\$ 146$; and "owners," $\$ 107$. White farmers expended $\$ 163$ per farm, and colored farmers, $\$ 54$.
Fertilizers purchased in 1899 cost only $\$ 29,165$, an average of less than $\$ 1$ per farm, but almost three times the amount expended in 1889. The average expenditure was $\$ 58$ for florists' establishments, $\$ 3$ for vegetable farms, and $\$ 1$ for hay and grain farms.

INDIAN RESERVATIONS.

The Indian population of Washington, although not as large as that of several other states, is composed of numerous small tribes, principal among which are the Salishan, Sbahaptian, and Chinookan. The tribes along the coast are fishermen and fur traders, their catches including the whale and seal. Those among the mountains live largely on game, fish, and berries. Nine reservations, as follows, reported agriculture: Colville, Lummi, Makah, Muckleshoot, Queniult, Spokan, Swinomish, Tulalip and Yakima.

COLVILLE AND SPOKAN.

Colville reserve, embracing an area of 4,374 square miles, is situated in Ferry and Okanogan counties. The land is adapted to agriculture and stock raising, and most of the tribes here have made commendable progress in these occupations. The population of the reserve is 1,477 .
The Spokan reservation, whose agricultural statistics were enumerated with those of Colville, lies in Stevens county and contains an area of 240 square miles. The Indians are thrifty and industrious, but need the assistance of improved agricultural implements and machinery.
The principal crops of the 351 Indian farmers of the two reserves are wheat and oats, supplemented by a few acres of corn. Their hay consists largely of grains cut green. Many raise gardens of potatoes and other vegetables. Some of them own a considerable number of range cattle in addition to their Indian pony stock, and a few possess chickens and swine.

LUMMI.

Lummi reservation, with an area of 3 square miles, is situated in Whatcom county. The Indians are bands of Dwamish, Etakmur, Lummi, Snohomish, and Swinomish tribes, with a total population of 359. They do some fishing and logging in addition to tilling the soil, and are largely self-supporting.

The 28 Indian farmers raised small patches of oats, wheat, tame hay, potatoes, and other vegetables. Nearly all own orchards of apple, pear, plum, and cherry trees, and a few also raise small fruits. Their live
stock consists principally of good American farm horses, small flocks of sheep, and a few cattle. A number own dairy cows and report milk and butter; others report small sales of live stock and animal products. Chickens and swine are found on most of the farms.

MAKAF.

Makah reservation, in Clallam county, has an area of 36 square miles. The Makah and Quileute Indians on this reserve, with a population of 371 , are self-supporting, but very poor. Fish is their principal diet and source of income. Seven Indians reported small herds of horses and cattle, but as grass is very limited they can not carry on stock raising extensively. Small sales of live stock were reported by four of them.

MUCKLESHOOT.

Muckleshoot reservation contains an area of 5 square miles and is situated in King county. The Muckleshoot is a self-supporting agricultural tribe, numbering 146. All wear citizens' clothing, and the majority know enough English to carry on ordinary conversation. The principal crops of the 30 Indian farmers are oats, wheat, and tame hay. Potatoes are also quite generally raised, and a few have small fruit. A number possess orchards of apple, plum, and cherry trees. The tracts cultivated by these farmers are mere patches of from 5 to 30 acres. Their live stock consists of a few horses, Indian ponies, cattle, and sheep. Chickens and swine are found on a few farms.

QUENIULT.

Queniult reserve, embracing an area of 350 square miles, is located in Chehalis county. The larger portion of the land is broken, mountainous, and thickly covered with underbrush, the only cultivable tracts lying along the river bottoms. The 23 Indian farmers raised small patches of potatoes and tame hay, and one had 3 acres in oats. Most of them own work horses or ponies, and some have a few beef cattle and dairy cows. Chickens are common among these Indians, while but one reported swine.

SWINOMISH.

Swinomish reserve has an area of 11 square miles and is situated in Skagit county, on Fidago Island. The Indians here are practically self-supporting, obtaining their living by fishing and tilling the soil. The present population is 275 . Oats and tame hay are the crops of the 7 Swinomish farmers. Their live stock consists of a few horses, sheep, and dairy cows, and 2 farmers owned chickens.

TULALIP.

Tulalip reservation, having an area of 14 square miles, is located in Snohomish county, on Puget Sound. The greater portion of this reserve is heavily timbered and requires considerable energy and money to clear it. The Indians are not agriculturists, as a rule, only 29 Indian farmers being reported. These raised a few acres of tame hay, potatoes, and garden vegetables; some also cultivated small fruit. Nearly all had orchards of apple, pear, plum, and cherry trees. Horses, a few sheep, and beef cattle largely comprised their live stock. A number also owned dairy cows and chickens.

YAKIMA.

Yakima reservation, with an area of 1,250 square miles, is situated in the south central part of the state.

Approximately two-thirds of this tract is a dry, sagebrush desert with no facilities for irrigation. Bands of Klikitat, Paloos, Topnish, Wasco, and Yakima Indians are located on this reserve, and number in all 2,219. Agriculture is the principal occupation where it can be carried on, and the Indians who are so situated that irrigation is available are making remarkable progress. They are accumulating stock, extending their agricultural operations, and building comfortable homes. Under the direction of a surveyor, they have constructed a large number of ditches and utilize all the water available. Indians who have no water on their allotments hunt, dig roots, and gather berries for subsistence. The principal crops are oats, wheat, and barley, in the order named. The hay crops consisted of wild grasses, alfalfa, and other tame grasses and grains cut green. Of the 269 farms on the reservation, 196 were operated by Indians, the others being largely those of white renters. The majority of Indian farmers had from 10 to 80 acres under cultivation. A number raised patches of potatoes and garden vegetables and some also had small fruit. Many own orchards of apple, peach, pear, plum, and cherry trees. A number have accumulated substantial herds of range cattle, while a few have large flocks of sheep. Chickens and swine are common, and a few Indians have dairy cows.

IRRIGATION STATISTICS.

The Cascade Mountains, extending across the western third of the state of Washington, divide it into two parts unlike in climate and agricultural conditions. West of the mountains the annual precipitation is heavy. Eastward the climate is arid and semiarid. The arid region is bounded on the west by the foothills of the Cascade Mountains, and on the east gradually merges into the semiarid foothills near the Idaho line. The soil of central and eastern Washington is very fertile, and when water is artificially applied to growing crops the results are marvelous.

These regions, lying entirely within the drainage basin of the Columbia River, have an area of 42,328 square miles, or 63.0 per cent of the state. The Columbia River enters the state from the northeastern corner, flows south for a distance of about 159 miles, then veering abruptly westward forms a great curve as it pursues its course in a southerly direction to about the center of the state, then turning west, forms the boundary between Oregon and Washington. With its numerous branches it furnishes an abundant water supply.

With the exception of a few current water wheels, no irrigation works have yet been undertaken on the Columbia River. On its tributary streams, however,
great progress has been made toward reclaiming areas of the arid lands. The most important of these branches is the Yakima River, which has its sources in numerous lakes near the crest of the Cascade Mountains. From these lakes it takes its way southeast for a distance of about 40 miles through a rugged country, where the rocky soil and frequent frosts make agriculture a hazardous undertaking.
Turning directly south, the river flows into the Kittitas Valley. Here irrigation has made rapid advances, and a network of ditches, large and small, diverts water from the river and its branches upon thousands of acres in crops. The Ellensburg Water and Power Company and the West Side Canal Company are the most important irrigation enterprises in this vicinity. At the lower end of the valley the banks converge, forming a canyon with high, precipitous walls, through which the river rushes for a distance of 18 miles, emerging into the Yakima Valley, where it receives the waters of the Naches River and Selah and Atanum creeks, all of which are mountain streams. As these streams approach the main river, the great spurs forming their canyons gradually recede from the banks, leaving a broad, fertile valley, where several important canals have transformed what was originally a desert into a region of ideal farms.

Just below Yakima Valley the river is tapped on its left bank by the Sunnyside Canal, the largest in Washington. This canal was built at a cost of $\$ 600,000$, is 42 miles long, and irrigates 10,000 acres in fruits and field crops.

Gradually curving to the east, the river pursues its course for a distance of almost 75 miles. At intervals irrigation improvements of varying importance are evidenced by productive farms and comfortable homes.
From the source of Yakima River to its mouth, the annual precipitation gradually decreases. The moisture in the foothills is sufficient to raise crops not too sensitive to cold, but farther down the river the soil can not be successfully cultivated without irrigation. In several places are elevated tablelands, notably Swauk and Thorp prairies, which receive sufficient natural moisture to produce fair crops of grain.

The Blue Mountains and foothills in southeastern Washington form a watershed for Wallawalla River and Asotin Creek, two important streams.
The Wallawalla River rises in Oregon and flows in a northeasterly direction into Washington, where it receives water from a score of tributaries. These streams, near their mouths, form deltas of rich alluvium peculiarly adapted to the cultivation of orchard fruits. A rapid fall in the creeks admits of the construction of ditches at a very moderate expense, but the valleys are narrow and only small areas can be irrigated. Several canals are in use, and others are in course of construction. On the higher ground the precipitation is suffcient for cereals, and good crops are raised. After leaving this valley the Wallawalla gradually sinks lower in its canyon and maintains a westward course for a distance of about 40 miles to its junction with the Columbia River.
Many small streams rising in the eastern foothills of the Blue Mountains unite to form Asotin Creek, which furnishes its valley with a plentiful supply of water. From the left bank, about 6 miles from its mouth, the Vineland ditch, 14 miles long, has been constructed by the Lewiston Water and Power Company at a cost of $\$ 80,000$. This company has divided its land holdings into small farms worth from $\$ 150$ to $\$ 300$ per acre. Purchasers give their entire attention to gardens and orchards, and remarkable results are obtained. The ditch at present irrigates 1,400 acres, but is designed to
supply 5,000 acres. The sketch map represents, by areas in solid black, the regions in which irrigation is successfully practiced to any considerable extent.

The following table shows the relative increase of irrigation in the whole state since 1899 , including counties west of the Cascade Mountains, where irrigation is very beneficial to truck farmers:

Table A.-NUMBER OF IRRIGATORS AND ACRES IRRIGATED IN 1889 AND 1899, WITH PERCENTAGES OF INCREASE, BY COUNTIES.

counties.	number of irrigators.			NUMBER OF ACRES IRRI-GATED.		
	1899	1889	Per cent of increase.	1899	1889	Per cent of increase.
The State	3,513	1,046	235.9	135, 470	48,799	177.6
Adams	$\begin{array}{r} 12 \\ 222 \end{array}$			423		
Asotín		32	693.8	1,698	320	430.6
Kittitas ${ }^{\text {c }}$	309	350	216.9	$\begin{array}{r}1, \\ 47 \\ 4 \\ \hline\end{array}$	25,212	138.6
Okanogan ${ }^{1}$	549 251			6,377		
Clallam.				127		
Columbia	25	15	66.7	440	139	216.6
Douglas.	55	34	61.8	2,627	'1,016	158.6
Ferry ${ }^{\text {2 }}$		66	81.8	${ }^{625}$	1,350	89.0
Stevens ${ }^{\text {Garfield }}$	104	24	4.2	1,926)	+229	43.2
King	25			151		
Klickitat		71	112.7	1,235	1,702	${ }^{3} 27.4$
Lincoln	$\begin{array}{r}151 \\ 54 \\ \hline\end{array}$	12	350.0	1,069	238	349.2
Spokane	31	3	933.3	718	80	797.5
Wallawalla	231	121	90.9	6,100	2,809	117.2
Whitman		22	100.0	+ 863	- 531	62.5
Yakima		293	283.3	47,588	15, 129	214.5
All other connties	1,123	3	1,600.0	233	44	429.5
Indian reservatio Spokane..... Yakime	$\begin{array}{r} 43 \\ 184 \end{array}$			140		
Yakima				9,023		

${ }^{1}$ Chelan organized from parts of Kittitas and Okanogan in 1899.
${ }^{2}$ Ferry organized from part of Stevens in 1899.
${ }^{3}$ Decrease.
In the ten years ending with 1899, the number of irrigators in the state increased from 1,046 to 3,513 , or 235.9 per cent, and the area irrigated from 48,799 acres to 135,470 acres, or an increase of 177.6 per cent.

As the artificial application of water requires more than an ordinary amount of labor and capital, there is a marked tendency toward a more intense cultivation of small areas. In 1889 the average size of the irrigated area of farms of Washington was 47 acres, while in 1899 it was but 39 acres.

Table B is an exhibit, by counties, of the number of irrigated farms compared with the total number of farms, and of the irrigated acreage compared with the total improved acreage.

Table B.-COMPARISON OF IRRIGATED FARMS TO TOTAL NUMBER OF FARMS, AND OF IRRIGATED ACREAGE TO IMPROVED ACREAGE, JUNE 1, 1900.

COUNTIES.	NUMBER OF FARMS.			IMPROVED ACREAGE.		
	Total.	$\begin{aligned} & \text { Irri- } \\ & \text { gated. } \end{aligned}$	Per cent irrigated.	Total.	$\begin{aligned} & \text { Irri- } \\ & \text { gated. } \end{aligned}$	Per cent irrigated.
The State.	33,202	3,513	10.6	3, 465, 960	135,470	3.9
Adams	783	12	1.5	275, 778	423	0.2
Asotin	583	222	41.7	27, 616	1,698	4.5
Chelan	457	309	67.6	14,034	6,406	45.6
Columbia	395	16	4.1	10,108	127	1.3
Columbia	706 854	25	3.5	151,589	440	0.3
Ferry	854	55	6.4	186,232	2,627	1.4
Garfield.........................	62 521	16	25.8 4.8	3,833	625	16.8
King.	1,785	17	1.0	115,211	328 151	0.3 0.4
Kittitas	1,699	549	78.5	55,057	47,373	86.0
Klickitat	1,080	151	14.0	115,530	1,235	0.1
Lincoln-...........	1,911	54	2.8	516,924	1,069	0.2
Okanogan	506	251	49.6	19,599	6,377	32.5
Spokane	2,911	31	1.1	280,159	718	0.3
Stevens .-...............	1,132	104	9.2	57,582	1,926	3.3
Wallawalla	1,029	231	22.4	391,719	6,100	1.6
Whitman	3,081	44	1.4	711,975	863	0.1
Yakima................	1,293	1, 123	86.9	104,680	47,588	45.6
All other countjes	12,844	51	0.4	347,646	233	0.1
indian reservations: Spokan	351	43	12.3	10,699	140	1.3
Yakjma............	269	184	68.4	17,993	9,023	50.1

Of the 33,202 farms of the state, 3,513 , or 10.6 per cent, were irrigated in 1899. Of the total improved acreage, 3.9 per cent was irrigated.

Alfalfa, vegetables, and fruits are generally relied upon to give the highest returns where water is available. Cereals are seldom irrigated, being raised on the high plateaus, which receive sufficient moisture to produce fair yields.

Table C gives the acreage and production of all crops in eastern Washington, and of the crops grown on irrigated land.
Table C.-ACREAGE AND PRODUCTION OF ALL CROPS, AND OF IRRIGATED CROPS: 1899. ${ }^{1}$

CROPS.	ACREAGE.			Unit of measure.	PRODUCTION.		
	Total.	1rrigated.	Per cent irri- gat- ed.		Total.	$\begin{aligned} & \text { 1rri- } \\ & \text { gated. } \end{aligned}$	Per cent irri-gated.
All crops ..	1, 709, 320	117,798	6.9				
Corn	9,665	1,679	16.3	Bushels.	200,976	43, 650	21.7
Whea	1,073,827	14,204	1.3	Bushels.	20, 817,763	328,958	1.6
Oats	69,035	3,125	4.5	Bushels.	2, 238,304	113,070	5.1
Barley	120, 708	3, 899	3.2	Bushela.	3,579, 274	119, 190	3.3
Rye.	2,529	117	4.6	Bushels.	34, 415	3,280	9.5
Wild, salt, or	46,150	6,638	'14.4	Tons....	46,470	8,063	17.4
prairie grasses. Millet and Hun-	191	112	58.6	Tons.	319	226	70.8
garian grasses.				Tons....		101, 548	86.9
Alfalfa or lucern	34,763	28,161	81.0 91.3	Tons.-...	116,880	11,944	94.2
Clover	5,801	5,296 15,358	91.3 32.9	Tons....	65,056	25,708	39.5
Other tame and cultivated grasses.	46,701	15,358	32.9	Tons....	65,056	25,08	3.5 6.2
Grains cutgreen	213,939	11,308	5.3	Tons....	277,204	17,073	6.2
forger ${ }^{\text {c }}$.	6,187	566	9.1	Tons....	38,642	1,239	14.3
Hops ...-.-.........	2,203	2,162	98.1	Pounds.	2, 934,830	2,914,280	99.3
Dry beans	212	48	22.6	Bushels.	2, 2142	¢ 645	30.1
Potatoes	18,397	2,809	21.0	Bushels.	1,761,855	446,530	25.3
Sweet potatoes ..	27	8	29.6	Bushels.	2,147	82	100.0
Sorg hum cane...	28	28	100.0	Bushels.	73, 992	34,854	47.1
Onions --........	7321	+ 146	45.5 47.9	Bushels.	73, 51		
Miscellaneous yegetables.	7,846	3,759 553	47.9 42.3			948,012	44.9
Small iruits	1,306	17.593	42.3 33.9	Quarhels.	2, 663,840	344, 801	51.9
Orchard fruits ${ }^{4}$ -	61,918	$\begin{array}{r}17.590 \\ 405 \\ \hline 127\end{array}$	38.9 77.9	Centala.	11,063	6,821	61.7
Grapes ${ }^{4}$.........	263	205	77.9 5.5	Centala.			
Other crops ${ }^{5} . .$.	2,303	127	5.5				

[^181]In Table D is given values of land on the different classes of farms.

Table D.-AVERage Value PER aCRE of farms, JUNE 1, 1900.

counties.	$\xrightarrow[\text { farms. }]{\text { All }}$	Unirrigated farms.	Irrigated farms.	Irrigated land.	Unirrlgated arable land.
The State ${ }^{1}$	\$10. 22	$\$ 9.81$	\$12.87	848.85	\$19.45
Adams	7.20	7.33	4.12	35.00	6.00
Asotin.	9.42	5.46	24.96	206.88	30.00
Chelan	9.37	3.86	16.13	71.64	13.48
Columbia	14.68	15. 05	8.40	61.43	17.14
Douglas.	4.97	6.10	2.20	91.17	7.57
Ferry	12.67	10.54	16.62	50.00	20.00
Franklin	0.90	0.81	1.76	50.00	5.00
Garfield	8.05	8.20	6. 44	32.50	7.00
Kittitas.	9.24	3.64	10.40	35.30	6.75
Klickitat	6.62	6.52	7.34	60.28	11.61
Lincoln	9.16	9.20	7.57	75. 65	15. 89
Okanogan	8.32	5.34	11.22	62.69	7.55
Spokane.	12.78	12.67	24.62	59.38	16.00
Stevens.	7.45	7.05	11.36	33.15	9.69
Wallawaila	16. 81	14.86	34.89	122.98	31.48
Whitman	12.67	12.76	8.31	71.07	10.34
Yakima	7.81	1.55	16.17	40.25	8.58

${ }^{1}$ East of Cascade mountains, not including indian reservations.

Irrigation in eastern Washington has greatly increased land values. In counties where irrigation is practiced, the farm values steadily increase in proportion to the extent to which irrigation is carried on. In Asotin county small farms under the Vineland ditch produce the finest quality of fruits, and have thus acquired a value much higher than land in other counties.

Table E is an exhibit of the area irrigated from streams in 1899, with the number, and cost of construction of the irrigation systems, and total length of main ditches.

Tabla E.-ACREAGE IRRIGATED FROM STREAMS IN 1899, WITH NUMBER AND COST OF CONSTRUCTION OF SYSTEMS, AND TOTAL LENGTH OF MAIN DITCHES.

counties.	Number of acres irrigated.	SYSTEME OPERATED IN 1899.			
		Number.	$\begin{gathered} \text { Length of } \\ \text { main } \\ \text { ditches } \\ \text { in miles. } \end{gathered}$	Cost of coustruction.	
				Total.	Average per acre irrigated in 1899.
The State.	133,698	801	806	\$1,679, 319	\$12. 56
Adams.	423	11	4	1,293	3.06
Asotin.	1,698	12	23	82,089	48.34
Chelan	6, 402	126	112	84, 252	13.16
Columbia	440	21	7	1,668	3.79
Douglas	2,605	27	22	18,740	7.19
Ferry-......................	625	12	8	1,707	2.73
Franklin	34	3	1	210	6.18
Garfield	265	23	3	858	3.24
Kittitas.	47,373	71	118	119,706	2.53
Klickitat	1,111	60	16	4,282	3.85
Lincoln	1,069	15	9	1,298	1. 21
Okanogan	6,368	82	76	36,474	1.73
Spokane	671	7	10	${ }^{1} 41,850$	${ }^{1} 62.37$
Stevens.-...................	1,926	47	27	7,564	3.93
Wallawalla	5,968	52	33	23,073	3.87
Whitman.	758	21	15	8, 855	11.68
Yakima	46, 402	91	299	1,046,900	22.56
All other counties..........	${ }_{9}^{397}$	75	4	1, 1,500	3.78
Spokan and Yakima Indian reservations.	9,163	45	19	197, 000	21.50

1 Includes $\$ 40,000$, cost of Liberty Lake ditch, designed to irrigate 2,600 acres; completed in 1899, but irrigated only 200 acres in that year.

Chelan county was formed in 1899 from parts of Kittitas and Okanogan counties. Yakima and Kittitas counties now comprise the entire territory drained by Yakima River. The area irrigated in Yakima Valley in 1889 was a little more than 38,300 acres. In 1899 there were irrigated from streams in this valley, exclusive of Yakima Indian reservation, 93,775 acres, an increase of 55,434 acres, or 144.6 per cent.

On account of the uncertainty of success and the great expense attached to prospecting for underground water, well irrigation in eastern Washington has not advanced very rapidly.

The principal artesian basins from which water is now taken are in Moxie Valley and in the vicinity of Wallawalla. In these localities flowing water has been obtained and is used for irrigation. Until recently no care has been exercised to prevent a waste of water, and, as a result, in several instances the pressure has become insufficient to force water to the surface. Now, however, wise statutes prohibit waste in any manner, the farmers have become more ambitious to develop and foster this mode of irrigation, and it promises to become an important factor in the raising of agricultural products. Water was obtained from wells, in 1899, for 77 farms with 1,772 acres of irrigated land. The total cost of construction of these systems was $\$ 43,050$, or an average cost per acre irrigated of $\$ 24.29$.
Table F shows the values, by counties, of crops produced on irrigated land.

Table F.-Value of Crops Produced on irrigated LAND, BY COUNTIES.

counties.	All	Hay and forage.	Cereals.	Vegetables.	Orchard fruits.	Small fruits.	Other crops.
The State.	\$2, 361, 838	\$1,014,438	\$227, 171	\$427,385	\$351,015	\$63,702	\$278,127
Adams	2,518	2,005		265	258		
Asotin.	58,060	8,189	1,935	28,203	17,041	2,276	${ }^{416}$
Chelan	159,046	54, 810	7,792	$\begin{array}{r}47,759 \\ 1 \\ 1 \\ \hline\end{array}$	42, 685	4,973	
Clallam	4,607 18,710		2, 491	1,097	115 8,166	${ }_{248}^{426}$	
Columbia	18,710 31,608	6,509 21,332	330	3,774	8,166 6,667	709	304
Ferry.	15,044	11,462	15	3,349	48	170	
Franklin	2,465	1,556	20	+ 472	417		
Garfield	30,559	997		3,639	23,675	1,206	1,042
King	29,527	117		24,484	1,924	3,002	
Kittitas.	501, 864	305,004	129,881	44,320	17,663	4,996	
Klickitat	44, 113	10, 673		9,826 $\mathbf{5}, 798$	15,868	$\stackrel{6}{6} 5$	${ }_{207}^{909}$
Lincoln	31,736 115,426	11,178	451 5,315	5,798 25,100	6, 4,115	7,234	108
Skaminia.	1,702	, 158		1,221	38	268	27
Spokane.	48,201	4,159		40,995	1,284	1,763	
Stevens.	28,840	17,474	1,100	5,677	2,147	2,442	
Wallawalia..	179, 873	80, 900	11,820	43,374	23,691	14, 801	5,287
Whitman....	50, 151	1,611		7,803	34, 651	2,240	3,799
Yakima	1, 004, 242	398, 386	65,726	126,147	142,773	6,249	264,961
All other connties.	3,546			1,826	921	799	

In the Yakima Valley, the value of irrigated products in 1899 was $\$ 1,506,106$, or 64.0 per cent of the value of the irrigated products of the state. The value of hay and forage was $\$ 703,390$, or 47.0 per cent of the total value of products in the valley. A large proportion of this hay and forage was alfalfa. Vegetables and orchard fruits ranked next in importance. Only a small percentage of cereals was irrigated.

AUG 41902
 ${ }^{1902} y$
 Twelfth Census of the United States.
 Census Bulletin.

agricleture.

SOUTH CAROLINA.

Hon. William R. Merriam.
 Director of the Census.

Sir: I have the honor to transmit herewith, for publication in bulletin form, the statistics of agriculture for the state of South Carolina, taken in accordance with the provisions of section 7 of the act of March 3, 1899. This section requires that-

The schedules relating to agriculture shall comprehend the following topics: Name of occupant of each farm, color of orcupant, tenure, acreage, value of farm and improvements, acreage of different products, quantity and value of products, and number and value of live stock. All questions as to quantity and value of crops shall relate to the year ending December thirty-first next preceding the enumeration.

A "farm," as defined by the Twelfth Census, includes all the land under one management used for raising crops and pasturing live stock, with the wood lots, swamps, meadows, ete., connected therewith. It includes also the house in which the farmer resides and all other buildings used by him in connection with his farming operations.

The farms of South Carolina, June 1, 1900, numbered 155,355 , and were valued at $\$ 126,761,530$. Of this amount, $\$ 26,955,670$, or 21.3 per cent, represents the value of buildings; and $\$ 99,805,860$, or 78.7 per cent, the value of land and improvements other than buildings. On the same date the value of farm implements and machinery was $\$ 6,629,770$, and of live stock, $\$ 20,199,859$. These values, added to that of farms, give $\$ 153,591,159$, the "total value of farm property."

The products derived from domestic animals, poultry, and bees, including animals sold aud animals slaughtered on farms, are referred to in this bulletin as "animal
products." The total value of such products, together with the value of all crops, is termed "total value of farm products." This value for 1899 was $\$ 68,266,912$, of which amount $\$ 9,376,499$, or 13.7 per cent, represents the value of animal products; and $\$ 58,890,413$, or 86.3 per cent, the value of crops, including forest products cut or produced on farms. The total value of farm products for 1899 exceeds that for 1889 by $\$ 16,928,927$, or 33.0 per cent.
The "gross farm income" is obtained by deducting from the total value of farm products the value of the products fed to live stock on the farms of the producers. In 1899 the reported value of products fed was $\$ 5,736,550$, leaving $\$ 62,530,362$ as the gross farm income. The ratio which this amount bears to the "total value of farm property" is referred to in this bulletin as the "percentage of gross income upon investment." For South Carolina, in 1899, it was 40.7 per cent.

As no reports of expenditures for taxes, interest, insurance, feed for stock, and similar items have been obtained by any census, no statement of net farm income can be given.
The statistics presented in this bulletin will be treated in greater detail in the report on agriculture in the United States. The present publication is designed to present a summarized advance statement for South Carolina.

Very respectfully,

Chief Notatisticien for Agriculture.

AGRICULTURE IN SOUTH CAROLINA.

general statistics.

South Carolina has a total land area of 30,170 square miles, or $19,308,800$ acres, of which $13,985,014$ acres, or 72.4 per cent, are included in farms.

Along the coast and for 100 miles inland, South Carolina is generally low and level, and covered to a considerable extent by forests. West of this alluvial plain is a range of sand hills, while still farther west the "ridge country" rises abruptly, including all the remainder of the state, from the Savannah River to the Broad River. The arerage elevation of this part of the state is nearly two thousand feet above sea level.

The soils of the state are generally light and friable. In the lowlands along the coast the soil is sandy and the vegetation is subtropical. The sand hills are the least fertile parts of the state, while in the highlands, where the soil is clayey, there are immense frnit orchards.

NUMBER AND SIZE OF FARMS.

The following table gives, by decades since 1850 , the number; of farms, the total and average acreage, and the percentage of farm land improved:

Table 1.-FARMS AND FARM ACREAGE: 1850 TO 1900.

YEAR.	Number of farms.	NUMBER OF ACRES IN FARMS.				Per cent of farm land improved.
		Total.	lmproved.	Unimproved.	Average.	
1900.	155,355	13, 985, 014	5, 775, 741	8,209, 473	90.0	41.3
1890.	115, 008	13,184, 652	5,255,237	7,929, 415	114.6	39.9
1880.	93, 864	13, 457, 613	4, 132, 060	9,325, 563	143.4	30.7
1870.	51, 889	12, 105, 280	3,010,539	9,094,741	233.3	24.9
1860.	33, 171	16,195, 919	4,572, 060	11, 623, 859	488.3	28.2
1550	29,967	16,217, 700	4,072,651	12,145, 049	541.2	25.1

The number of farms reported in 1900 was over five times as great as in 1850 , and 35.1 per cent greater than in 1890. The total farm area, as shown in the above table, decreased over four million acres in the two decades from 1850 to 1870 , and during the following thirty years there was an increase of but 15.5 per cent. Except for the Civil War decade, the area and per cent of improved farm land increased throughout the half century. The rapid increase in the number of farms and the very slight increase in the total acreage involved a
decrease in the average size of farms, which, together with the increase in per cent of farm land improved, indicates a progressive division of farm holdings and a more complete utilization of the soil.

FARM PROPERTY AND PRODUCTS.
Table 2 presents a summary of the principal statistics relating to farm property and products for each census year, beginning with 1850 .

Table 2.-VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND OF FARM PRODUCTS: 1850 TO 1900.

Year.	Total value of farm property.	Land, improvements, and buildings.	lmplements and ma. chinery.	Live stock.	$\begin{aligned} & \text { Farm prod- } \\ & \text { ucts. } \end{aligned}$
1900	\$153, 591, 159	\$126, 761, 530	\$6, 629,770	\$20, 199, 859	\$68, 266, 912
1890	119, 849, 272	99, 104, 600	4, 172, 262	16, 572,410	51, 337, 985
1880	84, 079,702	$68,677,482$ 44,808	3, 202, 710	12, 199,510	41, ${ }_{3} 108,112$
1860	169,738,630	139, 652,508	6, 151, 657	23,934, 465	${ }^{4} 41,909,402$
1850	101, 628,053	82, 431, 684	4,136, 354	15,060,015	

${ }^{1}$ For the year preceding that designated.
2 Yalues for 1870 were reported in depreciated currency. To reduce to specie basis of other figures they must be diminished one-fifth
${ }_{3}$ Includes betterments and additions to live stock.
This table shows the remarkable increase in farm values in the decade from 1850 to 1860 , the disastrous effect of the (hivil War in the following decade, and the subsequent recovery of the state which in 1900 had very nearly regained the valuations of 1860 .
The gain in the total value of farm property since 1890 was $\$ 33,741,887$, or 28.2 per cent. The increase in the value of land, improvements, and buildings was $\$ 27,656,930$, or 27.9 per cent; in that of live stock it was $\$ 3,627,449$, or 21.9 per cent; and in that of implements and machinery, $\$ 2,457,508$, or 58.9 per cent. The value of products was 33.0 per cent greater in 1899 than in 1889. A portion of this increase, and of that shown for implements and machinery, is doubtless the result of a more detailed enumeration in 1900 than in previous census years.

COUNTY STATISTICS.
Table 3 is a statement of general agricultural statistics by counties.

Table 3.-NUMBER and acreage of farms, and values of specified classes of farm property, June 1, 1900, WITH GROSS INCOME (PRODUCTS OF 1899 NOT FED TO LIVE STOCK) AND EXPENDITURES IN 1899 FOR LABOR AND FERTILIZERS, BY COUNTIES.

counties.	NUMBER Of farms.		acres in farms.		vakues of farm property.				Gross income (products of 1899 not fed to livestock).	EXPENDITURES.	
	Total.	With buildings.	Total.	Improved.	Lend and improvements (except buildings).	Buildings.	Implements and machinery.	Live stock.		Labor.	Fertilizers.
The State.	155, 355	148, 864	13,985, 014	5,775,741	\$99, 805, 860	\$26, 955, 670	\$6,629, 770	\$20,199,859	\$62, 530, 362	\$6,107,100	\$4, 494, 410
Abbeville	4,574	4,298	348, 997	174,520	2,541,950	755, 950	169,720	557,554	1,771,758	141, 800	104, 250
Aiken	3,875	3,703	476,432	198, 290	3, 018, 640	853,870	191,940	581,783	1, 983,420	194, 370	138,690
Anderson	6,674	6,120	432,710	246, 933	$6,405,220$	1,344,870	323, 200	880, 255	2, 806,851	143, 970	250,750
Bamberg	2,024	1,941	174,643	103,345	1,336,050	1,364,530	116,050	295, 533	1,179, 782	73, 970	74, 710
Barnwell	4,605	4,363	417, 052	250,086	3,272,740	907, 840	220,420	699, 174	2,368, 108	257, 300	177,540
Beaufort.	5,476	5,383	263, 707	97,451	1,597,850	488, 400	163, 630	494, 550	1,115,616	97,270	75, 070
Berkeley	3,790	3,689	455, 899	110,774	1,361,020	421, 570	125, 220	460, 494	1,060, 380	147,900	54, 350
Charleston	3,801	3,455	196, 804	80,323	2, 201, 180	689,490	143,330	345, 810	1,375,692	217,500	144,850
Cherokee	2,363	2,304	198, 369	86, 869	1,635, 430	389,160	92, 080	301,510	1911,471	30,250	50. 470
Cbester.	3,390	3,377	322, 970	149,075	2,295,950	680,630	149, 200	531,273	1,285, 028	128,920	69,240
Chesterfield	2,771	2,699	334, 742	97, 592	1,140,090	297,590	97, 480	307,657	997, 708	76,850	68,010
Clarendon	4,006	3,855	280, 877	131,492	1,755,530	530,100	143,400	443,493	1,528,250	157,260	108,660
Colleton.	4,670	4,535	508, 068	145, 309	1,889, 160	548, 470	173, 050	623, 627	1,560,533	206, 980	111,230
Darlington	4,087	3,845	285, 783	150,001	2,682, 210	827, 160	188, 340	454, 173	2, 211, 725	227,080	208,520
Dorchester	1,803	1,723	198,776	51,499	808, 990	268,280	68,440	219,055	466, 653	58,840	27,050
Edgefield	3,566	3,428	320,386	139,895	1,994,560	666,070	149,630	481,330	1,306,246	120,290	92,740
Fairfield.	3,560	3,516	413,393	165, 486	2,075,670	600, 820	139, 630	636, 058	1, 448,884	149, 940	72,030
Florence.	3,173	3,092	297, 859	118,729	1,816,040	548, 250	115, 070	368, 578	1, 432, 117	204,260	118,720
Georgetow	1,414	1,387	265, 449	36,169	937, 960	320, 720	80, 580	177,617	1,532,625	126, 110	8,670
Greenville	6,016	5,735	403, 101	195, 528	4, 873, 330	1,223,580	294,410	761,026	1, 984,945	95,490	127, 740
Greenwood	3,719	3,467	280, 000	143, 778	2,283,290	667,170	148,010	485, 557	1,434,246	121,180	84,150
Hampton.	3,257	3,150	385, 028	155, 600	1,970,480	544, 100	147,700	498, 917	1,178, 125	132, 220	61,290
Horry...	3,267	3,180	468, 174	79, 918	1,291,040	415, 890	102, 460	376,505	1,022,957	57,470	67,220
Kershaw	2,841	2,777	320,187	114, 816	1,407,200	383, 070	134,210	388, 050	1,229,707	144,690	58,060
Lancaster	2,970	2,936	271, 316	119,117	1.731,670	418, 290	126,630	433,713	1,288,813	173,590	70,380
Laurens.	4,680	4,380	403, 137	201, 065	3,454,160	925,740	215, 200	656, 478	2, 285, 392	229, 400	159,440
Lexington	3,618	3,389	471, 829	144,696	2,841, 770	874, 650	197, 120	559, 609	1,364,358	82,530	69,690
Marion.	3,724	3,610	416, 367	156, 893	3,639, 820	946, 660	200, 100	670, 252	2, 373, 030	255, 790	212,890
Marlboro	2,645	2,569	240, 845	124, 571	4, 031,300	813, 320	168, 970	408, 877	2,129,990	389, 830	300,900
Newberry	3,413	3,245	333, 768	157,484	2,642, 020	837,840	181, 030	510,420	1, 448, 676	168,040	90,340
Oconee	3,249	3,116	333, 038	99,891	2, 044, 880	471, 070	103, 950	358,123	908, 837	32,850	53, 870
Orangeburg	8,408	7,782	670,553	337,229	4, 994,810	1,313,350	447,670	1,077,414	3, 609,441	401,060	321, 210
Pickens	2,954	2,840	238, 920	100, 387	2, 209, 720	485,640	106, 560	380,544	996, 201	34, 390	64,400
Richland.	2,927	2,828	238, 193	98,016	1,913, 300	506, 550	134, 060	392, 924	1,099,729	139,040	53, 290
Saluda	2,858	2,743	256,709	116,909	2,022, 790	553,180	129, 190	439,357	1,226,014	85,710	82, 100
Spartanburg	6,707	6,453	551,149	224,214	6,491, 310	1,198,860	239,210	857,897	2, 428,434	84, 990	179, 280
Sumter.	6,597	6,246	405,675	237, 088	3,663, 330	1,110,460	265,690	714,971	2, 852, 529	323, 290	221,300
Union	2,910	2,867	290,551	109, 150	1,761, 180	472, 870	101, 060	410,835	1,119,559	120,170	63,400
Williamsburg	4,585	4,405	437,667	133, 838	1,709,570	444, 470	139, 910	521, 374	1, 426,225	149,710	95,100
York........	4.473	4,419 15	375, 743	191, 667	3, 061,110	944, 820	197, 330	636,416	1, 779, 827	124, 800	112,910
Catawba ${ }^{\text {. }}$	15		148	148	1,540	420		1,076	580		

${ }^{1}$ Indian reservation.

On account of numerous territorial changes occurring in the last decade in South Carolina, it is impossible to make many accurate comparisons by counties for the census years, 1890 and 1900. For the last decade increases in the number of farms are shown for all counties whose boundaries were not changed. An increase in the acreage of farm land is reported in three-fourths of the counties, and the increase in the acreage of improved land is still more general. The average size of farms for the state is 90 acres, and varies from 48.2 acres in Beaufort county to 187.7 acres in Georgetown county.

Between 1890 and 1900 the value of farms increased in almost all counties, the average value for the state in 1900 being $\$ 816$. Increases in the value of implements and machinery and of live stock are reported from nearly all counties.
The average expenditure per farm for labor varied greatly, being highest in the eastern and lowest in the northwestern counties. In Marlboro county the average was over $\$ 100$ per farm. Berkeley, Greenville, Marion,

Marlboro, and Richland counties reported decreased expenditures for fertilizers between 1889 and 1899. All other counties show increases.

FARM TENURE.

Table 4 gives a comparative statement of farm tenure for 1880,1890 , and 1900 , showing the number and per cent of farms operated by owners and by tenants. Tenants are divided into two groups: "Cash tenants," who pay a rental in cash or a stated amount of labor or farnı produce, and "share tenants," who pay as rental a stated share of the products.

In Table 5 the tenure of farms for 1900 is given by race of farmer, and farms operated by "owners" are subdivided into four groups, designated as farms operated by "owners," "part owners," "owners and tenants." and "managers." These groups comprise, respectively: (1) Farms operated by individuals who own all the land they cultivate; (2) farms operated by individuals who own a part of the land and rent the remainder from others; (3) farms operated under the joint direction
and by the united labor of two or more individuals, one owning the farm or a part of it, and the other, or others, owning no part, but receiving for supervision or labor a share of the products; and (4) farms operated by individuals who receive for their supervision and other services a fixed salary from the owners.

Table 4.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES: 1880 TO 1900.

YEAR.	Total number of farms.	NUMBER OF FARMS OPERATED BY-			PER CENT OF FARMS OPERATED BY-		
		Owners. ${ }^{\circ}$	Cash tenants.	Share tenants.	Own- ers. ers.	Cash tenants.	Share tenants.
1900	155, 355	60,471	57, 046	37,838	39.0	36.7	24.3
1890	115, 008	51,428	31, 913	31, 667	44.7	27.8	27.5
1880	93, 864	46,645	21,974	25,245	49.7	23.4	26.9

${ }^{1}$ Including " part owners," "owners and tenants," and "managers."
Table 5.-NUMBER AND PER CENT OF FARMS OF SPECIFIED TENURES, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER.

Part 1.-NUMBER OF FARMS OF SPECIFIED TENURES.

Race.	Total number of farms.	Own-	Part owners.	Owners and tenants.	Managers.	Cash tenants.	Sbare tenants.
The State.....	155, 355	52,623	6,310	484	1,054	57,046	37,838
White	69,954	37, 120	2,934	393	874	14,612	14,021
Colored ${ }^{1}$	85, 401	15,503	3,376	91	180	42, 434	23, 817

Part 2.-Per cent of farms of specified tenures.

The State...	100.0	33.9	4.1	0.3	0.7	36.7	24.3
White	100.0	53.1	4.2	0.6	1.2	20.9	20.0
Coloredi.	100.0	18.2	3.9	0.1	0.2	49.7	27.9

${ }^{1}$ Comprising 20 Indlans, and 85,381 negroes.
Since 1880 the number of farms has increased 65.5 per cent. The number of farms operated by owners gained 29.6 per cent; by cash tenants, 159.6 per cent; and by share tenants, 49.9 per cent. The greater part of the increase occurred in the last decade, which shows an increase of 35.1 per cent in number of farms, 17.6 per cent in farms operated by owners. 78.7 per cent in ${ }^{-}$ cash-tenant farms, and 19.5 per cent in share-tenant farms. The percentages in Table 4 show that the number of tenants has increased more rapidly than that of farms operated by owners.
In $1900,45.0$ per cent of the farms in the state were operated by white farmers and 55.0 per cent, by colored farmers. Of the white farmers, 57.8 per cent own all or a part of the farms they operate, and 42.2 per cent operate farms owned by others. For the colored farmers the corresponding percentages are 22.2 and 77.8 .

In $1890,49.8$ per cent of all tenants were share tenants, and in 1900, 39.9 per cent. The relative number of farms rented for cash or for a share of the products is determined largely by the race of the farmers and the kinds of crops grown. In the western counties,
where diversified farming is more general and a larger per cent of farmers are white, share tenants outnumber cash tenants, but in the leading cotton-growing counties, where more that one-half of the farmers are colored, cash tenants exceed share tenants. The greater number of colored farmers in the cotton counties are classed as cash tenants, but where local contract systems prevail the distinction between cash and share tenure is hard to draw.

No previous census has reported the number of farms operated by "part owners," "owners and tenants," or "managers," but it is believed that the number conducted by the last-named class is constantly increasing.

FARMS CLASSIFIED by Race of farmer and by tenure.

Table 6.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY RACE OF FARMER AND BY TENURE, WITH PERCENTAGES.

RACE OF FARMER, AND TENURE.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { farms. } \end{aligned}$	NUMBER OF ACRES IN FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	155, 355	90.0	13,985, 014	100.0	\$153, 591,159	100.0
White	69,954	145.7	10,192,988	72.9	109,589, 887	71.4
Golored ${ }^{1}$.	85,401	44.4	3,792, 076	27.1	44, 001, 272	28.6
Owners................	52,623	144.2	7,585, 751	54.2	83, 106,067	54.1
Part owners	6,310	88.1	655,625	4.0	5,574,641	3.6
Owners and tenants. -	484	178.3	86,303	0.6	700,833	0.5
Managers.	1,054	631.7	665, 760	4.8	5,901, 821	3.8
Cash tenants	57,046	56.1	3,202,921	22.9	34, 220,038	22.3
share tenants	37, 838	49.9	1,888, 654	13.6	24, 087, 769	15.7

${ }^{1}$ Includes 20 Indians.
Table 7.-AVERAGE VALUES OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY RACE OF FARMER AND BY TENURE.

RACE OF FARMER, and tenvie.	average values per farm of-					Per cent of gross income on total investment in farm property.
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improvements (except buildings).	Buildings.	Implements and ma- chinery	Live stock.		
The State.	8642	$\$ 174$	\$43	\$130	\$402	40.7
White	995	304	72	196	541	34.6
Colored ${ }^{1}$.	353	67	19	76	289	56.0
Owners............	981	323	75	200	495	31.4
Part owners	527	166	48	142	387 574	43.9
Owners and tenants.	924 3,857	${ }_{990}^{282}$	- 246	1806	1,674 1,	39.6 27.8
Cash tenants	+400	84	25	91	- 328	54.6
Share tenants	463	78	17	79	355	55.7

${ }^{1}$ Includes 20 Indians.
While colored farmers operate more than one-half of all the farms of South Carolina, they control but little over one-fourth of the total acreage, or the value of
farm property, and actually own less than one-twelfth of the entire acreage and about one-fourteenth of the total value of farm property.

The values of all forms of farm property are less for colored than for white farmers. The higher per cent of gross income for colored farmers does not indicate superior management, but is due to the smaller average area and consequently more intensive cultivation of their farms, and to the very low average values of their farm property, or capital invested.
Farms operated by managers have the highest average values of all forms of farm property, many of this class being cotton plantations, while some are farms connected with public institutions. The ratio which the gross income bears to the total value of farm property is, however, smaller than for any other group. This is due to the high valuation of the farm property, and the fact that some of them are not cultivated for profit.

FARMS CLASSIFIED BY AREA.

Tables 8 and 9 present the principal statistics for farms classified by area.

Table 8.--NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY AREA, WITH PERCENTAGES.

AREA.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	NUMBER OF ACRES IN FARMS.			value of farm PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	155, 355	90.0	13,985, 014	100.0	\$153, 591, 159	100.0
Under 3 acres	1,193	2.0	2,338	(1)	250, 841	0.2
3 to 9 acres	13,075	5.8	75, 808	0.5	2, 639, 386	1.7
10 to 19 acres.	18,828	13.6	255, 815	1.8	5,398, 173	3.5
20 to 49 s.cres.	54,384	30.5	1,660, 059	11.9	27, 978, 340	18.2
50 to 99 acres.	29,944	67.0	2,005,919	14.3	29,469,508	19.2
100 to 174 acres.	20, 532	125.4	2,576, 058	18.4	31, 391, 743	20.4
175 to 259 acres.	7,866	209.3	1,646, 159	11.8	16, 235, 787	10.6
260 to 499 acres.	6,209	345.6	2,145, 813	15.4	18,960, 100	12.3
500 to 999 acres.	2,314	652.0	1,508, 769	10.8	10, 425,476	6.8
1,000 acres and over ..	1,010	2,087.4	2,108, 276	15.1	10,841,805	7.1

${ }^{1}$ Less than one-tenth of 1 per cent.
Table 9.-AVERAGE VaLues OF SPECIFIED CLASSES OF' FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY AREA.

ABBA.	average values per farm of-					Per cent of gross income on total investment in farm property
	Farm property, June 1, 1900.				Gross income (products of 1899 not fed to live stock).	
	Land and improvements (except buildinge).	Buildings.	Implements and machinery.	Live stock.		
The State.	\$642	\$174	\$43	\$130	\$402	40.7
Under 8 acres.	85	99		19		
3 to 9 acres..	95	69	8	30	86	42.5
10 to 19 acres	155	68	14	50	162	56.7
20 to 49 acres.	327	83	21	83	310	60.3
50 to 99 acres.	635	169	42	188	466	47.4
100 to 174 acres	1,008	265	66	190	553	36.2
175 to 259 acres.	1,355	364	88	257	676	32.8
260 to 499 acres.	2,040	525	142	347	897	29.4
500 to 999 acres	3,019	781	192	518	1,154	25.6
1,000 acres and over ..	7,655	1,684	477	918	2,520	23.5

With a few exceptions, the average values of all forms of.farm property increase with the size of the farms. For the group of farms containing less than 3 acres, the average values for land, improvements, and buildings are comparatively high, owing to the fact that many of this group are suburban or summer homes, while a number of them are city dairies and truck farms. The group from 20 to 49 acres includes the largest number of cotton plantations, and the per cent of gross income on total investments is largest for this group.

The average gross incomes per acre for the various groups classified by area are as follows: Farms under 3 acres, $\$ 27.43 ; 3$ to 9 acres, $\$ 14.78 ; 10$ to 19 acres, $\$ 11.96 ; 20$ to 49 acres, $\$ 10.15 ; 50$ to 99 acres, $\$ 6.96$; 100 to 174 acres, $\$ 4.41 ; 175$ to 259 acres, $\$ 3.23 ; 260$ to 499 acres, $\$ 2.59 ; 500$ to 999 acres, $\$ 1.77$; and 1,000 acres and over, \$1.21.

FARMS CLASSIEIED BY PRINCIPAL SOURCE OF INCOME.

Tables 10 and 11 present the leading features of the statistics relating to farms classified by principal source of income. If the value of the hay and grain raised on any farm exceeds that of any other crop and constitutes at least 40 per cent of the total value of products not fed to live stock, the farm is classified as a "hay and grain" farm; if vegetables are the leading crop, constituting 40 per cent of the value of products, it is a "vegetable" farm. The farms of the other groups are classified in accordance with the same general principle. "Miscellaneous" farms are those whose operators do not derive 40.0 per cent of their income from any one class of products. Farms with no income in 1899 are classified according to the agricultural operations upon other farms in the same locality.

For the several classes of farms the average values per acre of products not fed to live stock are as follows: For farms whose operators derive their principal income from flowers and plants, $\$ 264.29$; nursery products, $\$ 12.52$; vegetables, $\$ 10.60$; fruit, $\$ 6.82$; tobacco, $\$ 6.27$; cotton, $\$ 4.94$; dairy produce, $\$ 4.45$; sugar, $\$ 3.31$; miscellaneous, $\$ 3.28$; live stock, $\$ 3.23$; hay and grain, $\$ 3.22$; and rice, $\$ 2.61$.
Table 10.-NUMBER AND ACREAGE OF FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY PRINCIPAL SOURCE OF INCOME, WITH PERCENTAGES.

PRINCIPAL SOURCEOF INCOME.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { farms. } \end{gathered}$	NUMBER OF ACRES IN FARMS.			VALUE OF FARM PROPERTY.	
		Average.	Total.	Per cent.	Total.	Per cent.
The State.	155, 355	90.0	13, 985, 014	100.0	\$158, 591, 159	100.0
Hay and grain.	9,549	102.9	982,434	7.0	14, 465, 269	9.4
Vegetahles ..	2,332	63.5	148,062	1.1	2,794,298	1.8
Fruit	-189	61.3	11, 589	0.1	291,311	0.2
Dairy produce	3, 3746	139.8 167.9	471,816	3.4	4,766,633	3.1
Tobacco......	1,953	169.9 99.9	195,026	1. 0	$1,180,499$ $2,312,792$	0.8 1.5
Cotton.	112,822	81.1	9,151,766	65.4	99, 943,900	65.0
Rice	1,206	305.2	- 368,116	${ }_{2} 2.6$	99,843, 2174	1.8
Sugar	19	97.4	1,850	(1)		${ }^{(1)}$
Flowers and plants...	,	3.5	14	(3)	12,515	(1)
Nursery products..... Miscellaneous		67.3 110.0	- ${ }_{2,579,917}^{202}$	(1)	6, 850	(1)
Miscellaneous	23,460	110.0	2,579,917	18.5	25,126, 442	16.4

Table 11.-average Yalues of specified clasies OF FARM PROPERTY, AND AVERAGE GROSS INCOME PER FARM, WITH PER CENT OF GROSS INCOME ON TOTAL INVESTMENT IN FARM PROPERTY, CLASSIFIED BY PRINCIPAL SOURCE OF INC ONIE.

PRINCIPAL source of income.	average values per farm ofFarm property, June 1, 1900.					Per cent of gross income on total investment in farm property.
	Land and im-prove(except buildings).	Buildings.		Live stock.	Gross income (products of 1899 not fed to live stock).	
The state .	\$642	\$174	\$43	\$130	\$402	40.7
Hay and grain	1,060	272	76	107	331	21.9
Vegetables....	763	266	60	109	673	56.2
Fruit	1,072	340	34	95	418	27.1
Live stock.....	812	309	68	223	452	32.0
Dairy produce	1,471	617	104	479	747	28.0
Tobacco....	736	255	53	140	626	52.9
Cotton	979	143	37	126	401	45.3
Rice.	1,592	385	143	181	796	34.6
Sugar................	443	190	65	153	322	37.8
Flowers and plants...	1,975	1. 100	54		925	29.6
Nursery products....	1,192	${ }^{675}$	77	${ }^{6}$	843	43.2
Miscellaneous	664	226	46	135	360	33.6

The wide variations shown in the averages and percentages of gross income are largely due to the fact that in computing gross income no deduction is made for expenditures. For florists' establishments, nurseries, and market gardens the average expenditure for such items as labor and fertilizers represents a far larger percentage of the gross income than in the case of "hay and grain," "live-stock," or " miscellaneous" farms. Were it possible to present the average net incomes, the variations shown would be comparatively slight.

FARMS CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED TO LIVE STOCK.

Tables 12 and 13 present data relating to farms classified by the reported value of products not fed to live stock.

Table 12.-NUMBER AND ACREAGE of FARMS, AND VALUE OF FARM PROPERTY, JUNE 1, 1900, CLASSIFIED BY REPORTED VALUE OF PRODUCTS NOT FED to LIVE STOCK, WITH PERCENTAGES.

value of products NOT FED TO LIVE stock.	Number of farms	NUMBER OF ACRES IN FARMS.			value of farm PROPERTY.	
		$\begin{aligned} & \text { Aver- } \\ & \text { age. } \end{aligned}$	Total.	Per cent.	Total.	Per cent.
The State.	155,355	90.0	13, 985,014	100.0	\$153, 691, 159	100.0
$\$ 0$.	871	69.5	60,541	0.4 1.7	453,500 $2.231,290$	0.3 1.5
\$1 to \$49	10,578	22.9 30.4	241, 878	1.4 3.4	4,441,209	2.9
\$100 to \$09 ${ }^{2}$	- 48,104	30.4 49.8	2,393, 801	17.1	24, 458,080	15.9
\$100 to \$8249	49,940	80.4	4, 212,801	28.7	45, 792, 400	29.8
\$500 to \$999	22, 230	153.8	3, 418, 045	24.5	42, 435, 280	27.6
\$1,000 to \$2,499	6,769	311.9	2,111, 580	15.1	26,234, $7,544,880$	17.9
\$2,500 and over	1,358	938.5	1, 274,481	9.1	7,544,880	4.9

Table 13.-AVERAidE VALUEs OF SPECIFIED CLASSES OF FARM PROPERTY, AND AVERAGE (iROSS INCOME PER FARM, WITH PER CENT OF $\leftarrow R O S S$ INCOME ON TOTAL INVESTMENT IN FARV PROPERTY, CLASSIFIED BY REPORTED YALUE OF PRODUCTS NOT FED TO LIVE STOCK.

The absence of income in the first group is due in part to the fact that the enumerators could not always secure complete reports for farms where changes in ownership or tenancy had occurred shortly prior to the date of enumeration. The person in charge of such farms, June 1,1900 , could not always give definite information concerning the products of the preceding year. To this extent the reports fall short of giving a complete exhibit of farm income in 1899. Other farms with small reported incomes are doubtless summer resorts or the suburban homes of business or professional men, who derive their principal incomes from other than agricultural pursuits.

LIVE STOCK.

At the request of the various live-stock associations of the country, a new classification of domestic animals was adopted for the census of 1900 . The age grouping for neat cattle was determined by their present and prospective relations to the dairy industry and the supply of meat products. Horses and mules are classified by age, and neat cattle and sheep, by age and sex. The new classification permits a very close comparison with previous census reports.

Table 14 presents a summary of live-stock statistics.
The value of all live stock on farms, June 1, 1900, was $\$ 20,199,859$. Of this amount, 41.7 per cent represents the value of mules; 24.0 per cent, the value of horses; 12.6 per cent, that of dairy cows; 8.9 per cent, that of other neat cattle; 7.0 per cent, that of swine; 4.4 per cent, that of poultry; 0.5 per cent, that of sheep; and 0.9 per cent, that of all other live stock.

No reports were secured of the value of live stock not on farms, but it is probable that such animals have higher average values than those on farms. Allowing
the same averages, the value of domestic animals not on farms was $\$ 1,096,655$, and the total value of live stock in the state, exclusive of poultry and bees not on farms, was approximately $\$ 21,296,514$.

Table 14.-DOMESTIC anIMALS, FOWLS, and bees on FARIIS, JUNE 1, 1900, WITH TOTAL AND AVERAGE Values, and number of domestic animals not ON FARMS.

LIVE STOCE.	Age in years.	ON FARMS.			NOT ON FARMS.
		Number.	Valne.	Average value.	Number.
Calves	Under 1.......	87,734	\$361, 454	\$4.12	2,580
Steers	1 and under 2.	14,975	95,827	6.40	466
Steers	2 and under 3.	8,157	74,544	9.14	288
Steers	; and over....	19,118	315, 707	16.51	613
Bulls.	1 and over....	10,116	125, 621	12.42	153
Heifers	1 and under 2.	33,879	291, 705	8.61	888
Cows kept for milk	2 and over....	126,684	2, 541, 723	20.06	9,649
Cows and neifers not kept formilk.	2 and over....	42,235	528, 133	12.50	622
Colts	Under1.......	2,701	69, 778	25.83	80
Horses	1 and under 2.	3,188	161,587	50.69	97
Horses	2 and over.	72,530	4, 615, 538	63.64	9,678
Mule colts	Under 1	520	18,937	36.42	32
Mules.	1 and under 2.	3,081	187, 207	60.76	41
Mules.	2 and over....	113,768	8,209,379	72.16	2,759
Asses and burros.	Ail ages	247	22, 353	90.50	54
Lambs	Under $1 .$.	19,102	25, 365	1.33	113
Sheep (ewes)	1 and over....	40,478	66,202	1.64	217
Sheep (rams and wethers).	1 and over....	11,958	20,203	1.69	192
Swine..................	All ages	618,995	1.411,516	2.28	12,030
Goats	All ages	26,576	24,450	0.92	681
Fowls: 1					
Chickens ${ }^{2}$.--..--	2, 664, 784			
Turkeys	-.......-.....	120, 140	889,953		
Geese.		83,543			
Ducks........		39, 8 5 2			
Bces (swarms of)		93,958	142, 677	1.52	
Value of all live stock			$20,199,859$		

${ }^{1}$ The number reported is of fowls over three months old. The value is of all, old and young.

I Including Gninea fowls.

CHANGES IN LIVE STOCK ON FARMS.
The following table shows the changes since 1850 in the number of the most important domestic animals:

Table 15.-NUMBER OF SPECIFIED DOMESTIC ANIMALS ON FARMS: 1850 TO 1900.

Y゙EAR.	Dairy cows.	Other neat cattle.	Horses.	Mules and asses.	Sheep. ${ }^{\text {r }}$	Swine.
1900.	126, 684	216,214	78,419	117, 616	52, 436	618,995
1890.	107, 184	161. 109	59,888	86,306	79,421	494,696
1880.	139,881	223, 828	60,660	67,005	118,889	628, 198
1870.	98,693	150,610	44,105	41,327	124, 594	395,999
1860.	163,938	342,838	81,125	56,456	233, 509	965,779
1850.	193. 244	584,442	97,171	37.483	285,551	1,065,503

${ }^{1}$ Lambe not inctuded.
In South Carolina, as in most states of this section, the rearing of live stock is but an auxiliary to the other branches of agriculture, and horses and mules exceed all other classes in importance. Since the Civil War the character of general farming industries has so changed in the Atlantic states that the raising of meat-producing stock has been transferred to the West. Each class, except mules and asses, shown fewer numbers in 1900 than in 1850, although for the decade preceding 1900
considerable increases are shown in the numbers of all classes except sheep. The number of sheep has decreased steadily since 1850, the number reported in 1900 being 34.0 per cent less than that in 1890. All other classes show fluctuations in number since 1850. For the last decade the following increases are shown: Dairy cows, 18.2 per cent; other neat cattle, 34.2 per cent; horses, 30.9 per cent; mules and asses, 36.3 per cent; and swine, 25.1 per cent.

In 1900 the enumerators were instructed to report no fowls under three months old, a limitation not made in former census years. This accounts, in part at least, for the following apparent decreases in numbers of all domestic fowls for the decade 1890 to 1900: Geese, 31.3 per cent; chickens, 31.2 per cent; turkeys, 19.4 per cent: ducks, 15.4 per cent. That this decrease is only apparent is indicated by the large increase in the production of eggs for the same decade.

ANIMAL PRODUCTS.

Table 16 presents a summary of animal products for 1899.

Table 16.-QUANTITIES, AND VALUES OF SPECIFIED anImal products, and values of poultry KAISED, ANIMALS SOLD, AND ANIMALS SLAUGHTERED ON FARMS IN 1899.

PRODUCTS.	Thit of measure.	Quantity.	Value.
Wool.	Pounds	175, 290	\$31,537
Mohatr and goat hair	Ponnds.		26
Milk	Gallons..	${ }^{1} 44,031,528$	
Butter-	Pounds	8,150, 437	${ }^{2} 3,232,725$
Cheese	Pounds	1,081	
Eggs	Dozens	9, 007,700	925,966
Honey	Pounds	872,590	
Wax	Pounds	37,500	92, 857
Animals sold			823,554
Animals slanghtered			2,730,079
Total.			9,376,499

[^182]The value of animal products for 1899 was $\$ 9,376,499$, or nearly half as great as the value of all live stock on farms, June 1, 1900, and 13.7 per cent of the value of all farm products for the year 1899 . Of this amount, 37.9 per cent represents the value of animals sold and animals slaughtered on farms; 34.5 per cent, the value of dairy produce; 26.3 per cent, the value of poultry and eggs; 1.0 per cent, the value of honey and wax; and 0.3 per cent, the value of wool, mohair, and goat hair.

ANIMALS SOLD AND ANIMALS SLAUGHTERED.

In 1899 the value of animals sold and animals slaughtered on farms was $\$ 3,553,633$, or 5.2 per cent of all farm products. Animals slaughtered were reported by 94,302 farmers, or 60.7 per cent of all in the state, the average value per farm being $\$ 28.95$. Sales of live animals
were reported by 29,784 farmers, or 19.2 per cent of the whole number, the average receipts per farm being $\$ 27.65$.

In obtaining these reports the enumerators were instructed to obtain from each farm operator a statement of the amount received from the sale of live animals in 1899 , less the amount paid for animals purchased during the same year.

DAIRY PRODUCE.

Of the $\$ 3,232,725$ given in Table 16 as the value of dairy produce, $\$ 2,890,342$, or 89.4 per cent, represents the value of such produce consumed on farms, and $\$ 342,383$, or 10.6 per cent, the amount received from sales. Of the latter amount, $\$ 195,939$ was received from the sale of $1,103,637$ pounds of butter; $\$ 141,737$, from $1,186,045$ gallons of milk; $\$ 4,657$, from 4,796 gallons of cream; and $\$ 50$, from 800 pounds of cheese.

The production of milk in the last decade increased 84.7 per cent and that of butter made on farms 42.1 per cent, while a decrease of 56.3 per cent is shown in the amount of cheese made on farms.

POULLRY, EGGS, HONEY AND WAX, AND wOOL.

Of the value of poultry products in $1899,62.4$ per cent represents the value of poultry raised, and 37.6 per cent that of eggs produced. The production of eggs in 1899 was 58.0 per cent greater than in 1889. The census of 1899 compared with that of 1889 shows increases of 1.9 per cent in the production of honey, and 35.2 per cent in that of wax. The production of wool in 1899 was 11.1 per cent greater than in 1889 , but this increase is probably only apparent, as the fleeces from a large number of sheep were omitted from the tables in 1890, but included in a general estimate of wool shorn after the census enumeration. Horry and Berkeley counties together reported about one-sixth of the state total.
horses, mules, and dairy cows on spectrted classes OF FARMS.
Table 17 presents, for the leading groups of farms, the number of farms reporting horses, mules, and dairy cows, and the average number of these animals per farm. In computing the averages presented, only those farms which report the kind of stock under consideration are included.

In South Carolina, as in other states where cotton is a staple crop, and much of the farm labor is performed by negroes, large numbers of mules are used as work animals. For most classes of farms the average number of mules and horses are about equal, but on farms operated by managers, and on farms of the largest area, more mules than horses are reported. This is due to the fact that these two classes include a relatively large number of cotton plantations.

If the number of horses and mules be combined, the average number of work animals per farm compares favorably with the corresponding figures for the more intensively cultivated farms of New England.

Table 17.-HORSES, MULES, AND DAIRY COWS ON SPECIFIED CLASSES OF FARMS, JUNE 1, 1900.

CLassks.	HORSES.		Mules.		Dalry Cows.	
	Farms reporting.	Average per farm.	Farms reporting.	Average per farm.	Farms reporting.	Average per farm.
Total	58, 541	1.3	75,428	1.6	81, 483	1.6
White farmers....... Colored farmers	35, 658	1.4	39,635	1.9	47,356	1.8
	22, 883	1.2	35,793	1.2	34,127	1.3
Owners ${ }^{1}$.	32,073	1.5	30,215	1.9	38,415	1.9
Managers...	645	2.1	722	4.3	-678	2.9
Cash tenants.	19, 106	1.2	25,244	1.3	24,525	1.3
Share tenants	6,717	1.2	19,247	1.2	-17, 865	1.2
Under 20 acres....... 20 to 99 acres.	7,316	1.1	3,922	1.1	8,140	1.3
	29, 405	1.2	44,474	1.2	43,824	1.3
100 to 174 acres.	10,322	1.4	14,036	1.7	15,349	1.6
175 to 259 acres.......	4,621	1.5	5,738	2.0	6,303	1.9
260 acres and over.	6,877	2.0	7,258	3.1	7,867	2.8
Hay and grainVegetable . . .	3,198	1.4	2,815	1.9	3,487	1.6
	1, 017	1.4	486	1.9	, 731	1.9
Fruit	, 71	1.3	60	1.2	97	1.3
	1,879	1.6	1,173	1.7	2,148	2.3
Dairy.....................	288	1.8	209	1. 9	- 442	8.7
Tobacco	877	1.3	440	1.5	808	1.4
Cotton...-- . . - - - . . .	40,305	1.3	61,504	1.5	58,691	1.4
Rice	402	2.2	, 228	4.7	, 349	2.1
Miscellaneous ${ }^{\text {2 }}$.	10,504	1.3	8,013	1.6	14,730	1.7

${ }^{1}$ Including "part owners", and "owners and tenants."
${ }^{2}$ Including sugar farms, florists' establishments, and nurseries.
CROPS.
The following table gives the statistics of the principal crops of 1899:
Table 18.-ACREAGES, QUANTITTES, AND VALUES OF THE PRINCIPAL FARM OROPS IN 1899.

Crors.	Acres.	Unit of messure.	Quantity.	Value.
Corn.	1,772, 057	Bushels.	17,429,610	\$9,149, 808
Wheat	174, 245	Bushels.	1,017,319	, 958, 158
Oats	222, 544	Bushels.	2,661,670	1,226,575
Barley	281	Bushels.	2, 3,106	1,2,899
Rye.	4,256	Bushels..	19,372	18,551
Buckwheat	10	Bnshels.	- 41	18,42
Broom cori	21	Pounds.	11,280	823
Rice	77,657	Pounds	47, 360, 128	1,366,528
Clover seed		Bushels.	, 17	1,360, 72
Grass seed		Bushels.	204	171
Hay and forage.	106, 124	Tons...	213,249	2,304,734
Sea-island cotton se		Tons.	13, 607	48,200
Upland cotton seed		Tons.	2410,459	4,925,201
Sea-island cotton .	23,902	Bales ${ }^{\text {3 }}$	9,209	664,559
Upland cotton	2,050,179	Bales 4	872,213	28, 925,593
Tobacco	25,993	Pounds	19,895,970	1,297, 293
Peanuts.	7,162	Bushels...	131,710	106, 018
Dry beans	1,657	Bushels.	.14,925	13, ¢36
Dry pease	143, 070	Bushels	1,16 1,705	859, 932
Potatoes.	8,068	Bushels	651,916	435, 468
Sweet potatoes	48,831	Bushels	3, 369,957	1,538, 205
Onions.	147	Bushels	16,172	11,312
Miscellaneous vegetables	40,624			2,079,862
Sngar cane - - -	7,342	Tons.	73,702	
(a) cane sold		Tons.	3,585	13, 582
(b) cane kept for seed		Tons..-	29,368	102, 788
(c) sugar made.		Pounds	49,590	2,256
(d) molasses and sirup		Gallons.	805,064	310,799
Sorghum cane.	7,250	Tons.	5 3, 589	10,285
Sorghum sirup		Gallons.....	478,190	168,038
Small fruits	591			59,486
Grapes....	${ }^{6} 638$	Centals	33,238	782,706
Orchard fruits	${ }^{6} 28,587$			8272,794
Tropical fruits				1,147
Nuts.				3,868
Forest products				1,915, 134
Flowers and plants.	28			7,920
Seeds - - - . . .	9			505
Nursery products	84			4,416
Miscellaneons	28			749
Total	4,751,385			58, 890,413

${ }^{1}$ Exclusive of 1,000 tons, valued at $\$ 13,365$, sold in seed cotton and included with the cotton.
${ }_{2}$ Exclusive of 8,219 tons, valued at $\$ 98,623$, sold in seed cotton and included with the cotton.
${ }^{3}$ Average weight, 336 pounds.
4 Average weight, 480 pounds.
${ }^{5}$ Sold as cane.
6 Estimated from number of vines and trees.
Tincluding value of raisins, wine, etc.

Of the total value of crops, cotton, including seed, contributed 58.7 per cent; cereals, including rice, 21.6 per cent; hay and forage, 3.9 per cent; miscellaneous vegetables, 3.5 per cent; forest products, 3.3 per cent; sweet potatoes, 2.6 per cent; tobacco, 2.2 per cent; dry pease, 1.5 per cent; potatoes, 0.7 per cent; and all other products, 2.0 per cent.

The average values per acre of the various crops are as follows: Flowers and plants, $\$ 283$; onions, $\$ 77$; potatoes, $\$ 54$; nursery products, $\$ 53$; miscellaneous vegetahles, $\$ 51$; tobacco, $\$ 50$; sweet potatoes, $\$ 32$; hay and forage, $\$ 22$; cotton, including seed, $\$ 17$; peanuts, $\$ 15$; orchard fruits, $\$ 10$; cereals, $\$ 6$; and dry pease, $\$ 6$. The crops yielding the highest average returns per acre were grown upon very highly improved land. Their production required a relatively great amount of labor, and large expenditures for fertilizers.

COTTON.

The following table is a statement of the changes in cotton production since 1879:

Table 19.-ACREAGE AND PRODUCTION OF COTTON: 1879 TO 1899.

YEAR.	ACREAGE.		PRODUCTION.		
	Total.	Per cent of jncrease.	Commercial bales.	Pounds.	Per cent of incresse.
1899.	2,074,081	4.4	881, 422	421,862, 069	18.4
1889.	1,987,469	45.7	747, 190	356, 409, 630	50.6
1879.	1,364, 249		522, 548	236, 714, 244	

In 1849 South Carolina produced 300,901 bales of cotton, and in $1859,353,412$ bales, an increase of 17.5 per cent. The census of 1870 found the cotton crop in this, as in other states, suffering from the effects of the Civil War, the production in 1869 amounting to only 224,500 bales, or 36.5 per cent less than that of 1859. In the following decade the production of cotton more than doubled, while the decade from 1879 to 1889 showed an increase of 43.0 per cent.

In 1899, 134, 741 farmers devoted an area of $2,074,081$ acres to the cultivation of cotton, an average of 15.4 acres per farm, and 35.9 per cent of the total improved farm land. From this land was produced a total crop of $421,862,069$ pounds of cotton, an average of 3,131 pounds per farm, 203 pounds per acre, 13,983 pounds per square nile of land surface, and 315 pounds per capita. Of the total production 99.2 per cent was upland cotton, and the remaining 0.8 per cent was seaisland cotton.
The total value of the crop, including the value of cotton seed, was $\$ 34,563,553$, an áverage of $\$ 256.52$ per farm, $\$ 16.66$ per acre, and $\$ 25.79$ per capita. Of the total value, $\$ 28,925,593$ was the value of the upland cot ton, $\$ 664,559$, that of sea-island cotton, and $\$ 4,973,401$, that of cotton seed. The total value represents 55.3 per cent of the grows farm inconie.

The counties reporting the largest area under cotton were Anderson, Orangeburg, Laurens, Abbeville, Sumter, and Spartanburg, ranking in the order named, and reporting 30.0 per cent of the total acreage. These counties, which are located in the central and northwestern parts of the state, were seeded to upland cotton, while sea-island cotton was grown almost entirely in the counties adjacent to the coast.

CEREALS.

Table 20 is a statement of the changes in cereal production since 1849.

Table 20.-ACREAGE AND PRODUCTION OF CEREALS: 1849 TO 1899.
Part 1.-ACREAGE.

YEAR. ${ }^{1}$	Barley.	Corn.	Oats.	Rice.	Rye.	Wheat.
1899.	281	1,772.057	222, 544	77,657	4,256	174,245
1889.	688	1,345,990	308, 056	42, 238	4,129	115,510
1879.	1,162	1,303,404	261,445	78,388	7,152	170,902

Part 2.-BUSHELS PRODUCED.?

1899.	3,106	17,429,610	2,661, 670	47, 360, 128	19,372	1,017,319
1889	9,428	13,770,417	3,019, 119	30,338, 951	17,303	658,351
1879.	16,257	11,767,099	2, 715, 505	52,077,515	27, 049	962,358
1869.	4,752	7,614,207	613,593	32, 304, 825	36, 165	783,610
1859.	11, 490	15,065, 606	936,974	119, 100, 588	89, 091	1,285,631
1849.	4,583	16, 271, 454	2,322, 155	159, 930,613	43,790	1,066,277

1 No statistics of acreage were secured prior to 1879.
${ }^{2}$ Rice reported in pounds.
The total area devoted to cereals in 1879 was $1,522,453$ acres; in 1889, 1,816,676 acres; and in 1899, $2,251,050$ acres, an increase for the twenty years of 23.5 per cent. The acreage given for 1889 includes 65 acres devoted to buckwheat, and that for 1899 includes 10 acres. The increases in the areas devoted to the various cereals in the decade from 1889 to 1899 were: Rice, 83.9 per cent; wheat, 50.8 per cent; corn, 31.7 per cent; and rye, 3.1 per cent. The decreases were: Barley, 59.2 per cent; and oats, 27.8 per cent.

Exclusive of rice, the total number of bushels of cereals, including buckwheat, reported in 1849 was $19,708,542$, and for $1899,21,131,118$, an increase of 7.2 per cent in the half century. The production of rice shows a decrease in the same time of 70.4 per cent.

Of the total area under cereals in 1899, 78.7 per cent was devoted to corn; 9.9 per cent, to oats; 7.7 per cent, to wheat; and 3.7 per cent, to barley, buckwheat, rice, and rye.

Barley, corn, oats, rye, and wheat are reported from nearly all parts of the state. Rice was grown in 35 counties, but 60.0 per cent of the acreage was furnished by the four counties of Georgetown, Colleton, Beaufort, and Berkeley, in the extreme southeastern part of the state.

HAY and forage.

In $1900,87,777$ farmers, or 56.5 per cent of the total number, reported hay or forage crops. Exclusive of
cornstalks and corn strippings, they obtained an average yield of 1.03 tons per acre. The acreage in hay and forage in 1899 was 106,124 acres, or 264.3 per cent greater than ten years before, 46.1 per cent of this acreage producing grains cut green for hay.

In 1899 the acreages and yields of the various kinds of hay and forage were as follows: Wild, salt, and prairie grasses, 954 acres and 985 tons; millet and Hungarian grasses, 474 acres and 806 tons; alfalfa or lucern, 18 acres and 31 tons; clover, 1,435 acres and 1,728 tons; other tame and cultivated grasses, 50,733 acres and 51,608 tons; grains cut green for hay, 48,918 acres and 47,912 tons; crops grown for forage, 3,592 acres and 5,816 tons; cornstalks and corn strippings, 497,527 acres and 104,363 tons.
In Table 18 the production of cornstalks and corn strippings is included under "hay and forage," but the acreage is included under "corn," as the forage secured was only an incidental product of the corn crop.

ORCHARD FRUITS.

The changes in orchard fruits since 1890 may be seen in the following table:

Table 21.-ORCHARD TREES AND FRUITS: 1890 AND 1900.

FRUITS.	NUMBER OF/TREES.		BUSHELS OF FRUIT.	
	1900	1890	1899.	1889
Apples	694,700	321, 137	251,728	435.484
Apricots	2,397	2,099	120	2,057
Cherries.	95, 288	21,329	6,551	10,173
Peaches	1,136.790	711,138	129,472	1,490,633
Pears.	72,846	12,720	20,439	9,244
Plums and prunes	99,209	20,383	16,177	8,507

The total number of fruit trees in the state in 1890 was $1,088,806$, and in $1900,2,123,968$, an increase of $1,035,162$, or 95.1 per cent. The increases are as follows: Pear trees, over five times; cherry, plum and prune trees, over four times; apple trees, 116.3 per cent; and peach trees 59.9 per cent.
Of the total number in $1900,53.5$ per cent were peach trees; 32.7 per cent, apple trees; 3.4 per cent, pear trees; 4.7 per cent, plum and prune trees; and 5.7 per cent, cherry, apricot, and unclassified fruit trees. The last-named class, which is not included in the table, numbered 22,738 and yielded 7,686 bushels of fruit.
The value of orchard fruits given in Table 18 includes the value of 575 barrels of cider, 259 barrels of vinegar, and 21,140 pounds of dried and evaporated fruits. Comparisons of yields or of their values, when made by decades only, have little significance, as the yield of any given year is largely due to the nature of the season.

tropical fruts and nuts.

In $1899,2,537$ farms produced 74,050 pounds of figs from 7,109 trees. There were reported 9,959 pecan trees, yielding 13,020 pounds of nuts; 566 Persian or

English walnut trees, yielding 1,500 pounds; and 3,704 unclassified nut-bearing trees, yielding 3,976 pounds. The total value of the fig crop was $\$ 1,14 \overline{7}$, and that of nuts, $\$ 3,868$.

SMALI FRUITS.

There were but 591 acres devoted to small fruits in 1899. Strawberries occupied 499 acres, or 84.4 per cent of the total area, and yielded 845,695 quarts. More than half of the acreage in this fruit was reported from Charleston county. The acreages and productions of other berries were as follows: Blackberries and dewberries, 39 acres and 50,960 quarts; raspberries and Logan berries, 4 acres and 4,150 quarts; currants, 2 acres and 2,290 quarts; and other small fruits, 47 acres and 55,790 quarts.

SUGAR CANE.

Table 22 presents a comparative statement of the acreage of cane, and the production of sugar and sirup: 1849 to 1899.

Table 2\%.—ACREAGE OF SUGAR CANE, AND PRODUCTION OF SUGAR AND SIRUP : 1849 TO 1899.

YEAR. ${ }^{1}$	Acreage in cane.	Sugar.		SIRUP.	
		Production in pounds.	Average yield per acre in pounds.	Production in gallons.	Average yield per acre in gallons.
1899.	7,342	49,590	6.8	805,064	109.7
1889.	3,305	219,980	66.6	386, 615	117.0
1879.	1,787	274,800	153.8	138,944	77.8
1869.		1,266,000			
1859		237,600			
1849.		805, 200			

${ }^{1}$ No statistics of acreage were secured prior to 1879.
The present census shows that in 1899 sugar cane was grown by 18,776 farmers on 7,342 acres, an average of $0 . t$ of an acre for each farm reporting. From this area they sold 3,585 tons of cane for $\$ 13,582$, and from the remaining product manufactured 49,590 pounds of sugar, valued at $\$ 2,256$, and $805,06 \pm$ gallons of molasses and sirup, valued at $\$ 310,799$. This was an increase in acreage of 122.1 per cent, and in the production of molasses and sirup of 108.2 per cent, but a decrease in the production of sugar of 77.5 per cent.

The total value of sugar-cane products was $\$ 429,425$, an average of $\$ 22.87$ for each farm reporting and of $\$ 58.49$ per acre. The average value of sugar was 4.5 cents per pound and the average value of molasses and sirup was 38.6 cents per gallon.
The crop was grown in 24 counties of the state. The largest production of sugar, 18,990 pounds, was reported from Colleton county; the largest quantity of sirup, 189,642 gallons, was made in Orangeburg county. The latter comnty also leads in the total value of products, the value reported for 1899 being $\$ 91,578$. Barnwell county ranks second, with 108,779 gallons of sirup, valued at $\$ 45,821$.

In addition to the above figures, it is estimated that 29,368 tons of cane, valued at $\$ 102,788$, were kept for seed.

SORGHUM CANE.

In 1899 sorghum cane was grown by 18,332 farmers on 7,250 acres, from which area they sold 3,589 tons of cane for $\$ 10,285$, and from the remaining product manufactured 478,190 gallons of sirup, valued at $\$ 168,038$. This was a decrease in acreage since 1889 of 36.4 per cent. The total value of sorghum-cane products was $\$ 178,323$, an average of $\$ 9.73$ for each farm reporting, and of $\$ 24.60$ per acre.

товacco.

The tobacco crop in South Carolina during the last forty years has fluctuated greatly. In 1849 the state produced 74,285 pounds of tobacco; in 1859, 104,412 pounds; and in 1869, 34,805 pounds. Between 1869 and 1879 there was an increase in the amount produced of 10,873 pounds, or 31.2 per cent; and between 1879 and 1889, a gain of 177,220 pounds, or 388.0 per cent.
The present census shows that tobacco was grown in South Carolina by 6,744 farmers, who obtained from 25,993 acres a yield of $19,895,970$ ponnds, valued at $\$ 1,297,293$. This was an increase over the crop area of 1889 of 25,599 acres, or over sixty times, and in production of $19,673,072$ pounds, or nearly ninety times. The average yield per acre in the state in 1899 was 765 pounds, against 566 pounds in 1889 , and 270 pounds in 1879. The average value was 6.5 cents per pound.

Tobacco is grown in 33 counties in the state. The leading county in acreage and production in 1899 was Marion, with Darlington county second. These two counties furnished 55.1 per cent of the acreage and 56.4 per cent of the crop of the state. Next in order were Florence, Horry, and Clarendon counties. These five leading counties together furnished 85.4 per cent of the acreage, and 86.5 per cent of the production of the state.

PEANUTS.

Peanuts were grown in 1899 by 6,123 farmers, who devoted to the crop 7,162 acres, and secured a product of 131,710 bushels. The average yield per acre was $18 . t$ bushels, and the average value per acre, approximately, $\$ 15$. Of the total acreage, 73.2 per cent lies in Bamberg, Horry, Colleton, Hampton, Orangeburg, and Beaufort counties.

Increases of 178.4 per cent in acreage and 208.0 per cent in production are shown for the last decade.

VEGETABLES.

The total value of vegetables grown in 1899, including potatoes, sweet potatoes, and onions, was $\$ 4,064,847$, of which 51.2 per cent represents the value of miscel-
laneous vegetables; 37.8 per cent, that of sweet potatoes; 10.7 per cent, that of potatoes; and 0.3 per cent, that of onions.
Sweet potatoes were grown in 1899 by 79,145 farmers, or 50.9 per cent of the total number in the state. The area devoted to this crop in 1889 was 46,086 acres, and in $1899,48,831$ acres, a gain of 6.0 per cent.

In the growing of miscellaneous vegetables, 40,624 acres were used. Of this area the products of 24,005 acres were not reported in detail. Of the remaining 16,619 acres, 10,511 acres were devoted to watermelons; 2,562 acres, to cabbages; 1,037 acres, to muskmelons; 800 acres, to cucumbers; 602 acres, to beans; 403 acres, to asparagus; 317 acres, to tomatoes; and 387 acres, to other vegetables.

FLORICULTURE.

The area devoted to the cultivation of flowers and ornamental plants in 1899 was 28 acres, and the value of products sold therefrom was $\$ 7,920$. These flowers and plants were grown by 28 farmers and florists, of whom 4 made commercial floriculture their principal busiuess. The capital invested in land, buildings, and implements was $\$ 12,515$, of which $\$ 4,400$ represents the value of the buildings. Their sales of flowers and plants amounted to $\$ 3,700$. They expended for labor $\$ 550$, and for fertilizers, $\$ 180$. The average gross income for each farm reporting was $\$ 925$.

In addition to the 4 principal establishments, 79 farms and market gardens made use of glass in the propagation of flowers, plants, or vegetables. They had an area under glass of 21,833 square feet, making, with the 8,377 square feet belonging to the florists' establishments, a total of 30,210 square feet.

NURSERIES.

The total value of nursery stock sold in 1899 was $\$ 4,416$, reported by the operators of 34 farms and nurseries, of whom 3 derived their principal income from the nursery business. They had 202 acres of land, and a capital invested in land, buildings, implements, and live stock of $\$ 5,850$.

Their total income was $\$ 2,530$, of which $\$ 2,430$ represents the value of nursery stock, and $\$ 100$, that of other products. The expenditure for labor was $\$ 1,100$, and for fertilizers, $\$ 110$. The average gross income for each farn reporting was $\$ 843$.

LABOR AND FERTILIZERS.

The total expenditure for labor on farms in 1899, including the value of board furnished, was $\$ 6,107,100$, an average of $\$ 39$ per farm. The average expenditure was $\$ 367$ for nurseries, $\$ 138$ for florists' establishments, $\$ 126$ for dairy farms, $\$ 96$ for tobacco farms, $\$ 95$ for vegetable farms, $\$ 65$ for rice farms. $\$ 56$ for hay and grain farms, $\$ 39$ for fruit farms, $\$ 37$ for cotton farms, $\$ 36$ for live-stock farns, and $\$ 26$ for sugar farms.
" Managers "expended on an average, $\$ 507$; "owners," $\$ 62$; "eash tenants," $\$ 23$; and "share tenants," $\$ 17$. White farmers expended $\$ 70$ per farm and colored farmers, $\$ 14$.

Fertilizers purchased in 1899 cost $\$ 4,494,410$, an average of $\$ 29$ per farm and an increase since 1890 of 16.2 per cent. The average expenditure was $\$ 66$ for tobacco and for vegetable farms, $\$ 45$ for fiorists' establishments, $\$ 37$ for uurseries, $\$ 34$ for dairy farms, $\$ 33$ for hay and grain farms, $\$ 29$ for cotton farms, $\$ 22$ for live-stock farms, $\$ 21$ for fruit farms, $\$ 17$ for rice farms, and $\$ 9$ for sugar farms.

IRRIGATION STATISTICS.

The beginning of irrigation in South Carolina was contemporaneous with the introduction of rice growing, the irrigation systems being similar to those now in use. Rice was first planted in 1700 , and from that time until 1861 South Carolina ranked first among the states in its production. Changed labor conditions since the war, and the great expense of maintenance, due to the destruction of dikes, and the total loss of crops by floods. which are frequent since the deforestation of the mountain slopes, have operated against the growth of this industry, and rice culture has not made the progress here that it has in a few other states.

Rice is irrigated in South Carolina by manipulating river waters through trunks built in the dikes which protect the low marsh lands from the rivers. The delta lands are selected with reference to the possibility of flooding from the rivers with fresh water at high tide, and of draining them at low tide. The reclamation of these lands necessitates the building, parallel with the river, of costly dikes, capable of resisting the force of the flood tide, and also that of the river in time of freshets. After the dikes are built, the field is divided into sections or squares by similar banks, called "check" banks. These squares contain from 5 to 30 acres each, and in turn are subdivided by ditches into beds, usually about thirty-five feet wide and extending the length of the square. Each of these squares has a wooden trunk with a door at each end, through which the water is admitted to the field. The trunks are from 30 to 40 feet long, from 3 to 12 feet wide, and about sixteen inches deep, and are built under the dikes on a level with the bed of the ditches. In flooding the field the outer door is raised and the inner closed. As the tide rises the water comes in through the trunk, pushes the field door open, and
passes through the ditches to the field. When the tide falls in the river, the pressure of the water in the field closes the inner swinging door against the muzzle of the trunk, thus holding the water. In draining the field this method is reversed, the field door being raised at low tide and the outer door dropped. The unlimited supply of fresh water and its perfect control by this system of flooding and draining account for the superior quality of rice for which South Carolina is famous.

The practice of dumping the harbor dredgings into the river above Savannah has injured the system of drainage, causing the abandonment of a number of rice plantations along the Savannah River. On many plantations which formerly were readily drained at low tide, pumping is now resorted to when the rivers are high, as the fields can not properly be drained. The pumps, which are mounted on flats or lighters, are operated by steam and shifted on the river from field to field. The suction pipe is dropped over the dike into any desired field and the water pumped into the river.

Rice is grown inland on low, swampy lands, which are flooded from reservoirs or small streams. The cultivation of upland or "Providence" rice is attempted in uany of the interior counties, but owing to the low yield and an occasional total failure the results are not satisfactory. Orangeburg county has the largest crop of upland rice, and in 1899 produced $2,266,162$ pounds, an average yield of 309 pounds per acre. The irrigated crop is sure as compared with that of the uplands, the average yield per acre being much higher, and the quality of rice far superior.

Tide-water irrigation is generally practiced in Beaufort, Berkeley, Colleton, Charleston, Georgetown, and Hampton counties. In 1899 the rice acreage of these counties, irrigated and upland, was 70.0 per cent of the total, while the production, $40,651,664$ pounds, was 86.0 per cent of the total rice crop of the state. The average yield per acre was 748 pounds. The total product of all other counties was $6,708,464$ pounds, an average of 288 pounds per acre.

It is impossible to ascertain the exact cost of reclaiming these delta lands. Rice irrigation was reported on 648 plantations; the acreage was 29,690 , and the yield, $33,467,191$ pounds. The average first cost per acre for preparing rice lands for irrigation, inclusive of cost of construction of dikés, trunks, check banks, and ditches, is estimated to be $\$ 28.68$, and the systems in use represent a total investment of over $\$ 851,509$.

[^0]: ${ }^{1}$ Includes proprietors and firm members, with their salaries; number only reported in 1900, but not included in this table. (See Table 14.)
 2 Not reported separately.
 ${ }^{3}$ Decrease.
 ${ }^{4}$ Not reported.

[^1]: ${ }^{1}$ Incrudes mill supplies and all other materials, which are shown separately in Table 14.
 ${ }_{2}$ Less than one-tenth of 1 per cent.

[^2]: ${ }^{1}$ Origin and Progress of the Canning Industry in Maine, F. O.

[^3]: ${ }^{2}$ San Francisco Trade Journal, December 20, 1901.

[^4]: 1 None reported in 1890
 2 Reported under head of other states in 1900 .
 3 Includes proprietors and firm members. with their salaries, number only reported in 1900 , but not included in this table. (See Table 24 ,
 ${ }_{4}$ Includes establishments distributed as follows: District of Columbia, 1; Missouri, 1; New Hampshire, 1; New Jersey, 1; North Carolina, 1; Penusylvania, 1;
 South Carolina, 1; Texas, 1.

[^5]: ${ }^{1}$ Includes establishments distributed as follows: Buffalo, N. Y.. 1; Cleveland, Ohio, 1; District of Columbia, 1; Los Angeles, Cal., 1; New Britain, Conn., 1; New
 Orleans, La., 2; Philadelphia, Pa., 1; Portland, Oreg., 1; St. Louis, Mo., 1; Wilmington, Del., 1.

[^6]: ${ }^{1}$ Treatise on fishing for herring, etc., published in 1800, at Dublin.

[^7]: ${ }^{2}$ United States Fish Commission Bulletin, 1898, pages 22-31.

[^8]: ${ }^{1}$ United States Fish Commission Bulletin, 1893, pages 22-31.

[^9]: ${ }^{2}$ United States Fish Commission Bulletin, 1898, page 511.

[^10]: ${ }^{1}$ Decrease.

[^11]: ${ }^{1}$ Stevenson, Report on Industries of Maryland, 1894
 ${ }^{2}$ Oyster Culture, by H. F. Moore.
 ${ }^{3}$ Fish Bulletin, 1899, page 516.

[^12]: ${ }^{1}$ The Relations of the Industries to the Advancement of Chemical Science, by William McMurtrie, Proc. A. A. A. S., Vol. 44; page $79,1895$.

[^13]: ${ }^{1}$ The Coal-tar Industry, by A. G. Green, Science, Vol. 14, page 663; 1901.
 ${ }^{2}$ J. Soc. Chem. Ind., Vol. 16, page 570, 1897.

[^14]: ${ }^{3}$ J. Soc. Chem. Int., 1902, pages 212 to 301.

[^15]: ${ }^{1}$ Catalogue, Harrison Brothers \& Company, Incorporated, Philadelphia, 1902.

[^16]: ${ }^{1}$ Lunge: Sulphuric Acid and Alkali, 1891, Vol. I, page 7.

[^17]: ${ }^{1}$ R. Knietsch, Ber. d. d. Gesell, 1901, page 4069.

[^18]: ${ }^{1}$ J. Am. Chem. Soc., vol. 23, page 912: 1901.

[^19]: ${ }^{1}$ Traité de Chimie, 1865, Vol. II, page 225.
 ${ }^{2}$ Chemistry as Applied to Arts and Manufactures, Vol. II, page 729.

[^20]: ${ }^{1}$ Principles of Chemistry, 1897, Vol. I, page 548.
 ${ }^{2}$ Principles and Practice of Agricultural Analysis, 1895, Vol. II, pages 251 to 253 .
 ${ }^{3}$ Annual report, Massachusetts agricultural experiment station, 1888 , page 202.
 ${ }^{4}$ Annual report, Connecticut agricultural experiment station, 1890, page 110 .

[^21]: ${ }^{1}$ Principles of Chemistry, 1897, Vol. I, page 549.

[^22]: ${ }^{2}$ Principles and Practice of Agricultural Analysis, Vol. II, page 2.54.

[^23]: Chemistry as Applied to the Arts and Manufactures, by Sheridan Muspratt, Glasgow, 1860.
 Traité de Chimie, by Pelouze and Fremy, Vol. II, Paris, 1865.
 A Manual of Chemical Technology, by Rudolf von Wagner, translated by William Crookes, New York, 1892.
 Principles and Practice of Agricultural Analysis, by Harvey W. Wiley, Vol. II, Easton, Pa., 1895.
 The Principles of Chemistry, by D. Mendeléeff, New̧ York, 1897.

[^24]: ${ }^{1}$ J. of Gas-Lighting, page 1130. 1891.
 ${ }^{2}$ Am. Chem. J., page 248. 1884.
 ${ }^{3}$ J. D. Pennock, J. Am. Chem. Soc., vol 21, page 681. 1899.
 ${ }^{4}$ Coal Tar and Ammonia, 3d ed., Appendix, page 917.

[^25]: ${ }^{1}$ Coal Tar and Ammonia, 3 d ed., page 17; ibid., page 4.
 ${ }^{2}$ De Gensanne, "Traité de la fonte des Mines,", Paris, 1770, Vol. I, ch. 12.
 ${ }^{3}$ Coal Tar and Ammonia, pages 11-13.

[^26]: ${ }^{1}$ J. Am. Chem. Soc., vol. 21, page 696. 1899.
 ${ }^{2}$ Coal Tar and Ammonia, 3d ed., page 588.

[^27]: ${ }^{3}$ J. Am. Chem. Soc., vol. 21, page 703.

[^28]: ${ }^{1}$ J. Am. Chem. Soc., vol. 21, page 697.

[^29]: ${ }^{1}$ These preparations are known as benzol, toluol, naphthalene, xylol, phenol, cresol, toluidine, xylidine, cumidine, binitrotoluol, binitrooenzol, benzidine,
 tolidine, dianisidine, naphthol, naphthylamine, diphenylamin, benzeld tondine, dianisidine, naphthol, naphthylamine, diphenylamine, benzaldehyde,

[^30]: ${ }^{1}$ Schw. J., vol. 34, page 325.

[^31]: ${ }^{1}$ Ding. poly. J., vol. 238, page 75.
 ${ }^{2}$ Gmelin, vol. 7, page 413 .

[^32]: 'Bloxam's Chemistry, page 619. 1890.
 No. 210--3

[^33]: ${ }^{1}$ Tenth Census of the United States, Manufactures, general folio 1013.

[^34]: 4 kilns are being charged and closed.
 2 kilns are being seasoned.
 14 kilns are being carbonized.
 12 kilns are being cooled.
 4 kilns are being drawn.
 6 kilns are idle or acting as relays.
 $\overline{42}$

[^35]: ${ }^{\text {I }}$ Miscellaneous Bulletin No. 13, United States Department of Agriculture, 1898, page 5.

[^36]: ${ }^{1}$ Thorp, Outline of Industrial Chemistry, page 144; 1898.

[^37]: ${ }^{1}$ Phil. Trans., vol. 98, page 1. 1808.
 ${ }^{2}$ Borcher, Electric Smelting and Refining, page 104.

[^38]: ${ }^{8}$ J. Frk. Inst., vol. 153, page 65. 1902.
 ${ }^{4}$ The Principles of Chemistry, D. Mendelèeff, vol. 1, page 535:

[^39]: ${ }_{2}^{1}$ Science, vol. 15 (N. S.), page 129, Jan. 24. 1892.
 ${ }^{2}$ Practical Electro-Chemistry, page 309.

[^40]: ${ }^{1}$ J. Am. Chem. soc., vol. 20, page 868. 1898.

[^41]: ${ }^{2}$ Alkali Industry, vol. 3.

[^42]: ${ }^{1}$ The Mineral Industry, vol. 9, page 765. 1901.

[^43]: ${ }^{1}$ Practical Electro-Chemistry, pages 313-314.

[^44]: ${ }^{1}$ Liebig's Annalen, vol. 69, page 259. 1849.
 ${ }^{2}$ J. Chem. Soc., vol. 20, page 668; 1901.

[^45]: ${ }^{1}$ J. Frk. Inst., vol. 153, page 50. 1902.
 ${ }^{2}$ J. Am. Chem. Soc., vol. 23, page 911. 1901.

[^46]: ${ }^{1}$ Loc. cit.
 ${ }^{2}$ Chemistry of Coal-tar Colors.
 ${ }^{3}$ Rise and Development of Organic Chemistry, page 248.

[^47]: ${ }^{1}$ One Hundred Years of American Commerce, Vol. II, page

[^48]: ${ }^{1}$ See Literature at the end of this group.
 ${ }^{2}$ The Tannins, Vol. II, page 132.
 ${ }^{3}$ Report upon Forestry, page 145.

[^49]: ${ }^{1}$ Report upon Forestry, page 153.
 ${ }^{2}$ Classification de 350 matieres tannantes, page 23.

[^50]: ${ }^{3}$ The Manufacture of Leather, by Charles T. Davis, pages 74-77.

[^51]: ${ }^{1}$ One Hundred Years of American Commerce, Vol. II, page 497.

[^52]: ${ }^{1}$ The Manufacture of Leather, page 526.
 ${ }^{2}$ Ibid., page 530 .
 IMPORTS FOR CONSUMPTION DURING THE YEARS ENDING JUNE 30, 1891 TO 1900.

 | Year. | SUMAC, EXTRACT OF. | | SUMAC, GROUND. | | sumac, unmanufacTURED. | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Pounds. | Value. | Pounds. | Value. | Pounds. | Value. |
 | 1891 | 2, 399, 028 | \$77,152 | 11, 412, 297 | \$235, 729 | 2, 953, 202 | \$65, 802 |
 | 1892. | 1,902,089 | 68,853 | 10, 822, 614 | 225, 891 | 2, 841, 200 | 60, 657 |
 | 1893. | 2, 880, 210 | 108, 447 | 14, 363, 922 | 289,953 | 3, 817,568 | 70, 152 |
 | 1894. | 1,277,609 | 54, 535 | 8,315, 551 | 191,333 | 970, 207 | 21,427 |
 | 1895. | 1,604,024 | 53, 260 | 12,242,216 | 236,541 | 2, 203, 645 | 40, 021 |
 | 1896. | 2,472, 923 | 78,504 | 13,349,233 | 231, 324 | 1,027, 824 | 24,861 |
 | 1897. | 2, 907, 521 | 84, 150 | 18,530, 104 | 245, 992 | 2,117, 439 | 30,554 |
 | 1898. | 1, 266, 542 | 48,399 | 8,336, 117 | 121, 461 | 3,754, 307 | 62, 553 |
 | 1899 | 1,133,662 | 38,709 | 14, 156, 344 | 202,605 | 3, 011, 810 | 42,297 |
 | 1900. | 1,419, 827 | 50,295 | 10,644,001 | 233, 846 | I, 048, 955 | 20,800 |

 IMPORTS OF TANNING MATERIALS FOR CONSUMPTION DURING THE YEARS ENDING JUNE 30, 1891 TO 1896.

[^53]: ${ }^{1}$ One hundred years of American Commerce, Vol. I, page 192.

[^54]: ${ }^{1}$ See Explosives: Gun Cotton or Pyroxylin, ante, page 73.

[^55]: ${ }^{1}$ Brunschwig, 1500.

[^56]: ${ }_{2}^{1}$ Volatile Oils, page 641.
 ${ }^{2}$ Amer. Phar. Assn., page 121. 1886.
 ${ }^{3}$ Ibid.
 ${ }^{4}$ The Volatile Oils, page 636.

[^57]: ${ }_{6}^{5}$ The Volatile Oils, page 636.
 ${ }^{6}$ Ibid., page 684.

[^58]: ${ }^{1}$ The Volatile Oils, page 668.
 ${ }^{2}$ Ibid., page 395.

[^59]: ${ }^{3}$ Private communication.
 ${ }^{4}$ The Volatile Oils, page 585.

[^60]: ${ }^{1}$ The Volatile Oils, page 331.

[^61]: ${ }^{1}$ The Volatile Oils, page 276.
 ${ }^{2}$ Ibid., page 263.
 ${ }^{s}$ U. S. Dispensatory, 18th ed.: 1899.
 ${ }^{4}$ Am. Jour. Phar., page 418. 1886.
 ${ }^{5}$ Therap. Gaz., vol. 11, page 295.

[^62]: ${ }^{6}$ N. Y. Jour. Med., Vol. X, page 208; Trans. Amer. Med. Assoc.,

[^63]: ${ }^{1}$ J. Chem. Soc., vol. 21, pages 53 to 181.

[^64]: ${ }^{1}$ Barnard's Report on Paris Exposition of 1867, pages 368 to 386.
 ${ }^{2}$ Refrigerating and Ice-Making Machinery, page 24.

[^65]: ${ }^{3}$ Liquid Carbonic Acid, page 4.

[^66]: ${ }^{1}$ Theoretical and Practical Ammonia Refrigeration, page 113.

[^67]: ${ }^{1}$ The Rise and Development of the Liquefaction of Gases, page 234.

[^68]: ${ }^{2}$ Annals of Philosophy, vol. 6, page 66.
 ${ }^{3}$ Liquefied Air, page 2.

[^69]: ${ }^{1}$ J. Am. Chem. Soc., vol. 17, page 197. 1895.
 ${ }_{2}^{2}$ J. Phil. Coll. Pharm., Vol. I, No. 2. May, 1826.
 ${ }^{3}$ Ephemeris, vol. 2, page 590.

[^70]: ${ }^{4}$ One hundred years of American Commerce, Vol. II, page 610. 1859.

[^71]: ${ }^{1}$ Tenth Census of the Unites States, report on manufactures, page 1011.
 ${ }^{2}$ J. Am. Chem. Soc., vol. 18, page 244; 1896.

[^72]: ${ }^{1}$ Includes establishments distributed as follows: Colorado, 2; Connecticut, 2; Delaware, 2; District of Columbia, 1; Kansas, 1; Maine, 2; Mississippi,1; Nevada, 1:

[^73]: ${ }^{1}$ Includes establishments distributed as follows: Louisiana, 1; Maine, 1; Minnesota, 1; Oregon, 1; Rhode Island, 1; Virginia, 1.

[^74]: 1 nacludes establishments distributed as follows: Arizona, 1; Colorado, 2: Delaware, 1; District of Columbia, 1; Kentucky, 1; Nebraska, 1; New Hampshire, 1;
 North Carolina, 2; Tennessee, 1; Vermont, 2; Virginia, 1; West Virginia, 1.

[^75]: ${ }^{1}$ Includes establishments distributed as follows: Arizona, 1 : Colorado, 2

[^76]: IIncludes all milk produced, whether sold, consumed, or made iato butter
 or cheese. made.

[^77]: Sold as cane.
 ${ }^{2}$ Estimated from number of vines or trees.
 ${ }^{8}$ Includiug value of raisins, wine, etc.
 ${ }^{8}$ Including value of raisins, wine, etc.

[^78]: ${ }^{1}$ Includes establishments distributed as follows: Connecticut, 2. lıdiana, 1; Lowa, 1; Massachusetts, 1; Pennsylvania, 2; Rhode Island, 1; Wisconsin, 1.

[^79]: ${ }_{1}$ Includes establishments distributed as follows: Connecticut, 2; Illinois, 2; Indiana, 1; Iowa, 1; Massachusetts, 1; Pennsylvania, 2; Rbode Island, 2; Wisconsin, 1 .

[^80]: ${ }^{1}$ Universal Cyclopædia, vol. 9, page 198.

[^81]: ${ }_{1}$ Includes establishments distributed as follows: Connecticut, 2; Indiana, 1; Iowa, 1; Massachusetts, 2: Pennsylvania, 2; Rhode Island, 1; Wisconsin, 1.

[^82]: ${ }^{1}$ IncIudes establishments distributed as follows: Connecticut, 2; Indiana, 1; Iowa, 1; Massachusetts, 2; Penasylvania, 2; Rhode Island, 1; Wisconsin, 1 .

[^83]: ${ }^{1}$ Universal Cyclopædia, vol. 9, page 198.

[^84]: ${ }^{1}$ Scientific American, Nov. 28, 1878.

[^85]: ${ }^{2}$ One Hundred Years of American Commerce, Vol. II, pagen 660 .

[^86]: 1 Decrease.
 ${ }^{2}$ Includes proprietors and firm members with their salaries; number only reported in 1900, but not included in this table. (See Table 30.)
 ${ }^{3}$ Not reported separately.
 ${ }^{4}$ Not reported.

[^87]: ${ }^{1}$ Annual Report, United States Treasury Department, on Commerce and Navigation of the United States for 1900.

[^88]: ${ }^{1}$ Knight's Mechanical Dictionary.

[^89]: ${ }^{2}$ The Universal Cyclopædia, vol. 5, page 250.

[^90]: ${ }^{1}$ Including "part owners," "owners and tenants," and "managers."

[^91]: ${ }^{1}$ Includes all milk produced, whether sold, consumed, or made into butter or cheese.
 2 Includes the value of milk sold and consumed, and of butter and cheese made.

[^92]: ${ }^{1}$ Estimated from number of trees or vines.

[^93]: ${ }^{1}$ One Hundred Years of American Commerce, Vol. I, page 113.

[^94]: ${ }^{1}$ Rebort of Industrial Commission, Vol. XIX, page 262 f.

[^95]:

[^96]: ${ }_{2}^{1}$ Not reported. ${ }^{\text {Not }}$ reported separately in 1890 .
 2 Not reported separately in 1890 .
 3 Includes establishments distrihuted as follows: Alaska, 1; District of Columbia, 2.

[^97]: Alaska, 1; District of Columbla, 2.

[^98]: ${ }^{1}$ Annual Reports on Commerce and Navigation, Uuited States Treasury Departmeut.

[^99]: ${ }^{1}$ Finance, Vol. III.

[^100]: 1 Includes Sea island, Egyptian, and other foreign.
 2 Includes establishments distributed as follows: 1900-Arkansas, 2; Lonisiana, 2; West Virginia, 1. 1890-Arkansas, 2; Louisiana, 2; Texas, 1. 1880-Florida, 1;Arkansas, 2; Louisiana, 2; Texas, 2.

[^101]: ${ }^{1}$ The total number of spindles in the United States as reported at the Eleventh Census was $14,550,323$, of which 166,143 were idle spindles in cotton mills. At this census no idle spindles which are likely to be put in operation again were reported from any state.

[^102]: ${ }^{1}$ Includes in 1880, 11,575 spindles reported by states other than those named. ${ }^{2}$ 1neludes in 1880, 22,100 spindles reported by states other than those named.

[^103]: ${ }_{2}$ Not reported separately.
 3 Includes 2,115 officers and clerks for whom no sularies are reported.

[^104]: ${ }^{2}$ Not reported.

[^105]: ${ }^{6}$ The error referred to in note 7 is also contained in this total.
 Owing to error in the published statistics for 1880 the cost of cotton in Indiana is shown to be in excess of the total cost of all materials used
 Included in "All other Western states."
 ${ }^{2}{ }^{2}$ Includes establishments distributed as follows: 1900, California, 1; Colorado, 1; Illinois, 1; Missouri, 2; Nebraska, 1. 1890, California, 1; Iowa, 2; Missouri, 1 . 1880, Michigan, 1; Minnesota, 1. - 1870, Iowa, 1.

[^106]: I Includes establishments distributed as follows: Southern states-Arkansas, 2; Louisiana, 2; West Virginia, 1. Western states-California, 1 ; Colorado, 1;

[^107]: ${ }_{1}$ Inclndes establishments distributed as follows: Southern states-Arkansas, 2; Lonisiana, 2; West Virginia, 1. Western states-California, 1; Colorado, 1; Illinois, 1; Missouri, 2; Nebraska, 1.

[^108]: Includes establishments distributed as follows: Southeru states-Arkansas, 2; Louisiana, 2; West Virginia, 1 . Western states-California, 1; Colorado, 1 ;
 inois, 1 ; Missouri, 2 ; Nebraska, 1 .
 1llinois, 1; Missouri, 2; Nebraska, 1.

[^109]: ${ }^{1}$ Includes establishments distributed as follows: Southern states-Arkansas, 2; Lovisiana, 2; West Virginia, 1. Western states-California, 1; Colorado, 1 ; Mlinois, 1; Missouri, 2; Nebraska, 1.

[^110]: ${ }^{1}$ Includes establishments distributed as follows: Southern states-Arkansas, 2; Louisiana, 2; West Virginia, 1. Westeru states-California, 1; Colorado, 1;

[^111]: ${ }^{1}$ Includes establishments distributed as follows: Southern states-Arkansas, 2; Louisiana, 2; West Virginia, 1. Western states \rightarrow California, 1; Colorado, 1; Illinois, 1; Missouri, 2; Nebraska, 1.

[^112]: ${ }^{1}$ Includes establishments distributed as follows: Southern states-Arkansas, 2; Lovisiana, 2; West Virginia, 1. Western states-California, 1; Colorado, 1 ; Illinoi3, 1; Missouri, 2; Nebraska, 1.

[^113]: Includes estahlishments distributed as follows: Southern states-Arkansas, 2; Louisiana, 2; West Virginia, 1. Western states-Californla, 1; Colorado, 1;
 Illinois, 1 ; Missouri, 2 ; Nehraska, 1 .
 ${ }^{2}$ Does not include 45,432 dozen underwear.
 ${ }^{s}$ Does not include 975,000 yards cotton, 11,989 dozen underwear, and 646,931 quilts.

[^114]: ${ }^{1}$ Teutb Census: The Newspaper and Periodical Press, by S. N. 1. North page 79.
 ${ }_{2}$ Not reported
 3 Estimated.
 4ncludes proprietors and firm members, with their salaries; number only reported in 1900 . (See Table 58.)

 6 Not reported separately.

[^115]: 1 Obtained, for each class of publications, by multiplying theaverage circulation for each issue by the number of issues during the vear.
 ${ }_{3}^{2}$ Includes 1,182 publications not reporting circulation, as they can not be excluded from the classification.
 ${ }^{3}$ The circulation of 5 weeklies, 1 semimonthly, 14 monthlies, and 12 quartcrlies not reported separately, amounting to 150,000 , is given only for "all classes."
 4 Includes publications issued semimonthly, semiannually, annually, etc.

[^116]: ${ }^{1}$ Twelfth Census, Population, Part I, page clxxi.

[^117]: Per cent.
 News 77.6

 Book and periodical 16.4
 Job printing .. 6.0

[^118]: 1 As shown in Table 30.

[^119]: ${ }^{1}$ Publications wbich were in existence, but from which no returns were received.

 - Obtained, for each class of pablications, by multiplying the aggregate circulation per issue by the number of issues during the year.
 ${ }^{3}$ Includes the employees engaged in the book and job printing branch of the industry, and their wages.

[^120]:

[^121]: ${ }^{1}$ Decrease.
 2 See note 6 , page 25
 ${ }^{3}$ See note 2, page 26.
 1 Decrease.
 2 See note . page 25
 ${ }_{3}^{3}$ See note 2, page 26.

[^122]: ${ }^{1}$ Tenth Census: The Newspaper and Periodical Press, by S. N. D. North, page 102.

[^123]: ${ }^{1}$ Theodore L. DeVinne, to the writer.

[^124]: ${ }^{1}$ The following cities, having a product valued at over $\$ 1,000,000$, are not included in the above table, because in 1900 they had less than 3 establishments, except Patterson, N. J., and Seattle, Wash., which cities, together with those of 1880 and 1890 shown below, are not included because they are no comparative figures. These establishments are distributed as follows: 1890-Cambridge, Mass., 2: Cedar Rapids, Lowa, 1; Chicopee, Mass., 1; Cinaten, 10 , Los Angeles, Cal., 1; Marshalltown, lowa, 1; Nebraska City, Nebr., 1; New Haven, Conn, ,2; Orange, Conn.1; Ot 1880-Cambridge, Mass., 5; Wheeling, W. Va., 4; Topeka, Kans., 1;
 orcester, Mass., 5.
 2Includes proprietors and firm members, with their salaries; number only reported in 1900, out not included in this summary.
 ${ }_{3}^{2}$ Includes proprietors and
 ${ }_{4}^{3}$ Not reported

[^125]: ${ }^{1}$ Tbe following cities, having a product valued at over $\$ 1,000,000$, are not included in the above table, because in 1900 they had less than 3 establishments, except Paterson, N. J. and Seattle, Wash., which cities, togsiher with those of 1880 and 1890 shown below, are not included because there are no comparative figures. These establishmentsare distributed as follows: 1900 -Cambridge, Mass., 2 ; Cedar Rapids, Iowa, 1 ; Chicopee, Mass., 1 ; Clinton, Iowa, 1 ; Hammond, Ind., 1 ; Los Angeles, Cal., 1 ; Marshalltown, Iowa, 1; Nebraska City, Nebr., 1; New Haven., Couna, 2; Orange, Conn., 1; Ottumwa, Iowa, 1; Paterson, N. J., H; Seattle. Wash., 8 ; Topeka, Kans., i; Wbceling (and Ohio County), W. Va., 2; Wichita, Kans., 1. 1890-Los Angeles, Cal., 6. 1880-Camoridge, Mass., 5; Wheeling, W. Ya., 4; Worcester, Mass., 5.
 ${ }_{8}^{2}$ Not reported separately.
 8 Not reported.
 ${ }_{5}^{4}$ Incindes proprietors and firm members, with their salaries; number ouly reported in 1900, but not included in this summary.
 Includes, for 1900, Cudahy, Wis.

 - Does not include South St.' Joseph, Mo., for 1880.

[^126]: ${ }^{1}$ Includes establishments distributed as follows: Alabama, 1; Arkansas, 1 ; New Hampshire, 1; South Dakota, 1; Wyoming, 1.

[^127]: ${ }^{1}$ For valuable data used in the preparation of this historical and descriptive sketch, acknowledgment is made to "Ice and Refrigeration," Volume 21, Nos. 1 to 6, July, 1901, to December, 1901, both inclusive; History of American Manufactures, by J. L. Bishop; Philip D. Armour in "One Hondred Years of Anmerican Commerce," Volume II, edited by Hon. Chauncey M. Depew; the Yearbooks of the United States Department of Agriculture; and the Statistical Annuals published by the Cincinnati Price Current.
 ${ }^{2}$ History of American Manufactures, by J. L. Bishop, Vol. I, page 427.

[^128]: ${ }^{1}$ History of American Manufactures, by J. L. Bishop, Vol. I, page 429 ff.
 ${ }_{2}$ Ibid., page 439.
 ${ }^{3}$ Ibid., page 444.
 ${ }^{4}$ Ibid., page 449.

[^129]: ${ }^{1}$ Philip D. Armour, in One Hundred Years of American Commerce, Vol. II, page 384.

[^130]: ${ }^{1}$ Ice and Refrigeration, September, 1901, Vol. 21, No. 3, page 98.

[^131]: ${ }^{1}$ One Hundred Years of American Commerce, Vol. II, page 386.

[^132]: ${ }^{1}$ Yearbook, Department of Agriculture, 1899, page 459 ff .

[^133]: South Carolina, 1; Wyoming, 2.

[^134]: ${ }^{1}$ lncluding "part owners," "owners and tenants," and "managers."

[^135]: ${ }^{1}$ Includes all milk produced, whether sold, consumed, or made into butter or cheese.

 2 Includes the vaIue of all milk sold or consumed, and of butter and cheese made.

[^136]: ${ }^{1}$ Including 2 Indians and 1 Chinese.

[^137]: ${ }^{1}$ Less than one-tenth of 1 per cent.

[^138]: ${ }^{1}$ Includes all mill produced, whether sold, consumed, or made into butter or cheese.
 ${ }^{2}$ Includes the value of milk sold or consumed, and of butter and cheese made.

[^139]: ${ }^{1}$ 1ncluding "part owners" and "owners and tenents."
 ${ }^{2}$ Including sugar farms.

[^140]: ${ }^{1}$ Exclusive of 13 tons, valued at $\$ 19$, sold in seed cotton and included with the cotton.

 2 Sold as cane.
 8 Estimated from number of vines or trees.
 4 Including value of raisins, wine, etc.
 5 Including value of cider, vinegar, etc.

[^141]: 1 Decrease.
 ${ }^{2}$ Included in "all other states."
 ${ }^{2}$ No establishments reported. . ${ }^{4}$ Includes establishments distributed as rolinws: Tennessee, 2 ; Texas, 3; Utah, 2; Washington, 1.

[^142]: 1 Included in " all other states."
 2 No eatablishments reported. . ${ }^{2}$ Includes establisbments distributed as follows: 190-Alabama, ; Colorado, 1; Delaware, 1; 1tan, 1. 1880-Colorado, 1; Idaho, 1; Mississippi, 2; Oregon, 1; Weat $\underset{\text { Virginia, }}{\text { Kans }}$

[^143]: ${ }^{1}$ Inclnded.in " all other states."
 2 Includes establishments distributed as follows: 1900-Alabama, 1; Colorado, 1. Delaware, 1; Kansas, 1; Oregon, 2; Tennessee, 2. 1890-Alabama, 1; Delaware, 1; Kausas, 2; Nebraska, 1; Oregon, 1; South Carolina, 2; Tennessee, 2; Texas 3; Utab, 2; Washington, 1 .

[^144]: ${ }^{1}$ One Hundred Years of American Commerce, published 1895. The Boot and Shoe Trade, William B. Rice, Vol. II, pages 566 to 574.

[^145]: ${ }^{1}$ Eighth Census of United States, 1860. Manufactures, page 67.

[^146]: ${ }^{2}$ One Hundred Years of American Commerce, published 1895: The Boot and Shoe Trade; William B. Rice, Vol. II, pages 566 to 574.

[^147]: ${ }^{1}$ One Hundred Years of American Commerce, published 1895: The Boot and Shoe Trade; William B. Rice, Vol. II, pages 566 to

[^148]: ${ }^{1}$ O. W. Boyden in "Boot and Shoe Recorder," page 43, Jan- .
 1, 1902 .

[^149]: ${ }^{1}$ Comprises all milk produced, whether sold, consumed, or made into butter or cheese.
 ${ }_{2}$ Includes the value of all milk sold or consumed and of butter and cheese made.

[^150]: 1 Including "part owners
 2 Including forists' estahlishments and nurseries, and tobacco, cotion, and

[^151]: ${ }^{1}$ Includes all milk produced, whether sold, consumed, or made into butter or cheese.
 or cheese. 2 Includes the value of all milk sold or consumed and of butter and cheess made.

[^152]: ${ }^{1}$ Exclusive of 1,779 tons, valued at $\$ 18,344$, sold iu seed cotton and included with the cotton.
 ${ }^{2}$ Less than 1 acre.
 ${ }^{3}$ Sold as cane.
 ${ }^{4}$ Estimated from number of vines or trees.
 5 Including value of raisins, wine, etc.
 6 Including value of cider, vinegar, etc.

[^153]: ${ }^{1}$ No statistics of acreage were secured prior to 1880 .
 2 Decrease.
 ${ }^{2}$ lncluding the terr:tory now embraced in West Virginia.

[^154]: 1 Including "part owners," "owners and tenants," and "managers."

[^155]: ${ }^{1}$ The number reported is of fowls over 3 months old. The value is of all, old and young.

 2 Including Guinea fowls.

[^156]: ${ }^{1}$ Less tban one-tenth of 1 per cent.

[^157]: ${ }^{1}$ Includes all milk produced, whether sold, consumed, or made iuto butter or cheese.
 made. made.

[^158]: ${ }_{2}^{1}$ Including "part owners" and "owners and tenants."
 ${ }^{2}$ Including tobacco farms, rice farms, sugar farms, forists' establishments, and nurseries.

[^159]: ${ }^{1}$ Includes all milk produced, whether sold, consumed, or made into butter or cheese.
 made. made.

[^160]: ${ }^{1}$ Comprising 2 Chinese, 62 Indians, and 58,096 negroes.

[^161]: I Ineludes all milk produced, whether sold, consumed, or made into butter or cheese. made.

[^162]: ${ }^{1}$ Stith's History of Virginia, pages 77 and 82.
 ${ }^{2}$ Bishop's History of American Manufactures, Vol. I, pages 233 and 234.

[^163]: ${ }^{3}$ History of Pittsburg, by Neville B. Craig, 1851, pages 276 and 277.

[^164]: 1 Includes proprietors and firm members, with their salaries; number only reported in 1900 but not included in this table. (See Table 12.)

[^165]: Not reported in 1880
 ${ }^{2}$ While the aggregate value for the respective states is the aggregate value of products reported for all branches of glass manufacture, this total can not be ${ }^{3}$ Includes establishments distribut, as the reports of certain products have been suppressed, to avoid disclosing the operations of individual establishments. fornia, 1; Colorado, 1; Delaware, 1; Georgia, 2; Kentucky, 2; Michigan, 1; Wisconsin, 1. 1880-California, 1; Connecticut, 1; Iowa, 1 ; Wisconsin; 1. 1890-Cali(1) Kentucky, 2; Michigan, 1; Wisconsin, 1. 1880-California, 1; Connecticut, 1; 10wa, 1; Michigan, 1: New Hamp-
 ${ }_{5}$ Includes "all other products" for building glass as follows: Indiana, $\$ 15,000$; New Jersey, $\$ 6,400$; and Massacbusetts, 81,200 ; total, $\$ 22,600$.
 ${ }^{5}$ Includes "cathedral," "skylight," "wire," and "all other products" for this class.
 No establishments reported.
 TIncluded in "all other states."

[^166]: ${ }^{1}$ Includes proprietors and firm members, with their salaries; number only reported in 1900 but not included in this table. (See Table 13 .)
 2 Included in "all other states."
 ${ }_{3}$ Included in all other states." glass: Illinois, 2 ; Missouri, 2 ; New York, 1 ; and Ohio, 1. 1890-Window glass: Delaware, 1 ; Ilinois, 3 ; Maryland, 4 ; Massachusetts, 1 ; Michigan, 1 ; Missouri, 1 ; New York, 8; and Ohio, 21.

[^167]: ${ }^{1}$ Included in " all other states."
 ${ }_{2}$ Includes establishments distributed as follows: 1900-Illinois, 1: Maryland, 2; Messachusetts, 1; Missouri, 2: West Virginia, 2; and Delaware, 1. 1890-Plate glass: Illinois, 2; Missouri, 2; New York, 1; and Ohio, 1. 1890-Window glass: Delaware, 1; 1llinois, 3; Maryland, 4; Massachusetts, 1; Michigan, 1; Missouri, 1; New York 8; and Ohio 21.

[^168]: 1 While the total value for the respective states is the total value of products reported for all cosses of the building glass manufac obtained by adding the amounts given, as the reports of certain products have been suppressed to avoid disclosing the ope

 2 Includes $4,388,743$ square feet of skylight, ribbed glass, opalescent glass, etc.
 ${ }^{2}$ Included in "all other states."
 ${ }^{2}$ Included establishments distributed as follows: 1900-Illinois, 1; Maryland, 2; Massachusetts, 1; Missouri, 2; West Yirginia, 2; and Delaware, 1. 1890-Plate
 New York, 8; and Obio, 21 .

 6 Not reported in 1890.

[^169]: ${ }^{1}$ Tenth Census of the Onited States, Report on Glass Manufacture; by Joseph D. Weeks, Special Agent, page 98.
 ${ }^{2}$ Ibid., page 99.
 ${ }^{8}$ Ibid., page 99.

[^170]: ${ }^{1}$ Report of the Industrial Commission, Vol. XIII, Trusts and Industrial Combinations, pages 225 to 242.

[^171]: Included in "'all other states."
 2Includes establishments distributed as follows: 1900-California, 1; Colorado, 1; Georgia. 1; Michigan, 1; Missouri, 1; Virginia, 2; Wisconsin, 1 . 1890-California, 1; Colorado, 1; Georgia, 2; Kentucky, 2; Maryland, 2; Massachusetts, 2; Missouri, 2; Wisconsin, 1.

[^172]: ${ }^{1}$ Tenth Census of the United States, "Report on Glass Manufacture," by Joseph D. Weeks, special agent, page 58.

[^173]: ${ }^{1}$ Elements of Glass and Glass Making, Biser, 1900, page 62.

[^174]: ${ }^{1}$ Includes establishments distributed as follows: California, 1; Colorado, 1; Delaware, 1; Georgia, 1; Michigan, 1; Virginia, 2; Wisconsin, 1.

[^175]: Furnished to otber establishments.
 1 Includes establishments distributed as follows: California, 1; Colorado, 1; Georgia, 1; Michigan, 1; Missouri, 1; Virginia, 2; Wisconsin, 1.

[^176]: 1 For year preceding tbat designated.
 2 Values for 1870 were reported in depreciated currency. To reduce to specie basis of other years they must be diminished one-fifth.
 ${ }^{3}$ Exclusive of live stock on ranges.
 4 lncludes betterments and ndditions to live stock.

[^177]: ${ }^{1}$ Less than one-tenth of 1 per cent.

[^178]: ${ }^{1}$ Exclusive of 29,761 tons, valued at $\$ 292,253$, sold in seed cotton and ineluded with the cotton.
 ${ }^{2}$ Estimated from number of vines or trees
 4 Inclnding value of raisins, wine, etc.
 ${ }^{5}$ Including value of cider, vinegar, etc.

[^179]: ${ }^{1}$ Including "part owners," "owners and tenants," and "managers."

[^180]: ${ }_{1}^{1}$ Less than 1 acre.

[^181]: 1 East of Cascade mountains, including Spokane and Yakima Indian reservations.

 2 Not including area of "duplicate forage crop" (cornstalks and strippings).
 3 Including cornstalks and corn atrippings.
 4 Eatimated from number of vines or trees.
 5 Including tohacco, nurseries, seeda, products from land under glass, and other crops not mentioned.

[^182]: 1 1ucludes all milk produced, whether sold, consumed, or made into butter
 or cheese.
 or cheese. ${ }_{\text {and }}$ Includes the value of all milk sold or consumed and of butter and cheese made.

